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Abstrakt

Nizka spotieba se stala velice dilezitou soucasti navrhu dnesnich Cipi. Cilem této
diplomové prace je navrh zatizeni pro pienos dat mezi [2C a APB sbérnicemi za pouziti
technik pro nizkou spotiebu. Verifikace je té€z soucasti prace.

Prace nejprve srovnava rtizné techniky navrhu zatizeni s nizkou spotitebou. Jako
vysledek tohoto porovnani bylo Vnavrhu uzito techniky hradlovani hodin. Byla
provedena analyza s patfiénym odiivodnénim popisujici, na které registry bylo hradlovani
hodin pouzito.

Jednotlivé kroky postupu zacinaji od specifikace a pokracuji az po fyzicky design.
Verifikace byla provedena samokontrolnimi testy. Pokryti kodu je v praci rovnéz uzito
spole¢né s grafickou ukazkou pokryti stavovych stroja.

Pro moznost srovnani vice vysledkii bylo uzito vice metod hradlovani hodin,
kterymi jsou: hradlovéani nepouzito, automatické hradlovédni (provedeno béhem syntézy),
manudlni hradlovani (manualné vlozeny hradlovaci builkky) a kombinovana metoda
manudlniho a automatického hradlovani.

Odhad spotieby (nastroji k tomu ur¢enymi) byl proveden jak po syntéze, tak po
fyzickém navrhu. Odhady, které byly provedeny po fyzickém néavrhu, byly provedeny pro
modd necinnosti a komunikaéni mod zatizeni. Vysledky odhadu spotieby jsou porovnany a
ukazany jsou i ptipady uziti a spotieba u téchto ptipadi.

Kli¢ova slova: RTL, 12C, APB, low power design, clock gating, odhad spotieby.
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Abstract

Low power has become a very important part of designing today’s chips. The goal
of this thesis is to design a device for transmitting data between 12C and APB buses while
considering low power techniques in the design. Verification is also a part of this thesis.

This thesis first compares the different techniques used for low power design. As a
result of the comparison, clock gating technique is used in the design. An analysis was
done to describe the registers that the clock gating is used for, and the reasons to use
clock gating at these registers.

The work flow goes from specification to physical design. Verification was done
using self-checking tests and code coverage is also used in the thesis, along with
graphical examples of FSM coverage.

Four different methods of clock gating were used to compare different results.
These methods are: no clock gating use, automatic clock gating (placed during synthesis),
manual clock gating (manually placed cells), and manual clock gating, combined with
automatic clock gating.

Power estimations were done and compared after the synthesis, as well as after the
physical design. The power estimations done after the physical design, were done for idle
and communication mode of the device. The results of the power consumption estimation
are compared and use cases are shown, as well with their power consumption.

Keywords: RTL, 12C, APB, low power design, clock gating, power estimation.
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Used abbreviations

Abbreviation

Explanation

AVS Adaptive voltage scaling

CG_AUTO Automatic clock gating (used during Synthesis)

CG_MAN Manual clock gating

CG_MAN_AUTO Manual clock gating combined with automatic clock gating
during synthesis

CG_NONE No clock gating

COR clear on read

CTS Clock Tree Synthesis

DP Diploma project

DP device Diploma project device

DVFS Dynamic voltage and frequency scaling

DVS Dynamic voltage scaling

Fm Fast-mode

Fm+ Fast-mode Plus

Hs High-Speed mode

Multi Vdd, MSV Multiple supply voltages

Multi Vt Multi-Threshold

RO Read only

RW Read/Write

S&RPG Save and restore power gating

Sm Standard-mode

SOC System on chip

SRPG State retention power gating

wo write only
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1 Introduction

1.1 The purpose and goals of this document

This document is the documentation to my Master’s theses. The goal of this thesis
was to design an IP core that will be able to communicate with 12C and APB bus as a
Slave device with use the of low-power techniques. It was intended to design a device for
physical layer only — the protocols for a particular use (e.g. if the 12C Master wants an
answer from CPU or if data are only being sent to CPU and to answer is expected) would
have to be designed according to the use.

Let’s assume that from now on the, the abbreviation DP device will be used for
this device, standing for Diploma project device.

12C is a bit serial bus. It is often used in pad-limited design, where the speed can
be limited. It has the advantage in using only two signals for communication (SDA, SCL
signals).

APB bus is a parallel bus; in this case, it is used as an 8-bit bus. APB bus is used
to connect peripheral devices with a CPU. One of the first activities of the project was to
study how the protocols work. Therefore there is also a brief description of these
protocols.

The overall connection of the device is shown in Figure 1. The DP device is
connected to 12C using pads (on the left side of the picture) and connected to a CPU using
APB bus (right side of Figure 1).

SOC sOC

CcPU v

< busmm—g-

7 3
APB Bridge
€~sDA_IN—] SOA_IN—>]
(—SDA_OUT| SDA PAD |<€-sD, > SDA PAD |€—SDA_OUT—
—sbA_oE-»| le—spa_oe D ey P8 busemap>-

12C Master

DP device
12C/APB block PRESETn, PENABLE, PSELx, PWRITE,
PADDR, PWDATA, PREADY, PRDATA

<—=5CL_IN— SCL_IN—
[—SCL_OUT9 SCL PAD CL > SCL PAD |€—SCL_OUT——
—SCL_OE— [ €——sCL_OF:

-APB_INTR——>
12C_CLk——| [€———PCLK-

Figure 1: Connection of the DP device among other devices in a system



Low-power techniques were supposed to be described and used in the design. |
researched of these techniques and described them in the document. After taking in count
their characteristics and use, | decided to use clock gating, as it would be the most
suitable technique for this design. The use of clock gating is also part of the assignment.

Development of the IP on RTL level was the next step in the project. This was
first designed as schemas, which are also shown and described in this document. | then
wrote the RTL in Verilog 2001. Clock gating is included in the Verilog coded as an
option through defines, which gives the option of using or not using the clock gating cells
I manually placed in the design.

There were four different alternatives of clock gating that were used in order to
compare the power consumption — no clock gating, automatic clock gating (done during
synthesis), manual clock gating (placing manually clock gating cells) and manual clock
gating combined with automatic clock gating. These four different alternatives were
measured and compared.

The overall goal was to use low power aware design and compare the
consumption results with and without the use of these techniques. The assignment says to
compare the consumption estimation after synthesis, however because these estimations
are not very accurate and usually differ by 30-50%, | went further and continued with
physical design and measured the consumption after the physical design was done. That
gave very accurate power consumption estimations which gave adequate results.

1.2 Brief overview of each chapter

1.2.1 Chapter 1 - Introduction
This chapter contains an introduction to the topic with description of the overall
project as well as its goals.

1.2.2 Chapter 2 - Protocols descriptions
This chapter briefly describes 12C and APB protocols that were used in the design.

1.2.3 Chapter 3 - Low-Power techniques
This chapter describes all the different kinds of techniques for low-power design
as well as the reasoning why clock gating was used in the design.

1.2.4 Chapter 4 - Design and Verification flow

This chapter describes the whole design and verification flow that was used for the
development of the IP. It contains the RTL description of the device, description of
verification and the verification tests that were used, descriptions of FSMs, the
description and reasoning for what registers clock gating was used for. It describes also
the different phases of physical design such as Floorplan, Cell place, Clock tree synthesis
and Routing.



1.2.5 Chapter 5 - Power consumption results

This chapter contains final consumption results and explanations why in different
modes are different power consumptions. This chapter also describes use cases of the
design and the power consumption in those cases.

1.2.6 Chapter 6 - Summary
This chapter contains the summary of this whole document and describes the
results that were reached in this thesis.



2 Protocols descriptions

2.1 12C Protocol description

This device communicates with the 12C standard rev. 03. The device is an 12C
Slave device operating in Sm, Fm and Fm+ modes with 7-bits addressing. The
explanations of these terms follow. The description of the 12C protocol is not complete in
this document, but is focused on these characteristics. The complete documentation of the
I2C Standard can be found in (B.V., 2007).

12C is a bidirectional 2-wire bus for efficient inter-IC control. This bus is called
the Inter-IC or 12C-bus. Only two bus lines are required: a serial data line (SDA) and a
serial clock line (SCL). Serial, 8-bit oriented, bidirectional data transfers can be made at
up to 100 kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode, up to 1 Mbit/s in
the Fast-mode Plus (Fm+), or up to 3.4 Mbit/s in the High-speed mode. (B.V., 2007)

Two wires, serial data (SDA) and serial clock (SCL), carry information between
the devices connected to the bus. Each device is recognized by a unique address and can
operate as either a transmitter or receiver, depending on the function of the device. In
addition to transmitters and receivers, devices can also be considered as masters or slaves
when performing data transfer. A master is the device which initiates a data transfer on
the bus and generates the clock signals to permit that transfer. At that time, any device
addressed is considered a slave.

2.1.1 Speed modes

All devices are downward compatible — any device may be operated at a lower bus
speed. Sm, Fm and Fm+ modes have the same bus protocol and data format. The data
format of Hs mode, however is different.

e Standard-mode (Sm) — up to 100 kbit/s
e [Fast-mode (Fm) — up to 400 kbit/s

e [Fast-mode Plus (Fm+) —up to 1 Mbit/s
e High-speed mode (Hs) — up to 3.4 Mbit/s

2.1.2 SDA and SCL Signals
e SDA (serial data line) - serves for transferring data
e SCL (serial clock line) — used as a logical clock for 12C



2.1.3 Reserved addresses
Table 1: Reserved addresses

Slave address R/W bit Description

0000 000 0 general call address[1]

0000 000 1 START byte[2]

0000 001 X CBUS address[3]

0000 010 X reserved for different bus format[4]
0000 011 X reserved for future purposes

0000 1XX X Hs-mode master code

1111 1XX X reserved for future purposes

1111 OXX X 10-bit slave addressing

2.1.4 Data transfer example
Figure 2 shows a complete data transfer in a block level. After the START
condition (S), a slave address is sent. This address is seven bits long followed by an

eighth bit which is a data direction bit (R/W) — a ‘zero’ indicates a transmission
(WRITE), a ‘one’ indicates a request for data (READ). A data transfer is always
terminated by a STOP condition (P) generated by the master. However, if a master still
wishes to communicate on the bus, it can generate a repeated START condition (Sr) and
address another slave without first generating a STOP condition. Various combinations of
read/write formats are then possible within such a transfer.
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Figure 2: Complete data transfer

2.1.5 Start and Stop condition

All transactions begin with a START (S) and are terminated by a STOP (P)
condition. The bus is considered to be busy after the START condition. The bus is
considered to be free again a certain time after the STOP condition. The bus stays busy if
a repeated START (Sr) is generated instead of a STOP condition. In this respect, the
START (S) and repeated START (Sr) conditions are functionally identical.



START condition STOP condition

Figure 3: START and STOP conditions

2.1.6 Data validity

The data on the SDA line must be stable during the HIGH period of the clock. The
HIGH or LOW state of the data line can only change when the clock signal on the SCL
line is LOW (see Figure 4). One clock pulse is generated for each data bit transferred.

o/ X\
SCL L ---"'.,

data line change
stable; of data
data valid allowed mbas0T

Figure 4: Bit transfer on 12C bus — data validity

2.1.7 Clock stretching

Clock stretching pauses a transaction by holding the SCL line LOW. The
transaction cannot continue until the line is released HIGH again. Clock stretching is
optional.

On the byte level, a device may be able to receive bytes of data at a fast rate, but
needs more time to store a received byte or prepare another byte to be transmitted. Slaves
can then hold the SCL line LOW after reception and acknowledgment of a byte to force
the master into a wait state until the slave is ready for the next byte transfer in a type of
handshake procedure

2.1.8 Write operation example
Figure 5 shows the 12C write operation example. It is very similar to Figure 2,

where the transfer was described in general. On Figure 5 the R/W is set to 0, which
means that the operation is write. The whole operation ends either with Slave sending a



NACK (for example when the Slave’s memory is full) or by Master sending a STOP
condition.

S | SLAVEADDRESS | RW | A | DATA | A | DATA |NA| P

I— data transfemad J

0" (write) (n bytes + acknowledge)
|:| from master to slave A = acknowledge (SDA LOW)
A = not acknowledge (SDA HIGH)
|:| from slave to master S = START condition

P =STOP condition

Figure 5: 12C Write operation example

2.1.9 Read operation example

Figure 6 shows the 12C Read operation example. The R/IW signal is set to 1,
which sets the 12C operation to read. The operation ends when the 12C Master sends
NACK and Stop condition afterwards.

1

S | SLAVEADDRESS | RW | A | DATA | A | DATA | A [ P

|— data transferred 4

(read) (n bytes + acknowledge)

Figure 6: 12C Read operation example

2.1.10 Combined operation example

An example of two different operations is shown on Figure 7. After the first
operation a Repeated Start condition is sent by the 12C Master and a new operation
follows starting with the new Slave address. After all of the operations are finished, a
STOP condition is sent by the 12C Master.

S | SLAVE ADDRESS | RMW | A | DATA| A/A |Sr| SLAVE ADDRESS | RW | A | DATA|AA| P

(n bytes | nbytes |
— +ack) T + ack.)*
read or write

direction of fransfer
may change at this

_ " point.
*not shaded because Sr=repeated START condition
mbeB07T

transfer direction of
data and acknowledge bits
depends on RAW bits.

read or write

Figure 7: 12C Combined operation example



2.2 APB Protocol description
This device communicates with AMBA 3 APB Protocol. The complete
documentation for this protocol can be found under (ARM, 2004).

APB is a parallel unpipelined synchronous protocol where every transfer takes at
least two cycles. This APB version also includes signal PREADY which is used for
extending the APB transfer by the slave device. This can be useful if the device needs
more than two cycles for the transfer. Any number of extra additional cycles can be
added. This means from 0 higher.

APB uses the following signals:

e Input signals: PSELx, PENABLE, PRESETn, PCLK, PWRITE, PADDR,
PWDATA
e Output signals: PREADY, PSLVERR, PRDATA

2.2.1 Operating states
The APB bus can be in three different operating states as shown on Figure 8.

Those states are further described under Figure 8.

IDLE
PSELx =0
PENABLE =0

|

Transfer

Mo transfer

PREADY =1 SETUP
and no PSELx =1
transfer PENABLE =0

PREADY =0
ACCESS
PSELx = 1
PENABLE = 1

Figure 8: APB Operating states

e IDLE This is the default state of the APB.

e SETUP When a transfer is required the bus moves into the SETUP state,
where the appropriate select signal, PSELX, is asserted. The bus only
remains in the SETUP state for one clock cycle and always moves to the
ACCESS state on the next rising edge of the clock.

e ACCESS The enable signal, PENABLE, is asserted in the ACCESS state.
The address, write, select, and write data signals must remain stable during
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the transition from the SETUP to ACCESS state. Exit from the ACCESS
state is controlled by the PREADY signal from the slave:

o If PREADY is held LOW by the slave then the peripheral bus
remains in the ACCESS state.

o IfPREADY is driven HIGH by the slave, then the ACCESS state is
exited and the bus returns to the IDLE state if no more transfers are
required. Alternatively, the bus moves directly to the SETUP state
if another transfer follows.

2.2.2 APB Signals detailed description

Table 2: APB Signals desription

Signal Source Description

PCLK. Clock source Clock The rising edge of PCLK times all transfers on
the APB.

PRESETN System bus equivalent Reset. The APB reset signal is active LOW.
This signal is normally connected
directly to the system bus reset signal.

PADDR APB bridge Address. This is the APB address bus. It can be
up to 32 bits wide and is driven
by the peripheral bus bridge unit.

PSELX APB bridge Select. The APB bridge unit generates this
signal to each peripheral bus slave. It indicates
that the slave device is selected and that a data
transfer is required. There is a PSELXx signal for
each slave.

PENABLE  APB bridge Enable. This signal indicates the second and
subsequent cycles of an APB transfer.

PWRITE APB bridge Direction. This signal indicates an APB write
access when HIGH and an APB read access
when LOW.

PWDATA APB bridge Write data. This bus is driven by the peripheral
bus bridge unit during write cycles when
PWRITE is HIGH. This bus can be up to 32 bits
wide.

PREADY Slave interface Ready. The slave uses this signal to extend an
APB transfer.

PRDATA Slave interface Read Data. The selected slave drives this bus
during read cycles when PWRITE is LOW.
This bus can be up to 32-bits wide.

PSLVERR  Slave interface This signal indicates a transfer failure. APB

peripherals are not required to support the
PSLVERR pin. This is true for both existing
and new APB peripheral designs. Where a
peripheral does not include this pin then the
appropriate input to the APB bridge is tied
LOW.




2.2.3 Write transfer without waiting states

T0 T1 T2 T3 T4
pcLkl ] | | |
PADDR! )  Addr1 ;
FWRWE% E/f ; ; §
PSEL | 7 é é\ﬁ é

PENABLE |

HNDATA% %K} dma1 é[:} |
PREADY | i 513 5

Figure 9: Write transfer without waiting states

The write transfer starts with the address, write data, write signal and select signal,
which are all changing after the rising edge of the clock. After the following clock edge
the enable signal is asserted, PENABLE, and this indicates that the Access phase is taking
place. The address, data and control signals all remain valid throughout the Access phase.
The transfer completes at the end of this cycle.

The enable signal, PENABLE, is deasserted at the end of the transfer. The select
signal, PSELX, also goes LOW unless the transfer is to be followed immediately by
another transfer to the same peripheral. (B.V., 2007)

2.2.4 Write transfer with waiting states
Waiting states can be used to extend the transfer. As shown on Figure 10, waiting
states are used when PREADY signal is low during the transfer.

During an Access phase, when PENABLE is HIGH, the transfer can be extended
by driving PREADY LOW. The following signals remain unchanged for the additional
cycles:

e address, PADDR

e write signal, PWRITE

e select signal, PSEL

e enable signal, PENABLE
e write data, PWDATA.
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PREADY can take any value when PENABLE is LOW. This ensures that
peripherals that have a fixed two cycle access can tie PREADY HIGH.

TO T1 T2 T3 T4 T5

PADDR: é{} | T Addr1 |
PWRITE! [/ ' ' '

FSEL% éfj

PENABLE! | W |
PWDATA! 0 Data 1
PREADY é T é ¥

AT .

Figure 10:APB Write transfer with waiting states

2.2.5 Read transfer without waiting states
Figure 11 shows the read transfer without using wait states. The timing of the
signals was already described in the write transfer paragraph above.

T0 T1 T2 T3 T4
PCLK; | |

PADDR! ) " Addr1
FWRWE% 5\\ ; ; :
FSEL% éff é é U é
PENABLE! | | | |
FRDATA? 51 E \ Dma1§X:}

FREADY% % %f} % kl_____j

Figure 11: Read transfer without waiting states
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2.2.6 Read transfer with waiting states
The transfer is extended if PREADY is driven LOW during an Access phase. The
protocol ensures that the following remain unchanged for the additional cycles:

e address, PADDR

e write signal, PWRITE

e select signal, PSEL

e enable signal, PENABLE.

T0 T1 T2 T3 T4 T5 T6
PCLK! | |

PADDR! b —Adar 1
PWRITE! T | | |

PSEL, 0 é é é é‘f é
PENABLE? § ?ff f f T %

FRDATA% éﬁ ; ; ; \ Dma1§K:]

FREADY% é ?\\ ? ?ff | é

Figure 12: APB Read transfer with waiting states
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3 Low-Power techniques

3.1 Low power design motivation
Challenges that cause us to deal with low power design are mainly the following:

e Increasing device density
e Increasing clock frequencies
e Lowering supply voltage
e Lowering transistor threshold voltage
High power consumption leads to higher temperatures. The goal is to keep the
temperature low to avoid parasite effects. The principle of achieving this is to provide
performance only when it is required.

3.2 Types of power consumption

3.2.1 Dynamic power
Dynamic power consists of internal power and switching power.

Internal power is consumed by the cells when one of the inputs changes, but the
output doesn’t change. Internal power results from the short-circuit (crowbar) current that
flows through the PMOS-NMOS stack during a transition.

3.2.1.1 Switching power

Because the current flows only during logic transitions on the net, the long-term
dynamic power consumption depends on the clock frequency (possible transitions per
second) and the switching activity (presence or absence of transitions actually occurring
on the net in successive clock cycles).

PMOS PMOS

Turn
off

Charge

load Discharge

load

L

NMOS NMOS

Figure 13: Switching power
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The higher the clock frequency is, the more often there is activity on the
transistors (change of value), because with synchronous devices activity is done with the
change of clock. In other words, switching power results from the charging and discharging of
the external capacitive load on the output of a cell.

These parameters can be summed in the following formula:
Payn=Cetr*Vaa"* o

Here we can see that the dynamic power depends on capacitance, voltage (which
obviously has the greatest impact on dynamic power consumption because of the square
power) and the clock frequency. The techniques described in the following text will
mostly focus on how to use the voltage and frequency for lowering the power
consumption.

3.2.1.2 Internal power

Internal power is consumed during the short period of time when the input signal
is at an intermediate voltage level. During which, both the PMOS and NMOS transistors
can be conducting. This condition results in a nearly short-circuit conductive path from
VSS to ground, as illustrated in Figure 1-2. A relatively large current, called the crowbar
current, flows through the transistors for a brief period of time. Lower threshold voltages
and slower transitions result in more internal power consumption.

—4 On Short-circuit
(crowbar)
Intermediate current

voltage ﬁ — o
—{ On

V

Figure 14: Internal power

(Synopsys, 2010)
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3.2.2 Static (leakage) power
Static power is leakage at transistors at all times. This consumption remains at all
times constant.

The main causes of leakage power are reverse-bias p-n junction diode leakage, sub-
threshold leakage, and gate leakage. These leakage paths in a CMQS inverter are shown in

Sub-threshold

/ leakage

En Sub-threshold Gate
leakage leakage

1 1

Gate p-n junction
leakage leakage to
substrate

Figure 15: Static leakage currents

3.2.2.1 p-njunctions leakage

Leakage at reverse-biased p-n junctions (diode leakage) has always existed in
CMOS circuits. This is the leakage from the n-type drain of the NMOS transistor to the
grounded p-type substrate, and from the n-well (held at VDD) to the p-type drain of the
PMOS transistor. This leakage is relatively small.

3.2.2.2 Sub-threshold leakage

Sub-threshold leakage is the small source-to-drain current that flows even when
the transistor is held in the “off” state. In older technologies, this current was negligible.
However, with lower power supply voltages and lower threshold voltages, “off” gate
voltages are getting close to “on” threshold voltages. Sub-threshold leakage current
increases exponentially as the gate voltage approaches the threshold voltage.

3.2.2.3 Gate leakage

Gate leakage is the result of using an extremely thin insulating layer between the gate
conductor and the MOS transistor channel. Gate oxides are becoming so thin that only a dozen or
fewer layers of insulating atoms separate the gate from the source and drain. Under these
conditions, quantum-effect tunneling of electrons through the gate oxide can occur, resulting in
significant leakage from the gate to the source or drain.

(Synopsys, 2010)
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3.3 Low power technigues overview and comparing

There are different techniques used for low-power. The next several paragraphs
are an introduction to low power techniques. The focus therefore is on comparing
different techniques and their use and purpose.

Table 3: Most common low-power techniques overview

Technique

Description

Clock gating and clock tree gating

Disables blocks or clock tree parts not in use.

Multiple supply voltages (MSV,
Multi Vdd), Static Voltage scaling
(SVS)

Operates different blocks at different, fixed supply
voltages. Also known as voltage islands. Signals
that cross voltage domain boundaries are level-shifted.

Dynamic voltage scaling (DVS),
Multi-level voltage scaling (MVS)

Operates different blocks at variable supply voltages. Uses
look-up tables to adjust voltage on-the-fly

to satisfy varying performance requirements. Signals that
cross voltage domain boundaries are level-shifted.

Dynamic voltage and frequency
scaling (DVFS)

Operates different blocks at variable supply voltages and
frequencies. Uses look-up tables to adjust

voltage and frequency on-the-fly to satisfy varying
performance requirements. Signals that cross

voltage domain boundaries are level-shifted.

Adaptive voltage scaling (AVS)

Operates different blocks at variable supply voltages. Uses
in-block monitors to determine frequency

requirements, and adjusts voltage on-the-fly to satisfy
them.

Power gating or
Power Shut-Off (PSO)

Turns off supply voltage to blocks not in use. Significantly
reduces — but does not eliminate — leakage.
Block outputs float.

Power gating with retention

Stores system state prior to power-down. Avoids
complete reset at power-up, which reduces powerup/
reset delay and power consumption.

State retention power gating
(SRPG)

Stores the system state in local registers. When on
standby or idling, gates the clock, and the register

saves the data. State retention registers use both a
continuous power supply and a switchable supply.

Other logic is powered only by the switchable supply, and
can be powered down.

Save and restore power gating
(S&RPG)

As SRPG, but uses a memory array.

(Goering, 2008)
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Table 4: Low power design techniques — compared according to usage

Dynamic Power Leakage Power Design Architectural
Clock gating Multi Vt Multi Vt Pipelining
Variable frequency Power gating Clock gating Asynchronous

Variable power
supply

Back (substrate) bias

Power gating

Multi Vdd

Use new devices-FinFet,

SOl

Multi Vdd

Voltage islands

DVFS

DVFS

Basic techniques

A

Clock Gating

Leakage Curmend

Advanced techniques

Multi-Voltage (MV)

MTCMOS power

gating (shut down)

Figure 16: Low Power Techniques comparison
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3.4 Clock-gating

RTL clock gating works by identifying groups of flip-flops which share a
common enable signal. Traditional methodologies use this enable term to control the
select on a multiplexer connected to the D port of the flip-flop or to control the clock
enable pin on a flip-flop with clock enable capabilities. RTL clock gating uses this enable
term to control a clock gating circuit which is connected to the clock ports of all of the
flip-flops with the common enable term. Therefore, if a bank of flip flops which share a
common enable term have RTL clock gating implemented, the flip-flops will consume
zero dynamic power as long as this enable term is false.

(Frank Emnett, 2000)

Clock gating is particularly useful for registers that need to maintain the same
logic values over many clock cycles. Shutting off the clocks eliminates unnecessary
switching activity that would otherwise occur to reload the registers on each clock cycle.
The main challenges of clock gating are finding the best places to use it and creating the
logic to shut off and turn on the clock at the proper times.

Clock gating is relatively simple to implement because it only requires a change in
the netlist. No additional power supplies or power infrastructure changes are required.

(Synopsys, 2010)

Clock-gating lowers average power consumption; however it always increases the
maximum immediate consumption. Therefore it is convenient to use clock-gating only for
registers that have their enable signal mostly disabled. It is important to do an analysis of
use of different registers and apply clock-gating only on those where it’s suitable. Usually
it is recommended to have at least 3-4 flip-flops with the same common enable signal for
making clock-gating effective. In case of using clock-gating for less than 3 flop-flops
with the same enable signal it can have an effect of increased consumption.

(Bedvar, 2011)

EET ~—" . Unsafe EET
D Q ----_H.-/E-:nr't:ira'.n::-rial\, enable D Q
L Logic z,-"'---_____ Gated clk

CLA CLR

clk

(Bedvar, 2011)

Figure 17: Principle of clock-gating connection (not completely correct)
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Figure 17 shows the principle of clock-gating. The AND gate is enabling the
clock. This is not a correct connection though, because with having the AND gate it will
cause a glitch impulse on the gated clock instead of the right clock impulse as shown on
Figure 18.

Glitches due to late arrival time of GATE
/ I

“\ / ‘\\ /
CLK ] '|
b
GATE /

gated clock

(Murali, 2009)

Figure 18: Glitches in latch free clock gating

Therefore a level-sensitive latch is used with the AND gate inside the clock gating
cell from a library which needs to be used. The use of the cell is shown on Figure 19. The
latch holds the enable signal from the active edge of the clock until the inactive edge of
the clock.

— L —— =ET
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(Bedvar, 2011)
Figure 19: Correct clock-gating cell connection — connection in a dont_touch cell

Clock gating effects only dynamic power consumption as it is dependent on
preventing clock activity.
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3.4.1 Automatic clock gating done by Synthesis tools / Clock gating

Synthesis tools can detect low-throughput data paths where clock gating can be
used with the greatest benefit, and can automatically insert clock-gating cells in the clock
paths at the appropriate locations.

(Synopsys, 2010)

Automatic clock gating uses so called functional gating — input and output values
of the flip flop are compared and if they are different, the clock enable signal is enabled.
A big advantage of automatic clock gating during synthesis is that it only needs a change
of one command to enable clock gating use.

3.4.2 Manual clock gating / Clock tree gating

Manual clock gating is done by the IP designer by manually setting the enable
signal for a set of flip flops in the FSM. This enable signal is propagated through a clock
gating cell. Usually different state modes are used.

3.5 Miltiple-Vt

Some CMOS technologies support the fabrication of transistors with different
threshold voltages (Vt values). In that case, the cell library can offer two or more different
cells to implement each logic function, each using a different transistor threshold voltage.
For example, the library can offer two inverter cells: one using low-Vt transistors and
other using high-Vt transistors.

A low-Vt cell has higher speed, but higher sub-threshold leakage current. A high-
Vt cell has low leakage current, but less speed. The synthesis tool can choose the
appropriate type of the cell to use based on the tradeoff between speed and power. For
example, it can use low-Vt cells in the timing-critical paths for speed and high-Vt cells
everywhere else for lower leakage power.

(Synopsys, 2010)

3.6 Multi vdd

Different parts of a chip might have different speed requirements. For example,
the CPU and RAM blocks might need to be faster than a peripheral block. A lower supply
voltage reduces power consumption but also reduces speed. To get maximum speed and
lower power at the same time, the CPU and RAM can operate with a higher supply
voltage while the peripheral block operates with a lower voltage, as shown in Figure 20.
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Figure 20: Multi Vdd blocks connection

(Synopsys, 2010)

3.6.1 Level Shifters
Level shifters are used for transferring data between two blocks with different
power voltage as shows Figure 21.

vDhD1 Level shifter VDD2
i 11
Peripheral
CPU block T i
I ‘ I

VSS OV

Figure 21: Blocks with different Level shifter

In any multi-voltage design, level shifters are required at the interfaces of blocks
operating at different voltages. It is much easier to design one direction level shifters.

(Murali, 2009)

In theory, the bus interface of CPU can be a higher or lower voltage, for practical
reason the bus is always operate at a voltage higher than or equal to the CPU. Otherwise
system errors occur.

(Yang, 2008)
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3.7 Multi-level voltage scaling (MVS), Dynamic voltage
scaling (DVS)

This is an extension of Multi VVdd case where a block or subsystem is switched
between two or more voltage levels. Only a few, fixed, discrete levels are supported for
different operating modes.

3.8 Dynamic voltage and frequency scaling (DVFS)
DVFS is an extension of MVS where a larger number of voltage levels are
dynamically switched between to follow changing workloads.

Timing/Voltage Values: DVFS uses a set of discrete voltage / frequency pairs.
Determining which values to support is a key design decision, application dependent. Too
few operating points results in systems that spend too much time ramping between levels.
Too many levels results in the power supply spending too much time “hunting” between
different target voltages.

Switching Times and Algorithms: Switching performance levels takes time for
both voltage regulators and clock generators. Switching voltage levels is particular slow
and switching frequencies is orders of magnitude faster than voltage level switching.
Increase the voltage first and decrease the voltage after the frequency is lowered.

(Yang, 2008)
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Figure 22: DVFS blocks

Mode control block - Voltage as well as frequency is dynamically varied as per
the different working modes of the design.
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Voltage regulators block - When high speed of operation is required, voltage is
increased to attain higher speed of operation with the penalty of increased power
consumption.

(Murali, 2009)

The principle of multivoltage operation can be extended to allow the voltage to be
changed during operation of the chip to match the current workload. For example, a math
processor chip in a laptop computer might operate at a lower voltage and lower clock
frequency during simple spreadsheet computations, thereby saving power; and then at a
higher voltage and higher clock frequency during 3-D image rendering when the highest
performance is needed. The changing of supply voltage and operating frequency during
operation to meet workload requirements is called dynamic voltage and frequency
scaling.

The chip and voltage supply can be designed to use a number of established
levels, or even a continuous range. Dynamic voltage scaling requires a multilevel power
supply and a logic block to determine the best voltage level to use for a given task.
Design, implementation, verification, and testing of the device can be especially
challenging because of the ranges and combinations of voltage levels and operating
frequencies that must be analyzed and accommodated.

Dynamic voltage scaling can be combined with power switching technology so
that each block in the design can operate at multiple voltage levels for different
performance requirements, or shut off completely when not needed at all.

(Synopsys, 2010)

3.9 Adaptive voltage scaling (AVS)

AVS is an extension of DVFS where a control loop is used to adjust the voltage.
Performance Monitor is integrated with IP is monitoring to get the best thermal tracking.
The performance monitor communicates with a power controller which in return sets the
voltage of the power supply.

(Yang, 2008)

AVS contains voltage areas with variable software controlled VDD. Monitors in
each block communicate with the mode controller that controls Voltage regulators as
shows in Figure 23.
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Figure 23: AVS blocks

(Murali, 2009)

3.10 Power gating (Power Switching)

3.10.1 How Power gating works

Power gating circuit blocks that are not in use are temporarily turned off. On the
other hand, this increases time delays as power gated modes have to be safely entered and
exited. The shutting down of these blocks is done by either hardware timers or software
drivers.

(Murali, 2009)

Power switching has the potential to reduce overall power consumption
substantially because it lowers leakage power as well as switching power. It also
introduces some additional challenges, including the need for a power controller, a
power-switching network, isolation cells, and retention registers.

(Synopsys, 2010)

3.10.2 Ways how to shut down blocks
There are different ways how to safely shut down blocks:

e Software or hardware
o Driver software schedules the power down operations
o Hardware timers are used
e Dedicated power management controller
e Switch off by using external power supply for long term
e Use CMOS switches for smaller duration switch off
e A power switch (either to VDD — header switch, PMOS or GND - footer
switch, NMQOS) is added to supply rails to shut-down logic. MTCMOS
switches are used.
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3.10.3 Power switches

A block that can be powered down must receive its power through a power-
switching network, consisting of a larger number of transistors with source-to-drain
connections between the always-on power supply rail and the power pins of the cells. The
power switches are distributed physically around or within the block. The network, when
switched on, connects the power to the logic gates in the block. When switched off, the
power supply is effectively disconnected from the logic gates in the block.

High-Vt transistors from a Multiple-Threshold CMOS (MTCMOS) technology
are used for the power switches because they minimize leakage and their switching speed
is not critical. PMOS header switches can be placed between VDD and the block power
supply pins, or NMOS footer switches can be placed between VSS and the block ground
pins, as shown in Figure 1-8. The number, drive strength, and placement of switches
should be chosen to give in an acceptable voltage drop during peak power usage in the
block.

High-Vt PMOS transistors used

for header (VSS) power switching T
P ’, hi "I CMOS logic block using
ower—swltc ing low-Vt transistors
control signal
Power-switching
CMOS logic block using control signal
low-Vt transistors —_—
High-Vt NMOS transistors used
47 for footer (VDD) power switching

Figure 24: Power-switching Network Transistors
(Synopsys, 2010)

3.10.4 Isolation cells

Isolation cells isolate the power gated block from the always-on-block. It can hold
logic 1 or logic O or it can hold the signal value latched at the time of the power-down
event. Isolation cells must be powered during power-down periods to hold the saved
value.

Any use of power switching requires isolation cells where signals leave a
powered-down block and enter a block that is always on (or currently powered up). An
isolation cell provides a known, constant logic value to an always-on block when the
power-down block has no power, thereby preventing unknown or intermediate values that
could cause crowbar currents.

One simple implementation of an isolation cell is shown in Figure 25. When the
block on the left is powered up, the signal P_UP is high and the output signal passes
through the isolation cell unchanged (except for a gate delay). When the block on the left
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is powered down, P_UP is low, holding the signal constant going into the always-on
block. Isolation cells must themselves have power during block power-down periods.

Power-down block Always-on block
R
_
Isolation
P_UP— cell

Figure 25: Use of isolation cell
(Synopsys, 2010)

3.10.5 Enable level shifter

An enable level shifter acts as a level shifter and an isolation cell at the same time.
This is shown on Figure 26. That means that the interface cells between different blocks
must perform both level shifting and isolation functions.

(Murali, 2009)

The power switching can be combined with multi voltage operation. Different
blocks can be designed to operate at different voltages and also to be separately powered
down when they are not needed. In that case, the interface cells between different blocks
must perform both level shifting and isolation functions, depending on whether the two
blocks are operating at different voltages or one is shut down. A cell that performs both
functions is called an enable level shifter. This cell must have two separate power
supplies, just like any other level shifter.

(Synopsys, 2010)

Active
Logic

Figure 26: Level shifter

(Murali, 2009)
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3.10.6 Retention registers

Retention registers are always powered up. Special low leakage flip-flops are used
to hold the data of the main register of the power gated clock. A power gating controller
controls the retention mechanism.

D Main

— register Q—»
Shadow

_,> register

SAVE RESTORE

Figure 27: Retention register

When a block is powered down and then powered back up, it is often desirable for
the block to be restored to the state it was in prior to the power-down event. A possible
strategy is to use retention registers in the power-down block. A retention register can
retain data during power-down by saving the data into a shadow register (also known as
the bubble register) prior to power-down. Upon power-up, it restores the data from the
shadow register to the main register. The shadow register has an always-on power supply,
but it is constructed with high-Vt transistors to minimize leakage during the power-down
period. The main register is built with fast but leaky low-V1 transistors.

One type of retention register implementation is shown in Figure 27. The SAVE
signal saves the register data into the shadow register prior to power-down and the
RESTORE signal restores the data after power-up. Instead of using separate, edge-
sensitive SAVE and RESTORE signals, a retention register could use a single level-
sensitive control signal.

A retention register occupies a larger area than an ordinary register, and it requires
an always-on power supply connection for the shadow register in addition to the power-
down supply used by the rest of the device. However, restoring the data to the registers
after power-up is fast and simple compared with other strategies.

(Synopsys, 2010)
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Figure 28: Connection of retention register signals

3.10.7 Always on logic

There’s always some logic that needs to stay active during the shut-down period.
The basic principle is shown on Figure 29. Examples of always-on-logic are the
following:

e Internal enable pins (ISO/ELS)
e Power switches

e Retention registers

e User-specific cells

Always On

Figure 29: Always on logic

(Murali, 2009)
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3.11 Conclusion of the listed low-power techniques

3.11.1 Clock gating and clock tree gating

Clock gating (automatic clock gating during synthesis) is a very easy but at the
same time effective way how to implement a low-power technique in the design. The
only thing that needs to be done is changing one command in the synthesis script. This
method is often used.

Clock tree gating on a level by manually placing clock gating cells on RTL level
is a way that can be used when the designed knows the power consumption modes of the
device and approximately how much time the device spends in these modes.

These techniques show to be useful in the IP developed in this project.

3.11.2 Multi Vdd, SVS
These techniques are used as techniques in the physical design. This technique is
used in SoC design to provide different voltages for different voltage islands.

3.11.3 DVS, MVS, DVFS, AVS
These techniques are an extension of Multi VVdd technique. Again, it’s a matter of
physical design and they’re used in SoCs.

3.11.4 Power gating, Power Shut-Off

This is a technique used in physical design. Multiple-Vt transistors are usually
used for this technique. It requires use of different extra blocks and the assignment would
be too complicated.

3.11.5 Pipelining
Pipelining is an architectural technique used with advantage in processors.
However it is not useful in this kind of design that my master’s project is focused on.

3.11.6 Asynchronous design
Asynchronous design is a advanced and hard-to-design technique. It is not suitable
for this kind of design.

3.11.7 Conclusion
Clock gating and Clock tree gating turns out to be the best implementable and
useable technique in this design although it does effect only dynamic power consumption.

Techniques such as Multi Vdd, SVS, DVS, MVS, DVFS and AVS are used for
SoCs mainly. This IP core is however not a SoC. Techniques like DVFS are also quite
complicated, work with more consumption modes and are used in much bigger projects
than this.

Power gating is focused on physical design and would not provide comparable
results after synthesis.
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Pipelining and asynchronous design are not suitable for this kind of architecture.

Therefore clock gating and clock tree gating will be used in the design. To be able
to compare all the different clock gating methods and make the results more interesting, |
decided to use the next four different clock gating methods:

No use of clock gating

Automatic clock gating (done during synthesis by synthesis tool)
Manual clock gating (Clock tree gating)

Manual + automatic clock gating

These four different kinds of the use of clock gating will be further used and their
power consumption results compared in this document.
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4 Design and Verification flow

4.1 Introduction

A design flow is a sequence of steps that had to be done during the design
development of an IP. These steps are approximately similar for lots of projects; however
there’s usually something specific in each of them. For this project it meant to be able to
get four different physical designs according to the type of clock gating that was used.

The design flow is a complex process of steps. The flow in Figure 30 shows how
complicated this process is.

For the purpose of this project the typical S3 Group design flow was the start
point, however it needed to be changed for this special purpose as some characteristics of
this project are unique. The modified flow that was actually used is described in Figure
30. This flow was setup specifically for this project by creating four different run
directories as four different variations of clock gating were used.

Chapters 4.3 to 4.12 describe the different steps of the design flow. The
description contains what had to be developed, designed and done in those steps. Scripts
has to be used for most of these steps to automate the development, however these scripts
had to be changed and adjusted.

The possibility of being able to do my master’s project at the S3 Group gave me
the unique opportunity to go through these steps and learn how to work through them and
learn the work in the tools that are used for each of the steps. | have never done most of
those steps before as | only worked with FPGAs before.
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4.2 Design and verification flow diagram
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Figure 30: Design and Verification flow diagram
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4.3 Specification

4.3.1 General description
This IP block is a device that enables the communication with 12C bus on one side
and with AMBA 3 APB hus on the other.

SDA_IN—>> APB_INTR——
<«—SDA_OUT €«——PCLK
<«—SDA_OE €———PRESETn

PSLVERR———
PREADY—)

SCL |N—> <_PENAB|.E
<€——sCL_ouT 12C/APB block < PSELX
<«——SCL_OE €«———PWRITE

@———PADDR[7:0]
«@——PWDATA[7:0]
12C_CLK——— PRDATA[7:0]——>

Figure 31: Top-level schema of the I2C/APB Block

The signals SDA_IN, SDA_OUT, SDA_OE are connected to a PAD before being
connected to the 12C bus signal SDA. In the same sense are also signals SCL_IN,
SCL_OUT, SCL_OE connected to another PAD to drive the SCL signal.

Table 5: Top-level I/ O Port list

Port name Direction Function Connected to
SDA _IN i Input Serial Data Line Input 12C
SDA OUT o Output Serial Data Line Output 12C
SDA OE o Output Serial Data Line Output Enable 12C
SCL_IN_i Input Serial Clock Line Input 12C
SCL_OUT o Output Serial Clock Line Output / Clock | I12C
stretching
SCL OE o Output Serial Clock Line Output Enable/ | 12C
Clock stretching enable

I2C_ CLK i Input 12C Block Clock 12C
APB _INTR o | Output APB Interrupt APB
PREADY o Output APB Slave Ready for transfer APB
PENABLE i Input APB Enable APB
PSELX i Input APB Slave Device Selected APB
PRESETN i Input Global Reset APB
PLCK i Input APB Block Clock APB
PWRITE_i Input APB read/write operation APB
PADDR i Input APB Address APB
PWDATA i Input APB Data Input APB
PRDATA o Output APB Data Output APB
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The 12C frequency needs to be in the following relationship with the APB
frequency: f,,. > f o to ensure the correct function of the device.

4.3.2 Typical usage / Typical communication scenario
This device serves for the 12C Master to get information from an APB Bridge.
Therefore the typical communication has the next several steps:

1. 12C Master writes data (that include request description) in 12C Slave

2. APB part of the DP device puts the interrupt signal on high according to
the interrupt mask register

3. APB Bridge reads the interrupt register, recognizes a request (data in Fifo).
APB Slave sends a signal to 12C Slave to reset the interrupt state signals
(Start bit, Selected bit,...).

4. APB Bridge reads data from the DP device

5. APB Bridge sends an answer by writing data in DP device

6. 12C Master reads data by accessing 12C Slave DP device

4.3.3 Other functions of the DP device except the typical
communication scenario
The DP device has also the following functions:

e Change of 12C Slave address by APB Bridge
e Read/Write mask in APB Interrupt Mask register by APB Bridge
e Read APB Interrupt register by APB Bridge

4.3.4 Register map

The access to the device from 12C Master is defined by the 12C standard, where
the device needs to be first addressed, then the master chooses the operation (read/write)
and afterwards the data is transferred. There are only two operations that the 12C Master
can do — read and write data.

On the other hand, the access from the APB has a signal for read/write operation
and also a bus for addressing an operation. Data can be written in the device and read
from the device. The addresses with the operations of the device are fully adjustable in
the dp_s_global_consts.v file. If no changes are made to this file, you can access the
operations through the following addresses:
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Table 6: Register map table

APB Register name Width | Reset Bit functions Note

address value

000 FIFO_RX 8 00000000 | [7:0]—read data from FIFO RO

001 INTR_REG 8 00000000 | [7] —selected_bit RO, COR
[6] — start_bit RO, COR
[5] — stop_bit RO, COR
[4:3] —error RO, COR

00 —no error RO

01 — error during read op. RO
10 — error during write op. RO
11 — unspecified error
[2] —fifo_rx_not_empty
[1] — fifo_rx_full
[0] — fifo_tx_ full

010 FIFO_TX 8 00000000 | [7:0] data_wr WO

011 I12C SLAVE ADDR 00000000 WO

0o

100 INTR_MASK REG | 8 11111111 [7] — selected_bit

[6] — start_bit

[5] — stop_bit

[4] — not used/for future use
[3] —error

[2] —fifo_rx_not_empty

[1] — fifo_rx_full

[0] — fifo_tx_ full

Since the start bit isn’t very accurate when it comes to the fact that if the device is
actually asked to communicate, there’s also a selected bit. The selected bit serves for
detecting that the 12C Slave has been successfully addressed and the address matches
with its address.
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4.3.5 Top level description
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Figure 32: Top-level schema of I2C/APB Blocks

Figure 32 shows the connections between the 12C and APB blocks and the FIFOs
that are used for transmitting data between these two blocks. The basics of this
communication are pretty easy to understand — the data itself is transmitted only through
the synchronous FIFOs which have different clocks for both read and write operations.
Other than this there are signals for indicating start-bit, stop-bit, selected-bit, error bits
and a signal for clearing these signals. These signals that are not transferred through a
FIFO are synchronized to make sure the signals are transmitted correctly.

4.3.6 Functional descriptions

4.3.6.1 Design feature list
e Compatible with Philips 12C bus standard
o Clock stretching generation
o 12C communication error detection (interrupt on APB side)

e Compatible with ARM APB 3.0 bus standard
o Interrupt poutput (Fifo TX full, Fifo RX full, Fifo RX not empty,
I12C communication error, 12C Start bit, 12C Stop bit, 12C Slave
Selected)
o Interrupt masking on all interrupt bits
o 8bit data transfers
o Fifo Memories reset after 12C communication error detection
o flc=fum
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4.3.6.2 Reset description
The PRESETn_i signal coming from the APB bridge is used as a global reset for
the whole device.

The APB block of the device generates the signal RESET_FIFO_I2C which is
also used as a reset for both the FIFOs and the 12C block in case when the APB block
receives a command to change the 12C Slave address. Then both of the FIFOs are emptied
(by reset), 12C Slave set to reset and a new address is written to the 12C Slave block
through TX fifo.

The reset signal RESET_MEM is generated from the 12C Slave block, which is
used to empty both FIFOs in case an 12C communication error occurs. In that case an
error bit is also set.

4.3.6.3 Setting 12C Slave default address

The 12C Slave device can have a default address. This address will be set every
time after the PRESETn_i signal occurs, if the default address is not equal to Zero. The
default address is defined as a parameter of the IP block instantiation. This means that if
more than one instance of the DP device is instantiated in a design, each of these
instances can have a different default 12C Slave address.

If the default address parameter is set to 0 (Zero), the default address is not used
and the 12C Slave waits to get an address from APB.

The default address is always saved to the 12C block from the APB block through
TX FIFO. This is because the 12C block is reset with every address change as well as the
memories.

4.3.6.4 Setting of the I12C Slave address
Setting of the 12C Slave address (if the default I2C Slave address wasn’t used) is
done the same way as the change of the 12C Slave address. This is described in 4.3.6.5.

4.3.6.5 Change of the I2C Slave address
The address of the device can be changed by the APB command (APB address)
PADDR_CHANGE_I2C_ADDR and writing the new address to PWDATA signals.

4.3.6.6 12C Communication error detection

There’s a certain chance that an error in the 12C communication can occur. This
error is detected by the device if a start or stop condition comes in a time that it’s not
supposed to.

For example, that could mean that the device is transmitting data and it suddenly
comes to a start/stop condition. The device then generates an error, the 12C block sets
itself to the IDLE state where it expects new commands, resets the FIFOs and writes what
kind of error occurred. The APB part of the device then signalizes an interrupt and it’s up
to the APB Bridge to read the APB Status register and do any further actions.
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12C Slave announces the following error alternatives:

e 12C_NO_ERROR
e |12C_READ_ERROR
e 12C_WRITE_ERROR
e [2C_UNSPECIFIED_ERROR
These constants are set in the dp_s_global_consts.v file.

4.3.7 12C
The 12C Block of the device consists of a standard connection of two blocks - a
Moore FSM and a Data Unit.

4.3.7.1 Functions

The 12C Slave device can only execute requests it receives from a master, which
are receiving data from the master and sending data to the master. If we look at it from
the master’s side — read data from the 12C slave and write data in the 12C slave. It does
not do any other actions. The way the 12C Slave address is set has been described in
chapter 4.3.6.3.

4.3.7.2 12C Slave block diagram

Figure 33 shows how the 12C Slave FSM and 12C Slave data unit are connected. It
is a standard connection of a FSM and Data Unit. Data unit provides state signals for
FSM and FSM sets control signals for the Data Unit. Since both FSM and Data Unit can
send output to SDA, there’s a multiplexor controlled by the FSM to determine which of
these outputs goes to the SDA_OUT signal.

—
12C Slave

FIFO_TX_DATA[7:0]m

<

«——EN_FIFO_TX
«—EN_FIFO_R )_MODE[1:0}
«—RESET_MEM.

EN_CYCLE_COUNTER——P
EN_REGO———p
EN_REGI————>]

—FIFO_RX_FULL

| REG. _RX_DATA[7:O]mep-
EN_CYCLE_COUNTER—] )_MODE(1:0]—>
|——EN_CYCLE_COUNTER_WR—p|

——FIFO_TX_EMPTY

_BIT_SET——>

oA 0 CYCLE_COUNTER_IN——] OP_BIT_SET——
2¢slave  [————EN_SELEC

<—scL_ouT State Machine ECTED_BIT_SET—)>

<“—scLok |———EN_SPEED_MODE——)| _BIT_SET—
|€———SCL_FAL_EDGE:
L_RIS_

< INTR_BITS_CLR——

| «——sTART_CONDITION £RR_BIT_CLR——

|&——STOP_CONDITION- T
2C

SDA_SEL-

|€——cvcLe_cOUNTER_ouT—rod

<——SDA_OUT:

12€ Slave
Data Unit

£RR_BIT_WR——p

ccccccc

Figure 33: 12C Slave block diagram
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4.3.7.3 FSM

The FSM Diagram for 12C Slave is displayed on Figure 34. Since a text
description of this diagram could be confusing, | decided to put together Table 7 that
describes what each state serves for and what the next states are and under what condition
the transition is done.

The 12C communication is a serial bit communication and is therefore quite exact
when each bit is set. This made it challenging to design the FSM. Values can be changed
only in certain intervals when the SCL is low.

39



OPERATION_ERE.=
“I2C_NO_EFROR;

<’}
SAVE_ADDRESS_BIT

EN_REGU=1
EN_CYCLE_COUNTER=1

CONDITION=1

SCL_RIS_EDGE=1
CYCLE_COUNTER_OUT'=0

EN_FIFO_RX:
CYCLE_COUNTER=
EN_CYCLE_COUNTER_WR=1

COUNT_CYCLE_RD
EN_CYCLE_COUNTER=1

Figure 34: 12C FSM Diagram
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Table 7: 12C FSM States

State name

Function

Next state

INIT

Initial state, waiting for 12C Slave
address to be in TX Fifo

SAVE_SLAVE_ADDR

SAVE_SLAVE_ADDR

Save 12C Slave address

IDLE

IDLE

Idle state, waiting for the addressing
by 12C Master

GET_ADDR_WAIT
(if Start condition)

GET_ADDR_WAIT

Wait for SCL rising edge till all
address bits are received

SAVE_ADDRESS BIT -
after SCL rising edge and
not all 7bits of 12C Slave
address received yet

GET_OPERATION - after
all 7bits of 12C Slave
address are saved and
match with the 12C Slave
address that this device is
using

IDLE - after all 7bits of
I2C Slave address are
saved and they do not
match with the 12C Slave
address that this device is
using

GET_ADDR_WAIT -
Otherwise

SAVE_ADDRESS BIT

Save the 12C Slave bit that 12C Master
is addressing the device with

GET_ADDR_WAIT

GET_OPERATION

Recognize the operation (read/write)

SEND_FIFO FULL - if
read operation
SEND_ACK_WR_WAIT
— if write operation

SEND_FIFO_FULL

Waits till TX Fifo in not empty (filled
of some data)

FIFO_POP - if TX fifo
filled with some data

FIFO_POP

Pops next data from TX fifo

SAVE _FIFO_DATA

SAVE_FIFO_DATA

Saves data from TX fifo to REG1 (see
Figure 35 for more details)

SEND_ACK_RD_WAIT

SEND_ACK_RD_WAIT

Waits till SCL falling edge

SEND_ACK_START RD

SEND_ACK_START RD

Sends ACK to 12C Master

SEND_DATA

SEND_DATA

Sends one bit of data

COUNT_CYCLE_RD

COUNT_CYCLE_RD

Enables cycle counter to the next bit
cycle

SEND_DATA - if not all
bits sent yet to 12C Master
WAIT_ACK_M RD - if
all bits sent to 12C Master

WAIT_ACK_M_RD

Decide if another Byte transaction
follows

IDLE - if no other Byte
transaction is followed
WAIT_SEND_DATA - if
another Byte transaction is
followed

WAIT_SEND_DATA

Wait for falling edge of SCL to send
the next Byte

FIFO_POP_NEXT_DATA

FIFO_POP_NEXT_DATA

Pops out next data from TX fifo

SEND_ACK_WR_WAIT

SAVE_NEXT_FIFO_DATA

Saves data from TX fifo to REG1

SEND_DATA

SEND_ACK_WR_WAIT

Wait for next SCL fall edge to send
ACK

SEND_ACK_START_WR

SEND_ACK_START_WR

Sends ACK to write operation

WAIT_FOR_SDA_DATA
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WAIT_FOR_SDA DATA

Wait till next SCL rising edge to read
the data after

WRITE_DATA

WRITE_DATA

Store data in Reg0

WAIT_DATA_WR

WAIT_DATA_WR

Decides if all bits are stored and
according to that saving data to RX
Fifo. Also after data is processed
there’s a transition to IDLE and
GET_ADDR_WAIT state

WRITE_DATA — if not all
data bits received yet

FIFO_PUSH - all data bits
received and RX fifo not
full

SEND_NACK_WR - ifall
data bits received, but fifo
RX full

IDLE - after stop
condition (data processed)

GET_ADDR_WAIT- after
start  condition  (data
processed)

FIFO _PUSH Saves received data to RX Fifo WAIT_ACK WR
WAIT_ACK_WR Waits till SCL falling edge SEND_ACK_WR
SEND_ACK_WR Sends ACK to 12C Master GET_NEXT_OP
WAIT_NACK_WR Waits till SCL falling edge SEND_NACK_WR
SEND_NACK_WR Send NACK to 12C Master GET_NEXT_OP
ERR_SIGNALLING Signals errors in 12C communication IDLE
GET_NEXT_OP Waits for SCL rising edge to get next | WRITE_DATA

operation (either write next data,
repeated start or end of operation)

4.3.7.4 Data Unit

The Data unit serves for storing the data and detecting different conditions. The
list of all registers described in the Data Unit Diagram in Figure 35 with their functions is

described in Table 8.

The following conditions are also detected by the Data unit:

e Start/stop condition detection — flip-flops (SDA_CURR, SDA PREV,
SCL_CURR, SCL_PREV) are used as a synchronizer. They compare the
current and previous values of these signals and these signals detect the
start or stop condition by an AND.

e SCL Rising edge detection - flip-flops (SCL_CURR, SCL_PREV) with
and AND detect the rising edge of the SCL signal.

e SDA Rising edge detection - flip-flops (SDA_CURR, SDA_PREV) with
and AND detect the rising edge of the SCL signal.
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12C Slave Data Unit
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EN_REGO
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Figure 35: 12C Slave Data Unit
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Table 8: 12C Registers list

Name Function

CYCLE_COUNTER Cycle counter for counting bit positions during 12C communication,
addresses bits in Reg0 and Regl according to cycle number

ERR_REG Storing type of error occurred in 12C communication

INTR_BITS_CLR_REG1 | Resynchronization register for clearing interrupt bits

NTR_BITS_CLR_REG2 Resynchronization register for clearing interrupt bits

Reg_ADDR Storing 12C Slave address

REGO Storing bits coming from 12C Write command

REG1 Storing data from TX FIFO used for I12C Read command

RST_SYN_REG1 Resynchronization register for reset

RST_SYN_REG2 Resynchronization register for reset

SCL_CURR Current SCL value

SCL_PREV Previous SCL value

SDA_CURR Current SDA value

SDA_PREV Previous SDA value

SELECTED_BIT I12C Slave selected bit (interrupt bit for APB)

START_BIT Start condition bit (interrupt bit for APB)

STOP_BIT Stop condition bit (interrupt bit for APB)

4.3.8 APB

The basics of this protocol were already described in chapter 2.2. The complete
documentation that was used for the APB design can be found under (ARM, 2004). The
APB device implemented in this design is a APB Slave.

4.3.8.1 Functions, modes

The APB bus is a parallel addressed as well as data bus. Address and data busses
are each separated. The device can provide operations read/write data, read device status
and change 12C Slave address. More concrete description of addressing these operations
was described in chapter 4.3.4.

4.3.8.2 Block diagram

The structure of the APB block of the device shown in Figure 36 is traditional —
there is a FSM and a data unit, which are connected together. Except the usual connection
of FSM and standard unit, there’s also a multiplexor used for determining whether the
input of TX fifo is the 12C Slave default address or data from PWDATA.
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APB Slave

sel_outp_fifo

Figure 36: APB Block diagram
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4.3.8.3 FSM

READ DATA

SEL_OUTP=APB_SEL_OUTP_DATA
EN_PEDATA=1
PREADY

)
PWRITE=D
PADDR=PADDR_READ DATA
DEFAULT_DXC SEAYE_ADDRESS

=0y
SAVE INIT_ADDR

EN_FIFO_TX=1
SEL_OUTP_FIFO=1

PREADY=0
EN_PRDATA=1
SEL_OUTP=APE_SEL OUTP_INF. MASK

EN_PRDATA=1
SEL_OUTP=PADDR_READ INTE. REG
INTR_BITS_CLR=)

Figure 37: APB FSM Diagram

I12C FSM Diagram is described in Figure 37. A detailed description of the states is
in Table 9. The most outstanding state is the IDLE state. The device stays in this state
whenever it’s waiting for a command from APB Bridge. All operations start from the

IDLE State on request from the APB Bridge.
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Table 9: APB FSM States

State name

Function

Next state

INIT

Init state after reset

SAVE_INIT_ADDR - used if
default i2c address set

IDLE - used if default i2c
address not set

SAVE_INIT_ADDR

Saves the Default 12C Slave Address to
the 12C Slave

IDLE

IDLE

Idle state

Various, see Figure 37

READ_DATA

Save data at TX fifo output to prdata_o
register

READ_DATA_TO_OUTPUT

READ_DATA_TO_OUTPUT

Enables the next data in TX fifo to output

PREADY_BEFORE_IDLE

PREADY_BEFORE_IDLE

Pready on high, but APB FSM not in the
IDLE state yet to prevent premature
operation recognition

IDLE

RESET_I2C

Resets the 12C Slave + memories, sets
wait counter to zero

WAIT_RESET_DONE

WAIT_RESET_DONE

Waits several cycles before saving the
new 12C Slave address to TX Fifo to let
the FIFOs get ready

WRITE_NEW_ADDR

WRITE_NEW_ADDR

Saves the new 12C Slave address to TX
Fifo

PREADY_BEFORE_IDLE

FIFO TX_GET_STATUS

Waits as long as TX Fifo is full

WRITE_DATA

WRITE_DATA

Saves data to TX Fifo

PREADY_BEFORE_IDLE

WRITE_INTR_MASK

Writes a new Mask to the Interrupt mask
register

PREADY_BEFORE_IDLE

READ_INTR_REG

Saves the content of the interrupt register
to prdata_o register, which means that the
data from interrupt register gets to output.
Deletes set interrupt bits in 12C Slave
(intr_bits_clr_o <= 1'b0 because of
inverted logic)

PREADY_BEFORE_IDLE

READ_INTR_MASK

Saves the Interrupt mask to prdata output

PREADY_BEFORE_IDLE

UNSPECIFIED_READ

Puts all Zeros to output

PREADY_BEFORE_IDLE
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4.3.8.4 Data Unit

APB Slave Data Unit

FIFO_RX_DATA[7:0)]

LK_4 g !\Nt& G(7:0)
EL_OUTP[1:0].
12C_RST_CH_ADDR _FIFO_|
_BIT_SE > SET
OP_BIT_SE > D Q SET
ECTED_E P> ‘> D Q TAL7- Ol
{SET[ —>
—> RESYNC_INTR_BITS L
ar Q ar Q
rresyngmu’nulm 01—,
SET
—vomeawr— 1% D Q
FIFO RX FUL N\
——FIFO_TX_FULL —> _REG:
BirAND 08 _INTR—p
EN_INTR_ CLR Q J
SET
e PWDATA[7:0} > D Q
—EN_INTR_MASK_ CIR Q
SET
e WAIT_COUNTER_I[1:0], > D Q T_COUNTER_O[1:0].3p,
WAIT_COUNTER

CLR

Figure 38: APB Block Data Unit

The APB Data unit presented in Figure 38 contains only a few registers, this is
caused by the simplicity in which the APB transactions are done. The output PRDATA of

the device is registered. Further detailed description of the registers is to be found in
Table 10.

Table 10: APB Registers list

Name Function
INTR_MASK_REG Interrupt mask register
INTR_REG Interrupt register
PRDATA_O

PRDATA registered output
Resynchronization cell for signals from 12C
clock domain

Waiting for memory + 12C reset to be done
after change of 12C Slave address

RESYNC_INTR_BITS

WAIT_COUNTER
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4.3.9 FIFOs
Two FIFOs both of the size 16x8 bytes are used in the design.

4.3.10 Clock requirements

4.3.10.1 Minimum 12C Slave frequency

To be able to count the minimum I12C Slave frequency, the maximum amount of
clock ticks which the 12C FSM needs during SCL high and SCL low needs to be know.
The minimum length of the high and low signals is given by the 12C standard in (B.V.,
2007). Knowing these facts, we divide the minimum high and low length of these signals
by the amount of clocks that need to be done in the 12C FSM and we get two lengths of
signals, from which we count the frequency. The higher frequency of these two
frequencies is the minimum frequency that the 12C Slave can operate with.

The 12C FSM needs 4 cycles during SCL high (transitions between states
GET_OPERATION, SEND_FIFO_FULL, FIFO_POP, SAVE_FIFO_DATA,
SEND_ACK_RD_WAIT) and 2 cycles during SCL low (transitions between states
FIFO_POP_NEXT_DATA, SAVE_NEXT_FIFO_DATA, SEND_DATA).

Table 11: I12C Slave minimum frequency

12C SCL frequency

100kbit/s 400kbit/s 1Mbit/s
Min. SCL high 4000ns 600ns 260ns
Rounded (Min. SCL high / cycles 1000ns 150ns 66ns
needed)
Minimum frequency for SCL high 1MHz 6.67MHz 15.15MHz
Min. SCL low 4700ns 1300ns 500ns
Rounded (Min. SCL low / cycles 2350ns 650ns 250ns
needed)
Minimum frequency for SCL low 430kHz 1,54MHz 4MHz
Minimum I2C Slave frequency 1MHz 6.67MHz 15.15MHz

The minimum 12C Slave frequencies mentioned in Table 11 were used during the
verification.

4.3.10.2 Minimum APB Slave frequency
There is no minimum APB Slave frequency, because the 12C Slave uses clock
stretching. However the following relationship should be fulfilled: fap,<=fiz.

In case that the APB interrupt is generated based on RX fifo full/not empty
signals, it is recommended to keep the APB frequency at least equal or higher as SCL
frequency ( f s = fsc ) to be able to be able to correctly generate signals for APB

interrupt. On the other hand this recommendation is often fulfilled automatically since
APB frequencies are usually higher than SCL frequencies. In case that the interrupt based
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on RX fifo_not_empty / fifo_full signals is not necessary and APB interrupt for bits
related with RX FIFO are masked (interrupt generated based on selected bit), this
recommendation does not apply.

4.4 Analysis of clock gating use in the design

4.4.1 Clock gating types
In order to achieve results that would be comparable, | chose the following four
kinds of clock gating use.

e CG_NONE - No clock gating used at all.

e CG_AUTO - Automatic clock gating used in DC Shell during Synthesis as
described in chapter 3.4.1.

e CG_MAN - Manual clock gating — manually added clock gating cells that
were marked as dont_touch cells.

e CG_MAN_AUTO - This variant is a combination of automatic and
manual clock gating.

4.4.2 Clock-gating analysis in 12C block
This following analysis was used for manual inserting of clock gating cells.

4.42.1 12C FSM

The FSM controls when clock gating is used to enable registers. In addition, clock
gating was used also clock gating inside the FSM. An extra signal was added to determine
if next state is different from the current state. If so, the clock for the register that stores
the current state is enabled.

4.4.2.2 12C Data Unit

For the analysis of where to use clock gating, we have to decide which registers
have to be part of the always-on logic and which can be used for clock gating. In this
design it is important to keep the registers on that are used for generating interrupt signals
for APB and those registers that are used for controlling 12C communication such as for
determination of start, stop condition and SCL edges. These registers are listed in Table
12.

Table 12: I12C Always-on registers

Register Reason

ERR_REG Error register (interrupt signal for APB)

INTR_BITS _CLR_REG1], Synchronization registers for clearing

INTR_BITS CLR REG2 interrupt bits

RST SYN REG1, RST SYN REG2 Synchronization registers for reset

SCL_CURR, SCL_PREV Generating SCL rising edge, SCL Falling
edge, start condition, stop condition

SDA_CURR, SDA_PREV Generating start condition, stop condition

START BIT Start bit (interrupt signal for APB)

STOP_BIT Stop bit (interrupt signal for APB)
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This leaves us with registers that will not need to be clocked in some cases. FSM,
however, generates enable signals for these registers anyway, so these signals will be
used for enabling the clock cell. Registers in this design where clock gating is useful, are
those that are used only during communication and the register for saving 12C Slave
address, since this is used only at the beginning of the communication for saving the
address. Table 13 provides a list of registers where clock gating was used. It also shows
bit width of these registers. It is recommended to have at least 3-4 bits for an enable
signal, and all these registers satisfy this condition. Therefore clock gating was used on
them. RegO always changes only 1bit during a write operation in this register, but it is a
8bit register, therefore it is convenient to use clock gating for this register as well.
Register Wait_Counter is a 2bit register. Therefore, clock gating wasn’t used on this
register.

All these registers have one thing in common — their enable signals are mostly on
low. Therefore it is convenient to use clock gating on them.

Table 13: I12C Registers that can be clock gated

Register Bits | Reason Write enabled when CG used
Reg0 8 Used only  during | Data received from 12C | Yes
communication. Change | Master

only 8x per transfer

Regl 8 Used only during | Data written from TX | Yes
communication. Change | fifo (for transfer to 12C
only 8x per transfer Master)

Reg_Addr 8 Used for saving 12C | 12C Slave address stored | Yes
Slave address, address | from TX fifo
saved at beginning of
communication,  stays
without change during
most of the time of use

Cycle_Counter 4 Used only  during | Counting bit indexes | Yes
communication. Change | when receiving / sending
only 8x per transfer data bits

WAIT_COUNTER | 2 Used when [2C Slave | Reseting 12C Slave + | No
address changed memories after 12C Slave

address change

4423 FIFOs

Both TX and RX fifos are IP that have inconsiderable consumption. It is therefore

important to take this into account. Clock signals for Fifos don’t only serve for data
push/pop, but also for generating state signals (full, empty,...). This makes it more
complicated. For this reason there was an extra signal called i2c_active added to the 12C
FSM that expresses when a transaction is being done. When this signal is on high, the
Fifos 12C clock is enabled.
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4.4.3 Clock-gating analysis in APB block

4.43.1 APB FSM
Clock gating was also used for APB FSM. The way it was done is similar to the
way clock gating was applied to 12C FSM, the description is in chapter 4.4.2.1.

4.4.3.2 APB Data Unit

Table 14 lists the always-on registers. These are registers that are used for
interrupt signals. They always have to be on for proper generation of the interrupt signal
towards APB Bridge and therefore for correct function.

Table 14: APB Always-on registers

Register Reason

INTR_REG Interrupt register

RESYNC_INTR_BITS Resynchronization of interrupt bits from
12C Slave

The registers list where clock gating is used is in Table 20. There are two registers
and both of them are 8-bit registers which is wide enough to use clock gating on them.
One of them is the register for storing interrupt mask, this value doesn’t usually change
very often, and therefore it is convenient to use clock gating with this register. The other
register is for registering data output and its value changes only during communication.

Table 15: APB Registers with applied clock gating

Register Bits | Reason Clock enabled when

INTR_MASK REG | 8 Interrupt mask, change only | Request from APB Bridge to
on request from APB Bridge | write new interrupt mask

PRDATA 8 Registered data output New data on output for APB
Bridge

4.4.3.3 Fifos

As already mention in chapter 4.4.2.3, it is important for the fifos to have the
clock active longer than just for data transfers to generate signals. For this reason, the
signal i2c_active was synchronized on the top level to the APB clock domain and was
used along with pselx and pready signals to enable clock for the FIFOs. The
resynchronization cell for signal i2c_active becomes a part of the always-on logic.

4.4.4 Clock-gating code example

The following code describes an example of using a clock gating cell. It shows
that the use of clock gating on RTL level doesn’t do any major changes; however, it
enlarges the code.

The first part of the code describes the case in which clock gating is used. First, an
extra wire is instantiated for the gated clock and follows the instantiation of the gating
cell. This gating cell is marked as a “dont_touch” cell for synthesis, so that the DC Shell
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doesn’t change this cell in any way. The register then follows the description with the use
of gated clock and without an enable signal.

The part of the code that follows after the “else command is the usual RTL
description of a register without use of clock gating.

S INTERRIPT HASKING REGISTER

“ifdef CLOCKE GATING ENAELED
vire clk gate 1;
gating cell 1_clk gate 1
el iicllk pell: i),
.clk en_ifen intr mask reg i},
.clk gate oicll gate 1)
)i
always & (posedge clk gate 1, negedge presetn i)
beqin: intr mask _req p
if({presetn_i == 1'b0)
intr mask o <= 8'h11111111;
else
inktr mask o <= pwdata 1;
end
“else
always & (posedge clk pclk i1, negedge presstn 1)
beqn: intr mask_regq p
1fipresetn 1 == 1'h0)
intr mask o <= 8'b11111111;
else if (en intr mask regq i == 1'hLl})
intr_mask_o <= pwdata_1i;
end

“endif

Figure 39: Clock gating code examp'le

4.5 RTL

4.5.1 Coding

The device was coded according to the specification in Verilog 2001. It is a fully
synchronous, fully synthesis-able design. The code itself can be found on the enclosed
CD.

4.5.2 Resynchronization between the clock domains

4.5.2.1 Resynchronization of data

The data are sent through asynchronous FIFOs between the two clock domains.
Therefore all the resynchronization is done in the fifos. Further description of these FIFOs
is in chapter 4.5.6.

4.5.2.2 Resynchronization of signals
The signal resynchronization is done by resynchronization units consisting of two
flip flops.

I12C Slave sets state signals for the APB Slave. These signals are synchronized in
the APB domain by a multiple-bit resynchronization unit (the unit is called
RESYNC_INTR_BITS).
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The INTR_BIT_CLR signal that goes from APB to 12C domain is implemented to
reset the registers (SELECTED_BIT_SET, START_BIT_SET, STOP_BIT_SET,
ERR_SET) in the 12C domain. This signal is also resynchronized by two flip flops in the
I2C domain to ensure the right function. The INTR_BIT_CLR signal is set active when
interrupt register is read by APB master to reset registers in 12C domain that set interrupt
signalizing values of 12C communication. The sequence of this steps is described in
chapter 4.3.2.

4.5.3 Signals for DFT
Signals for DFT are not used in this design. This device is either considered as a
hard-macro or as a soft-macro where DFT is implemented on the top-level of the chip.

4.5.4 12C Slave Default address
I2C Slave can have set a default address. This is done by instantiating the module
in the design by setting an instantiation parameter.

4.5.5 Changing APB addresses for operations

If the user wishes to change the addresses for any APB operation, you can do so in
the dp_s_global_consts.v file by changing the values of the constants. The names of
constants that need to be changed of each operation are in Table 16.

Table 16: Names of constants and their APB functions

Default APB address | APB Constant name Function

000 PADDR_READ DATA Read data from FIFO_RX

001 PADDR_READ_INTR_REG Read interrupt register

010 PADDR_12C_ADDR Changes the 12C Slave address
011 PADDR_WRITE_DATA Write data to FIFO_TX

100 PADDR_WRITE_INTR_MASK | Write interrupt mask

4.5.6 Fifos

In the beginning | was using FIFO models generated by Xilinx Coregen, | was
developing in Xiling ISE so that | would be able to work from home.

After migrating the files with RTL to S3 Group environment, | had to use new
fifos that were synthesizable. Both TX and RX Fifo were generated by the DesignWare
Synopsys tool. There were some challenges and changes with using these fifos, because
they have the first data on output right after writing it in the FIFO and not after a request.
These fifos also have inverted reset signals and separate signals for full and empty
signaling. Changes had to be done to fix these problems and differences before continuing
to the next steps.

4.6 RTL code check (Hal)

RTL code check is done by Cadence Hal program. This program checks for
different conditions and mistakes in the code starting from white spaces that might be
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causing problems for other programs later during the design to unconnected wires or
latches.

The design was run through this program and all the errors were corrected as well
as most warnings.

Most of the errors were caused by white spaces and wrong coding (codes were
imported from MS Windows environment to Linux environment). Whitespaces (tabs) had
to be replaced by simple spaces.

Hal also reported errors in resynchronization. This was solved by adding a
resynchronization cell for several parallel signals instead of several resynchronization
flip-flops that were each 1 bit width in the APB Slave. The hardware specification wasn’t
changed, but the description in Verilog was corrected.

4.7 Verification

4.7.1 Introduction to verification

Based on the specification of the design, a list of steps that need to be verified
(called verification items) were written in a list and based on this list a Verification plan
(see Table 18) was written. The verification tests were written afterwards based on the
Verification plan.

A third-party 12C Master bock that was downloaded from (Herveille, 2006) was
used for the verification. In order to cover all the useful possibilities of the design
behavior, the verification contains the following steps:

e Direction APB to 12C

o 12C Slave address change through APB command
e Direction 12C to APB

o Sending data from 12C Master to APB Bridge

DP Device

APB f12C ——l2Cbus—|  12CMaster W

~compare data-- -successfull tests
failed tests

Report
—>

\: oatA |
\ \
Figure 40: Testing sending data in the I12C to APB direction

e Direction 12C->APB ->12C (typical communication scenario)
o Sending a request from 12C Master, getting a response from APB
Bridge to 12C Master
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\ \

Figure 41: Typical communication test scenario — 12C->APB->I12C

e APB Interrupt

o Fifo TX full
Fifo RX full
Fifo RX not empty
Unspecified error after START CONDITION (error caused by a
start condition during data transfer)
Unspecified error after STOP CONDITION
Reading data error after START CONDITION
Reading data error after STOP CONDITION
Writing data error after START CONDITION
Writing data error after STOP CONDITION
Start bit
Stop bit

o Selected bit
e Other
o Verifying different 12C speeds - 10, 50, 100, 200, 400 kb/s and
1000kb/s

A script used to run all the tests at once. There are different tests and there were all
run in different speeds — 10, 50, 100, 200, 400 kb/s and 1000kb/s. The speeds 100, 400
and 1000kb/s are given by the 12C standard, the other were used to verify compatibility
with lower speeds.

O O O

O O O 0O O O O

4.7.2 Verification strategy

Assertions for 12C and APB protocols were not available during the design. A third party
I2C Master was used to verify the correct communication of the 12C Slave. To model the
APB Bridge, | wrote a model of this bridge for writing and reading data from the APB
Slave. This decision was done based on the fact that APB is a quite easy protocol and in
agreement with the submitter of this project.

All of the tests used for verification are self-checking, which means that after they run, a
PASS/FAIL report is generated. They also generate logs during the simulation that
include time of each log line, which help to determine and track the behavior of the
device during the simulation. At the end of running the set of tests, a regression report is
also generated that represents an overview of the tests passing/failing. Such a regression
report can be found in Appendix B.
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4.7.3 Frequencies used during verification
Frequencies for 12C Slave that were used are the minimum frequencies, which are
mentioned in Table 11 and the reasons why these frequencies in chapter 4.3.10.1.

The frequency for APB Slave used during verification was set, so that fap<fi
would be fulfilled. I chose a ratio fapp : fioc approximately 3.33:1. This means that for 12C
speed 100kbit/s the frequency was 300 kHz (12C Slave frequency 1MHz), 400kbit/s
speed the frequency was 2MHz (12C Slave frequency 6.67MHz) and for 1MBit/s 12C
speed the frequency was 4.54MHz (12C Slave frequency 15,15MHz).

Table 17: Frequencies used during verification

12C Speed 100kbit/s 400kbit/s 1Mbit/s
I12C Slave frequency 1MHz 6.67MHz 15,15MHz
APB Slave frequency 300 kHz 2MHz 4.54MHz

The 12C frequencies were used the lowest possible to ensure that the device works with
these frequencies. This was done, because for low power reasons, it is convenient to use
the lowest frequencies possible.

57




4.7.4 Verification Plan

Note: In several places in the Verification plan, “send several data” is stated —
these data were sent in a cycle which was controlled by a variable and usually 5 or 6B of
data were transferred during these operations.

Table 18: Verification Plan

Abbreviation

Description

How to achieve

TC_TX000 Changing the 12C Slave Use default I12C address, generate reset (presetn).
address through a APB Then write to APB the command with the address
command (after default PADDR="PADDR_WRITE_I2C_ADDR and set a new 12C
address) Slave address to PWDATA (different from default

address), set PSELx=1 and in the next PCLK clock set
PENABLE=1. Hold these values as long as PREADY=0.
To verify that the device responds to this address,
write data to RX fifo and read them through 12C
Master.

TC_RX000 Writing data several bytes |Reset the device (by PRESETn). Use default 12C
data through 12C Master to | address for 12C Slave. Send data from 12C Master to
APB using burst mode at I2C Slave. Read the data through APB Master and
12C. Using 12C default compare the data. The data received by APB Master
address has to be the same as sent by I12C Master.

TC_RX001 Writing new 12C Slave Comment the constant 12C_SLAVE_ADDRESS (in
address without using a dp_s_global_consts.v file). Then reset the device (by
default address first. PRESETn), after reset set
Writing data several bytes | PADDR="PADDR_WRITE_I2C_ADDR and set a new 12C
data through 12C Master to | Slave address to PWDATA, set PSELx=1 and in the
APB using burst mode at 12C | next PCLK clock set PENABLE=1. Hold these values as
for varification that the I12C | long as PREADY=0. Then Send data from 12C Master
Slave actually to 12C Slave
communicated at the new
address.

TC_RX002 Verifying APB device is Generate reset (presetn), send a not-specified
returning Zeros for address as a read-request to APB device.
unspecified read operation

TC_RXTX000 |Change of direction during | Use default I12C address, generate reset (presetn).
12C communication Write data to RX fifo, then 12C Master generates

repeated start, changes the direction. After data is in
RX fifo, read the data from RX fifo and write the same
data to TX fifo. If data is not in TX fifo yet when
required from 12C Master, the 12C Slave has to pull
SCL to low. Then 12C Master reads data from TX fifo

TC_INTRO00 | Verifying APB Interrupt - |Use default I2C address, generate reset (presetn). Set

fifo TX full the tx_fifo_full bit in the mask register to 1 and all
other bits of the mask register to 0. Fill up the whole
TX Fifo. Then set all bits of the mask register to zeros.
TC_INTRO01 | Verifying APB Interrupt - |Use default I2C address, generate reset (presetn). Set

fifo RX full. Verifying
NACK to 12C Master after
sending more data to 12C
Slave

the rx_fifo_full bit in the mask register to 1 and all
other bits of the mask register to 0. Fill up the whole
RX fifo. Then try to write one more byte. Then set all
bits of the mask register to zeros.
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TC_INTR002

Verifying APB Interrupt - fifo
RX not empty

Use default I12C address, generate reset (presetn),
write interrupt mask with rx_not_empty bit on 1.

Write data in RX memory through I2C. Then set all
bits of the mask register to zeros.

TC_INTR003

Verifying APB Interrupt -
unspecified error after
START CONDITION

Use default 12C address, generate reset (presetn).
Write data to both RX and TX Fifo. Write interrupt
mask with error bit on 1 and all other bits zeros. Send
a START CONDITION to 12C Slave and in the middle of
sending the address bits send a new START
CONDITION to the 12C Slave. Then set all bits of the
mask register to zeros.

TC_INTRO04

Verifying APB Interrupt -
reading data error after
START CONDITION

Use default I12C address, generate reset (presetn).
Write data to both RX and TX Fifo. Write interrupt
mask with error bit on 1 and all other bits zeros.
Write data to TX FIFO. Start reading data from 12C
Slave and then in the middle of the transfer start a
new START CONDITION. Then set all bits of the mask
register to zeros.

TC_INTROO5

Verifying APB Interrupt -
writing data error after
START CONDITION

Use default I12C address, generate reset (presetn).
Write data to both RX and TX Fifo. Write interrupt
mask with error bit on 1 and all other bits zeros. Start
writing data to 12C Slave and then in the middle of the
transfer start a new START CONDITION. Then set all
bits of the mask register to zeros.

TC_INTROO6

Verifying APB Interrupt -
unspecified error after STOP
CONDITION

Use default 12C address, generate reset (presetn).
Write data to both RX and TX Fifo. Write interrupt
mask with error bit on 1 and all other bits zeros. Send
a START CONDITION to 12C Slave and in the middle of
sending the address bits send a new STOP
CONDITION to the 12C Slave. Then set all bits of the
mask register to zeros. Then set all bits of the mask
register to zeros.

TC_INTROO7

Verifying APB Interrupt -
reading data error after
STOP CONDITION

Use default 12C address, generate reset (presetn).
Write data to both RX and TX Fifo. Write interrupt
mask with error bit on 1 and all other bits zeros.
Write data to TX FIFO. Start reading data from 12C
Slave and then in the middle of the transfer start a
new STOP CONDITION. Then set all bits of the mask
register to zeros. Then set all bits of the mask register
to zeros.

TC_INTROO8

Verifying APB Interrupt -
writing data error after
STOP CONDITION

Use default I12C address, generate reset (presetn).
Write data to both RX and TX Fifo. Write interrupt
mask with error bit on 1 and all other bits zeros. Start
writing data to 12C Slave and then in the middle of the
transfer start a new STOP CONDITION. Then set all
bits of the mask register to zeros.

TC_INTROO9

Verifying APB Interrupt -
stop bit

Use default I12C address, generate reset (presetn),
write interrupt mask with stop bit on 1 and all other
bits zeros. Write data (1 byte) to 12C Slave through
I2C Master. Then set all bits of the mask register to
zeros.
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TC_INTRO10 | Verifying APB Interrupt - Use default I12C address, generate reset (presetn),
start bit write interrupt mask with start bit on 1 and all other
bits zeros. Write data (1 byte) to 12C Slave through
I2C Master. Then set all bits of the mask register to

zeros.
TC_INTRO11 | Verifying APB Interrupt - Use default I12C address, generate reset (presetn),
selected bit write interrupt mask with selected bit on 1 and all

other bits zeros. Write data (1 byte) to 12C Slave
through 12C Master. Then set all bits of the mask
register to zeros.

TC_OTHR_000 | Verify the reset values of all | Use default I12C address, generate reset (presetn),
registers Verify the reset values of all registers

4.7.5 Code coverage

Code coverage describes how much the code is covered by the verification tests.
Cadence NCSim simulator was used for running the tests. Another tool by Cadence ICCR
is also able to view the code coverage and parts of the code that are not covered as well as
visualize final state machines and show which states are covered. Fifos were excluded
from the code coverage, because they were generated Synopsys Design Ware and are not
a part of the master’s project development.

The test tc_rx001 doesn’t use the default 12C address and a whole new different
run of make file had to be done for this test, which means that this test can’t be merged
with the other tests (not available by the development tools) in order to view the code
coverage merged for all the tests together. Therefore there are two different sections, the
section 4.7.5.1 contains the main tests and section 4.7.5.2 contains only the tc_rx001 test
that verifies the case when default 12C address isn’t used and so the only differences
between using and not using the 12C default address will be mentioned there.

4.7.5.1 Verification tests using I12C Slave address

Figure 42 shows percentage coverage of the merged tests. The coverage isn’t
100% which is given by two different facts. The first fact was described above (the use of
default 12C Slave address). The other fact is that the ICCR tool expects to cover every
“else” branch of any “if” command. The FSM was written by a “case” command where at
the very beginning the current state is assigned as the next state and then possibly the next
state is changed, but doesn’t have to be changed. Therefore the “else branch” is written in
the code, although the ICCR tool doesn’t understand this.
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Test : Imerged H Include: he: -

Type | Coverage Passing Ratio |
Module/Unit ] 99 % 591 /5939
Instance ] 99 % 5917599
FShd Coverage
Type | Coverage Passing Ratio |
State e 1w 48/ 48
Arc D | 98 % B3 / B4

Figure 42: Code coverage summary

ICC - Coverage Totals

File Wiew Window Help cadence
E‘; A Tree = Instance = Threshold |1DD %
Test Imerged H Include: be ! - a

Instance | Typas | Self Total - Cumulative Total |
» het 100% [E] 93% (591 7 5599)
) bet — s — i
» bet — i — s
» bet 100% (B B) 98%  (215/219)
» het 96% (a7 101) 965% (97 /101
- aph_data_unit ) het 100% {106/ 1086) 100%  (112/112)
B-@ izc_slave p bet 100%  (7/7) 99% (372 / 376)
» het 5% (2367 242) 98% (2387 242)
» het 100% (1274127 100% (1274127

Figure 43: Code coverage code/data overview

ICC - Code/Data Coverage Details for Instance dp_s_top.apb_slave.apb_fsm

File Mark Miew bavigate MWindow Help cadence
Mavigate:  Uncovered ~  Block » s 4 b M Threshald |1DD g |
Test : Imerged H
Instance Black | Ewpression | Toggle |
dp_s_top. aph_slawve. aph_f=m ==e| 9% 64 S B0 94% 33 /S 35 87% 34 S 39
Line File: fprojtrainingfusers/jany/ W ORK/datarsd_i2zos_aph/RTLAdp_s_apb_fsm.y |
142 next_state = RESET _TZG; i}
143
144 else if (paddr_i == "PADDR WRITE_DATA)
145 next_state = FIF0_TE GET_STATUS;
146
147 else if (paddr i == "PADDR_INTR MASE)
148 next_state = WRITE_INTR MASE;
149 end !
150
151
152
153
154
155
156 FIFDO TX GET STATUS :
I |2
Coverage Report:  Uncovered Blocks e Marking: 3 @ "3
]
Instance name: dp_s_top.aph_slawve. aph_fsm
Module /Entity name: dp_s_apb_fsm
File name: /proj/training/users/Jjanv/WORK/data/s3_iZcs_aph/RTL/dp_s_aph_fsm. v
Humber of uncovered hlocks: 2 of 66
Wunber of uncowvered branches: 2 of &0
Humber of hlocks marked covw: O
Wunber of blocks marked IGN: 2
index  uncovered block line no. line origin description
{30 147 * implicit else 147  else if (paddr_i == "PADDE_INTR_MASK)
{34 157 + dmplicit else 157 if(fifo_tx full i == 1'h0)
1

Figure 44: Implicit else example
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Figure 45 shows the state and transition coverage for APB part of the device. The
transition between INIT and IDLE state isn’t covered, because that is the transition that is
used in cases when default 12C Slave address isn’t used. Therefore the INIT state is
colored purple.

Figure 45: APB FSM state coverage (not using default I2C Slave address)

Figure 46 shows the state and transition coverage for the 12C FSM. The diagram
shows that all states and transitions are covered.

State ERR_SIGNALING is assigned from all other states (except those states and
conditions when it is not useful) whenever an error in the 12C communication occurs.
Therefore this condition is coded as an “if” command after the “case” statements in the
FSM process for selecting the next state. This is also the reason why this state is colored
in a purple color.
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Figure 46: I2C FSM state coverage

4.7.5.2 Verification tests without using default 12C Slave address

Figure 47 displays state coverage of test tv_rx001. The only purpose of this
diagram and these tests is to prove that the transition from state INIT to state IDLE which
isn’t covered in Figure 45 is also covered by the verification tests.

RE&AD_DA OUTPUT

Figure 47: APB FSM state coverage (using default I12C Slave address)

Code coverage is useful to make sure all the important parts of code are covered.
By being able to view the FSM, | found out some redundancies that | removed after
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realizing them. I even found one state that was never reached and didn’t even have any
transition going out to another state.

I also found that some parts of the code were not covered although the tests were
supposed to cover them. This signalized a mistake in the particular tests, which 1
corrected thanks to being able to know that the test is a wrong-pass.

4.8 Synthesis

4.8.1 What happens during synthesis

Synthesis is a step where RTL code (written in Verilog in this case) is translated
into standard logical cells connected by nets — so called netlist.. The input for synthesis is
the RTL code and Library files. The library files were used for the technology TSMC
65nm (tcbn65Ip — low power).

Synthesis also generates warning (or error) reports concerning the design. This
can be e.g. warnings about latches in the design, nets without a type, driver, fanout etc.
etc.

DC Shell also generates consumption estimation during synthesis, which is further
described in chapter 4.8.2 and 5.1.

Synthesis was run 4 times in this design according to the kind of clock gating that
was used in the design. This is a nonstandard solution and was done in order to be able to
compare different consumption results by the end of the project. Automatic clock gating
described in chapter 3.4.1 can be added during synthesis just by changing one command
in the synthesis command script.

4.8.2 Synthesis power consumption

A power consumption estimation report is generated by the Synopsys DC Shell
tool during synthesis. This report is based on an approximate expected signal and clock
activity. The consumptions are in stated mW.

4.8.2.1 Synthesis power consumption —without Clock gating

Switch Int Leak Total

Hierarchy Power Power Power Power %
dp s top 9.99e-04 3.67e-02 1.26e+03 3.90e-02 100.0
apb slave (dp_s apb slave) 1.87e-04 2.01e-03 152.869 2.35e-03 6.0
apb data unit (dp_ s apb data unit) 2.38e-05 1.26e-03 84.136 1.37e-03 3.5
resync_intr bits (dp_s resync) 3.46e-07 3.49e-04 14.218 3.64e-04 0.9
apb fsm (dp_s apb fsm 10) 6.48e-05 7.08e-04 63.168 8.36e-04 2.1
i2c_slave (dp s i2c_slave) 1.80e-04 7.65e-03 213.076 8.04e-03 20.6
i2c_fsm (dp_s_i2c_fsm) 1.06e-04 3.35e-03 128.057 3.58e-03 9.2
i2c_data unit (dp s i2c data unit) 7.34e-05 4.30e-03 83.935 4.46e-03 11.4
fifo tx (dp_s top dp s fifo 1) 3.04e-04 8.39%e-03 442.418 9.14e-03 23.5
fifo rx (dp_s_top dp s fifo 0) 2.73e-04 1.86e-02 451.683 1.94e-02 49.7
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4.8.2.2 Synthesis power consumption —with automatic Clock gating

O DN UJ 0o o O

Switch Int Leak Total
Hierarchy Power Power Power Power %
dp s top 1.12e-03 1.73e-02 1.23e+03 1.97e-02 100.
apb slave (dp_s apb slave) 2.34e-04 1.59e-03 153.907 1.98e-03 10.
apb data unit (dp s apb data unit) 2.33e-05 8.06e-04 81.414 9.11e-04 4.
resync_intr bits (dp_s resync) 3.46e-07 3.49e-04 14.218 3.64e-04 1.
apb fsm (dp s apb fsm 10) 8.41e-05 7.37e-04 66.329 8.87e-04 4.
i2c_slave (dp s i2c_slave) 2.59%9e-04 5.37e-03 213.367 5.84e-03 29.
i2c fsm (dp s i2c fsm) 1.81e-04 3.53e-03 123.225 3.83e-03 19.
i2c_data unit (dp s i2c data unit) 7.87e-05 1.84e-03 89.058 2.01e-03 10.
fifo tx (dp_s top dp s fifo 1) 3.00e-04 4.97e-03 439.221 5.71e-03 29.
fifo rx (dp_s top dp s fifo 0) 2.71e-04 5.36e-03 426.900 6.06e-03 30.
4.8.2.3 Synthesis power consumption —with manual Clock gating
Switch Int Leak Total
Hierarchy Power Power Power Power %
dp_s_top 3.33e-03 3.05e-02 1.32e+03 3.51e-02 100.0
apb slave (dp_ s apb slave) 2.17e-04 1.67e-03 169.495 2.05e-03 5.8
apb _data unit (dp_s_apb data unit) 2.29e-05 8.10e-04 91.296 9.24e-04 2.6
i clk gate 1 (dp_s top gating cell 1) 0.000 2.77e-05 4.880 3.25e-05 0.1
i clk gate 2 (dp s top gating cell 2) 7.52e-07 3.30e-05 4.873 3.86e-05 0.1
resync_intr _bits (dp_s_resync) 3.46e-07 3.49e-04 14.219 3.64e-04 1.0
apb fsm (dp_s apb fsm 10) 9.59%e-05 8.13e-04 72.631 9.81le-04 2.8
i clk gate 11 (dp_s top gating cell 3) 1.5le-05 1.23e-04 4.547 1.43e-04 0.4
i2c_slave (dp_s_i2c_slave) 1.44e-04 4.78e-03 239.313 5.17e-03 14.7
i2c_fsm (dp_s_i2c_fsm) 6.16e-05 2.87e-03 132.755 3.07e-03 8.7
i clk gate 10 (dp_s top gating cell 4) 2.8le-06 1.20e-04 4.867 1.28e-04 0.4
i2c data unit (dp_s i2c data unit) 8.25e-05 1.91e-03 105.473 2.10e-03 6.0

i clk gate 6
i clk gate 5
i clk gate 3
i clk gate 4

resync_active
i clk gate 9
i clk _gate 8

(dp_s_top gating cell 0)

(dp_s_top gating cell 5)
(dp_s_top gating cell 6)
(dp_s_top gating cell 7)
(dp_s_top gating cell 8)
fifo tx (dp_s top dp s fifo 1)
fifo rx (dp_s_top dp s fifo 0)

3.02e
2.72e
(dp_s_resync BIT WIDTH1) 1.1
(dp_s top_gating cell 9) 5.77

1.76

4.34e-08 9.25e-05 4.880 9.74e-05 0.3
0.000 9.22e-05 4.880 9.71e-05 0.3
6.5le-06 1.67e-04 4.841 1.78e-04 0.5
9.31e-07 9.98e-05 4.877 1.06e-04 0.3
-04 7.53e-03 444.298 8.27e-03 23.5
-04 1.59e-02 454.980 1.66e-02 47.2
7e-06 8.42e-05 3.221 8.86e-05 0.3
e-04 1.36e-04 4.485 7.17e-04 2.0
e-03 4.39%e-04 4.533 2.21e-03 6.3

4.8.2.4 Synthesis power consumption —with manual + automatic Clock gating

Switc
Power

h Int

Power

Leak
Power

2.12e-03 1.62e-02 1.29e+03 1.96e-02 100.0

dp_s top
apb_slave
apb_data unit
i clk gate 1
i clk gate 2

i clk gate 11
i2c_slave

i clk gate 10
i2c_data unit

i clk_gate 6

i clk gate 5 (

i clk gate 3 (

i clk gate 4 (
fifo tx

resync_active
i clk _gate 9
i clk_gate 8

(dp_s_apb_slave)
(dp_s_apb data unit)
(dp_s_top_gating cell 1)
(dp_s_top_gating cell 2)
resync_intr bits
apb_fsm (dp_s_apb fsm 10)

(dp_s_i2c_slave)
i2c _fsm (dp_s_i2c fsm)

(dp_s i2c _data unit)
(dp_s_top gating cell 5)
dp_s_top_gating cell 6)
dp_s_top_gating cell 7)
dp s top gating cell 8)
(dp_s top dp s fifo 1)
fifo rx (dp_s top dp s fifo 0)

2.49%e
2.33e

(dp_s_resync) 3.46e
9.90e
(dp_s_top_gating cell 3)

1.46e
6.20e
(dp_s_top gating cell 4)
8.35e

3.01le
2.71e

(dp_s_resync_BIT WIDTHI1) 1.1
(dp_s top gating cell 9) 2.71
(dp_s top gating cell 0) 8.25

-04 1.71e-03
-05 8.15e-04 88
1.84e-07 2.88e-05
2.21e-07 3.37e-05

-07 3.49e-04 14.219
-05 8.49e-04 71.861
5.62e-06 1.23e-04

-04 4.83e-03 239.315
-05 2.87e-03 132.730
2.85e-06 1.20e-04

-05 1.95e-03 105.500

9.95e-09 9.25e-05
0.000 9.22e-05
3.08e-06 1.67e-04
9.46e-07 9.99e-05
-04 4.41e-03
-04 4.60e-03
7e-06 8.42e-05
e-04 1.34e-04
e-04 4.32e-04
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4.878 3.38e-05
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.553 1.33e-04 0.7
.21e-03
.07e-03
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.14e-03
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4.841 1.75e-04
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3
1
4
5
3
4
2

439.986 5.15e-03

427.782 5.30e-03
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4.487 4.09e-04
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4.7
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1.9
5.2

26.6
15.6
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4.8.3 Synthesis power consumption summary

Chyba! Chybny odkaz na zdlozku. shows the consumption estimations after synthesis.
Automatic clock gating has quite a big effect here, it saves approximately 50%. Manual clock
gating has obviously less impact with the signal and clock activity the synthesis tool uses. This is
caused because the consumption modes are basically not used.

Table 19: Power consumption results — after synthesis

Netlist type Clock gating type
NONE |AUTO |MAN MAN_AUTO

Units

After synthesis, no
timing, estimated 39.00 19.70 35.10 19.60 uW/1s
switching activities

4.9 Formal verification RTL to Gate

Formal verification that compares the equivalence of the RTL and Gate level
netlist was also run in the Synopsys Formality tool. This tool compares there two netlists
and as a result gives a report whether the two are equivalent or not. This has been used to
make sure that the synthesis was run successfully without any changes in the design in
any of the synthesis steps.

4.10 Verification — Gate level simulation without timing

After having the netlist generated through synthesis, | also did a gate level
simulation by running the verification test on the netlist. This resulted in some failed tests
which I had to fix. Minor changes had to be done in the RTL code and also some data was
one clock cycle late on the output. | fixed these problems and continued towards the
physical design.

4.11 Physical design

4.11.1 Introduction
For the Physical design of the device, the following steps were used, which will be
further described:

e Floorplan
e PlaceCells
e CTS (Clock Tree Synthesis)

e Route
e Export
e Extract

In addition to these basic steps, several optimization scripts were also run that are
usually connected with one of the steps.
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Four different rundirs had to be made for physical design and the physical design
was run under them to be able to make four different designs to be able to measure four
different consumptions. This is a step that’s very unusual for development and had to be
done for the purpose of being able to get several different consumption estimation values.

4.11.2 Floorplan

Area allocation is done during the Floorplan step. This means that measures of the
chip are defined. Power supply and ground is defined by placing a ring around the chip.
Port placement is also set. Macro cells are also placed in this step, but they were not used
in this design. All these steps are defined by the designer.

Four metallization layers were used for the design. Density of cells is 70%. These
numbers were recommended by the S3 Group designers.

The proportions of the measurements of the chip were chosen in approximate
ration 1:2. The sizes are 157um and 82um, which gives 12874 um? of area.

4.11.3 Place cells
Standard logical cells are placed in the area and time optimization is done.

4.11.4 Clock tree synthesis

Clock tree synthesis serves for defining the clock tree in the chip. This is one of
the most important steps. It is an interesting point of how different the clock trees are in
the different uses of clock gating, which will be described in the next following chapters.

4.11.4.1 Logic clock tree
Figure 48 and Figure 49 show the logic clock tree for 12C / APB of DP device.
There is no clock gating used, therefore the clock signal leads to all registers.

Figure 48: 12C clock tree — no clock gating

Figure 49: APB Clock tree —no clock gating



Figure 50 shows the clock tree of automatic clock gating. It is very obvious and
visible how DC Shell implements clock gating by using functional clock gating. Since
most registers in the design are 8bit, so are usually 8 registers connected to each gating
cell.

Figure 51: APB Clock tree — automatic clock gating

68



Clock tree with manual clock gating is shown on Figure 52 and Figure 53. It is
very obvious that there are only those gating cells that were placed manually since there
are only a few.

Figure 53 APB Clock tree — manual clock gating
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Figure 54 and Figure 55 show 12C clock tree for combined clock gating. Here we
can see how first the manual clock gating divides the tree in several branches and then in
these branches automatic clock gating was used.

Figure 55: APB Clock tree — Manual + automatic clock gating
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4.11.4.2 Physical clock tree

The following pictures show the physical clock tree of the chips. The clock pins
are purposefully placed close to the middle of the sides of the chip, because the Cadence
tool does the routing of the clock tree from the center of the chip to make possibly short
ways to all registers.

Figure 56: Clock tree —no clock gating Figure 57: Clock tree — automatic clock gating

Figure 58Clock Tree — manual clock gating Figure 59: Clock Tree — manual + automatic
clock gating
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4.11.5 Root
In this step all cells and gates are connected.

4.11.6 Export
The netlist of the layout is exported after the physical design steps.

4.11.7 Extract

Extract serves for extracting a .spef (Standad Parasitic Extraction File) file with
parasitics (resistances and capacitances) of the design under the best and worst
conditions. This file will serve for generating a SDF (Standard Delay File).

4.11.8 Final Floorplan

The following pictures show the final floorplan after all the steps of the physical
design of the chip (according to using the clock gating). As the pictures show, Cadence
tool always used a different placement for different parts of the design. We can see that it
always placed the 12C Slave close the left side, because the 12C pins are places on the left
and APB Slave is placed towards the right side since the APB pins are on the right side.
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4.11.8.1 Floorplan — no clock gating
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Figure 61: Floorplan no clock gating with nets

Figure 60: Floorplan — no clock gating

4.11.8.2 Floorplan — automatic clock gating

Figure 62: Floorplan — automatic

automatic clock ting

with nets

Figure6: IrI

clock gating
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4.11.8.3
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Figure 64: Floorplan — manual clock Figure 65: Floorplan — manual clock gating
gating with nets

4.11.8.4 Floorplan — manual + automatic clock gating

Figure 66: Floorplan — manual + Figure 67: Floorplan — manual + automatic
automatic clock gating clock gating with nets
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4.12 Layout Verification with timing

4.12.1 Description

The layout verification serves as the final verification in this design and it serves
especially for measuring the power consumption. Therefore, there was only one
verification test used and this was the tc_rxtx000, which is the standard behavior test.

The inputs of this verification are a wave dump file (VCD file) and standard delay
file (SDF). All of these are for four different variants according to the kind of clock
gating that was used (CG_NONE, CG_AUTO, CG_MAN, CG_MAN_AUTO). VCD
files are generated for IDLE mode and COMMUNICATION mode. SDF files are also
generated for best and worst cases, which mean there are 8 VCD files and 8 SDF files.

The output of Layout verification is a PASS/FAIL report (specifying if the test
passed or failed) and a Power Report. Timing reports for worst case of timing are in
chapter 4.12.2. The following numbers and results in this document are only for timing
worst case, because worst case is obviously more important to pass than best case.

The power estimation results were measured for 1Mbit/s speed transfers. The
lowest possible frequency (15.15MHz) was used for the 12C Slave as the goal was to
reach lowest power consumption possible and frequency influences dynamic power
consumption. The reasons for using the frequency of 15.15MHz are mentioned in chapter
4.3.10.1.

4.12.2 Layout Verification Power reports for timing worst case
The following values are mentioned in mW.

4.12.2.1 Layout Verification Power report — no clock gating, Idle mode

Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.03493 3.572e-06 0.0007587 0.0357 72.91
Macro 0 0 0 0 0
I0 0 0 4.57e-10 4.57e-10 9.335e-07
Combinational 7.971e-09 0 0.0005272 0.0005272 1.077
Clock (Combinational) 0.002272 0.01043 3.913e-05 0.01274 26.01
Total 0.03721 0.01043 0.001325 0.04896 100

4.12.2.2 Layout Verification Power report — no clock gating, Communication mode

Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.03315 0.0001125 0.0007459 0.03401 71.7
Macro 0 0 0 0 0
I0 0 0 4.57e-10 4.57e-10 9.634e-07
Combinational 0.0001592 0.0002734 0.0004715 0.000904 1.906
Clock (Combinational) 0.002236 0.01025 3.891e-05 0.01252 26.4
Total 0.03555 0.01064 0.001256 0.04744 100
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4.12.2.3 Layout Verification Power report — automatic clock gating, Idle mode

Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.01501 0.0003347 0.0009836 0.01633 54.82
Macro 0 0 0 0 0
I0 0 0 7.901e-08 7.901e-08 0.0002652
Combinational 1.523e-06 2.374e-06 0.0003836 0.0003875 1.301
Clock (Combinational) 0.004542 0.008446 8.705e-05 0.01307 43.88
Total 0.01956 0.008783 0.001454 0.02979 100
4.12.2.4 Layout Verification Power report — automatic clock gating,
Communication mode
Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.01346 0.0003558 0.0009657 0.01478 52.04
Macro 0 0 0 0 0
10 0 0 7.901e-08 7.901e-08 0.0002782
Combinational 0.0001444 0.0002665 0.0003324 0.0007434 2.618
Clock (Combinational) 0.004475 0.008316 8.68e-05 0.01288 45.35
Total 0.01808 0.008939 0.001385 0.0284 100
4.12.2.5 Layout Verification Power report — manual clock gating, Idle mode
Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.006285 0.0001088 0.0008658 0.007259 40.95
Macro 0 0 0 0 0
10 0 0 2.01e-08 2.01e-08 0.0001134
Combinational 4.57e-08 5.802e-08 0.0005284 0.0005285 2.981
Clock (Combinational) 0.004933 0.004831 0.0001765 0.00994 56.07
Total 0.01122 0.004939 0.001571 0.01773 100

4.12.2.6 Layout Verification Power report — manual clock gating, Communication

mode
Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.02736 0.0004649 0.0008172 0.02865 56.9
Macro 0 0 0 0 0
I0 0 0 2.01e-08 2.01e-08 3.992e-05
Combinational 0.0001974 0.000337 0.0004422 0.0009766 1.94
Clock (Combinational) 0.008208 0.01239 0.0001197 0.02072 41.16
Total 0.03577 0.01319 0.001379 0.05034 100

4.12.2.7 Layout Verification Power report — manual + automatic clock gating, Idle

mode
Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.006596 0.0001538 0.001017 0.007767 45.09
Macro 0 0 0 0 0
I0 0 0 9.079e-08 9.079e-08 0.0005271
Combinational 4.57e-08 6.305e-08 0.0003927 0.0003928 2.28
Clock (Combinational) 0.004382 0.004526 0.0001561 0.009064 52.63
Total 0.01098 0.00468 0.001566 0.01722 100

76



4.12.2.8 Layout Verification Power report — manual + automatic clock gating,
Communication mode

Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 0.01252 0.0004771 0.0009923 0.01399 47.2
Macro 0 0 0 0 0
I0 0 0 9.079e-08 9.079e-08 0.0003064
Combinational 0.0001918 0.0003663 0.0003115 0.0008696 2.935
Clock (Combinational) 0.006229 0.008437 0.0001089 0.01477 49.86
Total 0.01894 0.00928 0.001413 0.02963 100
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5 Power consumption results

5.1 Power consumption results

There are two main consumption modes for this device — the Idle mode and
Communication mode. Both of these modes were measured since the device stays in Idle
mode part of time of its use and the consumption is lower during this period. A transfer of
6bytes both ways (12C-> APB, APB -> 12C) was run during the communication mode to
avoid inaccuracies which might be caused by not transferring enough data.

Note: Transferring 6bytes using the typical communication test took 155us.

The results of this consumption estimation are in Table 20. This table also shows
the consumption estimation generated during synthesis bases on an expected clock
activity by the synthesis tool. This information is only approximate, but can be quite
useful, because it is available right after synthesis before any steps of physical design.
Compared with the Communication mode, this value is between 60-80% of the
consumption in Communication mode. Because synthesis estimations are not as accurate
as estimations after physical design, the result evaluations in chapter 5.2 is written for
estimations run after the physical design.

Table 20: Power consumption results

Netlist type Consumption Clock gating type Units
mode NONE |AUTO MAN MAN_AUTO
After synthesis, no
timing, estimated
switching activities - 39.00 19.70 |35.10 |19.60
After layout, with IDLE 48.19 [29.32 [17.73 |17.22 uW/1s
timing switching 47.09 [28.08 |[50.34 [29.63
activity dumped from | COMMUNICATION,
gate level simulations | transfer of 6B

Percentage consumption of different modes compared to the consumption without
use of clock gating is described in Table 21. This is done for better and more concrete
results evaluation. Description and evaluation of Table 21 is in chapter 5.2.

Table 21: Power consumption energy savings

Clock gating type
AUTO MAN MAN_AUTO
IDLE 39.16% |63.21% |64.24%

COMMUNICATION, 40.37% |-6.90% |37.07%
transfer of 6B

Consumption mode
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Table 22 shows the amount of instances in each design. It is expected that clock gating will have
more logic than the case without any clock gating; this can be seen with manual clock gating. On
the other hand it is interesting that automatic clock gating and combined clock gating has fewer
instances than the case without clock. Obviously DC Compiler uses some kind of optimalization
for registers with automatic clock gating done during synthesis than for registers without this
kind of clock gating.

Table 22: Number of instances in the design

Clock gating type
NONE |AUTO |MAN |MAN_AUTO
1538 |1285 |1588 |1342 instances

5.2 Power consumptions results evaluation

5.2.1 Automatic clock gating

5.2.1.1 General

Just by using automatic clock gating the consumption drops to about 60%
compared to not using clock gating. This means about 40% of power consumption is
saved just by adding one command during the synthesis. So basically, it is very low effort
for the designer.

5.2.1.2 Idle and Communication mode compare

Both Idle and Communication mode have approximately the same consumption.
This is based on the fact of how the clock gating is done — it is functional clock gating
(described in chapter 3.4.1), so basically the same logic is still on most of the time. The
interesting thing is that since there are many gating cells that need to be supplied, the
consumption in IDLE mode is slightly higher than in communication mode.

5.2.1.3 Summary:
By basically no designer effort 40% of consumption can be saved.

5.2.2 Manual clock gating

5.2.2.1 Idle mode

Here is a significant power saving compared to automatic clock gating done
during synthesis. There is 63.21% of saved consumption during IDLE mode, compared to
automatic clock gating there was only 39.16% of saved consumption. This result is more
than satisfactory and shows how power consumption can be saved with reasonable
placement of clock gating cells based on activity modes.

5.2.2.2 Communication mode

Consumption during communication mode is higher by 6.90% than when clock
gating wasn’t used. One of the usual characteristics of manual clock gating is that
maximum momentary consumption is higher than when clock gating is not used, because
more cells are in use at one time.

79



5.2.2.3 Summary:

This mode has high communication consumption, which is higher than without
clock gating (6.9% higher); however the consumption in idle mode is lower than in the
automatic clock gating. In idle mode 24% more was saved with manual clock gating than
in idle mode with automatic clock gating.

5.2.3 Manual + automatic clock gating combination

5.2.3.1 Idle mode

In this mode the consumption saving was 64.24%. This is slightly higher than
how much was saved in idle mode with manual clock gating and is caused by the fact that
the use of combined clock gating gated some registers that were not gated during manual
clock gating.

5.2.3.2 Communication mode

In this mode the consumption saving is 37.07% compared with the consumption
without clock gating. This is 3.3% lower than with only automatic clock gating. It is the
highest consumption saving in communication mode of all clock gating variants.

5.2.3.3 Summary:

This combination seems like a good compromise between communication mode
(30.07% of consumption saved) and idle mode consumption (64.24% of consumption
saved).

5.3 Practical examples of use

| prepared the following examples to show how this IP block could be used and
how useful for saving consumption it could be with using clock gating. These following
examples were chosen on purpose to show an example when the access through DP
device would be used often and an example when it would be accessed only in certain
intervals (this is closer to the actual use scenario than accessing constantly).

5.3.1 DP IP block as a device assessing a memory
Let’s expect that the 12C Master is accessing a memory connected to the APB
Master. Expect 70% of time in communication mode.

Consumption = (70% * average communication consumption + 30% * average
idle consumption) * time of communication

Table 23: Consumption for use to access a memory

Clock gating type
NONE |AUTO |MAN MAN_AUTO
Consumption 47.420 | 28.452 | 40.557 25.907

uW/1s

Power consumption savings - 40.00 14.47 45.36 %
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Table 23 compares the different clock gating technique types in an example of
accessing memory. The consumption values are in uW per 1 second activity. The power
consumption saving values is compared with the case without clock gating use.

The device is able to save 40% of power consumption with automatic clock
gating. This was already seen from Table 21.

Manual clock gating in this case is convenient to use when the device stays in idle
mode a lot. Here it is expected that it will be in communication mode 70% of time,
therefore the manual mode gives the worst results with only 14.47% saved consumption.

Manual clock gating combined with automatic clock gating thanks to the
combination of reasonable gating cell placing dependent on the operation as well as the
use of logic clock gating round registers gives the best result — 45.36% saved
consumption. | would describe this as a very good result.

5.3.2 DP IP block as a device accessing temperature measure unit

Let’s expect that the 12C Master is accessing a unit for temperature measuring
once every 30 seconds. It sends a 6B command and receives data of 6B. This whole
transfer takes approximately 155us.

This means that the device spends 155us in communication mode and 29845us in
idle mode.

Table 24: Consumption for use to access a temperature measure unit

Clock gating type
NONE |AUTO |MAN MAN_AUTO
Consumption 1438.24 | 875.06 | 529.16 513.94

uW/30s

Power consumption
. - 39.16 63.21 64.27 o
savings %

This example better shows the effectiveness of manual clock gating in idle mode.
It also demonstrates a use case much closer to the actual use of this IP block than the use
case described in 5.3.1.

While automatic clock gating provides the same value of about 40% of saved
power consumption, with manual clock gating | achieved 63.21% of saved power
consumption. This is a very good result and shows how effective clock gating can be.

Combined clock gating gives a result of 64.27% saved consumption, which is just
slightly higher than manual clock gating. These values are close to the values only in idle
mode, because the device spends most of its time in idle mode. It also takes fewer
instances in the physical design (see Table 22) by about 15%, which can be useful and is
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one of the reasons why combined clock gating gives better results. Gating cells are also
placed to convenient registers besides that.

5.3.3 Summary

The effectiveness of saved power consumption directly depends on the amount of
time the device spends in each mode — in this case the Idle and Communication mode.
Each mode has different consumption and it is necessary to take the actual use of the
device in account. This is expressed by Ahmdal’s law and taking this in account is usually
more effective than just trying to lower the consumption in all modes. Focusing on the
modes where the device spends most of its use is very important.
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6 Summary

6.1 Goals

The goal of this thesis was to design and verify a Slave IP core for transmitting
data between 12C and APB buses using low-power consumption techniques and
comparing the results of power consumption.

6.2 Low-power techniques

The thesis describes the use of low-power techniques in IP design and compares
different techniques and their characteristics that can be used to achieve low-power
consumption. The result of the comparison was the selection of clock gating for use in the
design.

To be able to compare more results, four different clock gating modes were used —
no use of clock gating, automatic clock gating (cells placed during synthesis), manual
clock gating (clock tree gating/ cells placed manually) and combination of manual clock
gating and automatic clock gating.

6.3 Workflow and power estimations

The workflow starts from specification and goes to physical design. It includes
verification at different points of the workflow. Power estimations are run after synthesis,
as well as after the physical design.

The power estimations after synthesis are done for a typical clock activity;
therefore they’re not very accurate. The power estimations after the physical design are
accurate, because they count with all the delays in connections. The power estimations
after the physical design run in two different modes — idle mode and communication
mode. Because of this, the results after physical design are very accurate.

It was necessary to plan what tools to use for the design, since there was usually a
limited amount of licenses.

6.4 Verification

A third-party 12C Master was used for the verification to communicate with the
12C Slave designed in the Master’s thesis. A behavior model of the APB Master (bridge)
was written as a part of the thesis to verify the right transfer of data. The verification was
run for all different speeds, including: 12C speed modes 10, 50, 100, 200, 400 kb/s and
1Mb/s to verify compatibility. Self-checking verification tests were used for the
verification. Code coverage was also run as well as FSM state coverage and graphical
examples of the FSM coverage are a part of the thesis.
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6.5 IP core

This IP can be used as a hard as well as a soft macro in the designs. The size of the
design was determined by the amount of cells and the technology (65nm). The size is
157x82um, which equals 12874 um?.

6.6 Results

The saved power consumption estimation results were run for 12C data transfer
speed of 1Mbit/s and the results were more than satisfactory.

6.6.1 Automatic placing of the clock gating cells

Automatic placing of the clock gating cells during synthesis generally saves about
40% of power consumption, which is a very interesting and good result. What is even
more interesting is that the use of automatic clock gating results in the use of fewer cells
in the design — the tools are able to make good use of the logic. The synthesis tool is able
to put gating cells even inside the FIFOs (because the FIFIOs are from the same vendor as
the synthesis tool), which leads to achieving these results. When using automatic clock
gating the clock is disabled for those registers that don’t change their value (input is the
same as output of the register.

6.6.2 Manual placing of clock gating cells

Manual placing of clock gating cells gave better results in idle mode compared
with automatic placing — 63% of power consumption was saved. We can see that
reasonable gating cell placement gives good results. On the other hand, in communication
mode, the power consumption was 6.9% higher than in the case without the use of clock
gating. This is because there is more logic that needs to be driven during communication
mode than in the case with no clock gating. This is the typical behavior of clock gating —
average power consumption is lower, but maximum consumption is higher.

6.6.3 The combination of manual and automatic clock gating

The combination of manual and automatic clock gating provided the best results.
64% of power consumption was saved in idle mode and 37% in communication mode.
The higher power consumption saving in idle mode was achieved thanks to the
reasonable manual placement of gating cells that disable clocks for larger blocks (FIFOs).
In communication mode, the power consumption saving was achieved thanks to disabling
the clock to those registers that don’t change their value.

6.7 Conclusion

The results imply that it is convenient to use automatic clock gating along with
reasonable manual placement of clock gating cells. Automatic clock gating ensures that
the register clock is not enabled unless the value on the input is changed. Manual clock
gating makes sure that the clock is disabled for registers that are not needed according to
the device mode. The device mode expresses the function of the device in the mode and
only the designer knows best what parts of the device are used in which mode.
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The outputs of the thesis show power consumption savings results that are more
than satisfying. All the requirements of the assignment were fulfilled. In addition to that, |
did not finish the project with synthesis, but continued in the workflow to the physical
design to obtain more accurate power consumption results for idle and communication
mode as post-synthesis power consumption estimations are not very accurate (often 30-
70% inaccurate) and they only provide results for a typical clock activity. The power
consumption results obtained after the physical design (after the layout) provided very
accurate and impressive results.
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A. Appendix — Regression report

Below is the regression report of the verification tests. This report was passed for
all the different speeds as well as types of clock gating use.

Regression date: 2012-Mar-27

Start time : 2012-Mar-27 10:22 CEST

End time : 2012-Mar-27 10:25 CEST
tc tx000.v SIMULATION STATUS: PASSED (CPU:0.1ls, mem:41.1M)
tc_rx000.v  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1H)
tc_rx002.v  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1H)
tc_imtr000.v  SIMULATION STATUS: PASSED (CPU:0.1ls, mem:41.1H)
" tc intro0l.v  SIMULATION STATUS: PASSED (CPU:0.1s, mem:4l.1M)
" tc intr002.v  SIMULATION STATUS: PASSED (CPU:0.1s, mem:4l.1M)
tc_imtr003.v  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1H)
tc intr004.v  SIMULATION STATUS: PASSED (CPU:0.1s, mem:4l.1M)
tc_imtr005.v  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1)
tc_imtr006.v  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1H)
" tc intr007.v  SIMULATION STATUS: PASSED (CPU:0.1s, mem:4l.1M)
tc_imtr008.v  SIMULATION STATUS: PASSED (CBU:0.ls, mem:41.1H)
tc_imtr009.v  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1H)
tc intr010.v  SIMULATION STATUS: PASSED (CPU:0.1s, mem:4l.1M)
tcintr0ll.v  SIMULATION STATUS: PASSED (CPU:0.1s, mem:41.1M)
tc_othr000.y  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1H)
tc_rxtx000.y  SIMULATION STATUS: PASSED (CPU:0.ls, mem:41.1H)

Total of 17 tests, 0 failing.

Regression date: 2012-Apr-18

Start time : 2012-Apr-18 15:07 CEST
End time : 2012-Apr-18 15:07 CEST
tc rx001.v SIMULATION STATUS: PASSED (CPU:0.1s, mem:39.0M)

Total of 1 tests, 0 failing.
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B. Appendix — Schematics from
Novas Verdi

Verdi is a tool developed by Novas to view RTL schematics from Verilog code.
The code was also run through this program to avoid some of the look-and-see mistakes
and also to prove that the design is actually written according to the description above in
this text.
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Figure 68: Schematic from Verdi: dp_s_top
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Figure 69: Schematic from Verdi: dp_s_slave
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Figure 70: Schematic from Verdi: dp_s_apb
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Figure 72: Schematic from Verdi: dp
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C. Structure of the enclosed CD

/src

/text

/RTL
dp s top.v - DP device top level module
dp s i2c slave.v - I2C Slave top level module
dp s i2c fsm.v — I2C Slave FSM
dp s i2c data unit.v — I2C Slave data unit
dp s apb slave.v - APB Slave top level module
dp s apb fsm.v - APB Slave FSM
dp s apb data unit.v — APB Slave data unit
dp s global consts.v - defines and constants
dp s gating cell wrapper.v - wrapper for manually
placed gating cell
dp s fifo.v - instantiation of asynchronous FIFO
dp s resync.v - resynchronization unit
/TESTBENCH
tst bench top.v - test bench top file
wb master model.v — third party I2C Master file
i2c master top.v — third party I2C Master file
i2c master defines.v — third party I2C Master file
i2c master byte ctrl.v - third party I2C Master file
i2¢c master bit ctrl.v - third party I2C Master file
dp s pad.v - pad model
tc.v - verification tests
tc tx000.v - code for running test case tc_tx000
tc rx000.v - code for running test case tc_rx000
tc rx001l.v - code for running test case tc_rx001
tc rx002.v - code for running test case tc_rx002
tc rxtx000.v - code for running test case tc rxtx000
tc _intr00l.v - code for running test case tc intr001
tc intr002.v - code for running test case tc intr002
tc intr003.v - code for running test case tc intr003
tc intr004.v - code for running test case tc intr004
tc _intr005.v - code for running test case tc intr005
tc intr006.v - code for running test case tc intr006
tc_intr007.v - code for running test case tc intr007
tc_intr008.v - code for running test case tc intr008
tc_intr009.v - code for running test case tc intr009
tc _intr010.v - code for running test case tc _intr010
tc_intr0ll.v - code for running test case tc _intr0ll
tc _othr000.v - code for running test case tc_ othr000
dp.pdf - Master’s thesis in PDF format
dp.docx - Master’s thesis in MS Word format
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