

Contract Wizard 3.0:

Developing a GUI

Diploma Thesis

Petra Marty

Supervised by Prof. Dr. Bertrand Meyer and Dr. Karine Arnout

Chair of Software Engineering

ETH Zürich

August 2004

 ii

Project period April 26, 2004 – August 25, 2004

Student name Petra Marty

Email address petra@computerscience.ch

Supervisor name Dr. Karine Arnout

Email address karine.arnout@inf.ethz.ch

Professor name Prof. Dr. Bertrand Meyer

Email address bertrand.meyer@inf.ethz.ch

Chair of Software Engineering

Department of Computer Science, ETH Zürich

mailto:petra@computerscience.ch
mailto:karine.arnout@inf.ethz.ch
mailto:bertrand.meyer@inf.ethz.ch

ACKNOWLEDGMENTS

First of all I want to thank Dr. Karine Arnout for her supervision, her scientific support and her
very helpful comments and suggestions on this diploma thesis. I am grateful to Prof. Dr. Bertrand
Meyer who made this master thesis possible.

I thank Dominik Wotruba. He developed the tool I extended and helped me when I had
questions regarding his implementation. I would also like to thank all the members and master
students of the Chair of Software Engineering at ETH Zürich for their valuable comments
concerning the wizard. My thanks especially go to Beat Fluri, Olivier Jeger, Marcel Kessler and
Joseph N. Ruskiewicz for their constructive comments and support. Working in this group has
been a real pleasure for me.

I also would like to thank Hans Dubach for his great help and support in dealing with
administrational questions during my whole study at ETH.

Finally, I am deeply grateful to my parents for their support in every respect.

Zürich, im August 2004 Petra Marty

ABSTRACT

Design by Contract is a crucial concept to build reliable software components. However contracts
are still a specificity of the Eiffel language. With the Contract Wizard 3.0 it is possible to add
contracts like preconditions, postconditions, and invariants to an arbitrary .NET assembly, even if
it was not initially written in Eiffel.

The main goal of this project was to enrich the existing tool with a graphical user interface.
It is now possible to add contracts in an easy and intuitive way. The user can also edit the
assertions of an already contracted assembly.

TABLE OF CONTENTS

1. Introduction..2
2. Contract Wizard 2.0: the existing tool ...3

2.1 How does it work? ..3
2.2 Architecture...4

2.2.1 Abstract syntax tree ..4
2.2.2 Parser ..5
2.2.3 Code generator..7

3. Gui design and implementation..9
3.1 GUI design patterns ..9
3.2 Functionality ...11
3.3 Implementation ...13

3.3.1 Main window..13
3.3.2 Project dialog ..15
3.3.3 Assembly dialog ...16
3.3.4 Information dialog ..22
3.3.5 Progress bar ..23
3.3.6 Error dialog...25

4. Contract Wizard 3.0: additional functionality..27
4.1 New functionality..27

4.1.1 Project file...27
4.1.2 Syntax check...29
4.1.3 Compilation ..32
4.1.4 Backup ..33

4.2 Assembly parsing..33
4.2.1 .NET interface...34
4.2.2 .NET parser...37
4.2.3 Eiffel names for .NET types ...38
4.2.4 Overloaded names ..39
4.2.5 Abstract syntax tree ..44

4.3 Code generation ..47
4.3.1 Eiffel visitor ..47
4.3.2 Ace file ...47
4.3.3 XML visitor ..49
4.3.4 HTML...49

4.4 Command line interface ..51
5. Advantages and limitations...53

5.1 Benefits of using Contract Wizard..53
5.2 Limitations ..53
5.3 Future Work ..58

 vi

6. User Manual ...61
6.1 System requirement...61
6.2 Installation...61
6.3 How to create a .NET assembly..62
6.4 How to use Contract Wizard 3.0 ...64

6.4.1 Adding assembly to GAC...64
6.4.2 Gui version ...64
6.4.3 Command-line version..78

7. Conclusion ..80
A. Intended results..81
References ...83

LIST OF FIGURES

Figure 1: Contract Wizard architecture ...3
Figure 2: Internal representation of proxy classes..5
Figure 3: Eiffel code generator...8
Figure 4: Save as dialog in TextPad ...10
Figure 5: Main dialog of Contract Wizard ...12
Figure 6: Main GUI classes of Contract Wizard ..14
Figure 7: Classes corresponding to CW_PROJECT_DIALOG ...16
Figure 8: Classes corresponding to the assembly dialog ..17
Figure 9: CW_INFORMATION_DIALOG...23
Figure 10: Screenshot of progress dialog ...24
Figure 11: CW_ERROR_DIALOG ...26
Figure 12: Creating a key pair ..63
Figure 13: Deploy assembly into global assembly cache...63
Figure 14: .NET Configuration 1.1, assembly cache ...64
Figure 15: Warning dialog when the CONTRACT variable is not set...65
Figure 16: Welcome dialog ..65
Figure 17: Project dialog ..66
Figure 18: Warning dialog when specified project already exists..67
Figure 19: Warning dialog when working directory could not be created67
Figure 20: Warning dialog for an invalid assembly ...68
Figure 21: Progress dialog while parsing a .NET assembly...68
Figure 22: Assembly dialog with invariant view..70
Figure 23: Warning dialog when you try to add the same invariant twice.....................................71
Figure 24: Assembly dialog with precondition and postcondition view ..71
Figure 25: Question dialog if all preconditions shall be removed..72
Figure 26: Warning dialog when user wants to contract an attribute ...73
Figure 27: How to show contract view of a type..73
Figure 28: Launched browser with interface view of selected class CW_ACCOUNT..................74
Figure 29: Error dialog after a syntax error in one of the checked classes.....................................75
Figure 30: Progress dialog showing compilation ...76
Figure 31: Error dialog showing details about compilation error...76
Figure 32: Last dialog after a successful generation of a contracted .NET assembly77
Figure 33: Question dialog asking to restore the working directory before ending Contract Wizard
..77

LIST OF TABLES

Table 1: Main features of CW_MAIN_WINDOW..15
Table 2: Actions on tree items in CW_TREE ..18
Table 3: Feature subset of CW_LIST_BOX ..19
Table 4: Access features of CW_ASSERTION_DIALOG..20
Table 5: Code snippet from add_condition ..22
Table 6: Code snippets for progress dialog ..25
Table 7: Creation procedure of CW_ERROR_DIALOG...26
Table 8: Project file ..27
Table 9: Creation procedure of CW_PROJECT_HANDLER..28
Table 10: Second set of classes ..30
Table 11: get_enumerator function...30
Table 12: Use of CW_GELINT in CW_MAIN_WINDOW..32
Table 13: Use of CW_COMPILER_LAUNCHER in CW_MAIN_WINDOW32
Table 14: C# classes versus generated Eiffel classes ...35
Table 15: C# classes with explicit interface member implementation versus generated Eiffel
classes...36
Table 16: Compilation error CW_STRING_WRITER ..37
Table 17: Translation of special mscorlib types...38
Table 18: Overloaded .NET methods from System.IO.TextWriter..39
Table 19: Disambiguated Eiffel function names ..39
Table 20: Disambiguated .NET constructors ...40
Table 21: extend_feature from CW_LIST_ITEM..42
Table 22: Disambiguated Eiffel function names ..43
Table 23: Document type definition for generated Eiffel classes...46
Table 24: Class CW_CLR_VERSION...48
Table 25: Feature is_postcondition of CW_XML_VISITOR ..49
Table 26: Features put_basic and put_span of CW_HTML_TEXT...50
Table 27: Class interface of IPRINCIPAL...54
Table 28: Relevant features from class CW_WINDOWS_PRINCIPAL.......................................55
Table 29: Part of class interface of ITYPE_LIB_CONVERTER ..56
Table 30: Extracts of class CW_CASE_INSENSITIVE_HASH_CODE_PROVIDER57
Table 31: Compiler error of class CW_SERIALIZATION_INFO_ENUMERATOR58
Table 32: Suggestion of inheritance structure of CW_TYPE_LIB_CONVERTER59
Table 33: Factory-like Contract Wizard proxy class..60
Table 34: Output of contract_wizard –help command ...79

1. INTRODUCTION

.NET assemblies do not have contracts. To build more reliable software and improve
existing components, the Contract Wizard enables a user to interactively add contracts to the
classes and routines of a .NET assembly. The tool parses an assembly using the reflection
mechanism of .NET, generates Eiffel proxy classes containing the added contracts, and compiles
them into a new .NET assembly. The contracted proxy assembly can now be used instead of the
original assembly. Besides the Eiffel classes, the wizard also generates an XML file to store the
contracts. This enables the client to append contracts to an already contracted assembly.

The purpose of this project is to extend the existing features of the Contract Wizard. The
resulting tool – Contract Wizard 3.0 – has a graphical user interface (GUI) to add contract to a
.NET assembly. The GUI displays the types of the assembly along with their features in a
browser-like tree. The user can add contracts by entering assertions in the provided text fields. It
is also possible to edit or remove existing invariants, preconditions, and postconditions. The tool
gives feedback to the user by showing the progress while parsing an assembly, generating Eiffel
files, or compiling the generated source code. A dialog with an accurate error message informs
the user when the syntax check or the compilation did not succeed.

First, this thesis gives a description of the existing tool; then it describes the design and
implementation of the graphical user interface. Following the thesis illustrates the new
functionalities of the Contract Wizard 3.0 and discusses the benefits and limitations of the tool. A
user manual for the Contract Wizard precedes the conclusion.

Note: For simplicity reasons, this report uses words such as “he” and “his” to refer to unspecified
persons, instead of using longer constructs such as “he or she” and “his or her”, with no
connotation of gender.

2. CONTRACT WIZARD 2.0: THE EXISTING TOOL

This diploma thesis is based on an existing work called Contract Wizard 2.0, implemented at
ETH Zürich by Dominik Wotruba [1]. The goal of the current project was to extend the Contract
Wizard. Therefore, I briefly describe its functionality and architecture.

2.1 HOW DOES IT WORK?

The Contract Wizard reads a .NET assembly and separately provided contracts. It merges this
information and automatically generates Eiffel proxy classes containing the given contracts.
Then, the Eiffel classes are compiled into a new contracted .NET assembly. In fact, the new
assembly is a proxy to the original one, in the sense that it has the same interface but its
implementation just forwards every call to the corresponding method in the original assembly
after the contracts have been checked.

After a successful compilation the Contract Wizard generates an XML representation of the
contracted Eiffel proxy classes. This enables the client to append contracts to an already
contracted assembly and also to edit them. Dominik Wotruba has shown that it is faster to read
the content of the proxy classes from the XML file than from the .NET assembly directly [1]. In a
repeated use of the same assembly the Contract Wizard uses the XML file to build the internal
representation used to generate a proxy classes.

Figure 1: Contract Wizard architecture

2.2 Architecture 4

2.2 ARCHITECTURE

The most important parts of the Contract Wizard are the parsers (.NET parser, XML parser) and
the code generators (Eiffel proxy classes generator, XML generator). In the following sections I
will go through their architecture and implementation; I will explain what is needed to understand
the improvements I made on these classes (described in chapter 4).

2.2.1 ABSTRACT SYNTAX TREE

The class CW_CONTROLLER decides if the wizard parses the .NET assembly or the XML file.
For that it looks up whether a XML file exists or not. The .NET parser and the XML parser
produce an abstract syntax tree (AST) that contains the data to produce Eiffel proxy classes and
their XML representation containing the contracts.

The AST is a list of elements of type CW_TYPE. An instance of CW_TYPE has features
(CW_FEATURE), interfaces (CW_INTERFACE) and invariants (CW_INVARIANT). A feature can
either be a routine (CW_ROUTINE) or an attribute (CW_ATTRIBUTE). Attributes represent
fields; routines represent computations applicable to all instances of a class. A routine may has
multiple arguments (CW_ARGUMENT). It is further classified into a function (CW_FUNCTION)
if it returns a result or a procedure (CW_PROCEDURE) otherwise. Each feature has a list of
preconditions (CW_PRECONDITION) and postconditions (CW_POSTCONDITION).

2. Contract Wizard 2.0: the existing tool 5

Figure 2: Internal representation of proxy classes

The interfaces are the interfaces that the original .NET type implements or inherits from.
Each interface keeps track of feature names which have to be undefined in the proxy class later.
For more details, please refer to 0.

The architecture takes into account the future extension of Eiffel where it will be possible
to have assertions on attributes [6] [8], which is not possible at the moment [5].

2.2.2 PARSER

As already mentioned there are two parsers: one for parsing a .NET assembly and one for reading
an XML representation of the contracts.

.NET PARSER

The .NET parser (CW_DOTNET_PARSER) produces the AST by retrieving information from the
.NET assembly using the reflection mechanism of .NET. It parses the following information
required to generate Eiffel proxy classes:

• public types
• public .NET constructors
• public .NET methods
• public .NET fields

2.2 Architecture 6

For every inspected information a specific type node of the AST is instantiated and
appended to it (see Figure 2: Internal representation of proxy classes):

• CW_TYPE for each public type
• CW_ATTRIBUTE for every inspected public field
• CW_PROCEDURE respectively CW_FUNCTION for each method
• CW_CREATION_PROCEDURE for every parsed constructor

To generate the Eiffel proxy classes correctly, the generator has to know more than just the
name of an AST node. Important information can be: is a type deferred or expanded, is a feature
static or deferred, what is the return type of a function? To satisfy these needs every node type
holds some specific attributes that the parser sets. For each type (CW_TYPE) the parser sets the
following queries:

• is_deferred (is type deferred?)
• is_expanded (is type expanded?)
• is_array (is type an array?)
• is_enum (is it an enumeration type?; an enumeration type is a distinct type with named

constants)
• is_interface (does type represent a .NET interface?)

Moreover, the parser attaches to a type all interfaces (CW_INTERFACE) which it
implements. An attribute is enriched with the following information:

• is_static (is it a static field?)
• is_constant (does the field represent a constant value?)
• value (if the parsed field is a constant, a constant value is assigned)

For each procedure and function, the parser sets the following attributes:

• is_static (is method static?; static method are accessed through the class)
• is_deferred (is method deferred?; deferred methods are methods declared in a .NET

interface type)

Additionally a function has the attributes:

• return_type (the function’s return type)
• is_property (a property is a member that provides access to a characteristic of an object or

a class, attribute is set to true if the function is a get accessor)

A helper class CW_NAME_FORMATTER translates the .NET names into Eiffel names.
The .NET naming style is “CamelCase” and Eiffel’s convention is to use lower case and to
separate names with an underscore. For example “toString” becomes “to_string”. This class
CW_NAME_FORMATTER also handles the translation of: .NET primitive types, .NET class
names that conflict with the EiffelBase library and, .NET names that conflict with keywords of
the Eiffel language.

2. Contract Wizard 2.0: the existing tool 7

XML PARSER

The XML parser (CW_XML_PARSER) reads the XML representation of the Eiffel proxy classes
– that may contain contracts – and builds the corresponding AST. It uses the Eiffel parser
(XM_EIFFEL_PARSER) that is part of the Gobo library [3].

The structure of the XML file is defined through a document type definition (DTD). It can
be used to validate an XML file. (A listing of the DTD can be found in section 4.2.5: Abstract
syntax tree.)

2.2.3 CODE GENERATOR

The generator uses the AST obtained by the parser to create Eiffel proxy classes and their XML
representation. Initially there were three generators: an Eiffel generator
(CW_EIFFEL_GENERATOR), a Lace1 generator (CW_LACE_GENERATOR), and a XML
generator (CW_XML_GENERATOR). The new distribution has an additional generator called
CW_HTML_GENERATOR (see section 4.3.4). Each generator class has a specialized visitor that
traverses the AST and produces code corresponding to the node type of the AST.

The class CW_EIFFEL_GENERATOR generates the Eiffel classes using an Eiffel visitor
(CW_EIFFEL_VISITOR). It stores the classes in a directory that the user specified at the
beginning of the program execution.

For every type of an AST node (e.g. CW_TYPE, CW_PROCEDURE…) the generated code
structure looks different. The visitor simplifies the code generation considerably: it defines a
feature for each type of an AST node to treat every node individually. For instance, an AST node
of type CW_PROCEDURE is visited through the feature visit_procedure. This feature generates
Eiffel code specific to a procedure, including preconditions and postconditions. The Eiffel visitor
specifies features for the generation of creation procedures, attributes, functions, invariants, and
types.

1 Language for the Assembly of Classes in Eiffel (Ace), the control file of Eiffel projects

2.2 Architecture 8

Figure 3: Eiffel code generator

The class CW_LACE_GENERATOR generates an Ace file which is needed to compile the

obtained Eiffel classes. The class CW_XML_GENERATOR takes care of producing the XML file
with all types, features, and assertions contained in the AST. Here, the generator uses the class
CW_XML_VISITOR to produce a specific XML representation for each node type.

3. GUI DESIGN AND IMPLEMENTATION

The main part of this thesis was to extend the existing Contract Wizard with a Graphical User
Interface (GUI). In this section I describe the design and implementation of the added GUI.

3.1 GUI DESIGN PATTERNS

Before starting with the development of the GUI, I had a look on how to design a user friendly
GUI. Several GUI design patterns help to fulfill user demands such as ease of use, flow, visual
stimulation, consistency, and ease of navigation. The design patterns can be divided into several
categories like presentation, selection, guidance/feedback and navigation, as proposed in [10].

Below I list the patterns which I consider important to develop a GUI for the Contract
Wizard II.

GRID LAYOUT

When several information objects are presented and arranged spatially on a limited area, it is
important that the user quickly understands the information and takes action depending on that
information.

Arranging all objects in a grid using the minimal number of rows and columns improves
the time needed to scan the information. It also causes a consistent layout with minimal visual
clutter. Objects that are of the same type must be aligned and displayed in the same way.

CONTEXTUAL MENU

At any point in time, the user needs to know what his possibilities are in order to decide what to
do, especially when the number of possibilities is large and not all possibilities are available in the
current context.

A good example is the “Edit” submenu from Microsoft Word: the functions in the menu
are semantically grouped and only the actions available in the current context are highlighted; all
other menu items are disabled.

UNAMBIGUOUS FORMAT

In situations where the user needs to supply the application with structured data, the system
designer cannot be sure that the user enters the data in the correct format. The main idea here is to
avoid entering incorrect data by making it impossible to enter wrong data. If possible avoid fields

3.1 GUI design patterns 10

where users can type free text, otherwise explain the syntax with an example or a description of
the format. Also advisable is to provide sound defaults for required fields.

SHIELD

A shield is used to prevent the user from accidentally selecting a function that has irreversible
effects or requires a lot of resource to reverse. In the extra protection layer the user is asked to
confirm his/her intent with the default answer being the safe option. An example is the “Save As”
dialog in a text editor when the file already exists at the specified location. Overwriting it would
result in loss of the copy.

Figure 4: Save as dialog in TextPad

PROGRESS

When a system task takes a long time (typically more than a few seconds) and must be completed
before another successive task can start it is useful to deal with a progress bar. In that case the
user knows that the operation is being performed and approximately how long the task will take
until it is finished. The user may also not be familiar with the complexity of the task and he might
decide to interrupt it because it takes too much time. A progress bar with the estimated time until
completion is very helpful when you for example download a file from the internet. When there is
a too slow connection, the task can be aborted.

WIZARD

A wizard is useful when a user needs to perform a complex task consisting of several subtasks
where decisions need to be made in each subtask and the number of subtasks is small (typically
between three and ten steps). The wizard guides the user in the right order through the tasks;
therefore it is guaranteed that decisions necessary to perform the actual subtask have been taken.

The user receives feedback about the purpose of each task and when each complex task is
completed. By using a navigation widget the user can go to the next task. The user is able to
revise a decision by navigating back to a previous task. At any point in the sequence it is possible
to abort the task.

3. Gui design and implementation 11

NAVIGATING SPACES

When the user needs to access an amount of information which cannot be put on the available
space, the information can be shown in several spaces. Large amounts of data are usually not
unrelated and can be divided into categories that match the user’s conceptual model of the data.

This pattern suggests the user to navigate between the spaces. If the number of spaces is
small (e.g. less than eight), the navigation areas should be placed at the top using a tab control.
When the number of spaces is large, the navigation area should be placed on the left side of the
spaces using a tree structure.

3.2 FUNCTIONALITY

As the name suggests, the Contract Wizard is designed as a wizard; it is divided into four
subtasks. The first window of the Contract Wizard informs the user about what he can achieve by
using the wizard. The following dialog asks the user to open an existing project or to create a new
project. A project file always has the extension cpr. For a new project, the following information
is needed:

• full path to the assembly to be contracted

• working directory where to store generated classes and XML file

• project name

Default values are provided, except for the assembly path. The assembly and the directory
can be entered directly in the corresponding text fields or by browsing in a file, respectively
directory dialog. A filter in the file dialog makes sure that only files with valid extensions are
selected (e.g. for an assembly: files with extension .dll or .exe). If the specified directory and the
.NET assembly are valid, the Contract Wizard backs up all files from the project directory, loads
the assembly and parses it. A progress dialog shows the advancement.

The next task is the most important one. It is the place where the user can add contracts to
the selected .NET assembly. In detail the user is able to:

• look at types and features of a .NET type through browsing in a tree

• add, edit and remove (all) invariants of a selected .NET type

• add, edit and remove (all) preconditions or postconditions of a selected .NET method

• look at the Eiffel contract view of each .NET type (with updated assertions)

• look at the signature of each feature

• pick-and-drop a feature’s signature in the text box where assertions are entered

When a user asks to delete all invariants of a type, a dialog appears and the user must
confirm he really wants to execute the operation.

3.2 Functionality 12

The dialog is divided into several parts. An horizontal box at the top displays the name of
the selected assembly and its path. On the left-hand side is a tree – the assembly tree – that
reflects the public types of the assembly. The public fields and methods of a type are subnodes of
the type. A double click on a feature node, a right click on a type node, or a pres on the key “F4”
launches a browser which displays the Eiffel contract view (feature signature with pre- and
postconditions, type invariants) of the appropriate class/feature. The right-hand side provides two
text boxes to enter the assertion: one for the assertion tag, the other for the assertion expression.
Depending on the selected node type, the invariants of a type, or the pre- and postconditions of a
feature are listed in the widget above the text fields. Figure 5 shows a screenshot of the main
dialog, called assembly view.

Figure 5: Main dialog of Contract Wizard

Because .NET supports overloading it is possible that a class contains more than one
feature with the same name but different signature. To avoid confusion these features are
displayed in both assembly tree and contract view with their corresponding Eiffel name. Chapter
4.2.4 discusses overloaded .NET members.

A click on button “Next >” launches the code generator to create the Eiffel proxy classes,
the Ace file and the XML file. The code generator stores them in the project directory. Then the
Contract Wizard checks the syntax of the proxy classes. If not error occurred, the wizard launches

3. Gui design and implementation 13

the compiler to create a new, contracted .NET assembly; otherwise a dialog states the exact error.
Again, a progress dialog makes sure that the user knows how long each task will still take.

In a last dialog the user is informed where the new assembly has been stored (in the
EIFGEN\F_CODE directory relatively to the project directory).

It is always possible to cancel the execution of the Contract Wizard. If so, the wizard
restores the original state of the project directory. More on the functionality and how to use the
Contract Wizard can be found in chapter 6.

3.3 IMPLEMENTATION

Reusability has been a key concept during the development. Especially when working with
GUI it is likely that single components can be reused. An important point in the architecture is
that the GUI is independent from the business logic. Initially contracts were added to an assembly
through a command line; this functionality is still available. The root class for the command line
version is CONTRACT_WIZARD_TUI. The GUI is built with the EiffelVision2 library provided
by ISE Eiffel.

3.3.1 MAIN WINDOW

The entry point of the wizard is the class CONTRACT_WIZARD which inherits from
EV_APPLICATION. The root class first checks if the environment variable $CONTRACT,
pointing to the contract wizard delivery directory, is set. Afterwards it initializes the wizard and
launches the application. CW_MAIN_WINDOW inherits from EV_TITLED_WINDOW and
represents window of the wizard. The main window maintains a list of all dialogs appearing in the
wizard and replaces the actual dialog displayed in the window when the user presses on the
“Next >>” button. Each dialog inherits from CW_DIALOG. This class has an attribute box of type
EV_BOX that a specialized class redefines either to EV_VERTICAL_BOX or
EV_HORIZONTAL_BOX depending on the main layout of the actual task. Moreover the class has
the deferred features:

• initialize_box (initialize box and class attributes)

• is_complete (are all components of the class filled out as needed?)

• build_interface (build interface for task and extend widgets to box).

I will discuss the specializations of CW_TASK beneath. Figure 6 shows the architecture of
the main GUI.

3.3 Implementation 14

Figure 6: Main GUI classes of Contract Wizard

CW_MAIN_WINDOW also handles navigation between dialogs. For that it has a
button_bar with “Help”, “<< Back”, “Next >>”, and “Cancel” buttons at the bottom of the
window. The main window handles the button actions because a dialog itself knows nothing
about its preceding and following dialog. I have chosen this design so that it is easier to have
several possible subsequent dialogs to one dialog. Table 1 shows the most important features of
class CW_MAIN_WINDOW in their contract form.

dialog_list: LINKED_LIST [CW_DIALOG]

 -- List with all needed dialog implementations.

is_first_dialog: BOOLEAN
-- Is first dialog shown?

ensure
first_dialog_definition: Result = (main_vbox.item = dialog_list.first.box)

is_last_dialog: BOOLEAN
 -- Is last dialog shown?

ensure
last_dialog_definition: Result = (main_vbox.item = dialog_list.last.box)

go_i_th_dialog (i: INTEGER)
 -- Show `i’ th dialog.

require
i_within_bounds: i > 0 and then i <= dialog_list.count

ensure
i_th_dialog_active: dialog_list.item = dialog_list.i_th (i)
i_th_frame_shown: dialog_list.item.box = main_vbox.item

3. Gui design and implementation 15

set_button_state
 -- Set button state according to shown dialog.

ensure
back_button_sensitive: is_first_dialog implies not
 button_bar.back_button.is_sensitive
next_button_text: is_last_dialog implies
 button_bar.next_button.text.is_equal (finish_button_text)

cancel
-- User wants to cancel application.

go_next
-- Show next task.

go_back
-- Show previous task.

invariant
initial_dialog_not_void: initial_dialog /= Void
project_dialog_not_void: project_dialog /= Void
assembly_dialog_not_void: assembly_dialog /= Void
last_dialog_not_void: last_dialog /= Void
consistent_dialog_state: main_vbox.item = dialog_list.item.box
dialog_list_not_void: dialog_list /= Void

Table 1: Main features of CW_MAIN_WINDOW

The feature go_next inspects which dialog is currently displayed and executes the
corresponding action. For example: it checks existence and validation of the project file, .NET
assembly, or working directory; it is responsible for the backup of the working directory; it
initiates the parsing of the assembly and the code generation; it checks for syntax errors in the
generated files; and it launches the compilation. To fulfill these tasks it uses the helper classes:
CW_PROJECT_HANDLER, CW_CONTROLLER, CW_SUPPORT CW_GELINT, and
CW_COMPILER_LAUNCHER. At the end of the feature body, go_next calls go_i_th_dialog with
the index of the next dialog compared to dialog_list. When errors occur an error dialog with
detailed information appears.

The feature go_back simply calls go_i_th_dialog with an index one less than the current
dialog index. The latter procedure replaces the current dialog in the window with the i-th dialog
from dialog_list.

3.3.2 PROJECT DIALOG

In the project dialog (CW_PROJECT_DIALOG) the user can either select an existing project or
create a new one. The dialog basically consists of two components, namely
new_project_component and exist_project_component. The component for an existing project

3.3 Implementation 16

(CW_EXIST_PROJECT) asks the user for a path on a project file. The new project component
(CW_NEW_PROJECT) needs a path pointing to a .NET assembly, a working directory, and a
project name. Both components use text fields (CW_TEXT_FIELD) for entering text, and path
fields (CW_PATH_FIELD) for entering text associated with a browse button. A click on this
button opens a dialog for selecting a file respectively a directory, depending on the set state. The
path field has a feature set_filter. It is only possible to browse for files that are specified in the
filter, e.g. the filter "*.dll;*.exe" only allows to select files with a valid assembly extension.

The query is_complete originally inherited from CW_DIALOG is true when the text fields
belonging to a project component are filled out; which component depends on the user’s selection
to create a new project or to open an existing one.

Figure 7: Classes corresponding to CW_PROJECT_DIALOG

3.3.3 ASSEMBLY DIALOG

The core functionality of the wizard lies in the assembly dialog (CW_ASSEMBLY_DIALOG). It
enables adding, editing, and deleting contracts of a parsed assembly. Figure 5 shows a screenshot
of the dialog. Like in the project dialog a taskbar (CW_TASK_BAR) is at the top of the dialog. It
is a vertical box with a bold label and two normal labels where the user’s task of the current
dialog is written. Below it is another vertical box, the assembly_info (CW_ASSEMBLY_INFO). It
contains information about the selected assembly. A horizontal split area divides the two main
components of the dialog: the assembly_tree (CW_TREE) that inherits from EV_TREE on the left
and on its right a component to edit the assertions (CW_INVARIANT_VIEW respectively
CW_CONDITION_VIEW). There are two text fields under the tree: the type_field shows the
selected type, the feature_field shows the selected feature including its signature.

3. Gui design and implementation 17

Figure 8: Classes corresponding to the assembly dialog

The assembly dialog handles all user inputs concerning assertions and it manipulates the
AST directly. The main_window registers the AST to the assembly_dialog through the procedure
set_ast right after the parser generated the AST. The feature set_ast then calls
assembly_tree.build_tree (ast) to build the tree representing the types and features of the parsed
assembly. The feature unload_ast clears the assembly tree, all views and text fields of the
assembly dialog.

The feature build_tree from CW_TREE iterates through the types (CW_TYPE) of the AST.
For every type it creates a tree item type_tree_item. The creation procedure of
CW_TYPE_TREE_ITEM takes an argument of type CW_TYPE. For that reason it is always
possible to access the type instance of a node, which is particularly useful when a node is
selected. The feature build_tree extends all public features of a type to every type node. A feature
item is of type CW_FEATURE_TREE_ITEM and its creation procedure needs a CW_FEATURE
instead of a CW_TYPE. Having an instance of a feature in the feature node allows for example to
calculate the signature of a selected feature dynamically. The signature is involved in many ways:
a tool tip shows it when the mouse pointer is over a feature’s node; it is also used as an argument
of pebble_function. In Eiffel it is possible to pick a widget and to drop it elsewhere. Data can be
assigned to every "picked" widget. In the assembly tree the user can right click on a feature node
and drop it over the tag_field or expression_field. As the signature was assigned as pebble it is
displayed in the dropped target.

When a tree item is selected it calls all actions registered to it. A right click on a
type_tree_item shows a context menu to display the Eiffel contract view of the class. A double
click on a feature_tree_item or a press on the “F4” button also launches the browser with the
contract view of the selected node. A right click on a feature node is unhandy because the right
mouse button is already assigned to the pebble function. The feature show_contract_view
determines the type of the selected node, creates an HTML page containing the Eiffel contract
view of the selected type, and launches the browser to display the HTML. Table 2 lists a code
extract showing how the actions are assigned.

3.3 Implementation 18

select_class_actions: EV_NOTIFY_ACTION_SEQUENCE
 -- Actions when a class node is selected.

select_feature_actions: EV_NOTIFY_ACTION_SEQUENCE
 -- Actions when a feature node is selected.

within build_tree:
type_tree_item.select_actions.extend (agent select_class_actions.call (Void))
feature_tree_item.select_actions.extend (agent select_feature_actions.call (Void))

type_tree_item.pointer_button_press_actions.extend (agent show_menu)
feature_tree_item.pointer_double_press_actions.extend (agent show_contract_view)

Table 2: Actions on tree items in CW_TREE

The class CW_TREE provides queries whether a tree item is selected: is_type_selected,
is_feature_selected, and is_node_selected.

When the user selects a type node in the assembly tree the component on the right shows
all invariants of the type. The selection of a feature node causes the assertion dialog to show all
preconditions and postconditions of the selected feature. The features set_invariant_view,
set_condition_view, and set_view (a_widget: EV_WIDGET) set the corresponding view. The
assertion dialog calls these features when a node is selected.

The invariant_view and the condition_view, which displays the preconditions and
postconditions, have a deferred ancestor class CW_ASSERTION_VIEW. This class comprises two
text fields: one to enter an assertion tag (tag_field) and the other to enter the assertion’s
expression (expression_field). As already mentioned they are drop targets of a feature node. The
initialized feature complies this with tag_field.enable_dropable and
expression_field.enable_dropable.

The class has a button bar of type CW_CONTRACT_BUTTON. The instance named
button_control has four buttons labeled: “Add”, “Apply”, “Remove”, and “Remove All”. The
class CW_ASSERTION_VIEW defines (partially deferred) features to set its sensitivity state. IF
for instance an assertion text field is empty it is not possible to add a new assertion; hence the
add_button is disabled. Whereas both text fields contain an entry, the feature
set_add_button_state enables the “Add” button. Additionally it draws a frame around the button
to indicate that pressing the “Enter” key has the same effect as a clicking on the button. It uses the
feature enable_default_push_button from EV_BUTTON. Because this feature is not exported I
created a new class CW_BUTTON that inherits from EV_BUTTON and exports the needed
features (is_default_push_button, enable_default_push_button, disable_default_push_button) to
CW_ASSERTION_VIEW.

The invariant_view contains a list box of type CW_LIST_BOX that enlists the invariants of
a selected type. The class CW_LIST_BOX provides useful features to extend and replace
assertions, to query the selected item, and so on. See Table 3 for a selected overview.

3. Gui design and implementation 19

selected_action: EV_NOTIFY_ACTION_SEQUENCE
-- Actions that will be called when user select an item in `list_box'.

selected_index: INTEGER
-- Index of selected_item in `list_box'.

has_item_text (a_text: STRING): BOOLEAN
-- Does `list_box' have an item with text `a_text'?

require
a_text_not_emtpy: a_text /= Void and not a_text.is_empty

is_selected: BOOLEAN
-- Is an item in `list_box' selected?

extend_assertion (a_tag, an_expression: STRING)
-- Add assertion with `a_tag' and `a_directory' at end of `list_box'.

require
tag_not_empty: a_tag /= Void and not a_tag.is_empty
expression_not_empty: an_expression /= Void and not an_expression.is_empty

ensure
assertion_extended: has_item_text (a_tag + colon + space + an_expression)
one_more: list_box.count = old list_box.count + 1

replace_i_th_assertion (i: INTEGER; a_tag, an_expression: STRING)
-- Replace assertion at `i'th position.

require
i_within_bounds: i > 0 and then i <= item_count
…

ensure
same_count: list_box.count = old list_box.count
has_assertion: has_item_text (a_tag + colon + space + an_expression)

remove_all
-- Remove all items in `list_box'.

ensure
all_removed: is_box_empty

remove_selected_item
-- Remove selected item in `list_box'.

require
item_selected: selected_index > 0 and then selected_index <= item_count

ensure
one_less: list_box.count = old list_box.count - 1

select_item (i: INTEGER)
-- Select item with index `i' in `list_box'.

require
i_within_bounds: i > 0 and then i <= item_count

ensure
i_th_item_selected: is_selected and (selected_index = 1)

Table 3: Feature subset of CW_LIST_BOX

3.3 Implementation 20

The precondition_box and postcondition_box of class CW_CONDITION_VIEW, both of
type CW_LIST_BOX, display the contracts of a selected feature. CW_CONDITION_VIEW
contains two radio buttons to determine whether the user wants to update a precondition or a
postcondition. When a user selects the precondition_radio a click on a button in the
button_control refers to the preconditions; the postconditions are affected otherwise. A client can
query the selection of the radio button through is_precondition_selected and
is_postcondition_selected.

As noted above the assembly dialog directly manipulates the AST by using action features.
They can be divided into two blocks: features that handle user interaction on the widgets such as
selection of a node in the assembly tree or a button press in the button control of an assertion
view; and features that update the AST like removing an invariant from a type or applying a
postcondition to a feature.

The assembly dialog has attributes to access specific nodes of the AST directly (see Table
4). It updates them along with the user interaction. If for example a user selects the second
invariant in the invariant list box, the feature set_invariant sets the cursor of the list
selected_invariants to the according position. That is why the selected invariant is always
accessible through selected_invariants.item.

selected_type: CW_TYPE

-- Currently selected type in `assembly_tree'.

selected_feature: CW_FEATURE
-- Currently selected feature in `assembly_tree'.

selected_invariants: LINKED_LIST [CW_INVARIANT]
-- List of invariants of selected type.

selected_preconditions: LINKED_LIST [CW_PRECONDITION]
-- List of precondtions of selected feature.

selected_postconditions: LINKED_LIST [CW_POSTCONDITION]
-- List of postconditions of selected feature.

Table 4: Access features of CW_ASSERTION_DIALOG

When a type node is selected the dialog executes the following actions:

• updates selected type: selected_type := type_tree_item.cw_type

• sets text in type field: type_field.set_text (assembly_tree.selected_item.text)

• clears entry in feature field: feature_field.remove_text

• displays the invariant view on its right hand side: set_invariant_view

3. Gui design and implementation 21

• lists the invariants of the selected type in the invariant list box: set_invariant_list

A click on a feature node causes the assembly dialog to:

• update selected feature: selected_feature := feature_tree_item.cw_feature

• display signature of selected feature in feature field: set_feature_field

• update class type of selected feature: selected_type := type_tree_item.cw_type

• set name of selected type in type field: type_field.set_text (assembly_tree.item.text)

• set selected preconditions: selected_preconditions := selected_feature.preconditions

• set selected postconditions:
selected_postconditions := selected_feature.postconditions

• display the condition view on its right hand side: set_condition_view

• fill pre- and postcondition boxes with pre- and postconditions of selected feature:
set_condition_list

If the user selects an invariant in the invariant list box, set_invariant tracks the cursor in
selected_invariants list and displays the invariant tag and expression in the corresponding text
fields. The features set_precondition and set_postconditon do the same when the user selects a
precondition or a postcondition.

A user can manipulate an assertion through the buttons in the button bar of the assertion
view. The assembly dialog handles the corresponding button actions. For the invariant view the
following features are involved:

• invariant_view.button_control.add_action.extend (agent add_invariant)

• invariant_view.button_control.apply_action.extend (agent apply_invariant)

• invariant_view.button_control.remove_action.extend (agent remove_invariant)

• invariant_view.button_control.remove_all_action.extend
(agent remove_all_invariants)

• invariant_view.set_key_actions (agent add_invariant)

The features behave exactly as their name suggests. They all use the accessors listed in
Table 4 which are always kept up to date. The features for the condition view are similar, except
for an additional check whether the user selected the precondition or postcondition radio button.

3.3 Implementation 22

add_condition is

-- Add invariant for selected type.
require

tag_not_void: condition_view.tag /= Void
expression_not_void: condition_view.expression /= Void

do
…

 if condition_view.is_precondition_selected then (1)
 -- Add new precondition

 if not selected_feature.has_precondition (new_precondition) then (2)
 selected_feature.add_precondition (new_precondition) (3)

 -- Add `new_precondition' to `condition_view'.
 condition_view.precondition_box.extend_assertion
 (a_tag, an_expression) (4)
 else
 display_error_dialog (Precondition_already_exists)
 end
 else
 …

Table 5: Code snippet from add_condition

Table 5 lists a code snippet of the feature add_condition. Because all update features
follow the same scheme, add_condition gives an idea of the implementation of all update
features: they update the AST (3) and adapt the widget in the assertion view that displays the
assertion (4). A new precondition is only inserted when the selected feature does not already
contain it (2). Of course this also applies to invariants and postconditions. Handling of pre- and
postconditons requires an additional query returning which radio button the user selected (1).
Otherwise the wizard does not know if it has to update the pre- or postcondition of a feature.

The assembly dialog manages the sensitivity state of the buttons in the button bar. “Add”is
only enabled when a node of the tree is selected and the assertion tag and expression fields are
filled out. When “Apply” is enabled an assertion from a box has to be selected as well. “Remove”
is selectable as soon as the user selected an assertion.”Remove All” is enabled when the assertion
box of a selected node is not empty.

3.3.4 INFORMATION DIALOG

The first and the last dialog of the wizard are of type CW_INFORMATION_DIALOG. Figure 9
shows first dialog of the Contract Wizard. The information dialog shows a nice pixmap on the left
hand side. On the right hand side it has three labels: one of them is bold to display the heading,
the other labels can be used to display additional information to the user. A client can set the text
of these labels through the features set_title, set_text_1 and set_text_2.

3. Gui design and implementation 23

Figure 9: CW_INFORMATION_DIALOG

3.3.5 PROGRESS BAR

The progress bar (CW_PROGRESS_BAR) is a central element along with the user interaction. It
gives the user feedback about a started process and also gives him an idea of how much time the
operation will take. Figure 10 shows a screenshot of the progress dialog. The wizard uses the
progress dialog when it:

• parses the .NET assembly

• reads the XML file containing the proxy classes’ representation

• backs up the files in the project directory

• generates the Eiffel proxy classes, the Ace and XML files

• checks the syntax of the generated Eiffel files

• compiles the classes to a new .NET assembly

• does finish freezing

3.3 Implementation 24

• restores files from the project directory

Every class that wants to indicate a progress inherits from the class CW_GUI_SUPPORT
that provides an access point to the progress dialog called Progress_dialog. In order that every
class accesses the same instance of the dialog, Progress_dialog is a once feature. A once feature
executes its body only the first time it is called in a system execution. The result obtained by the
first call is applicable to all instances of a class.

Figure 10: Screenshot of progress dialog

The progress dialog has to know how many steps the process has to update the progress
bar accordingly. At the beginning of each process the client of the progress dialog sets the
number of steps that the process will have (2). It also sets the title of the dialog and the label that
indicates what type of file is being processed (3). The check is_gui_application (1) is necessary
because the command line of the Contract Wizard uses the same classes but then, graphical
widgets like the progress dialog are not supported. (See Table 6 for a code snippet.)

in client class

if is_gui_application then (1)
 Progress_dialog.set_max_classes (assembly.get_exported_types.count) (2)
 Progress_dialog.set_title (Parsing_xml_text_title)
 Progress_dialog.set_class_label (Parse_xml_class) (3)
end
 …
Progress_dialog.process (cw_type.eiffel_name) (4)

in CW_PROGRESS_DIALOG
process (a_class_name: STRING) is

-- Set labels and status of `progress_bar'.
require

a_class_name_not_void: a_class_name /= Void
a_class_name_not_empty: not a_class_name.is_empty

do
 -- Check if correct progress_vbox is shown.
if main_vbox.first /= general_progress_vbox then

3. Gui design and implementation 25

 set_general_vbox
end
 -- Set text labels.
general_progress_vbox.class_text_label.set_text (a_class_name) (5)
general_progress_vbox.class_to_go_text_label.set_text (class_to_go_number.out)
 -- Update progress in `progress_bar’.
class_to_go_number := class_to_go_number -1 (6)
progress_bar.set_proportion ((max_classes - class_to_go_number) / max_classes)

end

Table 6: Code snippets for progress dialog

To update the progress bar CW_PROGRESS_DIALOG provides a function process. In
every step of the process the client class calls process together with a string that the dialog
displays (4), e.g. the file being parsed or generated. The process function sets the label (5) and
updates the advancement of the progress bar (6).

The progress dialog for showing the progress of the compilation looks a bit different. It has
an extra label to indicate the degree of the compilation and a pixmap on the right shows the
degree visually (cf. compilation progress dialog in ISE EiffelStudio). Nonetheless the compilation
information has to be shown in the same instance of the progress dialog. Therefore I implemented
a vertical box (CW_COMPILATION_VBOX) that the dialog replaces with the “normal” progress
box (CW_PROGRESS_BOX) when it has to process compilation information. The progress bar
itself is always the same, only the labels of the dialog are exchanged.

The progress dialog provides a special process function for the compilation input. The
compiler forwards its output line by line to the progress bar. A line always has the same structure,
i.e.:

[78% - 131] Degree 1 class CW_ACCOUT

The feature process_compilation tokenizes the input and sets the label for the degree,
cluster or class, and cluster to go or class to go. It advances the progress bar according to the
percentage of the compiler output.

3.3.6 ERROR DIALOG

Another important element to give feedback to the user is the error dialog. The wizard uses the
standard EV_WARNING_DIALOG for errors that can be explained in one or two sentences such
as a file does not exist or the .NET assembly is not valid. If the syntax checker finds an error in a
class or the compilation produces an error it is appropriate to show a detailed error description to
the user. The class CW_ERROR_DIALOG as shown in Figure 11 undertakes this task.

3.3 Implementation 26

Figure 11: CW_ERROR_DIALOG

When the wizard shows the error dialog it first lists a general error description to the user.
The user can click on the “Details >>” button to find out more about the error. The feature
detail_button_selected from CW_ERROR_DIALOG extends the error dialog with the detailed
error description and removes it after a repeated click. Table 7 shows the creation procedure of
CW_ERROR_DIALOG. The function split_string divides an_error_text in multiple lines of
length Const_error_text_length (1).

make_with_error_text (an_error_text, a_detail_text: STRING) is

-- Create `Current' and assign error messages.
require

error_text_not_empty: an_error_text /= Void and not an_error_text.is_empty
detail_text_not_void: a_detail_text /= Void

do
default_create
set_error_text (split_string (an_error_text, Const_error_text_length)) (1)
set_detail_text (a_detail_text)

ensure
error_text_assigned: error_text.is_equal (split_string (an_error_text,
 Const_error_text_length))
detail_text_assigned: detail_text.is_equal (a_detail_text)

Table 7: Creation procedure of CW_ERROR_DIALOG

4. CONTRACT WIZARD 3.0: ADDITIONAL
FUNCTIONALITY

In this diploma project I did not only extend the Contract Wizard with a graphical user interface
but also with new functionality. I partly added new classes and partly improved existing classes.
In this chapter I will describe the changes I made concerning the business logic of the Contract
Wizard.

4.1 NEW FUNCTIONALITY

In this section I will discuss new functionality that affects the wizard’s application flow.

4.1.1 PROJECT FILE

For the Contract Wizard I introduced the notion of project. To contract a new .NET assembly the
user has to create a new project. Given the right input parameters, provided through the GUI or
command line, the class CW_PROJECT_HANDLER takes care of creating a new project file. The
file stores the project name, working directory, assembly location, and assembly name. The
project handler stores the file in the working directory. It has the same name as the project and
the extension .cpr; an abbreviation for contract project. Table 8 shows the content of a sample
project file.

Project name: Account
Working directory: D:\eth\DA\test\
Assembly location: D:\eth\DA\example\Accouting_Example\Account.dll
Assembly name: Account.dll

Table 8: Project file

Besides creating a project file the project handler is also responsible for opening an
existing project. It receives the path on the project file as argument in its creation procedure and
then the feature read_project_file reads the content from the file and assigns it to public attributes
of CW_PROJECT_HANDLER.

4.1 New functionality 28

An important job of the project handler is to load the assembly from the assembly path.
The method load_from takes as argument the path where the assembly is located and returns the
loaded assembly (2). The attribute assembly is of type ASSEMBLY, a class from the .NET
Framework. While loading the assembly it is possible that the system throws an exception, for
example FileNotFoundException (assembly file is not found) or
BadImageFormatException (assembly file is not a valid assembly). Therefore it is important
that the feature calling load_from catches the exception in a rescue clause and sets a flag if the
assembly is not loaded (3). Table 9 shows the creation procedure of CW_PROJECT_HANDLER
that creates a new project file and loads the assembly.

make (an_assembly_name, an_assembly_path, a_working_directory, a_project_name:
 STRING) is

-- Initialize Current with values for a new project.
require

-- …Strings not empty…
local

is_erroneous : BOOLEAN
do

if not is_erroneous then
 assembly_name := an_assembly_name (1)
 assembly_path := an_assembly_path
 working_directory := a_working_directory
 project_name := a_project_name

 create_project_file
 -- Load assembly
 assembly := assembly.load_from (assembly_path) (2)
 is_assembly_loaded := True
 end

ensure
assembly_name_assigned: assembly_name.is_equal (an_assembly_name)
assembly_path_assigned: assembly_path.is_equal (an_assembly_path)
working_directory_assigned: working_directory.is_equal (a_working_directory)
project_name_assigned: project_name.is_equal (a_project_name)
assembly_not_void: is_assembly_loaded implies assembly /= Void

rescue (3)
is_erroneous := True
is_assembly_loaded := False
retry

end

Table 9: Creation procedure of CW_PROJECT_HANDLER

Other classes (CW_MAIN_WINDOW, CW_CONTROLLER…) use the project handler to
access information about the loaded project or the assembly. Besides the attributes that are
directly assigned in the creation procedure (1) the project handler provides the functions:

4. Contract Wizard 3.0: additional functionality 29

• assembly_directory: STRING: directory of assembly without assembly name

• assembly_extension: STRING: extension of current assembly ("exe" or "dll")

• assembly_name_no_extension: STRING: name of assembly without extension

• project_id: STRING: pseudo project id of current project

The class CW_MAIN_WINDOW uses project_id to determine whether users selected the
same project as they did before. (Scenario: user was in assembly dialog, goes back to project
dialog, and again forward to assembly dialog). The window class maintains two project ids:
project_id and previous_project_id. When they are equal the user has not changed the project
settings and the wizard shows exactly the same assembly dialog as before. To save time and
resources the wizard only parses the .NET assembly and builds the assembly tree afresh when
another project is defined.

4.1.2 SYNTAX CHECK

Before the wizard compiles the generated Eiffel classes we wanted to check them for syntax
errors. There were many approaches until we came up with the final solution. I will discuss them
briefly.

Our first idea was to use Gobo Eiffel Lint (gelint) [3]. Gelint is a tool which is able to
analyze Eiffel source code and report validity errors. It uses the tools Gobo Eiffel Lex (gelex) and
Gobo Eiffel Yacc (geyacc). Regrettably gelint only works on classic Eiffel, not on Eiffel for
.NET. The problem is that the ISE Eiffel compiler relies on some XML files to make the
correspondence between .NET and Eiffel for .NET classes; and this format is not published.

The second approach was to implement an Eiffel assertion parser. I took the grammar
description from the Gobo Eiffel Parse Library and swept everything out that is not needed to
parse an assertion. The start condition was no more %start Class_declarations but
%start Assertions. Then I used geyacc to generate an Eiffel assertion parser. Whenever the
user added a new assertion (invariant, pre- or postcondition) the assembly dialog checks it using
the assertion parser. A drawback of this approach is that the assertion grammar description of the
yacc file has to be adapted manually when the Eiffel syntax changes so it does not come
automatically with a new gobo release. However the assertion checker still exists and can be
rebound in the wizard easily.

I tried to come up with an algorithm that checks for validity of the assertion expression. I
made a list of identifiers occurring in the assertion and checked if they match a feature name of
the current class or a parameter of the feature in case of a pre- or postcondition. This approach
was too restrictive: an identifier is also valid when it relies on a parent feature but then it got
rejected.

The next idea was to generate a second set of classes that only contains classic Eiffel code
and then analyze the classes with gelint. The Contract Wizard generates wrapper classes as listed

4.1 New functionality 30

in Table 10 on the left hand side. I created a new Eiffel visitor class
(CW_EIFFEL_TEST_VISITOR) based on the existing Eiffel visitor which generates Eiffel classes
as listed in Table 10 in the right column. The wrapper features just have a "do end" as body and
no dotnet_proxy feature.

class CW_A
feature

foo is
do

dotnet_proxy.foo
end

feature -- Implementation
dotnet_proxy: DOTNET_A

end

class CW_A
feature

foo is
do
end

end

Table 10: Second set of classes

These classes are Eiffel classes. Thus, they can be parsed by gelint to determine whether
assertions are valid or not. The generation of the classes worked fine but they still had references
to .NET classes (argument type of procedures or functions, and return type of functions). Table
11 shows an example: IENUMERATOR relies on a type from the .NET Framework and thus
gelint cannot handle it.

frozen get_enumerator: IENUMERATOR is
 do
 end

Table 11: get_enumerator function

We than had the following idea: get the list of referenced assemblies from the assembly
given as input to the Contract Wizard. The referenced assemblies are needed to compile the given
assembly and are listed in the “assembly” clause of the Ace file. Generate the wrapper classes
corresponding to the classes in those referenced assemblies. So the work that the Contract Wizard
does for only one assembly would be done to all referenced assemblies. Every wrapper class only
has "do end" bodies and no dotnet_proxy attribute. To refer to the example in Table 11: among
others the wizard generates a wrapper class for IENUMERATOR. Save those wrapper classes in a
temporary directory. When checked with gelint whether contracts are valid we include that
directory in the Ace file and remove the “assembly” clause. If not errors occured, we regenerate
the new assembly with contracts as the Contract Wizard always did before (with “assembly”
clause in the Ace file and no inclusion of that temporary directory). We considered incrementality
for performance reasons.

4. Contract Wizard 3.0: additional functionality 31

I started to implement this idea and noticed that the Contract Wizard does not yet handle
overloaded .NET methods. In .NET languages (C#, C++) it is possible to overload a method with
different signatures. Eiffel does not support feature overloading and therefore the feature names
of overloaded methods have to be adapted (see section 4.2.4).

After this odyssey – where I learnt quite a few things – we came up with the final solution:
test the generated classes on syntax errors and then start the Eiffel compiler to verify the source
code.

CW_GELINT

The class CW_GELINT, based on gelint, takes over the syntax check. The root feature reads an
Ace file as input and looks through the system clusters to map the Eiffel class names with the
corresponding file names. I generated the Ace file using the class
CW_LACE_TEST_GENERATOR. The difference with the standard Ace file generated by the
Contract Wizard is that it has no “assembly” clause and no attributes which set .NET properties.

When the parsing of the Ace file produces no errors, it returns a universe (ET_UNIVERSE)
which is used to parse the classes. Foremost the creation procedure sets the compiler to the ISE
Eiffel compiler and redirects the error reporting to a file (error_file_out). This forces the parser to
write errors in a file from where they can be retrieved later on. In the next step the features calls
parse_root_class. It is very important to call error_file_out.close after the parsing otherwise the
file will remain empty even if syntax errors occurred.

The creation procedure of CW_GELINT receives along with a string of the directory
(directory) where the Ace file and the classes to be parsed are stored, a class list (class_list) with
the name of all generated Eiffel classes. The procedure parse_root_class iterates through all
classes of the universe but only parses classes in the root cluster. It is not necessary to check the
classes in other clusters because they are library classes (base, base_net) and have a correct
syntax. When the cluster equals the root cluster the feature iterates through class_list and parses
all classes in it. This means that only the generated classes are parsed.

The feature parse_all in ET_UNIVERSE parses all classes of the current cluster. I could not
use parse_all because it parses all classes from the current directory. It is possible that you have
classes in that directory that do not correspond to the actual project (e. g. when you created
another project in the same directory before). Instead of parse_all I use the parse_file feature. It
takes as arguments a file, its name, and a cluster. It parses all classes in the file within the given
cluster. If a class has a syntax error the flag has_syntax_error is set to true.

If has_syntax_error is true the private feature generate_syntax_error reads the file
containing the errors line by line and appends each line to syntax_error.

With this features a client of CW_GELINT can verify the generated classes and retrieve
syntax errors in a comfortable way. Table 12 shows a code snippet showing how
CW_MAIN_WINDOW uses CW_GELINT to test the generated classes on syntax errors.

4.1 New functionality 32

-- Check generated files on syntax errors.
create gelint.make (project_handler.working_directory, controller.class_list)
if gelint.has_syntax_error then

Progress_dialog.hide
create error_dialog.make_with_error_text (Syntax_error_text, gelint.syntax_error)
error_dialog.set_title (Syntax_error_title)
error_dialog.show_modal_to_window (Current)
failure := True

else
-- Launch compilation and check for compilation errors.

Table 12: Use of CW_GELINT in CW_MAIN_WINDOW

4.1.3 COMPILATION

The class CW_COMPILER_LAUNCHER handles the compilation of the Eiffel source. The class
already existed but it now has new functionalities: it finalizes the code instead of only freezing it
and it executes “finish_freezing” to compile the C code and to link part of the finalization. Table
13 shows how CW_MAIN_WINDOWS uses CW_COMPILER_LAUNCHER to compile the Eiffel
classes to a .NET assembly. The code snippet follows right after the code extract of Table 12
above.

-- Launch compilation and check for compilation errors.
create compiler_launcher.make (project_handler.assembly_name_no_extension,
 project_handler.assembly_extension, project_handler.working_directory) (1)
compiler_launcher.compile (2)
compiler_launcher.wait_for_exit
if compiler_launcher.is_successful_compiled then

 -- Execute finish freezing.
compiler_launcher.finish_freezing (3)
compiler_launcher.wait_for_exit

else
Progress_dialog.hide
create error_dialog.make_with_error_text (Verification_error_text

compiler_launcher.error_message) (4)
error_dialog.set_title (Verification_error_title)
error_dialog.show_modal_to_window (Current)
failure := True

end

Table 13: Use of CW_COMPILER_LAUNCHER in CW_MAIN_WINDOW

4. Contract Wizard 3.0: additional functionality 33

CW_MAIN_WINDOW first initializes an instance of CW_COMPILER_LAUNCHER
(compiler_launcher) with the necessary arguments (1). CW_COMPILER_LAUNCHER uses the
class SYSTEM_DLL_PROCESS to launch the Eiffel compiler. The creation procedure make sets
the working directory of the compilation and the needed parameters to redirect its output. After
the creation of compiler_launcher the main window initiates the compilation (2). Compile sets the
compile command depending on the existence of a compiled project and launches the compilation
process. Moreover it reads the compiler output and forwards it to the progress dialog which
displays it to the user.

After a successful compilation the main window calls finish_freezing (3).This feature
changes the working directory to “EIFGEN\F_Code” where it executes “finish_freezing”. If the
compilation produces errors the wizard retrieves the error message (error_message) from the
compiler launcher and shows an error dialog with the detailed error description (4). The compiler
launcher sets error_message by gathering all strings appearing after “Error Code” from the
compiler output.

4.1.4 BACKUP

The wizard backs up all files from the project directory after having parsed the .NET assembly.
The files are temporary stored in the directory “cw_tmp” relatively to the contract delivery
directory ($CONTRACT). If the wizard has already generated Eiffel files and the user cancels the
application, the wizard restores the files to the project directory – if the user wants to. The
Contract Wizard already had a backup functionality but this version parsed the .NET assembly
twice and regenerated the Eiffel files from the backup AST in case of failure.

The procedures backup_directory and restore_to_directory from the class CW_SUPPORT
do the backup and the restore. They both take a path as argument: backup_directory uses it as
source directory for the backup, restore_to_directory as destination directory for the restore. The
second directory is always “$CONTRACT\cw_tmp”. After having launched a progress dialog
they call copy_directory. This procedure copies all files from the source directory to the
destination directory and shows its progress in the progress dialog.

4.2 ASSEMBLY PARSING

When I tried to compile the classes that the wizard generated, I realized that the source was not
always compilable. Possible errors were: no support of overloaded .NET methods, undeclared
methods inherited from an explicit interface member implementation, or insufficient accuracy in
parsing the signature of a .NET method. In this section I will discuss the changes that affected the
parsing of the .NET assembly.

4.2 Assembly parsing 34

4.2.1 .NET INTERFACE

An interface specifies the members that must be supplied by classes implementing the interface.
The interface itself does not provide implementations for the members that it defines. The
Contract Wizard class corresponding to an interface is a deferred class since Eiffel does not
support the notion of interface. The semantic of the class stays the same: a .NET class X that
implements an interface I is represented by an effected Eiffel class CW_X that inherits from I.
Table 14 compares an interface I, an abstract class X that implements the interface I, and a class Y
that extends class X directly with the Eiffel classes that the Contract Wizard generated from those
C# classes.

.NET C# Contract Wizard

public interface I
{
 int index();
}

public abstract class X: I
{
 public int index()
 {
 return 1;
 }
 public string foo()
 {
 return "foo";
 }
}

public class Y: X
{
 public string bar()
 {
 return "bar";

deferred class CW_I
feature -- Access
 index: INTEGER is

 -- dotnet_name: "I.index (): Int32"
 deferred
 end

end
--
deferred class CW_X inherit

I
 …
feature -- Access
 index: INTEGER is

 -- dotnet_name: “X.index (): Int32"
 do

Result := x_ref.index
 end

 foo: SYSTEM_STRING is
 -- dotnet_name: "X.foo (): String"
 do

Result := x_ref.foo
 end

feature {NONE} -- Implementation
 x_ref: X

 -- Reference to class X
end

class CW_Y inherit

I
 …
feature -- Access
 index: INTEGER is

4. Contract Wizard 3.0: additional functionality 35

 }

}

 -- dotnet_name: Y.index (): Int32"

 do

Result := y_ref.index
 end

 foo: SYSTEM_STRING is
 -- dotnet_name: "Y.foo (): String"
 do

Result := y_ref.foo
 end

 bar: SYSTEM_STRING is
 -- dotnet_name: "Y.foo (): String"
 do

Result := y_ref.foo
 end

feature {NONE} -- Implementation
 y_ref: Y

 -- Reference to class Y
end

Table 14: C# classes versus generated Eiffel classes

What you can see is that CW_X and CW_Y both inherit from the interface I, although Y
does not explicitly declare to implement I. A C# class inherits all interface implementations
provided by its base classes; since Y extends X, Y inherits the interface implementation of X,
namely index. When a class Y extends another class X, Y inherits all methods from X; for example
the method foo in the above example. In C# all this works implicitly. The Contract Wizard code
generator does this explicitly: it lists all (indirectly) inherited interfaces in the inherit clause and
generates code for all inherited features. In exchange, the code generator does not list the super
class X in the inheritance clause of CW_Y because it already writes the inherited feature foo from
class X directly in the code.

The structure of the generated Eiffel proxy classes comes from the .NET parser; or rather
how the .NET parser (CW_DOTNET_PARSER) uses the reflection mechanism of .NET. A call
type.get_methods returns all public methods from a type including the inherited method
implementations. A call type.get_interfaces returns all the interfaces implemented or inherited by
the current type.

The problem arises with explicit interface member implementations [11]. An explicit
interface member declaration is a method or property declaration that references a fully qualified
interface member name. For an annotated example see Table 15 on the left hand side, it is an
extract from mscorlib, the base library of the .NET Framework [13]. IDisposable.Dispose is an
explicit interface member implementation of the class TextWriter.

It is not possible to access an explicit interface member implementations by its fully
qualified name in a method invocation. They can only be accessed through the interface instance

4.2 Assembly parsing 36

by its member name. They are often used when the name of an interface member is not
appropriate for the implementing class.

.NET C# Contract Wizard

interface IDisposable
{
 public void Dispose();
}

class TextWriter: IDisposable
{
 void IDisposable.Dispose() {…}
}

class StringWriter: TextWriter
{
 …
}

deferred class CW_IDISPOSABLE
feature -- Access
 dispose is

 --dotnet_name:
 “IDisposable.Dispose ()”
 deferred
 end

end

deferred class CW_TEXT_WRITER inherit

IDISPOSABLE
 …
feature {NONE} -- Implementation
 dispose is (1)

 -- dotnet_name:
 “TextWriter.Dispose ()"
 do
 end

end

class CW_STRING_WRITER inherit

IDISPOSABLE
 …
feature {NONE} -- Implementation
 dispose is (2)

 -- dotnet_name:
 “StringWriter.Dispose()"
 do
 end

end

Table 15: C# classes with explicit interface member implementation versus generated Eiffel classes

Because explicit interface member implementations are not accessible through class
instances, they are excluded from the public interface of a class. Therefore the .NET parser does
not obtain them through the call type.get_methods. However, every class that inherits from an
interface and is effective must effect all features declared in the interface class. The Contract
Wizard did not consider that. Therefore, the generated classes were not compilable. In the above
example CW_TEXT_WRITER and CW_STRING_WRITER inherit from IDISPOSABLE and did

4. Contract Wizard 3.0: additional functionality 37

not list dispose as a proper feature. As for CW_TEXT_WRITER this has no consequences since it
is deferred, the compiler throws an error when CW_STRING_WRITER did not declare dispose
(see Table 16).

Error code: VCCH(1)
Error: class has deferred feature(s), but is not declared as deferred.
What to do: make feature(s) effective, or include `deferred' before `class' in
Class_header.

Class: CW_STRING_WRITER inherit IDISPOSABLE
Deferred feature: dispose From: IDISPOSABLE

Table 16: Compilation error CW_STRING_WRITER

The solution is shown in Table 15: every class that inherits from an interface lists all
explicit interface member implementations, but does not export them. Additionally, the interface
member implementations have an empty body. It is not possible to call the feature on the
reference object as string_writer_ref.dispose since dispose is not declared as public in the class
StringWriter and therefore not available to client classes. This also means that it is impossible to
add contracts to those features because nothing is propagated to the actual class. The following
subsection discusses the changes affecting the .NET parser.

4.2.2 .NET PARSER

The parse_type feature from CW_DOTNET_PARSER inspects now – besides public constructors,
public fields, and public methods –explicit interface member implementations. The query
has_interface_methods checks if the type being parsed has an interface with at least one public
method. (This is true for TextWriter and StringWriter: they have an interface IDISPOSABLE with
the public method dispose.) If has_interface_methods returns true the parser calls the procedure
inspect_interface_methods.

The feature inspect_interface_methods loops through all interfaces that comply with the
Common Language Specifiaction (CLS) of the actual type. For every interface it inspects all its
methods. If the type does not already have a method with the same return type and arguments as
the inspected method, the parser appends the method to the AST as a private feature. Whether the
feature is appended as procedure or as function depends on the feature’s return type: if the return
type is void, the procedure appends it as a procedure, otherwise as a function. The appended
features conform to the explicit interface member implementations.

The way I chose to handle the explicit interface member implementations seems at first
glance extraordinary. Indeed it was not the first approach. I first had the idea to get all private
methods of a type and check whether their method names contain a dot, for example
System.IDisposable.Dispose. (Explicit interface members are always declared with their fully

4.2 Assembly parsing 38

qualified interface member name and therefore the declaration contains a dot.) Every method
fulfilling the condition was added as a private feature. The problem of this approach was that the
parser could not obtain every interface method. Still there was no dispose feature listed in the
class CW_STRING_WRITER. The method dispose is not an explicit private interface in this class
because it inherits dispose from CW_TEXT_WRITER.

4.2.3 EIFFEL NAMES FOR .NET TYPES

The Contract Wizard analyzes a .NET assembly and produces Eiffel classes for every type the
assembly defines. Eiffel names are derived from .NET type names by taking the substring after
the rightmost dot in the full class name. Then the formatter converts the string into an Eiffel
compliant name by making it upper case and separating it in embedded words by underscore. For
example System.Collection.ArrayList becomes ARRAY_LIST.

If the basic derivation produces a name which conflicts with a class name in the EiffelBase
Library the name formatter (CW_NAME_FORMATTER) disambiguates it. System.String conflicts
with STRING and becomes SYSTEM_STRING. The query eiffel_formatted_defined_type_name
from CW_NAME_FORMATTER returns a non-conflicting Eiffel name. A conflict also applies to
the base types; the feature eiffel_formatted_primitive_type_name handles their name comflicts.

When the parsed assembly is mscorlib [13] a few more name conversions are necessary to
stay conformant with the class names which the ISE Emitter produces. The class names and their
outcome are listed in Table 17. The new feature eiffel_formatted_special_name carries out the
translation.

Convert → SYSTEM_CONVERT
Mutex → SYSTEM_MUTEX
Thread → SYSTEM_THREAD
Zone → SYSTEM_ZONE
DESCUNION → DESCUNION_IN_ELEMDESC
SpecialFolder → SPECIAL_FOLDER_IN_ELEMDESC

Table 17: Translation of special mscorlib types

The mscorlib classes Descunion and SpecialFolder are inner classes of
System.Runtime.InteropServices.Elemdesc respectively System.Environment. Since the Contract
Wizard does not parse inner classes yet, their translation is a little hack.

4. Contract Wizard 3.0: additional functionality 39

4.2.4 OVERLOADED NAMES

OVERLOADED .NET MEMBER NAMES

The .NET object model allows overloading function names. This means that a .NET type can
support multiple functions with the same name but different argument types. Since the Eiffel
model prohibits overloading, any overloaded routine must be disambiguated. Table 18 shows the
signature of a few overloaded methods in their .NET form. They are all declared in the class
System.IO.TextWriter.

WriteLine (System.String)
WriteLine (System.Object)
WriteLine (System.String, System.Object)
WriteLine (System.Char[])
WriteLine (System.Char[]), System.Int32, System.Int32)

Table 18: Overloaded .NET methods from System.IO.TextWriter

Table 19 shows the overloaded .NET methods together with the disambiguated Eiffel
function name. To obtain a unique name the algorithm appends as much signature type names as
necessary after the name of the function [9]. The type names are separated by underscore.

WriteLine (System.String) (1)
write_line_string (value: SYSTEM_STRING)

WriteLine (System.Object) (2)
write_line_object (value: SYSTEM_OBJECT)

WriteLine (System.String, System.Object)
write_line_string_object (format: SYSTEM_STRING; arg_0: SYSTEM_OBJECT)

WriteLine (System.Char[]) (3)
write_line_character_array (buffer: NATIVE_ARRAY [CHARACTER])

WriteLine (System.Char[], System.Int32, System.Int32)
write_line_character_array_integer (buffer: NATIVE_ARRAY [CHARACTER];
 index: INTEGER; count: INTEGER)

Table 19: Disambiguated Eiffel function names

4.2 Assembly parsing 40

To make routine names better readable the algorithm omits the system_ prefix from defined
types (1) and (2). If the type of a signature is an array of type X, the name appended to the basic
feature name is x_array (3).

CONSTRUCTORS IN .NET

Like creation procedures in Eiffel, .NET constructors are used to initialize new instances of types.
The .NET object model allows overloading constructors. Like an overloaded method, an
overloaded constructor differs in the set of argument types.

The constructor name obtained from the .NET type is always .ctor. If a class only defines
one constructor the corresponding Eiffel creation procedure name is make (as it was already
implemented in CW_NAME_FORMATTER). However, if there are overloaded versions of the
constructor, these versions need to be transformed to be compilable in Eiffel.

The algorithm translates an overloaded constructor by starting with make_from_ and then
appending the argument names separated with the conjunction _and_ . Table 20 lists the
constructors from the class System.Collections.BitArray with their according Eiffel creation
procedure declaration.

void .ctor (length: Int32) (1)
make_from_length (a_length: INTEGER)

void .ctor (length: Int32, defaultValue: Boolean) (2)
make_from_length_and_default_value (a_length: INTEGER;
 a_default_value: BOOLEAN)

void .ctor (bytes: Byte[])
make_from_bytes (a_bytes: NATIVE_ARRAY [INTEGER_8])

void .ctor (values: Boolean[]) (3)
make_from_values (a_values: NATIVE_ARRAY [BOOLEAN])

void .ctor (values: Int32[]) (4)
make_from_values_1 (a_values: NATIVE_ARRAY [INTEGER])

void .ctor (bits: BitArray)
make_from_bits (a_bits: BIT_ARRAY)

Table 20: Disambiguated .NET constructors

When a constructor has one argument, the algorithm appends the argument name (1). If
there are more arguments, the Eiffel name results from the argument names connected with _and_
(2). It may occur that more than one constructor has the same argument names but different

4. Contract Wizard 3.0: additional functionality 41

argument types [(3) and (4)]. In that case digits are appended to the procedure name to remove
remaining ambiguity.

IMPLEMENTATION

The classes used to implement the overloaded member names are CW_FEATURE_LIST and
CW_FEATURE_ITEM. CW_FEATURE_LIST is a linked list of CW_FEATURE_ITEM.
CW_FEATURE_ITEM itself is a linked list of CW_FEATURE. The feature list contains all
features of a parsed type, stored in the feature items. All features of one feature item have the
same (.NET) name. In the example of Table 19 all features named WriteLine are maintained in
the same feature item. Other features from type TextWriter such as Write or Flush are stored in
another feature item. That is why the feature list has as many feature items as the type has
different member names: for every .NET member there exists one feature. This data structure is
used to construct overloaded member names.

For a client it is easy to get the overloaded names: it first needs to pass all features of a type
to the feature list by calling feature_list.extend_feature (a_feature) for each feature and then to
initiate the overloaded name generation by calling feature_list.set_overloaded_feature_names.
Afterwards the client can access the overloaded names of a feature through
a_feature.overloaded_name.

Actually, the class CW_NAME_GENERATOR does exactly the described pattern and it is
even simpler to get the overloaded name of a feature: initialize the name_generator with the AST
obtained by the parser and call name_generator.generate_overloaded_names. This feature loops
through all types of the AST and their features. Thereafter every CW_FEATURE in the AST is
assigned with an overloaded name. The feature parse_dotnet from CW_CONTROLLER uses the
name generator after having obtained the AST from the .NET parser.

The features extend_feature and set_overloaded_feature_names from
CW_FEATURE_LIST do the actual task of transferring overloaded method names into Eiffel
conforming names. The procedure extend_feature attaches the received feature a_feature to the
right feature item. If the feature list already has a feature item with the name of a_feature it
extends the feature to the existing list item. Otherwise it creates a new list item and extends the
feature to that. See Table 21 for a code illustration.

4.2 Assembly parsing 42

extend_feature (a_feature: CW_FEATURE) is
-- Extend Current with new feature item or extend existing feature item.

require
a_feature_not_void: a_feature /= Void
a_feature_name_not_empty: not a_feature.eiffel_name.is_empty

local
feature_item: CW_FEATURE_ITEM

do
 -- Does `Current' contains item with `a_name'?
if not has_feature_name (a_feature.eiffel_name) then

 create feature_item.make_with_name (a_feature.eiffel_name)
 extend (feature_item)
end
go_name (a_feature.eiffel_name)
item.extend (a_feature)

ensure
has_item: has_feature (a_feature)

end

Table 21: extend_feature from CW_LIST_ITEM

The feature set_overloaded_feature_names iterates through all feature items of
CW_FEATURE_LIST. If the feature item contains overloaded names (that means the feature item
contains more than one feature) it calls item.set_overloaded_names on it.

As discussed in the subsection above the feature set_overloaded_names from
CW_FEATURE_ITEM implements the algorithm to assign a unique feature name to every
feature. All features in the feature item have the same .NET name. Informally spoken the
algorithm appends as much signature type names as necessary to the feature name. To do so it
inspects every feature from the current feature item. If the feature is an attribute, the feature name
stays the same. An attribute has by definition no arguments and therefore no argument type that
can be appended.

When the feature is not an attribute, it is a routine. The feature set_overloaded_names
iterates through the arguments of the routine and appends their type name to the overloaded
name. This is done until either an argument type differs from the other arguments types compared
to all other features in the list item or all arguments of the current routine have been inspected.
This check is done by is_argument_distinguisable (a_routine, arguments.index). Table 22
contains an example of overloaded feature names with the same original name. In every box the
original Eiffel name is displayed above the overloaded feature name.

First the algorithm inspects the feature write (value: SYSTEM_STRING) and iterates
through all its arguments. Although there is another feature with the same argument type at the
first position (3), the algorithm stops after having appended _string to the feature name. This is
because the routine only has one argument and nothing more can be appended. This has no
further impact since it is sure that there is no other feature with exactly the same signature.
(Otherwise the original .NET assembly would not be compilable because overloaded methods

4. Contract Wizard 3.0: additional functionality 43

must have different signatures.) So, if a feature has the same argument type as another feature at
position i, it is sure that they differ in another argument type.

write_line (value: SYSTEM_STRING) (1)
write_line_string (value: SYSTEM_STRING)

write_line (value: SYSTEM_OBJECT) (2)
write_line_object (value: SYSTEM_OBJECT)

write_line (format: SYSTEM_STRING; arg_0: SYSTEM_OBJECT) (3)
write_line_string_object (format: SYSTEM_STRING; arg_0: SYSTEM_OBJECT)

write_line (buffer: NATIVE_ARRAY [CHARACTER]) (4)
write_line_character_array (buffer: NATIVE_ARRAY [CHARACTER])

write_line (buffer: NATIVE_ARRAY [CHARACTER]; index: INTEGER;
 count: INTEGER) (5)
write_line_character_array_integer (buffer: NATIVE_ARRAY [CHARACTER];
 index: INTEGER; count: INTEGER)

Table 22: Disambiguated Eiffel function names

The algorithm only appends the type name of the first two arguments to the last feature of
Table 22 although the feature has three arguments. The third argument is not needed because the
second argument type INTEGER differs from all other arguments at position two.

Before appending an underscore and the name of the type, set_overloaded_names checks
whether the argument type is a defined type or not. If it is a defined type, the name of the type is
appended without the system_ prefix (as it is also done in Eiffel for .NET). Array types are
appended with x_array where x is the array’s type; for example NATIVE_ARRAY [CHARACTER]
becomes character_array.

The concept of name overloading for .NET constructors is the same: first all creation
procedures of a type are registered to CW_CREATION_PROCEDURE_LIST, then a call of the
form creation_procedure_list.set_overloaded_creation_procedure_names causes the creation
procedure list to assign an overloaded name to every creation procedure it contains. This feature
sets the overloaded name by iterating through all arguments of a creation procedure and
appending every argument name of the procedure separated by an underscore. (See also algorithm
description of subsection “Constructors in .NET”.) Only procedures with the same argument
names but different types need special treatment. An example can be found in Table 20, the
procedures (3) and (4). The feature is_multi_overloaded returns true when another creation
procedure in the list already has the same overloaded name. Then the function
multi_overloaded_name takes the temporary overloaded name as an argument and returns a
distinct name for the creation procedure. That for multi_overloaded_name appends a unique
index to the procedure name. The index is a global class attribute of
CW_CREATION_PROCEDURE_LIST. After the algorithm appended the index to a procedure

4.2 Assembly parsing 44

name it increases the index. Like this it is guaranteed that the same index is not appended again to
another procedure of the current procedure list.

4.2.5 ABSTRACT SYNTAX TREE

To master the more powerful .NET parser it was necessary to adapt the type definition from the
abstract syntax tree (AST).

As already mentioned in the previous section, the parser adds an explicit interface member
implementation as a private feature to the current type. I extended the class CW_FEATURE with
the attribute is_public. When is_public returns false the feature is treated as private. In the GUI
application only public types are listed in the assembly tree.

An important feature is the attribute overloaded_name that returns the overloaded Eiffel
name (name of Eiffel feature when more than one feature in the class has the same name). The
attribute is attached to CW_FEATURE. The classes CW_FEATURE_LIST and
CW_CREATION_PROCEDURE_LIST handle the assignment of overloaded_name to every
feature in the AST.

The class CW_TYPE has a new attribute is_by_reference. If a method parameter in the
original .NET method is specified with the out or ref keyword, the type of the parameter is a
reference type and is_by_reference is set to true. A method can consist of the following kinds of
formal parameters: value parameters, reference parameters, output parameters, and parameter
arrays.

DOCUMENT TYPE DEFINITION

The XML generator stores the structure of the AST in an XML file. In an iterative use the wizard
parsed the XML file instead of the .NET assembly to get the internal representation of the Eiffel
classes. The structure of the XML file is defined by a document type definition (DTD). This DTD
defines the legal building blocks of an XML document. Various tools verify the structure of an
XML document against a DTD. Table 23 shows the DTD, changes are marked with a yellow
border.

<?xml version="1.0" encoding="utf-8"?>
<!ELEMENT cw_ast (cw_type+)>
<!ELEMENT cw_type (interfaces?, cw_creation_procedures?, cw_attributes?,
cw_procedures?, cw_functions?, cw_invariants?)?>
<!ELEMENT cw_creation_procedures (cw_creation_procedure)*>
<!ELEMENT cw_attributes (cw_attribute)*>
<!ELEMENT cw_procedures (cw_procedure)*>
<!ELEMENT cw_functions (cw_function)*>
<!ELEMENT cw_preconditions (cw_precondition)*>
<!ELEMENT cw_postconditions (cw_postcondition)*>

4. Contract Wizard 3.0: additional functionality 45

<!ELEMENT cw_invariants (cw_invariant)*>
<!ELEMENT interfaces (interface)*>
<!ELEMENT cw_arguments (cw_argument)*>
<!ELEMENT cw_type
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 namespace CDATA #REQUIRED
 is_deferred (yes | no) #REQUIRED
 is_expanded (yes | no) #REQUIRED
 is_enum (yes | no) #REQUIRED
 is_interface (yes | no) #REQUIRED
>
<!ELEMENT cw_creation_procedure (cw_arguments?, cw_preconditions?,
cw_postconditions?)?>
<!ELEMENT cw_creation_procedure
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED

 overloaded_name CDATA #REQUIRED
>
<!ELEMENT cw_attribute (type+, cw_preconditions?, cw_postconditions?)?>
<!ELEMENT cw_attribute
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED

 overloaded_name CDATA #REQUIRED
 is_constant (yes | no) #REQUIRED
 value CDATA #REQUIRED
 is_static (yes | no) #REQUIRED

 is_public (yes | no) #REQUIRED
>
<!ELEMENT cw_procedure (cw_arguments?, cw_preconditions?, cw_postconditions?)>
<!ELEMENT cw_procedure
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED

 overloaded_name CDATA #REQUIRED
 is_deferred (yes | no) #REQUIRED
 is_static (yes | no) #REQUIRED

 is_public (yes | no) #REQUIRED
>
<!ELEMENT cw_function (cw_arguments?, type+, cw_preconditions?, cw_postconditions?)>
<!ATTLIST cw_function
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED

 overloaded_name CDATA #REQUIRED
 is_deferred (yes | no) #REQUIRED
 is_static (yes | no) #REQUIRED

4.2 Assembly parsing 46

 is_public (yes | no) #REQUIRED
 is_property (yes | no) #REQUIRED
>
<!ELEMENT cw_argument (type+)>
<!ATTLIST cw_argument
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
>
<!ELEMENT cw_invariant EMPTY>
<!ATTLIST cw_invariant
 tag CDATA #IMPLIED
 expression CDATA #REQUIRED
>
<!ELEMENT cw_precondition EMPTY>
<!ATTLIST cw_precondition
 tag CDATA #IMPLIED
 expression CDATA #REQUIRED
>
<!ELEMENT cw_postcondition EMPTY>
<!ATTLIST cw_postcondition
 tag CDATA #IMPLIED
 expression CDATA #REQUIRED
>
<!ELEMENT interface EMPTY>
<!ATTLIST interface
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 to_string(yes | no) #REQUIRED
 equals (yes | no) #REQUIRED
 get_hash_code (yes | no #REQUIRED
>
<!ELEMENT type EMPTY>
<!ATTLIST type
 dotnet_name CDATA #REQUIRED
 eiffel_name CDATA #REQUIRED
 is_array (yes | no) #REQUIRED

 is_by_ref (yes | no) #REQUIRED
>

Table 23: Document type definition for generated Eiffel classes

4. Contract Wizard 3.0: additional functionality 47

4.3 CODE GENERATION

4.3.1 EIFFEL VISITOR

With the new functionality of the .NET parser (explicit interface member implementations,
support of overloaded names) it was necessary to adapt the existing CW_EIFFEL_VISITOR. See
section 2.2.3 for a short description of the Eiffel visitor. An AST node (CW_TYPE,
CW_FUNCTION…) has a flag whether it was already visited through a visitor or not. (After the
first visit, is_visited is true.) The Eiffel visitor is registered to every feature node type twice. In
the non-visited state the features are either extended to creation_procedure_list
(CW_CREATION_PROCEDURE_LIST) or feature_list (CW_FEATURE_LIST). Later, the visitor
uses these two lists to generate an additional comment for overloaded features.

In the actual visit where the visitor generates code for every node type, the visitor
distinguishes between public and private features. The code of the feature body – the part
between do and end – is only generated when the feature is public, otherwise the body remains
empty. A private feature is an explicit interface member implementation of a type (see section
4.2.1). The generated source code of these features is not extended to the list containing
procedures or features, but to the list interface_features. Finally, the source code that
interface_features contains is written after the {NONE} clause of the current class text.

To append the name of a feature to the class text, the visitor now uses overloaded_name
instead of eiffel_name. Every feature node has an attribute overloaded_name, which is a unique
name of the feature. When the original .NET method is not overloaded, overloaded_name is equal
to eiffel_name. For all overloaded features generate_overloaded_comment comments the feature
with additional information of the form -- (+2 overloads). This comment means that the class has
two other features with the same Eiffel name. Now the creation_procedure_list and feature_list
come into play since every feature is registered to one of them. A call of the form
feature_list.overloaded_count (a_feature.eiffel_name) returns the number of features that have
the same Eiffel name as a_feature. It works similarly with the creation procedures. Due to
creation_procedure_list the code generation for the create clause implemented in
generate_creation_text is also simplified.

When is_by_reference of an argument type is true, the feature generate_feature_type sets
type to the actual generic parameter of TYPED_POINTER [G]. The features
generate_preconditions and generate_postconditions generate the feature text corresponding to
require and alternatively ensure clause. When a feature appears in the redefinition clause of a
class, require is changed to require else and ensure to ensure then.

4.3.2 ACE FILE

In Eiffel for .NET you can specify whether the Eiffel compiler should generate an exe
(executable) or a dll (Dynamic Link Library) assembly. The associated option in the Ace file is

4.3 Code generation 48

msil_generation_type. The Ace file is a central control file for Eiffel projects where - among
other things - the compilation options of the project is described.

The option msil_generation_type (“exe”) forces the compiler to create an
executable; the declaration msil_generation_type (“dll”) enforces the creation of a
dynamic link library. The class CW_LACE_GENERATOR creates an Ace file that the compiler
uses to create a .NET assembly. It sets the option in the Ace file according to the extension of the
input assembly. If the original assembly file has the extension “dll” the compiler will generate a
dll assembly.

Another option in the Ace file is msil_clr_version (x). If the parameter x is set to
“v1.0.3705”, the compiler uses the libraries form .NET Framework version 1.0, if it is set to
“v1.1.4322”, the compiler uses the libraries from .NET Framework version 1.1. The paramter
msil_clr_version (x) is also important: if the compiler tries to use the libraries from a
version that is not installed, it fails to generate the contracted .NET assembly.

The lace generator sets the CLR2 version of the Ace file to the same version number as
used to develop the contract wizard. If a developer takes the Ace file
contract_wizard_1_1.ace to create a new project with EiffelStudio, the lace generator adds
the line msil_clr_version (“v1.1.4322”) to the generated Ace file.

The trick to set the CLR version dynamically is to have a class with the same name in two
different files. I have implemented the class CW_CLR_VERSION in the class files
cw_clr_version_1_0.e and cw_clr_version_1_1.e. The constant Msil_clr_version
returns the right version according to the Ace file name. An exclude clause in the Contract
Wizard Ace file makes sure that EiffelStudio only creates a new Contract Wizard project with one
of both class files. When the lace generator adds the CLR version to the Ace file it gets the same
version as used in EiffelStudio. Table 24 shows a listing of class CW_CLR_VERSION with the
parameter set for version 1.1 of the .NET Framework.

class CW_CLR_VERSION

feature -- Access

Msil_clr_version: STRING is "msil_clr_version (%"v1.1.4322%")"
 -- Msil_clr_version ("v1.1.4322")

end

Table 24: Class CW_CLR_VERSION

When I tested the Contract Wizard on other .NET libraries, I noticed that the Ace generator
does not create a list of all referenced assemblies in Ace file; it just appended a reference to the
mscorlib statically. However, the compiler needs a list of all assemblies referenced by the input

2 Common Language Runtime

4. Contract Wizard 3.0: additional functionality 49

assembly in the “assembly” clause of the Ace file. The feature
generate_referenced_assembly_list of class CW_LACE_GENERATOR appends all referenced
assemblies with their name, version number, and public key token to the “assembly” clause in the
Ace file. Furthermore it sets a prefix for most assemblies to disambiguate class names.

4.3.3 XML VISITOR

The XML generator uses the XML visitor (CW_XML_VISITOR) to generate the XML file
holding the Eiffel class representation. The new attributes in the AST (overloaded_name,
is_public, is_by_reference) caused changes in the XML visitor. I adapted the visitor in a way that
it appends the new attributes at the according position together with their values.

The feature generate_contracts creates the XML tags with the contracts of a class. It
checks for every assertion whether it is an invariant (is_invariant), a precondition
(is_precondition), or a postcondition (is_postcondition). However, is_postcondition
(an_assertion) always returned false even if an_assertion was a postcondition. Thus the XML file
did not contain the postconditions of a feature. The mistake was a local variable with a wrong
type: a_postcondition was declared as CW_PRECONDITION. Table 25 shows the corrected
feature.

is_postcondition (an_assertion: CW_ASSERTION): BOOLEAN is
-- Is `an_assertion' a postcondition ?

require
assertion_not_void: an_assertion /= Void

local
a_postcondition: CW_POSTCONDITION

do
a_postcondition ?= an_assertion
Result := (a_postcondition /= Void)

end

Table 25: Feature is_postcondition of CW_XML_VISITOR

4.3.4 HTML

The user can access the interface of any type by selecting the corresponding type node in the
assembly tree. The wizard launches a web browser and displays the interface view of the selected
type including its contracts. The text layout is the same as in the HTML documentation generated
by ISE EiffelStudio [2].

It is important that the Eiffel interface is displayed in a nice layout with different colors.
However, the EiffelVision2 library provides no facility to render text. After considering other

4.3 Code generation 50

possibilities, we decided to have a platform independent solution: generating an HTML file for
every selected type and launching a browser to display them.

The HTML generator (CW_HTML_GENERATOR) handles the creation of the HTML files.
The creation procedure make creates an instance of CW_HTML, namely html_page. CW_HTML
represents the content of an HTML file, divided into title, head, and body. A client can set these
attributes by calling set_title (a_string), set_head_attributes (a_string), append_head_attributes
(a_string), and set_body_content (a_string) without worrying about HTML tags. A call like
html_page.out returns the content of the whole HTML file with correct title, head, and body tags.
After the creation of html_page, make appends a reference to the style sheet used to render
HTML. The style sheet is located in the subdirectory doc\css relative to $CONTRACT.

Like the Eiffel visitor, the HTML visitor (CW_HTML_VISITOR) takes over the part of
generating the HTML source. CW_HTML_VISITOR inherits from CW_VISITOR and redefines
type_text and feature_text to CW_HTML_TEXT. (The attributes type_text and feature_text hold
the text being generated by the visitor.) CW_HTML_TEXT inherits from STRING and provides
features to append new lines, tabs, text, or text together with a class identifier from a style sheet.
The client does not need to take care of HTML tags since CW_HTML_TEXT manages them. See
Table 26 for a code listing.

put_basic (s: STRING) is
-- Append `s' to `html_text'.

require
s_not_empty: s /= Void and then not s.is_empty

do
append (s)

ensure
s_appended: has_substring (s)
text_bigger: count > old count

end

put_span (a_text: STRING; a_class_ident: STRING) is
-- Put `a_text' in span with `a_class_ident' attribute.

require
a_text_not_void: a_text /= Void
a_text_not_empty: not a_text.is_empty
a_class_ident_not_void: a_class_ident /= Void
a_class_ident_not_empty: not a_class_ident.is_empty

do
put_basic (“<SPAN CLASS=”)
put_basic (Inverted_comma)
put_basic (a_class_ident)
put_basic (Inverted_comma)
put_basic (“>”)
put_basic (a_text)
put_basic ("")

end

Table 26: Features put_basic and put_span of CW_HTML_TEXT

4. Contract Wizard 3.0: additional functionality 51

The features from the HTML visitor are the same as the features from the Eiffel visitor but
the text is appended in a different way. For example to add the text “class interface” the visitor
calls type_text.put_span (Class_keyword + Space + Interface_keyword, E_keyword). The text
“class interface” is now linked to the class “.ekeyword” defined in the stylesheet and therefore
displayed as an Eiffel keyword. Always when the text has to be formatted in a special way, the
visitor calls put_span with the text and the corresponding identifier of the style sheet class;
otherwise it calls put_basic. The HTML visitor does not generate code for the non-public
features. They are not listed in the assembly tree and the user cannot add contracts to them.

The HTML page is generated dynamically after the user decided to display the interface
view of a class. Thus, the invariants, preconditions, and postconditions are always up-to-date and
match with the contracts listed in the invariant view and contract view of the assembly dialog.

Note: The HTML generator stores the HTML files in the subdirectory cw_html relatively
to the Contract Wizard delivery directory ($CONTRACT).

4.4 COMMAND LINE INTERFACE

The Contract Wizard also provides a command line interface (TUI, short for text user interface)
to add contracts to a .NET assembly. The input options and the application flow have changed
slightly compared to the initial version developed by Dominik Wotruba. Refer to chapter 6.4.3 for
a guided tour about how to use the command line of the Contract Wizard. The following section
describes the modifications in the respective class files.

The class CONTRACT_WIZARD_TUI (originally called APPLICATION) handles the user
input from the command line. Some changes in the class CONTRACT_WIZARD_TUI were
necessary because the GUI and the TUI use the same class files; other changes are optimizations.

I added the notion of project to the Contract Wizard. Therefore the text interface creates a
project file from its input. It takes the path to the assembly file (an_assembly_path) and checks if
the file exists. If this is not the case it terminates the application, otherwise the TUI extracts the
name of the assembly (an_assembly_name) from the assembly path. Afterwards it gets the name
of the project (a_project_name) by taking the assembly path without the extension .dll or .exe.
The “wizard” only continues if the specified working directory exists. Now the TUI has enough
information to create a project file, respectively a project handler (CW_PROJECT_HANDLER).
The TUI needs no longer to care about loading the assembly from the assembly path; this job is
done by the project handler.

If the user wants to remove all contracts from an assembly, the TUI deletes the XML file
from the project directory and launches the compiler to generate an assembly without contracts.
The old version did not start the compilation thus the actual contracted .NET assembly remained
unchanged. The TUI does not provide an option to edit existing contracts anymore. It comes from
the location where the generated XML file is stored. Originally the “wizard” stored it in a
subdirectory of the global assembly cache (GAC) and it was not accessible to the user outside the

4.4 Command line interface 52

TUI environment. Now the XML file is stored in the project directory and the user can edit its
content at any time.

The feature add_contracts reads the contracts from a file and uses the contract handler
(CW_CONTRACT_HANDLER) to add the contracts to the corresponding classes and features.
Before the contract handler adds an invariant to a class, it checks whether the class already
contains the same invariant. It also inspects the existing preconditions of a feature before calling
a_feature.add_precondition (a_precondition); the same applies to postconditions.

After the creation of the Ace file and Eiffel proxy classes the TUI starts the compilation
(finalizing and “finish freezing”). The resulting assembly has the same file extension as the
original assembly. The controller creates the XML file containing the representation of the Eiffel
classes after a successful compilation. In the old wizard version, the controller generated the
Eiffel proxy classes a second time although they were not changed.

5. ADVANTAGES AND LIMITATIONS

5.1 BENEFITS OF USING CONTRACT WIZARD

Except Eiffel for .NET, the .NET languages such as C#, VB.NET, C++, etc. do not support
contracts. It is because the CLI (Common Language Infrastructure) does not natively support
Design by Contract. The CLI is the core of Microsoft .NET technology; it is a runtime
environment which specifies a common type system and an intermediate language. It supports
managed execution of components written in multiple high level languages that all compile to a
common intermediate language (IL).

Thanks to the Contract Wizard it is possible to add Eiffel-like contracts to any .NET
assembly, whatever language it was originally written in. The programmer uses the wizard to
explore the classes and their features, interactively deciding to add contract elements –
preconditions, postconditions, and class invariants. The wizard uses this input to generate a proxy
assembly that implements the contracts and call the non-contracted original component. Once the
new assembly is generated, the programmer can simply use it instead of the original assembly and
has the benefits of the specified contracts.

The Contract Wizard provides incrementality: it is possible to add contracts to an already
contracted assembly. It is also possible to edit and remove existing contracts. Among the Eiffel
proxy classes, the tool generates an XML file to store the contracts, hence the incrementality.

5.2 LIMITATIONS

However, adding contracts to an assembly a posteriori is not as good as putting the contracts right
from the start. It is still better to have native support for contracts and write them right from the
beginning when developing software. The runtime assertion monitor raises an exception when an
assertion is violated. An assertion violation result from a bug that probably would not have been
detected without native support of contracts. Therefore, contracts help in writing correct software.

Contracts also facilitate the task of software documentation. By just reading the contracts
of a class, a developer quickly gets an overview of its obligations and benefits (especially useful
when “reading” libraries). Above all, it is difficult to specify contracts for an assembly a
posteriori. The best contracts cross someone’s mind while developing the software. If they cannot
be written directly into the source code, the probability is big that the contracts get lost.

5.2 Limitations 54

OVERLOADED .NET MEMBERS

The Contract Wizard is more powerful than before, but it still has limitations. The applied
algorithm to resolve overloaded method names works fine apart from some special cases. An
unsuccessful example is the class System.Security.Principal.WindowsPrincipal from the core
.NET library mscorlib. It is an effective class and inherits from the interface IPrincipal. This
means that the according Eiffel proxy class CW_WINDOWS_PRINCIPAL has to provide an
implementation for all deferred features declared in the interface IPRINCIPAL. Table 27 shows
the interface view3 of IPRINCIPAL.

deferred class interface IPRINCIPAL

feature -- Query

deferred is_in_role (a_role: SYSTEM_STRING): BOOLEAN
 -- dotnet_name: "IPrincipal.IsInRole (role: String): Boolean"

deferred identity: IIDENTITY
 -- dotnet_name: "IPrincipal.get_Identity (): IIdentity"

end

Table 27: Class interface of IPRINCIPAL

A problem arises because the class WindowsPrincipal effects the feature is_in_role and
additionally overloads this feature. As a consequence, the Contract Wizard renames the
overloaded features in the resulting class CW_WINDOWS_PRINCIPAL to get disambiguated
names. But now, the class does not compile because it no more provides an implementation for
the deferred feature is_in_role inherited from IPRINCIPAL. The overloading algorithm appends
to every overloaded feature name the type of the argument and therefore, no feature name
matches is_in_role. The compiler states: “Error: class has deferred feature(s), but is not declared
as deferred.” Table 28 lists the relevant code of CW_WINDOWS_PRINCIPAL generated by the
Contract Wizard.

class CW_WINDOWS_PRINCIPAL inherit
 IPRINCIPAL

feature -- Query

 is_in_role_string (a_role: SYSTEM_STRING): BOOLEAN is
 -- dotnet_name: "WindowsPrincipal.IsInRole (role: String): Boolean"
 -- (+2 overloads)

 do

3 An interface view is not a valid Eiffel class; it is a form of software documentation.

5. Advantages and limitations 55

 Result := windows_principal_ref.is_in_role (a_role)

end

 is_in_role_windows_built_in_role (a_role: WINDOWS_BUILT_IN_ROLE): BOOLEAN is
 -- dotnet_name:
 -- "WindowsPrincipal.IsInRole (role: WindowsBuiltInRole): Boolean"
 -- (+2 overloads)

 do
 Result := windows_principal_ref.is_in_role (a_role)

end

 is_in_role_integer (a_rid: INTEGER): BOOLEAN is
 -- dotnet_name: "WindowsPrincipal.IsInRole (role: Int32): Boolean"
 -- (+2 overloads)

 do
 Result := windows_principal_ref.is_in_role (a_rid)

end

Table 28: Relevant features from class CW_WINDOWS_PRINCIPAL

A similar error occurs in the class System.Type which inherits from
System.Reflection.ICustomAttributeProvider. The interface ICustomAttributeProvider has an
overloaded feature GetCustomAttributes. In Eiffel for .NET the corresponding feature names are
translated into get_custom_attributes and get_custom_attributes_type. (The Eiffel emitter4 only
adapts the name of one feature; the other feature name stays the same.) This means that all
Contract Wizard proxy classes inheriting from ICUSTOM_ATTRIBUTE_PROVIDER must list
features with exactly the same name. The Contract Wizard does not know how the features are
named in the inherited Eiffel for .NET class. It applies the standard renaming algorithm and
translates the feature names into get_custom_attributes_boolean and get_custom_attriubtes_type.

This particular problem could be solved when the generated Eiffel proxy classes do not
inherit from the abstract classes produced by the Eiffel Emitter (e.g.
ICUSTOM_ATTRIBUTE_PROVIDER), but from the according class generated by the Contract
Wizard (e.g. CW_ICUSTOM_ATTRIBTE_PROVIDER). Because the class
CW_ICUSTOM_ATTRIBUTE_PROVIDER contains two features with the same name, it adapts
the name of both.

There exist classes where it is not understandable how the Eiffel Emitter generates the
names for overloaded features in wrapper classes. (The algorithm used by the Emitter is not
publicly available.) Table 29 shows an example from the deferred class
ITYPE_LIB_CONVERTER. The Contract Wizard does not generate the same name for the
overloaded feature convert_type_lib_to_assembly in the descendant Eiffel proxy class
CW_TYPE_LIB_CONVERTER and therefore the compiler prints an error message. The first

4 The tool Eiffel Emitter integrated in EiffelStudio analyzes a .NET Framework assembly and produces
XML files of the assembly classes. The compiler uses its internal recipe to compile all this into a .NET
assembly.

5.2 Limitations 56

feature name from ITYPE_LIB_CONVERTER remained untouched. On the other hand, the
Emitter appended all type names except for the last type name to the second feature name. It
would be sufficient to add fewer types name to obtain a unique feature name. In such cases the
Contract Wizard has no chance to get exactly the same feature names for the overloaded feature
convert_type_lib_to_assembly in the proxy classes that inherit from ITYPE_LIB_CONVERTER.

deferred class interface ITYPE_LIB_CONVERTER

feature -- Query

deferred convert_type_lib_to_assembly (type_lib: SYSTEM_OBJECT;
asm_file_name: SYSTEM_STRING; flags: INTEGER;
notify_sink: ITYPE_LIB_IMPORTER_NOTIFY_SINK;
public_key: NATIVE_ARRAY; key_pair: STRONG_NAME_KEY_PAIR;
unsafe_interfaces: BOOLEAN): ASSEMBLY_BUILDER

 -- dotnet_name: "IPrincipal.IsInRole (role: String): Boolean"

deferred convert_type_lib_to_assembly_object_string_type_lib_importer_flags_
itype_lib_importer_notify_sink_integer_8_array_strong_name_key_pair_string
(type_lib: SYSTEM_OBJECT; asm_file_name: SYSTEM_STRING;
flags: TYPE_LIB_IMPORTER_FLAGS;
notify_sink: ITYPE_LIB_IMPORTER_NOTIFY_SINK;
public_key: NATIVE_ARRAY; key_pair: STRONG_NAME_KEY_PAIR;
asm_namespace: SYSTEM_STRING; asm_version: VERSION):
ASSEMBLY_BUILDER

 -- dotnet_name: "IPrincipal.IsInRole (role: String): Boolean"

Table 29: Part of class interface of ITYPE_LIB_CONVERTER

A problem occurs when a .NET interface overloads a method from class System.Object and
another class provides an implementation for this interface. The interface
System.Collections.IHashCodeProvider defines the function GetHashCode: int32 (object). Every
interface inherits from the class System.Object which has a function GetHashCode: int32(). This
means that the feature GetHashCode: int32 (object) from class IHashCodeProvider is
overloaded. In the corresponding Contract Wizard proxy class, the feature is renamed into
get_hash_code_object (see Table 30). The Eiffel proxy class CW_CASE_INSENSITIVE_
HASH_CODE_PROVIDER inherits from IHASH_CODE_PROVIDER (1) and implements the
feature get_hash_code_object with the correct overloaded name (4).

By default, every Contract Wizard class inherits from SYSTEM_OBJECT. If the descendant
class of SYSTEM_OBJECT is effective, it redefines the features get_hash_code, equals, and
to_string (3) and implements them (5). When a class inherits from an interface, it has to undefine
the features equals, to_string, and get_hash_code to avoid ambiguous feature names. (These
features are already inherited from SYSTEM_OBJECT (3).) A special case is when the interface
defines one of these features explicitly. An example can be found in the interface
IMEMBERSHIP_CONDITION: it defines the features equals and to_string; therefore the
descendant class only has to undefine get_hash_code since the other two features are already
defined by the interface.

5. Advantages and limitations 57

In the example from Table 30 CW_CASE_INSENSITIVE_HASH_CODE_PROVIDER
inherits from the interface IHASH_CODE_PROVIDER and only lists equals and to_string in the
undefine clause. The error can be found in the .NET parser: it states that the class
IHASH_CODE_PROVIDER defines the feature get_hash_code, although this is not the case.
Indeed, it defines a feature with the same name, but not the same signature. The bug can be fixed
by changing the parser to inspect not only the name of feature, but also its signature. Then, the
parser would notice that the class IHASH_CODE_PROVIDER does not provide a definition for
get_hash_code (with the same signature as in SYSTEM_OBJECT), get_hash_code would appear
in the undefine clause, and the class would compile.

class CW_CASE_INSENSITIVE_HASH_CODE_PROVIDER inherit
 IHASH_CODE_PROVIDER (1)

 undefine (2)
 equals,
 to_string -- , get_hash_code is missing

 end

 SYSTEM_OBJECT
 redefine (3)

 get_hash_code,
 equals,
 to_string

 end

feature -- Query

get_hash_code_object (a_obj: SYSTEM_OBJECT): INTEGER (4)
-- dotnet_name:
-- "CaseInsensitiveHashCodeProvider.GetHashCode (obj: Object): Int32"
-- (+1 overloads)

 get_hash_code: INTEGER (5)

-- dotnet_name:
-- "CaseInsensitiveHashCodeProvider.GetHashCode (): Int32"
-- (+1 overloads)
…

Table 30: Extracts of class CW_CASE_INSENSITIVE_HASH_CODE_PROVIDER

The same problem occurs in all classes inheriting from IFORMATTABLE: it overloads the
feature to_string.

The interface System.Collections.IEnumerator forces its descendants to provide an
implementation for the property Current returning an instance of System.Object. The
corresponding Eiffel for .NET class IENUMERATOR calls the property current_ (“Current” is an
Eiffel keyword and has to be distinguished.) The class

5.3 Future Work 58

System.Runtime.Serialization.SerializationInfoEnumerator respectively its corresponding
Contract Wizard class CW_SERIALIZATION_INFO_ENUMERATOR implement Current.
However, they do not return an object of type SYSTEM_OBJECT but of type
SERIALIZATION_ENTRY. Normally, this is a legal redeclaration since SERIALIZATION_ENTRY
is a subtype of SYSTEM_OBJECT. The problem is that SERIALIZATION_ENTRY is expanded
and the compiler states a non conforming signature of the redeclaration.

Error code: VDRD(2)
Type error: redeclaration has non-conforming signature.
What to do: make sure that redeclaration uses signature (number and types of
arguments and result) conforming to that of the original.

Class: CW_SERIALIZATION_INFO_ENUMERATOR
Redefined feature: current_: expanded CW_SERIALIZATION_ENTRY
 From: CW_SERIALIZATION_INFO_ENUMERATOR
Precursor: current_: SYSTEM_OBJECT From: IENUMERATOR

Table 31: Compiler error of class CW_SERIALIZATION_INFO_ENUMERATOR

As a temporary solution, I list the deferred signature of the property (current_:
SYSTEM_OBJECT) as a private feature in the {NONE} clause of the class
CW_SERIALIZATION_INFO_ENUMERATOR without giving an implementation. (A call of the
according proxy feature would not make sense because
serialization_info_enumerator_ref.current_ would call a deferred feature.) After manually
deleting the feature current_: CW_SERIALIZATION_ENTRY the compilation succeeds since
CW_SERIALIZATION_INFO_ENUMERATOR provides a (pseudo) implementation for the
property Current.

5.3 FUTURE WORK

I did as much as possible to eliminate the limitations in the generated Eiffel classes, but I
did not have enough time to solve all problems. To improve the wizard it is necessary to analyze
precisely all classes that do not compile and to adapt the classes CW_DOTNET_PARSER or
CW_EIFFEL_VISITOR accordingly. However, some classes will be hard to adapt, as for example
CW_TYPE_LIB_CONVERTER (see discussion above).

When a .NET class X implements an interface I, the corresponding Contract Wizard class
CW_X implements the same interface I. It is not always straightforward to provide an
implementation of all features defined in interface I in a descendant class CW_X (see discussion
of section 5.2). It is worthwhile to analyze how the Contract Wizard proxy classes behave when
they inherit from an interfaces CW_I (1) generated by the Contract Wizard, as shown in Table 32.

5. Advantages and limitations 59

class CW_TYPE_LIB_CONVERTER inherit
 CW_ITYPE_LIB_CONVERTER (1)

 undefine
 get_hash_code,
 equals,
 to_string

 end

 CW_SYSTEM_OBJECT
 redefine

 get_hash_code,
 equals,
 to_string

 end

Table 32: Suggestion of inheritance structure of CW_TYPE_LIB_CONVERTER

In that case all overloaded features are renamed with the same algorithm and one does not
have to bother about the Eiffel Emitter handles overloaded features. As a consequence, the
Contract Wizard has to generate Eiffel proxy classes for all assemblies referenced by the
assembly given as input to the Contract Wizard (i.e. the assembly to which the user wants to add
contracts). The referenced assemblies are needed to compile the given assembly; they are listed in
the “assembly” clause of the Ace file. For performance reasons, we could imagine a few
optimizations:

Generate the Eiffel proxy classes corresponding to the referenced assemblies as soon as the
user selects an assembly to add contracts to, and not when he starts adding contracts. (Because
these classes corresponding to the .NET classes will always be the same, we do not add contracts
to them.)

We could add incrementality: always generate those references classes at the same place on
the disk, e.g. $CONTRACT\assemblies and check whether a given assembly has already been
generated before generating new proxy classes again.

Another alternative is to also give the user the possibility of adding contracts to those
referenced assemblies.

An interesting approach is to generate factory-like classes to strengthen Design by
Contract. Instead of returning Eiffel wrapper classes generated by the Emitter tool, we return
(contracted) classes generated by the Contract Wizard. Table 33 gives an idea of the approach.

5.3 Future Work 60

class CW_ACCOUNT
feature -- Query

deposits: CW_DEPOSIT_LIST is
 -- dotnet_name: " "Account.Deposits: DepositList"

do
 create Result.make (account_ref.deposits)

end

Table 33: Factory-like Contract Wizard proxy class

6. USER MANUAL

6.1 SYSTEM REQUIREMENT

Currently, the only operating system that Contract Wizard supports is Windows, basically
because of the Microsoft .NET Framework [13]. However, with Mono [15] it should be possible
to use the Contract Wizard with slight changes under Linux. Mono is an open source
development platform based on the .NET Framework and includes Microsoft .NET compatibility
libraries.

The graphical user interface itself is platform independent as it is built with the
EiffelVision2 library. Also the file paths are set in a way that it does not matter on which platform
you run the Contract Wizard. I only tested the application under Windows XP, but it should also
run under Windows 2000.

I used version 5.4 of EiffelStudio to develop the Contract Wizard. You should use (at least)
the same version because it supports a transparent way to call overloaded .NET routines from
Eiffel [2].

6.2 INSTALLATION

First you have to make sure that you have the .NET Framework installed. You can check if you
have already installed it by clicking Start on your Windows desktop, selecting Control Panel, and
then double-clicking the Add or Remove Programs icon. When that window appears, scroll
through the list of applications. If you see Microsoft .NET Framework 1.1 listed, the latest
version is already installed and you do not need to install it again. If you see Microsoft .NET
Framework v1.0.3705 you have installed the older version 1.0. If you see neither of them you
have to install the .NET Framework Redistributable 1.1 [12]. It includes everything you need to
run applications developed using the .NET Framework.

Now you are ready to install this package. Please follow the instructions below:

1. Download the file “ContractWizard.zip”. It contains:

• the source code of Contract Wizard (for both the GUI and command line versions) in
the “src” directory

• executables for the GUI and command line versions in the “bin” directory

• this user manual in the “doc” directory

6.3 How to create a .NET assembly 62

• the document type definition of a valid XML structure in the “dtd” directory

2. Unzip its content to a directory of your choice and set the CONTRACT environment
variable to point to that directory.

3. Set the PATH environment variable to the bin directory where your ISE Eiffel compiler
and wel_hook.dll is located. On a Windows machine the path looks similar to
“$ISE_EIFFEL\studio\spec\windows\bin“. If the PATH variable already has values,
append the Eiffel bin path with a semicolon.

It is necessary to set the path on the wel_hook.dll because the Contract Wizard uses it when
you pick-and-drop a node from the assembly tree (see section 6.4.2).

Before you create a new project in EiffelStudio check which version of the .NET
Framework you have installed (see 6.1 above). If you have version 1.0 select the control file
“contract_wizard_1_0.ace”, for version 1.1 select “contract_wizard_1_1.ace”. I did the
development under version 1.0 but it also works for version 1.1.

6.3 HOW TO CREATE A .NET ASSEMBLY

If you want to contract a .NET assembly first you must have an assembly: either you take an
existing one or you create one by yourself. In the following example I show how to create a .NET
assembly using Visual Studio .NET [14] or Eiffel ENViSioN! [2]. Of course you can also use
another development environment.

To create a .NET assembly launch Visual Studio .NET and select the button “New
Project”.

Decide what kind of programming language you want to use and select the corresponding
project type (Visual Basic Projects, Visual C# Projects, Visual J# Projects, Visual C++ Projects,
or Eiffel Projects). In the template section on the right hand side select the item named “Class
Library”. Give your project a name and specify a location where it shall be stored.

Now you can implement your classes for the assembly. You can also add existing files to
the project. When you are finished, build your project. Your assembly file is now in the directory
/bin/Debug relative to your project directory. It has the same name as your project with the
extension .dll, e.g. Account.dll.

The next step is to deploy the assembly in the global assembly cache (GAC). The GAC
stores assemblies designated to be shared by several applications on the computer. The assembly
has to be in the GAC because the Eiffel compiler, launched by the Contract Wizard, needs to
access your assembly. To put an assembly in the GAC it must have a strong name.

To sign an assembly with a strong name, you need a public/private key pair. This public
and private cryptographic key pair is used during compilation to create a strong-named assembly.
You can create a key pair using the Strong Name tool (sn.exe). Key pair files usually have an .snk
extension. The example in Figure 12 creates a key pair called myKey.snk.

6. User Manual 63

Figure 12: Creating a key pair

Once you have created the key pair, you must put the file where the strong name signing
tools can find it. When using command-line compilers, you can simply copy the key to the
current directory containing your code modules. If you are using Visual Studio .NET you have to
understand where the development environment looks for the key file. For example, the C#
compiler looks for the key file in the directory containing the binary. As you have the key file in
the project directory, set the file attribute in AssemblyInfo.cs as follows:

[assembly: AssemblyKeyFile("..\\..\\myKey.snk")]

When you created the new project, Visual Studio .NET automatically created the file
AssemblyInfo.cs. There you can also specify more information about the assembly such as the
version of the assembly or its description. To indicate that your assembly is CLS (Common
Language Specification) compliant add the following line to the AssemblyInfo file.

[assembly: System.CLSCompliant (true)]

The assembly must be CLS compliant; otherwise the Contract Wizard cannot generate
Eiffel proxy classes of your code.

Rebuild your project. The assembly now has a strong name (public key token is assigned)
and can be installed in the GAC. There are several ways to deploy an assembly into the global
assembly cache, for example you can use a developer tool called the Global Assembly Cache tool
(gacutil.exe), provided by the .NET Framework SDK. Figure 13 shows how you can do it using
gacutil.

Figure 13: Deploy assembly into global assembly cache

Now your assembly is ready to be used by the Contract Wizard!

6.4 How to use Contract Wizard 3.0 64

6.4 HOW TO USE CONTRACT WIZARD 3.0

6.4.1 ADDING ASSEMBLY TO GAC

Before you start adding contracts to a .NET assembly, make sure that the assembly is installed in
the global assembly cache (GAC); otherwise the Contract Wizard cannot compile your assembly.
If you are using Windows you can use the program “Microsoft .NET Framework Configuration”
or “Microsoft .NET Framework Configuration 1.1” available from “Control Panel\Administrative
Tools” (see Figure 14). (Which version depends on the .NET Framework version you are using.)
There you can view a list of assemblies in the GAC. You can add an assembly to the cache by
selecting it from the appearing “Add an Assembly” dialog.

Figure 14: .NET Configuration 1.1, assembly cache

6.4.2 GUI VERSION

When you launch the application the Contract Wizard first checks whether you have defined the
environment variable CONTRACT. If you have forgotten to set it, the wizard asks you to do so.
Figure 15 shows the dialog that the wizard launches when you missed to set the CONTRACT
variable.

6. User Manual 65

Figure 15: Warning dialog when the CONTRACT variable is not set

After a successful check the wizard shows a welcome dialog (see Figure 16). It tells you
what you can do with the wizard. At the bottom it has a button bar with four buttons that always
stay the same during the wizard’s execution. A press on the “Help” button launches your default
web browser and shows this user guide. The “< Back” button is disabled because it is the first
dialog of the wizard. If you click on “Cancel” the wizard window disappears and the execution is
canceled. You must press the “Next >” button to proceed to the next dialog.

Figure 16: Welcome dialog

6.4 How to use Contract Wizard 3.0 66

PROJECT DIALOG

The following dialog asks you to open an existing project or to create a new project (see Figure
17). By default the section where you can open an existing project is enabled. You need to
provide the path to a project file with the extension .cpr (contract project). You can either type it
in the text field or use the “Browse” button, which opens an “open file” dialog. It is only possible
to select a project file with the correct project extension.

Figure 17: Project dialog

If you whish to create a new project, select the radio button with the label “Create a new
project”. This section gets activated and you can choose the parameters of the new project. In the
first text field you have to enter the full path to a .NET assembly. A click on the “Browse” button
launches a file dialog where you can specify an assembly file in a more comfortable way. An
assembly file has the extension .dll (dynamic link library) or .exe (executable). The filter in the
dialog is set so that you can only select an assembly file with a valid extension.

By default the working directory is “$CONTRACT\project”. The wizard stores the
generated files in this directory. You can change it either by typing in the path to the desired
directory or by choosing the directory from a dialog launched by pressing the “Browse” button.

6. User Manual 67

When you select an assembly and the field for the project name is empty, the wizard
creates a project name for you. It has the same name as the assembly. Of course you can change
this name just by replacing it with another one.

The check box named “Overwrite a project with the same name” is by default selected.
When you deselect it and it has already a project file with the same name in the specified
directory the wizard brings up a dialog as shown in Figure 18.

Figure 18: Warning dialog when specified project already exists

To go to the next dialog of the wizard, you must press the “Next >” button. The wizard
performs some validity checks before going on to the next dialog. When you decided to open an
existing project you must have specified the path to the project file, otherwise a dialog appears
and tells you to fill out all needed information. The same occurs if you select “Create a new
project” and forget to fill in a text field from this section. If the quoted working directory does not
exist the wizard tries to create it. Anyhow a problem can occur; for example if the drive letter is
not valid as “X:\contract_wizard” on my hard disk. Figure 19 shows the warning dialog that the
wizard shows after a directory creation error.

Figure 19: Warning dialog when working directory could not be created

The next check affects the assembly: first the wizard verifies that the specified file exists
and that it has a valid assembly extension. If that is not the case the wizard tells you that the
assembly does not exist. Then the wizard tries to load the specified assembly. The loading can
cause an error when the assembly cannot be read correctly (which is the case for system
assemblies). Figure 20 shows the according warning dialog.

6.4 How to use Contract Wizard 3.0 68

Figure 20: Warning dialog for an invalid assembly

In a last step the wizard inspects the assembly for CLS compliance. To fully interact with
other objects regardless of the language they were implemented in, objects (or assemblies) must
expose to callers only those features that are common to all the languages they must interoperate
with. For this reason, the Common Language Specification (CLS), which is a set of basic
language features needed by many applications, has been defined. If the assembly exposes
features that are not CLS compliant, the wizard is not able to generate Eiffel code. Hence, a
dialog informs you when the assembly does not meet this criterion.

If you indent to open an existing project, the wizard checks if you specified a valid input
for the project file: the file must exist and must have the correct extension (.cpr). Otherwise you
are informed through a warning dialog.

When all entered information is valid the wizard parses your specified .NET assembly in
case you created a new project, or it reads the XML file containing the structure and contracts of
the Eiffel classes. The latter is the case if you have already added contracts to the assembly given
as input. A dialog with a progress bar appears showing you the progress of the parsing (see Figure
21). After the parsing the wizard backs up all files from your specified working directory. It
stores them in the directory “cw_tmp” relatively to the contract delivery directory $CONTRACT.
In case of an unexpected error the wizard can restore the files. The backup process is also
indicated through the progress dialog. While the progress dialog is shown the “Next >” and “<
Back” button are disabled.

Figure 21: Progress dialog while parsing a .NET assembly

6. User Manual 69

ASSEMBLY DIALOG

Now the wizard shows the next dialog (see Figure 22). In this dialog you can add contracts to the
parsed .NET assembly. On top of the dialog is scanty information what you can do in the actual
task. A click on “Help” opens a web browser with detailed instructions how to find one’s way in
the assembly dialog. Right below the short instruction, you see which assembly you have selected
and where it is located.

On the left hand side of the window is a tree representing the assembly with its types and
their features. At the beginning the tree is collapsed and you only see the types of the .NET
assembly. Every type is marked with a blue oval icon (). A deferred type additionally has a star
on the left hand side of the oval (). You can expand the tree by clicking on the plus sign or by
double clicking the class icon respectively the class name. The leaves of each type are its public
features, tagged with the ISE Eiffel feature icons: attributes with , deferred features with ,
and the remaining features with an symbol.

When you select a type in the assembly tree, the wizard displays the selected type name
including its namespace in the text field labeled “Selected type”. A click on a feature causes the
wizard to set this field with the name of the type to which the feature belongs. Furthermore you
can see the feature’s signature right below in the field “Selected feature”. You can see the
signature of a feature by retaining the mouse cursor a short while over a feature, as shown in
Figure 22.

6.4 How to use Contract Wizard 3.0 70

Figure 22: Assembly dialog with invariant view

In the case the selected type already has some invariants the wizard lists them in the box on
the right hand side. The text fields “Invariant tag” and “Invariant expression” are there to type in
the invariants of the actual type. As soon as both text fields have a value the “Add” button is
enabled and you can press it to add your new invariant. Pressing the Enter key has the same
effect; indicated through a border around the button. You can change an added invariant by
selecting it in the invariant box and changing its tag and/or expression as you wish. When no text
field is empty you can click on “Apply” and the selected invariant is updated accordingly. The
wizard enables the “Remove” button when you have selected an invariant which you intend to
remove. You can click on “Remove all” once the selected type contains invariants. If you do so
you are asked if you really want to remove all invariants of the specified type. The wizard does
not remove the invariants unless you click the “OK” button in the shown dialog.

For an invariant expression you can use all features of the selected type. See Figure 22 above for
an example. Class ACCOUNT has an attribute withdrawals which is of type
WITHDRAWAL_LIST, that again has a public feature total. The same applies to deposits; hence
balance = deposits.total - withdrawals.total is a valid invariant expression.

It is only possible to add or update an invariant when the actual type does not already have
the same tag or expression; otherwise a warning dialog appears (see Figure 23).

6. User Manual 71

Figure 23: Warning dialog when you try to add the same invariant twice

The wizard helps you add a new contract through pick-and-drop. When you select a feature
with the right mouse button, the mouse pointer changes to a crossed feature icon (). Then you
can move the mouse pointer over the tag or expression field and the cursor alters to a normal
feature icon (). This indicates you that the text fields accept the mouse pointer. Now you can
right-click again and the signature of the selected feature appears in the text field.

Figure 24: Assembly dialog with precondition and postcondition view

When a feature is selected in the tree, the box on the right changes to two boxes where the
preconditions and postconditions of the selected feature are shown, as you can see in Figure 24. A
click on a type node triggers the wizard to change back to the assertion view.

6.4 How to use Contract Wizard 3.0 72

The addition of pre- and postconditions to a selected feature works similar to adding an
invariant to a type. Additionally you have to specify whether you want to add a precondition or
postcondition by selecting one of the radio buttons below the assertion text fields. A selection of
the “Add”, ”Apply”, “Remove”, or “Remove All” button always applies to the current selection
of “Precondition” and “Postcondition”. When you have selected “Precondition” and then you
click on “Add” or press the Enter key, the assertion is added to the preconditions of the selected
feature. If you want to add a postcondition, simply select the radio button “Postcondition”.

The buttons are only enabled when it makes sense to select them. You cannot add a
precondition if you did not fill in the assertion or the expression field; hence the “Add” button is
disabled until both text fields have a value. To determine a button’s sensitivity state the wizard
also takes into account which radio button you have selected. If you have selected a precondition
in the precondition box, the “Remove” button is enabled. Now you change the radio button to
“Postconditions” but you have no postconditions specified for the selected feature. Therefore the
wizard disables the “Remove” button since there is no postcondition that can be removed. A click
on “Remove all” causes the wizard to show a dialog asking you whether you want to remove all
pre- or postconditions (depending on the selection of the radio button). It protects you from
unintentional deletion of all conditions. The shield is shown in Figure 25. You can change an
existing precondition when you select it in the “Preconditions” box, update its assertion or
expression accordingly, and press on “Apply”. Make sure you have “Precondition” selected in the
radio box otherwise you cannot use the “Apply” button. A postcondition update is analogous.

Figure 25: Question dialog if all preconditions shall be removed

A valid expression for a pre- or postcondition consists of the feature names of the selected
type and/or the arguments of the selected feature. When you use a feature name make sure you
have the arguments set correctly regarding the argument count and the type of each argument.
Use the tool tip functionality or the pick-and-drop mechanism to help you.

The wizard adapts .NET feature names to Eiffel conformant feature names. .NET features
with the same name but different signatures are translated to Eiffel names by appending the
argument type to the feature name. For example, foo_integer and foo_string displayed in the
assembly tree in Figure 24 originally have the same feature name, namely foo. If you involve an
overloaded feature name in an assertion expression, use the feature name as shown in the tree and
not the original feature name.

In the current version of Eiffel it is not possible to add a precondition or a postcondition to
an attribute. This will be supported in the next version. A dialog pops up (see Figure 26) and
informs you in the case you have selected an attribute in the tree and wanted to add an assertion to

6. User Manual 73

it. The wizard also shows a dialog if you try to add the same precondition to a feature twice (of
course the same is valid for postconditions).

Figure 26: Warning dialog when user wants to contract an attribute

INTERFACE VIEW OF A CLASS

Sometimes it helps to look at an overview of all features of a type altogether. For that case the
wizard provides a contract view for every type in the tree. You can force the wizard to display it
in your default web browser by selecting a type and pressing the right mouse button. A little
menu appears where you can select “Show Contract View F4” (see Figure 27). A double click on
a feature node also launches the browser with the contract view of the type belonging to the
clicked feature. As indicated in the context menu a press on key “F4” also launches the contract
view with the currently selected tree item.

Figure 27: How to show contract view of a type

6.4 How to use Contract Wizard 3.0 74

Figure 28: Launched browser with interface view of selected class CW_ACCOUNT

6. User Manual 75

Figure 28 shows an extract of the class interface of CW_ACCOUNT. What you can see are
all features you can add contracts to including creation procedures; although they are exported to
NONE. The contracts of the class (invariants, pre- and postconditions) are visible as well – always
up to date. The comment on every feature tells you its .NET name. If a feature is overloaded it
has an additional comment saying how many other features originally had the same name.

Note: every generated HTML page is stored in the directory “cw_html” relatively to your
contract delivery directory.

FINISH EXECUTION

When you are finished with adding contracts to the assembly and want to generate a new
contracted assembly click on the “Next >” button at the bottom of the wizard. Now the wizard
starts generating the Eiffel class files, an Ace file (needed to compile the Eiffel files), and a XML
file containing the representation of the Eiffel files including the contracts. A dialog with a
progress bar appears indicating you the state of the file generation.

After the file generation the wizard checks the generated Eiffel class files for syntax errors.
An example of syntax error is an assignment in an assertion expression. The progress dialog
shows you the current file being verified and how many files still have to be controlled. When the
wizard finds a syntax error in one of the classes, it informs you through a dialog (see Figure 29).
To find out more about the error you can press on the “Details >>” button and a more precise
error description is appended to the dialog. You are now invited to correct the error or to cancel
the application.

Figure 29: Error dialog after a syntax error in one of the checked classes

If no syntax error occurs, the wizard starts compiling the generated set of classes. The
progress bar shows the advancement of the compilation. It looks very similar to the progress
dialog of ISE EiffelStudio so you are already used to it (see Figure 30). The thermometer on the
right changes from red to blue when the wizard starts finalizing the classes. After a successful
compilation the wizard calls “finish freezing” to compile the C code and to link part of the
finalization.

6.4 How to use Contract Wizard 3.0 76

Figure 30: Progress dialog showing compilation

However, it is possible that the compilation does not succeed. Figure 31 shows the error
dialog that the wizard displays in such a case. Pressing the “Details >>” button shows you the
specific error description from the compiler. In the example below an unknown identifier (balanc
instead of balance) caused the error.

Figure 31: Error dialog showing details about compilation error.

If compilation finishes successfully the wizard passes to its last dialog, as shown in Figure
32. This dialog informs you where you can find the newly generated and contracted .NET
assembly. (The assembly is in the subdirectory “EIFGEN\F_Code” relative to the selected
working directory.) A click on “Finish” ends the application.

6. User Manual 77

Figure 32: Last dialog after a successful generation of a contracted .NET assembly

At any time it is possible to abort the Contract Wizard application by clicking on “Cancel”.
If you do so, a question dialog appears and asks you whether you want to quit the wizard. A click
on “OK” terminates the application. If the wizard has already generated new Eiffel class files the
dialog asks you if you want to restore the working directory to its original state before ending the
application (See Figure 33). Clicking on “Yes” restores the working directory and your changes
made on the contracts are lost. A press on “No” ends the application without a restore.

Figure 33: Question dialog asking to restore the working directory before ending Contract Wizard

6.4 How to use Contract Wizard 3.0 78

6.4.3 COMMAND-LINE VERSION

The command line version of the Contract Wizard takes several arguments, depending on what
the user wants to do. The first of these arguments is the command. It can be one of the following:
“-create_from_assembly”, “-remove_contracts”, “-version”, or “-help”. The
number and semantics of the rest of the arguments depends on the command. We will describe
each of them.

If you want to create Eiffel proxy classes from an assembly and compile them into a new
assembly, you must use the “-create_from_assembly” command. This command must be
followed by Full_assembly_path and Target_directory.

Full_assembly_path is the path to the assembly file, for example:
$CONTRACT\examples\Accouting_Example\C#_sources_for_Account.dll, where
$CONTRACT must be replaced by the directory path where you unzipped the ContractWizard.zip
file.

Target_directory specifies the directory where the Contract Wizard stores the
generated files. It can be any existing directory, but its directory path must not contain spaces as
in “C:\Documents and Settings”.

If you want to append contracts to a .NET assembly then you also use the command
“-create_from_assembly” together with a second command “-append_contracts”. After
“-append_contracts” follows the file name that contains the contracts (File_name).

The file containing the contracts must have the following format: an identifier whether you
want to add a precondition (pre), a postcondition (post) or an invariant (inv); the name of the
class that the contract should be added; the assertion tag; and the assertion expression. For a
precondition or a postcondition you must also specify the name of the feature to which you want
to add the assertion; in the file the feature name follows the name of the class. The values have to
be separated by a comma. If you want to add multiple assertions at once, write every contract on a
new line. Here is an example of a file:

pre, ACCOUNT, withdraw, not_too_big, a_sum <= balance-minimum_balance

inv, ACCOUNT, not_under_minimum, balance >= minimum_balance

You can find the file c12.csv with this example in the directory $CONTRACT\examples\
Accounting_Example\C#_sources_for_Account.dll. (The extension .csv stands for
comma separated values.) In this directory you will also find an assembly Account.dll together
with its source code written in C#.

If you want to add the above contracts to the assembly Account.dll, type the following
command in your command line utility:

$CONTRACT\src\EIFGEN\W_code>contract_wizard -create_from_assembly
$CONTRACT\examples\Accouting_Example\C#_sources_for_Account.dll\Account.dll
D:\Data\test -append_contracts
$CONTRACT\examples\Accouting_Example\C#_sources_for_Account.dll\c12.csv

6. User Manual 79

When you use as second command “–put_contracts” instead of
“–append_contracts” the Contract Wizard removes all existing contracts and adds new
contracts specified in the file (File_name).

The command “-remove_contracts” needs the full assembly path
(Full_assembly_path) and the source directory where the generated XML file is stored
(Source_directory). Full_assembly_path is the path to the assembly; it is the same as in
the “-create_from_assembly” command. The source directory is your original target
directory. The command removes the XML file storing all contracts for the assembly specified in
Full_assembly_path. After a successful deletion it creates Eiffel proxy classes of the
assembly and compiles them into a new .NET assembly. This assembly contains no contracts.

The “-version” and “-help”commands take no arguments. The first command prints the
current version of the Contract Wizard (Contract Wizard 3.0). The help command prints a
message informing you about the correct usage of the command line facility. Table 12 shows the
output of this command.

$CONTRACT\src\EIFGEN\W_code>contract_wizard -help

Usage:
 contract_wizard [-help | -version |
 -remove_contracts Full_assembly_path Source_directory |
 -create_from_assembly Full_assembly_path Target_directory |
 -create_from_assembly Full_assembly_path Target_directory
 -append_contracts File_name |
 -create_from_assembly Full_assembly_path Target_directory
 -put_contracts File_name]

Table 34: Output of contract_wizard –help command

If you want to edit contracts of an assembly open the XML file which the Contract Wizard
created of your assembly; its name is cw_xx.xml, whereas xx stands for the name of the
contracted assembly. For instance, the name of the XML file is cw_account.xml if the
assembly’s name was Account.dll. While editing contracts make sure the XML structure remains
valid. The structure is defined in the file contract_wizard.dtd located in the “dtd” directory.
When you finished updating the contracts, start the Contract Wizard and run the command
“-create_from_assembly Full_assembly_path Target_directory”. The wizard then
creates a new assembly according to the contracts specified in the XML file.

7. CONCLUSION

The goal of this project was to extend the Contract Wizard 2.0 with a graphical user interface
(GUI). The Contract Wizard parses a .NET assembly, shows the types and the members exposed
by each type in an intuitive way, generates Eiffel proxy classes containing the contracts, and
finally compiles the Eiffel source to a new assembly. If the added contracts contain errors, the
wizard informs the user with an accurate error message. The resulting assembly contains the
contracts the user defined and can be used instead of the original assembly. Due to incrementality
it is possible to append the contracts to an already contracted assembly. The GUI provides help to
add contracts to the assembly in multiple ways. It also makes available a dynamically created
interface view of any .NET type.

The use of the GUI is documented with a detailed user manual showing with an example
how to create a .NET assembly and explaining how to use the Contract Wizard. The Contract
Wizard also provides a command line interface.

The implemented algorithm to handle overloaded features works fine for “simple” .NET
assemblies (i.e. Account.dll and Circle.dll delivered with this project). Its limitation mainly
comes from classes that inherit from interfaces which define overloaded features. I discussed the
restriction and showed a possible solution.

A lot of interesting work can be done on the Contract Wizard:

• Eliminate drawbacks for overloaded names.

• Implement support for inner classes.

• Test the wizard on many assemblies provided with the .NET Framework such as
mscorlib, System.Windows.Forms.dll, etc.

• Transform the Contract Wizard 3.0 into a web service to allow any programmers to
contribute contracts to .NET components.

A. INTENDED RESULTS

The main goal of this project was to develop a graphical user interface (GUI) for the Contract
Wizard 2.0. Before I started implementing the GUI, I hade a closer look at the existing tool and
defined the expected functionality of the GUI.

INTENDED INTERACTIONS OF CONTRACT WIZARD 3.0

• Load an assembly which has not been contracted

• Load an already contracted assembly

• Choose a working directory for storing generated classes

• Define invariants

o Add invariant to a class

o Remove invariant of a class

o Remove all invariants of a class

o Edit invariants of a class

• Define preconditions and postconditions

o Add preconditions and postcondition to a feature

o Remove precondition and postcondition of a feature

o Remove all preconditions and postconditions of a feature

o Edit preconditions and postcondition of a feature

INTENDED FEATURES OF CONTRACT WIZARD GUI

• Assertion check

o Syntactically correct assertion tag

o Syntactically and semantically correct assertion expression

• Class view

o Look at interface of assembly (possibly also contract view from generated proxy
classes)

o Show signature of features

• Help

6.4 How to use Contract Wizard 3.0 82

o Whenever possible auto-completion while typing contracts

o If needed help texts

• Output to user

o Show degree of compilation (progress bar)

o Show degree of parsing classes / XML files

o Warning if wrong directory, compile error, wrong assertion format…

o Ask user before he wants to exit the wizard before ending application

• Assembly

o Select an assembly through browsing

o The extension of the assembly given as input (i.e. whether it is a .dll or a .exe) is
checked when analyzing the input. Contracted assembly has same extension

• Performance

o The Eiffel classes should be finalized instead of frozen, which means that the
resulting “new assembly” is in the “EIFGEN\F-Code” directory

o Do not call generate_lace and generate_eiffel twice

o If possible do not parse the whole AST twice for backup purpose

• Directory

o Easy selection of a directory through browsing

o Creating non existing directory

o No exception when a directory does not exist

Except for the auto-completion mechanism while typing contracts, everything else has been
reached. At the beginning of the project it was not planned to implement support for overloaded
.NET members. (We have not been aware of this limitation.) The Contract Wizard 3.0 can handle
overloaded .NET members in most cases.

REFERENCES

[1] Karine Arnout and Raphaël Simon: The .NET Contract Wizard: Adding Design by Contract
to languages other than Eiffel, IEEE Computer Society, TOOLS 39, Santa Barbara, USA,
April 2004, p 14-23

[2] Eiffel Software, http://www.eiffel.com, consulted in April 2004.

[3] Gobo Eiffel, http://www.gobosoft.com/eiffel/gobo, consulted in July 2004.

[4] Bertrand Meyer: Applying ‘Design by Contract’. Technical Report TR-EI-12/CO,
Interactive Software Engineering Inc., 1986. Published in IEEE Computer, Vol. 25, No. 10,
October 1992, p40-51. Also published as ‘Design by Contract’ in Advances in Object-
Oriented Software Engineering, Eds. D. Mandrioli and B. Meyer, Prentice Hall, 1991, p 1-
50. Available from www.inf.ethz.ch/personal/meyer/publications/computer/contract.pdf,
consulted in August 2004.

[5] Bertrand Meyer: Eiffel: The Language, Prentice Hall, 1992.

[6] Bertrand Meyer: Eiffel: The Language, 3rd edition, Prentice Hall (in preparation) Available
from http://www.inf.ethz.ch/personal/meyer/#Progress, consulted in May 2004.

[7] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.

[8] Bertrand Meyer: The start of an Eiffel standard, in Journal of Object Technology, Vol.1,
No.2, July-August 2002, p 95-99. Available from
www.jot.fm/issues/issue_2002_07/column8, consulted in August 2004

[9] Raphaël Simon, Emmanuel Stapf and Bertrand Meyer: Full Eiffel on the .NET Framework,
Juli 2002. Available from http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/pdc_eiffel.asp, consulted in July 2004.

[10] Martijn van Welie: Patterns in Interaction Design, http://www.welie.com/patterns/gui/,
consulted in May 2004.

[11] Microsoft C# Language Specification: Explicit interface member implementations,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/csspec/html/vclrfcsharpspec_13_4_1.asp, consulted in July 2004.

[12] Microsoft .NET Framework 1.1 Redistributable,
http://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-
034D1E7CF3A3&displaylang=en, consulted in August 2004

[13] Microsoft .NET library API, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netstart/html/cpframeworkref_start.asp?frame=true, consulted in Mai 2004.

[14] Microsoft Visual Studio, http://msdn.microsoft.com/vstudio/, consulted in August 2004

[15] Mono, http://www.mono-project.com, consulted in August 2004

[16] Dominik Wotruba, Contract Wizard II,
http://se.inf.ethz.ch/projects/dominik_wotruba/diplom/index.html

http://www.eiffel.com/
http://www.gobosoft.com/eiffel/gobo
www.inf.ethz.ch/personal/meyer/publications/computer/contract.pdf
www.jot.fm/issues/issue_2002_07/column8
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/pdc_eiffel.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/pdc_eiffel.asp
http://www.welie.com/patterns/gui/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csspec/html/vclrfcsharpspec_13_4_1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csspec/html/vclrfcsharpspec_13_4_1.asp
http://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-034D1E7CF3A3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-8157-034D1E7CF3A3&displaylang=en
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netstart/html/cpframeworkref_start.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/netstart/html/cpframeworkref_start.asp?frame=true
http://msdn.microsoft.com/vstudio/
http://www.mono-project.com/
http://se.inf.ethz.ch/projects/dominik_wotruba/diplom/index.html

