

Design and Implementation of Sampling Rate Converters

for Conversions between Arbitrary Sampling Rates

by

Fedor Merkelov,
Yaroslav Kodess

LiTH-ISY-EX-3520-2004
Linköping, 2004

Design and Implementation of Sampling Rate Converters

for Conversions Between Arbitrary Sampling Rates

by

Fedor Merkelov,
Yaroslav Kodess

LiTH-ISY-EX-3520-2004

Supervisor: Håkan Johansson
Examiner: Håkan Johansson

Linköping, 26th of March, 2004

Avdelning, Institution
Division, Department

Institutionen för systemteknik
581 83 LINKÖPING

Datum
Date
2004-03-26

Språk
Language

Rapporttyp
Report category

ISBN

 Svenska/Swedish
X Engelska/English

 Licentiatavhandling
X Examensarbete

ISRN LITH-ISY-EX-3520-2004

 C-uppsats
 D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/isy/2004/3520/

Titel
Title

Design and Implementation of Sampling Rate Converters for Conversions between Arbitrary
Sampling Rates

Författare
 Author

Fedor Merkelov, Yaroslav Kodess

Sammanfattning
Abstract
In different applications, in digital domain, it is necessary to change the sampling rate by an arbitrary
number. For example Software Radio which should handle different conversion factors and standards. This
work focuses on the problem of designing and implement sampling rate converters for conversions between
arbitrary sampling rates. The report presents an overview of different converter techniques as well as
considers a suitable scheme with low implementation cost. The creating VHDL generator of Farrow-based
structure to speed up the design process is the main task of this work. The suitable design technique which is
the most important thing in any design work is presented in the report as well. The scheme which is
considered to be suitable is created by VHDL generator and tested in MATLAB. The source code is attached
to the report. And some results from tests of the implemented scheme.

Nyckelord
Keyword
VHDL code generator, digital filter, ajustable delay, Farrow, sampling rate converter

 i

Abstract

In different applications, in digital domain, it is necessary to change the

sampling rate by an arbitrary number. For an example Software Radio, which

should handle different conversion factors and standards.

This work focuses on the problem of designing and implement sampling

rate converters for conversions between arbitrary sampling rates.

The report presents an overview of different converter techniques as well

as considers a suitable scheme with low implementation cost. The creating

VHDL generator of Farrow-based structure to speed up the design process is the

main task of this work. The suitable design technique, which is the most

important thing in any design work, is presented in the report as well.

The scheme, which is considered to be suitable, is created by VHDL

generator and tested in MATLAB. The source code is attached to the report.

And some results from tests of the implemented scheme.

 ii

 iii

Acknowledgements

This Master thesis has been written at the Department of Electrical

Engineering (ISY), Linköping University as a final work of the International

Master Program in SoCware.

We would like to thank Håkan Johansson and Henrik Ohlsson for

providing us with source code of filter generator that we used in our thesis work

as well as for their help in any other questions.

Our special thanks are to our friend Oleg Zakaznov for his suggestions in

different aspects.

 iv

 v

Table of contents
1 Introduction .. 1

1.1 Background... 1

1.2 Motivation .. 1

1.3 Purpose ... 1

1.4 Summary of main results.. 2

1.5 About this document .. 2

Literature review ... 2

2 Different converters techniques .. 5

2.1 Introduction .. 5

2.2 Basic concepts and definitions ... 5

2.3 Schematics of sampling rate converters ... 8

2.4 Design techniques... 14

3 Implementation... 19

3.1 Introduction .. 19

3.2 Implementation details ... 19

3.3 Setting up the task .. 19

3.3.1 System level approach .. 19

3.3.2 Signal flow graph level analysis... 23

3.3.3 Prerequisites definition .. 25

3.4 Task solution .. 25

3.4.1 Step-by-step adaptation and simplification of the SFG. 25

3.4.2 Final schematic description ... 30

3.5 VHDL code structure. .. 34

3.6 Generator C code structure... 36

3.7 Configuration file description .. 38

4 Design Example and Experimental Results... 43

4.1 Introduction .. 43

4.2 Experiments on Benchmark ... 43

4.3 Internal behavioral simulator.. 45

 vi

4.4 User manual guide.. 46

5 Conclusion and future work.. 49

5.1 Conclusion.. 49

5.2 Future work .. 49

References .. 51

Abbreviations... 53

Appendix A VHDL components interface description.................................. 55

Appendix B Configuration file example.. 63

Appendix C Command line parameters ... 67

 vii

Figure list
Figure 1 Analog method of sample-rate conversion... 6

Figure 2 All-digital method of sample-rate conversion .. 6

Figure 3 Time-domain view of sample-rate conversion 7

Figure 4 The structure (a) no block structure (b) block structure 9

Figure 5 Modified Farrow structure.. 11

Figure 6. Modified transposed Farrow Structure I.. 12

Figure 7. Transposed modified Farrow structure II .. 13

Figure 8. Adjustable fractional delay filter ... 14

Figure 9. Block definition of FAD.. 20

Figure 10. Generator system level block diagram. ... 21

Figure 11. SFG for FAD ... 23

Figure 12 Delay chain ... 24

Figure 13 FIR filter.. 24

Figure 14. FAD SFG part and its expansion... 26

Figure 15. Introducing the common delay line. .. 27

Figure 16. General block schematic of parallel multiplier.................................. 28

Figure 17 6-input adder tree example ... 28

Figure 18 FAD fragment with expanded FIR filters... 29

Figure 19 FAD fragment with joined adder tree... 29

Figure 20 Simplified and adapted FAD block schematic. 31

Figure 21 Block schematic of a 4-input adder .. 32

Figure 22. Quantizer. Rounding case.. 33

Figure 23. Quantizer. Extension case.. 33

Figure 24. Quantizer. Pass through case ... 33

Figure 25. FAD VHDL level hierarchical diagram .. 35

Figure 26. Tool block schematic ... 37

Figure 27. Design Example: Structure .. 43

Figure 28. Design Example: Impulse response... 44

 viii

 1

1 Introduction

1.1 Background
Now the video and audio move more and more to completely digital

processing of a signal. Hence, the problem of dealing with equipment with

different sampling rates has become really severe. There was usually only

a single digital processor in any particular signal chain and only Analog to

Digital (A/D) or Digital to Analog (D/A) converters used in that kind of

chains. But today it is common to find completely digital studio for

processing audio or/and video signals. In that kind of studios the signal is

digitized immediately after the receiver (original analog source). All

operations such as editing and processing remain in the digital domain

which is considered to be an advantageous solution in all future

equipment. For all that was said above, there is a need for simple digital

interfacing between different digital equipments.

1.2 Motivation
The main problem in designing such a system is the complexity of

design process. The manual design usually provides the desired

implementation results but leads to long design times.

During the design process a fast design technique is needed to

reduce the time of the design process.

1.3 Purpose
The purposes of this thesis are:

- To study different converter techniques in order to work out

the best solution for the problem at hand.

- To select the schematics which are suitable to implement

with respect of small area and low power consumption.

 2

- To find suitable techniques to design sample rate converters.

- To reduce the time of the design by creating an automatic

tool to generate the VHDL code of the system with given parameters.

1.4 Summary of main results
In order to test created automatic tool, existing high level synthesis

benchmark is used. In addition, a new one was created to provide testing

with more precision and accuracy. Design examples and experimental

results are presented in chapter 4 of this document.

1.5 About this document

Literature review
Information on this subject was obtained from academic papers

found in electronic libraries, such as IEEE, from some books in this area,

from some papers which focus on describing design techniques and tools.

Most of the information was taken from academic papers. In addition

there was used Internet databases to find some information related to

programming and design techniques.

The bibliography section includes the links referenced in this

document.

Prerequisites
It must be noticed that reader of this thesis is assumed to have

general knowledge in digital signal processing.

Outline
- Chapter 2 provides detail concerning the different converter

techniques. In addition, more precise definition of the problem is

presented.

 3

- Chapter 3 describes the system and tool implementation

details. The architecture is presented.

- Chapter 4 concluded with the implementation by introducing

the experimental results based on testing some design examples. It also

includes a user manual.

- Chapter 5 presents some conclusions and proposes

suggestions for future work.

- Appendix A contains VHDL components interface

description.

- Appendix B provides with configuration file example.

- Appendix C presents command line parameters.

 4

 5

2 Different converters techniques

2.1 Introduction
The chapter considers different converter techniques. First some

basic concepts and definitions will be considered. Then, some techniques

will be introduced as well as some discussion of their advantages and

disadvantages. Finally, some suggestion of suitable techniques will be

presented.

2.2 Basic concepts and definitions
Interpolation and decimation are operations used respectively to

increase and reduce the sampling rate or frequency, usually by an integer

factor. Increasing of a sampling rate requires that new values, not

presented in the signal, be computed and inserted between the existing

samples. The new value is estimated from a neighborhood of the samples

of the original signal. Similarly, in decimation a new value is calculated

from a neighborhood of samples and replaces these values in the lower

sampling rate. Integer factor interpolation and decimation algorithms may

be implemented using efficient Finite Impulse Response (FIR) filters and

are therefore relatively easy to implement. Alternatively, interpolation by

non-integer factors typically uses polynomial interpolation techniques

resulting in more complex solutions.

There are two classes of sample-rate converters. The first class is

synchronous and the second one is asynchronous. In synchronous sample

rate converters, the sample rate of incoming signal is converted to a new

sample rate by an integer factor. It is suitable in many applications but if

irrational conversion factors are needed the problem appears. Its digital

output is producing the output samples at a fixed rate related to the input

 6

rate. On the other hand, asynchronous sample rate converters produce

output samples at rate, which is independent from the input rate.

There are two methods of sample rate conversion. The first one is

analog that is the simplest in principle but not in practice. The idea is to

use a D/A converter in combination with a “brick wall” filter. The “brick

wall” filter removes all signal images. Then output A/D converter converts

signal back to a digital format. The A/D converter runs at the output

sampling rate. Figure 1 shows the block-diagram of that design. [1]

Figure 1 Analog method of sample-rate conversion

But the main problem of Analog method is that Analog functions

are more difficult to implement than digital functions. On that reason, the

all-digital solution is more preferred.

The general principle of all-digital sample rate converter is almost

the same but the analog filter is replaced by a digital interpolation filter.

The Figure 2 shows the block-diagram of all-digital sample-rate

converter. [1]

Figure 2 All-digital method of sample-rate conversion

The sample-rate conversion problem may be formulated using the

interpolation/decimation model in the time-domain view shown in

Figure 3. The output sample rate (trace C) is higher than the original input

sample rate (trace A). It can be done by first interpolating by A and then

decimating by B. The interpolated values are fed into a zero-order-hold

D/A
converter

Brick –Wall
Analog filter

A/D
converter

Digital
 out

Digital
 in

Fs in Fs out

 L H (z) x(n) y(m)

 7

A m p l i t u d e

T im e

T im e

A m p l i t u d e

T im e

A m p l i t u d e

A

B

C

D

A m p l i t u d e

T im e

O u t p u t s a m p le s t im e

and then resampled by the output switch (trace D). The output values

appear to be representation of the values produced by interpolation filter

(which is the nearest in time). Because the output sampling switch is not

closing in exactly the time corresponding to a point on the fine time grid

of the interpolated output there appear some errors, which could be made

small by increasing the filter order.

Figure 3 Time-domain view of sample-rate conversion

Sampling rate conversions, performed between arbitrary sampling

rates, tends to make the sample rates conversion factor to be a ratio of two

very large integers or even an irrational number.

The ratio of f1 and f2 can be expressed as M/N, where M/N is

computed by the least-common-multiple of the two sampling rates f1/f2.

Hence, the sample rate of the input signal is first interpolated by a factor

of M using digital filters and decimated by a factor of N to obtain the final

 8

sampling rate. If the integers M and N are manageable numbers less then

10, for example, it is possible to solve this problem by combination of

interpolator and decimator. But there are cases when this number can be

irrational or too high to implement in simple way. For example, the ratio

of 44.1 and 48 kHz can be expressed as 147:160. Hence, the sample rate

of the input signal is first interpolated by a factor of M=160 using digital

filters and decimated back by a factor of N=147, but resulting filter would

become rather big. To overcome this problem 147:160 can be

accomplished by breaking this into the conversion procedures of 3 : 2 and

7 : 5. The overall conversion filter can be obtained by taking the cascade

combination of all these. Hence, the overall filter should consist of

cascaded subfilters.

2.3 Schematics of sampling rate converters
N.Aikawa and Y.Mori proposed an interpolation kernel filter [2]. It

is approximated in each sampling section piece by using a quadratic

functions in equation (1). The block structure of the proposed kernel

shown in Figure 4(b).

The linear combination of the input data and reconstruction kernel

is:

 where fi are the sample values and y(x) is the reconstruction kernel.

 a1,1x2 + b1,1x + c1,1 (0 < IxI < 1/N)

 a1,nx2 + b1,nx + c1,n ((n-1)/N < IxI < 1)

y(x)= (1)
 as,nx2 + bs,nx + cs, n (s-1+(n-1)/N < IxI < s-1+ n/N)

 as,N x2 + bs,Nx + cs,N (s-1+(n-1)/N < IxI < s)

∑ −⋅=
i

i ixyfxf)()(

 9

The block diagram of the filter presented in Figure 4 shows the

structure with 5 sampling sections.

 (a)

 (b)

Figure 4 The structure (a) no block structure (b) block structure

Kernel with block structure is the modification of the kernel without

block structure. Changing coefficients of multiplication ei allows changing

the ratio of sampling rate conversion.

Filter
Y1

Filter
Y2

Filter
Y3

Filter
Y4

Filter
Y5

 + + + +

 Z-1 Z-1 Z-1 Z-1

Filter
G1

Filter
G2

 + + + +

 -1
 Z

 -1
 Z

 -1
 Z

 -1
 Z

e1 e2 e3 e4

 10

The proposed Kernel of the general form is:
 a1,1x2+b1,1x+c1,1 (0 < IxI < 1/N)

 a1,nx2+b1,nx+c1,n ((n-1)/N < IxI < 1)

 e1(a2,1x2+b2,1x+c2,1) (1 < IxI < 1+1/N)

g(x)= (2)

 e1(a2,Nx2+b2,Nx+c2,N) (1+(N-1)/N < IxI < 2)

 es-1(a2,nx2+b2,nx+c2,n) (s-1+(n-1)/N < IxI < s-1+n/N)

 eS-1(a2,N x2+b2,Nx+c2,N) (S-1+(N-1)/N < IxI < S)

To produce a useful filter from the proposed general form, some

restrictions to equation (2) should be applied.

1) g(x) = g1,0 for x=0

2) g(x) = g2,n for x=n/N

3) g(x) = 0 for x=s

4) C0 – continuous.

The design problem is to find coefficients ej (Figure 4(b)), quadratic

coefficients ai,j and gi,j which satisfy the equation:

Where L is a number of evaluation points in one sampling section,

T=1/L, W(ω) is weighting function, D(ω) is ideal frequency characteristic

and δ is the maximum allowable approximation error.

When the difference between δi and δi+1 is less than 10-5, the filter

can be a FIR filter with the found transfer function. Otherwise an order

and coefficients recalculation is needed.

)()()cos()()(
)1(

2
1

0
ωωδωω DWTiiTGeW

Lj

jLi

S

j
j −<−⋅⋅− ∑∑

+

=

−

=

 11

An advantage of the digital kernel technique is that there is no

necessity to redesign filter, whenever the sampling rate is changed.

Another advantage is that the kernel obtained is easy to implement. The

disadvantage of this method is high computational complexity. This is

because of the large number of quadratic functions, which are needed to

obtain a high attenuation in the stopband.

 Another implementation of sample rate converter is based on the

Farrow structure. Some modifications that can be produced to achieve low

area and efficiency of it according to Djordje Babic, Jussi Vesma, Tapio

Saramuki and Markku Renfors from Nokia and Tampere Universitet of

Technology, Finland. [3]

Firstly, it is modified Farrow structure shown in Figure 5 that has

fixed filter coefficients as a benefit. The only changeable parameter is the

fractional interval µ:

 µ = k/R – [k/R]

Where R is the decimation factor.

Figure 5 Modified Farrow structure

 Z-1 Z-1 Z-1

+ + +

+ ++

X X+ +
Vm(nl) V1(nl) V0(nl)

y(l) 2µ -1

x(nl + N/2) cm(-N/2) c1(-N/2) c0(-N/2)

cm(-N/2+1) c1(-N/2+1) c0(-N/2+1)

cm(N/2-1) c1(N/2-1) c0(N/2-1)

 Z-1 Z-1 Z-1

 12

The output samples are:

of the m+1 FIR filters. Where m is the quantity of the filters c is

multiplication coefficient. Each of the FIR filter has the transfer function:

Where N is the parametrical coefficient.

Structure in the Figure 6 contains (m+1)N+m multipliers working at

the input sampling rate f1 , N integrators as well as dump circuits and N-1

delay elements at the output sampling rate f2.

Figure 6. Modified transposed Farrow Structure I

The fractional interval here is:

 µk+1= µk + 1/R – [µk + 1/R]

 where R is decimation factor.

and the signal ov(l) is needed to indicate an overflow of the accumulator.

+ + +

+ + +

+ + +

+

+

XX

 Z-1

 Z-1

 Z-1

 Z-1

 Z-1

 Z-1

y(l)

I&D

ov(l)

c1(N/2-1) cm(N/2-1) c0(N/2-1)

cm(-N/2+1) c1(-N/2+1) c0(-N/2+1)

cm(-N/2)
c0(-N/2) c1(-N/2)

x(n)

2µ -1

∑
−

=

−⋅+−=
1

0
)

2
()

2
()(

N

k
mm

NkcNknxnv

∑
−

=

−⋅−⋅=
1

0
)2()(

N

k

k
mm zNkczC

 13

The fractional interval for each sample is:

 µk = (kT1 – nkT2)/T2

where k is number of sample, T is period of sample.

Figure 7. Transposed modified Farrow structure II

The structure shown in Figure 7 has N(m+1) multipliers working at

the output sampling rate and m multipliers working at the input sampling

rate. In addition, there are m I&D circuits working at the input sampling

rate as well as N-1 delay elements working at the output sample rate.

The structures shown in Figures 5, 6 and 7 have almost the same

performance but the second one consumes less power during conversion

from higher sample rate to lower.

cm(N/2-1)

x(k)

+

+

+

+

+

 Z-1

 Z-1

+

+

+

+ + +

 Z-1
 Z-1 Z-1

X X

I&D

ov(l)

2µ -1

V0(k) V1(k) Vm(k)

c0(-N/2) c1(-N/2) cm(-N/2)

c0(-N/2+1) c1(-N/2+1) cm(-N/2+1)

c0(N/2-1) c1(N/2-1)
y(l)

 14

The main advantage of those structures is that the filter coefficients

are fixed which is very good for designing and producing. The fractional

interval is the only one changeable parameter.

The modification of the Farrow structure shown in Figure 5 is in

fact adjustable fractional delay filter. It is suitable for interpolation, while

transposed Farrow structures (Figure 6 and 7) are suitable for decimation.

Adjustable fractional delay filter has the low area cost due to possibility to

share delay elements among subfilters. Due to this it is considered to be

very suitable to implement. The designing process of that structure will be

discussed in the next chapter.

2.4 Design techniques
This structure shown in Figure 8 consists of several parallel

subfilters, which are linear-phase FIR filters. Due to the coefficient

symmetry of such filters the number of required multiplications may be

reduced.

x(n)

 y(n)

Figure 8. Adjustable fractional delay filter

 -DL
 Z

HL(z)

 -DL
 Z

 -DL
 Z

 -DL
 Z

H2(z) H1(z) H0(z)

+ + +
d d d

 15

The transfer function of the overall filter is:

Where d=[-0.5;0.5] is a multiplication coefficient, Dk is the delay of

k-th subfilter, L is the quantity of subfilters and Hk(z) are subfilters

frequency responses:

Where N is order of subfilter.

 The desired real function HkR, des (ωT) is:

 (- jωT) k , k is even
 k!

 H k R, des(ωT) = - j (- jωT) k , k is odd
 k!

Where k= [0;L].

Each subfilter should approximate the frequency response of an

Nk-th order differentiator.

The advantage of such a structure is that there is no need in

redesigning the subfilters but just change the single coefficient d. The

subfilters are designed only one time.

 Håkan Johansson and Per Lowenborg [4] recommend separate

optimization of the subfilters. This design technique is based on

distributing the allowable errors in the error functions.

This approach results in subfilters that can have different order.

That allows to reduce arithmetic complexity comparatively with the case

where all subfilters are of equal orders.

∑
=

− ⋅⋅=
L

k
k

Dk zHzdzH k

0
)()(

)()(2 THeeH kR

TjNkTj
k ω

ω
ω ⋅=

−

 16

The specification is:

I He (ejωT ,d) I < δ

where the complex error He(ejωT,d) is:

He (ejωT , d) = H (ejωT) – Hdes (ejωT),

ωT ∈[0, ωcT], IdI < 0.5

To satisfy the specification the selection of L and separately

optimization Hkr(ωT) is needed so that:

where

 [L/2], k is odd

 C =
 [L/2]+1, k is even

This optimization can be solved in MATLAB using function

remez.m. The specification ε is set that:

When ε < 1 the specification is satisfied. To find the subfilters

orders it is easy to design several filters by increasing the filter order until

the specification is met. But in this approach the overall filter will be

overdesigned for the reason that the interaction between filters could

appear and this technique does not consider this. Than the order of filters

and the complexity could be higher than necessary.

)21(
2)(
+

≤
C

T
k

k
δ

ωδ

21)!1(
)5.0(1

+
≤

+
⋅ + δω
L

T L
c

ε
δ

ε ≤
+

≤− k

C
2

)21(

 17

The other proposed technique is filter design via simultaneous

optimization of the subfilters. To reduce the complexity of the overall

structure some nonlinear optimization routine should be used. Relaxed

specification is used in order to allow iteration of this design procedure.

The relaxed specification might have differences between two cases

ripples such as a factor of ten. The nonlinear optimization problem could

be solved in MATLAB as a standard function minimax. Then the

relaxation of the design specification by factor ∆ is used to find less

complex structure. The ∆ is chosen that the number of optimization

iterations is rational.

 The main idea is to use some kind of automatic implementation

tools in low level and furthermore in FPGA to reduce design time. The

overall filter consists of subfilters which orders and coefficients are the

only changeable parameters before complete implementation. Hence, it is

necessary to create the program, which will do all kind of “smart”

implementation with respect to the low area. The main problem with it is

that automatic process should use techniques, which are optimal from

engineer’s point of view. To reach that aim it should be created some base

of suitable designing solutions. For example, it is the sharing of the delay

elements among the subfilters and suitable schematics for signed

multiplication. These improvements are playing the main role in the

reducing the area. Thus, the important first step is implementation of the

single-rate fractional-delay filter and creating the VHDL code generator

for it.

Then the appropriate way must be chosen the suitable way to find

that kind of parameters which are suitable for adjustable sampling rate

conversion.

Assumption that all subfilters have the same parameters seems to be

simple because it allows to operate with only two changeable parameters

 18

FIR filters coefficients and fractional delay. But mathematically it is not

that simple problem.

 19

3 Implementation
3.1 Introduction

The primary topic of the work is developing a software VHDL code

generator for a filter with adjustable delay (FAD).

This chapter describes the FAD generator implementation.

3.2 Implementation details
The tool is written in C programming languages. The output data is a

VHDL code which can be further implemented as a register transfer level

(RTL) model (in FPGA, for instance). Also simulation in MATLAB was

performed for FAD structure to test the generated VHDL model.

3.3 Setting up the task

3.3.1 System level approach
To determine starting design conditions, the main initial factors of the

further tool were studied, such as:

1. Software platform – Solaris;

2. Application field assumed – sampling rate converter

generation for its further study and hardware implementation;

3. User qualification – experienced Unix user, scientist,

programmer;

4. The generator sources will be apparently used as a key

part of the higher level generators;

5. High portability for using in variety of software

environments and operation systems;

6. High efficiency of using, fast evoking, fast output

generation;

7. High functionality;

8. Efficient verification mechanism.

 20

FAD VHDL component
N M

Input Output

Clock Reset

Basing on these key characteristics the following solution for the

system level is suggested:

1. Input data is supplied in noninteractive mode with configuration file

read by the tool. It doesn’t bring many problems for a Unix user

because this way is the most commonly used for this software

environment.

2. User specifies the necessary operating mode with command-line keys;

3. The programming language being used is ANSI C because it is

supported by all the software platforms known and provides high

degree of portability even for recent operation systems. Special

supporting libraries (like input-output library, for instance) from the

side software makers are not being used.

4. Minimal configuration file syntax.

The block definition of ready FAD is presented in the Figure 9:

Figure 9. Block definition of FAD

Here:

“N” and “M” are an input and output bus width respectively.

“Reset” sets the block into initial state.

The rate at that an input information is accepted is controlled by a

clock signal.

 21

User Interface Calculating core

Simulator Simulation results

Generated output

The system level block diagram, showing how the main blocks of

the tool are interconnected is adduced in the Figure 10:

Figure 10. Generator system level block diagram.

Short blocks description:

User interface block is responsible for the interaction with a user. It

gets initial data supplied in some certain format (in configuration file in

our case) and transforms them into the internal representation;

Calculating core performs all the necessary tool functionality and

generates the output;

Simulator provides the mathematical model of the generated

schematic and makes possible the comparison between the mathematical

simulation and VHDL level simulation. The identity of the results from

these two types of simulations guarantees (at certain level of reliability)

that produced VHDL level model is equal to the signal flow graph (SFG)

required.

Simulation results are real decimal and binary representation of a

simulator output given to the user via terminal console or with another

type of interface.

Generated output is the set of VHDL files representing the desired

structure.

It has been already mentioned that the simulator provides

mathematical model of the desired schematic. When certain test vector is

applied to the input (it might be a single impulse that is the case here),

 22

only certain output sequence is expected. The equality between

mathematical simulation and VHDL modeling guarantee that the equal

transformation has been obtained and hence, the current realization is

correct.

Simulation can be performed in different ways:

• System level modeling in Simulink, Ptolemy and in similar

frameworks;

• Mathematical model in MATLAB, Mathcad, Excel etc;

• Integrated simulator.

When a supplementary modeling tool is implied, it requires that, at

first, it must be installed into user environment. Secondly, user must be

able to use it (that is though not a serious problem for the user assumed).

Multi-purpose visual simulators often do not provide the necessary

flexibility and adjustability for the new input data (number of stages, for

instance). Evoking the environment with considerable functionality for

executing the couple-of-line code seems redundant.

The FAD mathematical model is quite simple, therefore integrating

the simulation facilities into software being developed seems an optimal

solution. Since the VHDL code generator and the simulator use the single

configuration file, it gives additional guarantee of that the mathematical

and VHDL models represent the same entity.

The additional advantage is that it is very fast and may be

performed in parallel with generation process.

 23

N

n1D

H1(z)

Q(q1)

n2D

H2(z)

Q(q2)

+ x Q(qm+1)

n3D

H3(z)

Q(q3)

+ x Q(qm+2)

nmD

Hm(z)

Q(qm)

+ Q(q2*m)

Input

M
Output

. . .

Disadvantages of the approach:

• A simple verifying simulator complicates, for example,

parameters adjusting for given output. It is good only for verifying.

• Often user trusts more the well-known systems like MATLAB,

especially if he can see the block schematic or the model source code that

he examines.

3.3.2 Signal flow graph level analysis.
Consider general view of a SFG for FAD (Figure 11):

Figure 11. SFG for FAD

Input information is applied with signed parallel code. Output sequence,

produced by a FAD has also signed parallel representation. Input bus is

connected to the set of delay chains. There can be arbitrary delay before the

input information reaches a filter in each stage.

 24

nD D D D D D

n

D D D D D

+

m1 m2 m3 m4 mn

M

N

Hi

N M

We used the following shortening symbols for the delay chain (Figure 12)

and for FIR filter (Figure 13) in this schematic:

1.

Figure 12 Delay chain

2. Filters denoted as Hi are linear phase FIR filters.

Figure 13 FIR filter

Output bus width depends on the input bus width and on the maximum

coefficient length.

3. Quantizers Q(q) manage with internal bit width. They can be used

either for intermediate rounding (truncation) or for bus width extension

according to the specification. It will be carefully discussed below.

4. Multipliers perform the multiplication of the input value by the fixed

coefficients.

 25

3.3.3 Prerequisites definition
The given structure implies that the following input information must be

provided by a user:

1. Number of sections of FAD;

2. Input word length;

3. Prefilter delays for each section (number of delays in chain

{ni}, i = 1..m;

4. Quantizers parameters (input/output word length)

{Q(qj)}, j = 1..2*m;

5. Filter parameters:

a. Number of sections k (filter order);

b. Multipliers coefficients;

6. Coefficients for multipliers of a FAD.

This list includes essential input information for the FAD generator. It

will be replenished as may be necessary.

3.4 Task solution

3.4.1 Step-by-step adaptation and simplification of the SFG.
The SFG, mentioned in the previous chapter, primarily illustrates the

schematic to be realized but cannot be implemented directly. It does not contain

detailed information about the parts that it is composed of, about bus structure

and their sizes, etc. Therefore the model must be analyzed and optimized at the

lower hierarchical level.

The task of the current work is not to design a mathematically optimal

solution that can be further implemented in FPGA with minimal cost. Therefore

obvious simplification will be carried out.

 26

N

n1D

H1(z)

Q(q1)

n2D

H2(z)

Q(q2)

+

Input

D D

+

Q(q1)

D

D

D D

+

Q(q1)

D

D

+

Input
N

Nonexpanded SFG

Expanded SFG

. . .

. . .

a) Delay chain simplification.

Consider the part of FAD SFG and its expanded view, paying attention to

the delay elements (Figure 14):

Figure 14. FAD SFG part and its expansion

It is evident that having individual delay lines for each filter and for

prefilter delays is redundant. SFG hence can be reduced by introducing the

single common delay chain: (Figure 15).

 27

Delay line

H1(z) H2(z) H2(z)

Where

Delay line D D D D D

M

Figure 15. Introducing the common delay line.

Here M=max(ni+ki), for i=1 .. m where

ni – length of the i-th filter predelay;

ki – number of i-th filter internal delays;

m – number of stages of FAD.

Now each filter loses its own delay chain and gets appropriately delayed

samples from the common one.

b) Multipliers simplification.

There exist many types of parallel multipliers. Although this structure is

quite regular from the implementational point of view, it is very large. But often

it can be simplified, for example, if fixed coefficients are used like in our case.

 28

Partial product generator (PPG)

Adder tree (AT)

Carry-
lookahead

adder (CLA)

Multiplicand

Product

C
SA

C
SA

C
SA

C
SA

A

B

C

D

E

F

Y1

Y2

General view of multiplier block schematic is shown in Figure 16:

Figure 16. General block schematic of parallel multiplier

Number of partial product is equal to number of nonzero elements (binary

ones) in binary representation of a coefficient. It can be reduced a lot by

converting coefficient to canonic signed digit code (CSDC) where the number of

nonzero bits is minimized [5,6].

Adder tree is based on carry save adders (CSA). Each CSA takes 3

numbers at its input, adds them and produces 2 output result. Thus if it is used in

the tree structure, it reduces any number of inputs to 2. A 6-input (each input is

multibit) adder tree is shown in Figure 17.

Figure 17 6-input adder tree example

 29

Delay line

PPG

AT

PPG

AT

PPG

AT

AT

N
Input

. . .

Delay line

PPG PPG Correction

N

AT

PPG. . .

This tree is able to add 6 multibit numbers with latency of t=3*tCSA tCSA is

equal to the propagation time of full adder. In order to decrease critical path,

interlayer latches may be introduced (where dotted lines intersect outputs of

CSAs).

CLA shown in Figure 16 is optional. It might be used if only final result

needed of number of buses should be decreased.

c) Filters simplification.

According to the discussion above, part of the FAD SFG with FIR filters

can be drawn like in Figure 18:

Figure 18 FAD fragment with expanded FIR filters

It is evident that the separated adder trees can be joined into a single tree

and schematic can be structurally simplified (Figure 19):

Figure 19 FAD fragment with joined adder tree

 30

>><<−=

>><−−><=<
−+

−

11 01

0)0()...2()1(0
nm

kkm
k

correctioncorrection

xnxnxPP

101

0)0()...2()1(0
11 +>><<+=

>><−−><<=
−+

−

nm

kkm
k

correctioncorrection

xnxnxPP

Correction block here is in fact a constant binary number. It is also used

in previous case (Figure 18) in every infilter adder tree. Correction vector is

needed to avoid a sign extension of the partial products.

Rules of partial product (PP) and the correction vector generation.

CSDC encoded coefficient is built according to the following BNF-

notation:

{{0}{-1|1}}.

Denote the coefficient length as ‘m’, input number length as ‘n’ and input

number as x(n)x(n-1)…x(0)

Initial value of correction is equal to 0.

• Iterate from the position 0 to m from right to left;

• If ‘0’ is met in the coefficient in position k, nothing is added to the

correction and no PP generated;

• If ‘1’ is met in the coefficient in position k then:

• If ‘–1’ is met in the coefficient in position k then:

Here 1i and 0i denote sequence of i ones or i zeros in binary form.

After the iterating through all the coefficient bits is finished, PP vector

contains all the partial products, and the value of correction vector is completely

calculated.

3.4.2 Final schematic description
After the suggested simplification has been carried out, the FAD

schematic shown in Figure 20 is obtained:

 31

Delay line

H1(z)

Q(q1) Q(q2)

x

H2(z) H3(z)

+ +

x

+Q(qm+1) Q(qm+2)

Hm(z)

+ Q(q2m)

Q(q3) Q(qm)

. . .

Figure 20 Simplified and adapted FAD block schematic.

 32

∑
=

− ⋅+−=
N

i
i

ix xQ
1

2)1(0

C
SA C
SA C
LA Satur

Ex

Ex

Ex

Ex

N
N

N

N

N+2

N+2

N+2

N+2

N+2

N+2

N+2

N+2

N

+

N+2

Ex - is a bus width extension with guard bits

This realization uses 2’s compliment fixed point binary representation. Most

significant bit (MSB) is a sign bit. The 2’s compliment binary encoded number

{xi} can be converted into decimal representation by the equation:

 ,

where xi are binary number bits, N is a word length.

In this approach 4-input adders are used instead of CLA’s at filter outputs.

Inner structure of an adder is shown in Figure 21:

Figure 21 Block schematic of a 4-input adder

4-input adder in Figure 21 has one output. It is done to avoid multiplier

duplication in the next stage. When a multiplier coefficient has many nonzero bits,

a complex CSA tree must be used in it, which leads to an area consuming register

transfer level (RTL) implementation. On the other hand, when a coefficient has

few of nonzero bits the approach used may seem ineffective however

implementation tool optimizes RTL representation and disposes unnecessary gates

that compensate such a weakness. As it was mentioned in previous chapters this

work is not focused on carrying out the accurate optimizations.

Quantizer might be realized differently depending on the input-output width

ratio.

 33

Mux

Lo
gi

c

Signed
increment

Saturation

1 (In(m+1))

1 (MSB)

m

m

m

n

m-n (0's sequence)

n

m

n=m

m=n

If n is the input bit width and m is the output bit width then:

a) When (n/m)>1, rounding is performed.

Rounding schematic being implemented in this case is shown in Figure 22:

Figure 22. Quantizer. Rounding case

b) When (n/m)<1, extension is performed.

Figure 23. Quantizer. Extension case

Here n most significant bits are taken from the input, the less significant part

is extended by zeros.

c) When (n/m)=1,it is a pass through.

Figure 24. Quantizer. Pass through case

 34

3.5 VHDL code structure.
System approach in design implies that system is decomposed into

independent (or relatively independent) components that could be in turn

developed separately.

VHDL language provides a special component approach. It means that

device being designed can be figured as a set of logically independent blocks that

further are joined together with special language means. Thus, developer obtain

hierarchical structure of his project.

The FAD being designed can be hierarchically split in the following way

(Figure 25):

Detailed input-output description for each component in realization is

presented in Appendix A.

 35

Converter

Delay chain FIR filter Quantizer Multiplier CLA 4-input adder

Shift generator Adder tree Shift generator Adder tree CSA CLA

CLA

4-section ripple
carry adder Carry generator

CLA

FA

Figure 25. FAD VHDL level hierarchical diagram

 36

3.6 Generator C code structure
Software VHDL component code generation is a process when

target file is created, the necessary component functionality is put into it,

obeying correct VHDL program structure. The standard C file input-

output procedures are used to achieve this aim.

FAD code generator tool is built according to the system approach

as a set of independent (loosely-coupled) procedures. This approach

implies that each procedure can be written and debugged with individual

test bench.

The final program consists of a set of several files (modules). Each

file contains one or several procedures that intended for either certain

component generation or supporting means like data reencoding,

generation with templates etc.

Functional approach used in C language is quite old, however fast

and effective if used in appropriate way. Data exchange between

functions is only carried out by function parameters, no global variables

are used for this. It also makes for the functions independency and

increases code clarity.

Tool block schematic is shown in Figure 26:

 37

main

Configuration file parsing

Filters generation

Buses width calculation

Multipliers generation

Quantizers generation

Adders generation

Delay chain generation

Signals declaration and definition

Buses width adjustment at
adders inputs

Buses merging at multipliers
inputs

Components interconnection

Output

1

2

3

4

5

6

7

8

9

10

11

Figure 26. Tool block schematic

 38

• Tool input information is taken from the configuration file written

according to special simple syntax that will be carefully discussed in

the next chapter. Procedure (1) that is responsible for that fills the

internal structures with filter parameters information, multiplier

coefficient values etc;

• Filters are generated only with information supplied in configuration

file (procedure (2));

• Internal bus width depends only on the filter result width, quantizers

parameters, adders input bus widths;

• Multiplier generation procedure requires that coefficient be given in

input configuration file and bus widths be calculated at previous step;

• The quantizer input parameter that is taken from the configuration file

is an output bus width while the input bus width is calculated. Number

of quantizer channels is implied by the schematic to be implemented.

• The adder width is chosen as the broadest input width. Two guard bits

are added inside the adder.

• Delay chain length is chosen so it can supply all the possible delays

required for all the schematic and for each separate filter.

All the components are interconnected according to the schematic

shown in the Figure 26. If FAD schematic should be adjusted, it would

cause serious program code modification.

3.7 Configuration file description
Configuration file is the main (and generally the one) interaction

means between a user and the tool. It should contain all the information

about FAD that is necessary to successfully generate the schematic.

 39

The sufficient information required (see figure 27):

1. Input data width;

2. Number of stages;

3. Input delay value;

4. Filter parameters:

4.1. Number of stages;

4.2. Multiplier coefficients for each stage;

5. Quantizers parameters;

6. Multipliers coefficients.

The logical information required:

1. Schematic name (to be used as a part of VHDL file name for

the component);

2. Filter names.

Additional information contains details about filter realization.

Configuration file syntax gives an unambiguous interpretation of

the information supplied. The information above may be put into the

configuration description according the following rules (in Backus Naur

notation (BNF)):

1) Configuration_file ::= <Header>

 {<Filter_description>}

 {<Multiplier description>}

 40

2) Header::= converter <space> <name> <space> <number>

 word <space> <number>

 [{<Additional param>}]

 <Delays>

1-st line: converter name is supplied and FAD output bus width

(output quantizer parameter)

2-nd line: input bus width

3) Additional param:

 <compensation>|<guardbits>|<pipelining>

 <symmetry>|<vma>|<symmetrypipelinig>

 <vmapipelining> “\n”

4) Delays::= delay <space> {<number> <space>} <number>

Number of delays before each stage of FAD is supplied. All of

them must be entered.

5) Filter_description::=

filter <space> <name> <space> <number>

 <number>

 {<coefficient> “\n”} <coefficient>

1-st line: filter name and filter output bus width (corresponding

quantizer parameter);

2-nd line: number of filter stages;

3-rd line starts a coefficient list. All of them must be included.

Number of coefficients must be equal to number of filter stages.

6) Multiplier description::=

mul <space> <coefficient> <number>

 41

Here the value of the coefficient is passed and the bus width after

multiplier.

compensation::=compensation <space> <Boolean>;

guardbits::=guardbits <space> <number>;

pipelining::=pipelining <space> <number>;

Compensation tells whether compensation vector should be added

in the filter adder tree.

Guardbits points how many guard bits should be used in filter

adder tree

Pipelining keyword precedes the number of pipeline stages in

adder tree.

boolean ::= 0|1;

number ::= {<digit>|<digit>};

name ::= <letter>{<letter>|<digit>};

coefficient::=<float>;

space ::={“ “};

“digit” is a one-character digit;

“float” is a real number in any notation (including exponential);

“letter” is a single capital or lower-case latin letter.

Configuration file parser has a proof against the incorrect data

typed by the user and strong syntax checking mechanism.

The sample configuration file is adduced in the Appendix B.

 42

 43

4 Design Example and Experimental Results
4.1 Introduction

In the previous chapters both the low area consuming architecture

was introduced and the tool for producing it. This tool is used to generate

the example of the design. This section shows the experimental results.

4.2 Experiments on Benchmark
 For testing of the system (Figure 27) the testbench was created in

MATLAB. The source signal is generated with special test vector

generator component done in VHDL. Output response is saved and

converted to MATLAB to be analyzed there.

The same structure in MATLAB was tested and showed the same

results. The parameters of the Design example are shown in Appendix B.

Figure 27. Design Example: Structure

 -DL
 Z

HL(z)

 -DL
 Z

 -DL
 Z

 -DL
 Z

H2(z) H1(z) H0(z)

+ + +
0.5 0.5 0.5

H2(z) H2(z)

 -DL
 Z

 -DL
 Z

+
0.5 0.5

+

 44

The same input vector applied during VHDL and MATLAB

modeling. The output impulse responses (Figure 28) were compared and

found to be identical.

Impulse responce

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 28. Design Example: Impulse response

The impulse response value shown below:
0.00061
0.001709
0.001343
0.012207
0.014893
0.03186
0.02417
0.016479
0.16577
-0.27783
0.053711
-0.02539
-0.01953

 45

Three different examples were used as test information and results

obtained proved the equality of the VHDL model output and MATLAB

mathematical model.

In addition to simplify the testing for future work the internal

behavioral simulator was created.

4.3 Internal behavioral simulator
Internal simulator emulates the single pulse of the highest positive

value and applies it to the input of FAD. Such an input cause a certain

output vector called impulse response. Vector length depends on the

number of stages in filters the schematic is composed from and number of

stages in FAD itself.

The comparison between the mathematical simulation results and

test bench output gives a user an assurance that implemented schematic is

correct or not.

The mathematical model looks like the following:

consider fij is a matrix, containing the FAD filters coefficients.

i – is a time instance within time period when FAD

impulse response is at output.

i=1..max[lengthk+delayk] for k=1..m,

where m is a number of FAD stages;

lengthk – number of stages for filter number k;

delayk – delay value before the filter number k.

j – is a filter number being considered j=1..m

Matrix composition rule: column j is the list of the filter ‘j’

coefficients. The list starts from the row number delayk.

 46

∑ ∏∏
−

=

−

=

−

=
+ +⋅+⋅=⋅+⋅+⋅+=

2

1

2

1
1

2

)1(3423121 ...)))(...(((
m

j
im

m

k
ki

m

jk
kjiiiiii fcfcfcfcfcffF

where Fi is the response value at i-th time instance

(i=1..max[lengthk+delayk] for k=1..m).

To achieve the full accordance with VHDL model generated, it is

necessary that rounding is introduced into the model in a way as it is

performed in generated FAD.

Thus, the simulation algorithm is the following:

1. Build the fij matrix according to the matrix composition rule

above. The important think is that all the coefficients are rounded to

the number of bits as implied by specification.

2. Loop for i=1..N. N= max[lengthk+delayk]

2.1. multiplicand=fi1+fi2;

2.2. Loop for j=3..M-1. M is number of stages.

2.2.1. multiplicand=round(multiplicand*cj-1)+fij;

2.3. Fi=round(multiplicand+fiM)

The result is a vector F. Simulation can be also useful during

parameters selection and adjustment (for example quantizers width to

achieve the proper accuracy). It is important that input parameters for the

simulator are given by the same configuration file that makes the design

cycle faster and decrease mistake probability (due to mistyping for

example).

4.4 User manual guide
1. Locate the executable file (called ‘convgen’). All the

generated VHDL code will be placed into the same directory as

the program located.

 47

2. Write the configuration file. Configuration file syntax

is described in the respective chapter. Example of the

configuration file could be found in Appendix B.

3. Place the configuration file into the same directory

where the executable is.

4. Put the generator file into the execution giving the

proper command line parameters. The list of possible

parameters and their description is adduced in Appendix C.

5. If no simulation option passed, program produces a set

of VHDL files representing HDL model for a FAD with

specified parameters. If simulation mode is activated then

simulation result file produced with a name specified as a

parameter in command line together with generated VHDL

code.

6. If it is needed, testbenching may be performed and

compared with a simulation results.

 49

5 Conclusion and future work

5.1 Conclusion
 The suitable architecture with respect to low area cost has been

chosen. The tool for automatic generation of the architecture with given

parameters has been created. The testing of design generated by the tool

was performed and proofed that generator works correctly.

5.2 Future work
This work implies using the multipliers with fixed coefficient. The

variable coefficient multiplier may be introduced in order to increase the

flexibility and get more functionality.

In order to be implemented more improvements and optimization must

be done.

 50

 51

References

[1] R. Adams, T. Kwan.: “A Stereo Asynchronous Digital

Sample-Rate Converter for Digital Audio” IEEE Journal of solid-

state circuits, vol. 29, NO. 4, pp 481 – 488, April 1994.

[2] N. Aikawa, Y. Mori.: “Kernel with block structure for sampling

rate converter” 0-7803-7663-3/03 2003 IEEE, ICASSP 2003, NO. VI

pp 269 –272, 2003.

[3] D. Babic, J. Vesma, T. Saramaki, M. Renfors.:

“Implementation of the transposed Farrow structure” 0-7803-7448-

7/02 2002 IEEE, NO. IV, pp 5-8, 2002.

[4] H. Johansson, P. Lowenborg.: ”On the Design of adjustable

Fractional Delay FIR Filters” IEEE, Transactions on circuits and

systems – II: Analog and digital signal processing, vol. 50, No. 4, pp

164-169, 2003.

[5] L. Wanhammar.: “DSP integrated circuits”, pp 468-470.

[6] H. Ohlsson.: ”Studies on implementation of digital filters

with high throughput and low power consumption”, Thesis 1031, LiU-

Tec-Lic-2003:30, Linkoping University, 2003 p. 13.

 52

 53

Abbreviations

AT – adder tree

BNF – Backus-Naur form

CLA – carry look-ahead adder

CSA – carry save adder

CSDC – canonic signed digit form

FAD – filter with adjustable delay

FIR – finite impulse responce

MSB – most significant bit

PP – partition product

PPG – partial product generator

SFG – signal flow graph

 54

 55

Appendix A VHDL components interface
description

Converter component

entity converter_<converter_name>_<number> is

port (

indata : in std_logic_vector((12-1) downto 0);

ys : out std_logic_vector((41-1) downto 0);

yc : out std_logic;

reset : in std_logic;

clk : in std_logic);

end converter_<converter_name>_<number>;

indata – input data to converter. Its width depends on the

configuration file settings;

ys, yc – output result and output carry out;

clk, reset – clock and reset signals;

Carry lookahead adder

entity cla<width>_<converter_name>_0 is

port(

in_a: in std_logic_vector(23 downto 0);

in_b: in std_logic_vector(23 downto 0);

c0: in std_logic;

sout: out std_logic_vector(23 downto 0);

cout: out std_logic);

end cla<width>_<converter_name>_0;

CLA width is used as a part of the component name and file name

as well.

 56

in_a, in_b – are inputs of CLA;

c0 – carry in;

sout, cout – output result and carry signal.

Carry save adder

entity CSA_<width> is

port (in1, in2, in3: in std_logic_vector(20 downto 0);

 outc, outs: out std_logic_vector(20 downto 0));

end CSA_<width>;

CSA width is used as a part of the component name and file name

as well.

in1…in3 – are input of adder;

outs, outc – outputs.

Four input adder

entity FourXAdd_<name>_0 is

port(

in1: in std_logic_vector(30 downto 0);

in2: in std_logic_vector(30 downto 0);

in3: in std_logic_vector(30 downto 0);

in4: in std_logic_vector(30 downto 0);

ys: out std_logic_vector(31 downto 0);

yc: out std_logic);

end FourXAdd_<name>_0;

This is an adder which produces sum for four items.

 57

in1..in4 – are inputs of adder;

ys, yc – result of the addition.

Multiplier

entity mul_<convertor_name>_0 is

port(

indata: in std_logic_vector(21 downto 0);

ys: out std_logic_vector(30 downto 0);

yc: out std_logic_vector(30 downto 0);

clk: in std_logic);

end mul_<convertor_name>_0;

indata – number in parallel cod to be multiplied by fixed

coefficient;

ys, yc – output result and carry signal.

Quantizer

2 channel:

entity rounder<num_of_chan>_<inp_width>x<out_width> is

port(

inp1: in std_logic_vector(13 downto 0);

inp2: in std_logic_vector(13 downto 0);

ys: out std_logic_vector(12 downto 0);

yc: out std_logic_vector(12 downto 0));

end rounder<num_of_chan>_<inp_width>x<out_width>;

Number of channels is included in component name and the

file name as well. It affects the interface as well as the

 58

functionality. File name also built from the input buses width and

the output width, required by the specification.

inp1, inp2 – two independent channel inputs;

ys, yc – two independent channel outputs with required width.

1 channel:

entity rounder<num_of_chan>_<inp_width>x<out_width> is

port(

inp1: in std_logic_vector(16 downto 0);

ys: out std_logic_vector(15 downto 0));

end rounder<num_of_chan>_<inp_width>x<out_width>;

1 channel quantizer has the same name convention and interface as

the 2 channel one.

FIR filter

entity connect_<name> is

port (

indata : in std_logic_array_delay_<name>;

yc, ys : out std_logic_vector((21-1) downto 0);

clk : in std_logic);

end connect_<name>;

Component (file) name includes name of a filter specified in

the configuration file.

indata – filter input in special format:
STD_LOGIC_ARRAY_DELAY_FIL1 IS

ARRAY (<> DOWNTO 0) OF STD_LOGIC_VECTOR (<> DOWNTO 0);

In fact, it is the array of buses;

ys, yc – filter outputs;

 59

clk – clock signal (meaningful if only tree is divided by pipeline

registers);

Delay chain

entity delay_chain_<convertor_name>_0 is

port (

a : in std_logic_vector((12-1) downto 0);

y : out std_logic_array_commondelay_fedor;

clk : in std_logic);

end delay_chain_<name>_0;

a – input signal in parallel code;

y – output array containing input signal values delayed from

0 to maximum possible value.

Output type looks like the following:
STD_LOGIC_ARRAY_COMMONDELAY_FEDOR IS

ARRAY (<> DOWNTO 0) OF STD_LOGIC_VECTOR(<> DOWNTO 0);

clk – clock signal at which (rising edge) delay chain shift

occurred.

 60

Shift generator

entity shift_gen_<name>_0 is

port (

a : in std_logic_vector(12-1 downto 0);

y : out std_logic_array_shift_<name>;

clk : in std_logic);

end shift_gen_<name>_0;

It is a supporting component which generates partial

products for multiplication. The rules how it composes the result

are hardly coded in component code. FAD VHDL implementation

contains many shift generators for different coefficients required.

Component name includes <name> field that defines which

component is the “owner” of shifter.

a – input value in parallel code;

y – output set of partial products. The type declaration is

similar to the type, described in the filter section;

clk – clock signal.

Adder tree

entity tree_<name>_0 is

port (

 clk: in std_logic;

 in_0: in std_logic_array_shift_fil1;

 in_1: in std_logic_array_shift_fil1;

 in_2: in std_logic_array_shift_fil1;

 in_3: in std_logic_array_shift_fil1;

 in_4: in std_logic_array_shift_fil1;

 61

 in_5: in std_logic_array_shift_fil1;

 in_6: in std_logic_array_shift_fil1;

 in_7: in std_logic_array_shift_fil1;

 outc, outs: out std_logic_vector(21-1 downto 0));

end tree_<name>_0;

Number of inputs depends on the number of partial products to be

added.

in_0…in_7 – inputs to be added;

outs, outc – sum result;

clk – clock signal. Meaningful if only tree is pipelined.

 62

 63

Appendix B Configuration file example

converter fedor 16

word 12

5

delay 0 1 2 3 4

filter fil1 12

8

0.001953125

0.015625

-0.06640625

0.3046875

-0.3046875

0.06640625

-0.015625

-0.001953125

filter fil2 12

8

0.001953125

0.015625

-0.06640625

0.3046875

-0.3046875

0.06640625

-0.015625

-0.001953125

 64

filter fil3 12

8

0.001953125

0.015625

-0.06640625

0.3046875

-0.3046875

0.06640625

-0.015625

-0.001953125

filter fil4 12

8

0.001953125

0.015625

-0.06640625

0.3046875

-0.3046875

0.06640625

-0.015625

-0.001953125

filter fil5 12

8

0.001953125

0.015625

-0.06640625

0.3046875

-0.3046875

0.06640625

 65

-0.015625

-0.001953125

mul 0.5 13

mul 0.5 13

mul 0.5 14

mul 0.5 15

 66

 67

Appendix C Command line parameters
The only parameter that cannot be omitted is the name of a

configuration file

The evoking syntax in BNF notation is the following:

<program name> <config file name> {[-m] | [-t name] | [-s name]}

The additional parameters can be given in any order after the

configuration file name.

-m Creates makefile for VCOM. If such a parameter is given,

the tool creates file called ‘makefile’, containing all the components of

ready FAD, enumerated in proper order. It allows removing the

interdependency problem during compilation the VHDL code. VCOM

compiler should be evoked in the following way: vcom –f makefile.

-t Defines name used as a key part of converter type file name.

If the option is not given, ‘noname’ is used as a part of typefile.

-s Simulates and writes simulation results into file with

filename supplied. Simulation results are just a set of strings like the

following:

0000000000000100 0.000122

0000000000101000 0.001221

1111111111001000 -0.001709

0000001000000000 0.015625

0000000110010000 0.012207

0000001100101000 0.024658

0000001000110000 0.017090

0001010101011100 0.166870

1101110010111000 -0.275635

0000011101110000 0.058105

1111110111100000 -0.016602

1111111111000000 -0.001953

 68

Results are provided both in 2’s compliment binary notation and in

decimal floating point form to simplify comparing with VHDL

simulation in VSIM or other HDL simulator and design information.

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida
ersättare – under en längre tid från publiceringsdatum under förutsättning
att inga extra-ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda
ner, skriva ut enstaka kopior för enskilt bruk och att använda det
oförändrat för ickekommersiell forskning och för undervisning.
Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva
detta tillstånd. All annan användning av dokumentet kräver
upphovsmannens medgivande. För att garantera äktheten, säkerheten och
tillgängligheten finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som
upphovsman i den omfattning som god sed kräver vid användning av
dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras
eller presenteras i sådan form eller i sådant sammanhang som är
kränkande för upphovsmannens litterära eller konstnärliga anseende eller
egenart.

För ytterligare information om Linköping University Electronic Press
se förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its

possible replacement - for a considerable time from the date of
publication barring exceptional circumstances.

The online availability of the document implies a permanent
permission for anyone to read, to download, to print out single copies for
your own use and to use it unchanged for any non-commercial research
and educational purpose. Subsequent transfers of copyright cannot revoke
this permission. All other uses of the document are conditional on the
consent of the copyright owner. The publisher has taken technical and
administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be
protected against infringement.

For additional information about the Linköping University Electronic
Press and its procedures for publication and for assurance of document
integrity, please refer to its WWW home page: http://www.ep.liu.se/

© Fedor Merkelov, Yaroslav Kodess

