TSIM2

A generic SPARC architecture simulator capable of
emulating ERC32- and LEON-based computer systems

2015 User's Manual

The most important thing we build is trust

TSIM2 Simulator User's Manual

TSIM2-UM 1 www.cobham.com/gaisler
October 2015, Version 2.0.41

Table of Contents

O g 11 oo 1 (o o PP 6
0 = 3T - | ST 6
1.2. Supported platforms and SyStem reqQUIreMENESuueierieneiiiii e 6
1.3. OBtaiNiNG TSIM oottt ettt et 6
L4, ProDIEM FEPOMS ...ttt ettt et e e et et e et et e e e eaaa s 6

A 1= | = 1 o o I PP 7
R I €= 21 o PP 7
2.2, License INSTAIIAION ...coovniiiii e 7

R0 < ¢ (o] E TSP UP PP PUPPPINN 8
TR I @Y= 4= T PP 8
3.2, SHAING TSIM oottt ettt 8
3.3. Standalone MOTe COMIMANASuuuuiiiiii ettt ettt ettt e e et e e e e e e eneans 11
3.4. Symbolic debug iNfOrMELTONuiiiii e 14
3.5. Breakpoints and WaLChPOINTSuuiiiiiie ittt ettt et e e e e e e enanns 14
BB, PrOfTIING e e et 14
3.7, COUE COVEIBOR ...eevtieetiii ettt ettt ettt e ettt e e ettt e e et et e ettt e e et et e e et et e e e e nba s 15
3.8, CRECK-POINTING ... eeeetie ettt ettt ettt ettt ettt e et et e et et e e e e e e e enan s 16
3.9, PITOIMMEINCE ...oiiiiieiii ettt et et et 16
310, BACKITBCE ...ttt enaas 16
311, CONNECEING 1O GAD ...ttt ettt e et e et et e e 16
N A I 0112 o BT o] o o AP SUUP TSP 17

3.12.1. TSIM thread COMMENGASuieiiiriieeiit et e e et e e et e e e et e e e et e eeenta e eeees 17
3.12.2. GDB thread COMMENGSccuuuiiiiiiieiieii ettt e e e e e e eeees 18

4. EMUIELION CRarGCLENISIICS ... iieitiieeeiii ettt ettt ettt e e ettt e ettt e ettt e e e e erbaeeeenanaeaees 21

4.1, CommMON BEhAVIOUN ... e e 21
g Tt T T 1 11 o PPN 21
.02, UA RT S oottt ettt et 21
4.1.3. Floating point Unit (FPU)uuiiiiiiiee e 21
4.1.4. Delayed write t0 SPECial FEQISIENS ...civvvii ittt 21
4.1.5. |dIe-100p OPtIMISALIONiiiieii ettt e e e 21
4.1.6. Custom iNStruction @MUIALTONiiiiiiiei e 21
4.1.7. Chip-SPECITIC BITAIA ...ieeuieiiiii ettt e e e e e e e b 22

4.2. ERC32 SPECITIC EMUIBLION ... iiiiiiee ettt e et e e e e e eenens 22
4.2.1. ProCesSor EMUIBIIONueiiiti et e et e et e et e e et e et e e e e e e e ne s 22
4.2.2. MEC @MUIBLION ...ttt e e e e et e e e 22
4.2.3. INtErTUPt CONIONIEN ..ot 23
T (011 o (oo ST POP PP UPPPPTOPPPIN 23
4.2.5. POWEr-0OWN MOOE ...ttt ettt ettt e et e e eba s 24
4.2.6. MEMOIY @MUIBLIONcieiiiiieii ettt e et e e 24
A.2.7. EDAC OPEIAION ..eiiiiieeiiiii ettt e et e et et e e et et e e e e et eeeera e eee 24
4.2.8. Extended RAM and [/O @€8Suuiiiiiiiiieiiii e 24
4.2.9. SYSAV SIONAl ooeiiiiiii et e 24
4.2.10. EXTINTACK SIGNA .ouiiiiiiiiieeiei ettt ettt e e ettt e eeea e eeent e eees 24
4210, IWDE SIONA ..ottt 25

4.3. LEON2 SPECIfiC @MUIBLIONcoeieiiiiiii et 25
G N T (0000 S PP 25
4.3.2. CaCNE MEMOITES ..eueiiiti ettt ettt ettt ettt e et e e et eeene s 25
4.3.3. LEON pefipheralS regiStErSoiiiieiieeiiiii ettt 25
4.3.4. INtErrupt CONIOIIEr ..o e 25
4.3.5. POWEr-0OWN MOUE ...ttt ettt ettt e et e e b s 25
4.3.6. MEMOIY EMUIBLIONcieieiiieii et et e e e 25
4.3.7. SPARC V8 MUL/DIV/MAC INSITUCLIONScevviiieiiiiiieeiiiiie et 25
4.3.8. DSU and hardware Breakpointsoooiiiiiiiiiiii e 26

4.4. LEON3 SPECITIC @MUIBLION ... cceeieiiiiiii et et 26
QAL GENETAl it 26

TSIM2-UM 2 www.cobham.com/gaisler

October 2015, Version 2.0.41

4.2, PIOCESSOI ..euieiiite e e et e ettt et et e e e e e eneens 26
O A O o 0 <3 111 010 1= PP 26
A.4.4. POWEr-0OWN MOUEiiiiiiiieiiii ettt e et e e et n e e et eeeena s 26
4.4.5. LEON3 peripheralS registersociuiiiiiiieiiii e e e e e e e e e e eaa e eaes 26
4.4.6. Interrupt CONLrOIIEr ... e e e aeas 26
4.4.7. Memory eMUIGLIONciiiiiie e e e e 26
A.4.8. CASA INSITUCLION ..uuiiiiiiii ettt et e et e et e e et e e et e e e e et e e e e et eas 27
4.4.9. SPARC V8 MUL/DIV/MAC INSITUCLIONS ...civvviieiiiiiieee et eei et e e 27
4.4.10. DSU and hardware breakpointSccccuiiiiiiiiiiiiciin e e 27
N AN o | SR = UL =0 = (TP 27

4.5, LEON4 SPECITiC 6MUIBEIONoviiiiiii e e e e e e e e e e e e e et e e eeanns 27
A5, 1. GENEFAl oot 27
4.5.2. PIOCESSOI ...eiieieii et ettt et ans 27
4.5.3. L1 CaChe MEMOITES .evvuiiiiiiieeeiii e ettt e et s e ettt s e e e et s e e e et r e e e et aeeeeatnneeaesanaeaaes 27
A I O o g T 1= 010 Y 27
4.5.5. POWEr-0OWN MOUEiiiiiiiiieiiiii et e et e et e e et e e e et s 27
4.5.6. LEON4 peripheralS registersociuiiiiiiiieiiii et e e e e e e e e e e e eaen 28
A5.7. Interrupt CONLrOIIEr ... e e 28
4.5.8. MeMOry @MUIGLIONiiiiiiii i e e e e e e e e e e e e 28
4.5.9. CASA INSITUCLION ..uuiiiiiiii ettt e e et e e et e e et e e e e et e e e e et e e e e et s 28
4.5.10. SPARC V8 MUL/DIVIMAC INSITUCLIONS ...cecvvneeiiiiiieeeiiieeee et e e e e 28
4.5.11. GRFPU EMUIGLIONiiiiitieieii ettt e et e et e et s e e eae e e eeaees 28
4.5.12. DSU and hardware breakpointSccccuiiiiiiiiiiiiiiin e e e 28
N R A AN o | 2R = UL (=0 = (= T 28

5. Loadable MOUUIESooueiiiiii et e et e e et e e et e e e et e e eaans 29
5.1. TSIM /O emul@ation INtEIFACEocoiieiieeiiiii e et e e 29
B.LL SIMIT SEUCIUIE e e e e et e e e e e re s 29
B.1.2. H0IT SETUCIUIE .ottt e ettt e e e et e e et r e e e et e e e e eatnneeeee 30
5.1.3. Structure to be provided by 1/O devIiCecovviiii i 31
5.1.4. Cygwin SPECIfiC 10 INIT() ..evvvniiiiiiiii i 32

5.2. LEON AHB emulation iNEEraCEiiiiiiiiieiii et et e e e e et e e eeees 32
B.2.1. PrOCIHT SITUCIUIE ..uiiiiieii i ci e e e e e e e e e e e e e e e et s e e et e eaaneeeens 33
5.2.2. Structure to be provided by AHB moduleccoooviiiiiiiiiiie e 33
5.2.3. Big versus little @ndianesscc.uoiiiiiiiiiii e 36

5.3. TSIM/LEON CO-processor @MUIALIONieiuiieiiiiiiiiiie i eeie e e e e e e e e e e e e e eanaeees 36
5.3.1 FPUICP INEEITACE .iivtiieiiiiii ettt e et eeaees 36
5.3.2. SITUCIUIE El@MENES .iieviieiiiii ettt e e et e e ettt e e et e e et reeeeatneeaentnneaaees 36
5.3.3. Attaching the FPU and CP ... e 37
5.3.4. Big versus little @ndianessccouiiiiiiiiiii e 37
5.3.5. Additional TSIM COMMENGSovieviniiiiiiiieeeiii e e e e e e e e e 37
5.3.6. EXAMPIE FPU oo e 38

L IS 1] o= VA L =) TSP 39
30 I [oo [0 1o o PP 39
6.2, FUNCLION INEITACE .. iiiiiii i e et e e ettt e e et r e e e ettt e e e eataeeeentnaeeaees 39
B.3. AHB MOUUIES ... e e e e et e e e et e e e e et e e e e et s 40
L L@ T 1= o = ot PPN 40
ST 0 7 = I 1 7= 0o 1 o PSP 41
6.6. Linking a TLIB @pPliCationcccuuiiiiiiiiiic e e e e e e e e e aeaas 41
L I 411 = o] LS 41
7. Cobham UTB99/UTE99€ AHB MOAUIEcccuuiiiiiiiii ettt e et e et e e e 42
8 @ = 4= PP 42
7.2. Loading the MOAUIEciiii e e e 42
40 T O 11 SR 43
1= o T8 o (o 1 0 PN 43
7.5. 10/100 Mbps Ethernet Media Access Controller interfacecooveviiiiiiiiii i 43
T TS v 1 U o T o] o 1 o S 43
7.5.2. COMIMANAS ..eettiieiiii ettt ettt e et e e e ettt e e e ettt e e e et r e e e eaaneeesaenneeenenns 43
AT = o 10 o I = PPN 43
TSIM2-UM 3 www.cobham.com/gaisler

October 2015, Version 2.0.41

7.5.4. Ethernet PaCKet SEIVEriiiii i e 44
7.5.5. Ethernet packet SErver ProtoColccceuiiiiiiiiiie i e e e e 44

7.6. SpaceWire interface With RMAP SUPPOITiiiiiiii e e e e e 44
S = 1 U o T o] o1 o N 45
7.6.2. COMIMANAS ...eutiieeiii ettt e et e e ettt e e e ettt e e e ettt e e e et reeeeaaneaeeaenneeennnns 45
A T = o 18 o I =[PP 45
7.6.4. SPACEWITE PACKEL SEIVETiiiiiiciiieeii et e e e e e e e et e e et e e et e e et e e anneees 45
7.6.5. SpaceWire packet SErver ProtOCOlcceuiiiiiiiiiii i 46

7.7. PCI initiator/target and GPIO iNtEIfaCtecc.viiiiiiiiiii i 48
5 o111 7= o PSPPI 48

A A 1= o 18 o I = o PPN 48
7.7.3. User supplied dynamicC liDrarycoooooiiiiiiii e 48
7.7.4. PCl DUS MOTEl APL oot e e et e e e e e aaee 49
T7.7.5. GPIO MOTEl APl oo e e 50

R S RO NI 01 = = o SR TSTPP 51
A= 1 U o T o] o 1 oS 51
7.8.2. COMIMANAS ...ivtuieiiii ettt e ettt et e e et s e e et e e e e ettt e e e et r e e e et e e e esaenaeeeaenns 51
T B = o 10 o I = PPN 51
T.8.4, PACKEL SEIVEY ..ouiiiiiiii ettt et e et e et e e et e et et eanan 52
7.8.5. CAN packet Server ProtOCOlcc.uiiiiiiieiii i 52

8. Cobham UT700 AHB MOTUIEuiiiiiiiiiiii et e et e e e et eeeaa e 54
ST O = 4 1 PP 54
8.2. Loading the MOAUIEciirii e e e 54
8.3. SPI BUS MOUEl APl .o 55
9. Cobham Gaisler GR712 AHB MOQUIEciiuiiiiiiiii et et e e s 56
0.1, OVEIVIBIW ittt e ettt e e ettt e e e e ettt e e e et e e e e et e e e e et e e e et e e e e e e ra s 56
9.2. Loading the MOAUIEcoiii e e 56
LS G I 1= o 18 o (o 11 0 PN 56
S O NI 1= = o PSP 56
S S v 1 U o T o] o1 o S 56
9.4.2. COMIMANAS ..euttieeiii ettt e e e et e e et e e e e et e e e e et r e e e et reeeeaa s e e esten e eenenns 57
G I B 1= o 10 o I = (PPN 57
S o (= A= Y= PP 57
9.4.5. CAN packet Server ProtOCOlco.uiiiiiieiii i 57

9.5. 10/100 Mbps Ethernet Media Access Controller interfacecoooeviieiiiiiiiii e 59
S TN S = 1 U o T o] o1 o S 59
9.5.2. COMIMANAS ...evtiieiiii ettt e et e e et e e et e e e et r e e e ettt e e e et n e e e eaan e e e et neeennnns 59
TG I B 1= o 10 o I = (PPN 59
9.5.4. Ethernet PaCKet SEIVErciiiiiii e e 60
9.5.5. Ethernet packet SErver ProtoColccccuieiiiiiiiii e e e e e 60

9.6. SpaceWire interface With RMAP SUPPOITiiiiiiiiicii e e e e e e e e 60
SN S = 1 U o T o] o 1 o S 61
9.6.2. COMIMANAS ...evvuieiiii ettt e et e e e e et e e et e e e et e e e e et r e e e et neeeeaa e e e esaenneeennnns 61

S G I B 1= o 10 o I =0 (PPN 61
9.6.4. SPACEWITE PACKEL SEIVETiiiiiiiii e e e e e e e e e e e e e e et e e et e e et e eaanees 62
9.6.5. SpaceWire packet SErver ProtOCOlccuiiiiiiiiiii i 62

9.7. SPI and GPIO USEr MOTUIESuueiiiiiieeeie et e et e et e e e e aen s 64
9.7.1. SPI bBUuS MOEl AP ..o 65
9.7.2. GPIO MOTEl APl oo 65

0.8, UART INEEITACES oiviiiiiiii ettt e e e e e e e et e e e et e e e e aa e 66
SRS S = 1 U o T o] o 1 o SN 66
9.8.2. COMIMANAS ...evtiiieiiii ettt e et et e et e ettt e e ettt e e e ettt e e e et r e e e et neeesaenneeennnns 66

10. Atmel ATB97 PCl @MUIGLIONiiieiiiiieeiiii e e et e et e e et e e e et e e e et s e e e ett s e e e estn e eeeesanaeaees 67
L0 @ = 4T T PP 67
10.2. Loading the MOTUIEciieiii e e e e e e aaas 67
10.3. ATB97 INITIBEON MOUE ...evuiiiiiiiie ettt e e et e e et e e e et e e e e et e e e e et eens 67
O N e A = 1 1= B 1 o[TN 68
0T B T T o TSP 68
TSIM2-UM 4 www.cobham.com/gaisler

October 2015, Version 2.0.41

10.5.1. PCI command tal€uiiiiiiiiiiiiiii e 68

10.6. Read/write function installed by PCI modulec.couiiiiiiiii e 68

10.7. Read/write function installed by AT697 moduleccouiiiiiiiii e, 68
ORGP 69
O T I 1= o 18 o I f = o 69
00 0 o 01 4 o PP 70

11 TPS VXWOIKS MOUUIE ...ttt e e e et e e et n e e et s e e e et neeeeanns 71
0 @ = 4T PP 71

11.2. Loading the MOTUIEoiin e e e e e e e aaas 71

T T @0 T T 18 = o) o 71

S U] o] 1 PPN 72
TSIM2-UM 5 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

1. Introduction

1.1. General

TSIM isageneric SPA RC! architecture simulator capable of emulating ERC32- and LEON-based computer sys-
tems.

TSIM provides several unique features:
« Emulation of ERC32 and LEON2/3/4 processors
 Superior performance: up to 60 MIPS on high-end PC (Intel i7-2600K @3.4GHz)
« Accelerated processor standby mode, allowing faster-than-realtime simulation speeds
« Standalone operation or remote connection to GNU debugger (gdb)
» Also provided as library to be included in larger simulator frameworks
* 64-bit time for practically unlimited simulation periods
* Instruction trace buffer
« EDAC emulation (ERC32)
e MMU emulation (LEON2/3/4)
« SRAM emulation and functional emulation of SDRAM (with SRAM timing) (LEON2/3/4)
» Local scratch-pad RAM (LEON3/4)
 Loadable modulesto include user-defined 1/O devices
* Non-intrusive execution time profiling
» Code coverage monitoring
* Instruction trace buffer
 Stack backtrace with symbolic information
» Check-pointing capability to save and restore complete simulator state
¢ Unlimited number of breakpoints and watchpoints
¢ Pre-defined functional simulation modules for GR712, UT699, UT700 and AT697

1.2. Supported platforms and system requirements

TSIM supports the following platforms: Solaris 2.8, Linux, Linux-x64, Windows XP/7, and Windows XP/7 with
Cygwin Unix emulation.

1.3. Obtaining TSIM

The primary site for TSIM is the Cobham Gaisler website [http://www.gaisler.com] where the latest version of
TSIM can be ordered and evaluation versions downloaded.

1.4. Problem reports

Please send problem reports or comments to support@gaisler.com.

ISPARC is aregistered trademark of SPARC International

TSIM2-UM 6 www.cobham.com/gaisler
October 2015, Version 2.0.41

http://www.gaisler.com
http://www.gaisler.com

COBHAM

2. Installation
2.1. General
TSIM isdistributed as atar-file (e.g. tsim-erc32-2.0.41.tar.gz) with the following contents:

Table 2.1. T9SM content

doc TSIM documentation

samples Sample programs

iomod Example I/0 modules
tsim/cygwin TSIM binary for cygwin
tsim/linux TSIM binary for linux
tsim/linux-x64 TSIM binary for linux-x64
tsim/solaris TSIM binary for solaris
tsim/win32 TSIM binary for native windows
tlib/cygwin TSIM library for cygwin
tlib/linux TSIM library for linux
tlib/linux-x64 TSIM library for linux-x64
tlib/solaris TSIM library for solaris
tlib/win32 TSIM library for native windows

The tar-file can beinstalled at any location with the following command:

gunzip -c tsimerc32-2.0.41.tar.gz | tar xf -

2.2. License installation

TSIM islicensed using aHASP USB hardware key. Before use, adevice driver for the key must be installed. See
the simulator download page at the Cobham Gaisler website [http://www.gaisler.com] for information on where
to find the HASP device drivers.

TSIM2-UM 7 www.cobham.com/gaisler
October 2015, Version 2.0.41

http://www.gaisler.com
http://www.gaisler.com

COBHAM

3. Operation

3.1. Overview

TSIM can operate in two modes: standalone and attached to gdb. In standalone mode, ERC32 or LEON appli-
cations can be loaded and simulated using a command line interface. A number of commands are available to
examine data, insert breakpoints and advance simulation. When attached to gdb, TSIM acts asaremote gdb target,
and applications are loaded and debugged through gdb (or a gdb front-end such as ddd).

3.2. Starting TSIM

TSIM is started as follows on acommand line:
tsim-erc32 [opt i ons] [i nput _fil es]
tsim-leon [opt i ons] [i nput _fi |l es]
tsim-leon3[opt i ons] [i nput _fi |l es]
tsim-leon4 [opt i ons] [i nput _fil es]

The following command line options are supported by TSIM:

-ahbmahb_nodul e
Use ahb_nodul e as loadable AHB module rather than the default ahb.so (LEON only). If multi-
ple -ahbm switches are specified up to 16 AHB modules can be loaded. The enviromental variable
TSIM_MODULE _PATH canbesettoa‘:’ separated (*;' in WIN32) list of search paths.

- ahbst at us
Adds AHB status register support.

-asi 1noal | ocate
Makes ASI 1 reads not alocate cache lines (LEON3/4 only).

-at 697e
Configure caches according to the Atmel AT697E device (LEON2 only).

- banks ram banks
Sets how many RAM banks the SRAM is divided on. Supported valuesare 1, 2 or 4. Default is 1. (LEON

only).
- bopt

Enables idle-loop optimisation (see Section 4.1.5).
- bp

Enables emulation of LEON3/4 branch prediction
-cfile

Reads commands from f i | e and executes them at startup.
-cfgfile

Reads extra configuration optionsfromf i | e.
-cfgreg_and and_nask, -cfgreg _or or _nask
LEON2 only: Patch the Leon Configuration Register (0x80000024). The new value will be: (reg &
and_nmask) | or _nask.
-covtrans
Enable MMU trand ationsfor the coverage system. Needed when MMU is enabled and not mapping 1-to-1.
-cpmcp_nodul e
Use cp_nodul e as loadable co-processor module file name (LEON). The enviromental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;’ in WIN32) list of search paths.
-cas
When running a VXWORKS SMP image the SPARCV9 “casa’ instruction is used. The option - cas
enables thisinstruction (LEON3/4 only).
-dcsi ze si ze
Defines the set-size (KiB) of the LEON data cache. Allowed values are powers of two intherange 1 - 64
for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.
-dl ock
Enable data cache line locking. Default is disabled. (LEON only).
-dl ramaddr si ze
Allocates si ze KiB of local dcache scratchpad memory at addressaddr . (LEON3/4)

TSIM2-UM 8 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

-dl si ze si ze
Setsthe line size of the LEON data cache (in bytes). Allowed values are 16 or 32. Default is 16.
-drepl repl
Sets the replacement algorithm for the LEON data cache. Allowed values are r nd (default for LEON2)
for random replacement, | r u (default for LEON3/4) for the least-recently-used replacement algorithm and
I rr for the least-recently-replaced replacement algorithm.
-dsetssets
Defines the number of setsin the LEON data cache. Allowed valuesare 1 - 4.
-exc2b
I ssue Ox2b memory exception on memory write store error (LEON2 only)
-ext nr
Enable extended irq ctrl with extended irq number nr (LEON3/4 only)
-fast _uart
Run UARTSs at infinite speed, rather than with correct (slow) baud rate.
- f pmf p_nodul e
Usef p_nodul e asloadable FPU module rather than the default fp.so (LEON only). The enviromental
variable TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths.
-freqgsystemcl ock
Sets the simulated system clock (MHz). Will affect UART timing and performance statistics. Default is
14 for ERC32 and 50 for LEON.
-gdb
Listen for GDB connection directly at start-up.
-gdbuartfwd
Forward output from first UART to GDB.
-gr702rc
Set cache parameters to emulate the GR702RC device.
-gr712rc
Set parameters to emulate the GR712RC device. Must be used when using the GR712 AHB module.
-grfpu
Emulate the GRFPU floating point unit, rather then Meiko or GRFPU-lite (LEON only).
- hwbp
Use TSIM hardware breakpoints for gdb breakpoints.
-icsizesize
Defines the set-size (KiB) of the LEON instruction cache. Allowed values are powers of two in the range
1- 64 for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-ift
Generate illegal instruction trap on IFLUSH. Emulates the IFT input on the ERC32 processor.
-ilock

Enable instruction cache line locking. Default is disabled.

-il ramaddr si ze
Allocates si ze bytes of local icache scratchpad memory at address addr . (LEON3/4)

-ilsizesize
Setsthe line size of the LEON instruction cache (in bytes). Allowed values are 16 or 32. Default is 16 for
LEONZ2/3 and 32 for LEON4.

-iomio_nodul e
Use i o_nodul e as loadable 1/0 module rather than the default i0.so. The enviromental variable
TSIM_MODULE_PATH canbesettoa“:’ separated (*;" in WIN32) list of search paths.

-irepl repl
Sets the replacement algorithm for the LEON instruction cache. Allowed values are r nd (default for
LEONZ2) for random replacement, | r u (default for LEON3/4) for the |east-recently-used replacement al-
gorithmand | r r for the least-recently-replaced replacement agorithm.

-isetssets
Defines the number of setsin the LEON instruction cache. Allowed values are 1(default) - 4.

-iwde
Set the IWDE input to 1. Default is 0. (TSC695E only)

TSIM2-UM 9 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

-1 2wsi ze si ze
Enable emulation of L2 cache (LEON4 only) with si ze KiB. Thesi ze must be binary aligned (e.g. 16,
32,64 ..).
-logfilefilenane
Logsthe consoleoutput to f i | enane. If f i | enamne ispreceded by ‘+' output is append.
-nf ai |l ok
Do not fail on startup even if explicitely requested io/ahb modules fails to load.
-nfl at
This switch should be used when the appli cation software has been compiled with the gcc - nf | at option,
and debugging with gdb is done.
- mu
Adds MMU support (LEON only).
-nb
Do not break on error exceptions when debugging through GDB.
-nfp
Disablesthe FPU to emulate system without FP hardware. Any FP instruction will generate an FP disabled
trap.
- nomac
Disable LEON MAC instruction. (LEON only).
-noeditline
Disable use of editline for history and tab compl etion.
-nosram
Disable SRAM on startup. SDRAM will appear at 0x40000000 (LEON only).
- not hr eads
Disable threads support.
-notiners
Disable the LEON timer unit.
- nouart
Disable emulation of UARTS. All accessto UART registers will be routed to the 1/O module.
-nov8
Disable SPARC V8 MUL/DIV instructions (LEON only).
-nrtimersval
Adds support for more than 2 timers. Valueval can bein the range of 2 - 8 (LEON3/4 only). Default: 2.
Seeasothe -sanetinerirqg and -ti merirqgbase nunber switches.
- nunbp num
Sets the upper limit on number of possible breakpoints.
- numv num
Sets the upper limit on number of possible watchpoints.
-nwWinw n
Defines the number of register windowsin the processor. The default is 8. Only applicable to LEON3/4.
-port portnum
Use por t numfor gdb communication (port 1234 is default)
- pr
Enable profiling.
-ramramsi ze
Sets the amount of simulated RAM (KiB). Default is 4096.
-rest file_nane
Restore saved state from file_name.tss. See Section 3.8.
-romrom si ze
Sets the amount of simulated ROM (KiB). Default is 2048.
-ronB,-roml6
By default, the PROM area at reset time is considered to be 32-bit. Specifying - r on8 or - r o6 will
initialise the memory width field in the memory configuration register to 8- or 16-bits. The only visible
differenceisin theinstruction timing.
-rtens ver
Override autodetected RTEM S version for thread support. ver should be 46, 48, 48-edisoft or 410.

TSIM2-UM 10 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

-sametinerirq
Force the irq number to be the same for al timers. Default: separate increasing irgs for each timer.
(LEON3/4 only). Seealsothe -nrtimersval and -tinmerirqgbase nunber switches.
-sdramsdr am si ze
Sets the amount of simulated SDRAM (MiB). Default isO. (LEON only)
- sdbanks <1| 2>
Sets the SDRAM banks. This parameter is used to calculate the used SDRAM in conjunction with the
mcfg2.sdramsize field. The actually used SDRAM at runtime is sdbanks* mcfg2.sdramsize. Default:1
(LEON only)
-symfile
Read symbolsfromf i | e. Useful for self-extracting applications
-timer32
Use 32 hit timersinstead of 24 bit. (LEONZ2 only)
-timerirqgbase nunber
Set theirg number of thefirst timer to interrupt number nunber (LEONS3/4 only). Default: 8. See also the
-nrtinmersval and -sanetimerirqg switches.
-tsc691
Emulate the TSC691 device, rather than TSC695
-tsc695e
Obsolete. TSIM/ERC32 now aways emulates the TSC695 device rather that the early ERC32 chip-set.
-uart Xdevi ce
Here X, can be 1 or 2. By default, UART1 is connected to stdin/stdout and UART?2 is disconnected. This
switch can be used to connect the uarts to other devices. E.g., ‘-uartl /dev/ptypc’ will attach UART1 to
ptypc. On Linux ‘-uartl /dev/ptmx* can be used in which case the pseudo terminal slave' s nameto use will
be printed. If you use minicom to connect to the uart then use minicom’s-p<pseudo t er i nal > option.
On windows use //./coml, //./com2 etc. to access the seria ports. The serial port settings can be adjusted
by doubleclicking the“Ports (COM and LPT)” entry in control panel->system->hardware->devicemanager.
Use the “Port Setting” tab in the dialogue that pops up.
-ut 699
Set parameters to emulate the UT699 device. Must be used when using the UT699 AHB module.
- ut 699e
Set parameters to emulate the UT699E device. Must be used when using the UT699E AHB module.
-ut 700
Set parameters to emulate the UT700 device. Must be used when using the UT700 AHB module.
-wdfreqfreq
Specify the frequency of the watchdog clock. (ERC32 only)
i nput_files
Executablefilesto beloaded into memory. Theinput fileisloaded into the emulated memory according to
the entry point for each segment. Recognized formats are elf32, aout and srecords.

Command line options can also be specified in the file .tsimcfg in the home directory. This file will be read at
startup and the contents will be appended to the command line.

3.3. Standalone mode commands

If thefile.tsimrc existsin the homedirectory, it will be used asabatch file and the commandsin it will be executed
at startup.

Below is a description of commands that are recognized by the simulator when used in standal one mode:
batchfil e
Execute a batch file of TSIM commands.
+bp, break addr ess
Adds an breakpoint at addr ess.
bp, break
Prints all breakpoints and watchpoints.
-bp, del [nuni
Deletes breakpoint/watchpoint num If numis omitted, all breakpoints and watchpoints are del eted.

TSIM2-UM 11 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

bt
Print backtrace.
cont [count/ti ne]
Continue execution at present position. See the go [addr ess] [count / ti nme] command for how to
specify count or time.
coverage <enable | disable|save[fi | e_nane]|clear | print address [| en] >
Code coverage control. Coverage can be enabled, disabled, cleared, saved to afile or printed to the console.
dumpfil eaddress|ength
Dumps memory content to filef i | e, in whole aligned words. The addr ess argument can be a symbol.
dis[addr] [count]
Disassemble [count] instructions at address [addr]. Default values for count is 16 and addr is the
program counter address.
echostring
Print st ri ng to the ssmulator window.
edac [clear | cerr [merr addr ess]
Insert EDAC errors, or clear EDAC checksums (ERC32 only)
event
Print events in the event queue. Only user-inserted events are printed.
flush [all | icache | dcache | addr]
Flush the LEON caches. Specifying all will flush both the icache and dcache. Specifying icache or dcache
will flush the respective cache. Specifying addr will flush the corresponding line in both caches.
float
Prints the FPU registers
gdb
Listen for gdb connection.
go[address] [count/ti ne]
The go command will set pc to addr ess and npc to addr ess + 4, and resume execution. No other ini-
tialisation will be done. If address is not given, the default load address will be assumed. If acount is
specified, execution will stop after the specified number of instructions. If atimeis given, execution will
continue until t i me isreached (relative to the current time). The time can be given in micro-seconds, mil-
liseconds, seconds, minutes, hours or daysby adding ‘us’, ‘ms’, ‘'s’, ‘min’, ‘h’ or ‘d’ to thetime expression.
Example: go 0x40000000 400 ms.

NOTE: For the go command, if the count / t i me parameter isgiven, addr ess must be specified.
help
Print asmall help menu for the TSIM commands.
hist [| engt h]
Enabletheinstruction trace buffer. Thel engt h last executed instructionswill be placed in the trace buffer.
A hist command without | engt h will display the trace buffer. Specifying a zero trace length will disable
thetrace buffer. Seethe inst [| engt h] command for displaying only apart of theinstruction trace buffer.
icache, dcache
Dumps the contents of tag and data cache memories (LEON only).
inctinme
Increment simulator time without executing instructions. Time is given in the same format as for the go
command. Event queue is evaluated during the advancement of time.
inst [| engt h]
Display thelatest | engt h (default 30) instructionsin the instruction trace buffer. Seethe hist [I engt h]
command for how to enable the instruction trace buffer.
leon
Display LEON peripherals registers.
loadfiles
Loadfi | es into simulator memory.
|2cache
Display contents of L2 cache. (LEON4 only)
mec
Display ERC32 MEC registers.

TSIM2-UM 12 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

mem [addr] [count]
Display memory at addr for count bytes. Same default values as for dis. Unimplemented registers are
displayed as zero.

vmem [vaddr] [count]
Same as mem but doesaMMU translation on vaddr first (LEON only).

mmu
Display the MMU registers (LEON only).

quit
Exits the simulator.

perf [reset]
The perf command will display various execution statistics. A ‘ perf reset’ command will reset the statistics.
Thiscanbeused if statistics shall be calculated only over apart of the program. Therun and r eset command
also resets the statistic information.

prof [0[1] [sti me]
Enable (‘prof 1') or disable (‘ prof 0") profiling.Without parameters, profilinginformationisprinted. Default
sampling period is 1000 clock cycles, but can be changed by specifying st i ne.

reg[reg_nane val ue]
Printsand setsthe | U registersin the current register window. r eg without parameters printsthe | U registers.
regr eg_nane val ue setsthe corresponding register to value. Valid register names are psr, thr, wim, y,
g1-g7, 00-07 and 10-17. To view the other register windows, usereg wn, wheren is0 - 7.

reset
Performs a power-on reset. This command is equal to run O.

restorefil e
Restore simulator state fromfi | e.

run [addr] [count/ti me]
Resets the smulator and starts execution from address addr , the default is 0. The event queue is emptied
but any set breakpoints remain. See the go [addr ess] [count/ti me] command on how to specify
the time or count.

savefil e
Save smulator statetofi | e.

shell crd
Execute the command crd in the host system shell.

step
Execute and disassemble one instruction. See also trace [nunj .

sym|[fil e]
Load symbol tablefromfi | e. If fi | e isomitted, prints current (.text) symbols.

trace[nunm
Executes and disassembles unbounded or up to num instruction(s), until finished, hitting a break-
point/watchpoint or some other reason to stop.

version
Prints the TSIM version and build date.

walk addr ess [iswrite|isid|issu]*
If the MMU is enabled printout a table walk for the given address. The flags iswrite, isid and issu are
specifying the context: iswrite for a write access (default read), isid for a icache access (default dcache),
issu for a supervisor access (default user).

watch addr ess
Adds awatchpoint at addr ess.

wmem, wmemh, wmemb addr ess val ue
Write aword, half-word or byte directly to simulated memory.

xwmem asi addr ess val ue
Write aword to simulated memory using ASI=asi . Applicable to LEON3/4.

Typing a*Ctrl-C" will interrupt a running simulator. Short forms of the commands are allowed, e.g c, co, or con,
areal interpreted as cont.

TSIM2-UM 13 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

3.4. Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where an
addressis expected:

tsinm break nmain

breakpoi nt 3 at 0x020012f0: main

tsine dis strcecnp 5

02002c04 84120009 or %0, %1, %2

02002c08 8088a003 andcc %2, 0x3, %0
02002c0c 3280001a bne, a 0x02002c74
02002¢10 ¢64a0000 | dsh [%0], %3
02002c14 ¢6020000 | d [%0], %3

The sym command can be used to display all symboals, or to read in symbols from an alternate (elf) file:

tsinm> sym/opt/rtens/src/exanpl es/ sanpl es/ dhry
read 234 synbol s

tsinme sym

0x02000000 L _text_start
0x02000000 L _trap_table
0x02000000 L text_start
0x02000000 L start

0x0200102c L _wi ndow_overfl ow
0x02001084 L _wi ndow_underf| ow
0x020010dc L _fpdis

0x02001a4c T Proc_3

Reading symbolsfrom alternate filesis necessary when debugging self-extracting applications, such asbootproms
created with mkprom or linux/uClinux.

3.5. Breakpoints and watchpoints

TSIM supports execution breakpoints and write data watchpoints. In standalone mode, hardware breakpoints are
always used and no instrumentation of memory is made. When using the gdb interface, the gdb ‘break’ command
normally uses software breakpoints by overwriting the breakpoint address with a ‘ta 1’ instruction. Hardware
breakpoints can be inserted by using the gdb ‘hbreak’ command or by starting tsim with -hwbp, which will force
the use of hardware breakpoints also for the gdb ‘break’ command. Data write watchpoints are inserted using the
‘watch’ command. A watchpoint can only cover one word address, block watchpoints are not available.

3.6. Profiling

The profiling function cal cul ates the amount of execution time spent in each subroutine of the simulated program.
This is made without intervention or instrumentation of the code by periodically sample the execution point and
the associated call tree. Cycles in the call graph are properly handled, as well as sections of the code where no
stack isavailable (e.g. trap handlers). The profiling information is printed asalist sorted on highest execution time
ration. Profiling is enabled through the prof 1 command. The sampling period is by default 2000 clocks which
typically provides a good compromise between accuracy and performance. Other sampling periods can also be
set through the prof 1 n command. Profiling can be disabled through the prof 0 command. Below is an example
profiling the dhrystone benchmark:

bash$tsi merc32 /opt/rtens/src/exanpl es/ sanpl es/ dhry
tsime pro 1

profiling enabled, sanple period 1000

tsinm> go

resum ng at 0x02000000

Execution starts, 200000 runs through Dhrystone

St opped at time 23375862 (1.670e+00 s)

tsinme pro

function sanpl es ratio(%
start 36144 100. 00
_start 36144 100. 00
mai n 36134 99. 97
Proc_1 10476 28.98
Func_2 9885 27.34
strcnp 8161 22.57
Proc_8 2641 7.30
.div 2097 5. 80
TSIM2-UM 14 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

Proc_6 1412 3.90
Proc_3 1321 3.65
Proc_2 1187 3.28
. umul 1092 3.02
Func_1 777 2.14
Proc_7 772 2.13
Proc_4 731 2.02
Proc_5 453 1.25
Func_3 227 0.62
printf 8 0.02
viprintf 8 0.02
_vfprintf_r 8 0.02
tsinm

3.7. Code coverage

To aid software verification, the professional version of TSIM includes support for code coverage. When enabled,
code coverage keeps arecord for each 32-bit word in the emulated memory and monitors whether the location has
been read, written or executed. The coverage function is controlled by the coverage command:

coverage enable enable coverage

coverage disable disable coverage

cover age save [filename] write coverage data to file (file name optional)
coverage print address[len] print coverage data to console, starting at address
cover age clear reset coverage data

The coverage datafor each 32-bit word of memory consists of a5-bit field, with bitO (Isb) indicating that the word
has been executed, hitl indicating that the word has been written, and bit2 that the word has been read. Bit3 and
bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken while bit4 is set if the
branch was not taken.

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while Ox1 would
indicate that the word has been executed. When the coverage data is printed to the console or save to afile, itis
presented for one block of 32 words (128 bytes) per line;

tsink cov print start

02000000 : 11110000000000000000111111110000
02000080 : 00 0O0O00O000000000000000O000O0D0O0O0O0OOOOOOOO
02000100 : 00 0O0O000000000000000000O00O0O0O0O0OOOOOOO
02000180 : 00 0O0O00O00000000000000000O00O00O0O00OOOOOOO

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the file.
Block that have al the coverage fields set to zero are not saved in order to decrease the file size.

NOTE: Only the internally emulated memory (PROM, SRAM and SDRAM) are subject for code coverage. Any
memory emulated in the user's I/0O module must be handled by a user-defined coverage function.

The address ranges that are monitored are based on TSIM's startup parameters. For instance, the range correspond-
ing to the SDRAM for LEON will begin at address 0x40000000 if TSIM was started with -nosram or -ram 0,
or will begin at 0x60000000 otherwise. Reconfiguration of the memory controller during execution will not be
taken into account for monitored address ranges. Coverage information on memory reads will be recorded even
for cache hits.

NOTE on MMU and coverage: The monitored ranges are based on physical addresses. The TSIM coverage system
does no address trandlations by default, for performance reasons. To get proper physical address coverage when
theMMU isisenabled and not mapping 1-to-1, usethe- covt r ans option. Thereisno support for getting virtual
address coverage.

When coverage is enabled, disassembly will include an extra column after the address, indicating the coverage
data. This makesit easier to analyse which instructions has not been executed:

TSIM2-UM 15 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

tsinme di start

02000000 1 a0100000 clr %0

02000004 1 29008004 set hi %i (0x2001000), % 4
02000008 1 81c52000 jnp % 4

0200000c 1 01000000 nop

02000010 0 91d02000 ta 0x0

02000014 0 01000000 nop

02000018 0 01000000 nop

The coverage datais not saved or restored during check-pointing operations. When enabled, the coverage function
reduces the simulation performance of about 30%. When disabled, the coverage function does not impact simula-
tion performance. Individual coverage fields can be read and written using the TSIM function interface using the
tsi m coverage() cal (see Section 6.2). Enabling and disabling the coverage functionality from the function
interface should be doneusingt si m cnd() .

Example scriptsfor annotating C code using saved coverage information from TSIM can be found in the coverage
sub-directory.

3.8. Check-pointing

The professional version of TSIM can save and restore its complete state, allowing to resume simulation from
a saved check-point. Saving the state is done with the save command:

tsm>save fil e_nane
Thestateissavedtofi | e_nane. t ss. To restore the state, use the restor e command:

tsm>restore file_nane
The state will be restored from fi | e_nane. t ss. Restore directly at startup can be performed with the ‘-
rest fil e_nane’ command line switch.

NOTE: TSIM command line options are not stored (such as aternate UART devices, €tc.).

NOTE: AT697, UT699, UT700 and GR712 simulation modules do not support check-pointing.

3.9. Performance

TSIM is highly optimised, and capable of simulating ERC32 systems faster than realtime. On high-end Athlon
processors, TSIM achieves more than 1 MIPS / 100 MHz (CPU frequency of host). Enabling various debugging
features such as watchpoints, profiling and code coverage can however reduce the simulation performance with
up to 40%.

3.10. Backtrace

The bt command will display the current call backtrace and associated stack pointer:

tsinm bt
Y%cC %sp
#0 0x0200190c 0x023ffcc8 Proc_1 + 0xfO
#1 0x02001520 0x023ffd38 nmin + 0x230
#2 0x02001208 0x023ffe00 _start + Ox60
#3 0x02001014 0x023ffe40 start + 0x1014

3.11. Connecting to gdb

TSIM can act as a remote target for gdb, allowing symbolic debugging of target applications. To initiate gdb
communication, start the simulator with the - gdb switch or use the TSIM gdb command:

bash-2.04$% ./tsim-gdb

TSI M LEON - renote SPARC simulator, build 2001.01.10 (deno version)
serial port A on stdin/stdout

al | ocated 4096 K RAM nenory

al | ocated 2048 K ROM nenory

gdb interface: using port 1234

Then, start gdb in a different window and connect to TSIM using the extended-remote protocol:

TSIM2-UM 16 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

bash- 2. 04%$ sparc-rtens-gdb t4. exe

(gdb) target extended-renote |ocal host: 1234
Renot e debuggi ng using | ocal host: 1234

0x0 in ?? ()

(gdb)

To interrupt simulation, Ctrl-C can be typed in both gdb and TSIM windows. The program can be restarted using
the gdb run command but aload hasfirst to be executed to reload the program image into the simulator:

(gdb) | oad

Loadi ng section .text, size 0x14e50 | na 0x40000000
Loadi ng section .data, size 0x640 | ma 0x40014e50
Start address 0x40000000 , |oad size 87184

Transfer rate: 697472 bits/sec, 278 bytes/wite.
(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /hone/jgais/src/gnc/t4. exe

If gdb is detached using the detach command, the simulator returns to the command prompt, and the program can
be debugged using the standard TSIM commands. The simulator can also be re-attached to gdb by issuing the gdb
command to the simulator (and the target command to gdb). While attached, normal TSIM commands can be
executed using the gdb monitor command. Output from the TSIM commandsisthen displayed in the gdb console.

TSIM trandates SPARC traps into (Unix) signals which are properly communicated to gdb. If the application
encountersafatal trap, simulation will be stopped exactly on thefailing instruction. The target memory and regi ster
values can then be examined in gdb to determine the error cause.

Profiling an application executed from gdb is possible if the symbol table is loaded in TSIM before execution

is started. gdb does not download the symbol information to TSIM, so the symbol table should be loaded using
the monitor command:

(gdb) nonitor symt4. exe
read 158 synbol s

When an application that has been compiled using the gcc -mflat option is debugged through gdb, TSIM should
be started with -mflat in order to generate the correct stack frames to gdb.

3.12. Thread support

TSIM hasthread support for the RTEM S operating system. Additional OS support will be added to future versions.
The GDB interface of TSIM is also thread aware and the related GDB commands are described later.

3.12.1. TSIM thread commands

thread info - listsal known threads. The currently running thread is marked with an asterisk. (The wide example
output below has been split into two parts.)

tsinm> thread info

Name | Type | 1d | Prio]| Tinme (h:ms) | Entry point
" int. | internal | 0x09010001 | 285 | 5:30.682722 | bsp_idie thread
U1 | classic | 0x0a010001 | 100 | 0.041217 | systeminit
Cntwk | classic | 0x0a010002 | 100 | 0.251199 | soconnsieep
" ETHO | classic | 0x0a010003 | 100 | 0.000161 | soconnsieep
©TAL | classic | 0x0a010004 | 1| 0.034739 | prep_timer
A2 | classic | 0x0a010005 | 1| 0.025740 | prep_timer
TSIM2-UM 17 www.cobham.com/gaisler

October 2015, Version 2.0.41

TA3 | classic | 0x0a010006 | 1] 0.021357 | prep_timer
TGP | classic | 0x0a010007 | 100 | 0.002914 | rtems_ttcp_min
| PC | State
| Ox400adbec _Thread Dispatch + Oxd3 | READY
| Ox400adbec _Thread Dispatch + Oxd3 | SUSP
| Ox400adbec _Thread Dispatch + Oxd8 | READY
| Ox400adbec _Thread Dispatch + Oxds | Wevnt
| 0x40006a28 printf + 0xa | ReADY
| Ox400adbec _Thread Dispatch + 0xd3 | DELAY
| Ox400adbec _Thread Dispatch + 0xd8 | DELAY
| Ox400adbec _Thread Dispatch + Oxds | Wevnt

thread bt i d prints a backtrace of athread.

tsinm> thread bt 0x0a010007

%pc
#0 0x40044bec _Thread_Di spatch + 0xd8
#1 0x400418f 8 rtenms_event _receive + 0x74
#2 0x40031eb4 rtems_bsdnet _event _receive + 0x18
#3 ~ 0x40032050 soconnsl eep + 0x50
#4 0x40033d48 accept + 0x60
#5 0x4000366¢ rtems_ttcp_main + OxdaO

A backtrace of the current thread (equivaent to normal bt command):

tsinme thread bt
%oc %sp
#0 0x40006a28 0x4008d7d0 printf + 0Ox0
#1 0x40001c04 0x4008d838 Test _task + 0x178
#2 0x4005c88c 0x4008d8d0 _Thread_Handl er + Oxfc
#3 0x4005c78c 0x4008d930 _Thread_Eval uate_node + 0x58

3.12.2. GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread infor-
mation. Therefore the symbols needs to be read from the image using the sym command before issuing the gdb
command. When aprogram running in GDB stops TSIM reports which thread it isin. The command info threads
can be used in GDB to list all known threads.

Program recei ved signal SIG NT, Interrupt.
[Switching to Thread 167837703]
0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q’) at ../../..[..[..[..[..[../../rtems-

4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs. c: 38
38 while ((LEON3_Consol e_Uart[LEON3_Cpu_I ndex+port]->status &anp; LEON REG UART_STATUS_THE)

(gdb) info threads

8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../1../rtens-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../1../rtens-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtens-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtens-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../../1../1../rtens-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

3 Thread 167837697 (Ul 1 ready) 0x4002f760 in _Thread_Dispatch () at ../../../../..]../rtems-
4.6.5/ cpuki t/score/src/threaddi spatch. c: 109

2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtens-
TSIM2-UM 18 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

4.6.5/ cpuki t/score/src/threaddi spatch. c: 109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in consol e_outbyte_polled (port=0, ch=113 'q')
at ../.. /.. /... 1..1..1..]../rtems-4.6.5/c/src/lib/libbsp/sparc/leon3/consol e/ debugputs. c: 38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f 760 in _Thread_Di spatch () at ../../../1../
../l..lrtems-4.6.5/cpukit/score/src/threaddi spatch. c: 109
109 _Context _Swi tch(&anp; executi ng->Regi sters, &anp; heir->Registers);

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f 760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
di spatch. c: 109
#1 0x40013ee0 in rtenms_event_recei ve (event_i n=33554432, option_set=0, ticks=0
event _out =0x43f ecc14)

at ../../../../leon3/lib/include/rtems/score/thread.inl:205
#2 0x4002782c in rtenms_bsdnet_event_recei ve (event_i n=33554432, option_set=2, ticks=0
event _out =0x43f ecc14)

at ../../..1../../../rtems-4.6.5/cpukit/libnetworking/rtems/rtems_glue.c: 641
#3 0x40027548 in soconnsl eep (so=0x43f0cd70) at ../../../../../../rtems-4.6.5/cpukit/]ibnetwork-
ing/rtems/rtemnms_gl ue. c: 465
#4 0x40029118 in accept (s=3, name=0x43feccf0, nanel en=0x43feccec) at ../../..[..[..[1..[Irtems-
4.6.5/cpukit/libnetworking/rtems/rtems_syscall.c:215
#5 0x40004028 in daenon () at ../../../../../1../rtems-4.6.5/c/src/libnetworking/rtenms_servers/
ftpd.c: 1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtems-4.6.5/cpukit/scorel/src/threadhan-
dler.c:123
#7 0x40053270 in __res_nkquery (op=0, dnanme=0x0, class=0, type=0, data=0x0, datal en=0
newr r _i n=0x0, buf=0x0, buflen=0)

at ../../../../../..[../rtems-4.6.5/cpukit/libnetworking/libc/res_nkquery.c:199

It is possible to use the frame command to select a stack frame of interest and examine the registers using theinfo
registers command. Note that the info registers command only can see the following registers for an inactive
task: g0-g7, 10-17, i0-i7, 00-07, pc and psr. The other registers will be displayed as O:

(gdb) frame 5

#5 0x40004028 in daenon () at ../../../../../../rtens-4.6.5/c/src/libnetworking/rtens_servers/
ftpd.c:1925

1925 ss = accept(s, (struct sockaddr *)&addr, &addrlLen);

(gdb) info reg

g0 0x0 0

gl 0x0 0

g2 Oxffffffff -1

g3 0x0 0

g4 0x0 0

a5 0x0 0

g6 0x0 0

g7 0x0 0

00 0x3 3

ol 0x43f eccf0 1140772080
02 0x43f eccec 1140772076
03 0x0 0

04 0xf 34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43f ecc88 0x43fecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048f ¢ 1073760508
13 0x43f eccf0 1140772080
14 0x3 3

15 Ox1 1

16 0x0 0

17 0x0 0

i0 0x0 0

il 0x40003f 94 1073758100
i2 0x0 0

i3 0x43f f af c8 1140830152
i4 0x0 0

i5 0x4007cd40 1074253120
TSIM2-UM 19 www.cobham.com/gaisler

October 2015, Version 2.0.41

fp
i7
y
psr
wi m
tbr
pc
npc
fsr
csr

0x43f ecd08

0x40053380
0x0 0
0xf 34000e0
0x0 0
0x0 0
0x40004028
0x4000402c
0x0 0
0x0 0

0x43f ecd08
1074082688

-213909280

0x40004028 <daenobn+148>
0x4000402c <daenobn+152>

COBHAM

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of all
threads. It is not possible to change the value of registers other than those of the current thread.

TSIM2-UM

October 2015, Version 2.0.41

20

www.cobham.com/gaisler

COBHAM

4. Emulation characteristics
4.1. Common behaviour

4.1.1. Timing

The simulator time is maintained and incremented according the IU and FPU instruction timing. The parallel ex-
ecution between the IU and FPU ismodelled, aswell as stalls due to operand dependencies. Instruction timing has
been modelled after the real devices. Integer instructions have a higher accuracy than floating-point instructions
due to the somewhat unpredictable operand-dependent timing of the ERC32 and LEON MEIKO FPU. Typical
usage patterns have higher accuracy than atypical ones, e.g. having vs. not having caches enabled on LEON sys-
tems. Tracing using theinst or hist command will display the current simulator time in the left column. Thistime
indicates when the instruction is fetched. Cache misses, waitstates or data dependencies will delay the following
fetch according to the incurred delay.

4.1.2. UARTs

If the baudrate register is written by the application software, the UARTs will operate with correct timing. If the
baudrateis|eft at the default value, or if the- f ast _uart switch wasused, the UARTs operate at infinite speed.
This means that the transmitter holding register always is empty and a transmitter empty interrupt is generated
directly after each write to the transmitter data register. The receivers can never overflow or generate errors.

Note that with correct UART timing, it is possible that the last character of a program is not displayed on the
console. This can happen if the program forces the processor in error mode, thereby terminating the simulation,
before the last character has been shifted out from the transmitter shift register. To avoid this, an application
should poll the UART status register and not force the processor in error mode before the transmitter shift registers
are empty. The real hardware does not exhibit this problem since the UARTS continue to operate even when the
processor is halted.

4.1.3. Floating point unit (FPU)

The simulator maps floating-point operations on the hosts floating point capabilities. This means that accuracy
and generation of IEEE exceptionsis host dependent and will not always be identical to the actual ERC32/LEON
hardware. The simulator implements (to some extent) data-dependant execution timing asin thereal MEKI10O FPU
(ERC32/LEON2). For LEON3/4, the - gr f pu switch will enable emulation of the GRFPU instruction timing.

4.1.4. Delayed write to special registers

The SPARC architecture definesthat awrite to the special registers (%opsr, %wim, %tbr, %fsr, %y) may have up to
3 delay cycles, meaning that up to 3 of the instructions following a special register write might not ‘ see’ the newly
written value due to pipeline effects. While ERC32 and LEON have between 2 and 3 delay cycles, TSIM has 0.
This does not affect simulation accuracy or timing as long as the SPARC ABI recommendations are followed that
each special register write must always befollowed by three NOP. If the three NOP are | eft out, the software might
fail on real hardware while still executing * correctly’ on the simulator.

4.1.5. Idle-loop optimisation

Tominimise power consumption, LEON and ERC32 applicationswill typically placethe processor in power-down
mode when the idle task is scheduled in the operation system. In power-down mode, TSIM increments the event
gueue without executing any instructions, thereby significantly improving simulation performance. However,
some (poorly written) code might use a busy loop (BA 0) instead of triggering power-down mode. The - bopt
switch will enable a detection mechanism which will identify such behaviour and optimise the smulation as if
the power-down mode was entered.

4.1.6. Custom instruction emulation

TSIM/LEON allows the emulation of custom (non-SPARC) instructions. A handler for non-standard instruction
can beinstalled using the tsim_ext_ing() callback function (see Section 6.2). The function handler is called each
time an instruction is encountered that would cause an unimplemented instruction trap. The handler is passed the

TSIM2-UM 21 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

opcode and all processor registersin a pointer, allowing it to decode and emulate a custom instruction, and update
the processor state.

The definition for the custom instruction handler is:

int nmyhandl er (struct ins_interface *r);

The pointer *r is a structure containing the current instruction opcode and processor state:

struct ins_interface {

ui nt 32 psr; /* Processor status registers */
ui nt 32 thbr; /* Trap base register */

ui nt 32 wi m /* W ndow nmeks register */

ui nt 32 o[8]; /* d obal registers */

ui nt 32 r[128]; /* Wndowed register file */

ui nt 32 y; /* Y register */

ui nt 32 pc; /* Program counter *

ui nt 32 npc; /* Next program counter */

ui nt 32 inst; /* Current instruction */

ui nt 32 icnt; /* dock cycles in curr inst */
ui nt 32 asr17;

ui nt 32 asr18;

}

SPARC usesan overlapping windowed register file, and accessing registers must be done using the current window
pointer (%psr[4:0]). To access registers %r8 - %r31 in the current window, use:

CWp = r->psr & 7,
regval = r->r[((cwp << 4) + RS1) % (nwi ndows * 16)];

Note that global registers (%r0 - %r7) should always be accessed by r - >g[RS1] .

The return value of the custom handler indicates which trap the emulated instruction has generated, or 0 if no
trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an unimplemented
instruction trap.

The number of clocks consumed by the instruction should bereturned in r->icnt; Thisvalueis by default 1, which
corresponds to a fully pipelined instruction without data interlock. The handler should not increment the %pc or
%npc registers, asthisisdone by TSIM.

4.1.7. Chip-specific errata

Incorrect behavior described in errata documents for specific devices are not emulated by TSIM in general.

4.2. ERC32 specific emulation

4.2.1. Processor emulation

TSIM/ERC32 emulates the behaviour of the TSC695 processor from Atmel by default. The parallel execution
between the IU and FPU is modelled, as well as stalls due to operand dependencies (IU & FPU). Starting TSIM
withthe-t sc691 will enable TSC691 emulation (3-chip ERC32).

4.2.2. MEC emulation

The following table outlines the implemented MEC registers:

Table 4.1. Implemented MEC registers

Register Address Status
MEC control register 0x01f80000 implemented
Software reset register 0x01f80004 implemented
Power-down register 0x01f80008 implemented
TSIM2-UM 22 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

Register Address Status
Memory configuration register 0x01f80010 partly implemented
1O configuration register 0x01f80014 implemented
Waitstate configuration register 0x01f80018 implemented
Access protection base register 1 0x01f80020 implemented
Access protection end register 1 0x01f80024 implemented
Access protection base register 2 0x01f80028 implemented
Access protection end register 2 0x01f8002c implemented
Interrupt shape register 0x01f80044 implemented
Interrupt pending register 0x01f80048 implemented
Interrupt mask register 0x01f8004c implemented
Interrupt clear register 0x01f80050 implemented
Interrupt force register 0x01f80054 implemented
Watchdog acknowledge register 0x01f80060 implemented
Watchdog trap door register 0x01f80064 implemented
RTC counter register 0x01f80080 implemented
RTC counter program register 0x01f80080 implemented
RTC scaler register 0x01f80084 implemented
RTC scaler program register 0x01f80084 implemented
GPT counter register 0x01f80088 implemented
GPT counter program register 0x01f80088 implemented
GPT scaler register 0x01f8008c implemented
GPT scaler program register 0x01f8008c implemented
Timer control register 0x01f80098 implemented
System fault status register 0x01f800A0 implemented
First failing address register 0x01f800A4 implemented
GPI configuration register 0x01f800A8 1/O module callback
GPI data register 0x01f800AC 1/O module callback
Error and reset status register 0x01f800B0O implemented
Test control register 0x01f800D0 implemented
UART A RX/TX register 0x01f800EO0 implemented
UART B RX/TX register 0x01f800E4 implemented
UART status register 0x01f800E8 implemented

The MEC registers can be displayed with the mec command, or using mem (* mem 0x1f80000 256'). The registers
can also bewritten using wmem (e.g. ‘wmem 0x1f80000 0x1234"). When written, care hasto be taken not to write
an unimplemented register bit with ‘1’, or aMEC parity error will occur.

4.2.3. Interrupt controller

Internal interruptsare generated asdefined inthe M EC specification. All 15interrupts can betested viatheinterrupt
force register. External interrupts can be generated through |oadable modules.

4.2.4. Watchdog

The watchdog timer operate as defined in the MEC specification. The frequency of the watchdog clock can be
specified using the - wdf r eq switch. The frequency is specified in MHz.

TSIM2-UM 23
October 2015, Version 2.0.41

www.cobham.com/gaisler

COBHAM

4.2.5. Power-down mode

The power-down register (0x01f800008) isimplemented asin the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the ssmulator skips time until the next event in the event
gueue, thereby significantly increasing the simulation speed.

4.2.6. Memory emulation

The amount of simulated memory is configured through the - r amand - r omswitches. The RAM size can be
between 256 KiB and 32 MiB, the ROM size between 128 KiB and 4 MiB. Access to unimplemented MEC
registers or non-existing memory will result in amemory exception trap.

The memory configuration register is used to decode the simulated memory. The fields RSIZ and PSIZ are used
to set RAM and ROM size, the remaining fields are not used.

NOTE: After reset, the MEC is set to decode 128 KiB of ROM and 256 KiB of RAM. The memory configuration
register hasto be updated to reflect the available memory. The waitstate configuration register is used to generate
walitstates. This register must also be updated with the correct configuration after reset.

4.2.7. EDAC operation

The EDAC operation of ERC32 is implemented on the simulated RAM area (0x2000000 - Ox2FFFFFF). The
ERC32 Test Control Register can be used to enable the EDAC test mode and insert EDAC errors to test the
operation of the EDAC. The edac command can be used to monitor the number of errorsin the memory, to insert
new errors, or clear al errors. To see the current memory status, use the edac command without parameters:

tsi n> edac

RAM error count : 2
0x20000000 : MERR
0x20000040 : CERR

TSIM keeps track of the number of errors currently present, and reports the total error count, the address of each
error, and its type. The errors can either be correctable (CERR) or non-correctable (MERR). To insert an error
using the edac command, do ‘edac cerr addr’ or ‘edac nerr addr’:

tsin> edac cerr 0x2000000
correctabl e error at 0x02000000
tsi n> edac

RAM error count : 1

0x20000000 : CERR

To remove al injected errors, do edac clear. When accessing a location with an EDAC error, the behaviour of
TSIM isidentical tothereal hardware. A correctable error will trigger interrupt 1, while un-correctable errors will
cause a memory exception. The operation of the FSFR and FAR registers are fully implemented.

NOTE: The EDAC operation affect simulator performance when there are inserted errors in the memory. To
obtain maximum simulation performance, any diagnostic software should remove all inserted errors after having
performed an EDAC test.

4.2.8. Extended RAM and /O areas

TSIM allows emulation of user defined 1/O devices through loadable modules. EDAC emulation of extended
RAM areasis not supported.

4.2.9. SYSAV signal

TSIM emulates changesin the SY SAV output by calling the command() callback in the I/O module with either
“sysav 0" or “sysav 1” on each changes of SYSAV.

4.2.10. EXTINTACK signal

TSIM emulates assertion of the EXTINTACK output by calling thecommand() calback inthe |/O modulewith
“extintack” on each assertion. Note that EXTINTACK isonly asserted for one external interrupt as programmed
in the MEC interrupt shape register.

TSIM2-UM 24 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

4.2.11. IWDE signal

The TSC695E processor input signal can be controlled by the - i wde switch at start-up. If the switchisgiven, the
IWDE signal will be high, and the internal watchdog enabled. If -iwde is not given, IWDE will be low and the
internal watchdog will be disabled. Note that the simulator must started in TSC695E-mode using the - t sc695e
switch, for this option to take effect.

4.3. LEON2 specific emulation

4.3.1. Processor

The LEONZ2 version of TSIM emulates the behavior of the LEON2 VHDL model. The (optional) MMU can be
emulated using the - mu switch.

4.3.2. Cache memories

TSIM/LEON2 can emulate any permissible cache configuration using the - i csi ze,-i | si ze,-dcsi ze and
- dl si ze options. Allowed sizesare 1 - 64 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-set
caches can be emulated using the- i sets,-dsets,-irepl,-drel p,-il ock and-dl ock options. Diag-

nostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to display
cache contents. Starting TSIM with - at 697e will configure that caches according to the Atmel AT697E device.

4.3.3. LEON peripherals registers

The LEON peripherals registers can be displayed with the leon command, or using mem (‘mem 0x80000000
256'). The registers can a so be written using wmem (e.g. ‘wmem 0x80000000 0x1234).

4.3.4. Interrupt controller

External interrupts are not implemented, so the I/O port interrupt register has no function. Internal interrupts are
generated as defined in the LEON specification. All 15 interrupts can also be generated from the user defined 1/
O moduleusingtheset _i rq() callback.

4.3.5. Power-down mode

The power-down register 0x80000018) is implemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the ssmulator skips time until the next event in the event
gueue, thereby significantly increasing the simulation speed.

4.3.6. Memory emulation

The memory configuration registers 1/2 are used to decode the simulated memory. The memory configuration
registershasto be programmed by softwareto reflect the available memory, and the number and size of thememory
banks. The waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and
functionally modelled SDRAM (with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the externa SRAM is divided in.
Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For mkprom
encapsulated programs, it is essential that the same RAM size and bank number setting is used for both mkprom
and TSIM.

The memory EDAC of LEON2-FT is not implemented.
4.3.7. SPARC V8 MUL/DIV/IMAC instructions
TSIM/LEON optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate

LEON systems which do not implement these instructions, use the - nonac to disable the MAC instruction and/
or - nov 8 to disable multiply and divide instructions.

TSIM2-UM 25 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

4.3.8. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (Yasr24 - %asr31) are not emulated.

4.4. LEONS specific emulation

4.4.1. General

The LEON3 version of TSIM emulates the behavior of the LEON3MP template VHDL model distributed in
the GRLIB-1.0 IP library. The system includes the following modules: LEON3 processor, APB bridge, IRQMP
interrupt controller, LEON2 memory controller, GPTIMER timer unit with two 32-bit timers, two APBUART

uarts. The AHB/APB plug&play information is provided at address OxFFFFFO00 - OxFFFFFFFF (AHB) and
0x800FF000 - OX800FFFFF (APB).

4.4.2. Processor

The instruction timing of the emulated LEON3 processor is modelled after LEON3 VHDL model in GRLIB IP
library. The processor can be configured with 2 - 32 register windows using the - nwi n switch. The MMU can be
emulated using the - mmu switch. Local scratch pad RAM can be added with the- i | r amand - dl r amswitches.

4.4.3. Cache memories

The evaluation version of TSIM/LEON3 implements 2*4 KiB caches, with 16 bytes per line. The commercial
TSIM version can emulate any permissible cache configuration using the-i csi ze, -i | si ze, - dcsi ze and
- dl si ze options. Allowed sizesare 1 - 256 KiB with 16 - 32 byteg/line. The characteristics of the LEON mul-
ti-way caches can beemulated usingthe- i set s,-dsets,-irepl,-drel p,-il ockand-dl ock options.
Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to dis-
play cache contents.

4.4.4. Power-down mode

The LEON3 power-down function isimplemented as in the specification. A Ctrl-C in the simulator window will
exit the power-down mode. In power-down mode, the simulator skipstime until the next event in the event queue,
thereby significantly increasing the simulation speed.

4.4.5. LEON3 peripherals registers

The LEONS peripherals registers can be displayed with the leon command, or using mem (‘ mem 0x80000000
256'). The registers can a so be written using wmem (e.g. ‘wmem 0x80000000 0x1234).

4.4.6. Interrupt controller

The IRQMP interrupt controller isfully emulated as described in the GRLIB IP Manual. The IRQMP registersare
mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined 1/0 module using
theset _irq() callback.

4.4.7. Memory emulation

The LEON2 memory controller is emulated in the LEON3 version of TSIM. The memory configuration registers
1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed by
softwareto reflect the available memory, and the number and size of the memory banks. The waitstates fields must
also be programmed with the correct configuration after reset. Both SRAM and functionally modelled SDRAM
(with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the externa SRAM is divided in.
Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For mkprom
encapsulated programs, it is essential that the same RAM size and bank number setting is used for both mkprom
and TSIM.

The memory EDAC of LEON3-FT is not implemented.

TSIM2-UM 26 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

Options regarding memory characteristics are not available in the evaluation version of TSIM/LEONS3.
4.4.8. CASA instruction

The SPARCV9 “casa’ command is implemented if the - cas switch is given. The “casa’ instruction is used in
VXWORKS SMP multiprocessing to synchronize using alock free protocol.

4.4.9. SPARC V8 MUL/DIVIMAC instructions

TSIM/LEONS3 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the - nonac to disable the MAC instruction and/
or - nov 8 to disable multiply and divide instructions.

4.4.10. DSU and hardware breakpoints
The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.4.11. AHB status registers

When using - ahbst at us or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. As TSIM/LEONS does not emulate FT, the CE bit will never be set. Furthermore, the HMASTER field
is set to 0 when the CPU caused the error and 1 when any other master caused the error.

4.5. LEON4 specific emulation

45.1. General

The LEON4 version of TSIM emulates the behavior of the LEON4MP template VHDL model distributed in the
GRLIB-1.0.x IP library. The system includes the following modules: LEON4 processor, APB bridge, IRQMP
interrupt controller, LEON2 memory controller, L2 cache, GPTIMER timer unit with two 32-bit timers, two AP-
BUART uarts. The AHB/APB plug& play information is provided at address OxFFFFFO00 - OxFFFFFFFF (AHB)
and 0x800FF000 - 0x800FFFFF (APB).

45.2. Processor

The instruction timing of the emulated LEON4 processor is modelled after LEON4 VHDL model in GRLIB IP
library. The processor can be configured with 2 - 32 register windows using the - nwi n switch. The MMU can be
emulated using the - mmu switch. Local scratch pad RAM can be added with the- i | r amand - dI r amswitches.

45.3. L1 Cache memories

TSIM/LEON4 can emulate any permissible cache configuration using the - i csi ze,-i | si ze,-dcsi ze and
- dl si ze options. Allowed sizesare 1 - 256 KiB with 16 - 32 byteg/line. The characteristics of the LEON mul-
ti-set caches can be emulated using the - i sets, -dsets,-irepl,-drel p,-ilock and-dl ock options.
Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to dis-
play cache contents.

45.4. L2 Cache memory

The LEON4 L2 cacheis emulated, and placed between the memory controller and AHB bus. Both the PROM and
SRAM/SDRAM areas are cached in the L2. The size of the L2 cache is default 64 KiB, but can be configured to
any (binary aligned) size using the - | 2wsi ze switch at start-up. Setting the size to O will disable the L2 cache.
The L2 cache isimplemented with one way and 32 bytes/line. The contents of the L2 cache can be displayed with
the |2cache command.

4.5.5. Power-down mode

The LEON4 power-down function isimplemented as in the specification. A Ctrl-C in the simulator window will
exit the power-down mode. In power-down mode, the simulator skipstime until the next event in the event queue,
thereby significantly increasing the simulation speed.

TSIM2-UM 27 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

4.5.6. LEON4 peripherals registers

The LEON4 peripherals registers can be displayed with the leon command, or using mem (‘ mem 0x80000000
256'). The registers can aso be written using wmem (e.g. ‘wmem 0x80000000 0x1234).

4.5.7. Interrupt controller

The IRQMP interrupt controller isfully emulated as described in the GRLIB IPManual. The IRQMP registers are
mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined 1/0 module using
theset _irq() callback.

4.5.8. Memory emulation

The LEON2 memory controller is emulated in the LEON4 version of TSIM. The memory configuration registers
1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed by
softwareto reflect the available memory, and the number and size of the memory banks. The waitstates fields must
also be programmed with the correct configuration after reset. Both SRAM and functionally modelled SDRAM
(with SRAM timing) can be emulated.

Using the - banks option, it is possible to set over how many RAM banks the externa SRAM is divided in.
Note that software compiled with BCC/RCC, and not run through mkprom must not use this option. For mkprom
encapsulated programs, it is essential that the same RAM size and bank number setting is used for both mkprom
and TSIM.

The memory EDAC of LEONA4-FT is not implemented.
4.5.9. CASA instruction

The SPARCV9 “casa’ command is implemented if the - cas switch is given. The “casa’ instruction isused in
VXWORKS SMP multiprocessing to synchronize using alock free protocol.

4.5.10. SPARC V8 MUL/DIV/IMAC instructions

TSIM/LEON4 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the - nonac to disable the MAC instruction and/
or - nov 8 to disable multiply and divide instructions.

45.11. GRFPU emulation

By default, TSIM-LEON4 emulates the GRFPU-Lite FPU. If the simulator is started with - gr f pu, the fully
pipelined GRFPU is emulated. Due to the complexity of the GRFPU, the instruction timing is approximated and
might show some discrepancies compared to the real hardware.

4.5.12. DSU and hardware breakpoints
The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.
4.,5.13. AHB status registers

When using - ahbst at us, AHB status registers are enabled. As TSIM/LEONA4 does not emulate FT, the CE bit
will never be set. Furthermore, the HMASTER field is set to O when the CPU caused the error and 1 when any
other master caused the error.

TSIM2-UM 28 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

5. Loadable modules
5.1. TSIM I/O emulation interface

User-defined I/O devices can be loaded into the simulator through the use of 1oadable modules. Asthereal proces-
sor, the simulator primarily interacts with the emul ated device through read and write requests, while the emulated
device can optionally generate interrupts and DMA requests. This is implemented through the module interface
described below. The interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the I/O device; and one that is exported by the I/O device and alows TSIM
to access the I/O device. Address decoding of the I/O devices is straight-forward: All access that do not map on
the internally emulated memory and control registers are forwarded to the I/0 module.

TSIM exportstwo structures: simif and ioif. The simif structure defines functions and data structures belonging to
the simulator core, whileioif defines functions provided by system (ERC32/LEON) emulation. At startup, TSIM
searchesfor ‘i0.s0" inthe current directory, but the location of the modul e can be specified using the - i omswitch.
Note that the module must be compiled to be position-independent, i.e. with the - f PI C switch (gcc). The win32
version of TSIM loads io.dll instead of i0.s0. See the iomod directory in the TSIM distribution for an example
io.c and how to build the .so and .dll modules. The enviromental variable TSIM_MODULE_PATH can be set to
a‘’ separated (*;" in WIN32) list of search paths.

5.1.1. simif structure

The simif structure is defined in sim.h:

struct simoptions {
int phys_ram
int phys_sdram
int phys_rom
doubl e freq;
doubl e wdfreq;

b

struct siminterface {
struct simoptions *options; /* tsimcommand-|ine options */
uint64 *sintine; /* current simulator tine */
void (*event)(void (*cfunc)(), uint32 arg, uint64 offset);
void (*stop_event)(void (*cfunc)());

int *irl; /* interrup request |evel */
void (*sys_reset)(); /* reset processor */

void (*simstop)(); /* stop sinulation */

char *args; /* concaterated argv */

void (*stop_event_arg)(void (*cfunc)(),int arg,int op);

/* Restorable events */
unsi gned short (*reg_revent)(void (*cfunc) (unsigned long arg));
unsi gned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg),
unsi gned long arg);
int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
int (*revent_prearg)(unsigned short index, uint64 offset);
void (*stop_revent) (unsigned short index);
¥

struct siminterface simf; /* exported simulator functions */

The elementsin the structure has the following meaning:

struct sim.options *options;
Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor and
can be used to correlate the simulator time to the real time.

ui nt 64 *sintime;
Contains the current simulator time. Time is counted in clock cycles since start of simulation. To calculate
the elapsed real time, divide simtime with options.freg.

void (*event)(void (*cfunc)(), int arg, uint64 offset);
TSIM maintains an event queue to emulate time-dependant functions. The event () function inserts an
event in the event queue. An event consists of afunction to be called when the event expires, an argument
with which the function is called, and an offset (relative the current time) defining when the event should
expire.

NOTE: Theevent () function may NOT be called from asignal handler installed by the 1/O module, but
only from event callbacks or at start of simulation. The event queue can hold a maximum of 2048 events.

TSIM2-UM 29 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

NOTE: For save and restore support, restorable events should be used instead.

void (*stop_event)(void (*cfunc)());
stop_event () will remove al events from the event queue which has the calling function equal to
cfunc().

NOTE: The st op_event () function may NOT be caled from a signal handler installed by the 1/0
module.

int *irl;
Current 1U interrupt level. Should not be used by 1/0 functions unless they explicitly monitor theses lines.

voi d (*sys_reset)();
Performs a system reset. Should only be used if the 1/0 device is capable of driving the reset input.

void (*simstop)();
Stops current simulation. Can be used for debugging purposes if manual intervention is needed after a
certain event.

char *args;
Arguments supplied when starting tsim. The arguments are concatenated as a single string.

void (*stop_event _arg)(void (*cfunc)(),int arg,int op);
Similartost op_event () but differentiates between 2 events with same cf unc but with different ar g
given when inserted into the event queue viaevent () . Used when simulating multiple instances of an
entity. Parameter op should be 1 to enable the ar g check.

unsi gned short (*reg_revent)(void (*cfunc) (unsigned long arg));
Registers arestorable event that will use cf unc ascallback. The returned index should be used when call-
ingrevent (). The event argument is supplied when callingr event () . Thecall toreg_revent ()
should be done once at |/O or AHB module initialization.

unsi gned short (*reg_revent_prearg)(void (*cfunc) (unsigned | ong arg), un-

signed long arg);
Registers a restorable event that will use cf unc as callback and ar g as argument. This can be used to
register an argument that is a pointer to a data structure. The returned index should be used when calling
revent _prearg().Thecaltoreg_revent _prearg() shouldbedoneonceat!/Oor AHB module
initialization.

int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
This inserts an event registered by r eg_r event () into the event queue with the registered cf unc for
the given i ndex. Multiple events with the same i ndex can be in the event queue at the same time. The
ar g and of f set arguments are the same asfor theevent () function.

NOTE: See the description of event () for limitations on number of events and from which contexts
events can be added.

int (*revent_prearg)(unsigned short index, uint64 offset);
This inserts an event registered by r eg_r event _pr ear g() into the event queue with the registered
cfunc andar g for thegiveni ndex. Multiple events with the samei ndex can bein the event queue at
the sametime. The of f set argument isthe same asfor theevent () function.

NOTE: See the description of event () for limitations on number of events and from which contexts
events can be added.

d (*stop_revent) (unsigned short index);

Thisremovesall eventsfromtheevent queuethat hasbeenenteredby r event () orrevent _prear g()
using the giveni ndex.

VO

NOTE: Thest op_r event () function may not be called from asignal handler installed by the I/O mod-
ule.

5.1.2. ioif structure
ioif isdefined in sim.h:

structio_interface {
void (*set_irqg)(int irqg, int level);
int (*dma_read)(uint32 addr, uint32 *data, int num;
int (*dma_write)(uint32 addr, uint32 *data, int num;

int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);

TSIM2-UM 30
October 2015, Version 2.0.41

www.cobham.com/gaisler

COBHAM

}:

extern struct io_interface ioif; /* exported processor interface */

The elements of the structure have the following meaning:
void (*set_irqg)(int irqg, int level);
ERC32 use: drive the external MEC interrupt signal. Valid interrupts are O - 5 (corresponding to MEC
external interrupt O - 4, and EWDINT) and valid levelsare 0 or 1. Note that the MEC interrupt shape register
controls how and when processor interrupts are actually generated. When - nouar t has been used, MEC
interrupts 4, 5 and 7 can be generated by calling set _i rq() withirg 6, 7 and 9 (level is not used in
this case.

LEON use: set theinterrupt pending bit for interrupt irg. Valid valuesonirqis 1 - 15. Care should be taken
not to set interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register
controls how and when processor interrupts are actually generated. Note that level is not used with LEON.
int (*dma_read) (uint32 addr, uint32 *data, int nun);
int (*dnma_wite)(uint32 addr, uint32 *data, int num;
Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are al-
lowed, and the address must be word aligned. On bus error, 1 is returned, otherwise 0. For ERC32, the
DMA transfer uses the external DMA interface. For LEON, DMA takes place on the AMBA AHB bus.
int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);
Performs DMA transactions to/from the emulated processor memory on the AMBA AHB bus. Available
for LEON only. On buserror, 1 isreturned, otherwise 0. Write sizeisindicated by sz asfollows: O = byte,
1 = haf-word, 2 = word, 3 = double-word.

5.1.3. Structure to be provided by I/O device

struct io_subsystem {
void (*io_init)(struct siminterface sif, struct io_interface iif); /* start-up */

void (*io_exit)(); /* called once on exit */
void (*io_reset)(); /* called on processor reset */
void (*io_restart)(); /* called on sinulator restart */

int (*io_read)(unsigned int addr, int *data, int *ws);
int (*io_wite)(unsigned int addr, int *data, int *ws, int size);
char *(*get_io_ptr)(unsigned int addr, int size);
void (*command) (char * cnd); /* 1/0O specific comands */
void (*sigio)();/* called when SIA O occurs */
void (*save)(char *fnane);/* save simulation state */
void (*restore)(char *fnane); /* restore sinulation state */
¥

extern struct io_subsystem *iosystem /* inported I/O emul ation functions */

The elements of the structure have the following meanings:

void (*io_init)(struct siminterface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if unused.

void (*io_exit)();
Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();
Called every time the processor is reset (i.e also startup). Set to NULL if unused.

void (*io_restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*io_read)(unsigned int addr, int *data, int *ws);
Processor read call. The processor always reads one full 32-bit word from addr. The data should be returned
in *data, the number of waitstates should be returned in *ws. If the access would fail (illegal address etc.),
1 should be returned, on success 0.

int (*fo wite)(unsigned int addr, int *data, int *ws, int size);
Processor write call. The size of the written dataisindicated in size: 0 = byte, 1 = half-word, 2 =word, 3=
doubleword. The address is provided in addr, and is always aligned with respect to the size of the written
data. The number of waitstates should be returned in *ws. If the access would fail (illegal address etc.), 1
should be returned, on success 0.

char * (*get _io _ptr)(unsigned int addr, int size);
TSIM can accessemulated memory inthel/O deviceintwoways: either throughthei o_read/io_wite
functions or directly through a memory pointer. get i o_ptr () is caled with the target address and

TSIM2-UM 31 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

transfer size (in bytes), and should return a character pointer to the emulated memory array if the address
and size is within the range of the emulated memory. If outside the range, -1 should be returned. Set to
NULL if not used.
int (*command) (char * cnd);
The 1/0O modul e can optionally receive command-line commands. A command isfirst sent to the AHB and
1/0 modules, and if not recognised, the to TSIM. conmand() is called with the full command string in
*cmd. Should return 1 if the command is recognized, otherwise 0. TSIM/ERC32 aso calls this callback
whenthe SY SAV hit inthe ERSR register changes. The commands“sysav 0” and “sysav 1" arethen issued.
When TSIM commands are issued through the gdb * monitor’ command, areturn value of 0 or 1 will result
inan ‘OK’ response to the gdb command. A return value > 1 will send the value itself as the gdb response.
A return value %lt; 1 will truncate the Isb 8 bits and send them back as a gdb error response: ‘Enn’.
d (*sigio)();
Not used as of tsim-1.2, kept for compatibility reasons.
d (*save) (char *fnane);
The save() function is called when save command is issued in the simulator. The I/O module should
save any required state which is needed to completely restore the state at alater stage. *fname pointsto the
base file name which is used by TSIM. TSIM savesitsinterna state to fname.tss. It is suggested that the
1/O module save its state to fname.ios. Note that any events placed in the event queue by the 1/0 module
will be saved (and restored) by TSIM.
d (*restore)(char *fnane);
Therest ore() function is called when restore command is issued in the simulator. The I/O module
should restore any required state to resume operation from a saved check-point. * f nane pointsto the base
file name which isused by TSIM. TSIM restoresitsinternal state from fname.tss.

VO

VO

VO

5.1.4. Cygwin specific io_init()

Due to problems of resolving cross-referenced symbols in the module loading when using Cygwin, the
i o_init() routinein the I/O module must initialise alocal copy of simif and ioif. Thisis done by providing
thefollowingi o_i ni t () routine:

static void io_init(struct siminterface sif, struct io_interface iif)

{
#ifdef __ CYGW N32__
/* Do not renpve, needed when conpiling on Cygwin! */
simf =sif;
ioif =1iif;
#endi f
/* additional init code goes here */

}

The same method is also used in the AHB and FPU/CP modules.

5.2. LEON AHB emulation interface

In addition to the above described 1/0 modules, TSIM also alows emulation of the LEON2/3/4 processor core
with a completely user-defined memory and 1/O architecture. This is in other words not applicable to ERC32.
By loading an AHB module (ahb.so), the internal memory emulation is disabled. The emulated processor core
communicates with the AHB module using an interface similar to the AHB master interface in the real LEON
VHDL model. The AHB module can then emulate the complete AHB bus and all attached units.

The AHB module interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the AHB module; and one that is exported by the AHB module and allows
TSIM to access the emulated AHB devices.

At start-up, TSIM searches for ‘ahb.so’ in the current directory, but the location of the module can be speci-
fied using the - ahbmswitch. Note that the module must be compiled to be position-independent, i.e. with the
- f PI C switch (gcc). The win32 version of TSIM loads ahb.dll instead of ahb.so. See the iomod directory in
the TSIM distribution for an example ahb.c and how to build the .so /.dll modules. The enviromental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths.

TSIM2-UM 32 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

5.2.1. procif structure

TSIM exports one structure for AHB emulation: procif. The procif structure defines afew functions giving access
to the processor emulation and cache behaviour. The procif structureis defined in tsim.h:

struct proc_interface {

Vo
Vo
Vo
Vo
Vo
Vo
} .

exter

id (*set_irl)(int level); /* generate external interrupt */

id (*cache_snoop) (ui nt 32 addr);

id (*cctrl)(uint32 *data, uint32 read);

id (*power_down)();

id (*set_irqg_level)(int level, int set);

id (*set_irqg)(uint32 irqg, uint32 level); /* generate external interrupt */

n struct proc_interface procif;

The elementsin the structure have the following meaning:

VO

VO

VO

vO

VO

VO

id (*set_irl)(int level);

Set thecurrentinterrupt level (iui.irl inVHDL model). Allowed valuesare0 - 15, with 0 meaning no pending
interrupt. Once the interrupt level is set, it will remain until it is changed by anew call toset _irl ().
The modules interrupt callback routine should typically reset the interrupt level to avoid new interrupts.

d (*cache_snoop) (ui nt 32 addr);

Thecache_snoop() functioncanbeusedtoinvalidate datacachelines(regardlessof whether datacache
snooping is enabled or not). The tags to the given address will be checked, and if a match is detected the
corresponding cache lineswill be flushed (i.e. thetag will be cleared). If an MMU is present and is enabled
the argument should be a virtual address. See also the snoop functioninst ruct ahb_i nterface.

d (*cctrl)(uint32 *data, uint32 read);

Read and write the cache control register (CCR). The CCR isattached to the APB businthe LEON2 VHDL
model, and this function can be called by the AHB module to read and write the register. If read = 1, the
CCRvaueisreturnedin * dat a, else the value of * dat a iswritten to the CCR. Thecctr| () function
isonly needed for LEONZ2 emulation, since LEON3/4 accesses the cache controller through a separate ASI
|oad/store instruction.

d (*power _down) ();

The LEON processor enters power down-mode when called.

id (*set_irqg_level)(int level, int set);

Calback set _i rg_| evel canbeusedtoemulate level triggered interrupts. Parameter set should be 1
to activate the interrupt level specified in parameter | evel or 0toresetit. Theinterrupt level will remain
active after it is set until it is reset again. Multiple calls can be made with different | evel parametersin
which case the highest level is used.

d (*set _irqg)(uint32 irqg, uint32 level);

Set theinterrupt pending bit for interrupt irg. Valid valuesoni r g is1 - 15. Care should be taken not to set
interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register controls
how and when processor interrupts are actually generated.

5.2.2. Structure to be provided by AHB module

tsim.h defines the structure to be provided by the emulated AHB module:

struc
ui
ui
ui
ui
ui
ui

s

struc
in
un
st

}
s

struc
Vo

t ahb_access {

nt 32 address;

nt 32 *dat a;

nt 32 ws;

nt 32 rnum

nt 32 wsi ze;

nt32 cache; /* No |longer used */

t pp_anba {

t is_apb;

signed int vendor, device, version, irg;
ruct {

unsi gned int addr, p, c, nmask, type;
bars[4] ;

t ahb_subsystem {
id (*init)(struct proc_interface procif);/* called once on start-up */

TSIM2-UM 33 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

void (*exit)(); /* called once on exit */
void (*reset)(); /* called on processor reset */
void (*restart)(); /* called on sinulator restart */

int (*read)(struct ahb_access *access);

int (*wite)(struct ahb_access *access);

char *(*get_io_ptr)(unsigned int addr, int size);

int (*command)(char * cnd); /* 1/0O specific commands */

int (*sigio)(); /* called when SIG O occurs */

void (*save)(char * fnane); /* save state */

void (*restore)(char * fnane); /* restore state */

int (*intack)(int level); /* interrupt acknow edge */

int (*plugandplay)(struct pp_anmba **); /* LEON3/4: get plug & play information */
void (*intpend)(unsigned int pend); /* LEON3/4 only: interrupt pending change */
int meminit; /* tell tsimweather to initialize nem?*/

struct siminterface *sinmf; /* initialized by tsim?*/

unsi gned char *(*get_nemptr_ws)(); /* initialized if meminit was set */

void (*snoop) (unsigned int addr); /* initialized with cache snoop routine */
struct io_interface *io; /* initialized by tsim?*/

void (*dprint)(char *p); /* initialized by tsim prints out a debug string */
struct proc_interface *proc; /* initialized by tsim access to proc_interface */
int (*cacheable)(uint32 addr, uint32 size); /* Cacheability of area */

int (*Iprintf)(const char *format, ...); /* initialized by tsim*/

int (*vlprintf)(const char *format, va_list ap); /* initialized by tsim?*/

I

extern struct ahb_subsystem *ahbsystem /* inported AHB enul ation functions */

The elements of the structure have the following meanings:

void (*init)(struct proc_interface procif);
Called once on simulator startup. Set to NULL if unused.

void (*exit)();
Called once on simulator exit. Set to NULL if unused.

void (*reset)();
Called every time the processor is reset (i.e. also startup). Set to NULL if unused.

void (*restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

void int (*read)(struct ahb_access *ahbacc);
Processor AHB read. The processor always reads one or more 32-bit words from the AHB bus. The fol-
lowing fields of ahbacc isused. The ahbacc.addr field contains the read address of the first word to read.
The ahbacc.data field points to a buffer that the module can fill in. The module can also change the pointer
to point to a different buffer. The ahbacc.wsfield should be set by the module to the number of cycles for
the complete access. The ahbacc.rnum field contains the number of words to be read. The function should
return O for a successful access, 1 for failed access and -1 for an area not handled by the module. The
ahbacc.wsize field is not used during read cycles. The ahbacc.cache field isno longer in use (use st r uct
ahb_subsyst em cacheabl e instead).

int (*wite)(struct ahb_access *ahbacc);
Processor AHB write. The processor canwrite 1, 2, 4 or 8 bytes per access. Thefollowing fieldsof ahbacc
is used. The ahbacc.addr field contains the address of the write. The ahbacc.data field points to the data
to write; either one word for byte, half word or word writes or two words for double-word writes. The
ahbacc.wsize field defines write size as follows: 0 = byte, 1 = half-word, 2 = word, 3 = double-word. The
function should return O for a successful access, 1 for failed access and -1 for an area not handled by the
module. The ahbacc.rnum field is not used during write cycles. The ahbacc.cache field is no longer in use
(usestruct ahb_subsyst em cacheabl e instead).

char * (*get_io_ptr)(unsigned int addr, int size);
During file load operations and displaying of memory contents, TSIM will access emulated memory
through a memory pointer. get _i o_pt r () iscalled with the target address and transfer size (in bytes),
and should return a character pointer to the emulated memory array if the address and size is within the
range of the emulated memory. If outside the range, -1 should be returned. Set to NULL if not used.

int (*command) (char * cnd);
The AHB module can optionally receive command-line commands. A command is first sent to the AHB
and I/0 modules, and if not recognised, thento TSIM. conmand() iscalled with the full command string
in*cnd. Should return 1 if the command is recognized, otherwise 0. When TSIM commands are issued
through the gdb ‘monitor’ command, a return value of 0 or 1 will result in an ‘OK’ response to the gdb
command. A return value > 1 will send the value itself asthe gdb response. A return value < 1 will truncate
the Isb 8 bits and send them back as a gdb error response: ‘Enn’.

TSIM2-UM 34 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

void (*save)(char *fname);
Thesave() function is called when save command is issued in the smulator. The AHB module should
save any required state which is needed to completely restore the state at alater stage. * f nane points to
the base file name which is used by TSIM. TSIM save its internal state to fname.tss. It is suggested that
the AHB module save its state to fname.ahs. Note that any events placed in the event queue by the AHB
module will be saved (and restored) by TSIM.
void (*restore)(char * fnane);
Ther est or e() function is caled when restore command is issued in the simulator. The AHB module
should restore any required state to resume operation from a saved check-point. *fhame points to the base
filename which isused by TSIM. TSIM restoresitsinternal state from fname.tss.
int (*intack)(int |evel);
i nt ack() iscalled when the processor takes an interrupt trap (tt = Ox11 - 0x1f). The level of the taken
interrupt ispassedinlevel. Thiscallback can be used toimplement interrupt controllers.i nt ack() should
return 1 if the interrupt acknowledgement was handled by the AHB module, otherwise O. If O is returned,
the default LEON interrupt controller will receive the intack instead.
int (*plugandplay) (struct pp_anba **p);
Leon3/4 only: The pl ugandpl ay() function is caled at startup. opt i opl ugandpl ay() should
return in p a static pointer to an array with elements of typest ruct pp_anba and return the number of
entriesin the array. The callback pl ugandpl ay() isused to add entriesin the AHB and APB configu-
ration space. Each st r uct pp_anba entry specifiesan entry: If is_apbisset to 1 theentry will appear in
the APB configuration space and only member bars[0] will be used. If is_apb is 0 then the entry will appear
in the AHB dave configuration space and barg[0-3] will be used. If is_apb is 2 then the entry will appear
inthe AHB master configuration space and bars[0-3] will be used. The members of the struct resemble the
fields in a configuration space entries. The entry is mapped to the first free dot.
d (*intpend) (unsigned int pend);
Leon3/4 only: Thei nt pend() function iscalled when the set of pending interrupts changes. The pend
argument is a bitmask with the bits of pending interrupts set to 1.
int memnit;
If al loaded AHB modulessetsmeminitto 1, TSIM will initialize and emulateinitialize and emul ate SRAM/
SDRAM/PROM memory. Thus, the AHB module should initialize memi ni t with 1if TSIM (or another
AHB module) should handle memory simulation. Callsto read and write should return -1 (undecoded area)
for the memory regions in which case TSIM (or possibly some other AHB module) will handle them. If
menm ni t isset to 0 the AHB module itself should emulate the memory address regions.
struct siminterface *simf;
Entry si mi f isinitialized by tssim with the global st ruct si m_i nt er f ace structure.
unsi gned char *(*get_nmemptr_ws) (unsigned int addr, int size, int *was,
int *rws)
If mem ni t wassetto1ltsmwill initidlizeget _nmem pt r _ws with acallback that can be used to query
apointer to the host memory emulating the LEON’s memory, along with waitstate information. Note that
the host memory pointer returned is in the hosts byte order (normally little endian on a PC). The si ze
parameter should bethelength of theaccess (1 for byte, 2 for short, 4 for word and 8 for doubleword access).
Thewws and r ws parameterswill return the cal culated write and read waitstates for a possible access. See
also snoop below for responsibilities when DMA writes are done via pointers from this function.
d (*snoop) (unsigned int addr)
The callback snoop isinitiadlized by tsim. If data cache snooping is enabled (and functioning, i.e. not
ut699) it flushes (i.e. invalidates) data cache lines corresponding to physical addressaddr (on LEON3/4
even when MMU is enabled). If the AHB module is doing DMA writes directly to memory pointers, it is
the responsibility of the AHB module to call thisfor all changed words for snooping to work correctly.
struct io_interface *io;
Initialized with the 1/O interface structure pointer.
void (*dprint)(char *);
Initialized by tssim with acallback pointer to the debug output function. Output ends up inlog, whenlogging
is enabled and gets forwarded to gdb when running TSIM viagdb. Seel pri ntf andvl pri nt f for the
formatted couterparts.
struct proc_interface *proc;
Initialized with the procif structure pointer.

VO

VO

TSIM2-UM 35 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

int (*cacheabl e) (uint32 addr, uint32 size)
The cacheabl e callback is initialized by the module to NULL or a function returning cacheability
for a memory area. The function should return 1 if the range [addr,addr+size) is cacheable, O if it is un-
cacheable or -1 if the memory areait is not handled by the module. If all modules return -1 and/or lack the
cacheabl e callback, the areawill be considered cacheable for memory areas[0x00000000,0x20000000)
and [0x40000000-0x80000000) and non-cacheable for all other areas. NOTE: For any (correspondingly
aligned) areaaslarge asthe largest data cache or instruction cache line sizein the system, thecacheabl e
callback may not return different results for different words in the area.

int (*lIprintf)(const char *format, ...)
Initialized by TSIM with a function for formatted loggable debug output. The function interface works
like for printf.

int (*vlprintf)(const char *format, va_list ap)
Initialized by TSIM with afunction for formatted loggabl e debug output. The function interface workslike
for vprintf.

5.2.3. Big versus little endianess

SPARC conforms to the big endian byte ordering. This means that the most significant byte of a (half) word has
lowest address. To execute efficiently onlittle-endian hosts (such asntel x86 PCs), emulated memory is organised
on word basis with the bytes within a word arranged according the endianess of the host. Read cycles can then
be performed without any conversion since SPARC aways reads a full 32-bit word. During byte and half word
writes, care must be taken to insert the written data properly into the emulated memory. On abyte-write to address
0, the written byte should be inserted at address 3, since thisis the most significant byte according to little endian.
Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written. For a complete example, see the prom
emulation functioninio.c.

5.3. TSIM/LEON co-processor emulation

5.3.1. FPU/CP interface

The professional version of TSIM/LEON can emulate a user-defined floating-point unit (FPU) and co-processor
(CP). The FPU and CP are included into the simulator using loadable modules. To access the module, use the

structure ‘cp_interface’ defined inio.h. The structure contains a number of functions and variables that must be
provided by the emulated FPU/CP:

/* structure of function to be provided by an external co-processor */
struct cp_interface {

void (*cp_init)(); /* called once on start-up */
void (*cp_exit)(); /* called once on exit */

void (*cp_reset)(); /* cal | edon processor reset */
void (*cp_restart)(); /* called on sinulator restart */

uint32 (*cp_reg)(int reg, uint32 data, int read);
int (*cp_load)(int reg, uint32 data, int *hold);
int (*cp_store)(int reg, uint32 *data, int *hold);
int (*cp_exec)(uint32 pc, uint32 inst, int *hold);

int (*cp_cc)(int *cc, int *hold); /* get condition codes */
int *cp_status; /* unit status */
void (*cp_print)(); /* print registers */
int (*command) (char * cnd); /* CP specific commands */
int set_fsr(uint32 fsr); /* initialized by tsim?*/
I
extern struct cp_interface *cp; /* inported co-processor emulation functions */

5.3.2. Structure elements

void (*cp_init)(struct siminterface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if not used.

void (*cp_exit)();
Called once on simulator exit. Set to NULL if not used.

void (*cp_reset)();
Called every time the processor is reset. Set to NULL if not used.

void (*cp_restart)();
Called every time the simulator is restarted. Set to NULL if not used.

TSIM2-UM 36 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

uint32 (*cp_reg)(int reg, uint32 data, int read);
Used by the simulator to perform diagnostics read and write to the FPU/CP registers. Callingcp_r eg()
should not have any side-effects on the FPU/CP status. r eg indicates which register to access: 0-31 indi-
cates %f0-%f 31/%c0- %31, 34 indicates %fsr/%csr. r ead indicatesread or write access: read==0 indicates
write access, read!=0 indicates read access. Written data is passed in dat a, the return value contains the
read value on read accesses.

int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
Execute FPU/CP instruction. The %pc is passed in pc and the instruction opcodeini nst . If data depen-
dency is emulated, the number of stall cycles should bereturn in * hol d. The return value should be zero
if no trap occurred or the trap number if atrap did occur (0x8 for the FPU, 0x28 for CP). A trap can occur
if the FPU/CP isin exception_pending mode when anew FPU/CP instruction is executed.

int (*cp_cc)(int *cc, int *hold); /* get condition codes */
Read condition codes. Used by FBCC/CBCC instructions. The condition codes (O - 3) should be returned
in*cc. If data dependency is emulated, the number of stall cycles should be returnin* hol d. Thereturn
value should bezeroif notrap occurred or thetrap number if atrap did occur (0x8 for the FPU, 0x28 for CP).
A trap can occur if the FPU/CPisin exception_pending mode when a FBCC/CBCC instruction is executed.

int *cp_status;/* unit status */
Should contain the FPU/CP execution status. O = execute_mode, 1 = exception_pending, 2 =
exception_mode.

void (*cp_print)();/* print registers */
Should print the FPU/CP registers to stdio.

int (*command) (char * cnd); /* CP specific commands */
User defined FPU/CP control commands. NOT YET IMPLEMENTED.

int (*set_fsr)(char * cnd); /* initialized by tsim?*/
This callback isinitialized by tsim and can be called to set the FPU status register.

5.3.3. Attaching the FPU and CP

At startup the ssimulator tries to load two dynamic link libraries containing an external FPU or CP. The sim-
ulator looks for the file fp.so and cp.so in the current directory and in the search path defined by Idconfig.
The location of the modules can also be defined using - cpmand - f pm switches. The enviromental variable
TSIM_MODULE_PATH canbesettoa‘:’ separated (*;" in WIN32) list of search paths. Each library is searched
for apointer ‘cp’ that pointsto acp_interface structure describing the co-processor. Below isan examplefrom fp.c:

struct cp_interface test_fpu = {

cp_init, [* cp_init */
NULL, /* cp_exit */
cp_init, /* cp_reset */
cp_init, /* cp_restart */
cp_reg, /* cp_reg */
cp_| oad, /* cp_load */
cp_store, /* cp_store */

f prei ko, /* cp_exec */
cp_cc, /* cp_cc */

&f pregs. fpstate, /* cp_status */
cp_print, /* cp_print */
NULL /* cp_conmmand */

b

s{ruct cp_interface *cp = &est_fpu; /* Attach pointer!! */
5.3.4. Big versus little endianess

SPARC is conforms to the big-endian byte ordering. This means that the most significant byte of a (half) word
has lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated register-fileis
organised on word basis with the bytes within aword arranged according the endianess of the host. Double words
are also in host order, and the read/write register functions must therefore invert the Isb of the register address
when performing word accesson little-endian hosts. Seethefilefp.c for examples(cp_| oad() ,cp_store()).

5.3.5. Additional TSIM commands

fl oat
Shows the registers of the FPU
TSIM2-UM 37 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

cp
Shows the registers of the co-processor.

5.3.6. Example FPU

The file fp.c contains a complete SPARC FPU using the co-processor interface. It can be used as a template for
implementation of other co-processors. Note that data-dependency checking for correct timing is not implemented
inthisversion (it is however implemented in the built-in version of TSIM).

TSIM2-UM 38 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

6. TSIM library (TLIB)

6.1. Introduction

The professional version of TSIM is also available as alibrary, allowing the smulator to be integrated in alarger
simulation frame-work. The various TSIM commands and options are accessible through a simple function inter-
face. 1/0 functions can be added, and use a similar interface to the loadable I/O modul es described earlier.

6.2. Function interface

The following functions are provided to access TSIM features:

int

i nt

VO

VO

VO

VO

voi

voi

VO

VO

VOi

tsiminit (char *option);/* initialise tsimw th optional paranms. */
Initialize TSIM - must be called before any other TSIM function (exceptt si m set _di ag()) are used.
The options string can contain any valid TSIM startup option (as used for the standalone simulator), with
the exception that no filenames for files to be loaded into memory may be given. t si m.i ni t () may
only be called once, use the TSIM reset command to reset the simulator without exiting. t si m_i ni t ()
will return 1 on success or 0 on failure.

tsimcend (char *cnd);/* execute tsimcomand */
Execute TSIM command. Any valid TSIM command-line command may be given. The following return
values are defined:

SIGINT Simulation stopped due to interrupt

SIGHUP Simulation stopped normally

SIGTRAP Simulation stopped due to breakpoint hit
SIGSEGV Simulation stopped due to processor in error mode
SIGTERM Simulation stopped due to program termination

dtsimexit (int val);

Should be called to cleanup TSIM internal state before main program exits.

d tsimget regs (unsigned int *regs);

Get SPARC registers. r egs is a pointer to an array of integers, see tsim.h for how the various registers
areindexed.

d tsimset _regs (unsigned int *regs);

Set SPARC registers. *r egs isapointer to an array of integers, see tssim.h for how the various registers
areindexed.

d tsimdisas(unsigned int addr, int num;

Disassemble memory. addr indicateswhich addressto disassemble, numindicates how many instructions.
d tsimset _diag (void (*cfunc)(char *));

Set console output function. By default, TSIM writes all diagnostics and console messages on stdout.
tsi mset _di ag() canbeusedto direct all output to auser defined routine. The user functioniscalled
with a single string parameter containing the message to be written.

d tsimset _callback (void (*cfunc)(void));

Set the debug callback function. Callingt si m set _cal | back() with afunction pointer will cause
TSIM to call the callback function just before each executed instruction, when the history is enabled. At
this point the instruction to be executed can be seen as the last entry in the history. History can be enabled
with thet si m cnd() function.

d tsi mgdb (unsigned char (*inchar)(), void (*outchar) (unsigned char c));

Controls the simulator using the gdb ‘ extended-remote’ protocol. Thei nchar parameter isapointer to a
function that when called, returns next character from the gdb link. The out char parameter is a pointer
to afunction that sends one character to the gdb link.

d tsimread(unsigned int addr, unsigned int *data);

Performs aread from addr , returning the value in * dat a. Only for diagnostic use.

d tsimwite(unsigned int addr, unsigned int data);

Performs awrite to addr , with value dat a. Only for diagnostic use.

TSIM2-UM 39 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

void tsimstop_event(void (*cfunc)(), int arg, int op);
tsi m stop_event () canremove certain event depending on the setting of ar g and op. If op =0, al
instance of the callback function cf unc will be removed. If op = 1, events with the argument = arg will
be removed. If op = 2, only the first (earliest) of the events with the argument = arg will be removed.

NOTE: The stop_event() function may NOT be called from asignal handler installed by the I/O module.

void tsiminc_tine(uint64);
tsiminc_time() will increment the simulator time without executing any instructions. The event
queue is evaluated during the advancement of time and the event callbacks are properly caled. Can not
be called from event handlers.

int tsimtrap(int (*trap)(int tt), void (*rett)());
tsimtrap() isusedtoinstal calback functions that are called every time the processor takes a trap
or returns from atrap (RETT instruction). Thet r ap() function is called with one argument (t t) that
contains the SPARC trap number. If t si m trap() returnswith O, execution will continue. A non-zero
return value will stop simulation with the program counter pointing to the instruction that will cause the
trap. Ther et t () functionis called when the program counter points to the RETT instruction but before
theinstruction is executed. The callbacksareremoved by callingt si m t r ap() withaNULL arguments.

int tsimcov_get(int start, int end, char *ptr);
t si m_cov_get () will returnthecoveragedatafor theaddressrange>=st ar t and<end. Thecoverage
data will be written to a char array pointed to by * pt r, starting at ptr[0]. One character per 32-bit word
in the address range will be written. The user must assure that the char array is large enough to hold the
coverage data.

int tsimcov_set(int start, int end, char val);
tsi m cov_set () will fill the coverage datain the addressrange limited by st art and end (see above
for definition) with the value of val .

int tsimext_ins (int (*func) (struct ins_interface *r));
tsimext _ins() instalsahandler for custominstructions. func isapointer to an instruction emulation
function as described in Section 4.1.6. Callingt si m ext _i ns() withaNULL pointer will remove the
handler.

int tsimlastbp (int *addr)
When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the
address of the break/watchpoint in * addr . The function return value indicates the break cause; 0 = break-
point, 1 = watchpoint.

6.3. AHB modules

AHB modules can beloaded by adding the“- ahbm <nane>" switchtothet si m_i ni t () string when starting.
See Section 5.2 for further information.

6.4. 1/0 interface

The TSIM library uses the same 1/O interface as the standalone simulator. Instead of loading a shared library
containing the 1/0 module, the 1/0 module is linked with the main program. The 1/O functions (and the main
program) has the same access to the exported simulator interface (simif and ioif) as described in the loadable
module interface. The TSIM library imports the 1/O structure pointer, iosystem, which must be defined in the
main program.

An example 1/O module is provided in tlib/<platform>/io.c , which shows how to add a prom.

A second example I/O module is provided in simple_io.c This module provides a simpler interface to attach 1/O
functions. The following interface is provided:
void tsimset _ioread (void (*cfunc)(int address, int *data, int *ws));
This function is used to pass a pointer to a user function which isto be called by TSIM when an 1/0 read
access is made. The user function is called with the address of the access, a pointer to where the read data
should be returned, and a pointer to a waitstate variable that should be set to the number of waitstates that
the access took.

TSIM2-UM 40 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

void tsimset _iowite (void (*cfunc)(int address, int *data, int *ws, int
size));
This function is used to pass a pointer to auser function which isto be called by TSIM when an 1/O write
accessismade. The user function is called with the address of the access, apointer to the datato be written,
apointer to awaitstate variable that should be set to the number of waitstates that the access took, and the
size of the access (O=byte, 1=half-word, 2=word, 3=double-word).

6.5. UART handling

By default, the library is using the same UART handling as the standalone simulator. This means that the UARTS
can be connected to the console, or any Unix device (pseudo-ttys, pipes, fifos). If the UARTSs are to be handled
by the user’s 1/0O emulation routines, >t si m i ni t () should be called with ‘- nouart’, which will disable
al internal UART emulation. Any access to the UART register by an application will then be routed to the 1/0
moduler ead/ wr i t e functions.

6.6. Linking a TLIB application

Three sample application are provided, one that uses the simplified 1/0 interface (appl.c), and two that uses the
standard loadable module interface (app2 and app3). They are built by doing a ‘make al’ in the tlib directory.
The win32 version of TSIM provides the library asaDLL, for al other platform a static library is provided (.a).
Support for dynamic libraries on Linux or Solarisis not available.

6.7. Limitations
On Windows/Cygwin hosts TSIM is not capable of reading UART A/B from the console, only writing is possible.

If reading of UART A/B is necessary, the simulator should be started with -nouart, and emulation of the UARTSs
should be handled by the I/O module.

TSIM2-UM 41 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

7. Cobham UT699/UT699e AHB module

7.1. Overview

This chapter describes the UT699 loadable AHB module for the TSIM2 simulator. The AHB module provides
simulation models for the Ethernet, SpaceWire, PCl, GPIO and CAN cores in the UT699 processor. For more
information about this chip see the Cobham UT699 user manual.

Theinterfacesare modelled at packet/transaction/messagelevel and provides an easy way to connect the simulated
UT699 to alarger simulation framework.

The following files are delivered with the UT699 TSIM module:

Table 7.1. Files delivered with the UT699 TSM module

File Description

ut699/1inux/ut699.s0 UT699 AHB module for Linux

ut699/linux/ut699e.s0 UT699e AHB module for Linux

ut699/win32/ut699.dl| UT699 AHB module for Windows

ut699/win32/ut699e.dll UT699% AHB module for Windows

out699/examples/input The input directory contains two examples of PCI user
modules

ut699/exampl es/input/README.txt Description of the user module examples

ut699/examples/input/pci.c PCI user module example that makes UT699 PCl initia-
tor accesses

ut699/exampl es/input/pci_target.c PCI user module example that makes UT699 PCI target
accesses

ut699/exampl es/input/gpio.c GPIO user module example

ut699/exampl es/input/ut699inputprovider.h Interface between the UT699 module and the user de-
fined PCI module

ut699/examples/input/pci_input.h UT699 PCI input provider definitions

ut699/exampl es/input/input.h Generic input provider definitions

ut699/examples/input/tsim.h TSIM interface definitions

ut699/exampl es/input/end.h Defines the endian of the local machine

ut699/exampl es/test Thetest directory contains tests that can be executed in
TSIM

ut699/examples/test/README.txt Description of the tests

ut699/exampl es/test/M akefile Makefile for building the tests

ut699/exampl es/test/cansend.c CAN transmission test

ut699/exampl es'test/canrec.c CAN reception test

ut699/exampl es/test/pci.c PCI interface test

ut699/exampl es/test/pcitest.h Header file for PCI test

7.2. Loading the module

Themoduleisloaded using the TSIM 2 option - ahbm All core specific options described in the following sections
need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon3 -ut699 -ahbm ./ut699/1inux/ut699.so

TSIM2-UM 42 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

-desi gni nput ./ ut 699/ exanpl es/input/pci.so -designinputend

On Windows:

tsimleon3 -ut699 -ahbm ut 699/ wi n32/ut 699.dl |
-desi gni nput ./ut 699/ exanpl es/input/pci.dll -designinputend

The option - ut 699 needs to be given to TSIM to enable the UT699 processor configuration. Note that when -
ut 699 isgiven, snooping will be set as non-functional.

7.3. UT699%e

To enable the UT699e version of the UT699 replace ut 699. [so| dl |] withut 699e. [so| dl |] and option
- ut 699 with - ut 699e. This:

 Enables snooping opposed to the non-functional snooping of the - ut 699

e Sets UT699e build-id

» Changes MMU status/ctrl registers layout

» Contains GRSPW?2 cores instead of GRSPW cores (the TSIM command, flag and packet interface is the
same however)

7.4. Debugging

To enable printout of debug information the - ut 699 _dbgon f | ag switch can be used. Alternatively one can
issue the ut699 _dbgon f | ag command on the TSIM2 command line. The debug flags that are available are
described for each core in the following sections and can be listed by ut699_dbgon help.

7.5. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC availablein the
UT699. For core details and register specification please see the UT699 manual .

The following features are supported:

 Direct Memory Access
* |Interrupts

7.5.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

7.5.2. Commands

Ethernet core T9M commands

greth_connect host[:port]

Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.
greth_status

Print Ethernet register status

7.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.2. Ethernet debug flags

Flag Trace
GAISLER_GRETH_ACC GRETH accesses
TSIM2-UM 43 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

Flag Trace

GAISLER _GRETH_L1 GRETH accesses verbose

GAISLER _GRETH_TX GRETH transmissions
GAISLER_GRETH_RX GRETH reception
GAISLER_GRETH_RXPACKET GRETH received packets
GAISLER_GRETH_RXCTRL GRETH RX packet server protocol
GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA
GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol
GAISLER_GRETH_TXPACKET GRETH transmitted packets
GAISLER_GRETH_IRQ GRETH interrupts

7.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the - gr et hconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named gr et h_confi g, isincluded in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. Thismakesit easy to connect the simulated GRETH coreto real hardware. It can providea
throughput in the order of magnitude of 500 to 1000 KiB/sec. Seeits distributed README for usage instructions.

7.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with aone word length field
indicating the length of the packet to come (including its header).

31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
0x4 RES IPID=1 TYPE=0 RES
31:16 RES, reserved for future use
15:8 IPID, IP core ID, must equal 1 for Ethernet
7.5 TYPE, packet type, O for data packets
4.0 RES, reserved for future use
Payload
0x8 - Ethernet frame

Figure 7.1. Ethernet data packet

7.6. SpaceWire interface with RMAP support

The UT699 AHB module contains 4 GRSPW cores which models the GRSPW cores available in the UT699. For
core details and register specification please see the UT699 manual.

The following features are supported:
e Transmission and reception of SpaceWire packets

TSIM2-UM 44 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

* |Interrupts
* RMAP
* Modifying the link state

7.6.1. Start up options

FoaceWire core start up options
- gr spwXconnect host: port
Connect GRPSW core X to packet server at specified server and port.

- grspwxserver port
Open a packet server for core X on specified port.

- gr spw_nor nap
Disable the RMAP handler. RMAP packets will be stored to the DMA channel.

- grspw_r map
Enablethe RMAP handler. All RMAP packageswill be simulated in hardware. | ncludes support for RMAP
CRC. (Defaullt)

- gr spw_r mapcrc
Enable support for RMAP CRC. Performs RMAP CRC checks and calculationsin hardware.

-grspw_rxfreq freq
Set the RX frequency which is used to calculate receive performance.

-grspw_txfreq freq
Set the TX frequency which is used to calculate transmission performance.

X in the above options has the range 1-4.
7.6.2. Commands

FoaceWire core TS M commands

grspwX_connect host:port

Connect GRSPW core X to packet server at specified server and TCP port.
grspwX_server port

Open a packet server for core X on specified TCP port.
grspw_status

Print status for all GRSPW cores.

X in the above commands has the range 1-4.

7.6.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.3. SpaceWire debug flags

Flag Trace
GAISLER_GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets
GAISLER_GRSPW_RXCTRL GRSPW rx protocol
GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol

7.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either - gr spwXser ver
or - gr spwXconnect . TCP sockets are used for establishing the connections. When acting as a server the core
can only accept a single connection.

TSIM2-UM 45 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

7.6.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets are
defined according to the table below.

Table 7.4. Packet types

Type Value
Data 0
Time code 1
Modify link state 2

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

Data packet format:
31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 1 0
0x4 RES IPID=0 ‘ TYPE=0 RES EEP
31:16 RES, reserved for future use
15:8 IPID, IP coreID, must equal O for SpaceWire
75 TYPE, packet type, O for data packets
4.1 RES, reserved for future use, must be set to 0
0 EEP, Error End of Packet. Set when the packet is truncated and terminated by an EEP.
Payload
0x8 - SpaceWire packet
Figure 7.2. SpaceWire data packet
TSIM2-UM 46 www.cobham.com/gaisler

October 2015, Version 2.0.41

Time code packet format:

COBHAM

31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
0x4 RES IPID=0 TYPE=1 RES
31:16 RES, reserved for future use, must be set to O
15:8 IPID, IP core ID, must equal O for SpaceWire
75 TY PE, packet type, 1 for time code packets
4:0 RES, reserved for future use, must be set to O
Payload
31 8 7 6 5 0
0x8 RES CT CN
31:8 RES, reserved for future use, must be set to 0
7:6 CT, time control flags
5.0 CN, value of time counter
Figure 7.3. SpaceWire time code packet
Link state packet format:
31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 3 2 0
0x4 RES IPID=0 ‘ TYPE=2 RES LS
31:16 RES, reserved for future use, must be set to 0
15:8 IPID, IP core 1D, must equal O for SpaceWire
7.5 TYPE, packet type, 2 for link state packets
4:3 RES, reserved for future use, must be set to 0
2:0 LS, Link State: 0 Error reset
1 Error wait
2 Ready
3 Started
4 Connecting
5 Run
Figure 7.4. SpaceWire link state packet
TSIM2-UM a7 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

7.7. PCl initiator/target and GPIO interface

The UT699 AHB module models the GPIO and PCI core available in the UT699 ASIC. For core details and
register specification please see the UT699 manual.

The GPIO/PCI emulation isimplemented by a two stage model:
1. The TSIM AHB module ut699.dll implements the GPIO and PCI core itself
2. A user supplied dynamic library models the devices on the PCI bus and the GPIO pins.

LOAD: —ahbm ut699.dll LOAD: —designinput pci.dll —designinputend

/
d\)

§ User supplied
TSIM - - ut699.dll < O'QQ' > pci.dll

3

Q.

|

=

S

g

}<—> PCIBUS

To load a user supplied dynamic library use the following command line switch:
- desi gni nput <pci exanpl e> <swi t ches> - desi gni nput end

Thiswill load a user supplied dynamic library “pciexample”. In addition the switches between - desi gni nput
and - desi gni nput end are local switches only propagated to the user dynamic library “pciexample”.

7.7.1. Commands

PCI Commands

pci_status
Print status for the PCI core

7.7.2. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut699_dbgon
command to enable different levels of debug information.

Table 7.5. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core
GAISLER_GRPCI_REGACC GRPCI APB register accesses
GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses
GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus
GAISLER_GRPCI_TARGET_ACC GRPCI target accesses
GAISLER_GRPCI_INIT Print summary on startup

7.7.3. User supplied dynamic library

The user supplied dynamic library should expose a public symbol ut 699i nput syst emof type st ruct
ut 699 subsystem *.Thestruct ut 699 subsyst emisdefined as:

struct ut699_subsystem {
void (*ut699_inp_setup) (int id, struct ut699_inp_|layout *I,
char **argv, int argc);
void (*ut699_inp_restart) (int id, struct ut699_inp_layout *I|);
struct siminterface *simf;

}s

TSIM2-UM 48 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

At initialization the callback ut 699 i np_set up will be called once, supplied with a pointer to a structure of
typestruct ut699 inp_ | ayout.

struct ut699_inp_| ayout {
struct grpci_input grpci;
struct gpio_i nput gpio;

s

The callback ut699_inp_restart will be called every time the simulator restarts and the PCI user modul e can access
the global TSIM struct sim.interface structure through the si ni f member. See Chapter 5 for more
details.

The user supplied dynamic library should claim theut 699 _i np_I| ayout . gr pci member of the structure by
using the | NPUT_CLAI M | - >gr pci) macro (seethe example below). A struct grpci _i nput consists
of callbacks that model the PCI bus (see Section 7.7.4).

A typical user supplied dynamic library would look like this:

#include "tsimh"

#i ncl ude "i nput provider.h"

int pci_acc(struct grpci_input *ctrl, int cmd, unsigned int addr, unsigned int wsize,
unsigned int *data, unsigned int *abort, unsigned int *ws) {

. BUS access inplenentation ...

}

static void ut699_inp_setup (int id, struct ut699_inp_layout *I, char **argv, int argc)

{
printf("Entered PCl setup\n");

if (INPUT_I SCLAI MED(I ->grpci)) {
printf("nmodul e user for PCl already allocated \n");
return;

}
for(i =0; i &t; argc; i++) {

. do argunent processing ...
}

| ->grpci.acc = pci_acc;

. do nodul e setup ...

printf("ut699 inp_setup: Caimng %\n", |->grpci._b.nane);
I NPUT_CLAI M | - >grpci) ;
return;

}

static struct ut699_subsystem ut699 pci = {
ut 699_inp_setup, 0,0
s

struct ut699_subsystem *ut 699i nput system = &anp; ut 699_pci ;

A typical Makefile that would create a user supplied dynamic library pci.(dll|so) from pci.c would look like this:

MDLL_FIX = $(if $(strip $(shell unanme | grep M NGAB2)),dl I, so)

MLIB = $(if $(strip $(shell unane | grep M NGMAB2)),-lws2_32 -luser32 -|kernel 32 -
I'wi nmm)

al | :pci.$(MDLL_FI X)

pci . $(MDLL_FIX) : pci.o
$(CC) -shared -g pci.o -o pci.$(MDLL_FIX) $(M.LIB)

pci . o: pci.c \

i nput provi der. h

$(CC) -fPIC-c -g -Q0 pci.c -0 pci.o
cl ean:

-rm-f *.0 *.so

7.7.4. PCl bus model API

The structure st ruct grpci _i nput modelsthe PCI bus. It is defined as:

TSIM2-UM 49 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

/* ut699 pci input provider */

struct grpci_input {
struct input_inp _b;

int (*acc)(struct grpci_input *ctrl, int cnd, unsigned int addr,
unsigned int *data, unsigned int *abort, unsigned int *ws);

int (*target_acc)(struct grpci_input *ctrl, int cnd, unsigned int addr,
unsi gned int *data, unsigned int *nexc);

Ix
The acc callback should be set by the PCI user module at startup. It is called by the UT699 module whenever it
reads/writes as a PCl bus master.

Table 7.6. acc callback parameters

Parameter Description

cmd Command to execute, see Section 7.7.1 details

addr PCI address

data Data buffer, fill for read commands, read for write commands

wsize 0: 8-hit access 1: 16-bit access, 2: 32-bit access, 3: 64-bit access. 64 bit is
only used to model STD instructions to the GRPCI AHB save

ws Number of PCI clocksit shall to complete the transaction

abort Set to 1 to generate target abort, 0 otherwise

Thereturn value of acc determinesif the transaction terminates successfully (1) or with master abort (0).

Thecallback target_accisinstalled by the UT699 AHB module. The PCI user dynamic library can call thisfunction
to initiate an access to the UT699 PCI target.

Table 7.7. target_acc parameters

Par ameter Description

cmd Command to execute, see Section 7.7.1 for details. 1/0O cycles are not sup-
ported by the UT699 target.

addr PCI address

data Data buffer, returned data for read commands, supply data for write com-
mands

wsize 0: 8-bit access 1: 16-hit access, 2: 32-bit access

mexc 0if accessis successful, 1 in case of target abort

If the address matched MEMBARO, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

7.7.5. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIO input provider */

struct gpio_input {
struct input_inp _b;
int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

I

The gpi oout callback should be set by the user module at startup. The gpi oi n callback is set by the U699
AHB module. Thegpi oout calback iscalled by the UT699 module whenever a GPIO output pin changes. The
gpi oi n calback is caled by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpi oi n from within the event handler.

TSIM2-UM 50 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

Table 7.8. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 7.9. gpioin callback parameters

Parameter Description

in Theinput pin values

Thereturn value of gpi oi n/ gpi oout isignored.
7.8. CAN interface

The UT699 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the UT699.
For core details and register specification please see the UT699 manual.

7.8.1. Start up options

CAN core start up options

-can_ocX_connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.
-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.
-can_ocX ack [0] 1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after - can_ocX_connect .

X in the above optionsisin the range 1-2.
7.8.2. Commands

CAN core TSM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.
can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0[1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only beissued after a connection has been established.
can_ocX_status
Prints out status information for the CAN_OC core.

X in the above commands is in the range 1-2.
7.8.3. Debug flags

The following debug flags are available for the CAN interfaces. Use them in conjunction with the ut699_dbgon
command to enable different levels of debug information.

Table 7.10. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER _CAN_OC _ACK CAN_OC acknowledgements
GAISLER_CAN_OC_IRQ CAN_OC interrupts

TSIM2-UM 51 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

7.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX server or-can_ocX connect . When acting as a server the core can only accept a single con-
nection.

7.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 7.11. CAN packet types

Type Value
Message 0x00
Error counter OxFD
Acknowledge OXFE
Acknowledge config OxFF

7.8.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

CAN message
Byte# Description Bits (M SB-L SB)
7 6 |5 |4 [3]2 1 Jo

Protocol ID =0 Prot ID 7-0
5 Control FF ‘ RTR ‘ ‘ ‘ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databytel-DLC Databyten 7-0

Figure 7.5. CAN message packet format
7.8.5.2. Error counter packet format
Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte# Field Description

4 Packet type Type of packet, OXFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter

6 Value Valueto write to error counter

Figure 7.6. Error counter packet format

TSIM2-UM 52 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

7.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack isissued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 7.7. Acknowledge packet format
7.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte# Field Description
4 Packet type Type of packet, OXxFF for acknowledge configuration packets
5 Ack configuration bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, O - disabled

bit 2 Set ack packet payload, 1 - ACK, 0- NAK

Figure 7.8. Acknowledge configuration packet format

TSIM2-UM 53 www.cobham.com/gaisler
October 2015, Version 2.0.41

8. Cobham UT700 AHB module

8.1. Overview

COBHAM

The UT700 AHB module is very similar to the UT699 AHB module described in the previous chapter. The dif-
ferences between the UT700 and the UT699 models is the added SPI model that is only present in the UT700
AHB module and that it has GRSPW2 cores instead of GRSPW cores and that the debug flag toggling command

isut700_dbgon,

For information onthe CAN, Spacewire, PCl and GPI O interfaces of the UT700 modul e, see the UT699 documen-
tation in Chapter 7. The TSIM command, flag and packet interface is the same for both GRSPW and GRSPW2.

The following files are delivered with the UT700 TSIM module:

Table 8.1. Files delivered with the UT700 TS M module

File Description

ut700/linux/ut700.s0 UT700 AHB module for Linux

ut700/win32/ut700.dll UT700 AHB module for Windows

ut700/exampl es/input The input directory contains two examples of PCI user

modules

ut700/examples/input/README.txt

Description of the user module examples

ut700/exampl es/input/M akefile

Makefile for building the user modules

ut700/examples/input/pci.c

PCI user module example that makes UT700 PCI ini-
tiator accesses

ut700/examples/input/pci_target.c

PCI user module example that makes UT700 PCI target
accesses

ut700/exampl es/input/ut700inputprovider.h

Interface between the UT700 module and the user de-
fined PCI module

ut700/examples/input/pci_input.h

UT700 PCI input provider definitions

ut700/examples/input/input.h

Generic input provider definitions

ut700/examples/input/tsim.h TSIM interface definitions
ut700/exampl es/input/end.h Defines the endian of the local machine
ut700/exampl es/test Thetest directory contains tests that can be executed in

TSIM

ut700/examples/test/README.txt

Description of the tests

ut700/exampl es/test/M akefile

Makefile for building the tests

ut700/exampl es/test/cansend.c CAN transmission test
ut700/exampl es/test/canrec.c CAN reception test
ut700/examples/test/pci.c PCI interface test
ut700/exampl es/test/pcitest.h Header file for PCI test

8.2. Loading the module

Themoduleisloaded using the TSIM2 option - ahbm All core specific options described in the following sections
need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon3 -ut700 -ahbm ./ut700/!inux/ut700.so

- desi gni nput ./ut 700/ exanpl es/input/pci.so -designi nputend

On Windows:

TSIM2-UM
October 2015, Version 2.0.41

54

www.cobham.com/gaisler

COBHAM

tsimleon3 -ut700 -ahbm ut 700/ wi n32/ ut 700. dl |
- desi gni nput ./ut 700/ exanpl es/input/pci.dll -designinputend

The option - ut 700 needsto be given to TSIM to enable the UT700 processor configuration.

8.3. SPI bus model API

The UT700 user supplied so/dll differs from that of the UT699 in the addition of the SPI bus model API. The
structure st ruct spi _i nput modelsthe SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
struct input_inp _b;
int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
uint32 out, uint32 *in);

}s

The spishift callback should be set by the SPI user module at startup. It is called by the UT700 module whenever
it shifts aword through the SPI bus.

Table 8.2. spishift callback parameters

Par ameter Description

select Slave select bits

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not a shift
and the call isto indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

TSIM2-UM 55 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

9. Cobham Gaisler GR712 AHB module

9.1. Overview

GR712 AHB module is a loadable AHB module that implements the GR712 peripherals including: GPIO, GR-
TIMER with latch, SPI, CAN, GRETH, SPACEWIRE, AHBRAM and extra UARTS.

The following files are delivered with the GR712 TSIM module;

Table 9.1. Files delivered with the GR712 TS M module

File Description

gr712/linux/gr712.so GR712 AHB module for Linux

gr712/win32/gr712.dil GR712 AHB module for Windows

gr712/examples/input Theinput directory contains two examples of user modules
gr712/examples/input/README.txt Description of the user module examples
gr712/examples/input/Makefile Makefile for building the user modules
gr712/examples/input/spi.c SPI user module example emulating a Intel SPI flash
gr712/examples/input/gpio.c GPIO user module emulating GPIO bit toggle
gr712/exampled/input/gr712inputprovider.h |Interface between the GR712 module and the user module

9.2. Loading the module

Themoduleisloaded using the TSIM 2 option - ahbm All core specific options described in the following sections
need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon -gr712rc -ahbm./gr712/1inux/gr712. so
- desi gni nput ./gr712/ exanpl es/input/spi.so -designi nputend

On Windows:

tsimleon -gr712rc -ahbm./gr712/w n32/gr712.dl I
-desi gni nput ./ gr712/ exanpl es/input/spi.dll -designinputend

The option - gr 712r ¢ needsto be given to TSIM to enable the GR712 processor configuration. The above line
loads the GR712 AHB module ./gr712.so which in turn loads the SPI user module ./spi.so. The SPI user module ./
Spi.so communicates with ./gr712.so using the user module interface described in gr712inputprovider.h,, while ./
gr712.so communicates with TSIM viathe AHB interface.

9.3. Debugging

To enable printout of debug information the - gr 712_dbgon f | ag switch can be used. Alternatively one can
issue the gr712_dbgon f | ag command on the TSIM2 command line. The debug flags that are available are
described for each core in the following sections and can be listed by gr 712 _dbgon help.

9.4. CAN interface

The GR712 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the GR712.
For core details and register specification please see the GR712 manual.

9.4.1. Start up options

CAN core start up options

-can_ocX connect host: port
Connect CAN_OC core X to packet server to specified server and TCP port.

TSIM2-UM 56 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ ack [0] 1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after - can_ocX_connect .

X in the above optionsisin the range 0-1.
9.4.2. Commands

CAN core TSM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.
can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.
can_ocX_ack <0[1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only beissued after a connection has been established.
can_ocX_status
Prints out status information for the CAN_OC core.

X in the above commands is in the range 0-1.
9.4.3. Debug flags

The following debug flags are available for the CAN interfaces. Use them in conjunction with the gr 712_dbgon
command to enable different levels of debug information. To toggle debug output for individual cores, use the
can_ocX_dbg command, where X isin the range 0-1.

Table 9.2. CAN debug flags

Flag Trace

GAISLER_CAN_OC _ACC CAN_OC register accesses
GAISLER_CAN_OC_RXPACKET CAN_OC received messages
GAISLER_CAN_OC TXPACKET CAN_OC transmitted messages
GAISLER_CAN_OC_ACK CAN_OC acknowledgements
GAISLER_CAN_OC_IRQ CAN_OC interrupts

9.4.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX server or-can_ocX connect . When acting as a server the core can only accept a single con-
nection.

9.4.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 9.3. CAN packet types

Type Value

Message 0x00

Error counter OxFD

Acknowledge OXFE

Acknowledge config OxFF
TSIM2-UM 57 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

9.4.5.1. CAN message packet format
Used to send and receive CAN messages.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

CAN message
Byte# Description Bits (M SB-L SB)
7 6 [5 4 3 |2 |1 o

Protocol ID =0 Prot ID 7-0

Control FF \ RTR \ \ \ DLC (max 8 bytes)
6-9 ID (32 bit word in network byte|ID 10-0 (bits 31 - 11 ignored for standard frame format)

order) ID 28-0 (bits 31-29 ignored for extended frame format)
10-17 Databytel1-DLC Databyten 7-0

Figure 9.1. CAN message packet format
9.4.5.2. Error counter packet format
Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte# Field Description

4 Packet type Type of packet, OxFD for error counter packets
5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 9.2. Error counter packet format

9.4.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack isissued.

31 0
0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet
Acknowledge packet
Byte# Field Description
4 Packet type Type of packet, OXFE for acknowledge packets
5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 9.3. Acknowledge packet format

TSIM2-UM 58 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

9.4.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack orif the can_ocX_ack command has been issued.

31 0

0x0 LENGTH
31.0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte# Field Description
4 Packet type Type of packet, OxFF for acknowledge configuration packets
5 Ack configuration bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, O - disabled

bit 2 Set ack packet payload, 1 - ACK, 0- NAK

Figure 9.4. Acknowledge configuration packet format

9.5. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC availablein the
GR712. For core details and register specification please see the GR712 manual.

The following features are supported:
» Direct Memory Access
* |Interrupts

9.5.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

9.5.2. Commands

Ethernet core T9M commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

9.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
gr712_dbgon command to enable different levels of debug information.

Table 9.4. Ethernet debug flags

Flag Trace
GAISLER_GRETH_ACC GRETH accesses
GAISLER_GRETH_L1 GRETH accesses verbose
GAISLER_GRETH_TX GRETH transmissions
TSIM2-UM 59 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

Flag

Trace

GAISLER_GRETH_RX

GRETH reception

GAISLER_GRETH_RXPACKET

GRETH received packets

GAISLER_GRETH_RXCTRL

GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL

GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL

GRETH TX packet server protocol

GAISLER GRETH_TXPACKET
GAISLER GRETH_IRQ

GRETH transmitted packets
GRETH interrupts

9.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the- gr et hconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named gr et h_confi g, isincluded in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. Thismakesit easy to connect the simulated GRETH coreto real hardware. It can providea
throughput in the order of magnitude of 500 to 1000 KiB/sec. Seeits distributed README for usage instructions.

9.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

31 0
0x0 LENGTH
310 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
0x4 RES IPID=1 TYPE=0 RES
31:16 RES, reserved for future use
15:8 IPID, IP core ID, must equal 1 for Ethernet
75 TYPE, packet type, O for data packets
4.0 RES, reserved for future use
Payload
0x8 - Ethernet frame

Figure 9.5. Ethernet data packet

9.6. SpaceWire interface with RMAP support

The GR712 AHB module contains 6 GRSPW?2 cores which models the GRSPW?2 cores available in the GR712.
For core details and register specification please see the GR712 manual.

The following features are supported:
e Transmission and reception of SpaceWire packets
* Interrupts
* Time codes

TSIM2-UM 60
October 2015, Version 2.0.41

www.cobham.com/gaisler

* RMAP
* Modifying the link state

9.6.1. Start up options

SoaceWire core start up options

- gr spwxXconnect host: port

COBHAM

Connect GRPSW core X to packet server at specified server and port.

- grspwxserver port

Open a packet server for core X on specified port.

- gr spw_nor nap

Disable the RMAP handler. RMAP packets will be stored to the DMA channel.

- grspw_r map

Enablethe RMAP handler. All RMAP packageswill be simulated in hardware. | ncludes support for RMAP

CRC. (Default)
- gr spw_r napcrc

Enable support for RMAP CRC. Performs RMAP CRC checks and calculations in hardware.

-grspw_rxfreq freq

Set the RX frequency which is used to calculate receive performance.

-grspw_txfreq freq

Set the TX frequency which is used to calculate transmission performance.

X in the above options has the range 0-5.

9.6.2. Commands

FoaceWire core TS M commands

grspwX_connect host:port

Connect GRSPW2 core X to packet server at specified server and TCP port.

grspwX_server port

Open a packet server for core X on specified TCP port.

grspw_status

Print status for all GRSPW?2 cores.

X in the above commands has the range 0-5.

9.6.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
gr712_dbgon command to enable different levels of debug information. To toggle debug output for individual
cores, use the gr spwX_dbg command, where X isin the range 0-5.

Table 9.5. SpaceWire debug flags

Flag Trace
GAISLER _GRSPW_ACC GRSPW accesses
GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL

GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets
GAISLER_GRSPW_TXCTRL GRSPW tx protocol
GAISLER_GRSPW_RMAP GRSPW RMAP accesses
GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps

GAISLER_GRSPW_RMAPPACKDE

GRSPW RMAP packet decoding

GAISLER_GRSPW_DMAERR

GRSPW DMA errors

TSIM2-UM
October 2015, Version 2.0.41

61

www.cobham.com/gaisler

COBHAM

9.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either - gr spwXser ver
or - gr spwXconnect . TCP sockets are used for establishing the connections. When acting as a server the core
can only accept a single connection.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

9.6.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets are
defined according to the table below.

Table 9.6. Packet types

Type Value
Data 0
Time code 1
Modify link state 2

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

Data packet format:
31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 1 0
0x4 RES IPID=0 ‘ TYPE=0 RES EEP
31:16 RES, reserved for future use
15:8 IPID, IP core D, must equal O for SpaceWire
75 TYPE, packet type, O for data packets
4.1 RES, reserved for future use, must be set to 0
0 EEP, Error End of Packet. Set when the packet is truncated and terminated by an EEP.
Payload
0x8 - SpaceWire packet
Figure 9.6. SpaceWire data packet
TSIM2-UM 62 www.cobham.com/gaisler

October 2015, Version 2.0.41

Time code packet format:

COBHAM

31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 0
0x4 RES IPID=0 TYPE=1 RES
31:16 RES, reserved for future use, must be set to O
15:8 IPID, IP core ID, must equal O for SpaceWire
75 TY PE, packet type, 1 for time code packets
4:0 RES, reserved for future use, must be set to O
Payload
31 8 7 6 5 0
0x8 RES CT CN
31:8 RES, reserved for future use, must be set to 0
7:6 CT, time control flags
5.0 CN, value of time counter
Figure 9.7. SpaceWire time code packet
Link state packet format:
31 0
0x0 LENGTH
31.0 LENGTH, specifieslength of packet including the header
Header
31 16 15 8 7 5 4 3 2 0
0x4 RES IPID=0 ‘ TYPE=2 RES LS
31:16 RES, reserved for future use, must be set to 0
15:8 IPID, IP core 1D, must equal O for SpaceWire
7.5 TYPE, packet type, 2 for link state packets
4:3 RES, reserved for future use, must be set to 0
2:0 LS, Link State: 0 Error reset
1 Error wait
2 Ready
3 Started
4 Connecting
5 Run
Figure 9.8. SpaceWire link state packet
TSIM2-UM 63 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

9.7. SPl and GPIO user modules

The user supplied dynamic library should expose a public symbol gr 712i nput syst emof type struct
gr 712_subsystem *. Thestruct gr712_subsyst emisdefined in gr712inputprovider.h as.

struct gr712_subsystem {
void (*gr712_inp_setup) (int id,
struct gr712_inp_layout * |,
char **argv, int argc);
void (*gr712_inp_restart) (int id,
struct gr712_inp_layout * 1);
struct siminterface *simf;

b

The callback gr712_inp restart will be called every time the simulator restarts. At initialization the callback
gr712_inp_setup will be called once, supplied with a pointer to structure st ruct gr712_i np_| ayout de-
fined in gr712inputprovider.h (see Section 9.7.1 and Section 9.7.2 for details):

struct gr712_inp_| ayout {
struct gpio_i nput gpio[2];
struct spi_input spi;

s

The user module can accesstheglobal TSIM st ruct si m_i nt er f ace structurethroughthesi ni f member.
See Chapter 5 for more details.

The user supplied dynamic library should claim the gr712_inp_layout.gpio or gr712_inp_layout. spi members by
using the INPUT_CLAIM macro, i.e. INPUT_CLAIM(I->gpio) (see the example below).

A typical user supplied dynamic library would look like this:

/* sinple gpio user nodule that toggles all input bits */
#i ncl ude <stdio. h>

#i ncl ude <string. h>

#include "tsimh"

#i ncl ude "gr712i nput provider. h"

extern struct gr712_subsystem *gr712i nput system

static struct gr712_inp_l ayout *lay = O;

static void Change(struct gpio_input *ctrl) {

}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
) C

static void gr712_inp_setup (int id,
struct gr712_inp_l ayout * |,
char **argv, int argc) {
lay = 1;
printf("User-dll: gr712_inp_setup:Caimng %\n", |->gpio[0]._b.nane);
I NPUT_CLAI M| ->gpi o[0]);
| - >gpi o[0] . gpi oout = gpi oout;
gr 712i nput syst em >si m f - >event (Change, (unsi gned | ong) & - >gpi o[0] , 10000000) ;
}

static struct gr712_subsystem gr712_gpi o
gr712_inp_setup, 0,0
s

1l
-~

struct gr712_subsystem *gr 712i nput system = &gr 712_gpi o;

A typical Makefile that would create a user supplied dynamic library gpio.(dll|so) would look like this:

MDLL_FI X=$(if $(strip $(shell uname|grep M NGAB2)),dl 1, so)
MLIB=$(if $(strip $(shell unane|grep M NGMB2)),-Iws2_32 -luser32 -lkernel 32 -1wi nnm)
al | : gpio. $(MDLL_FI X)

pci . $(MDLL_FIX) : gpio.o
$(CC) -shared -g gpio.o -o gpio.$(MDLL_FI X) $(M.LIB)

gpi 0. 0: gpio.c

TSIM2-UM 64 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

$(CC) -fPIC-c -g -Q0 gpio.c -0 gpio.o
cl ean:
-rm-f *.0 *.so

The user can then specify the user module to be loaded by the gr712.so AHB module using the - desi gni nput
and - desi gni nput end command line options:

- desi gni nput ./gr712/ exanpl es/input/gpi o.so -designi nputend
These switches are interpreted by gr712.so.

9.7.1. SPI bus model API

The structure st ruct spi _i nput modelsthe SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
struct input_inp _b;
int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
uint32 out, uint32 *in);

The spishift callback should be set by the SPI user module at startup. It is called by the GR712 module whenever
it shifts aword through the SPI bus.

Table 9.7. spishift callback parameters

Parameter Description

select Slave select hits (in case of GR712 these should be ignored and GPIO used instead)

bitent Number of bits set in the MODE register, if bitcnt is-1 then the operation is not a shift
and the call isto indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

The return value of spishift isignored.
9.7.2. GPIO model API

The structure st ruct gpi o_i nput modelsthe GPIO pins. It is defined as:

/* GPIO input provider */

struct gpio_i nput {
struct input_inp _b;
int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
int (*gpioin) (struct gpio_input *ctrl, unsigned int in);

}

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the GR712 AHB
module. The gpioout callback is called by the GR712 module whenever a GPIO output pin changes. The gpioin
callback is called by the user module when theinput pins should change. Typically the user module would register
an event handler at a certain time offset and call gpioin from within the event handler.

Table 9.8. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 9.9. gpioin callback parameters

Parameter Description
in The input pin values
TSIM2-UM 65 www.cobham.com/gaisler

October 2015, Version 2.0.41

COBHAM

The return value of gpioin/gpioout isignored.

9.8. UART interfaces
The GR712 module adds five extra UARTS in addition to the one built in UART (the second built in UART isis
disabled by the - gr 712r ¢ option). The extra UARTS are numbered 2 through 6.

9.8.1. Start up options

-uart X device
Workslikethe ordinary - uart Xdevi ce option but for X in the range 2-6, with the extra possibility to
set the UART to use stdin and stdout by using - uar t X st di o.

9.8.2. Commands
uartX_connect devi ce
Hasthe same effect as - uart X devi ce above but can as a command.
uartX_status
Shows the status of the UART.
uartX_dbg<fl ag|list | help | clean >
Toggle, show, disable or show help for debug options for the given UART.

X in the above commands is in the range 2-6.

TSIM2-UM 66 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

10. Atmel AT697 PCIl emulation

10.1. Overview

The PCI emulation is implemented as a AT697 AHB module that will process all accesses to memory region
0xa0000000 - 0xf0000000 (AHB slave mode) and the APB registers starting at 0x80000100. The AT697 AHB
module implements all registers of the PCI core. It will in turn load the PCI user modules that will implement the
devices. The AT697 AHB module is supposed to be the PCI host. Both PCI Initiator and PCI Target mode are
supported. Theinterface to the PCI user modules isimplemented on bus level. Two callbacks model the PCI bus.

The following files are delivered with the AT697 TSIM module:

Table 10.1. Files delivered with the AT697 TSM module

File Description

at697/linux/at697.s0 AT697 AHB module for Linux

at697/win32/at697.dll AT697 AHB module for Windows

Input Theinput directory contains two examples of PCI user modules

at697/examplesinput/README.txt Description of the user module examples

at697/examplesinput/Makefile Makefile for building the user modules

at697/examples/input/pci.c PCI user module examplethat makes AT697 PCl initiator accesses

at697/examples/input/pci_target.c PCI user module exampl e that makes AT697 PCI target accesses

at697/examples/input/at697inputprovider.h |Interface between the AT697 module and the user defined PCI
module

at697/examples/input/pci_input.h AT697 PCI input provider definitions

at697/examples/input/input.h Generic input provider definitions

at697/examplesinput/tsim.h TSIM interface definitions

at697/examples/input/end.h Defines the endian of the local machine

10.2. Loading the module

Themoduleisloaded using the TSIM2 option - ahbm All core specific options described in the following sections
need to be surrounded by the options - desi gni nput and - desi gni nput end, e.g:

On Linux:

tsimleon -ahbm./at697/1inux/at697.so
- desi gni nput ./at 697/ exanpl es/input/pci.so -designi nputend

On Windows:

tsimleon -ahbm ./at697/wi n32/at697.dl |
- desi gni nput ./at697/ exanpl es/input/pci.dll -designinputend

This loads the AT697 AHB module ./at697.s0 which in turn loads the PCI user module ./pci.so. The PCI user
module ./pci.so communicateswith ./at697.so using the PCI user moduleinterface, while ./at697.so communicates
with TSIM viathe AHB interface.

10.3. AT697 initiator mode

The PCI user module should supply one callback function acc() . The AT697 AHB module will call this func-
tion to emulate AHB slave mode accesses or DMA accesses that are forwarded viaacc() . The cmd parameter
determines which command to use. Configuration cycles have to be handled by the PCI user module.

TSIM2-UM 67 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

10.4. AT697 target mode

The AT697 AHB module supplies one callback t ar get _acc() to the PCI user modules to implement target
mode accesses from the PCI bus to the AHB bus. The PCI user module should trigger access events itself by
inserting itself into the event queue.

10.5. Definitions

#define ESA_PCl _SPACE_| O 0

#define ESA_PCl _SPACE_MEM 1

#define ESA_PCI_SPACE_ CONFIG 2

#define ESA PCl_SPACE_MEMLINE 3

/* atc697 pci input provider */

struct esa_pci_input {

struct input_inp _b;

int (*acc)(struct esa_pci_input *ctrl, int cnd, unsigned int addr,

unsigned int *data, unsigned int *abort,unsigned int *ws);

int (*target_acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr,
unsi gned int *data, unsigned int *mexc);

}s
10.5.1. PClI command table

0000: "I RQ acknow edge",

0001: " Speci al cycle",

0010: "1/ 0O Read",

0011: "I/OWite",

0100: "Reserved",

0101: "Reserved",

0110: "Menmory Read",

0111: "Mermory Wite",

1000: "Reserved",

1001: "Reserved",

1010: "Configuration Read",
1011: "Configuration Wite",
1100: "Mermory Read Mutltiple",
1101: "Dual Address Cycle",
1110: "Menmory Read Line",
1111: "Memory Wite And Invalidate"

10.6. Read/write function installed by PCI module

This function should be set by the PCI user module;

int (*acc)(struct esa_pci_input *ctrl, int cnd, unsigned int addr, unsigned int *data,
unsi gned int *abort, unsigned int *ws);

If set, the function is called by the AT697 AHB module whenever the PCI interface initiates a transaction. The
function is called for AHB-slave mapped accesses as well as AHB-Master/APB DMA.The parameter crrd spec-
ifies the command to execute, see Section 10.5.1. Parameter addr specifies the address. The user module should
return the read datain * dat a for aread command or write the * dat a on awrite command and return the time to
completionin *ws as PCI clocks. A possible target abort should bereturnedin * abor t . The return value should
be: 0: taken, 1: not taken (master abort)

10.7. Read/write function installed by AT697 module

The following function isinstalled by the AT697 AHB module:

int (*target_acc)(struct esa_pci_input *ctrl, int cmd, unsigned int addr, unsigned int
*data, unsigned int *mexc);

The PCI user module can call this function to emulate a PCI target mode access to the AT697 AHB module.
Parameter cmd specifies the command to execute, see Section 10.5.1. The AT697 module is supposed to be the
host and accesses to the configuration space is not supported. Parameter addr specifies the address. Parameter
*dat a should point to a memory location where to return the read data on a read command or point to the write

TSIM2-UM 68 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

data on awrite command. Parameter * nexc should point to a memory |location where to return a possible error.
If the call was hit by MEMBARO, MEMBARL1 or IOBAR, t ar get _read() will return 1 otherwise O.

10.8. Registers

Table 10.2 contains alist of implemented and not implemented fields of the AT697F PCl Registers. Only register
fieldsthat are relevant for the emulated PCI module isimplemented.

Table 10.2. PCI register support

Register Implemented Not implemented
PCIID1 deviceid, vendor id
PCISC stat 13, stat 12, stat 11, stat 7, stat 6 stat 5, | stat15 statl4 statl0 9 stat8 coml10 com9 com8
stat 4, com2, com 1, coml com? com6 com5 com4 com3
PCIID2 class code, revision id
PCIBHDLC [bist, header type, latency timer, cache
size] config-space only
PCIMBAR1 base address, pref, type, msi
PCIMBAR2 base address, pref, type, msi
PCIIOBAR3 i0 base address, ms
PCISID subsystem id, svi
PCICP pointer
PCILI [max_lat min_gnt int_pin int_line] con-
fig-space-only
PCIRT [retry trdy] config-space-only
PCICW ben
PCISA start address
PCIIW ben
PCIDMA wdcnt, com b2b
PCIIS act, xff, xfe, rfe dmeas, ss
PCIIC mod, commsb dwr, dww, perr
PCITPA tpal, tpa2
PCITSC errmem, xff, xfe, rfe, tms
PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser
PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser
PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser
PCID dat
PCIBE dat
PCIDMAA addr
PCIA pO, p1, p2, p3

10.9. Debug flags
Theswitch - desi gndbgon flags can be used to enable debug output. The possiblevaluesfor flagsare asfollows:

Table 10.3. Debug flags

ESAPCI_REGACC Trace accesses to the PCI registers

TSIM2-UM 69 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space
ESAPCI_DMA Trace DMA
ESAPCI_IRQ Trace PCI IRQ

10.10. Commands

pci
Displays al PCI registers.

TSIM2-UM 70 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

11. TPS VxWorks Module

11.1. Overview

The TPS VxWorks Module is aloadable module that simplifies communication between TSIM and the VxWorks
Workbench. It provides avirtual core that acts similar to a basic ethernet controller, but does not require a packet
server.

The module is only useful in conjunction with VxWorks.

Table 11.1. Files delivered with the TPS VxWorks TSM module

File Description
tpg/linux/tps-vxworks.so TPS VxWorks module for Linux
tpswin32/tps-vxworks.dll TPS VxWorks module for Windows

11.2. Loading the module

The module is loaded using the TSIM2 option - ahbm It can be used in conjunction with other modules, such
asthe UT699 and GR712 modules.

On Linux (together with the UT699 design):

tsimleon3 -ahbm ./tps/linux/tps-vxworks.so -ahbm./ut699/1i nux/ut699. so

On Windows (together with the GR712 design):
tsimleon3 -ahbm ./tps/wi n32/tps-vxworks.dll -ahbm./gr712/wi n32/gr712.dll

11.3. Configuration

By default the module uses IRQ 5 and UDP port 0x4321. This can be changed by using the following command
line arguments:
-tps vxworks irqirq
UsesIRQi r q instead of the default.

-tps_vxworks_port port
Uses UDP port por t instead of the defaullt.

Use the following command line to make the TPS module use IRQ 10 and port 5000 on Linux together with the
UT699 design:

tsimleon3 -ahbm ./tps/linux/tps-vxworks.so -ahbm ./ut699/Ii nux/ut699.so
-t ps_vxworks_port 5000 -tps_vxworks_irqg 10

TSIM2-UM 71 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

12. Support

For support contact the Cobham Gaisler support team at support@gaisler.com.

TSIM2-UM 72 www.cobham.com/gaisler
October 2015, Version 2.0.41

COBHAM

Cobham Gaisler AB
Kungsgatan 12

411 19 Gothenburg
Sweden
www.cobham.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2015 Cobham Gaisler AB

TSIM2-UM 73 www.cobham.com/gaisler
October 2015, Version 2.0.41

	
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Supported platforms and system requirements
	1.3. Obtaining TSIM
	1.4. Problem reports

	2. Installation
	2.1. General
	2.2. License installation

	3. Operation
	3.1. Overview
	3.2. Starting TSIM
	3.3. Standalone mode commands
	3.4. Symbolic debug information
	3.5. Breakpoints and watchpoints
	3.6. Profiling
	3.7. Code coverage
	3.8. Check-pointing
	3.9. Performance
	3.10. Backtrace
	3.11. Connecting to gdb
	3.12. Thread support
	3.12.1. TSIM thread commands
	3.12.2. GDB thread commands

	4. Emulation characteristics
	4.1. Common behaviour
	4.1.1. Timing
	4.1.2. UARTs
	4.1.3. Floating point unit (FPU)
	4.1.4. Delayed write to special registers
	4.1.5. Idle-loop optimisation
	4.1.6. Custom instruction emulation
	4.1.7. Chip-specific errata

	4.2. ERC32 specific emulation
	4.2.1. Processor emulation
	4.2.2. MEC emulation
	4.2.3. Interrupt controller
	4.2.4. Watchdog
	4.2.5. Power-down mode
	4.2.6. Memory emulation
	4.2.7. EDAC operation
	4.2.8. Extended RAM and I/O areas
	4.2.9. SYSAV signal
	4.2.10. EXTINTACK signal
	4.2.11. IWDE signal

	4.3. LEON2 specific emulation
	4.3.1. Processor
	4.3.2. Cache memories
	4.3.3. LEON peripherals registers
	4.3.4. Interrupt controller
	4.3.5. Power-down mode
	4.3.6. Memory emulation
	4.3.7. SPARC V8 MUL/DIV/MAC instructions
	4.3.8. DSU and hardware breakpoints

	4.4. LEON3 specific emulation
	4.4.1. General
	4.4.2. Processor
	4.4.3. Cache memories
	4.4.4. Power-down mode
	4.4.5. LEON3 peripherals registers
	4.4.6. Interrupt controller
	4.4.7. Memory emulation
	4.4.8. CASA instruction
	4.4.9. SPARC V8 MUL/DIV/MAC instructions
	4.4.10. DSU and hardware breakpoints
	4.4.11. AHB status registers

	4.5. LEON4 specific emulation
	4.5.1. General
	4.5.2. Processor
	4.5.3. L1 Cache memories
	4.5.4. L2 Cache memory
	4.5.5. Power-down mode
	4.5.6. LEON4 peripherals registers
	4.5.7. Interrupt controller
	4.5.8. Memory emulation
	4.5.9. CASA instruction
	4.5.10. SPARC V8 MUL/DIV/MAC instructions
	4.5.11. GRFPU emulation
	4.5.12. DSU and hardware breakpoints
	4.5.13. AHB status registers

	5. Loadable modules
	5.1. TSIM I/O emulation interface
	5.1.1. simif structure
	5.1.2. ioif structure
	5.1.3. Structure to be provided by I/O device
	5.1.4. Cygwin specific io_init()

	5.2. LEON AHB emulation interface
	5.2.1. procif structure
	5.2.2. Structure to be provided by AHB module
	5.2.3. Big versus little endianess

	5.3. TSIM/LEON co-processor emulation
	5.3.1. FPU/CP interface
	5.3.2. Structure elements
	5.3.3. Attaching the FPU and CP
	5.3.4. Big versus little endianess
	5.3.5. Additional TSIM commands
	5.3.6. Example FPU

	6. TSIM library (TLIB)
	6.1. Introduction
	6.2. Function interface
	6.3. AHB modules
	6.4. I/O interface
	6.5. UART handling
	6.6. Linking a TLIB application
	6.7. Limitations

	7. Cobham UT699/UT699e AHB module
	7.1. Overview
	7.2. Loading the module
	7.3. UT699e
	7.4. Debugging
	7.5. 10/100 Mbps Ethernet Media Access Controller interface
	7.5.1. Start up options
	7.5.2. Commands
	7.5.3. Debug flags
	7.5.4. Ethernet packet server
	7.5.5. Ethernet packet server protocol

	7.6. SpaceWire interface with RMAP support
	7.6.1. Start up options
	7.6.2. Commands
	7.6.3. Debug flags
	7.6.4. SpaceWire packet server
	7.6.5. SpaceWire packet server protocol

	7.7. PCI initiator/target and GPIO interface
	7.7.1. Commands
	7.7.2. Debug flags
	7.7.3. User supplied dynamic library
	7.7.4. PCI bus model API
	7.7.5. GPIO model API

	7.8. CAN interface
	7.8.1. Start up options
	7.8.2. Commands
	7.8.3. Debug flags
	7.8.4. Packet server
	7.8.5. CAN packet server protocol
	7.8.5.1. CAN message packet format
	7.8.5.2. Error counter packet format
	7.8.5.3. Acknowledge packet format
	7.8.5.4. Acknowledge packet format

	8. Cobham UT700 AHB module
	8.1. Overview
	8.2. Loading the module
	8.3. SPI bus model API

	9. Cobham Gaisler GR712 AHB module
	9.1. Overview
	9.2. Loading the module
	9.3. Debugging
	9.4. CAN interface
	9.4.1. Start up options
	9.4.2. Commands
	9.4.3. Debug flags
	9.4.4. Packet server
	9.4.5. CAN packet server protocol
	9.4.5.1. CAN message packet format
	9.4.5.2. Error counter packet format
	9.4.5.3. Acknowledge packet format
	9.4.5.4. Acknowledge packet format

	9.5. 10/100 Mbps Ethernet Media Access Controller interface
	9.5.1. Start up options
	9.5.2. Commands
	9.5.3. Debug flags
	9.5.4. Ethernet packet server
	9.5.5. Ethernet packet server protocol

	9.6. SpaceWire interface with RMAP support
	9.6.1. Start up options
	9.6.2. Commands
	9.6.3. Debug flags
	9.6.4. SpaceWire packet server
	9.6.5. SpaceWire packet server protocol

	9.7. SPI and GPIO user modules
	9.7.1. SPI bus model API
	9.7.2. GPIO model API

	9.8. UART interfaces
	9.8.1. Start up options
	9.8.2. Commands

	10. Atmel AT697 PCI emulation
	10.1. Overview
	10.2. Loading the module
	10.3. AT697 initiator mode
	10.4. AT697 target mode
	10.5. Definitions
	10.5.1. PCI command table

	10.6. Read/write function installed by PCI module
	10.7. Read/write function installed by AT697 module
	10.8. Registers
	10.9. Debug flags
	10.10. Commands

	11. TPS VxWorks Module
	11.1. Overview
	11.2. Loading the module
	11.3. Configuration

	12. Support

