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Abstract 
 

In different applications, in digital domain, it is necessary to change the 

sampling rate by an arbitrary number. For an example Software Radio, which 

should handle different conversion factors and standards. 

This work focuses on the problem of designing and implement sampling 

rate converters for conversions between arbitrary sampling rates. 

The report presents an overview of different converter techniques as well 

as considers a suitable scheme with low implementation cost. The creating 

VHDL generator of Farrow-based structure to speed up the design process is the 

main task of this work. The suitable design technique, which is the most 

important thing in any design work, is presented in the report as well.  

The scheme, which is considered to be suitable, is created by VHDL 

generator and tested in MATLAB. The source code is attached to the report. 

And some results from tests of the implemented scheme.   
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1 Introduction 
 

1.1 Background 
Now the video and audio move more and more to completely digital 

processing of a signal. Hence, the problem of dealing with equipment with 

different sampling rates has become really severe. There was usually only 

a single digital processor in any particular signal chain and only Analog to 

Digital (A/D) or Digital to Analog (D/A) converters used in that kind of 

chains. But today it is common to find completely digital studio for 

processing audio or/and video signals. In that kind of studios the signal is 

digitized immediately after the receiver (original analog source). All 

operations such as editing and processing remain in the digital domain 

which is considered to be an advantageous solution in all future 

equipment. For all that was said above, there is a need for simple digital 

interfacing between different digital equipments.   

 

1.2 Motivation 
The main problem in designing such a system is the complexity of 

design process. The manual design usually provides the desired 

implementation results but leads to long design times.  

During the design process a fast design technique is needed to 

reduce the time of the design process. 

 

1.3 Purpose 
The purposes of this thesis are: 

- To study different converter techniques in order to work out 

the best solution for the problem at hand. 

- To select the schematics which are suitable to implement 

with respect of small area and low power consumption.  
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- To find suitable techniques to design sample rate converters. 

- To reduce the time of the design by creating an automatic 

tool to generate the VHDL code of the system with given parameters. 

1.4 Summary of main results 
In order to test created automatic tool, existing high level synthesis 

benchmark is used. In addition, a new one was created to provide testing 

with more precision and accuracy. Design examples and experimental 

results are presented in chapter 4 of this document. 

1.5 About this document 

Literature review 
Information on this subject was obtained from academic papers 

found in electronic libraries, such as IEEE, from some books in this area, 

from some papers which focus on describing design techniques and tools. 

Most of the information was taken from academic papers. In addition 

there was used Internet databases to find some information related to 

programming and design techniques. 

The bibliography section includes the links referenced in this 

document. 

  

Prerequisites 
It must be noticed that reader of this thesis is assumed to have 

general knowledge in digital signal processing.  

 

Outline 
- Chapter 2 provides detail concerning the different converter 

techniques. In addition, more precise definition of the problem is 

presented. 
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- Chapter 3 describes the system and tool implementation 

details. The architecture is presented. 

- Chapter 4 concluded with the implementation by introducing 

the experimental results based on testing some design examples. It also 

includes a user manual.   

- Chapter 5 presents some conclusions and proposes 

suggestions for future work. 

- Appendix A contains VHDL components interface 

description.  

- Appendix B provides with configuration file example. 

- Appendix C presents command line parameters. 
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2 Different converters techniques 
 

2.1 Introduction 
The chapter considers different converter techniques. First some 

basic concepts and definitions will be considered. Then, some techniques 

will be introduced as well as some discussion of their advantages and 

disadvantages. Finally, some suggestion of suitable techniques will be 

presented. 

 

2.2 Basic concepts and definitions 
Interpolation and decimation are operations used respectively to 

increase and reduce the sampling rate or frequency, usually by an integer 

factor. Increasing of a sampling rate requires that new values, not 

presented in the signal, be computed and inserted between the existing 

samples. The new value is estimated from a neighborhood of the samples 

of the original signal. Similarly, in decimation a new value is calculated 

from a neighborhood of samples and replaces these values in the lower 

sampling rate. Integer factor interpolation and decimation algorithms may 

be implemented using efficient Finite Impulse Response (FIR) filters and 

are therefore relatively easy to implement. Alternatively, interpolation by 

non-integer factors typically uses polynomial interpolation techniques 

resulting in more complex solutions. 

There are two classes of sample-rate converters. The first class is 

synchronous and the second one is asynchronous. In synchronous sample 

rate converters, the sample rate of incoming signal is converted to a new 

sample rate by an integer factor. It is suitable in many applications but if 

irrational conversion factors are needed the problem appears. Its digital 

output is producing the output samples at a fixed rate related to the input 
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rate. On the other hand, asynchronous sample rate converters produce 

output samples at rate, which is independent from the input rate. 

There are two methods of sample rate conversion. The first one is  

analog that is the simplest in principle but not in practice. The idea is to 

use a D/A converter in combination with a “brick wall” filter. The “brick 

wall” filter removes all signal images. Then output A/D converter converts 

signal back to a digital format. The A/D converter runs at the output 

sampling rate. Figure 1  shows the block-diagram of that design. [1]  

 

 

 

 

Figure 1 Analog method of sample-rate conversion 

 

But the main problem of Analog method is that Analog functions 

are more difficult to implement than digital functions. On that reason, the 

all-digital solution is more preferred.   

The general principle of all-digital sample rate converter is almost 

the same but the analog filter is replaced by a digital interpolation filter. 

The Figure 2  shows the block-diagram of all-digital sample-rate 

converter. [1] 

 

 

Figure 2 All-digital method of sample-rate conversion  

 

The sample-rate conversion problem may be formulated using the 

interpolation/decimation model in the time-domain view shown in  

Figure 3. The output sample rate (trace C) is higher than the original input 

sample rate (trace A). It can be done by first interpolating by A and then 

decimating by B. The interpolated values are fed into a zero-order-hold 

D/A 
converter 

Brick –Wall 
Analog filter 

A/D 
converter 

Digital 
 out 

Digital 
 in 

Fs in Fs out 

     L H (z) x(n) y(m) 
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and then resampled by the output switch (trace D). The output values 

appear to be representation of the values produced by interpolation filter 

(which is the nearest in time). Because the output sampling switch is not 

closing in exactly the time corresponding to a point on the fine time grid 

of the interpolated output there appear some errors, which could be made 

small by increasing the filter order.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Time-domain view of sample-rate conversion 

 

Sampling rate conversions, performed between arbitrary sampling 

rates, tends to make the sample rates conversion factor to be a ratio of two 

very large integers or even an irrational number. 

The ratio of f1 and f2 can be expressed as M/N, where M/N is 

computed by the least-common-multiple of the two sampling rates f1/f2.  

Hence, the sample rate of the input signal is first interpolated by a factor 

of M using digital filters and decimated by a factor of N to obtain the final 
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sampling rate. If the integers M and N are manageable numbers less then 

10, for example, it is possible to solve this problem by combination of 

interpolator and decimator. But there are cases when this number can be 

irrational or too high to implement in simple way. For example, the ratio 

of 44.1 and 48 kHz can be expressed as 147:160. Hence, the sample rate 

of the input signal is first interpolated by a factor of M=160 using digital 

filters and decimated back by a factor of N=147, but resulting filter would 

become rather big. To overcome this problem 147:160 can be 

accomplished by breaking this into the conversion procedures of  3 : 2 and 

7 : 5. The overall conversion filter can be obtained by taking the cascade 

combination of all these. Hence, the overall filter should consist of 

cascaded subfilters. 

2.3 Schematics of sampling rate converters 
N.Aikawa and Y.Mori proposed an interpolation kernel filter [2]. It 

is approximated in each sampling section piece by using a quadratic 

functions in equation (1). The block structure of the proposed kernel 

shown in Figure 4(b). 

The linear combination of the input data and reconstruction kernel 

is: 

      

 where fi are the sample values and y(x) is the reconstruction kernel.  

 
 
               a1,1x2 + b1,1x + c1,1   (0 < IxI < 1/N) 
 
                                                 
               a1,nx2 + b1,nx + c1,n   ((n-1)/N < IxI < 1) 
 
y(x)=                                                                                                         (1) 
               as,nx2 + bs,nx + cs, n    ( s-1+(n-1)/N < IxI < s-1+ n/N) 
 
 
               as,N x2 + bs,Nx + cs,N   ( s-1+(n-1)/N < IxI < s) 

 

∑ −⋅=
i

i ixyfxf )()(
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The block diagram of the filter presented in Figure 4 shows the 

structure with 5 sampling sections. 
 
 
 
 
 
 
 
 
 
 
 
                                                                (a) 
 
 
 
 
 
 
 
 
 
 
                                                        (b) 

Figure 4 The structure (a) no block structure (b) block structure 

 

Kernel with block structure is the modification of the kernel without 

block structure. Changing coefficients of multiplication ei allows changing 

the ratio of sampling rate conversion.     
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The proposed Kernel of the general form is: 
                 a1,1x2+b1,1x+c1,1   (0 < IxI < 1/N) 
 
 
 
                 a1,nx2+b1,nx+c1,n   ((n-1)/N < IxI < 1) 
 
 
 
                 e1(a2,1x2+b2,1x+c2,1)   (1 < IxI < 1+1/N) 
 
g(x)=                                                                                                (2) 
 
                 e1(a2,Nx2+b2,Nx+c2,N)   (1+(N-1)/N < IxI < 2) 
 
 
 
                 es-1(a2,nx2+b2,nx+c2,n)   (s-1+(n-1)/N < IxI < s-1+n/N) 
 
 
 
                 eS-1(a2,N x2+b2,Nx+c2,N)   (S-1+(N-1)/N < IxI < S) 

                                                                      

To produce a useful filter from the proposed general form, some 

restrictions to equation (2) should be applied. 

1) g(x) = g1,0   for x=0 

2) g(x) = g2,n   for x=n/N 

3) g(x) = 0  for x=s                                                        

4) C0 – continuous. 

The design problem is to find coefficients ej (Figure 4(b)), quadratic 

coefficients ai,j and gi,j which satisfy  the equation: 

 

 

Where L is a number of evaluation points in one sampling section, 

T=1/L, W(ω) is weighting function, D(ω) is ideal frequency characteristic 

and  δ  is the maximum allowable approximation error.                                                    

When the difference between δi and δi+1 is less than 10-5, the filter 

can be a FIR filter with the found transfer function. Otherwise an order 

and coefficients recalculation is needed. 

)()()cos()()(
)1(

2
1

0
ωωδωω DWTiiTGeW

Lj

jLi

S

j
j −<−⋅⋅− ∑∑

+

=

−

=
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An advantage of the digital kernel technique is that there is no 

necessity to redesign filter, whenever the sampling rate is changed. 

Another advantage is that the kernel obtained is easy to implement. The 

disadvantage of this method is high computational complexity. This is 

because of the large number of quadratic functions, which are needed to 

obtain a high attenuation in the stopband. 

 Another implementation of sample rate converter is based on the 

Farrow structure. Some modifications that can be produced to achieve low 

area and efficiency of it according to Djordje Babic, Jussi Vesma, Tapio 

Saramuki and Markku Renfors from Nokia and Tampere Universitet of 

Technology, Finland. [3]  

Firstly, it is modified Farrow structure shown in Figure 5 that has 

fixed filter coefficients as a benefit. The only changeable parameter is the 

fractional interval µ: 

                               µ = k/R – [k/R]                                

Where R is the decimation factor. 

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Modified Farrow structure 

 Z-1   Z-1   Z-1 

+ + +

+ ++

X X+ +
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The output samples are: 

 

 

of the m+1 FIR filters. Where m is the quantity of the filters c is 

multiplication coefficient. Each of the FIR filter has the transfer function: 

 

 

Where N is the parametrical coefficient. 

Structure in the Figure 6 contains (m+1)N+m multipliers working at 

the input sampling rate f1 , N integrators as well as dump circuits and N-1 

delay elements at the  output sampling rate f2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Modified transposed Farrow Structure I 
 

The fractional interval here is: 

                  µk+1= µk + 1/R – [µk + 1/R]                     

 where R is decimation factor. 
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The fractional interval for each sample is: 

                  µk = (kT1 – nkT2)/T2                           

where k is number of sample, T is period of sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Transposed modified Farrow structure II 
 

The structure shown in Figure 7 has N(m+1) multipliers working at 

the output sampling rate and m multipliers working at the input sampling 

rate. In addition, there are m I&D circuits working at the input sampling 

rate as well as N-1 delay elements working at the output sample rate. 

The structures shown in Figures 5, 6 and 7 have almost the same 

performance but the second one consumes less power during conversion 

from higher sample rate to lower.  
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The main advantage of those structures is that the filter coefficients 

are fixed which is very good for designing and producing. The fractional 

interval is the only one changeable parameter.  

The modification of the Farrow structure shown in Figure 5 is in 

fact adjustable fractional delay filter. It is suitable for interpolation, while 

transposed Farrow structures (Figure 6 and 7) are suitable for decimation. 

Adjustable fractional delay filter has the low area cost due to possibility to 

share delay elements among subfilters. Due to this it is considered to be 

very suitable to implement. The designing process of that structure will be 

discussed in the next chapter.   

 

2.4 Design techniques 
This structure shown in Figure 8 consists of several parallel 

subfilters, which are linear-phase FIR filters. Due to the coefficient 

symmetry of such filters the number of required multiplications may be 

reduced.  
 
 
x(n) 
 
 
 
 
 
 
 
 
 
                                                                                                             y(n) 
 

Figure 8. Adjustable fractional delay filter 
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+ + +
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The transfer function of the overall filter is: 

 

 

Where d=[-0.5;0.5] is a multiplication coefficient, Dk is the delay of 

k-th subfilter, L is the quantity of subfilters and Hk(z) are subfilters 

frequency responses: 

 

Where N is order of subfilter. 

 The desired real function HkR, des (ωT) is: 

 

                                (- jωT) k  ,        k  is  even 
                                      k! 

             H k R, des(ωT) =         - j ( - jωT) k  ,    k  is  odd                  
                                                     k! 

 

Where k= [0;L]. 

Each subfilter should approximate the frequency response of an  

Nk-th order differentiator.  

The advantage of such a structure is that there is no need in 

redesigning the subfilters but just change the single coefficient d. The 

subfilters are designed only one time.   

     Håkan Johansson and Per Lowenborg [4] recommend separate 

optimization of the subfilters. This design technique is based on 

distributing the allowable errors in the error functions.  

This approach results in subfilters that can have different order. 

That allows to reduce arithmetic complexity comparatively with the case 

where all subfilters are of equal orders.  

∑
=

− ⋅⋅=
L

k
k

Dk zHzdzH k

0
)()(

)()( 2 THeeH kR

TjNkTj
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ω
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The specification is: 

I He (ejωT ,d) I < δ 

where the complex error He(ejωT,d) is: 

He (ejωT , d) = H (ejωT) – Hdes (ejωT), 

ωT ∈[0, ωcT],   IdI < 0.5 

To satisfy the specification the selection of L and separately 

optimization Hkr(ωT) is needed so that: 
 
 
                                    
 
                                                                                             

 

where  

 
                                              [L/2],   k   is odd 
 
                                   C =                                                    
                                              [L/2]+1, k  is even 
 
 

This optimization can be solved in MATLAB using function 

remez.m. The specification ε is set that: 

 

 

When ε < 1 the specification is satisfied. To find the subfilters 

orders it is easy to design several filters by increasing the filter order until 

the specification is met. But in this approach the overall filter will be 

overdesigned for the reason that the interaction between filters could 

appear and this technique does not consider this. Than the order of filters 

and the complexity could be higher than necessary. 
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The other proposed technique is filter design via simultaneous 

optimization of the subfilters. To reduce the complexity of the overall 

structure some nonlinear optimization routine should be used. Relaxed 

specification is used in order to allow iteration of this design procedure. 

The relaxed specification might have differences between two cases 

ripples such as a factor of ten. The nonlinear optimization problem could 

be solved in MATLAB as a standard function minimax.  Then the 

relaxation of the design specification by factor ∆ is used to find less 

complex structure. The ∆ is chosen that the number of optimization 

iterations is rational. 

 The main idea is to use some kind of automatic implementation 

tools in low level and furthermore in FPGA to reduce design time. The 

overall filter consists of subfilters which orders and coefficients are the 

only changeable parameters before complete implementation. Hence, it is 

necessary to create the program, which will do all kind of “smart” 

implementation with respect to the low area. The main problem with it is 

that automatic process should use techniques, which are optimal from 

engineer’s point of view. To reach that aim it should be created some base 

of suitable designing solutions. For example, it is the sharing of the delay 

elements among the subfilters and suitable schematics for signed 

multiplication. These improvements are playing the main role in the 

reducing the area. Thus, the important first step is implementation of the 

single-rate fractional-delay filter and creating the VHDL code generator 

for it. 

Then the appropriate way must be chosen the suitable way to find 

that kind of parameters which are suitable for adjustable sampling rate 

conversion. 

Assumption that all subfilters have the same parameters seems to be 

simple because it allows to operate with only two changeable parameters 
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FIR filters coefficients and fractional delay. But mathematically it is not 

that simple problem. 
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3 Implementation 
3.1 Introduction 

The primary topic of the work is developing a software VHDL code 

generator for a filter with adjustable delay (FAD).  

This chapter describes the FAD generator implementation.  

3.2 Implementation details 
The tool is written in C programming languages. The output data is a 

VHDL code which can be further implemented as a register transfer level 

(RTL) model (in FPGA, for instance). Also simulation in MATLAB was 

performed for FAD structure to test the generated VHDL model.  

3.3 Setting up the task 

3.3.1 System level approach 
To determine starting design conditions, the main initial factors of the 

further tool were studied, such as: 

1. Software platform – Solaris; 

2. Application field assumed – sampling rate converter 

generation for its further study and hardware implementation; 

3. User qualification – experienced Unix user, scientist, 

programmer; 

4. The generator sources will be apparently used as a key 

part of the higher level generators; 

5. High portability for using in variety of software 

environments and operation systems; 

6. High efficiency of using, fast evoking, fast output 

generation; 

7. High functionality; 

8. Efficient verification mechanism. 
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FAD VHDL component
N M

Input Output

Clock Reset

Basing on these key characteristics the following solution for the 

system level is suggested: 

1. Input data is supplied in noninteractive mode with configuration file 

read by the tool. It doesn’t bring many problems for a Unix user 

because this way is the most commonly used for this software 

environment. 

2. User specifies the necessary operating mode with command-line keys; 

3. The programming language being used is ANSI C because it is 

supported by all the software platforms known and provides high 

degree of portability even for recent operation systems. Special 

supporting libraries (like input-output library, for instance) from the 

side software makers are not being used. 

4.  Minimal configuration file syntax. 

 

The block definition of ready FAD is presented in the Figure 9: 

 

 

 

 

 

Figure 9. Block definition of FAD 
 

Here: 

“N” and “M” are an input and output bus width respectively. 

“Reset” sets the block into initial state. 

The rate at that an input information is accepted is controlled by a 

clock signal. 
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User Interface Calculating core

Simulator Simulation results

Generated output

The system level block diagram, showing how the main blocks of 

the tool are interconnected is adduced in the Figure 10: 

 

 

 

 

 

 

 

Figure 10. Generator system level block diagram. 
 

Short blocks description: 

User interface block is responsible for the interaction with a user. It 

gets initial data supplied in some certain format (in configuration file in 

our case) and transforms them into the internal representation; 

Calculating core performs all the necessary tool functionality and 

generates the output; 

Simulator provides the mathematical model of the generated 

schematic and makes possible the comparison between the mathematical 

simulation and VHDL level simulation. The identity of the results from 

these two types of simulations guarantees (at certain level of reliability) 

that produced VHDL level model is equal to the signal flow graph (SFG) 

required. 

Simulation results are real decimal and binary representation of a 

simulator output given to the user via terminal console or with another 

type of interface. 

Generated output is the set of VHDL files representing the desired 

structure. 

It has been already mentioned that the simulator provides 

mathematical model of the desired schematic. When certain test vector is 

applied to the input (it might be a single impulse that is the case here), 
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only certain output sequence is expected. The equality between 

mathematical simulation and VHDL modeling guarantee that the equal 

transformation has been obtained and hence, the current realization is 

correct.  

Simulation can be performed in different ways: 

• System level modeling in Simulink, Ptolemy and in similar 

frameworks; 

• Mathematical model in MATLAB, Mathcad, Excel etc; 

• Integrated simulator. 

When a supplementary modeling tool is implied, it requires that, at 

first, it must be installed into user environment. Secondly, user must be 

able to use it (that is though not a serious problem for the user assumed). 

Multi-purpose visual simulators often do not provide the necessary 

flexibility and adjustability for the new input data (number of stages, for 

instance). Evoking the environment with considerable functionality for 

executing the couple-of-line code seems redundant. 

The FAD mathematical model is quite simple, therefore integrating 

the simulation facilities into software being developed seems an optimal 

solution. Since the VHDL code generator and the simulator use the single 

configuration file, it gives additional guarantee of that the mathematical 

and VHDL models represent the same entity.  

The additional advantage is that it is very fast and may be 

performed in parallel with generation process. 
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Disadvantages of the approach: 

• A simple verifying simulator complicates, for example, 

parameters adjusting for given output. It is good only for verifying.  

• Often user trusts more the well-known systems like MATLAB, 

especially if he can see the block schematic or the model source code that 

he examines. 

3.3.2 Signal flow graph level analysis. 
Consider general view of a SFG for FAD (Figure 11): 

 

 

 

 

 

 

 

Figure 11. SFG for FAD 

 

Input information is applied with signed parallel code. Output sequence, 

produced by a FAD has also signed parallel representation. Input bus is 

connected to the set of delay chains. There can be arbitrary delay before the 

input information reaches a filter in each stage. 
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We used the following shortening symbols for the delay chain (Figure 12) 

and for FIR filter (Figure 13) in this schematic: 

1. 

 

 

 

Figure 12 Delay chain 

2. Filters denoted as Hi are linear phase FIR filters.  

 

 

 

 

 

 

 

 

Figure 13 FIR filter 

 

Output bus width depends on the input bus width and on the maximum 

coefficient length.  

3. Quantizers Q(q) manage with internal bit width. They can be used 

either for intermediate rounding (truncation) or for bus width extension 

according to the specification. It will be carefully discussed below. 

4. Multipliers perform the multiplication of the input value by the fixed 

coefficients. 
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3.3.3 Prerequisites definition 
The given structure implies that the following input information must be 

provided by a user: 

1. Number of sections of FAD; 

2. Input word length; 

3. Prefilter delays for each section (number of delays in chain 

{ni}, i = 1..m; 

4. Quantizers parameters (input/output word length)  

{Q(qj)}, j = 1..2*m; 

5. Filter parameters: 

a. Number of sections k (filter order); 

b. Multipliers coefficients; 

6. Coefficients for multipliers of a FAD. 

This list includes essential input information for the FAD generator. It 

will be replenished as may be necessary. 

3.4 Task solution 

3.4.1 Step-by-step adaptation and simplification of the SFG. 
The SFG, mentioned in the previous chapter, primarily illustrates the 

schematic to be realized but cannot be implemented directly. It does not contain 

detailed information about the parts that it is composed of, about bus structure 

and their sizes, etc. Therefore the model must be analyzed and optimized at the 

lower hierarchical level.  

The task of the current work is not to design a mathematically optimal 

solution that can be further implemented in FPGA with minimal cost. Therefore 

obvious simplification will be carried out. 
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a) Delay chain simplification. 

Consider the part of FAD SFG and its expanded view, paying attention to 

the delay elements (Figure 14): 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. FAD SFG part and its expansion 
 

It is evident that having individual delay lines for each filter and for 

prefilter delays is redundant. SFG hence can be reduced by introducing the 

single common delay chain: (Figure 15). 
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Figure 15. Introducing the common delay line. 

 

Here M=max(ni+ki), for i=1 .. m where  

ni – length of the i-th filter predelay; 

ki – number of i-th filter internal delays;  

m – number of stages of FAD. 

Now each filter loses its own delay chain and gets appropriately delayed 

samples from the common one. 

b) Multipliers simplification. 

There exist many types of parallel multipliers. Although this structure is 

quite regular from the implementational point of view, it is very large. But often 

it can be simplified, for example, if fixed coefficients are used like in our case. 
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General view of multiplier block schematic is shown in Figure 16: 

 

 

 

 

 

  

 

 

 

 

Figure 16. General block schematic of parallel multiplier 
 

Number of partial product is equal to number of nonzero elements (binary 

ones) in binary representation of a coefficient. It can be reduced a lot by 

converting coefficient to canonic signed digit code (CSDC) where the number of 

nonzero bits is minimized [5,6]. 

Adder tree is based on carry save adders (CSA). Each CSA takes 3 

numbers at its input, adds them and produces 2 output result. Thus if it is used in 

the tree structure, it reduces any number of inputs to 2. A 6-input (each input is 

multibit) adder tree is shown in Figure 17. 

 

 

 

 

 

 

 

 

 

Figure 17 6-input adder tree example 
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This tree is able to add 6 multibit numbers with latency of t=3*tCSA tCSA is 

equal to the propagation time of full adder. In order to decrease critical path, 

interlayer latches may be introduced (where dotted lines intersect outputs of 

CSAs). 

CLA shown in Figure 16 is optional. It might be used if only final result 

needed of number of buses should be decreased. 

c) Filters simplification. 

According to the discussion above, part of the FAD SFG with FIR filters 

can be drawn like in Figure 18: 

 

 

 

 

 

 

 

 

 

Figure 18 FAD fragment with expanded FIR filters 

It is evident that the separated adder trees can be joined into a single tree 

and schematic can be structurally simplified (Figure 19): 

 

 

 

 

 

 

 

 

Figure 19 FAD fragment with joined adder tree 
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Correction block here is in fact a constant binary number. It is also used 

in previous case (Figure 18) in every infilter adder tree. Correction vector is 

needed to avoid a sign extension of the partial products.  

Rules of partial product (PP) and the correction vector generation. 

CSDC encoded coefficient is built according to the following BNF-

notation: 

{{0}{-1|1}}. 

Denote the coefficient length as ‘m’, input number length as ‘n’ and input 

number as x(n)x(n-1)…x(0) 

Initial value of correction is equal to 0. 

• Iterate from the position 0 to m from right to left; 

• If ‘0’ is met in the coefficient in position k, nothing is added to the 

correction and no PP generated; 

• If ‘1’ is met in the coefficient in position k then:  

                                                                                                  

                                                                                                     

• If ‘–1’ is met in the coefficient in position k then:  

 

                                                                                                     

Here 1i and 0i denote sequence of i ones or i zeros in binary form. 

After the iterating through all the coefficient bits is finished, PP vector 

contains all the partial products, and the value of correction vector is completely 

calculated. 

3.4.2 Final schematic description 
After the suggested simplification has been carried out, the FAD 

schematic shown in Figure 20 is obtained: 
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Figure 20 Simplified and adapted FAD block schematic. 
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Ex - is a bus width extension with guard bits

This realization uses 2’s compliment fixed point binary representation. Most 

significant bit (MSB) is a sign bit. The 2’s compliment binary encoded number 

{xi} can be converted into decimal representation by the equation: 

 

            ,               

where xi are binary number bits, N is a word length. 

In this approach 4-input adders are used instead of CLA’s at filter outputs. 

Inner structure of an adder is shown in Figure 21: 

 

 

 

 

 

  

 

Figure 21 Block schematic of a 4-input adder 

 

4-input adder in Figure 21 has one output. It is done to avoid multiplier 

duplication in the next stage. When a multiplier coefficient has many nonzero bits, 

a complex CSA tree must be used in it, which leads to an area consuming register 

transfer level (RTL) implementation. On the other hand, when a coefficient has 

few of nonzero bits the approach used may seem ineffective however 

implementation tool optimizes RTL representation and disposes unnecessary gates 

that compensate such a weakness. As it was mentioned in previous chapters this 

work is not focused on carrying out the accurate optimizations. 

Quantizer might be realized differently depending on the input-output width 

ratio.  
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If n is the input bit width and m is the output bit width then: 

a) When (n/m)>1, rounding is performed.  

Rounding schematic being implemented in this case is shown in Figure 22: 

 

 

 

 

 

 

 

 

 

 

Figure 22. Quantizer. Rounding case 

b) When (n/m)<1, extension is performed.  

 

 

 

 

Figure 23. Quantizer. Extension case 

Here n most significant bits are taken from the input, the less significant part 

is extended by zeros.  

c) When (n/m)=1,it is a pass through.  

 

 

 

 

Figure 24. Quantizer. Pass through case 
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3.5 VHDL code structure. 
System approach in design implies that system is decomposed into 

independent (or relatively independent) components that could be in turn 

developed separately. 

VHDL language provides a special component approach. It means that 

device being designed can be figured as a set of logically independent blocks that 

further are joined together with special language means. Thus, developer obtain 

hierarchical structure of his project. 

The FAD being designed can be hierarchically split in the following way 

(Figure 25): 

Detailed input-output description for each component in realization is 

presented in Appendix A. 
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Figure 25. FAD VHDL level hierarchical diagram  
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3.6 Generator C code structure 
Software VHDL component code generation is a process when 

target file is created, the necessary component functionality is put into it, 

obeying correct VHDL program structure. The standard C file input-

output procedures are used to achieve this aim.  

FAD code generator tool is built according to the system approach 

as a set of independent (loosely-coupled) procedures. This approach 

implies that each procedure can be written and debugged with individual 

test bench. 

The final program consists of a set of several files (modules). Each 

file contains one or several procedures that intended for either certain 

component generation or supporting means like data reencoding, 

generation with templates etc.  

Functional approach used in C language is quite old, however fast 

and effective if used in appropriate way. Data exchange between 

functions is only carried out by function parameters, no global variables 

are used for this. It also makes for the functions independency and 

increases code clarity.  

Tool block schematic is shown in Figure 26: 
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Figure 26. Tool block schematic  

 



 38 

 

• Tool input information is taken from the configuration file written 

according to special simple syntax that will be carefully discussed in 

the next chapter. Procedure (1) that is responsible for that fills the 

internal structures with filter parameters information, multiplier 

coefficient values etc; 

• Filters are generated only with information supplied in configuration 

file (procedure (2)); 

• Internal bus width depends only on the filter result width, quantizers 

parameters, adders input bus widths; 

• Multiplier generation procedure requires that coefficient be given in 

input configuration file and bus widths be calculated at previous step; 

• The quantizer input parameter that is taken from the configuration file 

is an output bus width while the input bus width is calculated. Number 

of quantizer channels is implied by the schematic to be implemented. 

• The adder width is chosen as the broadest input width. Two guard bits 

are added inside the adder. 

• Delay chain length is chosen so it can supply all the possible delays 

required for all the schematic and for each separate filter. 

All the components are interconnected according to the schematic 

shown in the Figure 26. If FAD schematic should be adjusted, it would 

cause serious program code modification. 

3.7 Configuration file description 
Configuration file is the main (and generally the one) interaction 

means between a user and the tool. It should contain all the information 

about FAD that is necessary to successfully generate the schematic. 
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The sufficient information required (see figure 27): 

1. Input data width; 

2. Number of stages; 

3. Input delay value; 

4. Filter parameters: 

4.1. Number of stages; 

4.2. Multiplier coefficients for each stage; 

5. Quantizers parameters; 

6. Multipliers coefficients.  

The logical information required: 

1. Schematic name (to be used as a part of VHDL file name for 

the component); 

2. Filter names. 

Additional information contains details about filter realization. 

Configuration file syntax gives an unambiguous interpretation of 

the information supplied. The information above may be put into the 

configuration description according the following rules (in Backus Naur 

notation (BNF)): 

 

1) Configuration_file ::=  <Header> 

     {<Filter_description>} 

     {<Multiplier description>} 
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2) Header::= converter <space> <name> <space> <number> 

  word <space> <number> 

  [{<Additional param>}] 

  <Delays> 

1-st line: converter name is supplied and FAD output bus width 

(output quantizer parameter) 

2-nd line: input bus width  

 

3) Additional param:       

    <compensation>|<guardbits>|<pipelining> 

    <symmetry>|<vma>|<symmetrypipelinig> 

   <vmapipelining> “\n” 

 

4) Delays::= delay <space> {<number> <space>} <number> 

Number of delays before each stage of FAD is supplied. All of 

them must be entered. 

5) Filter_description::= 

filter <space> <name> <space> <number> 

   <number> 

   {<coefficient> “\n”} <coefficient> 

1-st line: filter name and filter output bus width (corresponding 

quantizer parameter); 

2-nd line: number of filter stages; 

3-rd line starts a coefficient list. All of them must be included. 

Number of coefficients must be equal to number of filter stages. 

 

6) Multiplier description::= 

mul <space> <coefficient> <number> 
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Here the value of the coefficient is passed and the bus width after 

multiplier. 

 

compensation::=compensation <space> <Boolean>; 

guardbits::=guardbits <space> <number>; 

pipelining::=pipelining <space> <number>; 

 

Compensation tells whether compensation vector should be added 

in the filter adder tree. 

Guardbits points how many guard bits should be used in filter 

adder tree 

Pipelining keyword precedes the number of pipeline stages in 

adder tree. 

 

boolean ::= 0|1; 

number ::= {<digit>|<digit>}; 

name ::= <letter>{<letter>|<digit>}; 

coefficient::=<float>; 

space ::={“ “}; 

 

“digit” is a one-character digit; 

“float” is a real number in any notation (including exponential); 

“letter” is a single capital or lower-case latin letter.  

 

Configuration file parser has a proof against the incorrect data 

typed by the user and strong syntax checking mechanism. 

The sample configuration file is adduced in the Appendix B. 
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4 Design Example and Experimental Results 
4.1 Introduction 

In the previous chapters both the low area consuming architecture 

was introduced and the tool for producing it. This tool is used to generate 

the example of the design. This section shows the experimental results. 

 

4.2 Experiments on Benchmark 
      For testing of the system (Figure 27) the testbench was created in 

MATLAB. The source signal is generated with special test vector 

generator component done in VHDL. Output response is saved and 

converted to MATLAB to be analyzed there.  

The same structure in MATLAB was tested and showed the same 

results. The parameters of the Design example are shown in Appendix B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                              

 

Figure 27. Design Example: Structure 
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The same input vector applied during VHDL and MATLAB 

modeling. The output impulse responses (Figure 28) were compared and 

found to be identical.  

Impulse responce
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Figure 28. Design Example: Impulse response  

The impulse response value shown below: 
0.00061 
0.001709 
0.001343 
0.012207 
0.014893 
0.03186 
0.02417 
0.016479 
0.16577 
-0.27783 
0.053711 
-0.02539 
-0.01953 
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Three different examples were used as test information and results 

obtained proved the equality of the VHDL model output and MATLAB 

mathematical model. 

In addition to simplify the testing for future work the internal 

behavioral simulator was created. 

4.3 Internal behavioral simulator 
Internal simulator emulates the single pulse of the highest positive 

value and applies it to the input of FAD. Such an input cause a certain 

output vector called impulse response. Vector length depends on the 

number of stages in filters the schematic is composed from and number of 

stages in FAD itself. 

The comparison between the mathematical simulation results and 

test bench output gives a user an assurance that implemented schematic is 

correct or not. 

The mathematical model looks like the following: 

consider fij is a matrix, containing the FAD filters coefficients.  

i – is a time instance within time period when FAD 

impulse response is at output.  

i=1..max[lengthk+delayk] for k=1..m,  

where m is a number of FAD stages; 

lengthk – number of stages for filter number k; 

delayk – delay value before the filter number k. 

j – is a filter number being considered j=1..m  

Matrix composition rule: column j is the list of the filter ‘j’ 

coefficients. The list starts from the row number delayk.  
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where Fi is the response value at i-th time instance 

(i=1..max[lengthk+delayk] for k=1..m). 

To achieve the full accordance with VHDL model generated, it is 

necessary that rounding is introduced into the model in a way as it is 

performed in generated FAD.  

Thus, the simulation algorithm is the following: 

1. Build the fij matrix according to the matrix composition rule 

above. The important think is that all the coefficients are rounded to 

the number of bits as implied by specification. 

2. Loop for i=1..N. N= max[lengthk+delayk] 

2.1. multiplicand=fi1+fi2; 

2.2. Loop for j=3..M-1. M is number of stages. 

2.2.1. multiplicand=round(multiplicand*cj-1)+fij; 

2.3. Fi=round(multiplicand+fiM) 

 

The result is a vector F. Simulation can be also useful during 

parameters selection and adjustment (for example quantizers width to 

achieve the proper accuracy). It is important that input parameters for the 

simulator are given by the same configuration file that makes the design 

cycle faster and decrease mistake probability (due to mistyping for 

example). 

4.4 User manual guide 
1. Locate the executable file (called ‘convgen’). All the 

generated VHDL code will be placed into the same directory as 

the program located. 
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2. Write the configuration file. Configuration file syntax 

is described in the respective chapter. Example of the 

configuration file could be found in Appendix B. 

3. Place the configuration file into the same directory 

where the executable is. 

4. Put the generator file into the execution giving the 

proper command line parameters. The list of possible 

parameters and their description is adduced in Appendix C. 

5. If no simulation option passed, program produces a set 

of VHDL files representing HDL model for a FAD with 

specified parameters. If simulation mode is activated then 

simulation result file produced with a name specified as a 

parameter in command line together with generated VHDL 

code. 

6. If it is needed, testbenching may be performed and 

compared with a simulation results. 
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5 Conclusion and future work 
 

5.1 Conclusion 
         The suitable architecture with respect to low area cost has been 

chosen. The tool for automatic generation of the architecture with given 

parameters has been created. The testing of design generated by the tool 

was performed and proofed that generator works correctly.   

 

5.2 Future work 
This work implies using the multipliers with fixed coefficient. The 

variable coefficient multiplier may be introduced in order to increase the 

flexibility and get more functionality. 

In order to be implemented more improvements and optimization must 

be done. 
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Abbreviations 
 

AT – adder tree 

BNF – Backus-Naur form  

CLA – carry look-ahead adder 

CSA – carry save adder 

CSDC – canonic signed digit form 

FAD – filter with adjustable delay 

FIR – finite impulse responce 

MSB – most significant bit 

PP – partition product 

PPG – partial product generator 

SFG – signal flow graph 
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Appendix A VHDL components interface 
description  
 

Converter component 

entity converter_<converter_name>_<number> is 

port ( 

indata : in  std_logic_vector((12-1) downto 0); 

ys : out std_logic_vector((41-1) downto 0); 

yc    : out  std_logic; 

reset    : in  std_logic; 

clk    : in  std_logic); 

end converter_<converter_name>_<number>; 

 

indata – input data to converter. Its width depends on the 

configuration file settings; 

ys, yc – output result and output carry out; 

clk, reset – clock and reset signals; 

 

Carry lookahead adder 

entity cla<width>_<converter_name>_0 is 

port( 

in_a:   in std_logic_vector(23 downto 0); 

in_b:   in std_logic_vector(23 downto 0); 

c0:   in std_logic; 

sout:   out std_logic_vector(23 downto 0); 

cout:   out std_logic); 

end cla<width>_<converter_name>_0; 

 

CLA width is used as a part of the component name and file name 

as well. 
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in_a, in_b – are inputs of CLA; 

c0 – carry in; 

sout, cout – output result and carry signal. 

 

Carry save adder 

entity CSA_<width> is 

port ( in1, in2, in3: in std_logic_vector(20 downto 0); 

  outc, outs: out std_logic_vector(20 downto 0)); 

 

end CSA_<width>; 

 

CSA width is used as a part of the component name and file name 

as well. 

in1…in3 – are input of adder; 

outs, outc – outputs. 

 

 

Four input adder 

entity FourXAdd_<name>_0 is 

port( 

in1:   in std_logic_vector(30 downto 0); 

in2:   in std_logic_vector(30 downto 0); 

in3:   in std_logic_vector(30 downto 0); 

in4:   in std_logic_vector(30 downto 0); 

ys:   out std_logic_vector(31 downto 0); 

yc:   out std_logic); 

end FourXAdd_<name>_0; 

 

This is an adder which produces sum for four items. 
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in1..in4 – are inputs of adder; 

ys, yc – result of the addition. 

 

Multiplier 

entity mul_<convertor_name>_0 is 

port( 

indata:   in std_logic_vector(21 downto 0); 

ys:   out std_logic_vector(30 downto 0); 

yc:   out std_logic_vector(30 downto 0); 

clk:   in std_logic); 

end mul_<convertor_name>_0; 

 

indata – number in parallel cod to be multiplied by fixed 

coefficient; 

ys, yc – output result and carry signal. 

 

Quantizer 

2 channel: 

entity rounder<num_of_chan>_<inp_width>x<out_width> is 

port( 

inp1:   in std_logic_vector(13 downto 0); 

inp2:   in std_logic_vector(13 downto 0); 

ys:   out std_logic_vector(12 downto 0); 

yc:   out std_logic_vector(12 downto 0)); 

end rounder<num_of_chan>_<inp_width>x<out_width>; 

 

Number of channels is included in component name and the 

file name as well. It affects the interface as well as the 
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functionality. File name also built from the input buses width and 

the output width, required by the specification. 

inp1, inp2 – two independent channel inputs;  

ys, yc – two independent channel outputs with required width. 

 

1 channel: 

entity rounder<num_of_chan>_<inp_width>x<out_width> is 

port( 

inp1:   in std_logic_vector(16 downto 0); 

ys:   out std_logic_vector(15 downto 0)); 

end rounder<num_of_chan>_<inp_width>x<out_width>; 

 

1 channel quantizer has the same name convention and interface as 

the 2 channel one. 

 

FIR filter 

entity connect_<name> is 

port ( 

indata : in  std_logic_array_delay_<name>; 

yc, ys : out std_logic_vector((21-1) downto 0); 

clk    : in  std_logic); 

end connect_<name>; 

Component (file) name includes name of a filter specified in 

the configuration file. 

indata – filter input in special format:  
STD_LOGIC_ARRAY_DELAY_FIL1 IS  

ARRAY (<> DOWNTO 0) OF STD_LOGIC_VECTOR (<> DOWNTO 0); 

In fact, it is the array of buses; 

ys, yc – filter outputs; 
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clk – clock signal (meaningful if only tree is divided by pipeline 

registers); 

 

Delay chain 

entity delay_chain_<convertor_name>_0 is 

port ( 

a     : in  std_logic_vector((12-1) downto 0); 

y     : out std_logic_array_commondelay_fedor; 

clk   : in  std_logic); 

end delay_chain_<name>_0; 

 

a – input signal in parallel code; 

y – output array containing input signal values delayed from 

0 to maximum possible value.  

Output type looks like the following:  
STD_LOGIC_ARRAY_COMMONDELAY_FEDOR IS  

ARRAY (<> DOWNTO 0) OF STD_LOGIC_VECTOR(<> DOWNTO 0); 

clk – clock signal at which (rising edge) delay chain shift 

occurred. 
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Shift generator 

entity shift_gen_<name>_0 is 

port ( 

a     : in  std_logic_vector(12-1 downto 0); 

y     : out std_logic_array_shift_<name>; 

clk   : in  std_logic); 

end shift_gen_<name>_0; 

 

It is a supporting component which generates partial 

products for multiplication. The rules how it composes the result 

are hardly coded in component code. FAD VHDL implementation 

contains many shift generators for different coefficients required. 

Component name includes <name> field that defines which 

component is the “owner” of shifter. 

 

a – input value in parallel code; 

y – output set of partial products. The type declaration is 

similar to the type, described in the filter section; 

clk – clock signal.  

 

Adder tree 

entity tree_<name>_0 is 

port ( 

 clk: in std_logic; 

 in_0: in std_logic_array_shift_fil1; 

 in_1: in std_logic_array_shift_fil1; 

 in_2: in std_logic_array_shift_fil1; 

 in_3: in std_logic_array_shift_fil1; 

 in_4: in std_logic_array_shift_fil1; 
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 in_5: in std_logic_array_shift_fil1; 

 in_6: in std_logic_array_shift_fil1; 

 in_7: in std_logic_array_shift_fil1; 

 outc, outs: out std_logic_vector(21-1 downto 0)); 

end tree_<name>_0; 

 

Number of inputs depends on the number of partial products to be 

added. 

in_0…in_7 – inputs to be added; 

outs, outc – sum result; 

clk – clock signal. Meaningful if only tree is pipelined. 
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Appendix B Configuration file example  
 

converter fedor 16 

word 12 

5 

delay 0 1 2 3 4 

filter fil1 12 

8 

0.001953125 

0.015625 

-0.06640625 

0.3046875 

-0.3046875 

0.06640625 

-0.015625 

-0.001953125 

 

filter fil2 12 

8 

0.001953125 

0.015625 

-0.06640625 

0.3046875 

-0.3046875 

0.06640625 

-0.015625 

-0.001953125 
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filter fil3 12 

8 

0.001953125 

0.015625 

-0.06640625 

0.3046875 

-0.3046875 

0.06640625 

-0.015625 

-0.001953125 

filter fil4 12 

8 

0.001953125 

0.015625 

-0.06640625 

0.3046875 

-0.3046875 

0.06640625 

-0.015625 

-0.001953125 

 

filter fil5 12 

8 

0.001953125 

0.015625 

-0.06640625 

0.3046875 

-0.3046875 

0.06640625 
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-0.015625 

-0.001953125 

 

mul 0.5 13 

mul 0.5 13 

mul 0.5 14 

mul 0.5 15 
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Appendix C Command line parameters  
The only parameter that cannot be omitted is the name of a 

configuration file 

The evoking syntax in BNF notation is the following: 

<program name> <config file name>  {[-m] | [-t name] | [-s name]} 

The additional parameters can be given in any order after the 

configuration file name. 

-m Creates makefile for VCOM. If such a parameter is given, 

the tool creates file called ‘makefile’, containing all the components of 

ready FAD, enumerated in proper order. It allows removing the 

interdependency problem during compilation the VHDL code. VCOM 

compiler should be evoked in the following way: vcom –f makefile. 

-t Defines name used as a key part of converter type file name. 

If the option is not given, ‘noname’ is used as a part of typefile. 

-s Simulates and writes simulation results into file with 

filename supplied. Simulation results are just a set of strings like the 

following: 

0000000000000100 0.000122 

0000000000101000 0.001221 

1111111111001000 -0.001709 

0000001000000000 0.015625 

0000000110010000 0.012207 

0000001100101000 0.024658 

0000001000110000 0.017090 

0001010101011100 0.166870 

1101110010111000 -0.275635 

0000011101110000 0.058105 

1111110111100000 -0.016602 

1111111111000000 -0.001953 
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Results are provided both in 2’s compliment binary notation and in 

decimal floating point form to simplify comparing with VHDL 

simulation in VSIM or other HDL simulator and design information. 
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