The George Washington University
Department of Computer Science

CS339 Final Project

Project Final Report

Z8 Speaks

Apr. 25,2006
Duoduo Liao

dliao@gwu.edu

Table of Contents

e O [T o A AN o1 1 2 ot S PSR 4
ProOJECt ADSIIACT......eiuiiitiiiiiteee ettt 4
PrOJECE SEATUS ...eeieeiiieeiie e ettt ettt e et e e st e e e e e st e e nbeeenraeenneas 4
1 DESIZN OVEIVIEW ...ttt ettt sttt ettt st sae et st sbe et s 4
1.1 The Purpose and REQUITEMENLSc.cecuieriieiieeiiieiie et ere e sve e 4
1.2 The Hardware DESIZNcccuuiiiiiiiieiiieciie ettt et e e e e evee e 5
1.2.1 The hardware block diagram....................ccccoevvueveievienieeiieiieeeeeieee e 5

1.3 The SOftWare DESIZNcccuvieeiiieeiiieiiieeiie ettt e e eree e eeeabeeesaeeenns 7

2 SPECITICALIONS ...ttt ettt ettt ettt et et s e e bt e et e ebaesateesbeessbeenseeseesnseeseesnneans 8
2.1 Hardware MOdUIES...........ooouiiiiiiiiiiiiiceeee e 8
2.1.1 Z8 Encore!™ Flash Microcontroller Development Kit..................coooeeeeeenn... 9
2.1.2 VOICEDIRECT Speech Recognition Kitccceeevueeecveescieeeiiieniieeeee e, 9
2.1.3 SpeakJet Speech Synthesis CRIDcccccvceevieciiniiiiiiinieieeeeeeeee e 12
2.1.4 DS1307 Real-Time Clock (RTC) Modulecccocveeveveiaianiaarraneannnn 13
2.1.5 MAX6610 Temperature SENSOFcc.couvueerieeiniueeeiieeeiieesiieeesieeesieesneee s 14
2.2.0 PAFIS LEST ..ot e 15

2.2 SoftWare MOAULEScocuiiiiiiiiieie et 15

3 Implementation & CONSIUCTIONcouieriieriierieeiierie et eetie ettt eee et e seeeeteesaeeesreenenas 16
3.1 Speech RECOGNILIONcecviiieiiiieciiiieciee ettt et e e e e e s naee e 17
3.1.1 VOICEDIRECT Board Stand-Alone Testcccooueveroeenensiniiiieiineeniennen, 17
3.1.2 VOICEDIRECT Driver Development fOr Z8...........cccoeeeceeeeceeeiieeecieeniieeenaeens 19

3.2 SPEECh SYNERESIS. ...cveiuiiiiiiieiieeiiee ettt sttt 20
3.2.1 SpeakJet Chip Stand-AIlone TeStcooecueeeeeeeeeciieiieeieecieeie e eve e 20
3.2.2 SpeakJet Driver Development for Z§cccccoueevcerieneeninceinieieneeneneen, 21

3.3 Real-time Clock Reading/Settingccceevvieiiieriieiieiieeii et 23
3.3.1 PC ProOtOCOI CONIFOL ..o 23

3.3. 2 DALA TEANSTET ...ttt st e saaeanneenenas 24
3.3.3 Time/Calendar Reading/Settingc..cccvueeeeeeeeceeeeiieeeieeecieeeeieeesveeesvee s 25

3.4 Temperature Driver and Readingcoccoviiieiiiiiiiinieiiicieee e 26
3.5 Phrase Allophone Editingcc.coeviiiiiiiiiiiieiieeceeee et 27
3.5.1 Temperature Allophone Editing.............cccccccouevueviieecienieeiieiieee e eee e 28
3.5.2 Time/Calendar Allophone Editingcccccvueeeeueeeiieenieeeiieeeiieescieeenaeeens 28

3.6 System Integration and Main Application Flow Chart...........c..ccocoeviniininiinennnn. 29

4 CONCIUSIONS ...ttt ettt sat e et e bt et e sbe e et e e bt e sateenbeeenee 31
5 AttAChMENTS LISt ...ootiiiiiiiieiie ettt 32

Table of Figures

Figure 1: The Block Diagram of Hardware Design...........cccccueeveiiieniieiniieiieecie e, 5
Figure 2: The Schematic for the Designcceiviiriiiiiriiniiiiiiiecccececee 7
Figure 3: The Block Diagram of the Software Designc.ccoevveviiiiniiiiiiiiiieeeeee, 8
Figure 4: Main Hardware Components of Z8 Speaksccccoevieiiiiiiiniiiiienieeiceeeen 9
Figure 5: VOICEDIRECT Board (front and back)cccecveeeiieiiiiiiniiiiicieeeeeeeeeee, 10
Figure 6: VOICEDIRECT PINOULcooviiiiiiieiie ettt 10
Figure 7: SpeaklJet Chip (Left) and Pinout (Right)..........ccooviieiiiiiiiiiiiiiiieeeeeeee, 12
Figure 8: SpeakJet Pin Details and Electrical Specificationscccceecveevevierciieenneenne. 13
Figure 9: RTC Module (Left) and RTC Module Schematic (Right)ccccocvevvienennne. 13
Figure 10: DS1307 Address Map and Timekeeper Registers.........coovvevieeeriiecciieenneennne, 14
Figure 11: MAX6610 Temperature Sensor Configuration............cecceecveveerierveneneeneenne. 14
Figure 12: The Final Hardware Connection for the Z8 Speaks Systemccceeeuveennee. 16
Figure 13: Stand-Alone Test for VoiceDirect Hardware............ccccevveviiicneininicncnnene. 18
Figure 14: Hardware Connection for VoiceDirect Communication with Z8 19
Figure 15: Hardware Test for SpeakJet Demo Modeccccooveviiniiiiiniininiinicicneene, 21
Figure 16: The Schematic for SpeakJet Communication with Z8...............ccocceviiiennnn. 21
Figure 17: DS1307 Data Transfer..........ccoeoieiiieiiieiieeieesieeee ettt 24
Figure 18: The Flow Chart of Z8 Speak Main Application............cccceeeeveercrveenieeeenreennne. 30

Project Abstract

This final project report describes in detail how to create a Z8 speaks like a talking robot.
The Z8 Speaks is mainly composed of Z8 microcontroller board, VoiceDirect speech
recognition board, SpeaklJet speech synthesis chip, real-time clock, and temperature
sensor. The user can interact with the Z8 Speaks through speech communication based on
speech recognition and synthesis. It has the capabilities to display current temperature,
time, calendar, name, music, reset, and other information on the LEDs in the Z8 board
upon spoken request as well as speaking corresponding information. This project
provides twelve different operations, such as temperature, time, calendar, reset, etc.,
which have been already set well in the program. Before the user talks with the robot, his
or her voice commands need to be trained correspondingly for the preset operations and
stored as speech patterns. Then the user can ask the questions for the robot. If the voice
does not match any of trained voice commands, a speech instruction — “words cannot be
recognized” or “Repeat, look for” will be given to allow the user to try again.

Project Status

The overall work for the final project works very well as planned in the project proposal.
Specifically, the final project meets the proposed requirements as follows,

* Read the temperature from ADC temperature sensor

* Read the Real-Time Clock (RTC) using 12C bus

* Control the speech recognition board using GPIO and hardware switches
* Control speech synthesis through serial data line

* Interact with the user over the speech communication

In addition, more voice operations and speech controls are added into the final project
beyond the proposal as follows,

» Write/Reset the RTC using 12C bus

* Software decoding to reach up to 15 word commands for speech recognition
* Allophone phase editing

* Numerical pronunciation (0 — 69)

* Calendar pronunciation (Jan. 1 — Dec. 31, Monday - Sunday)

* Non-standard language speech synthesis (Chinese, AM/PM)

* Robot music playing

Project Final Demonstration Video (13MB):
http://home.ewu.edu/~dliao/cs339/Liao z8Speaks 320x240.mpg

1 Design Overview
1.1 The Purpose and Requirements
The purpose of this project is to create a Z8 speaks. It has the capabilities to display

current temperature, real-time date, day, time, name, and other information on the LEDs
in the Z8 board upon spoken request as well as speaking corresponding information. The

78 Speaks mainly consists of Z8 microcontroller board, VOICEDIRECT speech recognition
board, SpeaklJet speech synthesis chip, real-time clock, and temperature sensor. The Z8
microcontroller will control temperature reading, RTC reading/writing, speech
recognition, speech synthesis and output.

The proposed requirements that the project must meet are:

* Read the temperature from ADC temperature sensor

* Read the Real-Time Clock (RTC) using 12C bus

* Control the speech recognition board using GPIO and hardware switches
* Control speech synthesis through serial data line

* Control LED display with corresponding information

* Interact with the user over the speech communication

1.2 The Hardware Design

1.2.1 The hardware block diagram

The block diagram of overall hardware design is shown in Figure 1 as follows.

| |
VOICEDIRECT SpeaklJet
Speech Speech
recognition board synthesis chip
GPIO Serial Data Line
GPIO
" 78
[— —— .
" Microcontroller
Microphone
Speaker
2c ADC
Real-time Clock Temperature Sensor

Figure 1: The Block Diagram of Hardware Design

1.2.2 The Schematic for the Design

The interfacing of the Z8 microcontroller to the VioceDirect board, SpeakJet chip, RTC
module, MAX6610 temperature sensor, microphone, switches, and speakers is shown in
the following schematic for the design in Figure 2.

—g] |oWT M-S
—
—
—id 1 CON1?
—aS
—a b]
—u7
] . .
I Vaice Oirect Nadule
—a 18
—all
—alg coMig
—a 13
—uld are caMig
]
Lo Y R T R B TR b
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ R A
L L L L L 1 1 1 L i L 1—1—.
S

V'DND

SF‘|

S GHD

FF7
FF&
FFS
PFd
PF3
]
FF1
F

=
1 o
] L uCe e
VEC OND vEC 28 Board GHD GHD
<HoNn REF [GHD o @ S0M
w =
SHON TEM 5 X PrE_SCL sCL
FEO-ALED ! ' PA7_3TA 504
= — [l ") -
MEEE 1B o O a a
£ T g S FTC Madule
+50,
GHD
Fo oo i £
+ = - u + = —_ + S
5 A B /A Z E = o g
P 5
. o Speaklet
Ly (M)
. \
— g =
(.} (] uw =t T () at] - =
[[L L a L L (M) (M)
T T T T 1T T T T T T T T T
b
GND

(a) The Formal Schematic for the Design (Final Version)

S ¥ Jre 37 4/ - - Ve
i (-\‘ |
1" T ’?
07
o=
£ ' ¢ i £ 2
. ; 14
e —)
Ay
" Tspr (pab
1504 Cpal
!.
-~ "’ B
&)
L s)

(b) The Schematic Scratch (Work Progress)
Figure 2: The Schematic for the Design

1.3 The Software Design

The software is designed for four major modules, Speech Recognition Manager, Sensor
Manager, Speech Synthesis Manager, and Driver Manger. The block diagram of the

overall software design is shown in Figure 3 as follows.

Speech Recognition
Manager

Speech
Input

A 4

Speech
™ Recog-
inition

Voice
Command
Determi-
nation
(Temperature,
time, date,
name, etc.)

Sensor Manager

Data Reader

\ 4

Speech Synthesis
Manager

Allophone

Editing

_?

Driver Manager

Timer, Switch

A4

| Data Display

Speech
Synthesis

A4

Data
Preprocessing
for Speaking

Speech
Output

SpeaklJet ‘_
Driver

»| LED Display |q |
Driver

1, Temp.erature —
Driver
Real-time

H <

] Clock Driver

Speech P
Recognition
Board Driver

2 Specifications

2.1 Hardware Modules

Figure 3: The Block Diagram of the Software Design

The project design consists of five main hardware modules: Z8 Encore!™ Flash
Microcontroller Development Kit, VOICEDIRECT speech recognition board, Speaklet
speech synthesis chip, Sparkfun DS1307 Real-Time Clock Module, and MAX6610

temperature sensor.

The main hardware components for Z8 Speaks are shown in Figure 4.

Figure 4: Main Hardware Components of Z8 Speaks

2.1.1 Z8 Encore!™ Flash Microcontroller Development Kit

The Z8 Encore!™ Flash Microcontroller Development Kit allows the user to design and
evaluate projects using the eZ8 microcontroller. The kit contains a Z8F6423 module,
which contains the Z8F6423 device running at 18.432 MHz, with 64 Kbytes of Flash
memory and 4 Kbytes of register RAM. This evaluation board provides 12-channel 10-bit
A/D converter, four 16-bit timers, a watch-dog timer, 60 General-Purpose 1/0s (GPIO),
and 24 vectored interrupts. The board also contains SPI, 12C, and 2 UART ports with
IrDA encode/decoder, 3-channel DMA controller, four 7x5 LED arrays, three
pushbuttons, and embedded modem socket. Furthermore, it contains Zilog’s proprietary
ZDS 1I for debugging and programming. The adapter provides 9VDC for the evaluation
board. The board supports 3.0-3.6V operating voltage with 5V-tolerant inputs.

2.1.2 VOICEDIRECT Speech Recognition Kit

VOICEDIRECT Speech Recognition Kit includes speech recognition board (as shown in
Figure 5), one microphone, one speaker, three microswitches, and two 100KOhms
resistors.

VOICEDIRECT is a speaker-dependent speech recognition module, allowing training of up
to 15 words. Using sophisticated speech recognition technology, VOICEDIRECT maps
spoken commands to system control functions. Each time one of the words is recognized,
a corresponding output pin on the module is toggled for one second.

— I

—e.

— 1z

s JP1 COMI7

S JP3

l—l?

I—IB

I Vaice Direct Module

— 12 |coMis .

114 JFR. . . . COMl9 .
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ o

EERSRERRERRRRREREEE

Figure 6: VOICEDIRECT Pinout

The module pinout layout is shown in Figure 6 and major module pinout used for this
project is listed in the Table 1 as follows.

10

Table 1: Major Module Pinout

Name Module Pin | Description Connection 1/0
PREAMP IN | JP2 -1 Microphone Input Connect to microphone, other microphone I
Connection connection to GND
MIC BIAS JP2 -2 Mic Bias (Elec. | If powered mic, being used, NC, otherwise | 1
Microphone) connect JP2-1
AGND JP2-3,5 Analog Ground. For | GND
noise reasons,
analog and digital
grounds should
connect together
only at VOICE
DIRECT.
-+5V JP2 -4 5 Volt(+) Power | VCC -
Supply Connection
PWMI1 JP2-6 Pulse Width Connect to 8—320hm speaker. Provides o
Modulator Output 1 | approximately 0.15 Watts of audio power
(multiplexed) into 32-Ohms.
PWMO JP2 -7 Pulse Width Connect to 8—320hm speaker. Provides o
Modulator Output 0 | approximately 0.15 Watts of audio power
into 32-Ohms.
DAOUT JP2 -8 Analog Output High-impedance (22kOhm) analog audio
(unbuffered) output. Must be powered amplified to drive
a speaker, and should be low-pass filtered 0
with a corner frequency around 20KHz.
Better speech quality than the PWM output.
Recommended for applications requiring
either louder volume or better speech
quality.
-RECOG JP2 -10 Recognition To start recognition, pull
sensitivity selection | the -RECOG line to GND | To erase all
and active for at least 100ms. To erase | recorded I
recognition all recorded words, pull words, pull
both the -TRAIN and — both the —
RECOG pins to GND for TRAIN and —
at least 100ms. RECOG pins
-TRAIN JP2 - 11 Training sensitivity | To start training, pull the — | to GND for at I
selection and active | TRAIN line to GND for at | least 100ms.
training least 100ms.
OUTI1-OUT7 | JP2—-12-18 | Stand Alone mode Connect to user application’s control lines. (0)
output ports 1-7
HIGH/OUTS | JP2-19 Stand Alone mode Connect to user application’s control lines. (0)

output ports 8

In this project, -TRAIN open circuit mode is used for pin configuration. This is relaxed
training mode — easier to train, accepts more similar sounding words (i.e., fewer

rejections).

11

Table 2: 15 Words and Corresponding Pinout

Since the module can recognize 15

words, but only has 8 output pins, word xgﬁé 83:&3
9 through 15 are represented in binary [Wword 3 Output 3
form, as show in the Table 2 on the right. | Word 4 Output 4
Software decoding method instead of | Word S Output 5
hardware decoding circuits is applied to | Word 6 Output 6
get word 9 and word 15. Word 7 Qutput 7
Word 8 Output 8
Word 9 Output 8 and Output 1
Word 10 Output 8 and Output 2
Word 11 Output 8 and Output 3
Word 12 Output 8 and Output 4
Word 13 Output 8 and Output 5
Word 14 Output 8 and Output 6
Word 15 Output 8 and Output 7

2.1.3 SpeakJet Speech Synthesis Chip

The Speaklet is a completely self contained, single chip voice and complex sound
synthesizer as shown in Figure 7. SpeaklJet uses Mathematical Sound Architecture (MSA)
technology which controls an internal five channel sound synthesizer to generate on-the-
fly, unlimited vocabulary speech synthesis and complex sounds without the use of analog
or digitally recorded samples. The SpeakJet has a built in library of 72 speech elements
(allophones), 43 sound effects, and 12 DTMF Touch Tones. Through the selection of
these MSA components and in combination with the control of the pitch, rate, bend, and
volume parameters, the user has the ability to produce unlimited phrases and sound
effects, with thousands of variations, at any time.

The SpeaklJet can be controlled simultaneously by logic changes on any one of its eight
Event Input lines, and/or by a Serial Data line from a CPU (such as Z8 or PC) allowing
for both CPU-Controlled and Stand-Alone operations. Other features include an internal
64 byte input buffer, internal programmable EEPROM, three programmable outputs, and
direct user access to the internal five channel sound synthesizer.

RC1I/ET D ¢] VOut
RCO/EB 1 DO/ Ready
E5 1 D1/ Speaking

E4 1 D2/ Buffer Half Full

Gnd 1 v+
E3 1 MO
E2 1 M1
E1 1 Rst
EO 1 RCX

Figure 7: SpeakJet Chip (Left) and Pinout (Right)

12

The SpeaklJet pin details and electrical specifications are shown in Figure 8.

Pin # Description Functional Details
1 RC1/ET Event Input 7 Electrical Specifications:
2 | RCO/ES Event Input 6 g’ﬂggg ‘é‘:}‘r‘;‘gﬁ 20t 5.5VDC
3 ES Evant Input 5 Idle: <5ma. Plus loads
4 | E4 Event Input 4 Speaking: <5ma. Plus loads
5 Gnd Ground
6 E3 Event Input 3 Sink/Source Current:
7 E2 Event Input 2 Qutputs 25ma.
8 E1 Event Input 1 All Inputs In_sve\s:
9 |E0 Event Input 0 High gﬁ’g'y
10 RCX Serial Input TTL (0.0v to Vec) EEPROM:
11| Rst Master Reset Max. Write cycles Typical 1,000,000 times
12 M1 Mode Select 1 (Baud Configure)
13 MO Mode Select 0 (Demo Mode) Mechanical Specification:
14 V+ Power input +2.0 to +5.5 volts DC Thermal storage: -60 to +140 Degrees C
15 D2/Buffer Half Full Data Out 2 (External) / Buffer Half Full (Internal) Thermal operating ~ -18 to +60 Degrees C
16 D1/Speaking Data Out 1 (External) / Speaking (Internal) B .
The thermal specifications are preliminary and
17 DO/Ready Data Out 0 (External) / Ready (Internal) may change as testing is completed.
18 VOut Voice Output

Figure 8: SpeakJet Pin Details and Electrical Specifications

In the final project, Event Input EO-E7 is not used and must be connected to GND. The
Serial Input, RCX, is used to communicate between SpeakJet and external devices such
as Z8. PA5-TXDO on Z8 board is connected to RCX. Voice Output, VOut, modulates the
SpeaklJet’s voice on a square wave carrier of 32khz.

2.1.4 DS1307 Real-Time Clock (RTC) Module

This is a custom-designed module for the DS1307 Real Time Clock as shown in Figure 9.
The module comes fully assembled and pre-programmed with the current time. The
included Lithium coin cell battery (CR1225 41mAh) will run the module for a minimum
of 9 years (17 years typical) without external 5V power. The DS1307 is accessed via the
I’C protocol. It provides seconds, minutes, hours, AM/PM, day, month, date, year, leap
year compensation, accurate calendar up to year 2100, 1Hz output pin, and 56 Bytes of
non-volatile memory available to user.

"'| | ul vee
| é X1 vee };—-I: W
Y e | SQ!
| 32.’.-‘68sz Bail 3 ﬁuu “’Q“’:;“i s
- I_—‘1 GND Spa f—3 SDA
— DSI307
Batt 1Pl
VO :
N Cl VOO €S N
33V 3 1mAl I T 22 3
A5V AlmAn T -
| ul |I .- SCL -
= . lul SDA
5 5
Header 5

Figure 9: RTC Module (Left) and RTC Module Schematic (Right)

13

Vgar is a battery input for any standard 3V lithium cell or other energy source. Vcc is the
+5V input. When 5V is applied within normal limits, the device is fully accessible and
data can be read and written. When a 3V battery is connected to the device and Vcc is
below 1.25xVgart, reads and writes are inhibited. However, the timekeeping function
continues unaffected by the lower input voltage. SCL (Serial Clock Input) is used to
synchronize data movement on the serial interface. SDA (Serial Data Input/Output) is the
input/output pin for 2-wire serial interface. The SDA pin is open drain. SQW is used for
square wave output.

The DS1307 Serial RTC is a low-power, full binary-coded decimal (BCD) clock/calendar
plus 56 bytes of NV SRAM. Address and data are transferred serially via 2-wire, bi-
directional I°C bus. DS1307 address map and timekeeper registers are shown in Figure 10.

e | | | [[| [emw]
0OH | CH 10 SECONDS SECONDS 00-59
0 10 MINUTES MINUTES 00-59
12 10 HA oi-12
0 2 [10 HR HOURS 00-23
0 o 0 0 0 DAY 1-7
e
0 o
10 DATE DATE pis
0 o 0 | o MONTH 01-12
10 YEAR YEAR 00-99
07H | ouT | o o i sawe| O { o | RS1 | RSO

Figure 10: DS1307 Address Map and Timekeeper Registers

2.1.5 MAX6610 Temperature Sensor

The MAX6610 is precise, low-power analog temperature sensors combined with a
precision voltage reference as shown in Figure 11. An 8-bit ADC’s LSB is equal to 1°C,
while a 10-bit ADC’s LSB corresponds to 0.25°C. The MAX6610 operates from 3.0V to
5.5V and has a 2.560V reference output. Power-supply current is less than 150pA. The
MAX6610is available in a 6-pin SOT23 package and operate from -40°C to +125°C.

TOP VIEW

vee [1] 6] 61D
MAAAM

MAXG510
wo (2] maxssrr [o] weF

SHn [3] 4] Teme

S0T23

Figure 11: MAX6610 Temperature Sensor Configuration

14

2.2.6 Parts List

Table 3 contains the part numbers used for this project.

Part Name Quantity Description
78 Encore! Development Kit Development package
VoiceDirect Board Speech recognition board
SpeaklJet Speech synthesis chip
Switch Control speech recognition and Training

SparkFun Real-time Clock Module

Real-time clock and calendar

MAX6610 Analog Temperature Sensor

Analog temperature sensor

e el N e e)

Microphone For speech recognition

Speakers 2+ For speech recognition and synthesis output
Breadboard 1 For prototyping design and test

Wires many For connection

2.2 Software Modules

As shown in Figure 3, all hardware control and application software modules listed in the
block diagram of the software design are written by myself in C based on Z8 SDK. All of
them are compiled on Zilong XTools ZDS II — Z8 Encore! Family 4.9.6 (build 05110402).
ZDS 1II runs on the Windows XP platform. In addition, PhaseALator is used for some
basic English words or phrases editing for SpeaklJet Allophone code creation. The
detailed software module development will be discussed in Section 3 Implementation &

Construction.

15

3 Implementation & Construction

The hardware construction is exactly followed by the schematic for the design in Figure 2.
Figure 12 shows the final Z8 Speaks system.

Speaker
Real-time Clock Module

Figure 12: The Final Hardware Connection for the Z8 Speaks System

16

During the system development, for each major part or module needs to be tested on both
hardware and software side, respectively. In the following sections, the main modules
including hardware test and software development will be discussed in details. These
main modules are speech recognition, speech synthesis, real-time clock reading and
setting, temperature driver and reading, and phrase allophone editing. All other modules,
such as LED display, timer control, in the software block diagram as shown in Figure 3
can be implemented as easily as in the basic real-time embedded system. Their details
will not be given in this report. At the end of this section, the system integration and flow
chart will be described.

3.1 Speech Recognition

VOICEDIRECT board is used for speech recognition in this project. Firstly, hardware
structure needs to be tested and verified. Then the driver for Z&8 needs to be written for
communication between VOICEDIRECT and Z& microcontroller.

3.1.1 VOICEDIRECT Board Stand-Alone Test

VoiceDirect speech recognition board is connected in the stand-alone mode as shown
Figure 13 (a) and (b). The Z8 in the figure is only used to be a power supply and ground
connection. In (b), push left button at least 100ms, training will begin. VoiceDirect will
prompt “Say word x” (where x is number from 1 to 15 corresponding to the word to be
trained). After training, push right button, the VoiceDirect will prompt “Say a word”. If
the word matches the training records, the VoiceDirect will return to say the number of
the word record. Otherwise, it will return “Word not recognized”. Through this test,
hardware configuration and connection for the VoiceDirect board can be verified.

17

A

WA m B

= 28 Board ool

GHD

(a) The Schematic for VoiceDirect Stand-Alone Test

(b) The Hardware Connection for VoiceDirect Stand-AloneTest

Figure 13: Stand-Alone Test for VoiceDirect Hardware

18

3.1.2 VOICEDIRECT Driver Development for Z8

The VoiceDirect can output the signals of OUTI-OUTS to communicate with Z8
microcontroller through the connections to Z8 GPIOs. I use PF0-PF7 to connect
VoiceDirect OUT1-OUTS as shown in Figure 14.

sl . |BoR N - @
- =
S IF1 COMI7
N P
g . .
- Vaice Oirect Module
= d1m
—ul1l. . .
—ulZ CoMta
—17.
=414 e COM19
= it “K‘
EEEEEEEE:EE\@:_mmém'c\Et ’
L L L L L 11] L II—I_ ’
a0
. .gp.]j.
A A &
e T A T e e - N
28 Board GHD

(b) Hardware Connection for VoiceDirect Communication with Z8

Figure 14: Hardware Connection for VoiceDirect Communication with Z8

19

The following driver code snippets show how Z8 communicate with VoiceDirect. The
total 15 words are represented in binary form as shown in Table 2 and decoded as follows.

#define VOICE_ COMMAND 1 0x01
#define VOICE_ COMMAND 2 0x02
#define VOICE_COMMAND 3 0x04
#define VOICE_COMMAND 4 0x08
#define VOICE_COMMAND 5 0x10
#define VOICE_COMMAND _6 0x20
#define VOICE_COMMAND 7 0x40
#define VOICE_ COMMAND 8§ 0x80
#define VOICE_ COMMAND 9 0x81
#define VOICE_ COMMAND 10 0x82
#define VOICE_COMMAND 11 0x84
#define VOICE_COMMAND 12 0x88
#define VOICE_COMMAND 13 0x90
#define VOICE_COMMAND _ 14 0xA0
#define VOICE_ COMMAND 15 0xCO0

// Initialize the ports for Voice Direct speech recognition board
void init_VoiceDirect(void)
{

// initialize Port F(0-7)

PFADDR = 0x02;

PFCTL &= 0x00; // no alterate function
PFADDR = 0x01; // data direction
PFCTL &= 0x00; // clear

PFCTL |= OxFF; // input PF(0-7)

}

// Interpret the word code and take corresponding action
switch(PFIN) {
case VOICE_ COMMAND 1: actionl(); break;
case VOICE_ COMMAND 2: action2(); break;

case VOICE_ COMMAND 15: actionl5(); break;
default: break;

}
3.2 Speech Synthesis

SpeakJet chip is used for speech synthesis in this project. Firstly, hardware structure
needs to be tested and verified. Then the driver for Z8 needs to be written for
communication between SpeakJet and Z8 microcontroller.

3.2.1 SpeakJet Chip Stand-Alone Test

SpeaklJet speech synthesis chip is connected in the demo (i.e. stand-alone) mode as
shown Figure 15 (a) and (b). The Z8 in the figure is only used to be a power supply and
ground connection. In such a mode, if all hardware works well, SpeakJet will play the
demo sounds.

20

Z8

(a) The Schematic - (b) The Hardware Connection
Figure 15: Hardware Test for SpeakJet Demo Mode

3.2.2 SpeakJet Driver Development for Z8

SpeaklJet provides Serial Input and Event Inputs to communicate with Z8 microcontroller
through Z8 GPIOs. In Figure 16, Z8’s PG0O and PG1 connect to SpeakJet DO and D1.
CTSO (PA3 alternate function) connects to D2. Serial data line (TXDO0) in Z8 board is
used to connect the RCX in SpeaklJet. In this project, any Event Inputs are not used so all
of them connect to GND.

28 Board
IS\'S =
o [Tyl =
= + *
. [P -
] = 1
= - [} (] = uw
g .g.3 g 5. z
- oo lr"ﬂr"—tr"ﬂr"ﬂl—"'l o
. - 28 B B 3 2 2 F o3
SP =
: : . . Speakdet
[[}
.. . ML L .. .
—_ [t} hnl
() _ L =t o) [} (LTI] =
e & W w0 W W W

Figure 16: The Schematic for SpeakJet Communication with Z8

21

The SpeaklJet can receive the commands that can be any of 256 commands listed in the
Table D & E in the attachment A, SpeakJet User Manual. There are 7 operational groups
of commands, SCP, Allophones, Sound Effects, DTMF, Pauses, Levels, and Controls. In
this project, SCP commands are not be used. Thus, each command received is buffered
into a 64-byte input buffer and executed by the MSA in FIFO.

Serial Data is the main command of communicating with the SpeakJet to execute
commands or create voices and sounds. The SpeakJet serial configuration is fixed at 8bits,
No-parity, and 1 stop bit and non-inverted. The SpeakJet can be configured to accept
Baud rates from 2400 to 19200. The factory default setting is 9600 baud. In this project,
default setting is used.

Therefore, the key for SpeakJet Z8 driver development is make serial data line TXDO
work. The driver code snippets are as follows,

#define FREQ 18432000 // 18.432MHz

#define BAUD1 9600 /! 9.6K baud for UARTO
#define BRG1 FREQ/((unsigned long)BAUD1*16)

#define UART _TXD_EN 0x80

// initialize SpeaklJet speech synthesis chip
// Initialize the ports
void init_SpeakJet(void)
{
// initialize Port PA3 and PAS
PAADDR = 0x02;

PACTL |- 0x28; // alterate function: PA3-CTS0, PA5-TXDO0
PAADDR = 0x01; // data direction
PACTL &= 0xD7; // ouput:PA3-CTS0, PA5-TXDO

UOBRH = (char)(BRG1 >> 8);
UOBRL = (char)(BRG1 & 0xfY);
UOCTLO = UART _TXD_EN; // Transmit enable, No Parity, 1 Stop
}
// Input the speech string into SpeakJet through serial data line
void Speak(char *speech)
{

}

puts(speech);

In this project, I directly use Allophones to edit any speech. For example, the following
allophone code string represents the English speech “Welcome to Z8 Speaks”.

unsigned char s welcome[LEN_ WELCOME] = {252, 252, 147, 159, 194, 134, 140, 8, 191, 162, 8, 167,
128,128, 154, 4, 191, 187, 198, 8, 128, 196, 187, 1}; // “Welcome to Z8 Speaks”

22

3.3 Real-time Clock Reading/Setting

SparkFun Real-time clock module is used for read/set the time or calendar in this project.
RTC hardware specifications are described in Section 2.1.4. The schematics for SparkFun
DS1307 RTC module is shown in Figure 9. The driver for communication between RTC
and Z8 microcontroller contains the I°C protocol, data transfer, and time/calendar reading
or setting. These will be described in detail in this section.

3.3.1 FC Protocol Control
I°C protocol is used for this module to communicate with Z8 microcontroller board. The
following functions are used for I’C communication. Note that DS1307 operates in the
regular mode (100KHz) only.

//Intialize 12C Interface
void init_12C(void)

{
// BRG = 18432KHz/(4*100KHz) = 46 = 0x2E [mode = 100kHz for DS1307)
I2CBRH = 0x00; // BRG High
I2CBRL = 0x2E; // BRG Low
PAADDR = 0x02;
PACTL |- 0xCO; // alterate function: PA6-SCL, PA7-SDA for 12C port
[I2CCTL =12C_ENABLE;
}
void I12C_start (void) {
I2CCTL |= SEND_START; // 12C Start bit
}
void I2C_stop (void) {
I2CCTL |= SEND_STOP; // 12C Stop bit

while (I2CCTL & SEND_STOP) == SEND_STOP)

B

}
void I2C_write_byte (unsigned char data) {

[2CDATA = data; /I Write 12C data
}
void I2C_Transmit Data Empty (void) {
while (I2CSTAT & TRANSMIT DATA REG EMPTY) == 0x00) // Wait for Transmit

; // Buffer Empty

}
unsigned char 12C read byte (void) {

unsigned char data;

data = [2CDATA; //Read 12C data

return (data);
}
void I12C_Acknowledge (void) {

while (I2CSTAT & RECEIVED_ ACK) ==RECEIVED_ ACK); // wait for ACK
}

unsigned char 12C_AckNack (void) {
unsigned char data;
while (1) {
// Wait for the last byte Transmit/Receive ACK/NACK
if (I2CSTAT & RECEIVED ACK) ==RECEIVED_ ACK)

23

return (ACK);

else if (I2CSTAT & RECEIVED NACK) == RECEIVED NACK) {
I2CCTL |= FLUSH_TXD;
12C start ();
12C stop ();
data =12C read byte (); // Clear 12C Receive buffer
printf ("\n\n\rI2C Error - NACK Received");
return (NACK);

Fi
void [2C_Send NACK (void) {

I2CCTL |= SEND_NACK; // Send NOT Acknowledge
}

void I2C_Receive Data Full (void) {
while (I2CSTAT & RECEIVE DATA REG FULL) == 0x00) //Wait for Receive Buffer Full

>

}

3.3.2 Data Transfer

The DS1307 device address is 7-bit, 1101000. The last bit is for direction, O for write and

1 for read. The definition of the device identification code in the program is as follows,
#define EEPROM_Read Address 0xD1 /12C EEPROM Read Address
#define EEPROM_Write Address 0xD0 /12C EEPROM Write Address

The data transfer between Z8 and RTC is followed by 2-wire serial data bus. That is, the
bus is controlled by Z8 microcontroller that generates the serial clock (SCL), controls the
bus access, and generates the START and STOP conditions. The DS1307 operates as a
slave device on the serial bus. Access is obtained by implementing a START condition
and providing a device identification code followed by a register address. Subsequent
registers can be accessed sequentially until STOP condition is executed. Each receiving
device, when addressed, is obliged to generate an acknowledge after reception of each
byte. The DS1307 data write and read are shown in Figure 17.

1=
<Slave Address> S <Data{n= <Chatalre1 = <Data {n+2)= =[rata jnaXj=

W

s [moto00 [1 [A [roo0000c [A [xooooooc [A Txoooooox | A | xoooox | & | P

l i |

N

5 - START
A - ACKNOWLEDGE x41 svrsmac»?tﬁ:f&%ﬁnhésfﬁon?gznmmm BYTE I5
P - STOP FOLLOWED BY ANOT ACKNDWLEDGE | A) SIGNAL)
A - HOT ACKNOWLEDGE
*AMW - READVWRITE OR DIRECTION BIT ADDRESS = DMh
(a) Data Read
£
<Slave Addreas> ¥ <Waord Address (n)= <Data(n)= <Data {r+1)= =Data {n+X)=-

E s] 1101000 | O | A Ixxxxxxxx LA | x000000 | A | xxxxxxxx] A ‘xxxxxxxx | A | P]
5 — START Jf}’ ‘
A - ACKNOWLECGE DATA TRANSFERRED
P — STOP (¥+1 BYTES + ACKNOWLEDGE}

*R/W - READ/WRITE OR DIRECTION BIT. ADDRESS = DOh
(b) Data Write

Figure 17: DS1307 Data Transfer

24

The following code snippets show how the data transfer works (i.e. read/write) based on
12C protocol.

unsigned char ReadEEPROM(unsigned char addrL)

{

}

unsigned char data;

12C_start ();

12C_write_byte (EEPROM_Write Address);
[12C_Transmit Data Empty ();

12C Transmit Data Empty ();

12C write byte (addrL);

if (112C_AckNack())

return,;

12C Transmit Data Empty ();

12C_start ();

if ('12C_AckNack())

return;

12C Send NACK ();

12C_write_byte (EEPROM_Read Address);
12C_Receive Data_Full ();

data =12C read byte ();

12C _stop ();

return data;

/I 12C Start

// EEPROM Address; Write

// wait for transmit buffer empty

// wait for transmit buffer empty

// LSM EEPROM Address

// wait for ACK/NACK from EEPROM

// wait for transmit buffer empty
// 12C Start
// wait for ACK/NACK from EEPROM

// send NACK to EEPROM
// EEPROM Address; Read
/] wait for receive data

// EEPROM Read data

/1 12C Stop

void WritetEEPROM (unsigned char addrL, unsigned char data)

}

12C_start ();
12C_write_byte (EEPROM_Write Address);

[12C_Transmit Data Empty ();
12C_write_byte (addrL);

if (112C_AckNack())

return;

12C Transmit Data Empty ();
12C_write_byte (data);

if (112C_AckNack())

return;

12C _Transmit Data Empty ();
12C stop ();

if (112C_AckNack())

return;

3.3.3 Time/Calendar Reading/Setting

DS1307 Address Map and Timekeeper Registers are shown in Figure 10. The following
function shows how to read the time and calendar from RTC.

#define SECOND 0
#define MINUTE 1
#define HOUR 2

25

// 12C Start
// 12C EEPROM Address; Write

// wait for transmit buffer empty
// LSB EEPROM Address
// wait for ACK/NACK from EEPROM

// wait for transmit buffer empty
// EEPROM Write data
// wait for ACK/NACK from EEPROM

// wait for transmit buffer empty
// 12C Stop
// wait for ACK/NACK from EEPROM

#define DAY 3
#define DATE 4
#define MONTH 5
#define YEAR 6

// Read data from DS1307 RTC through 12C
unsigned char Read RTC(int mode)
{

unsigned char data, tmp, tms;
data = ReadEEPROM(mode);
if(mode == HOUR) {
if(data&0x20)
AM=1; /I AM
else AM =0; // PM
tmp = data & 0x10;
tmp >>=4;
tms = data & 0xOF;
data = tms + tmp*10;

H

else if(mode == DAY) {
data &= 0x07;

}

else {
tmp = data & 0xFO;
tmp >>=4;
tms = data & 0xOF;
data = tms + tmp*10;

}

return data;

}

Likewise, using function WrittEEPROM(mode, address) can set the time or calendar.

3.4 Temperature Driver and Reading

MAX6610 analog temperature sensor is used for temperature reading in the final project.
I directly use MAX6610 sensor on the Lab3 board for this project. MAX6610 hardware
specifications are described in Section 2.1.5. The MAX6610 configuration and
schematics for Z8 are shown in Figure 11 and Figure 2, respectively. The driver for
communication to Z8 microcontroller contains ADC initialization and calculation for the
temperature as shown in the following code functions. ALGO — PBO port is used for
temperature input to Z8.

// Initialize the ADC

void init ADC(int mode)

{
PBADDR = 0x01; // set up port B to use as ADC input
PBCTL |= 0x01; // PBO
PBADDR = 0x02; // Port B alternate function
PBCTL |= 0x01; // enable PBO = ANAO ADC INPUT 0
ADCCTL = 0x90; // ADC Control Register

/l CEN =1, 0, VREF=0, CONT=1, ANAIN=0000

26

IRQOENH |= 0x01; /I Set Interrupt Highest Priority
IRQOENL |= 0x01;
SET VECTOR(ADC, isr_adc); //set the interupt vector
EI();
// CEN will be 0 at first complete conversion result 5129+24 system clock cycles
while(ADCCTL & 0x80)
; // Do nothing but wait for the end of the first A/D conversion

}

//Interrupt routine
//ADC interupt.

#pragma interrupt
void isr_adc(void)

{
adc_data = cal ADC();
§
unsigned int calADC(void) // get temperature
{
unsigned char tmp;
unsigned int data;
tmp = ADCD _L; // get low bits
tmp >>= 6; // move to the right side
tmp &= 0x03; // clean up
data=ADCD _H;
data <<= 2, // move to the left side
data &= 0x03FC; // clean up
data |= tmp; /I ADC value
return data;
}

3.5 Phrase Allophone Editing

To produce speech, a list of selected allophones is sent to the SpeakJet. As the SpeaklJet is
vocalizing this list of allophones, MSA actively and continuously calculates all the sound
components of the allophones including the transitional sounds made between the
allophones, producing the same sounds that the human mouth does as it moves one
position to another position.

Selecting the appropriate combination of allophones and pauses can thusly create any
English word or phrase. Further tuning with the Rate, Pitch, Bend and Volume
parameters adds to the delivery of the phrase and can change the emotion in which the
phrase is perceived.

Stressing the Rate, Pitch, Bend and Volume parameters to levels outside the human range
can result in some interesting sounds that go way beyond what a normal human mouth
can produce. In addition, several other sounds effects, which are included in the MSA
Sound Component Database, of which, some use vocalization and some do not, can be
integrated into the phrases.

27

The result is a system that gives the user the ability to not only produce an unlimited
vocabulary, but also to produce slang, gibberish, moans, groans, yodels and other weird
vocalized sounds not normally included in a canned TTS system.

All allophones in this final project are edited directly by hands and PhaseALator software.
These allophones mainly contain temperature, time, calendar, songs, etc. Although
allophones are mainly used for English language, they can be used for simulation of some
foreign language pronunciation.

3.5.1 Temperature Allophone Editing

The temperature phrase contains two major parts. One is the numerical phrase. The other
is just “degree” word. The allophone code of the “degree” can be directly translated from
PhaseALator. However, numerical phrase should be composed with 10 basic digit
numbers (i.e, 0, 1,..., 9) and 9 basic high digit numbers like 10, 20,..., 90, 100, 1000,... In
this project, all the allophones for these basic phrase elements are first stored in the ROM.
When used, they will be copied into the RAM. The following function shows how to
compose the speech of the temperature degree.

void SpeakTemperature(float temperature)

{
int T, T1, TO, Ic;
unsigned char tmp[20];
T = (int)(temperature + 0.5);
if(T>0) {
if(T <=20){
lc = copy_data_digitCode(speech, CODE 1, T, 0);
datacat_rom(speech, s_degree, lc, LEN_DEGREE);
}
else {
T1 = (int)(T/10);
TO = (int)(T%10);
lc = copy_data_digitCode(speech, CODE 10, T1-2, 0);
copy_data_digitCode(tmp, CODE 1, T0, 0);
datacat(speech, tmp, Ic, lens[TO0]);
datacat rom(speech, s_degree, lct+lens[T0], LEN DEGREE);
}
puts(speech); // Speak the temperature
}

3.5.2 Time/Calendar Allophone Editing

The time phrase contains two major parts. One is the numerical phrase. The other is just
“AM” or “PM” word. Likewise, the allophone code of the “AM” or “PM” can be directly
translated from PhaseALator. Numerical phrases are composed with 10 basic digit
numbers and 9 basic high digit numbers from 10 to 60. all the allophones for these basic
phrase elements are first stored in the ROM. When used, they will be copied into the
RAM. The following function shows how to compose the speech of the time.

void SpeakTime(unsigned char hour, unsigned min, int am)

{

28

unsigned char tmp[MAX CODE LEN], Ic, T1, TO;

lc = copy_data_digitCode(speech, CODE 1, hour, 0);
if(min <= 20) {
lc = copy_data_digitCode(speech, CODE 1, min, Ic);

}

else {

i
if(am)

else

T1 = (int)(min/10);
TO = (int)(min%10);

lc = copy_data_digitCode(speech, CODE 10, T1-2, Ic);

copy_data_digitCode(tmp, CODE 1, T0, 0);
datacat(speech, tmp, Ic, lens[TO0]);

Ic += lens[TO];

datacat rom(speech, s AM, Ic, LEN AM);

datacat rom(speech, s PM, Ic, LEN PM);

puts(speech); // Speak the time

}

The calendar phrases contains more elements, including day, date, month, and year.
Likewise, the calendar speech code strings can be composed by these elements using

similar methods.

3.6 System Integration and Main Application Flow Chart

The system integration contains two aspects, hardware integration and software
integration. Hardware components are integrated as shown in Figure 2 and Figure 12.
Software modules are integrated into one main application based on the software design
block diagram in Figure 3. This application includes 12 sub-applications corresponding to

15 voice commands.

In this VoiceDirect board for the final project, since OUTS PIN16 does not work, the
Command 5 and Command 13 cannot be executed. In my program, Command 4 is not
used either. Thus, the total 12 voice commands or questions are listed as follows,

The flow chart of the main application for Z8 Speaks final project is shown in Figure 18

as follows.

1) Command 1: welcome

2) Command 2: temperature
3) Command 3: time

4) Command 6: date

5) Command 7: name

6) Command 8: day

7) Command 9: math

8) Command 10: sing

9) Command 11: music

10) Command 12: goodbye
11) Command 14: set the time
12) Command 15: Ni Hao

29

-- "Hello!"

-- "Can you tell me the temperature?"
-- "What time is it now?"

-- "Can you tell me the date?"
-- "What's your name?"

-- "What day is today?"

-- "7 plus 8"

-- "Can you sing?"

-- "pa, pa" clap the hands

-- "Thank you! Bye-bye!"

-- "Reset the time"

-- "Ni Hao" Hello in Chinese

START

!

Initialization

Train/

Record

Y

A

A

Train/Record Voice Commands

A

A

A\ 4

Speak Commands

A

A

Speech Recognition

Speak

Display

Command 1 > Welcome
Command 2 > Temperature
Command 3 > Time
Command 4 > (Not Used)
Command 5 > (Not Used)
Command 6 > Date
Command 7 > Name
Command 8 > Day
Command 9 > Math
Command 10 = Sing
Command 11 > Music
Command 12 > Goodbye
Command 13 > (Not Used)

Command 14

v

Set the Time

Command 15

A4

Ni Hao

Figure 18: The Flow Chart of Z8 Speak Main Application

30

4 Conclusions

The Z8 Speaks System is a hardware-software mix project. It integrates Z8
microcontroller, speech recognition, speech synthesis, real-time clock, temperature
sensing, LED display, timer control, and other hardware and software module
technologies.

The overall work for the final project works very well as planned in the project proposal.
This final work makes the user be able to interact with Z8 Speaks (i.e., a talking robot)
over the speech communication. The final project meets very well all the proposed
requirements, such as read the temperature from ADC temperature sensor, read the Real-
Time Clock (RTC) using I2C bus, control the speech recognition board using GPIO and
hardware switches, and control speech synthesis through serial data line. In addition,
more voice operations and speech controls are added into the final project beyond the
proposal.

Just as described in Section 3, Implementation and Construction, each step is an
important design decision I made for this project. After each step passes test and
verification, the system can be integrated correctly. In summary, these decisions are as
follows,

* Test and verify speech recognition
- VOICEDIRECT board stand-alone test
—> OICEDIRECT driver development for Z8
* Test and verify speech synthesis
—> SpeaklJet chip stand-alone test
—> SpeaklJet driver development for Z8
* Test and verify SparkFun real-time clock module
- Driver development through 12C
- Time/Calendar management
* MAX6610 Temperature Driver development through ADC
* Phrase allophone editing
* System integration and main application development

During my implementation, strictly following each step not only made all of them work
very well but also reduce mistake or errors further accelerated the whole project
development. This further proves that decision making is the key for the development.

This is also one key point I learnt from this project. In addition, what else I have learnt
from this project is as follow,

» Hardware design and Z8 programming

* Speech recognition board use and development

* Speech synthesis chip use and development

* 12C control of Real-time Clock

* ADC control of temperature sensor

31

5 Attachments List

The list of the attachments for this final project is as follows,

Data Sheets

1) Sensory VoiceDirect Speech Recognition Kit (hardcopy)

2) SpeaklJet User’s Manual (PDF)

3) DS1307 64x8 Serial Real-Time Clock (PDF)

4) SparkFun RTC Module Schematic (PDF)

5) MAX6610/6611 Temperature Sensors and Voltage References (PDF)

Source code

1) Speaks ZDSPRO/ file
2) main.c, main.h

3) gpio.c, gpio.h

4) adc.c, adc.h

5) timer.c, timer.h

6) eeprom.c, eeprom.h
7) 12C.c, 12C.h

8) rtc.c, rtc.h

9) speakjet.c, speakjet.h
10) voicedirect.c, voicedirect.h
11) zsldevinit.asm

Demonstration Video (13MB)
Liao z8Speaks 320x240.mpg(13MB)

Reports

Project proposal (PDF)

Project Status Report (PDF)

Final Project Report — Z8 Speaks (PDF)
Project Summary brochure (PDF)

32

