
United States Patent [191
Cain et al.

[11] Patent Number: 4,967,412

[54]

[75]

[73]

[21]

[22]

[51]
[52]

[58]

[56]

SERIAL DATA FRAME GENERATOR FOR
TESTING TELECOMIVIUNICATIONS
CIRCUITS

Inventors: Christopher B. Cain; Robert E.
McAuliffe; Lynn A. Schmidt; Elaine
L. May, all of Loveland; John E.
Siefers, Fort Collins, all of Colo.

Hewlett-Packard Company, Palo
Alto, Calif.

Appl. No.: 179,373

Filed: Apr. 8, 1988

Int. Cl.5 G01R 31/28; G06F 11/00
U.S. Cl. 371/20.1; 371/20.4;

371/27
Field of Search 371/27, 22, 20.1, 20.4,

371/27; 364/200, 900; 375/10; 379/1

References Cited

U.S. PATENT DOCUMENTS

4,450,560 5/ 1984
4,451,918 5/1984
4,507,576 3/1985
4,517,661 ' 5/1985
4,555,663 1l/1985

Assignee:

Conner 371/27

Gillette 371/27

McCracken et a1. 371/27
Graf et a1. 371/27

Shimizu 371/27

[45] Date of Patent: 'Oct.30, 1990

OTHER PUBLICATIONS

Siemens, Telecommunications, Data Book 1987, pp. 5-2
through 5-10 and 4-148 through 4-151, Apr. 1987.
CCITT, The International Telegraph and Telephone,
Consultative Committee, Digital Networks-Transmis
sion Systems and Multiplexing Equipment, 1985, pp.
85-94.
Hewlett-Packard Journal, Oct. 1984, pp. l-35.
Hewlett-Packard 3065X/L Board Test System Users’
Manual, vol. 1: System Reference, HP part number
03065-90090, Aug. 1987, Chapters 7, pp. 7-1-7-17; 9,
pp. 9-1-9-72; 23, pp. 23-1-23-40

Primary Examiner-Charles E. Atkinson
Attorney, Agent, or Firm-Christopher J. Byrne

[57] - ABSTRACT

Disclosed is a serial frame generator which generates
serial data which conforms to a user-selected telecom
munication protocol. The serial frame generator can be
used with a circuit board tester to create test vectors for
telecommunications circuits which require serial data
input. The serial frame generator is user-adaptable so
that serial frame data can be produced for essentially
any kind of serial frame protocol.

3 Claims, 10 Drawing Sheets

p 130

PATTERN
FCRMAT
(PCF)

FORMAT
FILE

GENERATOR

150

CAPTURE

PCF OUTPUT FILE
(VCL COMPATIBLE PCF
SOURCE CODE)

US. Patent Oct.30, 1990 Sheet 1 of 10 4,967,412

WEEXE Gm;
F GE

mm;

m/

2925 .

mmgmzoo

US. Patent 0111.30, 1990 Sheet 2 of 10 4,967,412

ANALOG ; I l //
SIGNAL " II {I -

50

11 11 11 11

10101010
DIGITAL -

SERIAL DgA _
FRAME -

(T1) \ 101 01 010

(56 O
FRAMING 8-BIT 8-BIT B-BIT

BIT CHANNELO CHANNEL1 ' ~ ' ' ' ' CHANNEL 23

1‘ pc '11’
I10)
:11’

I10]
I11’.

VCL COMPATIBLE end 10f
PCF SOURCE CODE PC

59 repeat 185 times
\ ' execute NulLb'It

end repeat

FIG 2

US. Patent Oct.30, 1990 Sheet 4 of 10 4,967,412

US. Patent Sheet 6 of 10 4,967,412

START
FRAME GENERATION
SUBROUTINE

Oct. 30, 1990

280

cREATE FILE 28-‘

FRAME DATA FILE /
130

I
CONVERT DATA 286
FROM STEP 258 /
AND/0R 264 T0
FRAME FORMAT

I
PRINT BITS 288

T0 /
FRAME DATA FILE 130

290

YES

NO

CLOSE
FRAME DATA FILE /

130

@5 FIG 4B

US. Patent 0¢t.30, 1990 Sheet 7 of 10 4,967,412

m @E

mozmmzww was mumsom “Um
fomm

US. Patent Oct. 30, 1990 Sheet 9 0f 10 4,967,412

<w GE

IZZQPoQ __‘oowooov
.EEUIUIP “ 2E 25 26E om?

US. Patent Oct. 30, 1990 Sheet 10 of 10 4,967,412

/ 175

Format file for D/A CODEC text
The PCF order is:

+-> Vatid_data
|+-> Data_bit

Following is a “Pcfgen” command-it specities“d_a_dota ?os the
frame data hie to he react;“x”is the dummy character to replace

!
I

I
I

I
! l
! “XX” PCF vector contains two bits
I

i
I

i
! in the PCP vectors
l

l

1 Program Section (contains VCL and PCF statements)

“111/
‘:10’,
“101/
“111/
“101/
“10!!
“111/

end pct

repeat 185 times
execute NutLbit

end repeat

pct
I110’!
“11”
\\ I/ “101/
‘it:

end pct
repeat 185 times

execute Nult_bit

FIG 6B

4,967,412
' 1

SERIAL DATA FRAME GENERATOR FOR
TESTING TELECOMIVIUNICATIONS CIRCUITS’

BACKGROUND OF THE INVENTION

The disclosed invention relates generally to the ?eld
of circuit board testing and more speci?cally to the art
of testing telecommunications circuit boards. Gener
ally, a given circuit board consists of numerous semi
conductor chips, such as a microprocessor, memory
chips, counter chips, control chips, etc., laid out accord
ing to some interactive design. Following design and
layout of the circuit board, it is necessary to test the
board to ensure that all the chips, as laid out, perform as
expected. Testing will involve application of test-vec
tors to pins of a given chip (or cluster of chips) on the
board. A test-vector for a given chip (or cluster of
chips) generally consists of a binary word having an
“input” portion and an “output” portion. The goal in
testing is to determine if the application of the input
portion of a test-vector produces an output matching
the output portion of the test-vector. If there is a match,
the test is successful (pass). Unsuccessful tests (failure)
indicate defective board design, defective layout or
defective chips. Test-vectors will be supplied by the
designer of the circuit board (usually with the aid of a
computer-aided~design (CAD) system). The test-vec
tors will be chosen so as to pinpoint problems on the
board, if they exist.

Actual circuit board testing is performed with the aid
of a circuit board testing machine. Circuit board testing
machines are well known in the prior art. For example,
a well known circuit board testing machine is the Hewl
ett-Packard Company model HP-3065 circuit board
tester. The HP-3065, for instance, has 264 pins which
can be simultaneously selectively connected to various
pins of a given circuit board for application of test-vec
tors to the board and the monitoring of board output
generated in response. The HP-3065 is fully described in
the October 1984 issue of the Hewlett-Packard Journal.
With the aid of a circuit board tester, whole sequences
of test-vectors are applied to the board under test. In
fact, it is not uncommon for test-vector listings to be
thousands of test-vectors long where each test-vector is
dozens of bits in width. Typically, such test-vectors are
applied, sequentially one test vector at a time, in parallel
to the circuit board under test.
Telecommunication circuit boards, however, present

a special problem in circuit board testing: serial data
protocols. Essentially all modern telecommunication
schemes obey some sort of serial data protocol, such as
the X25 (HDLC) protocol for wide area networks, the
Integrated Services Digital Network ISDN S-Bus pro
tocol (CCITT 1.430), the 24-channel U.S. Tl telephone
protocol, and so forth. Common to all such protocols is
the organization ‘of information in the form of serial
frames. The protocol de?nes the structure of the frame.
Consider, for instance, the 24-channel U.S. Tl tele
phone protocol: analog voice signals are sampled and
the samples are digitized; each digitized sample consists
of one byte of information; samples are grouped in a
24-channel serial frame; each frame is 193 bits long
consisting of a lead framing bit followed by 24 bytes,
where each byte is a single sample from a given chan
nel. Communication over the T1 systems occurs via
transmission of T1 frames.
A typical T1 circuit which may require testing is a T1

coder-decoder (Codec), such as the National Semicon

15

20

25

30

35

45

50

55

65

2
ductor Company model TP 3064 Codec. A Codec is a
T1 circuit which interfaces between the network and a
telephone and serves to convert analog signals to digital
(A/D) and digital signals to analog (D/A). In the digi
tizing process, the Codec samples the analog signal at
the rate of '8 KHz. Thus, for instance, eight samples
would be required to digitize a l KHz analog signal.
These eight samples would be inserted in the same chan
nel position of eight consecutive T1 frames. The general
procedure for digitizing a given analog signal with a
Codec is as follows: (1) generate the voltage sample of
the sine wave for each sampling interval of time; (2)
convert the voltage sample to the appropriate pulse
code modulated (PCM) eight bit code, that is, digitize
the sample; (3) insert the eight bit digitized sample value
into the proper channel position of a 24~channel T1
frame; (4) repeat steps 1 through 3 for the next sample
value. This procedure, however, becomes exceedingly
tedious and time consuming, even for relatively “sim
ple” signals like a sinusoidal frequency. For instance,
sampling a 1010 Hz signal at a sampling rate of 8 KHz
would require 800 samples before the samples would
begin to repeat themselves. These 800 samples would be
inserted in the same channel position of 800 consecutive
Tl frames. This amounts to 800x l93= 154,400 bits of
information which would be necessary to test a Codec
to determine if it properly digitized a 1010 Hz signal. In
addition, the PCM analog-to-digital conversion process
may require application of a complex transfer function.
(See the International Telegraph and Telephone Con
sultative Committee (CCITT) Red Book, Vol. III, F as
cicle III.3, Tables la/G.71l & 1b/G.71l (A-law) and
2a/G.7ll & 2b/G.7ll (Mu-law).) Finally, this informa
tion must be converted (one bit at a time) to the corre
sponding test pattern language which the given circuit
board tester requires.

It has been prior art practice to generate such data
“manually”, that is, a test programmer has had to calcu
late the necessary serial frame test data and transform it
into test pattern language information which the given
circuit board tester can accept. Thus, for a given serial
device, the test programmer must generate the sample
data, generate the serial frames from the sample data,
and then generate the test data from the serial frames.
Obviously, generating such large amounts of complex
telecommunication serial frame test data is tedious and
time consuming. (Generating such test data “manually”
could very well consume weeks of an individual’s time.)
Moreover, ensuring the accuracy of the test data is very
dif?cult and to the extent that there are doubts about the
accuracy of the test data, the test results are suspect.
The result has been that prior art testing of complex
telecommunications circuits has been limited by the
difficulty of generating suf?cient amounts of accurate
serial frame test data.

SUMMARY OF THE INVENTION

The present invention provides for quick and accu
rate generation of serial frame test data for telecommu
nications circuit boards. Through software, the present
invention performs the major steps of (l) generating the
data; (2) generating the serial frames from the data; and
(3) generating the test data from the serial frames. Al
though the present invention could be easily adapted to
work with essentially any modern circuit board tester, it
has been implemented on the HP-3065 circuit board
tester machine and it will therefore be described in

4,967,412
3

connection with the HP-3065. The invention is imple
mented using a form of the BASIC programming lan
guage which has been adapted for use on board test
machines and dubbed BT-BASIC. BT-BASIC is well
known in the prior art and is fully explained in connec
tion with the HP~3065 instruction manual.
The ?rst major step of generating digital data is per

formed by a so-called Serial Frame Generator. The
Serial Frame Generator includes: a Data Generator; a
collection of Data Generation/Conversion (DG/ C)
routines and user-written Data Files; and a Frame Gen
erator. The Data Generator produces the digital data
which is representative of a given analog signal by ei
ther reading data from a user-written Data File or gen
erating data by executing a given DG/C routine. The
DG/C routines produce the digital data representative
of single or multi-tone sine waves, pseudo-random bit
sequences (such as a 511 bit error rate (BER) signal),
CCITT G.711 reference and noise signals, and CCITT
PCM A-law and Mu-law conversions. In addition, the
Data Generator and DG/C routines are written in an
open systems manner so that the user can customize an
original DG/C to produce a particular kind of data.
The second major step of generating the serial frames

from the digital data is also performed by the Serial
Frame Generator. In addition to the Data Generator
and DG/C routines, the Serial Frame Generator in
cludes a Frame Generator. The Frame Generator con
verts the data produced by the Data Generator into
serial frames which obey a user-selected telecommuni
cations protocol. Among the framing options available
to the user are l—chatmel, 24-channel and 32-channel Tl
frames, X.25 (HDLC) frames, ISDN frames, and vari
ous Siemens frames. (See the 1987 Siemens Telecommu
nications Data Book.) In addition, the Frame Generator
is also written in an open systems manner so that the
user can add framing options. Output from the Frame
Generator is stored in a so-called Frame Data File.
The third and ?nal major step of generating the cir

cuit board test data from the serial frames is performed
by a Pattern Capture Format (PCF) Generator. (PCF is
explained in Chapter 7 of the HP-3065 X/L user’s man
ual, Vol. III: Advanced Technologies Testing-Reference
and Syntax) The PCF Generator has two input files: the
Frame Data File and a so-called Format File. As noted,
the Frame Data File is the output of the Frame Genera
tor. The Format File is a user-written ?le containing
executable VCL code together with instructions for
merging the data in the Frame Data File with the exe
cutable VCL code to produce an executable PCF Out
put File. “VCL” stands for “Vector Control Lan=
guage”. VCL is a feature of the HP-3065 circuit board
tester. VCL is a high-level language which is compiled,
linked and executed by the HP-3065 computer. VCL
allows a programmer to operate the HP-3065 with
source-code-like programming instructions. (V CL is
fully explained in chapter 23 of the HP-3065 X/L user’s
manual, Vol. I: System Reference.) The PCF Generator
includes a Parser and a PCF Source Code Generator
which generates VCL-compatible source code. The
Format File is the input ?le to the Parser. The Frame
Data File is the input ?le to the PCF Source Code
Generator. The Parser processes the syntax information
in the Format File and issues commands to the PCF
Source Code Generator. The PCF Source Code Gener
ator processes the Frame Data File together with the
output of the Parser to produce the PCF Output File
containing VCL-compatible PCF source code.

10

20

25

35

45

55

65

4
The VCL-compatible PCF source code, that is, the

PCF Output File, may be compiled, linked and exe
cuted by the HP-3065._ Thus, the present invention al
lows the HP-3065 user to quickly specify and generate
serial data frames for the testing of telecommunications
circuits. The invention allows for high programmer
productivity as well as providing adaptability so that
the programmer can write applications for his/her indi
vidualized needs. The prior art alternative to the pres
ent invention is “manual” coding, which would require
signi?cant programmer time in calculating complex
serial frames and checking them for accuracy. The
present invention, therefore, enables the circuit board
testing programmer to produce large amounts of com
prehensive and accurate serial frame test data which
would simply be too tedious and/or time consuming to
reasonably produce with prior art alternatives.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic diagram of a circuit board
testing machine such as would be used with the present
invention.
FIG. 2 shows a step-wise ?ow diagram of the present

invention.
FIG. 3 shows a schematic diagram of the present

invention.
FIG. 4 shows a schematic diagram of Serial Frame

Generator 125 of FIG. 3.
FIG. 4A shows a blow-up of Data Generator 200 of

FIG. 4.
FIG. 4B is a blow-up of box 267 of FIG. 4A.
FIG. 5 shows a schematic diagram of PCF Generator

150 of FIG. 3.
FIG. 6 shows an example of Format File 140.
FIG. 6A shows the contents of the d a data ?le of

FIG. 6.
FIG. 6B shows an example of a PCF Output File 175

which has been derived from the Format File 140 of
FIG. 6 and the Frame Data File 130 of FIG. 6A.
FIG. 7 shows pseudo code which shows how Parser

300 and PCF Source Code Generator of 350 process
Format File 140 and Frame Data File 130, respectively,
to produce PCF Output File 175.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 shows a schematic diagram of a circuit board
testing machine such as would be used with the present
invention. Computer 5, Test Station 10 and Test Fixture
15 comprise the circuit board testing machine, such as
the HP_-3065 circuit board tester. The object of testing is
the Device Under test (DUT) 20. DUT 20 is a circuit
board, and in particular a telecommunications circuit
board. Computer 5 controls the interaction of Test Sta
tion 10 and test Fixture 15 in the testing of the DUT 20.
FIG. 2 shows a step-wise flow diagram of the present

invention. Box 50 shows an analog signal which has
been sampled at regular intervals Box 53 shows digital
data conversions of such samples. Box 56 shows a serial
frame protocol. The digitized samples from box 53
would be inserted into the serial frame format of box 56.
The serial frame(s) of box 56 are then converted into
VCL-compatible PCF source code, as shown in box 59.
The code in box 59 would be directly executable by an
HP-3065 circuit board tester. Note in box 59 that the
serial frame data (which would be used as stimulus input
to a telecommunications circuit board under test) is
included directly within the PCF code. It should be

4,967,412
5

noted that FIG. 2 is in fact schematic: the present inven
tion does not actually sample and digitize an analog
signal. Rather, the digital information, which is repre
sentative of digitized analog samples (as shown in box
53), is either read from a ?le or generated directly by
the present invention. This digital data is then inserted
into a user-selected serial frame protocol format, as
shown in box 56. As shown in box 56, a given serial
frame protocol format will have de?ned ?elds. Box 56
shows a 24-channel Tl frame having a lead framing bit
followed by 24 8-bit data channel ?elds. (Typically,
when testing a telecommunications circuit with serial
frames, certain frame ?elds will remain constant from
frame to frame while other ?elds, such as a given chan
nel in a T1 frame such as channelo, will vary with each
frame. Thus, the generated digital data (as represented
by box 53) will typically be inserted in the variable
frame ?elds while the constant ?elds will simply be
repeated from frame to frame.) The serial frames are
then converted into VCL-compatible PCF source code
as shown in box 59. The PCF source code, like VCL,
can be compiled, linked and executed by the HP-3065.
FIG. 3 shows a schematic diagram of the present

invention. The user will input a request on an HP-3065
for serial frame data with which to test a given telecom
munications circuit board. User Input 75 is processed by
Serial Frame Generator 125. User Input 75 will specify
the type of data for which serial framing is required and
the protocol to which the serial frame data must con~
form. Serial Frame Generator 125 generates the actual
serial frames which conform to User Input 75. These
serial frames will then be stored in Frame Data File 130.
User Input 75 will also include a user-written Format
File 140. The Format File 140 is a user-written ?le
containing executable VCL code together with instruc
tions for merging the data in the Frame Data File 130
with the executable VCL code to produce an execut
able PCF Output File 175. Frame Data File 130 and
Format File 140 are input ?les to Pattern Capture For
mat (PCF) Generator 150. Obeying the merge instruc
tions in Format File 140, PCF Generator 150 merges
the serial frame data from Frame Data File 130 with the
executable VCL code in Format File 140 to produce
PCF Output File 175 containing VCL-compatible PCF
source code which is executable by the HP-3065. An
example of such a PCF Output File 175 is shown in box
59 of FIG. 2.
FIG. 4 shows a schematic diagram of Serial Frame

Generator 125 of FIG. 3. Serial Frame generator 125
includes Data Generator 200, memory structure 210
containing DG/C routines and Data Files, and Frame
Generator 250. As noted above, User Input 75 will
specify the particular telecommunications protocol to
which the desired serial frame data must conform. In
the preferred embodiment of the present invention,
eight widely followed protocol options are available as
well as a general template option with which the user
can tailor a protocol that is not among the eight options.
Depending upon the protocol chosen (or tailored) by
the user, serial frame data will either be generated with
a given DG/ C routine or read from a given Data File.
The eight framing protocol options available in the
preferred embodiment of the present invention are as
follows: l-channel, 24-channel and 30-channel Tl
frames, Siemens IOM and SLD frames, serial RS232
frames and X25 (HDLC) frames, and the ISDN S-Bus
protocol conforming to the CCITI' 1.430 standard.
Typically, data for the RS232, the X25 and the ISDN

20

25

30

35

50

55

65

6
S-Bus (CCITT 1.430) protocols will reside in memory
structure 210 in user written Data Files. Typically, data
for the remaining protocols will be generated with a
given DG/C routine. Given the user selected protocol
and the appropriate data (either generated with a
DG/C or read from a user-written Data File), Frame
Generator 250 formats the data into serial frames con
forming to the selected protocol. The serial frames are
then stored in Frame Data File 130. As noted above, the
present invention is implemented in software in the
BT-BASIC programming language. The BT-BASIC
implementation of Serial Frame Generator 125 is listed
in Appendices A and B. Appendix A contains the BT
BASIC code for Data Generator 200 and Frame Gener
ator 250. Appendix B contains the BT-BASIC code for
the DG/C routines.
FIG. 4A shows a blow-up of Data Generator 200 of

FIG. 4. As shown in box 255, Data Generator 200 re
ceives input requesting “N” number of serial frames
conforming to a given protocol. (“N” is an integer.)
Depending upon the protocol, Data Generator 200 will
obtain framing data either by reading data from the
appropriate user-written Data File(s) and/ or by execut
ing the appropriate DG/C routine(s). (Recall that the
user-written Data File(s) and the DG/C routine(s) re
side in memory structure 210 of FIG. 4.) Typically, the
protocols which will require user written Data Files are
the following: X.25 (HDLC), RS232 and the ISDN
S-Bus (CCITT 1.430). Typically, the protocols which
will have one or more DG/ C routine are the following:
l-channel, 24-channel and 30-channel Tl protocols; and
the Siemens IOM and SLD protocols. There is also a
ninth option: the preferred embodiment of the present
invention provides a template whereby the user can
write his/her own protocol framing subroutine. Given
“N”, the user-requested number of serial frames, and
the o user’s choice of protocol for the frames, data is
generated by Data Generator 200 and an appropriate
protocol implementation program of Data Generator
200 and Frame Generator 250 is called. In the preferred
embodiment of the present invention, the implementa
tion programs are written in the BT-BASIC program
ming language, although essentially any programming
language could be used. The BT-BASIC code imple
mentation of Data Generator 200 and Frame Generator
250 for each protocol (including a user de?nable tem
plate) is listed in Appendix A. The implementations as
listed in Appendix A are shown in Table l. The imple
mentations are quite self-explanatory. Note also that for
each protocol, Frame Generator 250 will call a given
Frame Generation Subroutine, as shown in box 267.
Each Frame Generation Subroutine in turn will call the
subroutines GetBitsMSB (box 269), GetBitsLSB (box
271), OpenFile (box 273), PrintBits (box 275) and possi
bly FGen13 Error (box 277). The Frame Generation
Subroutines corresponding to each protocol are listed
Table 2 below. The subroutines called by the Frame
Generation Subroutine of box 267 are also explained
and de?ned in Appendix A as listed in Table 2.

TABLE 1
BT-BASIC Protocol Implementations

(Appendix A page numbers in parentheses)
PROTOCOL IMPLEMENTATION

1. x.2s (HDLC) FRAMEJDLC (30-44)
2. RS232 FRAME__RS232 (54-62)
3. l-channel T1 FRAME_1CI-I (1-9)
4. 24-channel T1 FRAME_24CH (10-19)
5. 30-channel T1 FRAME_30CH (2o-29)

4,967,412
7

TABLE l-continued
BT-BASIC Protocol Implementations

[AEEndiX A page numbers in parentheses!
PROTOCOL IMPLEMENTATION

6. Siemens IOM FRAMEJOM (44-53)
7. Siemens SLD FRAME._SLD (62-71)
8. ISBN S-Bus (CCI'IT 1.430)
9. user de?nable protocol
template

FRAME_SBUS (83-94)
FRAME-TEMPLATE (72-80)

TABLE 2
Protocol Frame-Generation-Subroutines

QApmndix A page location in parentheses!
PROTOCOL SUBROUTINE

1. X.25 (HDLC) Generate__hdlc (32)
2. RS232 Generate__rs232 (55)
3. l-channel Tl Generate__lch (2)
4. 24-channel Tl Generate_24ch (12)
5. SO-channel Tl Generate_30ch (22)
6. Siemens IOM Generate-mm (46)
7. Siemens SLD Generate_sld (64)
8. ISDN S~Bus (CCIT 1.430) Generate_sbus (83)
9. user de?nable protocol GenerateJrame (74)
template '

FIG. 4B is a blow-up of box 267 of FIG. 4A. A given
Frame Generation Subroutine, such as Generate__24ch,
is called in box 280. In box 282 a counter variable is
initialized to zero. Frame Data File 130 is then created
in box 284. The data to be formatted into a frame will
have been produced by Data Generator 200, either by
invocation of a DG/ C and/or reading from a user-writ
ten Data File. In the preferred embodiment of the pres
ent invention, the data produced by Data Generator 200
will reside in a “temp-?le” in main memory in computer
5. In box 286, the ?rst line of such data is inserted into
a given frame format as dictated by the user-chosen
protocol. The frame information generated in box 286 is
then written to Frame Data File 130. The counter vari
able is then incremented in box 290. A check is made in
diamond 292 to see if the number of frames (N) re
quested by the user have been written. If not, the pro
cess loops back to box 286 and the next line of data in
the “temp-?le” is formatted into a frame. On the other
hand, when the “N” frames requested by the user have
been generated and written to Frame Data File 130,
then Frame Data File 130 is closed.
As noted above, Data Generator 200 either reads data

from a user written Data File or produces data by in
voking DG/ C routines. In the preferred embodiment of
the present invention, the DG/C routines are also im
plemented in the BT-BASIC programming language.
The DG/ C routine BT-BASIC implementations are
listed in Appendix B. The DG/C, routines are also
described and explained in Chapter 9 of HP-3065 X/L
user’s Manual, Vol. III, Rev. C, sections 9.4.3 through
9.4.12.
FIG. 5 shows a schematic diagram of PCF Generator

150 of FIG. 3. PCF Generator 150, merges data with a
programming language to produce a ?le which is di
rectly executable by computer 5. In the preferred em
bodiment of the present invention, PCF Generator 150

) has two input ?les: data is contained in Frame Data File
130 and a programmable language is contained in For
mat File 140. The data in Frame Data File 130 may be
supplied by the user or it can be generated by Serial
Frame Generator 125. Format File 140 is written by the

10

15

20

25

30

35

45

65

8
user. Format File 140 will contain executable VCL,
code together with instructions for merging the data in
Frame Data File 130 with the executable VCL code to
produce an executable PCF Output File 175. As noted
above, “VCL” stands for “Vector Control Language”.
VCL is a feature of the HP-3065 circuit board tester.
VCL is a high-level language which is compiled, linked
and executed by the HP-3065 computer. VCL allows a
programmer to operate the HP-3065 with source-code
like programming instructions. (V CL is fully explained
in chaper 23 of the HP-3065 X/L user’s manual, Vol. 1:
System Reference). The PCF Generator includes a
Parser 300 and a PCF Source Code Generator 350
which generates VCL-compatible source code. User
written Format File 140 is the input ?le to the Parser
300. Frame Data File 130 is the input ?le to the PCF
Source Code Generator 350. Parser 300 processes the
syntax information in the Format Dile 140 and issues
commands to PCF Source Code Generator 350. PCF
Source Code Generator 350 processes Frame Data File
130 together with the output of Parser 300 to produce
the PCF Output File 175 containing VCL-compatible
PCF source code. A complete explanation of the opera
tion of PCF Source Code Generator 350 together with,
prescriptions of Format File 140 syntax is contained in
Chapter 1 of HP-3065 X/L user’s Manual, Vol. III,
Rev. C pages 9-62 through 9-70. An implementation of
PCF Source Code Generator 350 in the BT-BASIC
programming language is listed in Appendix D.
FIG. 6 shows an example of Format File 140. Format

File 140 is written by the user. Instructions for writing
the Format File are listed in Chapter 9 of HP-3065 X/ L
user’s Manual, Vol. III, Rev C. As shown in FIG. 6, the
Format File has two sections: a header section and a
program section. The header section lines are indicated
by leading “l” characters. The program section' is the
remaining part of the Format File and contains VCL
and PCF statements. (Recall that PCF is explained in
chapter 7 of the 3065 X/L user’s manual, Vol. III, and
VCL is explained in chapter 23 of the 3065 X/L user’s
manual, Vol. I.). The lines beginning with the character
“l” are comment lines in VCL. However, a line begin
ning with “l##” is a replacement command to the PCF
Generator. The “!##” command will specify a replace
ment character and the name of a Frame Data File 130.
In FIG. 6, the PCF command line is: !##M “"'” “d13
a_data”. The asterisk (‘) is the replacement character
and d_a_data is the name of the Frame Data File 130.
The command tells the PCF Generator to replace the
asterisk with data from the d_a_data ?le wherever the
asterisk occurs in the PCF code in the program section
of the Format File. The PCF code is bounded by the
statements pcf and end pcf in the program section.
FIG. 6A shows the contents of the d_a_data ?le of

FIG. 6. The d_a_data ?le is the Frame Data File 140.
FIG. 6B shows an example of a PCF Output File 175

which has been derived from the Format File 140 of
FIG. 6 and the Frame Data File 130 of FIG. 6A.
FIG. 7 shows pseudo-code which shows how Parser

300 and PCF Source Code Generator of 350 process
Format File 140 and Frame Data File 130, respectively,
to produce PCF Output File 175. Parser 300 detects the
“!##” line in Format File 140, reads the name of the
Frame Data File 130, and associates that name with the
replacement character (the “"’ in FIG. 6).

4,967,412
9 10

TABLE OF CONTENTS

APPENDIX A
FRAME_VICH _ FRAME_IOM

sub Ggigagiglch 5 FRAME_RS232 _
I R‘ ‘M FRAME_SLD

sub Generate__24ch
FRAME_30CH FRAME_TEMPLATE

sub Generate__3och sub Generate-frame
FRAME_HDLC 1O FRAME_SBUS_TE

sub Generate_hd1c sub Generate._Sbus_TE

/TElECOM/GEN/FRAME_1CH Rev 3.0

FRAME GENERATOR for simple one time’ slot (channel) pcm generator

I
I

1

I

I

I

I

I

I

I

I

I

I

I

I ..

I Copyright Hewlett-Packard 1987. All Rights Reserved.
I

I ***‘k********************-k***'k********1:*'k*****'k**~£*******~k******~k**-k************

To add other DSP subroutines, simply type in the following BTBasic commands
at the command line:

edit 9999 I This places the edit cursor at the last line.
merge I'file id" I Merge the "file id" source at the current edit line.

This program is meant to be modified by the user BEFORE it is executed.
The first half of this program consists of routines that fill pre-definsd
variables (arrays or numeric variables) with values from data files, user
entry or DSP subroutine generated data. These predefined variables reflect
the data field(s) within this particular serial frame format.

The second half of this program consists of a subroutine that formats the
values within the predefined variables into this serial frame format. The

comment section of the framing subroutine.

The subroutines following the framing subroutine are standard throughout
the frame generator programs. Not all of these subroutines are used in a
particular frame generator. These subroutines are documented in the comment
section proceding the implementation section of each subroutine.

This allows the user to have complete- control and flexibility over data
field values and how they are generated. Each frame generator program is to
be used for a different frame format.

I
I
I
I
I
I
I

I

I
g
I
I

I

I
I
I
I
I
I manner in which the predefined variables are formatted is discussed in the
I

g
1
g
1
I

I

I

I

I
I
1
1
I USER MODIFIABLE PARAMETERS
I

I Scratch variable .
II II

0 I
MAX_LE2N 1000 I Maximum number of frames. Same value used in

I data field array dimensioning.
LEN = O I Default number of frames to generate.

J‘ dim CH(1000) Channel field array.
I

4,967,412
11 12

print using "9"
pr‘nt "ONE ("w-“NEIL GENERATOR"
print
print
loop I

input "Enter number of frames to be generated : ",LEZN
exit if (LEN >= 1) and (LEN < MAX_LEN)
print "VALUE OUT OF RANGE, RANGE = l . .";MAX__LEN;", RE'I'RY"
end loop

l*************'k***i****~k******
I Retrieve/Generate field data for frame(s) J.’ 5
I***t**-k**************i~k**************

i

. I 1 I I E X A M P L E I 1 I I I I I I I I I I I I I I I I I I I 1 I 1 I I I I I I I 1

One channel of data is generated from dsp subroutines: tone and mu_law

print
input "Enter the tone frequency?iz) to be generated : ",Frequency
I

i use rms value to produce full range
I

VRMS
Phase
SampFrequency = 8000
call Tone(VRMS, Frequency, Phase, SampFrequency, LEN, CH(*))
call MU_law(LEN, CH(*))
I

II II
8159 / sqr(2) 1 for MU__LAW
o

I be sure to merge TONE and MU__LAW at end of test
I

call Generate_lch("chlaffile", LEN, CH(*))

print
print "FRAME GENERATOR SUCCESSFV‘ULLY COMPLETED"

end I main program

I!!! ..

1111
III! PROGRAM SUBROUTIN'ES
I I I I

l I l I
. a - ¢ o - - . a - - I - - a ~ . ~ - - . - . - - u - . a ~ . - - o - - - - - - - - . - - . - . . - - - - . - - - - ~ - - - - - - - - . .

sub Generate__lch(FileName$, Length, Channel(*))

1

This routine will open the output file, generate the framed field
data, output the framed data to the output file, and close the output
file. Any fatal error encountered will be reported and program
execution will stop. '

This subroutine reproduces a single time-slot of bit data for a pcm '"
data stream. Each time-slot consists of eight boclean values WEB-0E8.
rfhe other bits required for a complete pcm frame are to be provided by the

user . ‘Liliise ' rrame stuffing’ bits may be provided by VCL vectors in'the
PCP format file (used by the PCP Generator) , or by the users VCL digital
program.

4,967,412
13 14

For example, if length = 4 and the Channel array is filled with the
following values:

Channel(0) = 128
Channel(l) = 255
Channel(2) = 0
Channel(3) = 255 “r

The output file will be as follows:

10000000; A

11111111;
00000000;
11111111,‘ ?

GLOBAL OUTPUTS:

"" ----------- -- no global outputs are exported.

GLOBAL INPUTS:

"" ----------- —- no global inputs are imported.

SUBROUTINE PARAMETERS:

FileName$ —————— - containing file pathname of the output
1 e.

Length --------- —- The number of frames to be generated.

Range = 1. .MAX___I..EI\T

Channel(*) ————— —- Array id parameter containing 8 bit (0. .255)
single pcm“ channel of data. This array must be
dimensioned as a single(l) dimension array
of 0 to MAX__LEN elements prior to calling this
subroutine.

dim Buffer$[80]

call OpenFile(FileName$, @FilePtr)

for Frame = O to Length-l
Buffer$=""
call GetBitsMSB(Channel (Frame) , 8, Buffer$)
I

l The last frame of data ends with two ";" characters
I

if Frame = (length-1) then
output @Fi1ePtr;Buffer$,-"; ;"

else
output @FilePtr;Buffer$;"~;,"/"

end if _ " "

next Frame '
I

! close the output file
I

assign @FilePtnEi-"ror to A.

subend

sub GetBitsMSB(Value, Number__of_bits, Buffer$)

This routine retrieves the boolean representation of an integer
parameter and appends it to a string parameter. The boolean values
are stripped from MSB (most significant bit) to 1.58 (least
significant bit) . Example: decimal value 23 =."0OOlO1l1", 1f
eight(8) bits are requested in the <Number_of_bits> parameter.

Note: If the <Value> parameter is greater than the 2's complement
range for the <Number_of__bits> parameter requested, the extra bits
withing the <Value> parameter are ignored and not put into the <Buffer$>
string parameter. - '

4,967,412
15 16

GLOBAL OUTPUTS:

global outputs are exported.

GIDBAL INPUTS:

n n ----------- --=- no global inputs are imported.

SUBROUTINE PARAMETERS:

Value ---------- -- Integer parameter. Range = -32768. .32767

Number__of_bits --- Size of the boolean representation of the
integer parameter. Range = l. .16

Buffer$ ———————— —- String parameter to which the boolean representation
is appended.

if (Number__of_bits < 1) or (Number_of_bits > 16) then
call FGen_Error("GetBitsMSB: Number__of_bits<1 or Number_of_bits>l6")

end if '

-

if (Value < -32768) or (Value > 32767) then __
call FGen_Error("GetBitsMSB: Value<—32768 or Value>32767")

end if '

for I = (Number_of bits-l) to 0 step -1
Buffer-S = Buffer§ & val$(bit(Value, I))

next I

subend

sub GetBitsLSB(Value, Number_'of_bits, Buffer$)

This routine retrieves the boolean representation of an integer I
parameter and appends it ‘to a string parameter. The boolean values
are stripped from 158 (least significant bit) to MSB (most
significant bit) . Exa...p1e: decimal value 23 = "11101000" , if
eight(8) bits are requested in the <Number_of_bits> parameter.

Note: If the <Value> parameter is greater than the 2's complement
range for the <Number__of_bits> parameter requested, the extra bits
withing the <Value> parameter are ignored and not put into the <Buffer$>
string parameter.

GLOBAL OUTPUTS:

----------- -- no global outputs are exported.

GLDBAL INPUTS:

----------- -- no global inputs are imported.

SUBROUTINE PARAMETERS:

-32768. .32767 Value —————————— —- Integer parameter. Range =

Number_of__bits --- Size of the boolean representation of the
integer parameter. Range = 1. .16

Buffer$ ———————— -- String parameter to which the boolean representation
is appended.

4,967,412
17 18

if (Number__of_bits < l) or (Number_of_bits > 16) then
call FGen_Error("GetBitsLSB: Number__of_bits<1 or Number_of_bits>l6")

I end if

if (Value < —32768) or (Value > 32767) then
call FGen_Error("GetBitsLSB: Va1ue<-32768 or Value>32767")

end if

for I = O to (Number_of_bits-1)
BufferS = BufferS & val$(bit(Value, I))

next I

subend

sub ReadArray(FileNameS, Iength, Array(*))

g This routine reads an ASCII text file of integer data (one integer
per line) into an array. Any errors found during file access are
reported and the program execution is stopped. If the file does not
contain Length number of integers, an error occurs and program execution
is stopped.

GLOBAL OUTPUTS :

"" --?- ——————— -- no glo’Eakoutputs are exported.

GLOBAL INPUTS:

"" ----------- -— no global inputs are i;npc_,;2;_._d,

S LYBROUI IN E PARH-ZE'I'ERS : “

FileNameS -------- -— A string the containing file pathnamebf the file
to be read into the Array parameter.

Length ----------- —- The number of integers to be read into the Array
parameter. ' Range = 1. .32766 -

Array ———————————— —— Array id. The integer values read from the file
are returned in this parameter. The array must
be dimensioned prior to calling this subroutine.
The array must be a single(l) dimensioned array.
The array indices are assumed to start at zero(0)
and stop at Length-l or greater than Length-1.

NO_ERROR = 0
EOF = 101007

FILE_NOT_FOUND = 100009
WRONG__FILE_TYPE = 101015
FILE__NOT_ASSIGNED = 136 ~

FILE_EXISTS = 275

assign @File, Error to FileName$
if Error <> N0_ERROR then
call F‘Gen_Error("ReadArray: FILE ERROR "'&FileName$&"' "&errm$(Error))

end if

for Index = O to length-l
enter @File, ,Error; Array(Index)
if Error <> N0_ERROR then

if Error = EOF then
call FGen_Error("ReadArray: MORE DATA EXPECTED FROM ’"&Fi1eName$&"’")

else
call FGen__Error("ReadArray: FILE ERROR '"&FileName$&"’ "&errm$(Error))

end if
end if

next Index ,

