
FactoryLink ECS

Programmer’s Access Kit
(PAK)

FactoryLink ECS 6.0 / March / 1996 PK

• •

©Copyright 1984 - 1996 United States Data Corporation. All rights reserved.
 - NOTICE -
The information contained herein is confidential information of United States Data Corporation, a Delaware corporation, and is
protected by United States copyright and trade secret law and international treaties. This document may refer to United
States Data Corporation as “USDATA.”
Information in this document is subject to change without notice and does not represent a commitment on the part of United
States Data Corporation (“USDATA”). Although the software programs described in this document (the “Software Programs”)
are intended to operate substantially in accordance with the descriptions herein, USDATA does not represent or warrant that
(a) the Software Programs will operate in any way other than in accordance with the most current operating instructions
available from USDATA, (b) the functions performed by the Software Programs will meet the user's requirements or will
operate in the combinations that may be selected for use by the user or any third person, (c) the operation of the Software
Programs will be error free in all circumstances, (d) any defect in a Software Program that is not material with respect to the
functionality thereof as set forth herein will be corrected, (e) the operation of a Software Program will not be interrupted for
short periods of time by reason of a defect therein or by reason of fault on the part of USDATA, or (f) the Software Programs
will achieve the results desired by the user or any third person.

U.S. GOVERNMENT RESTRICTED RIGHTS. The Software is provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the government of the United States is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 or in subparagraphs (c)(1) and (2) of the
Commercial Computer Software—Restricted Rights clause at 48 CFR 52.227-19, as applicable. Contractor/Manufacturer is
United States Data Corporation, 2435 North Central Expressway, Suite 100, Richardson, TX 75080-2722. To the extent
Customer transfers Software to any federal, state or local government agency, Customer shall take all acts necessary to
protect the rights of USDATA in Software, including without limitation all acts described in the regulations referenced above.

The Software Programs are furnished under a software license or other software agreement and may be used or copied only
in accordance with the terms of the applicable agreement. It is against the law to copy the software on any medium except as
specifically allowed in the applicable agreement. No part of this manual may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written
permission of USDATA.

Trademarks. USDATA, FactoryLink and FactoryLink ECS are registered trademarks of United States Data Corporation.
Open Software Bus is a registered trademark licensed to United States Data Corporation.

All other brand or product names are trademarks or registered trademarks of their respective holders.

Table of Contents

PAK User Manual

• • • •

PAK User Manual in this bookPAK User Manual in the Programmer’s Access
Kit
Preface . 11

About this Manual . 11
How this Manual is Organized . 11
How to Use this Manual . 11

Organization of this Manual . 11
Important Terms . 14
Referencing the Operating System Notes . 15

1 Introduction to the Programmer's Access Kit (PAK) 17

Requirements . 18
Required Hardware . 18
Required Software . 18

Installing the Programmer's Access Kit . 19
Operating System Notes . 20

For OS/2 Users . 20
For UNIX Users . 20
For Windows/NT Users . 20

2 FactoryLink Architecture . 21

FactoryLink Operation . 21
Components of FactoryLink . 23

FactoryLink Domain (Multi-operator) Coding Considerations 39
Domains: User and Shared (Per-User Shared Memory Regions) 39
Application Example . 43

Configuring FactoryLink . 45
How FactoryLink Tasks Transfer Data . 46
How FactoryLink Architecture Affects New Task Development 48

FactoryLink Triggers . 52
FactoryLink Files and Directories . 53

FactoryLink Environment Variables . 53
Use of Environment Variables in FactoryLink Path Names 54
FactoryLink ECS / Programmer’s Access Kit / 3

 4

•
•
•
•

PAK User Manual
Path Name Format . 56
FactoryLink Directory Organization . 62

Operating System Notes . 63
Example 6. Get File Information . 72
FactoryLink Directory Organization . 73

3 Constructing a Task . 77

Task Design Guidelines . 77
Setting up the Configuration Environment . 78
Converting the Database Tables to CTs . 80
Writing the Task's Program . 81
Overview . 82

Operating System Notes . 84

4 Setting up the Configuration Environment 87

About this Chapter . 87
Design the Database Table(s) . 89

TYPE . 90
OBJECT . 90
XREF . 90
Task-Specific . 90

Create the Attribute Catalog(s) . 92
AC File Format . 92
Sample AC File . 102
Executing an Editor Program from the Configuration Manager 106

Create the KEY Files . 108
Construction of a Key File . 108
Sample KEY File . 108

Test the Configuration Environment . 109
Informing FactoryLink about the Task . 109
Testing the Configuration Environment . 110

Operating System Notes . 112

5 Converting Database Tables to CTs . 115

Creating the CTG Conversion Scripts . 116
Conversion Overview . 116
/ FactoryLink ECS / Programmer’s Access Kit

Programmer’s Access Kit
Conversion Script Format . 117
Sample Conversion Script . 124
Creating FactoryLink Configuration Tables (CTs) 124
Adding CT Information to the CM System Table 126

Testing the Conversion Process. . 126
Operating System Notes . 127

6 Using the Run-Time Manager . 129

Interaction With Other Tasks . 130
Design Conventions . 131
Run-Time Requirements . 132

Initialization . 132
Kernel check (Conditional) . 133
Error Handling . 133
Termination Notification . 133
Orderly Shutdown . 134
Domain Selection . 134

Sample Task Program Skeleton . 135

7 FactoryLink Kernel and Library . 147

FactoryLink Kernel . 148
FactoryLink Library . 149
Kernel Multi-User Environment (MUE) Extensions 150

Domains: User and Shared (Per-User Shared Memory Regions) 150
Conventions . 152
Return Reference List . 153

System Shutdown . 155
Kernel and Library Services . 156

Process Management . 156
Database Access . 159
Tag List Registration and Notification . 164
Mailbox . 165
Memory Management . 166
Signals . 167
Environment Access . 169
CT Access . 169
FactoryLink ECS / Programmer’s Access Kit / 5

 6

•
•
•
•

PAK User Manual
Path Manipulation . 171
Format Version Number . 171
Message Translation . 171
Sleep . 175
Miscellaneous . 176

Object CT Overview . 178
Overview of Object CT Services . 178
Overview of the Object CT API . 178

Normalized Tag Reference Overview . 181

8 FactoryLink API Reference Guide . 183

ct_close . 184
ct_close_obj . 185
ct_create . 186
ct_find_index . 187
ct_find_obj . 188
ct_get_hdrlen . 189
ct_get_name . 190
ct_get_ncts . 191
ct_get_nrecs . 192
ct_get_reclen . 193
ct_get_type . 194
ct_open . 195
ct_read_hdr . 196
ct_read_index . 197
ct_read_rec . 198
ct_read_recs . 199
ct_update . 200
ct_write_hdr . 201
ct_write_index . 202
ct_write_rec . 203
ct_write_recs . 204
fl_access_mem . 205
fl_alloc_mem . 207
fl_change_read . 208
fl_change_read_tag_list . 210
fl_change_wait . 212
/ FactoryLink ECS / Programmer’s Access Kit

P
A

K
 U

ser M
anual
fl_change_wait_tag_list . 214
fl_clear_chng . 216
fl_clear_wait . 217
fl_count_mbx . 218
fl_create_rtdb . 220
fl_dbfmtt . 222
fl_delete_rtdb . 224
fl_errno . 225
fl_exit_app . 226
fl_forced_write . 227
fl_free_mem . 229
fl_get_app_dir . 230
fl_get_app_globals . 231
fl_get_cmd_line . 232
fl_get_copyrt . 233
fl_get_ctrl_tag . 234
fl_get_env . 235
fl_get_msg_tag . 236
fl_get_nprocs . 237
fl_get_pgm_dir . 238
fl_get_stat_tag . 239
fl_get_tag_info . 241
fl_get_tag_list . 243
fl_get_tick . 245
fl_get_title . 246
fl_get_version . 247
fl_getvar . 248
fl_global_tag . 249
fl_hold_sig . 251
fl_id_to_name . 252
fl_init . 253
fl_init_app . 254
fl_lock . 256
fl_name_to_id . 257
fl_path_access . 258
fl_path_add . 259
fl_path_add_dir . 260
FactoryLink ECS / Programmer’s Access Kit / 7

 8 /

•
•
•
•

fl_path_alloc . 261
fl_path_closedir . 263
fl_path_create . 264
fl_path_cwd . 265
fl_path_date . 266
fl_path_get_size . 267
fl_path_get_type . 268
fl_path_info . 269
fl_path_mkdir . 270
fl_path_norm . 272
fl_path_opendir . 273
fl_path_readdir . 274
fl_path_remove . 276
fl_path_rmdir . 277
fl_path_set_dir . 278
fl_path_set_device . 279
fl_path_set_extension . 280
fl_path_set_file . 281
fl_path_set_node . 282
fl_path_set_pattern . 283
fl_path_sys . 284
fl_path_time . 286
fl_proc_exit . 287
fl_proc_init . 288
fl_proc_init_app . 290
fl_query_mbx . 292
fl_read . 294
fl_read_mbx . 296
fl_read_app_mbx . 298
fl_recv_sig . 300
fl_reset_app_mem . 301
fl_send_sig . 302
fl_set_chng . 304
fl_set_owner_mbx . 305
fl_set_tag_list . 306
fl_set_term_flag . 307
fl_set_wait . 308
 FactoryLink ECS / Programmer’s Access Kit

P
A

K
 U

ser M
anual
fl_sleep . 309
fl_test_term_flag . 310
fl_unlock . 311
fl_wait . 312
fl_wakeup . 313
fl_wakeup_proc . 315
fl_write . 316
fl_write_mbx . 318
fl_write_app_mbx . 320
fl_xlate . 322
fl_xlate_init . 324
fl_xlate_load . 326
fl_xlate_get_tree . 329
fl_xlate_set_progpath . 331
fl_xlate_set_tree . 332
make_full_path . 334
spool . 336
 tsprintf . 341
Operating System Notes . 342

9 Normalized Tag References . 347

Normalized Tag Reference Overview . 348
Overview of FLNTAG Services . 349
Overview of the FLNTAG API . 349

Normalized Tag Reference API Guide . 352
flntag_calc_base . 353
flntag_calc_tag . 355
flntag_create . 357
flntag_destroy . 358
flntag_find_def . 359
flntag_find_tag . 360
flntag_gen_objname . 362
flntag_gen_ref . 362
flntag_gen_str . 362
flntag_get_dimen . 364
flntag_get_member . 364
flntag_get_name1 . 364
FactoryLink ECS / Programmer’s Access Kit / 9

 10

•
•
•
•

flntag_get_node . 364
flntag_parse_brkt4dims . 365
flntag_parse_comma4dims . 365
flntag_parse_ref . 367
flntag_set_dimen . 368
flntag_set_member . 368
flntag_set_name . 368
flntag_set_node . 368

10 Object Definitions . 371

Object CT Overview . 372
Overview of Object CT Services . 372
Overview of the Object CT API . 372

Object CT API Reference Guide . 375
-ct_close_obj . 376
ct_find_obj . 377
ct_nrecs_obj . 378
ct_open_obj . 379
ct_read_objs . 380
flobjrec_get_chgbits . 381
flobjrec_get_descr . 381
flobjrec_get_dimen . 381
flobjrec_get_domain . 381
flobjrec_get_perwhen . 381
flobjrec_get_tag . 381
flobjrec_get_type . 381
 / FactoryLink ECS / Programmer’s Access Kit

• • • •

Preface
ABOUT THIS MANUAL

The Programmer's Access Kit User Manual covers FactoryLink IV version 4.1.3
and the following operating systems: OS/2, UNIX, VMS and Windows.

Use this manual as a guide when performing the following functions:
• Installing the Programmer's Access Kit
• Creating a FactoryLink-compatible task using the Programmer's Access Kit

HOW THIS MANUAL IS ORGANIZED

The Programmer's Access Kit User Manual contains generic information that
applies to the Programmer's Access Kit (PAK), regardless of the operating system.
Each chapter in this manual contains an operating system specific section at the
end of the chapter. This section contains information about the PAK that is
unique to a each operating system.

HOW TO USE THIS MANUAL

You are not required to read this manual from cover to cover before attempting to
use the PAK. However, Chapters 3-6 contain information relevant to task design
that should be covered prior to program design.

Organization of this Manual

This manual presents the following topics:
• Chapter 1, “Introduction to the Programmer's Access Kit (PAK)

• Required Hardware
• Required Software
• Installing the Programmer's Access Kit
FactoryLink ECS / Programmer’s Access Kit / 11

PREFACE
How to Use this Manual

 12

•
•
•
•

• Chapter 2, “FactoryLink Architecture
• FactoryLink Operation
• FactoryLink Triggers
• FactoryLink Multi-User Environment (MUE)

Design and Coding Considerations
• FactoryLink Files and Directories (including Normalized

Path Names)
• Chapter 3, “Constructing a Task

• Guidelines for Task Design
• Task Construction Procedure

• Chapter 4, “Setting up the Configuration Environment
Details Phase 1 (Steps 1-4) of the task construction procedure outlined in
Chapter 3:
• Step 1. Design the Database Table(s).
• Step 2. Create the Attribute Catalog(s).
• Step 3. Create the KEY Files.
• Step 4. Test the Configuration Environment.

• Chapter 5, “Converting Database Tables to CTs
Details Phase 2 (Steps 5-6) of the task construction procedure outlined in
Chapter 3:
• Step 5. Create the CTG Conversion Scripts.
• Step 6. Test the Conversion Process

• Chapter 6, “Using the Run-Time Manager
• Interaction With Other Tasks
• Design Conventions
• Run-Time Requirements
• Examples of Correct Coding Techniques

• Chapter 7, “FactoryLink Kernel and Library
• FactoryLink Kernel
• FactoryLink Library
• Calling and Return Conventions
• System Shutdown
• Multi-User (Domain) Considerations
• Kernel and Library Services
 / FactoryLink ECS / Programmer’s Access Kit

PREFACE
How to Use this Manual
• Chapter 8, “FactoryLink API Reference Guide
Lists and describes each FactoryLink API function, and provides the following
information about each function:
• Call format: Syntax to use for this function
• Arguments: List containing the following information about each

argument:

Type

Name

Description

Method used to pass argument (by reference or by value)
• Returns: Possible values returned by the function. Where applicable, the

value is listed as the symbolic representation, known as a “keyword,” of the
error number returned.

• Additional information: Additional information about the function
• Index

• Notational Conventions

The following paragraphs describe the text and function representation
conventions used in this manual.

Notational Conventions in Text

This manual uses the following conventions to distinguish elements of text:

Represent ation of Functions

When a FactoryLink function is referred to in the text, it is referred to by its
symbolic representation containing all capital letters and no parentheses. For
Example, the FactoryLink function that locks the database is referred to as
FL_LOCK.

Convention Use

bold Value of an element, valid entries for a field

italic Name of a manual

monospace Sample command lines and program code and examples

[] (Brackets) Indication of optional command-line or file entry
FactoryLink ECS / Programmer’s Access Kit / 13

PREFACE
How to Use this Manual

 14

•
•
•
•

Important Terms

Before you proceed, an important distinction must be made between the following
terms used in this manual:
• Programmer — refers to the person who is developing the new task, including

task design and writing the task's program This manual also refers to the
programmer as “you”.

• Developer (or Application Developer) — refers to the person who is configuring
an application.

• Operator — refers to the person who will operate the finished application.
• User — has a special meaning in the multi-user environment. See discussion

of domains and the concept of the USER/SHARED domains.
• Database tables — Configuration database tables that store information

about the elements. You must design these tables as part of task development.
When the operator selects a task from the Configuration Manager Main Menu
and enters data in the task's panels, the database tables store this data.

• Configuration tables (CT) — Binary files produced by the CTGEN utility at
run time containing data extracted from the database tables.

For term definitions, refer to the Glossary in FactoryLink Fundamentals.
 / FactoryLink ECS / Programmer’s Access Kit

PREFACE
How to Use this Manual
Referencing the Operating System Notes

When operating system-specific information is relevent to a topic, small icons
representing the specific operating system will appear in the margins next to the
relevent text. The following list describes the use of these icons.

Represents Windows-specific information.

Represents OS/2-specific information.

Represents Unix-specific information.

If one or more of these icons appear in the margin of a topic, refer to the end of the
chapter under “Operating System Notes” for the appropriate operating
system-specific information.
FactoryLink ECS / Programmer’s Access Kit / 15

PREFACE
How to Use this Manual

 16

•
•
•
•

 / FactoryLink ECS / Programmer’s Access Kit

1

I

• • • •Chapter 1

Introduction to the
Programmer's
Access Kit (PAK)
ntroduction
The FactoryLink Programmer's Access Kit (PAK) is a collection of optional
FactoryLink software tools and related documentation for use in the design and
construction of FactoryLink-compatible programs.

The PAK allows you to take full advantage of FactoryLink's open architecture.
This manual describes the C-language calling conventions. However, you can
develop programs using any other language that supports these calling
conventions. Customer-written programs have full access to FactoryLink's
real-time database and operate in conjunction with other FactoryLink programs.

Use the FactoryLink Programmer's Access Kit to:
• Create new FactoryLink tasks that perform functions not performed by

standard FactoryLink tasks
• Develop communications interfaces to computers or devices for which standard

interface tasks are not already developed
• Develop a program to replace a standard task to meet current application needs

Unlike any other open architecture system, FactoryLink fully integrates a
customer-written task into the FactoryLink environment. The FactoryLink PAK
allows customer-written tasks to become an integral part of FactoryLink.
FactoryLink's Configuration Manager fully supports the new task with full-screen
editing, context-sensitive help, and documentation utilities.

This section contains information about the following topics:
• Required Hardware
• Required Software
• Installing the Programmer's Access Kit
FactoryLink ECS / Programmer’s Access Kit / 17

INTRODUCTION TO THE PROGRAMMER'S ACCESS KIT (PAK)
Requirements

 18

•
•
•
•

REQUIREMENTS

Required Hardware

The PAK is a FactoryLink option used in conjunction with a FactoryLink
Development System. The hardware requirements specified in the FactoryLink
Product Matrix also apply to the Programmer's Access Kit option.

Required Soft ware

The PAK requires specific versions of software tools not included with the PAK.

Refer to the FactoryLink Product Matrix for a list of FactoryLink software
requirement.

Refer to “Operating System Notes” on page 20 for a list of language-specific
compiler requirements.
 / FactoryLink ECS / Programmer’s Access Kit

INTRODUCTION TO THE PROGRAMMER'S ACCESS KIT (PAK)
Installing the Programmer's Access Kit

1

Introduction
INSTALLING THE PROGRAMMER'S ACCESS KIT

Perform a selective installation to install the Programmer’s Access Kit. Refer to
the FactoryLink Installation Guide for more information about performing a
selective installation. Follow the installation procedure. Install the Programmer's
Access Kit software as an option.
FactoryLink ECS / Programmer’s Access Kit / 19

INTRODUCTION TO THE PROGRAMMER'S ACCESS KIT (PAK)
Operating System Notes

 20

•
•
•
•

OPERATING SYSTEM NOTES

For OS/2 Users

Required Software (page 18)

For C-language programing, use one of the folowing compilers:
• IBM C/2 Compiler version 1.1
• Microsoft C Compiler version 5.10 or 6.0
• Other versions of C compilers that operate under and generate code for OS/2

and that can link to object libraries and Dynamic Link Libraries (DLLs) created
using one of the compilers listed above

For updated compiler requirements, please contact Customer Support.

For UNIX Users

Required Software (page 18)

For C-language programing, use an ANSI C-compliant compiler.

For Windows /NT Users

Required Software (page 18)

For C-language programing, use Borland C for Windows, version 3.0 or 3.1.

For updated compiler requirements, please contact Customer Support.
 / FactoryLink ECS / Programmer’s Access Kit

• • • •Chapter 2

FactoryLink
Architecture
2

F
actoryLink

A
rchitecture
You must know about the FactoryLink architecture to construct a
FactoryLink-compatible task.

This chapter contains information about the following topics:
• FactoryLink Operation
• FactoryLink Domain (Multi-operator) Coding Considerations
• Configuring FactoryLink
• FactoryLink Triggers
• FactoryLink Files and Directories
• Operating System Notes

FACTORYL INK OPERATION

FactoryLink allows developers to create custom applications by selecting,
configuring, and linking different programs so all these programs can freely
exchange information in real time. All programs share the FactoryLink global
real-time database which uses the “Open Software Bus®” architecture. This
real-time database is an array of information composed of individual data items
(elements) stored in high-speed memory at run time. Each element contains
either a numeric value, a text message, or a “mailbox” entry. The developer
specifies the data type of each element and identifies each element by assigning it
a unique element name such as press1, temp2, valve1, time8am, action1.

FactoryLink is a modular system. It is structured as a set of individual programs,
or tasks that perform separate functions. For example, one task handles all
mathematical computations and logical operations. Other tasks handle timing
operations or alarms display. These tasks communicate and share data with one
another through the real-time database managed by the FactoryLink kernel and
run-time system.

FactoryLink also includes tasks such as
• operator interfaces (implemented as animated color graphics displays)
• historical trending (charting and graphing) functions
FactoryLink ECS / Programmer’s Access Kit / 21

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 22

•
•
•
•

• reporting and logging functions
• communications with programmable controllers, and networks

The developer can choose up to 31 different tasks from the FactoryLink library to
run concurrently, communicating with each other through the real-time database.

FactoryLink tasks communicate through a common database rather than directly
with each other. This system provides the following advantages over systems
relying on real-time inter-process communications (IPC) through passing buffers
or sharing files.

Tasks maintain their independence and inherent compatibility with one another.

Data formats for interfaces will not change unpredictably as the maintenance
programmer changes.

Tasks can hand off the inter-process communication to the database function
which acts as an intermediary, meaning less time is spent waiting for another
task to acknowledge error-free receipt of data.

Functions, conditions, or events can be related through the use of a common
element since each task has access to the same global elements.

FactoryLink applications can be designed for shared use or private use. This
flexibility is accomplished through the use of domains. A domain is a public
(shared) or private (user) data area reserved in the real-time database. This
database design feature allows the application developer to define which portions
of the database are available. The database may be used privately or shared
among all user in various parts of the application at run time. During application
development, the developer associates specific tasks, tables, and elements with
particular shared (public) or user (private) domains.

This limit is only on FactoryLink tasks themselves. Other operating
system-specific programs that do not directly access the real-time
database can also coexist on the system. The number of
non-FactoryLink programs that can operate concurrently with the 31
(maximum) FactoryLink programs is limited only by the amount of
available memory and similar operating system constraints. Consult
the system manager for information about how to calculate available
memory on the system in use.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
Components of FactoryLink

FactoryLink consists of the following components:
• FactoryLink kernel
• FactoryLink real-time database
• FactoryLink tasks
• FactoryLink Configuration Manager
• FactoryLink Run-Time Manager
• FactoryLink API
• Recommended optional programs (operating system-specific)

The following sections discuss the relationships among these components and the
way the components function in FactoryLink.

FactoryLink Kernel

The FactoryLink kernel is a software module that creates the real-time database
when the operator starts the FactoryLink Run-Time system. The kernel creates
the database by allocating blocks of memory for elements of each data type. The
size of the real-time database is determined by the number of elements used in
the application. The kernel also contains a set of callable software services
providing FactoryLink tasks with a common utility library. This library allows for
uniform and controlled access to the database. These services provided in the
utility library include:
• access to and maintenance of the real-time database
• process management
• translation tree management
• directory/path translation and normalization
• miscellaneous utilities

FactoryLink Real-Time D atabase

The real-time database, that exists only at run time is a memory-resident array of
information that acts as an in-memory storage device and interprocess
communication mechanism for the tasks. All FactoryLink tasks communicate
through the real-time database, sharing the information in the database by
reading from or writing to elements.

Elements in the real-time database consist of any data computed or collected by a
FactoryLink task as well as operator-entered values. For example, the Math and
FactoryLink ECS / Programmer’s Access Kit / 23

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 24

•
•
•
•

Logic task stores the results of mathematical calculations in the real-time
database. A communications interface task stores data collected from a PLC. The
Event and Interval Timer task stores indications that various timed events have
been scheduled or have occurred and records when defined intervals have elapsed.

When planning to create disk files and history data storage, keep in mind the
transient nature of real-time database elements. Because the real-time database
is memory-resident, it exists only when the Run-Time system is operating.
Historical information can be stored only if it is written to disk before the
Run-Time system is shut down.

Structure of the Real-Time Data base

The real-time database is made up of arrays and pointers. There are six arrays of
elements, one array for each supported data type. Whenever the developer defines
an element, the system prompts the developer to identify the data type of the
element by choosing one of FactoryLink’s predefined data types. The following
chart shows the storage capacities, ranges, and accuracies of each data type:

Table 2-1

Data Type Value Storage in
User Area

Storage in
Kernel Area

Value Range
and Accuracy

Digital (Boolean) 1 bit * 2 bytes 16 bytes 1 (ON) or 0 (OFF)

Analog (Short integer) 2 bytes * 2 bytes 18 bytes -32,768 to 32,767
(signed)

Long Analog (Long
integer)

4 bytes 4 bytes 20 bytes -231 to 231 -1

Floating-point (IEEE
standard/double
precision)

8 bytes 8 bytes 24 bytes +/-10-308 to +/-10308

Message (String) 0 to 65535
bytes

0 to 65535
bytes

24 bytes per
message +
storage of data

ASCII or arbitrary
binary data

* In HP 9000/800, IBM AIX RS6000, and OSF/1 implementations, digital and analog
elements occupy 4 bytes

each of user area storage and 20 bytes of kernel storage.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
Use the following formulas to determine memory requirements:
• For each element in the shared domain:

(N-8) + (8 x I)

where

N is the Storage in Kernel Area from the table above.

I is the number of instances (shared + user)

Example: A shared domain long analog element in a system with a maximum of
two user instances:

[20 bytes (from table) - 8] + {8 x [1(shared) + 2 (user)]} = 40
bytes

• For each element in the user domain:

(N x I)

Example: A user domain floating-point element in a system with a maximum of
two user instances:

24 bytes (from table) x [1 (shared) + 2(user)] = 72 bytes

The largest number of elements that can be created per array varies according to
operating system:
• In Windows NT and UNIX, an array can have up to 65,535 elements.
• In Windows and OS/2, an array can have as many elements as will fit into a

65,535 bytes memory segment. This number varies by data type. Use the
following formula or refer to the following table to determine the number of
elements an array can have:

Mailbox (Variable-length
data, organized as a queue)

0 to 65535
bytes

0 to 65535
bytes

24 bytes per mes-
sage + storage of
data

Arbitrary binary data

Table 2-1

Data Type Value Storage in
User Area

Storage in
Kernel Area

Value Range
and Accuracy

* In HP 9000/800, IBM AIX RS6000, and OSF/1 implementations, digital and analog
elements occupy 4 bytes

each of user area storage and 20 bytes of kernel storage.
FactoryLink ECS / Programmer’s Access Kit / 25

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 26

•
•
•
•

max. # of array elements = 65535/N

where

N is the Kernel Storage Area from the chart above.

The following table shows the maximum number of elements per array for each
data type:

The FactoryLink kernel uses data types and element numbers to access (read
from or write to) elements in the real-time database.

Structure of an element: An element consists of the following items:
• One or more bits containing the element's value
• Set of change-status bits (change-status word)
• Set of wait bits (wait-status word)

In each of these status words, FactoryLink assigns a single bit to each potential
client process. FactoryLink supports up to 31 separate processes per domain
instance. A process does not officially become a FactoryLink client process until it
registers with the kernel by initializing the FactoryLink calling process, but the
bits are still allocated for all 31 possible processes per domain instance.

Change-Status Bits

For each element, one change-status bit exists for each potential client process.
The read-call and write-call functions use the change-status bits within the
FactoryLink kernel to indicate changes in an element's value. The value of the
change-status bit can be either ON (equal to 1) or OFF (equal to 0).

Table 2-2

Data Type of Element Maximum # of Elements per Array

DIGITAL 4,095

ANALOG 3,640

LONG ANALOG 3,276

FLOATING-POINT 2,730

MESSAGE 2,730 + storage of data

MAILBOX 2,730 + storage of data
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
FactoryLink tasks write information to elements either through write calls or
forced-write calls. There is an important distinction between a write and a forced
write.

If a write call updates a value of an element, the writing task uses the write-call
function within the FactoryLink kernel. This function first determines whether
the element's value has changed. If the new value is different from the old value,
the write-call function sets each of the element's change-status bits to 1 (ON) and
stores the new value in the element. However, if the comparison determines that
the new value for the element is identical to the old value, nothing is changed.
This method can save processing time during repeated updates to the same
elements. Use write calls most of the time, except when the forced-write is
specifically needed. If a value of an element is updated by a forced-write call, the
writing task uses the forced-write call function within the kernel. This function
does not compare old and new values. Instead, the forced-write call function
assumes the element has changed and sets all of the element's change-status bits
to ON as it stores the new value, even if the updated value being assigned to the
element is the same as the old value. Forced writes are useful when you need to
trigger processes by changing the value of a trigger element but does not wish to
change the actual contents of the element, or when an element needs to be
processed a second time, even if its value has not changed.

FactoryLink tasks read information from elements through
• read calls
• change-read calls
• and change-wait calls

The read-call function always returns the current value of the element to the
calling process regardless of the value of the element's change-status bit assigned
to that process.

When a task makes a change-read-call, the reading task requests change-status
information about specific elements. If the function finds that the change-status
bit of an element has changed since it was last read, the function informs the
calling task that it has found a changed element and returns the value of the first
changed element found. If the change-status bits have not changed since the last
read for any of the specified elements, the change-read-call function returns a
code indicating this to the calling task. This method blocks the calling routine's
processing for less time than would checking or rereading all the elements.

When a task makes a change-wait call, the reading task uses the change-wait-call
function within the kernel to request change-status information about specific
elements. Once a task makes its call, the task then hibernates while waiting for
an element to change. When a task is asleep, it uses no CPU cycles. The Run-Time
FactoryLink ECS / Programmer’s Access Kit / 27

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 28

•
•
•
•

Manager monitors the real-time database and wakes any task whose specified
elements have changed and/or have had their change-status bits set to 1 (ON) by a
writing task since the last reading by the hibernating task. This call blocks the
calling process until at least one of the specified elements’ change-status bits are
toggled.

Once a task has read an element, the functions for all of the read tasks reset the
element change-status bit associated with that task to OFF by writing a 0 to the
task change-status bit in the element. As successive tasks read an element, then
toggle the change-status bits in the element, one by one, to OFF.

The kernel maintains the change-status bits in a manner transparent to the
tasks; however, developers can use these bits in the Math and Logic task. For
example, a developer can write a Math and Logic procedure that uses the “?”
operator to determine whether the value of an element has changed and then take
an action.

Change-status bits optimize system performance in the multi-tasking
environment. FactoryLink tasks use change-status bits as exception flags and the
kernel acts as an exception processor. Exception processor terminology is uniform
across all FactoryLink documentation and should not be confused with the
traditional use within the industry of the term exception processing to mean error
handling or CPU exception recovery. This allows FactoryLink tasks to perform
functions on an exception-only basis (only on those elements whose values have
changed) rather than continually reprocessing unchanged information. This
method results in a noticeable increase in software performance.

Wait bits: For each element, one wait bit exists for each possible client process.
When the client is currently waiting to read or to write the specified element, the
value of the bit is 1 (ON); otherwise, the value is 0 (OFF).

Element names

Each element has a unique, developer-defined, symbolic element name. The
developer assigns these element names, one for each element used in the
application during system configuration and the system stores them in a separate
predefined FactoryLink data file. Element names are linked at run time with
pointers to their associated elements, allowing their use by any FactoryLink task.
Because the FactoryLink real-time database is completely memory-resident and is
organized as arrays and pointers when loaded at run time, FactoryLink does not
have to keep track of element names stored as text strings. This, in part, accounts
for FactoryLink’s high processing speed.

This section supplements “Concepts” in the User Manual.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
Element name assignment: During configuration the developer creates and
assigns an element name to an element by entering its name, data type, and a
short (optional) description in a configuration table associated with a specific
FactoryLink task. If the element referenced by the developer does not exist, the
system automatically creates it. Once an element has been defined in this way,
other tasks refer to this element using its element name, reading or writing data
to or from the element at run time.

You can use a FactoryLink element name to define a single element or it may be
used to define an array (or matrix) of elements. If an element name specifies a
single element, the element name consists of an alphanumeric string that does not
contain brackets. This is known as a one-part element name. One-part element
names have the following format.

1-32 characters
First character: A-Z, a-z, @, $, or _
Remaining characters: A-Z, a-z, @, $, _,., or 0-9
No embedded spaces

A sample one-part element name is as follows:

set_temp

An element array is a group of related elements that the developer defines with
one two-part element name rather than with individual element names. Element
arrays prevent the developer from having to define large numbers of scalar
elements separately. Certain FactoryLink tasks, such as Math and Logic and
Database Browser, perform operations on an entire element array using only one
reference to the array rather than using separate references to each element in
the array.

Defining Element Arrays

Define element arrays in a configuration table by using a two-part element name.
A two-part element name consists of an alphanumeric string (the array name)
followed by one set of square brackets containing an integer (array index) for each
dimension of the array. Dimension refers to the capacity or size of the array. If an

Note: The (.) character can be used in version 4.1.3;
however, if it is used incorrectly, future software updates
may produce undesirable results. In future releases of
FactoryLink, the (.) character will be used to represent an
object that has its own members. Therefore, we recommend
that developers not use the (.) in element names in version
4.1.3.
FactoryLink ECS / Programmer’s Access Kit / 29

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 30

•
•
•
•

array has more than one dimension, it is called multi-dimensional, and each
element will have as many array indices as the array has dimensions. Think of
the Cartesian coordinate system in which both vertical and horizontal indices are
specified to pinpoint a position on the spatial grid. A two-dimensional array is an
array in which each of the elements is also an array, and its elements are
referenced by [row,column] pairs.

The array dimensions defined within the square brackets are the sizing factors
that determine the number of elements in an array. For example, if the developer
specifies that the size of a one-dimensional element array is 5, the real-time
database creates five separate elements that can be referenced individually or as
a group. Their array element names are the same, but they have different array
indices. (Refer to “Example 1: Defining a one-dimensional element name” on page
32.)

Two-part element names have the following format:

Part 1: 1-32 characters

First character: A-Z, a-z, @, $, or _
Remaining characters: A-Z, a-z, @, $, _,., or 0-9

Do not embed any spaces between the first and second parts of an element name.

Part 2: 3-16 characters

First character: [

Second character: 0-9

Remaining characters: any combination of brackets ([or]), and
single digits (0-9)

Last character:]

No embedded spaces

The following is a sample two-part element array name:

set_temp[2][1]

Note: The (.) character can be used in version 4.1.3;
however, if it is used incorrectly, future software updates
may produce undesirable results. In future releases of
FactoryLink, the (.) character will be used to represent an
object that has its own members. Therefore, we recommend
that developers not use the (.) in element names in version
4.1.3.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
Each set of square brackets represents a dimension or spatial characteristic of the
element array, such as length, width, or height. When a developer defines an
element array in a configuration panel, a dialog is displayed, showing default
sizes for each dimension that the developer can modify before pressing the Enter
key.

The size of a default dimension is always one larger than the integer specified in
the element name brackets because C arrays are indexed from zero to the
specified dimension. For example, if the element name is tagname[0][0], the
default dimension sizes appearing in the dialog box are 1,1. If the element name
is tagname[4][6][3], the default dimension sizes are 5,7,4.

This also means that arrays are indexed beginning at zero; for example,
tagname[0] is the first element of the element array tagname.

The number of array dimensions and the number of elements allowed in an array
are constrained in two ways:
• The element name field limits the size of the Array dimensions. Sixteen

characters are allowed in the dimension portion (second field) of an array
element name. For example, the array element name tempset[3][1][10][1][1]
contains 7 characters in the element name portion (first field) and 16 characters
(the maximum) in the dimension portion. The 16-character limit in the
dimension field allows the developer to specify up to five dimensions, assuming
most of the dimensions are single-digit.

• The largest number of elements that can be created per array is an important
limit. This number varies according to data type and operating system.

To determine the number of elements created in an array with a given set of
dimensions, use the following formula:

a x b x c

where

a is the size of the first dimension.

CAUTION

Once the dialog is displayed and you have pressed Enter, you
cannot change the number of or the size of the dimensions in an
array. If either value is incorrect, delete all elements defined in the
array before redefining the element array with different
dimensions.
FactoryLink ECS / Programmer’s Access Kit / 31

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 32

•
•
•
•

b is the size of the second dimension.

c is the size of the third dimension.

If an array contains more than three dimensions, use the same method to
multiply by the sizes of the additional dimensions.

Example 1: Defining a one-dimensional element name

If the developer defines a one-dimensional element name

tagarray[0]

then the default size of the dimension that is displayed in the dialog is

1

If the developer modifies the size of the dimension to

5

then five elements are created with the following element names:

tagarray[0]
tagarray[1]
tagarray[2]
tagarray[3]
tagarray[4]

To reference individual elements in the array, enter tagarray[index number] in
the panel for each element referenced.

Example 2: Defining a two-dimensional element name

If the developer defines a two-dimensional element name as:

msg_tag[1][1]

the default sizes of the two dimensions that appear in the dialog box are:

2,2

If the developer modifies the sizes of the dimensions to:

3,2

then six elements are created with the following element names:

msg_tag[0][0]

msg_tag[0][1]
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
msg_tag[1][0]

msg_tag[1][1]

msg_tag[2][0]

msg_tag[2][1]

To reference individual elements in this array, enter msg_tag[index1][index2] in
the panel for each element referenced.

Example 3: Using a one-dimensional array

Suppose that a FactoryLink developer needs to define message elements whose
values indicate the colors the cars on one conveyor belt are painted. If 300 cars are
painted on the conveyor belt and element arrays are not used, the developer must
define 300 elements individually. However, with element arrays the developer
defines only one two-part element name and specifies that the name contains 300
elements by entering 299 (creating elements 0 to 299) inside the brackets:

color[299]

Set the integer ([299]) sizing the element's single dimension to one less than the
desired number, since elements are numbered beginning at index zero (0). Here,
the desired number (299 + 1, or 300) of elements are created under one element
name, as illustrated below:

color[0]
color[1]
color[2]

.

.

.color[299]

Example 4: Using a two-di mensional array

Suppose that the developer wants to define elements whose values indicate the
colors that cars on three conveyor belts are painted. The developer can define a
two-dimensional element array by entering one element name, as illustrated
below:

paint[299][2]

FactoryLink ECS / Programmer’s Access Kit / 33

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 34

•
•
•
•

The integer ([299]) for the first dimension indicates one fewer than the number of
cars on each conveyor. The integer ([2]) for the second dimension indicates one
fewer than the number of conveyors. As a result, the correct number [(299 + 1) X
(2 + 1), or 900] of elements are created under one element name, as illustrated
below:

paint[0][0] paint[0][1] paint[0][2]

paint[1][0] paint[1][1] paint[1][2]

paint[2][0] paint[2][1] paint[2][2]

paint[3][0] paint[3][1] paint[3][2]

. . .

. . .

. . .

paint[299][0]paint[299][1] paint[299][2]

Example 5: Using a three-dimensional array

Suppose that the developer must define elements whose values indicate the colors
that cars on three conveyor belts and trucks on three conveyor belts are painted.
The developer can define a three-dimensional element array using one element
name, as illustrated:

car_truck[299][2][1]

The third dimension ([1]) indicates the type of automobile. In this example, 1,800
elements are created under one element name:

 (299 + 1) X (2 + 1) X (1 + 1) = 1800

The three-dimensional array may be thought of as a cube of indexed elements,
each element having an (x,y,z) coordinate reference (such as depth, vertical
position, and horizontal position).
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
Element Descriptions

A description includes optional information about the element defined or
referenced with an element name in a data entry panel. When the developer
assigns an element name to an element and choose Enter, the system prompts for
a description of that element as well as for a data type. Enter a description of no
more than 40 alphanumeric characters.

Once an element has been defined, we recommend developers not change the
original description. However, two methods for changing descriptions are
available:
• Open the Element Tag List (refer to Chapter 5, “Converting Database Tables to

CTs) and modify the description field.
• On the panel where the element has been defined, place the cursor in the

element name field and press <Ctrl-T>. The Element Tag Definition box is
displayed, allowing the developer to change information about this element,
including its description.

Element name storage

Element names are stored in the /{FLAPP} directory in the OBJECT database
table. Refer to “Design the Database Table(s)” on page 89 in Chapter 4, “Setting
up the Configuration Environment” for details about the OBJECT database table.

The information stored in these tables enables the Configuration Manager to
translate an element name into its associated element number and data type
which are stored in a binary configuration table file (CT file). At run time, the
typical FactoryLink application program reads its configuration table files (CT
files) and makes calls to read and/or write elements identified by the element
numbers and data types listed in the CT files.

Predefined elements

The FactoryLink starter application FLNEW comes with a set of predefined
elements for internal system use. These also serve as a convenience to application
developers who can choose from these predefined elements when configuring
tasks. Predefined elements in the USER domain contain a unique identifier of _U.
Predefined elements are listed alphabetically by element name in the current
FactoryLink Release Notes.

FactoryLink Tasks

FactoryLink tasks are programs that read from and write to the real-time
database, allowing for an exchange of information among the tasks. The developer
FactoryLink ECS / Programmer’s Access Kit / 35

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 36

•
•
•
•

uses the configuration tables to specify the elements read or written by each task.
A task is only aware of the elements that it is reading and writing, not of other
tasks and who owns the element. Therefore, the task does not know which task
wrote the data it is reading from the database nor can it know which task is
reading the data it is writing to the database.

Although some tasks may only read or write to elements, most tasks have both
read and write access to the elements. Remember that all elements are global so
any task can use any element as long as that element's data type matches the type
required for the indicated operation. It is possible for two tasks to use the same
element, sharing responsibility for updating the information stored in the
element.

It is important to plan and configure the system so read and write operations to
the real-time database are predictable. For instance, if two tasks are configured to
write simultaneously to the same element in the real-time database, it is
impossible to know which task is responsible for the data in the element. No
inherent mechanism for preventing this situation exists. Even though it is
sometimes desirable to have such a capability, most applications should be
designed so there is only one writer task and one or more reader tasks for any
particular element. Otherwise, the LOCK and UNLOCK functions may provide
some protection so tasks do not undo a desired update.

A FactoryLink application task can call functions to perform the following
operations involving the real-time database:
• Lock the database
• Unlock the database
• Read one or more database elements
• Write one or more database elements
• Determine whether a database element has been modified by another task

since it last read the element
• Sleep until any one member of a list of specific database elements is modified
• Access miscellaneous utilities

A variety of pre-written tasks are available for use. Refer to Chapter 1,
“Introduction to the Programmer's Access Kit (PAK)” for information about
available FactoryLink tasks.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Operation

2

F
actoryLink

A
rchitecture
Configuration Manager

The Configuration Manager is a development system program used to set up or
configure a FactoryLink application. It is used only for system configuration and
application development.

Developers create an application by specifying the elements created for each task
and the actions each task performs on these elements. In the Configuration
Manager, the developer enters data in one or more database tables for each task.
The Configuration Manager normally invokes a default Panel Editor that
provides a data entry panel for each of the database tables. However, the
Configuration Manager may invoke specialized editors, such as the Application
Editor, to handle non-textual configuration.

Although the Configuration Manager is not necessary to enter and maintain task
configuration information, it reduces the development time for an application.
More importantly, it means that developer-written tasks have the same
developmental look and feel as standard FactoryLink tasks.

Run-Time Manager

The Run-Time Manager is a program that monitors and controls other
FactoryLink tasks using the services of the real-time database. The Run-Time
Manager performs the following functions:
• Task startup
• Task shutdown
• Task status display

The Run-Time Manager has a Configuration Manager-maintained table known as
the System Configuration table. This table specifies startup criteria for each task
started by the Run-Time Manager. The Run-Time Manager communicates with
each task by sending commands to and reading status information from the
real-time database. Each task must monitor the command objects so the task
shuts down when instructed by the Run-Time Manager. Refer to “Design the
Database Table(s)” on page 89 in Chapter 4, “Setting up the Configuration
Environment” for additional information about the System Configuration table.

It is not essential that a FactoryLink task be started by the Run-Time Manager. A
FactoryLink custom-written application can be started automatically by the
Run-Time Manager maintaining a consistent operator interface with the built-in
FactoryLink tasks, or it can be designed to start manually. Should you choose to
start a task manually, it will be up to the operator to set the appropriate
environment variables. The following environment variables should always be set
before starting the task manually:
FactoryLink ECS / Programmer’s Access Kit / 37

FACTORYLINK ARCHITECTURE
FactoryLink Operation

 38

•
•
•
•

• {FLINK} base directory of FactoryLink installation
• {FLAPP} base directory of configuration files
• {FLLANG} language environment variable
• {FLNAME} invocation name
• {FLDOMAIN} domain name
• {FLUSER} user instance name

FactoryLink API (FLIB)

FactoryLink tasks use the FactoryLink API, a library of C functions, to read and
write data contained in the real-time database. The library also includes
additional support functions. Where possible, the API is consistent across
operating systems and platforms. This permits programs written in ANSI C to be
compiled without source modification on any of the FactoryLink platforms. The
developer can upgrade the hardware platform by physically porting the
application over to a different platform and recompiling it.

Recommended O ptional Programs

Refer to Chapter 3, “Constructing a Task” for a list of recommended options in a
FactoryLink system.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Domain (Multi-operator) Coding Considerations

2

F
actoryLink

A
rchitecture
FACTORYLINK DOMAIN (MULTI-OPERATOR) CODING CONSIDERATIONS

This section discusses coding considerations required to handle multi-operator
FactoryLink operation.

Domains: User and Shared (Per-User Shared Memory Regions)

Data areas or groups of elements may be grouped and marked with protection to
be opened in a particular way. Some elements may need to be the same value for
all users and change whenever any operator modifies them. Because of the nature
of the multi-operator environment (MUE), other elements may need to be
different dynamically for each operator. One operator or a set of users may need to
have private copies of particular data items in the same Real Time Database. If
data items are separated into public (shared simultaneously) and private
(duplicated at startup of the task, but dynamically modified as the application
progresses), the MUE can function optimally. The group of shared data items is
the same across instances of the application while each user has copies made of
the private data items. These general concepts in the FactoryLink system are
termed shared and user domains.

User domain

FactoryLink tasks use elements as a means of task control. These elements must
be duplicated for each operator. The subset of the real-time database duplicated
on a per-user basis is known as the User domain. In other words, each operator
can have data in the Real Time Database that only he can open. The instance of
the application will behave uniquely as he modifies these values during each
user’s instance.

The multi-user extensions allow duplicate-named element areas (tag areas) by
allocating an array of pointers to database segments for each user. This allows the
tag numbers (indices into the pointer array) themselves to remain the same for
each operator while allowing the tag number to reference a private data area for
each operator.

Shared Domain

FactoryLink tasks also use elements to monitor and control the state of the
manufacturing process. These database elements must be the same for all users.
The subset of the real-time database shared by all users is known as the SHARED
domain.
FactoryLink ECS / Programmer’s Access Kit / 39

FACTORYLINK ARCHITECTURE
FactoryLink Domain (Multi-operator) Coding Considerations

 40

•
•
•
•

To share specific elements among all authorized users, each user's pointers must
map database segments for shared elements to the same physical memory. When
a new operator area is created, the common element pointers are copied from a
master copy associated with the first user who logged on to the application.

Application Instances/ Identif ication

Since multiple copies of a FactoryLink task may be running concurrently, a task
must identify itself to the kernel. The task must specify the application, domain
and user instance as well as the task name.

Each application instance is uniquely specified by its invocation name. The
invocation name is used to locate the shared memory segment containing the
kernel's global data structure; it uniquely identifies an instance of the
FactoryLink real-time database. The invocation name is stored by the Run-Time
Manager in the environment variable {FLNAME}.

The domain an application instance is associated with is specified by the domain
name. The kernel uses the domain name to determine which real-time database
segments the task owns and which should be shared; the task uses the domain
name to determine which CT files should be processed. The domain name is stored
by the Run-Time Manager in the environment variable {FLDOMAIN}.

The user instance is specified by the user name. The user name determines which
instance of the domain-specific real-time database segments the task is to use.
The user name is stored by the Run-Time Manager in the environment variable
{FLUSER}.

When a FactoryLink application is started, the Run-Time Manager must be
supplied with the invocation name, domain name and user name. These may be
supplied on the command line at run time by an operator or automatically set
through environment variables. The three required environment variables are
created by the Run-Time Manager if they do not exist. The values passed to the
Run-Time Manager are stored in the environment of any sub-processes created by
the Run-Time Manager.

Application Design Considerations

FactoryLink supports the concept of shared and private data areas by the
separation of data access into domains. Every application has access to the shared
domain but only the set of users specifically designated by the developer may open
a particular USER domain. An application developer associates tasks, tables, and
elements with a specific domain. These domain associations determine how an
application functions at run time.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Domain (Multi-operator) Coding Considerations

2

F
actoryLink

A
rchitecture
Domains may be nested, resulting in a parent-child hierarchical domain set. Any
information or task existing in a shared domain (parent) is available to all
operators within a USER domain (child). A graphical representation of the
relation between these sets is shown on the following page.

The application developer chooses the shared domain to associate globally
accessible tasks, tables, and elements. An operator running an application in a
shared domain has access to the shared tasks and data only.

This global functionality can reduce configuration time since many items can be
defined in the shared area. In addition, changes made to data in the shared
domain by any task are instantly known to all tasks accessing the shared data.
FactoryLink ECS / Programmer’s Access Kit / 41

FACTORYLINK ARCHITECTURE
FactoryLink Domain (Multi-operator) Coding Considerations

 42

•
•
•
•

The USER domain specifies those tasks, tables, and elements that will be defined
as private to an individual operator. These elements are explicitly associated
together under a domain designation (analogous to a user name) and are marked
as the private property of that operator. As previously noted, domains are
structured hierarchically. This parent-child structure allows an operator running
an application copy (domain instance) in the User domain to open tasks and data
within that domain and its parent, the shared domain. The following illustration
is a graphical representation of this relationship.

During the installation process, default domain associations are made in the
System Configuration Table. These defaults determine which domain a task is
associated with at run time. Some tasks are associated with both shared and
operator domains. During application planning, the developer should review the
default domain associations to verify that they are compatible with current needs.
If an application has special requirements, these default associations may be
changed.

In addition to these run-time domain associations, the Configuration Manager has
a domain selection feature that must be set before the tasks are configured. If the
run-time domain associations do not match the configuration domain associations,
the application will not run as intended.

Refer to Chapter 5, “Converting Database Tables to CTs” for information about
changing a task's default domain association and selecting a domain for a task.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Domain (Multi-operator) Coding Considerations

2

F
actoryLink

A
rchitecture
Domain Associations

Domain designations are critically important. If an application is not associated
properly with defined domains, the application will not function properly at run
time. Before an application begins to run, the associated domain is defined as an
environment variable. This variable must match one of the previously defined
domain values. Two types of domain relationships are possible:
• An application may be designed to run as shared. All tasks, tables, and

database elements are associated with the shared domain. At run time, the
application runs as a shared entity with one set of tasks and elements used by
all users.

• An application may be designed to run as user. All operators have a private
copy (domain instance) of the application. This domain instance appears to the
operator as the only copy of the application running on the system; in other
words, the mechanics of this data sharing are transparent to the operator.
Tasks, tables, and elements may be associated with both the shared and
operator domains. At run time, all domain instances are identical when
generated; however, individual operator actions are independent, and the data
created is stored in a real-time database unique to each operator.

Refer to Chapter 7, “FactoryLink Kernel and Library” for further information and
a discussion of the FactoryLink kernel's handling of shared and user domain data.

Application Example

Numerous application configurations are possible. The following example
illustrates one way in which a FactoryLink application may be configured.

The environment settings shown in the following illustrations are used at run
time. Refer to “FactoryLink Environment Variables” on page 53 for additional
information on these settings.

Note: Currently, there may be only one instance of the
shared domain while there are usually several occurrences
of user domains.
FactoryLink ECS / Programmer’s Access Kit / 43

FACTORYLINK ARCHITECTURE
FactoryLink Domain (Multi-operator) Coding Considerations

 44

•
•
•
•

Single Application/Multiple Users

In the following example, an application developer has created an application that
allows multiple operators to run separate invocations of the same FactoryLink
application in which each operator has his own tasks and real-time database.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Configuring FactoryLink

2

F
actoryLink

A
rchitecture
CONFIGURING FACTORYL INK

Developers configure FactoryLink by filling in configuration tables associated
with different FactoryLink tasks. The developer defines one or more elements,
assigning each a symbolic element name and enters other static information
required to define the function of the element(s). For instance, in the Interval
Timer Information panel that follows, the developer defined a element with the
symbolic element name sec1 and a value specifying the length of time between
intervals. The element name serves to link the interval timer element to other
FactoryLink tasks by making the state of the timer element accessible by other
tasks.

This information allows FactoryLink tasks to read data from and write data to the
real-time database, providing developer-configurable communication links
between FactoryLink tasks. Establishing these links is the essence of creating a
FactoryLink application.

A developer enters information in a table by opening one or more screen displays,
called panels, that provide predefined entry fields for information required for the
task to function.

In general, there are two types of panels: control and information. In a control
panel, the application developer enters information that identifies and/or initiates
an operation, such as a read or write. In an information panel, the application
developer enters specific information about the values used in the operation
defined in the control panel. This is how the control and information panels for a
particular task are related. A task may require both control and information
panels or it may need only an information panel.
FactoryLink ECS / Programmer’s Access Kit / 45

FACTORYLINK ARCHITECTURE
Configuring FactoryLink

 46

•
•
•
•

For instance, in the sample control panel that follows, the developer will specify
types and priorities of read and/or write operations performed.

Then, in the following sample Information panel, which is associated with the
previous Read/Write control panel, the developer will enter the PLC registers read
or written and the names of elements that will receive or supply information from
or to the PLC.

A task may require both Control and Information panels, or just an Information
panel. A help screen can be selected with a single keystroke.

How FactoryLink Tasks Transfer Data

Data transfer in FactoryLink is based on reads, writes, and change reads of
information in the real-time database. All information used by FactoryLink tasks,
even if it is collected from or transmitted to outside sources, goes through the
real-time database on its way to its final destination.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Configuring FactoryLink

2

F
actoryLink

A
rchitecture
Any task can use any element in the FactoryLink real-time database as long as
the data type of that element matches the type required for the indicated
operation. It is possible— even beneficial— for two tasks to use the same element.
When this occurs, both tasks share the information stored in the element.

Transfer Methods

FactoryLink transfers data in three ways:
• Reading data from the real-time database: A task may read the value of an

element in the real-time database to display it on a screen, transmit it to an
external device such as a PLC, or to send it along to another task.

• Writing data to the real-time database: A task may write information to an
element in the real-time database as the result of an operator input, a read of
an external device such as a PLC, or an input from another FactoryLink task.

• Change-read operations: A change-read operation is a scattered block read of
the real-time database that checks only those elements whose values have
changed since the last read operation. This is known as exception processing.
Exception processing is possible because of the flags contained in the structure
of FactoryLink elements. Because large blocks of data can be transferred
between tasks in this way and because only the changed values are processed,
change-reads optimize system performance.

Data Transfer Examples

Reads, writes, and change-reads are generally performed in combinations.

Example 1: When an operator enters a new value from the keyboard, the
Graphics task reads the value and writes it to the element associated with the
input object.

Example 2: The Graphics task uses a change-read function which executes in a
loop to determine whether element values linked to a screen display have
changed. If a value of the element has not changed, the function informs the task
of that fact. If a value of the element has changed, the function returns the new
value from the real-time database. At the completion of the execution of the loop,
the task relinquishes any unused time to the next task.

Example 3: The Batch Recipe task can be configured to read values from a file
and write them to associated elements in the real-time database or read elements
from the database and write their values to a file on the disk.

Example 4: A programmable controller task reads values from the programmable
controller and writes them to the real-time database. It can also read values from
the database and write them to the programmable controller.
FactoryLink ECS / Programmer’s Access Kit / 47

FACTORYLINK ARCHITECTURE
Configuring FactoryLink

 48

•
•
•
•

How FactoryLink Architecture Affects New T ask Development

The following figure illustrates FactoryLink architecture.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Configuring FactoryLink

2

F
actoryLink

A
rchitecture
The following chart describes each part of the illustration, beginning with the
upper left portion:

Table 2-3

Item in Illustration: Descr iption:

ASCII Application Any FactoryLink application can be saved to enable
the importing/exporting of configuration data from
one application directory to another (typically, from
one platform to another).

FLSAVE/FLREST Utilities used to save/restore a FactoryLink
application. For additional information about these
utilities, refer to “FactoryLink Utilities” in the
FactoryLink Fundamentals guide.

Configuration
Database

Tables that store information about the real-time
data-Table base elements. You must design these
tables as part of task development. In this manual,
“configuration database tables” are referred to simply
as “database tables.”

FactoryLink
Configuration
Manager

Development system tool used to set up, or configure,
a FactoryLink application. Used by programmer to
test configuration.

Attribute Catalogs Programmer-created ASCII text files that describe
the database tables and the editing criteria for
operator-entered data.

Key Word Files ASCII text files that tell the Configuration Manager
how to translate text table entries into binary values.
You must create these files if an appropriate one does
not already exist.

FLRUN Command typed by the operator to execute the
FactoryLink Software System, including the custom
application. This command starts the Run-Time
Manager task.

Configuration
Table Generator
Scripts

Programmer-created script files that tell the CTGEN
utility (generate binary CT files) how to extract data
from the database tables and combine it to produce a
binary Configuration Table (CT) file at run time.
FactoryLink ECS / Programmer’s Access Kit / 49

FACTORYLINK ARCHITECTURE
Configuring FactoryLink

 50

•
•
•
•

You are directly affected only by portions of the FactoryLink architecture. You
must design the task's database tables; these tables contain all information
required to completely and unambiguously describe the application with the
possible exception of operator-entered menu selections and/or commands.

Once the design is final, you must create an attribute catalog file for one or more
database tables. The attribute catalog file represents one menu option on the
Configuration Manager Main Menu. If the attribute catalog file references a KEY
file, the developer must create a KEY file that provides the Configuration
Manager with information on developer-entered key words placed in the database
tables. Refer to Chapter 4, “Setting up the Configuration Environment” in this
manual for details about creating attribute catalog files and KEY files.

Then, you must open the Configuration Manager and use it to test whether the
attribute catalog file(s) and, if used, the KEY files, accurately reflect the desired
database table design and editing requirements.

Configuration
Tables (Binary)

Binary files produced by the CTGEN utility at run
time containing data extracted from the database
tables.

Source Programmer-developed source code for a task.

Compile and Link Step you perform to compile source code into object
code and link object modules.

FLIB FactoryLink library. Collection of utility functions
serving primarily to interface application and system
programs to the FactoryLink kernel.

Task FactoryLink task that performs a required operation.
Up to 32 FactoryLink tasks, including the Run-Time
Manager, may be active per domain instance at once.

Run-Time Manager FactoryLink task that monitors and controls other
FactoryLink tasks that are using the services of the
real-time database.

FactoryLink
Real-Time
Database

Memory-resident array of information that exists only
at run time.

Table 2-3

Item in Illustration: Description:
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Configuring FactoryLink

2

F
actoryLink

A
rchitecture
At run time, the Run-Time Manager starts and the database tables are converted
into one or more sorted binary files known as a CT file(s). When a FactoryLink
task initially begins running, it reads its CT file to determine the elements to open
and the actions to perform on those elements. You must write a configuration
table generator script that describes how to extract data from the database tables
and produce the CT file at run time.

The custom-developed program describes how the custom-developed task
functions in relation to other tasks, including the Run-Time Manager.

Refer to Chapter 3, “Constructing a Task” for a list of the steps involved in task
construction.
FactoryLink ECS / Programmer’s Access Kit / 51

FACTORYLINK ARCHITECTURE
FactoryLink Triggers

 52

•
•
•
•

FACTORYL INK TRIGGERS

Many FactoryLink tasks use digital elements to trigger certain actions; events
such as read or write operations can be configured to occur as the result of a
combination of bit value and change-status flag value in a trigger element. A
trigger element can be used as a trigger by more than one task.

For an element to trigger an event, two conditions must exist:
• The value of the element must be 1.
• The value of the change-status flag being read by the task must be 1.

When a task reads a trigger element, if the element's value is 1 and has changed
since the last time it was read, the reading task sets its change-status flag to 0
and begins the operation designated by the trigger.

Force-writing a 1 to a digital element, even though it may not change the actual
value of the element (if the element was already equal to 1), causes the events tied
to that trigger to be triggered during the next read operation. If multiple tasks are
to use the same element as a trigger, use of the forced-write technique simplifies
inter-task handshaking requirements.

Trigger elements can be created and used in many ways:
• Interval and event timer digital elements can be defined in the real-time

database for use as triggers.
• Function keys can be configured as triggers.
• The Math and Logic task can create triggers of any data type to initiate a Math

and Logic Procedure. The procedure is executed when the element's value
changes to 1 (for a digital element) or whenever the element's value changes
(for all other types of elements).

• A trigger can generate a report or data log.
• A trigger can be used to read and write recipes.
• A trigger can be used to execute another program.
• A trigger can cause a screen to be printed.
• A trigger can initiate a network transfer.
• A trigger can cause a new setpoint to be downloaded to a programmable

controller.
• Each polled read function used by a programmable controller task can be

triggered separately.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

2

F
actoryLink

A
rchitecture
FACTORYLINK FILES AND DIRECTORIES

This section discusses the variables used to set up the FactoryLink environment,
the path name format used in this manual, and the FactoryLink directory
organization.

FactoryLink Environment Variables

FactoryLink tasks depend on the values of various environment variables to
determine many aspects of their interactions with files and Real-Time Database
data structures. Whenever a task is started, whether manually or automatically
by the Run-Time Manager, the following environment variables must always be
set to appropriate values.

{FLINK} base directory of FactoryLink installation

{FLAPP} base directory of configuration files

{FLLANG} language environment

{FLNAME} invocation name

{FLDOMAIN} domain name

{FLUSER} user instance name

Several details about the variables follow.

Two environment variables are used to define the two basic directories containing
FactoryLink files. The first variable, designated as /{FLINK} in this manual,
corresponds to the name of the directory containing the FactoryLink program
files. The second variable, designated as /{FLAPP} in this manual, corresponds to
the name of the directory containing the application-related files.

During installation, these variables are set to default values, except where noted
for domain-setting-related variables.

Any references to these two variables in this manual are indicated by boldface
type, such as /{FLINK}.
• {FLINK} is the name of the directory containing the FactoryLink program files.

If this variable is not defined, it defaults to /{FLINK}.
• {FLAPP} is the name of the directory containing the application-related files. If

this variable is not set, it defaults to /{FLAPP}.
FactoryLink ECS / Programmer’s Access Kit / 53

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

 54

•
•
•
•

During installation, the developer can specify values for these variables.
Otherwise, standard defaults are used, except as noted. Refer to “Operating
System Notes” on page 63 for operating system-specific notes.
• {FLLANG} is an optional environment variable that defaults to the English

language.
• {FLNAME} is the name of the application.
• {FLDOMAIN} is the name of the domain under which the application is

designed to run.
• {FLUSER} is the name of the domain instance.
• {FLOPT} is an optional environment variable which points to the license

directory. It defaults to {FLOPT}\opt.

Use of Environment Variables in FactoryLink Path Names

Additional Functionality

The FL_PATH library functions have been modified since the previous release to
allow specification of environment variables in a multi-platform path. An
environment variable is indicated by placing the environment variable name
inside braces {}. For example, assuming that {FLAPP} is set to
/users/{FLINK}/{FLAPP} and {FLDOMAIN} is set to shared, the multi-platform
path {FLAPP}/{FLDOMAIN}/ct will be expanded to
/users/{FLINK}/{FLAPP}/shared/ct. This macro expansion takes place
automatically whenever braces are used around the name of a valid environment
variable within a path name. The following API functions will recognize and
expand environment variables. (Refer to Chapter 8, “FactoryLink API Reference
Guide” for the specifications of these functions.)

fl_path_norm
fl_path_add_dir
fl_path_set_dir
fl_path_set_file
fl_path_set_pattern
fl_path_set_node
fl_path_set_device

Note: There are no defaults defined for these last three variables.
The values are left blank to ensure you invoke the correct domain
instance. You must ensure that these variables are set to valid
values before tasks are started, either through operator interaction
or by means of reading files.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

2

F
actoryLink

A
rchitecture
Effects on Existing Tasks

The existing functionality of the FL_PATH functions is completely compatible
with that of previous versions, with the exception that braces are now considered
meta-characters. Refer to the discussion of environment variable name expansion
in “Additional Functionality” on page 54. Existing FactoryLink custom-developed
tasks which are already running correctly need not be changed. However, use of
the environment variable expansion capability should be incorporated into
existing tasks at the developer's convenience to ensure continued compatibility
with future releases of the system software.

Conversions should be fairly obvious and straightforward after a bit of study of
the new functionality. For example, most tasks presently use sprintf() to include
the domain name in the path name for CT files. The code that combines the
domain name with the CT file path can be removed and a string of the form
{FLDOMAIN}/ct/file.ct can be passed to CT_OPEN instead.

Path names read from CT files may also include environment variable
specifications. This allows the operator to specify a path name relative to some
directory that varies from system to system or operator to operator. FactoryLink
tasks should not attempt to parse path names. The FL_PATH functions should be
used to build and modify path names.

Path Name Building and Representation

Paths are represented as either a system-dependent character string, or as a data
structure containing the parts of the path as individual strings. The data
structure form is called a normalized path name.

A normalized path contains the following components:
• Node name
• Device
• Directory
• File name
• Wild card pattern
• File date and time
• File size
• File type
• {System-dependent information}
FactoryLink ECS / Programmer’s Access Kit / 55

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

 56

•
•
•
•

The C structure for a normalized path is predefined as:

typedef struct _npath

{

 char node[MAX_NODE_NAME];

 char device[MAX_DEVICE_NAME];

 char dir[MAX_DIR_NAME];

 char file[MAX_FILE_NAME];

 char wild[MAX_FILE_NAME];

 char version[MAX_VERSION];

 char verwild[MAX_VERSION];

 long dt;

 long size;

 int type;

 int magic;

 void *sysdata;

} NPATH;

Path Name Format

The complete path name for a file has the following format in this manual:

DISK:/DIRECTORY/SUBDIRECTORY/FILENAME

Partial path names for a file follow the same format:

/DIRECTORY/SUBDIRECTORY/FILENAME

Normalized paths are new in the current release of FactoryLink. The new path
functions listed below and documented in “FactoryLink API Reference Guide” on
page 183 of this manual have been added to FLIB to eliminate system-specific
path name dependencies and allow porting of code to different platforms without
changes. FactoryLink Multi-platform code should use only these functions to
generate path names, open file information, and search directories. The
FactoryLink path functions are alphabetically listed below.

FL_PATH_ACCESS
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

2

F
actoryLink

A
rchitecture
FL_PATH_ADD

FL_PATH_ADD_DIR

FL_PATH_ALLOC

FL_PATH_CLOSEDIR

FL_PATH_CREATE

FL_PATH_CWD

FL_PATH_DATE

FL_PATH_FREE

FL_PATH_GET_SIZE

FL_PATH_GET_TYPE

FL_PATH_INFO

FL_PATH_MKDIR

FL_PATH_NORM

FL_PATH_OPENDIR

FL_PATH_READDIR

FL_PATH_REMOVE

FL_PATH_RMDIR

FL_PATH_SET_DIR

fl_path_set_device

FL_PATH_SET_EXTENSION

FL_PATH_SET_FILE

FL_PATH_SET_NODE

FL_PATH_SET_PATTERN

FL_PATH_SET_VERSION

FL_PATH_SYS

FL_PATH_TIME
FactoryLink ECS / Programmer’s Access Kit / 57

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

 58

•
•
•
•

It is essential that you call these functions instead of attempting to hard-code or
build (using string functions) path names into their programs if you plan on
porting the applications to other systems and in order to retain compatibility with
future releases of FactoryLink. Refer to “Operating System Notes” on page 63 for
operating system-specific notes. For specific examples (for informational purposes
only) of how this formula translates to the path name format accepted by a
particular operating system, The following examples briefly explain the purpose of
each function and any special information about each. Here, the functions are
grouped by functionality and purpose. Refer to Chapter 8, “FactoryLink API
Reference Guide” for reference material on each function.

Example 1. Allocating a Normalized Path

NPATH *fl_path_alloc(void)

The function FL_PATH_ALLOC allocates and returns a pointer to a normalized
path buffer. This function should be called rather than allocating the NPATH
structure directly so that a buffer for system-dependent information can be added
to the path buffer.

void fl_path_free(NPATH *p)

The function FL_PATH_FREE releases the space allocated by a call to
FL_PATH_ALLOC. The NPATH structure should not be accessed after
FL_PATH_FREE is called; such an attempt will lead to unpredictable behavior of
the system.

Example 2. Converting To/From a Nor malized Path

char *fl_path_sys(NPATH *p, char *path, size_t length)

NPATH *fl_path_norm(NPATH *p, char *path)

NPATH *fl_path_set_dir(NPATH *p, char *dir)

NPATH *fl_path_cwd(NPATH *p)

The function FL_PATH_SYS converts a normalized path into a system specific
path string. If the path argument is null, FL_PATH_SYS calls malloc() to allocate
memory for the resulting path. The caller should call free to release the memory
when it is no longer in use.

FL_PATH_NORM converts a system-specific path string into a normalized path.
Alternatively, the FL_PATH_SET_DIR function can be used if the path is known
to refer to a directory.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

2

F
actoryLink

A
rchitecture
FL_PATH_SET_DIR replaces the directory portion of the path. The directory
argument is converted to normalized form. If the NPATH argument is NULL,
FL_PATH_SET_DIR first calls FL_PATH_ALLOC to allocate a NPATH buffer.
The file name, extension and version are not modified by the FL_PATH_SET_DIR
function.

FL_PATH_CWD builds a normalized path for the current working directory. If
the NPATH argument is NULL, FL_PATH_CWD first calls FL_PATH_ALLOC to
allocate a NPATH buffer.

Example 3. Modify an Existing Path

void fl_path_add(NPATH *p1, NPATH *p2)
void fl_path_add_dir(NPATH *p, char *dir)
void fl_path_set_file(NPATH *p, char *file)
void fl_path_set_pattern(NPATH *p, char *pattern)
void fl_path_set_node(NPATH *p, char *node)
void fl_path_set_device(NPATH *p, char *drive)
void fl_path_set_extension(NPATH *p, char *extension)
void fl_path_set_version(NPATH *p, char *version)

FL_PATH_ADD catenates two paths. Any missing component of the second path
p2 is taken from the first path p1 or from the current directory if the first path is
null.

FL_PATH_ADD_DIR adds a subdirectory specification to the end of the directory
portion of a path. Only one subdirectory can be added to a path during each call to
FL_PATH_ADD_DIR. The subdirectory name should not contain any
path-separator characters.

FL_PATH_SET_FILE replaces the file name portion of the path.

FL_PATH_SET_PATTERN sets the wild card pattern for subsequent directory
search.

FL_PATH_SET_NODE replaces the node name portion of the path.

fl_path_set_device replaces the drive portion of the path.

FL_PATH_SET_EXTENSION replaces the extension of the current file name
portion of the path.

Example 4. Create/Delete Paths

int fl_path_mkdir(NPATH *p)
FactoryLink ECS / Programmer’s Access Kit / 59

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

 60

•
•
•
•

int fl_path_rmdir(NPATH *p)
int fl_path_create(NPATH *p)
int fl_path_remove(NPATH *p)

FL_PATH_MKDIR creates the directory given by the directory portion of the
path.

FL_PATH_RMDIR deletes the directory given by the directory portion of the path.

FL_PATH_CREATE creates an empty file using the complete path.

FL_PATH_REMOVE removes the file specified by the complete path.

.Example 5. Search for Matching Files

int fl_path_opendir(NPATH *p)
int fl_path_readdir(NPATH *p)
void fl_path_closedir(NPATH *p)

FL_PATH_OPENDIR begins a directory search operation. The current directory
information contained in NPATH is used as the directory to search and the
current wildcard pattern is used to choose files. FL_PATH_OPENDIR returns
GOOD if the directory could be opened for search, or ERROR if it could not.
FL_PATH_OPENDIR reads the first entry in the directory.

FL_PATH_READDIR reads the next matching file in the directory and places the
name of the file into the file name component of the path. The file type, date, time,
and size are also stored in the NPATH structure. FL_PATH_ READDIR returns
GOOD if a matching file was found or ERROR if not.

FL_PATH_CLOSEDIR ends a directory search. The following code fragment in C
demonstrates how to use directory search functions to print a directory listing.

NPATH *p;
char date[80];
char time[80];

char fullpath[MAX_PATH_NAME];

p = fl_path_norm(NULL, “*.*”);
if (fl_path_opendir(p) == ERROR)
{
printf(“Directory Not found\n”);
return;

}

 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

2

F
actoryLink

A
rchitecture
do
{

fl_path_date(p, date,80);
fl_path_time(p, time,80);
fl_path_sys(p, fullpath,MAX_PATH_NAME);

printf(“%s %s %s\n”, date, time, fullpath);
} while (fl_path_readdir(p) != ERROR);
fl_path_closedir(p);
fl_path_free(p);

Example 6. Get File Information

int fl_path_info(NPATH *p)
long fl_path_date(NPATH *p, char *buf,size_t length)
long fl_path_time(NPATH *p, char *buf,size_t length)
int fl_path_access(NPATH *p)
char *fl_path_get_device(NPATH *p)
char *fl_path_get_node(NPATH *p)
char *fl_path_get_dir(NPATH *p)
char *fl_path_get_file(NPATH *p)
long fl_path_get_dt(NPATH *p)
long fl_path_get_size(NPATH *p)
int fl_path_get_type(NPATH *p)

FL_PATH_INFO initializes the date, time, size, and type for the path. If the file
does not exist, FL_PATH_INFO returns ERROR. Otherwise, it returns GOOD.
This function is called automatically by FL_PATH_OPENDIR and
FL_PATH_READDIR.

FL_PATH_DATE formats the date of a file into the caller's buffer and returns the
date and time (concatenated) as a long integer.

FL_PATH_TIME formats the time of the file into the caller's buffer. This function
is operating system-dependent.

FL_PATH_SIZE returns the size of a file in bytes.

FL_PATH_TYPE returns the type of the file. A string constant is returned from
among the valid types; these are operating-system dependent.

FL_PATH_ACCESS returns NPATH_READ, NPATH_WRITE, or NPATH_READ
| NPATH_WRITE, depending on the file access mode. If the file does not exist,
FL_PATH_ACCESS returns ERROR.
FactoryLink ECS / Programmer’s Access Kit / 61

FACTORYLINK ARCHITECTURE
FactoryLink Files and Directories

 62

•
•
•
•

FactoryLink Directory Organization

Refer to “Operating System Notes” on page 63.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Operating System Notes

2

F
actoryLink

A
rchitecture
OPERATING SYSTEM NOTES

The following sections provide operating system specific information relevant to
this chapter.

For Windows/NT Users

FactoryLink Environment Variables (page 53)

Unless otherwise specified by the developer, the default values for the
FactoryLink environment variables follow:

Path Name Format (page 56)

For Microsoft Windows, the platform-independent path name format of

DISK:/DIRECTORY/SUBDIRECTORY/FILENAME

translates to the following format:

DRIVE:\DIRECTORY\SUBDIRECTORY\FILENAME

For example, if a file named TIMER.CT is located in a subdirectory named CT in
the {FLAPP} directory, the file name in the Programmer's Access Kit guide is
specified as {FLAPP}/CT/TIMER.CT. The Microsoft Windows file name would
have the format, {FLAPP}\CT\TIMER.CT. The boldfaced type on {FLAPP}
indicates this refers to the default or operator-specified name of the
application-related directory specified during installation.

(2-33)

The FL_PATH functions operate under Microsoft Windows as stated with the
following additional rules:
• If a Microsoft Windows-style path string is supplied to FL_PATH_NORM,

FactoryLink assumes that any name following the last slash character is a file
name.

Table 2-4

Environment Variable Default Directory

{FLINK} \{FLINK}

{FLAPP} \{FLAPP}
FactoryLink ECS / Programmer’s Access Kit / 63

FACTORYLINK ARCHITECTURE
Operating System Notes

 64

•
•
•
•

• If a path refers to a directory, add a trailing slash to the path name for
Microsoft Windows-style names.

• If the path is known to refer to a directory, the FL_PATH_SET_DIR function
can be used instead.

For OS/2 Users

FactoryLink Environment Variables (page 53)

Unless otherwise specified by the operator, the default values for the FactoryLink
environment variables are listed below:

Use of Environment Variables in FactoryLink Path Names (page 54)

The FL_PATH functions operate under OS/2 as stated, with the following
additional rules: when an OS/2-style path string is supplied to FL_PATH_NORM,
it is assumed that any name following the last slash character is a file name. If it
is known that the path refers to a directory, a trailing slash can be added to the
path name for OS/2-style names. As stated, the FL_PATH_SET_DIR function can
be used instead if the path is known to refer to a directory.

Path Name Format (page 56)

For OS/2, the platform-independent path name format of

DISK:/DIRECTORY/SUBDIRECTORY/FILENAME

translates to the following format:

DRIVE:\DIRECTORY\SUBDIRECTORY\FILENAME

For example, if a file named TIMER.CT is located in a subdirectory named CT in
the /{FLAPP} directory, the file name in the Programmer's Access Kit Manual is
specified as /{FLAPP}/CT/TIMER.CT. The OS/2 file name would have the format,
\{FLAPP}\CT\TIMER.CT. The boldfaced type on {FLAPP} indicates that this

Table 2-5

Environment Variable Default Directory

{FLINK} flos2

{FLAPP} flapp
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Operating System Notes

2

F
actoryLink

A
rchitecture
refers to the default or operator-specified name of the application-related
directory specified during installation.

Example 6. Get File Information (page 61)

The function FL_PATH_TIME formats the time of the file into the caller's buffer.
This function is operating system-dependent. Under OS/2, the format is controlled
by the country code set in the CONFIG.SYS file.

FactoryLink Directory O rgani zation (page 62)

The files are organized functionally, as follows:

FactoryLink Program Directory (\{FLINK})

All of the following files are located in the \{FLINK} directory. The subdirectories
containing program files are organized as follows:

Table 2-6

Subdirectory File(s) Description of File(s)

\AC *.AC Text files that function as attribute
catalogs to inform the Configuration
Manager of the format of the database
tables. They also determine editing
entry criteria.

\BIN *.CMD FactoryLink command files

*.EXE Executable program files for each
FactoryLink task

\BLANK A blank \{FLAPP} directory. Used by
the FLBLANK utility to create a new
application.

\CML Compiled Math and Logic files

\CTGEN *.CTG CT script files

\DRW *.G Files used by Gedant and run-time
graphics

*.GP
FactoryLink ECS / Programmer’s Access Kit / 65

FACTORYLINK ARCHITECTURE
Operating System Notes

 66

•
•
•
•

FactoryLink Application Directory (\{F LAPP})

All of the following files are located in the \{FLAPP} directory. The subdirectories
containing program files are organized as follows:

\EDI Subdirectory for External Device
Interfaces (PLC drivers)

\INC *.H Header files for C programs

\INSTALL Files used during FactoryLink
installation

\KEY *.KEY Text files that tell the Configuration
Manager how to translate text table
entries into binary values to be placed
in a configuration table (CT)

\LIB *.LIB Library files

*.DLL Dynamic link library files

\MPS *.MPS Multiplatform save files

\MSG *.TXT Message files for FactoryLink tasks

\OPT FL.OPT File containing FactoryLink options
information

\SRC Programmer's Access Kit files

Table 2-7

Subdi rectory File(s) Descr iption of File(s)

*.CDB Database tables that store information
about the elements such as name, type,
number of definitions (number of writes
specified by the defining task), and number
of references

Table 2-6

Subdirectory File(s) Description of File(s)
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Operating System Notes

2

F
actoryLink

A
rchitecture
*.MDX Indexes used by the Configuration
Manager in conjunction with the CDBs to
translate element names to element
numbers at run time

\ASC *.ASC ASCII database tables that store
information about the real-time database
elements. They are used to import/export
configuration data from one application
directory to another (typically, from one
platform to another platform).

*.EXP Output of CM export

\CT *.CT Binary configuration tables. Each
FactoryLink program employs one or more
configuration tables.

\DRW *.DRW Graphics files created with the Application
Editor

*.G Run-time graphics files in U.S.DATA
format

\LOG Error log files produced by FactoryLink
processes at run time containing debug
information

\NET GROUPS Groups on this node

LOCAL FL/LAN information

\PROCS *.PRG Math and Logic procedures

\RCP Files created by the Batch Recipe task

\RPT *.RPT Report files generated by the Report
Generator task

\SPOOL Subdirectory used by the FactoryLink Print
Spooler task

Table 2-7

Subdirectory File(s) Description of File(s)
FactoryLink ECS / Programmer’s Access Kit / 67

FACTORYLINK ARCHITECTURE
Operating System Notes

 68

•
•
•
•

For UNIX Users

Element names (page 28)

Under UNIX, the developer can create element arrays containing up to 64K
(65,534) in elements per element array, depending on available memory.

FactoryLink Environment Variables (page 53)

Unless otherwise specified by the operator, the default values for the FactoryLink
environment variables follow.

Use of Environment Variables in FactoryLink Path Names (page 54)

The FL_PATH functions operate under OS/2 with the following additional rules:
when a UNIX-style path string is supplied to FL_PATH_NORM, any name
following the last slash character is a file name. If it is known that the path refers
to a directory, a trailing slash can be added to the path name for UNIX-style
names. As stated, the FL_PATH_SET_DIR function can be used instead if the
path is known to refer to a directory.

Table 2-8

Environment Variable Default Directory

{FLINK} /usr/flink

{FLAPP}
}

/usr/flapp

Note: Unix default directories may vary according to the
way that the Unix system administrator has configured the
file system. On some systems, /usr may be /users or another
variant; on other systems, it may be different for each
operator. Check with the system administrator to
determine the exact operator account directory set up for
FactoryLink users; the system defaults to that operator
account directory.
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Operating System Notes

2

F
actoryLink

A
rchitecture
Example 6. Get File Information (page 61)

FL_PATH_TIME formats the time of the file into the caller's buffer. This function
is operating system-dependent. Under Unix, the date/time string is formatted
using the standard library function strftime. The format is thus modified by the
setlocale() function.

Path Name Format (page 56)

For UNIX, the platform-independent path name format of

DISK:/DIRECTORY/SUBDIRECTORY/FILENAME

translates to the following format:

/directory/subdirectory/filename

For example, if a file named TIMER.CT is located in a subdirectory named CT in
the /{FLAPP} directory, the file name in the Programmer's Access Kit guide is
specified as /{FLAPP}/CT/TIMER.CT. The UNIX file name has the format
/{FLAPP}/ct/timer.ct. The boldfaced type on {FLAPP} indicates that this refers to
the default or operator-specified name of the application-related directory
specified during installation.

Although colons are valid characters in file names under most UNIX installations,
FactoryLink PAK modules should not use file names that include colons. Due to
the multi-platform nature of FactoryLink and the need for portability, colons (“:”)
in file names cause the FactoryLink system to interpret the portion of the name
preceding the colon as a device name (currently ignored under UNIX); for
example, “/tmp/ava:balt” will be seen as “/tmp/balt”. The system will always
assume anything preceding a “:” in a file name is a device name and will skip it.
Therefore, do not place colons in file names.

Note specifically that in calls to make_full_path(), slash_to_norm(), and
fl_path_norm() the returned path and file names will not be as expected if passed
a file name containing a colon; they work as expected when file names without
colons are passed in.

FactoryLink Directory O rgani zation (page 62)

The files are organized functionally as follows:
FactoryLink ECS / Programmer’s Access Kit / 69

FACTORYLINK ARCHITECTURE
Operating System Notes

 70

•
•
•
•

FactoryLink Program Directory (/{FLINK})

All of the following files are located in the /{FLINK} directory. The subdirectories
containing program files are organized as shown in the following chart.

Table 2-9

Subdi rectory File(s) Descr iption of File(s)

\AC *.AC Text files that function as attribute
catalogs to inform the Configuration
Manager of the format of the database
tables. They also determine editing
entry criteria.

\BIN *.CMD FactoryLink command files

*.EXE Executable program files for
eachFactoryLink task

\BLANK A blank \{FLAPP} directory. Used by
the FLBLANK utility to create a new
application.

\CTGEN *.CTG CT script files

\CML Compiled Math and Logic files

\DRW *.G Files used by Gedant and run-time
graphics

*.GP

\EDI Subdirectory for External Device
Interfaces (PLC drivers)

\INC *.H Header files for C programs

\INSTALL Files used during FactoryLink
installation

\KEY *.KEY Text files that tell the Configuration
Manager how to translate text table
entries into binary values to be placed in
a configuration table (CT)
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Operating System Notes

2

F
actoryLink

A
rchitecture
FactoryLink Application Directory (/ {FLAPP})

All of the following files are located in the {FLAPP} directory and/or the
{FLAPP}\{DOMAIN} directory where the {DOMAIN} is either SHARED or
USER. The subdirectories containing program files are organized as follows:

\LIB *.LIB Library files

*.DLL Dynamic link library files

\MPS *.MPS Multiplatform save files

\MSG *.TXT Message files for FactoryLink tasks

\OPT FL.OPT File containing FactoryLink options
information

\SRC Programmer's Access Kit files

Table 2-10

Subdi rectory: File(s): Descr iption of File(s):

*.CDB Database tables that store information about
the elements, such as name, type, number of
definitions (number of writes specified by the
defining task), and number of references

*.MDX Indexes used by the Configuration Manager
in conjunction with the CDBs to translate
element names to element numbers at run
time

\ASC *.ASC ASCII database tables that store information
about the elements. Used to import/export
configuration data from one application
directory to another (typically, from one
platform to another).

*.EXP Output of CM export

Table 2-9

Subdirectory File(s) Description of File(s)
FactoryLink ECS / Programmer’s Access Kit / 71

FACTORYLINK ARCHITECTURE
Operating System Notes

 72

•
•
•
•

The question marks (?) in the /{FLINK}/log log files for the Alarm Supervisor
denote that a number is to be substituted. Use any number from 1 through 999.

Example 6. Get File Information

The function FL_PATH_TIME formats the time of the file into the caller's buffer.
This function is operating system-dependent. Under Microsoft Windows, the
format is controlled by the country code returned by the MS-DOS function 38h.

\CML Compiled Math and Logic files

\CT *.CT Binary configuration tables. Each
FactoryLink program employs one or more
configuration tables.

\DCT External Device Interface CT files

\DRW *.DRW Graphics files created with the Application
Editor

*.G Run-time graphics files in FactoryLink
format

\LOG Error log files produced by FactoryLink
processes at run time containing debug
information

\NET GROUPS Groups on this node

LOCAL FLLAN information

\PROCS *.PRG Math and Logic procedures

\RCP Files created by the Batch Recipe task

\RPT *.RPT Report files generated by the Report
Generator task.

\SPOOL Subdirectory used by the FactoryLink Print
Spooler task

Table 2-10

Subdirectory: File(s): Description of File(s):
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Operating System Notes

2

F
actoryLink

A
rchitecture
FactoryLink Directory Organization

Files are organized functionally as follows:

FactoryLink Program Directory ({FLINK})

The following files are located in the \{FLWIN} directory. Subdirectories
containing program files are organized as follows:

Table 2-11

Subdirectory: File(s): Description of File(s):

\AC *.AC Text files that function as attribute catalogs to
inform the Configuration Manager of the
format of the database tables. Also determine
editing entry criteria

\BIN *.CMD FactoryLink command files

*.EXE Executable program files for each FactoryLink
task.

\BLANK A blank {FLAPP} directory. Used by the
FLBLANK utility to create a new application.

\CTGEN *.CTG CT script files

\CML Compiled Math and Logic files

\DRW *.G Files used by Gedant and run-time graphics

*.GP

\EDI Subdirectory for External Device Interfaces

\INC *.H Header files for C programs

\INSTALL Files used during FactoryLink installation

\KEY *.KEY Text files that tell the Configuration Manager
how to translate text table entries into binary
values to be placed in a configuration table
(CT)

\LIB *.LIB Library files
FactoryLink ECS / Programmer’s Access Kit / 73

FACTORYLINK ARCHITECTURE
Operating System Notes

 74

•
•
•
•

FactoryLink Application Directory ({FLAPP})

All of the following files are located in the {FLAPP} directory and/or the
{FLAPP}\{DOMAIN} where the {DOMAIN} is either SHARED or USER. The
subdirectories containing program files are organized as follows:

*.DLL Dynamic link library files

\MPS *.MPS Multiplatform save files

\MSG *.TXT Message files for FactoryLink tasks

\OPT FL.OPT File containing FactoryLink options
information

\RPT *.FRM Report formats

\SRC Programmer's Access Kit files

Table 2-12

Subdi rectory: File(s): Descr iption of File(s):

*.CDB Database tables that store information about
the elements, such as name, type, number of
definitions (number of writes specified by the
defining task), and number of references

*.MDX Indexes used by the Configuration Manager in
conjunction with the CDBs to translate
element names to element numbers at run time

\ASC *.ASC ASCII database tables that store information
about the elements. Used to import/export
configuration data from one application
directory to another (typically, from one
platform to another).

*.EXP Output of CM export

Table 2-11

Subdirectory: File(s): Description of File(s):
 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK ARCHITECTURE
Operating System Notes

2

F
actoryLink

A
rchitecture
\CT *.CT Binary configuration tables. Each FactoryLink
program employs one or more configuration
tables.

\DRW *.DRW Graphics files created with the Application
Editor

*.G Run-time graphics files in FactoryLink format

\LOG Error log files produced by FactoryLink
processes at run time containing debug
information

\NET GROUPS Groups on this node

LOCAL FLLAN information

\PROCS *.PRG Math and Logic procedures

\RCP Files created by the Batch Recipe task

\RPT *.RPT Report files generated by the Report Generator
task.

\SPOOL Subdirectory used by the FactoryLink Print
Spooler task

\DCT External Device Interface CT files

\CML Compiled Math and Logic files

Table 2-12

Subdirectory: File(s): Description of Fi le(s):
FactoryLink ECS / Programmer’s Access Kit / 75

FACTORYLINK ARCHITECTURE
Operating System Notes

 76

•
•
•
•

 / FactoryLink ECS / Programmer’s Access Kit

• • • •Chapter 3

Constructing a Task
3

Introd
uction
This chapter suggests a three-phase procedure for constructing FactoryLink tasks
and integrating them with the rest of the FactoryLink system.

Chapter 3 contains the following topics:
• Guidelines for Task Design
• Task Construction Procedure

TASK DESIGN GUIDELINES

We recommend you design FactoryLink tasks according to the architecture
presented in this manual. Proper design enables the task to coexist efficiently
with other FactoryLink programs. In addition, designing to the PAK guidelines
provides an upgrade path to other operating systems.

The following guidelines enhance your FactoryLink design process:
• Tasks should use the FactoryLink configuration tools to describe work.

A FactoryLink task relies on the FactoryLink Configuration Manager in
conjunction with the FactoryLink Application Editor to generate a file or files
describing the work to be done at run time. This means you must:

• Design one or more database tables.
• Create one or more Attribute Catalogs (AC file) to describe the table(s).

• Tasks should be designed to run concurrently with FactoryLink system
configuration.

A custom program runs concurrently and in conjunction with the FactoryLink
system configuration we supplied as part of FactoryLink.
• Tasks should not interfere with other tasks.

A custom program should not adversely affect or otherwise interfere with
concurrently running tasks, directly access system resources such as I/O devices
which are under the control of the operating system, or severely degrade the
performance of FactoryLink.
• Tasks should be designed for use with the FactoryLink Run-Time Manager.
FactoryLink ECS / Programmer’s Access Kit / 77

CONSTRUCTING A TASK
Task Design Guidelines

 78

•
•
•
•

Design the program for run-time use with the FactoryLink Run-Time Manager.
The program must conform to certain requirements imposed by the Run-Time
Manager in order for the latter to carry out its supervisory duties effectively.
Refer to Chapter 6, “Using the Run-Time Manager” for a list of these
requirements.

Task Construction Procedure

Although you are not required to follow any particular process when constructing
tasks, we recommend you follow the top-down software design model as follows.

The top-down software design model for constructing and integrating a
FactoryLink-compatible task consists of 3 major tasks:
• Setting up the Configuration Environment

Refer to Chapter 4, “Setting up the Configuration Environment” for detailed
information about setting up the configuration environment.

• Converting Database Tables to CTs
Refer to Chapter 5, “Converting Database Tables to CTs” for detailed
information about converting database tables to CTs.

• Writing the Task's Program
Refer to the following chapters in this manual for detailed information about
writing the task's program:
Chapter 6, “Using the Run-Time Manager”
Chapter 7, “FactoryLink Kernel and Library”
Chapter 8, “FactoryLink API Reference Guide”

Setting up the Config uration Environment

Setting up the Configuration Environment includes 4 steps:

 1 Design the Database Tables(s)

 2 Create the Attribute Catalog(s)

 3 Create the Key Files

 4 Test the Configuration Environment
 / FactoryLink ECS / Programmer’s Access Kit

CONSTRUCTING A TASK
Task Design Guidelines

3

Introd
uction
Design the Database Table(s)

Design the database table(s) for the task. This process involves laying out the
panel(s), accessed from the Configuration Manager Main Menu in which the user
enters configuration information for the task.

With the possible exception of operator selections and/or commands entered at
run time, the database table contains all of the information needed by the task
program to do its job. For example, it serves as the storage area for the
user-entered inputs when the user selects this task from the Configuration
Manager Main Menu. A table consists of one or more fixed-length database
records. Each table is associated with an index to control the logical order of the
records.

The task may require more than one table to describe the work to be performed.
These database tables can be related (in a database sense) or unrelated to each
other. Designing these tables involves mapping the work performed into a set of
relational databases.

Create the Attribute Catalog(s).

Create at least one Attribute Catalog (with extension .AC) for each database
table. The AC file describes the structure of the database table. In addition, it
determines the user view of the table; that is, it lists the panel(s) displayed when
the user chooses this task from the Configuration Manager Main Menu.

An AC file is an ASCII text file that may be created and edited with an ordinary
text editor. It tells the Configuration Manager the format of the database table
(the structures of the records) and precisely how the operator is allowed to edit it;
that is, how to interpret operator input and fill in the fields of the records
appropriately.

Place the AC file(s) in the /{FLINK}/AC directory. This directory contains AC files
for all FactoryLink tasks; you can copy any AC file and edit it to create a new one.

Create the KEY Fi les.

If necessary, create any KEY files referenced by the Attribute Catalog(s) or the
Panel file(s). Create the KEY file, which is a text file, with any text editor. This
file tells the Configuration Manager how to validate operator-entered key words
to be placed in the database table. After the KEY file(s) have been created, place
them in the /{FLINK}/KEY directory which includes many KEY files useful for a
FactoryLink system.
FactoryLink ECS / Programmer’s Access Kit / 79

CONSTRUCTING A TASK
Task Design Guidelines

 80

•
•
•
•

Test the Configuration Environment.

Inform FactoryLink about the new task by adding the name of the AC file to the
TITLES file and adding the task to the System Configuration Table.

Using the Configuration Manager, test the configuration environment, including
the Attribute Catalog.

Once any problems are analyzed and corrected, repeatedly choose the task from
the Configuration Manager Main Menu, each time entering a variety of simulated
data in the panel(s) to be stored in the newly-created database table(s).

Converting the Database Tables to CTs

Converting the Database Tables to CTs involves the following two steps:

 1 Create the CTG Conversion Scripts

 2 Test the Conversion Process

Create the CTG Conversion Scripts.

Create a CTG conversion script for each of the database tables. The CTG
conversion script tells the CTGEN utility (which generates binary CT files) how to
extract data from the database tables and combine it to produce a binary
Configuration Table (CT) file.

Place the CTG file(s) in the /{FLINK}/CTGEN directory which includes sample
CTG files.

Test the Conversion Process.

Using a binary file dump program or the CTLIST utility included with
FactoryLink, examine the CT file and verify that the conversion process properly
creates the binary CT file.

Note: To avoid problems, before beginning this test, save
the application using the FLSAVE utility program. Upon
completion of testing, restore the application using the
FLREST utility. For details about these utilities, refer to
the FactoryLink Fundamentals manual.
 / FactoryLink ECS / Programmer’s Access Kit

CONSTRUCTING A TASK
Task Design Guidelines

3

Introd
uction
Writing the Task's Pro gram

Once you complete the design and conversion processes, you are ready to write the
program itself. Writing the Task’s Program consists of the following steps:

 1 Compile the Source Modules

 2 Link the Object Modules

 3 Debug the Program

 4 Create the Installation Medium

Create the Source Modules

Using a general-purpose text editor, create the source modules for the program,
paying particular attention to the coding guidelines listed in this chapter. The
PAK software includes sample source code modules. In addition, refer to Chapter
6, “Using the Run-Time Manager” for an example of properly documented and
designed source code.

Define the operating system you will use with the task.

Compile the Source Mo dules

Using one of the supported compilers, compile all source modules to form object
files.

Link the Object Modules

Link all object modules to form an executable program file. Before attempting to
link, read and understand the linker documentation. The linker recognizes
several useful options. Correct any link errors before trying to execute the
program.

Debug the program.

Debug the program or as many features of it as possible in the FactoryLink
run-time environment.

Note: The platform may be defined in the compile-time
environment instead of the source code.
FactoryLink ECS / Programmer’s Access Kit / 81

CONSTRUCTING A TASK
Task Design Guidelines

 82

•
•
•
•

Create the Instal lation Medium

Create the installation medium (such as diskette or tape) and the appropriate
command files for the end user to use when installing the custom module.

Overview

The following flow chart graphically illustrates the top-down design methodology
we recommend for task construction.
 / FactoryLink ECS / Programmer’s Access Kit

CONSTRUCTING A TASK
Task Design Guidelines

3

Introd
uction
Design Database

Tables

Create Attributes

 Catalog(s)

Create Key Files

Add AC File Names

to Titles file

Access Configuration

Manager Main Menu

Error Messages?

Select Task and

Test

Problems?

Exit CM

Exit CM: Edit AC

or Key files

Create CTG

conversion script

Examine binary CT

file

Problems with CT

file?

Edit Script

Create Source

Modules

Compile Source

Modules

Problems

Compiling?

Edit Source

Modules

Link Object

Modules

Problems Linking?

Execute Program

Problems Found?

Create Installation

Medium

Yes

No

No

Debug Program

No

Edit Source and

Link Files

Yes

Yes

Yes

No

Yes

FactoryLink ECS / Programmer’s Access Kit / 83

CONSTRUCTING A TASK
Operating System Notes

 84

•
•
•
•

OPERATING SYSTEM NOTES

The following section contains operating system specific information related to
this chapter.

For Windows /NT Users

Create the Source Modules (page 81)

Within the code, define the platform on which the task is to execute. The following
statement is a sample definition in the C language:

#define WIN

Compile the Source Modules (page 81)

Example: The name of the module is PROG1.C, located in the current directory.
Using Borland C, from the command prompt, enter the following commands:

BCC -ml -DWIN -WE -C PROG1.C

Link the Object Modules (page 81)

Example: Create the program PROG.EXE from object modules PROG1.OBJ and
PROG2.OBJ. Using Borland C, from the command prompt, enter the following
commands:

TLINK /Twe /c /C [options] PROG1.OBJ,prog,,\FL-
WIN\LIB\FLIB.LIB+\FLWIN\LIB\FLIBW.LIB

For OS/2 Users

Create the Source Modules (page 81)

Within the code, define the platform on which the task is to execute. The following
statement is a sample definition in the C language:

#define OS2

Note: This can be defined in the compile environment
instead of in the source code.

Note: Use large-model to compile FactoryLink tasks.

Note: This definition may be done in the compile
environment instead of the source code.
 / FactoryLink ECS / Programmer’s Access Kit

CONSTRUCTING A TASK
Operating System Notes

3

Introd
uction
Compile the Source Modules (page 81)

Example: The name of the module is PROG1.C, located in the current directory.
Using Microsoft C, from the CMD prompt, enter the following commands:

SET INCLUDE = C:\MSC\INC;C:\FLOS2\PAK\INC;

CL -AL[options] PROG1.C

Link the Object Modules (page 81)

Example: Create the program PROG.EXE from object modules PROG1.OBJ and
PROG2.OBJ. Using Microsoft C, enter the following commands from the CMD
prompt:

SET LIB=C:\MSC\LIB;C:\FLOS2\PAK\LIB

LINK [options] PROG1 PROG2,PROG;

For UNIX Users

Create the Source Modules (page 81)

Within the code, define the platform on which the task is to execute. The following
statement is a sample definition in the C language:

#define UNIX

Compile the Source Modules (page 81)

Example: The name of the module is PROG1.C, located in the current directory.
Enter the following commands:

cc -c -I${FLINK}/inc

Link the Object Modules (page 81)

Example: Create the program PROG from object modules PROG1.O and
PROG2.O. Enter the following commands:

cc -o prog prog1.o prog2.o ${FLINK}/lib/flib.a
${FLINK}/lib/flker.a

Note: Compile FactoryLink tasks using large-model.

Note: This definition may be done in the compile
environment instead of the source code.
FactoryLink ECS / Programmer’s Access Kit / 85

CONSTRUCTING A TASK
Operating System Notes

 86

•
•
•
•

 / FactoryLink ECS / Programmer’s Access Kit

4

I

• • • •Chapter 4

Setting up the
Configuration
Environment
ntroduction
ABOUT THIS CHAPTER

This chapter provides a detailed look into setting up the configuration
environment.

Chapter 4 covers the following tasks:
• Design the Database Table(s)
• Create the Attribute Catalog(s)
• Create the KEY Files
• Test the Configuration Environment

The figure on the following page illustrates the portion of the Task Construction
Flowchart (refer to page 83) involved in setting up the configuration environment.
FactoryLink ECS / Programmer’s Access Kit / 87

SETTING UP THE CONFIGURATION ENVIRONMENT
About this Chapter

 88

•
•
•
•

Design Database

Tables

Create Attribute

Catalog(s)

Create Key Files

Add AC File Names to

Titles file

Access Configuration

Manager Main Menu

Error Messages?

Select Task and Test

Problems?

Exit CM

Connect

Exit CM: Edit AC or

Key Files

No

Yes

 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Design the Database Table(s)

4

Introduction
DESIGN THE DATABASE TABLE (S)

When you construct a task, you must design one or more database tables for the
custom task.

The model for data entered and managed by the Configuration Manager is a set of
relational database tables:
• TYPE
• OBJECT
• XREF
• Task-specific

The TYPE, OBJECT, and XREF database tables are inherent in FactoryLink and
are not developer-definable. The task-specific database tables, however, are
developer-defined and are only present when that task is used in the application.

The database tables form a set of relational databases as follow:

FactoryLink ECS / Programmer’s Access Kit / 89

SETTING UP THE CONFIGURATION ENVIRONMENT
Design the Database Table(s)

 90

•
•
•
•

TYPE

The TYPE database table defines the six data types used in FactoryLink. Each of
these types corresponds to a record in the TYPE table:

OBJECT

The Configuration Manager maintains the real-time database definition and all
other configuration information for each application in the OBJECT database
table. The particular database table format selected varies according to the
platform. Knowledge of the format is generally not required to add a new
FactoryLink task. The OBJECT table contains a list of real-time elements defined
by the developer, but it does not contain task-specific information. Task-specific
information is kept in other tables related solely to that task.

XREF

The Configuration Manager maintains a cross-reference table. The XREF
database table contains a record for each occurrence of an element in any
task-specific table. This information allows the Configuration Manager to quickly
locate all occurrences of a particular element in the task-specific tables.

Task-Specific

A task consists of one of more developer-definable task-specific database tables.
There is no limit on the number of tables per task. If there are more than two
tables, the tables may be related either serially or in a one-to-many fashion.

Type Boolean

ANALOG 16-bit signed integer

LONGANA 32-bit signed integer

FLOAT IEEE double floating-point

MESSAGE
ASCII data

Variable length binary or

MAILBOX Variable length data, organized as
a queue
 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Design the Database Table(s)

4

Introduction
Task-Specific Example

Suppose a PLC task consists of a Write table and a Read table. The Write and
Read tables each consist of a Control panel and an Information panel. The Control
panel contains header records specifying the trigger information for a group of
data records. The control and information records are stored in different tables
because they have different structures. Although it is possible to store the write
and read information in the same table, storing them in different tables
minimizes data entry and allows different validation criteria to be applied.

Designing the Task-Specific Database Table(s)

Designing the task-specific database table(s) is the first step in task construction.
The design process should include the following considerations:
• What type of data is required for this task?
• What data must be stored in this task-specific database table, and what data

can be gathered from other tasks, such as operator input from a screen designed
with the Application Editor?

• What other tasks require information supplied by this task?
• Are both Control and Information panels required or just an Information panel?
• What is the panel design, including the following items:

• Name of the panel
• Panel layout, such as column headings and order of information
• Data type of any element to be entered on the panel
• Editing validation required for a field, such as data type limitation or value-

range check

Relationship Bet ween OBJECT and Task-Specific Tables

Task-specific tables contain information for the Configuration Manager to add to
the other run-time tables on behalf of the task. For example, the Alarm
Supervisor configuration allows the specification of an element to be monitored for
an alarm condition. In addition to the element, the developer can also specify
alarm messages and limits. The Configuration Manager adds the element to the
OBJECT table if it has not already been created. In addition, the Configuration
Manager adds the element name and task-specific information to the Alarm
Supervisor table.
FactoryLink ECS / Programmer’s Access Kit / 91

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 92

•
•
•
•

CREATE THE ATTRIBUTE CATALOG (S)

An Attribute Catalog (AC) file represents one menu option on the Configuration
Manager Main Menu; the AC file or option may or may not represent an entire
task. For example, to configure the Batch Recipe task, the developer chooses only
one option on the Configuration Manager Main Menu, Recipe, and fills in the
associated panels. This option corresponds to the RECIPE.AC file. However, to
configure the Interpreted Math and Logic task, the developer selects multiple
options on the Configuration Manager Main Menu and fills in the associated
panels. These options and their associated AC files are listed below:

When the developer selects an option from the Configuration Main Menu, one or
more panels are displayed. Each panel corresponds to a database table whose
characteristics are specified in the AC file that corresponds to the option chosen.

An AC file indicates the name of the menu option, the order in which database
tables are to be edited, and the relationships between the database tables. In
addition, validation information can also be specified. Each field in a database
table record editable by the developer must be specified in the AC file.

Because they are ASCII text files, the AC files for standard tasks can be easily
copied and altered to create an AC for a new task.

AC File Format

In an AC file, each statement begins with a keyword followed by one or more
parameters separated by commas. Comments may be included in the AC file by
beginning the line with an asterisk (*). The comment continues to the end of the
line. Blank lines and leading spaces are ignored. A statement may be split over
multiple lines.

The general format of an AC file follows. Brackets ([]) indicate optional entries.
Refer to “Sample AC File” on page 102 for an AC file example.

TASK name, title

Configuration Manager Main Menu Option AC File Name

Math and Logic Variables IMLV.AC

Math and Logic Triggers IMLT.AC

Math and Logic Procedures IMLP.AC
 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
CT table_name, file_name, title

[EDIT type [, editor]]

[VALIDATE type]

PANEL panel_file, x, y, width, height

FIELD name, type, width, field_prec, key_file, default,
low, high, flags

[HEADING string, width]

[RELATE CDB_name, field_name, index_file]

TYPE field_name [HEADING string, width]

DESC field_name [HEADING string, width]

DOMAIN “DOMAIN”, 8

SELECT field_name , width [HEADING string, width]

SEQ field_name , width

INDEX index_file, key_expression, key_length

END

The following sections describe each statement in the AC file.

TASK

The TASK statement defines the task name and title for the task list. Only one
TASK statement appears in an AC file.

Note: The keyword DELETE may appear in an .AC file. It
is reserved for an internal function and is not available to
the programmer.

Parameter Description Valid Entries

name Name of task as it will appear in the Task Name field
on the System Configuration Information panel

Alphanumeric string
of up to 8 characters

title Name of the task as it will appear on the
Configuration Manager Main Menu

Alphanumeric string
FactoryLink ECS / Programmer’s Access Kit / 93

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 94

•
•
•
•

CT

The CT statement defines a database table. A task may have as many CT
statements as needed, one per panel. If more than one panel is displayed when
this task is chosen from the Configuration Manager Main Menu, place the CT
statements in reverse order from the order in which the panels are displayed; that
is, the first CT statement corresponds to the back panel, the last CT statement
corresponds to the front panel, and so on.

Refer to “Operating System Notes” on page 112 for valid name and table formats
specific to each operating system

Parameter Descr iption Valid Entries

table_name Name of the
database table

Valid table name.

file_name Name of the
database table or
file specification

If name refers to:

Database table

File spec.

Then enter:

Same name as specified
above in table_name

TEXT or EXECUTE type in
EDIT statement:
File name(s) to edit.

title Title of the panel Alphanumeric string
 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
EDIT

The EDIT statement defines a module or program used to edit this database table.
If the EDIT statement is not included, the Configuration Manager uses the
default edit procedure (refer to the DEFAULT valid entry).

Parameter Description Valid Entries

type Determiner of the
module or program
used for editing

DEFAULT (Standard panel edit procedure, which
means that the developer completes the columns
and rows of the panel, using the Tab key or arrow
keys to move from field to field or row to row.)

TEXT (Text panels, where developer presses the
Enter key to move to the next line of text. Example:
Math and Logic Procedures.)

EXECUTE (For information about this entry, refer
to “Executing an Editor Program from the
Configuration Manager” on page 106 in this
chapter.)

EXTERNAL

editor Editor to be used on
this database table;
depends on the type
parameter

If the type is:

DEFAULT

TEXT

EXECUTE

EXTERNAL
FactoryLink ECS / Programmer’s Access Kit / 95

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 96

•
•
•
•

VALIDATE

The VALIDATE statement defines the level of editing a developer is allowed when
completing a configuration table and the program or module that performs the
editing.

PANEL

The PANEL statement defines the display/edit window(s) for the database table.
If the PANEL statement is not included, the developer cannot edit records in the
table with the Configuration Manager default edit functions.

Parameter Descr iption Valid Entries

type Type and level of
editing that can be
performed on a
configuration table

DEFAULT

EXTERNAL

READONLY

NOEDIT

Validation done internally by the
Configuration Manager

Validation performed by an
external
function

Developer can only view table;
editing
not allowed.

Do not use this entry: it is
reserved.
NOEDIT means developer cannot
edit or view the table.

Parameter Descr iption Valid Entries

panel_file Name of a file containing the panel
definition

Valid file name.

x Initial horizontal position of the
lower left corner of the panel or of the
default panel if the panel_file is not
used

0-1000 where the position:
0,0 is lower left corner of screen
1000,1000is upper right corner of
screen
 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
FIELD

The FIELD statement defines one editable field in the database.

y Initial vertical position of the lower
left corner of the panel or of the
default panel if the panel_file is not
used

0-1000 where the position:
0,0 is lower left corner of screen
1000,1000is upper right corner of
screen

width Width of the panel 0-1000

height Height of the panel 0-1000

Parameter Description Valid Entries

name Field name exactly as it is
stored in the database table
definition

Valid field name.

type Type of field. The
Configuration Manager
performs validation on the
field based on the type.

CHARACTER
NUMBER
KEY
TAG

The developer can place any string in this
parameter. If the string is not recognized, the
Configuration Manager uses CHARACTER.

width Maximum field length 0-11 characters or database limit for SQL

field_prec Numeric precision of field 0

key_file KEY or TAG types only:
Name of a keyword file that
is used to validate the value
in the field.

Name of the key file; do not use the extension;
no entry.

default Default value for the field. String. If the type is KEY, then the entry
must be included in the key_file. If the type is
TAG, then the entry must be a valid tag type.

Parameter Description Valid Entries
FactoryLink ECS / Programmer’s Access Kit / 97

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 98

•
•
•
•

HEADING

The HEADING option defines the text used as a field heading and the character
width for the column. If a heading is not specified, the field name is used as the
field heading and the width is calculated based on the number of characters in the
field. The Configuration Manager allows an unlimited number of lines of text for
the HEADING parameter. Delimit lines with the vertical bar on the first line and
Heading on the second line.

low NUMBER type only:
Lowest value allowed in this
field.

Number; must match radix indicated in flags
parameter.

high NUMBER type only:
Highest value allowed in this
field.

Number; must match radix indicated in flags
parameter.

flags Edit options b allow blank field
v validate using min/max
r read-only field
o octal field
x hexadecimal field
u force field to upper case

Parameter Description Valid Entries

string Field heading as it appears on the panel Text string

width Width of the heading in pixels Number of pixels

Parameter Descr iption Valid Entries
 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
RELATE

A RELATE entry indicates that this field is used as a relational field. The current
value of the field is used to select records in another database table. The index file
is currently unused.

TYPE

The TYPE statement causes the TAG type of a TAG field to be displayed.

Parameter Description Valid Entries

CDB_name Name of the database table from which
related records are to be selected (for
example, associated data in another table
about a specified table).

Table_name parameter entry of
another CT statement in this AC
file

field_name Name of field to set using data from this
field.

Name parameter entry of a
FIELD statement in related CT
in this AC file

index_file Name of index to use for ordering; not
currently implemented.

Index_file parameter entry of an
INDEX statement in related CT
in this AC file

Parameter Description Valid Entries

field_name TAG field associated with the
type

String containing the name of a field
of type TAG in this CT

HEADING string Field heading as it appears on
the panel

Text string

HEADING width Width of the heading in pixels Number of pixels

FactoryLink ECS / Programmer’s Access Kit / 99

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 10

•
•
•
•

DESC

The DESC statement indicates that the description of an OBJECT field should be
displayed.

DOMAIN

Enter the DOMAIN statement exactly as shown below for each configuration
panel in each .AC file:

DOMAIN “DOMAIN”, 8

After the developer configures a panel, the task-specific .CDB file's DOMAIN
statement will contain SHARED or USER, depending on the domain the
developer selected in the Domain Selection box. The OBJECT.CDB will associate
each element with the domain defined by the developer in the Tag Definition
pop-up panel.

For FactoryLink to operate correctly, this statement must be included for each
configuration table defined in an .AC file.

Parameter Descr iption Valid Entries

field_name TAG field associated with this
description

String containing the name of a field
of type TAG in this CT

HEADING
string

Heading for this column on display Text string

HEADING
width

Width of the heading in pixels Number of pixels
0 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
SELECT

The SELECT statement defines a selection field. Each CT may have one or more
select fields. The select fields determine whether or not a record in the CT is
displayed and edited by matching the current value of the selection with the value
contained in the database. Normally, select fields are not listed in the FIELD
statements and cannot be changed by the developer. The first select field,
however, is displayed at the bottom of the table and may be changed by the
developer. The HEADING option allows a string to be defined that is used to label
the select input box. Any other select fields should be set by a RELATE statement
in another CT.

SEQ

The SEQ statement defines a field that contains a sequence number for the
records. Sequence numbers can be included in the primary key for the database so
that records are sorted in the same order that they were entered. The
Configuration Manager automatically generates the sequence number.

Parameter Description Valid Entries

field_name Name of the field String; valid database field name.

width Field length Maximum database field width.

HEADING
string

Heading; displayed as prompt for
select input field

Text string

HEADING
width

Width of the heading in pixels Number of pixels

Parameter Description Valid Entries

field_name Name of the field
containing a sequence
number for the records

Valid database field name.

width Field length 0 - maximum field width.
FactoryLink ECS / Programmer’s Access Kit / 101

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 10

•
•
•
•

INDEX

The INDEX statement defines an index for the database. The first INDEX
statement defines the primary index and controls the order of records on the
screen. If needed, define additional indices for use by external programs, such as
CTGEN. The Configuration Manager updates all indices whenever a database
record is updated.

END

The END statement terminates a CT definition; therefore, there is one END
statement corresponding to each CT statement in the AC file.

Sample AC File

Once the AC file is completed, it should resemble the sample AC file below
(included in the PAK software as the file SKEL.AC):

* Attribute Catalog for Skeleton Task
TASK “SKEL”, “Skeleton FL Task”* Task name and Title

* CT Name Database Title
CT “skeltags”, “skeltags”, “Tag List”
 EDIT DEFAULT * Default Editing
 VALIDATE DEFAULT * Default validation
 PANEL “”, 100, 100, 500, 500 * Initial position
 FIELD “TAG”, “TAG”, 16, 0, “”, “”, 0, 0, “”

HEADING “Tag Name”, 96
 DOMAIN“DOMAIN”, 8
 SELECT “TABLE_NAME”, 16 * Primary key

Parameter Descr iption Valid Entries

index_file Name of the index Valid index name.

key_expressi
on

List of fields that are used to form
the key for the database. A field
contained in the key should not be
listed in the FIELD Statements

Entry format is:
“FIELD+FIELD2+...FIELDN”

key_length Length of the key Integer equal to the sum of the lengths
of the fields contained in the key
2 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
 SEQ “TABLE_NBR”, 10 * Sequence Number
INDEX “skeltags”, “DOMAIN+TABLE_NAME+TABLE_NBR”, 34

*Indexf,key
END

* CT Name Database Title
CT “skeltrig”, “skeltrig”, “Trigger Tags”
 EDIT DEFAULT * Default Editing
 VALIDATE DEFAULT * Default validation
 PANEL “”, 200, 0, 500, 500 * Initial position
 FIELD “TRIGGER”, “TAG”, 16, 0, “TYPED”, “DIGITAL”, 0, 0, “”
 HEADING “Trigger Tag”, 96
 FIELD “TABLE_NAME”, “CHARACTER”, 16, 0, “”, “”, 0, 0, “”

HEADING “Table Name”, 96
RELATE “skeltags”, “TABLE_NAME”, “skeltags”

 DOMAIN“DOMAIN”,8
 SEQ “TABLE_NBR”, 10 * Sequence Number
 INDEX “skelhdr”, “DOMAIN+TABLE_NBR”, 18* Index file, key
END
FactoryLink ECS / Programmer’s Access Kit / 103

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 10

•
•
•
•

To configure the task, select SKeleton FL Task from the Configuration Manager
Main Menu. As described in the CT statements, the panels, Tag List and Trigger
Tags, are displayed on the Main Menu along with the Domain Selection box:

The second CT definition describes the Trigger Tags panel; therefore, it is the
front panel in the display. Compare the PANEL statements for both panels: the
lower left corner of the Tag List panel (position 100) appears further left than the
lower left corner of the Trigger Tags panel (position 200). Also, the lower left
corner of the Tag List is vertically higher (position 100) than the lower left corner
of the Trigger Tags panel (position 0). The example runs in the User domain.

As described in the FIELD statements for the Trigger Tags panel, the panel
contains two fields, Trigger Tag and Table Name. In the Trigger Tag field, since
the type parameter in the FIELD statement is TAG and the key_file parameter is
TYPED (digital), a developer configuring the task enters the name of a digital
real-time database element. In the Table Name field, since the type parameter in
the FIELD statement is CHARACTER and the width parameter is 16, a developer
configuring the task enters a string of 1-16 characters.
4 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
As described in the RELATE statement for the Trigger Tags panel, the two panels
are related to each other by the TABLE_NAME field. Once the Trigger Tags panel is
complete, the developer selects the Table Name for which the developer wanted to
complete a tag list, and then completes the Tag List panel for that table name.

After the developer completes the Trigger Tags panel, chooses the desired Table
Name, and opens the Tag List panel, the chosen Table Name appears in the field
above Cancel on the Tag List panel (refer to “SELECT” on page 101).

As described in the FIELD statement for this panel, the developer completes only
one field, Element Name, entering the name of an element (TAG type in FIELD
statement) that can be of any data type.

Next, the developer chooses the domain in which the external editor program is to
run. Since an editor program normally runs an individual job for each system
user, the developer in this example would choose USER to indicate the USER
domain. To end the configuration, choose ENTER.
FactoryLink ECS / Programmer’s Access Kit / 105

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

 10

•
•
•
•

Executing an Editor Pro gram from the Configuration Manager

The Configuration Manager can load any executable program as an editor;
therefore, to run an editor from the Configuration Manager, create an AC file for
the external editor program.

An AC file for an external program has the following format:

TABLE task name, title string

CT ct name, file spec, “”

EDIT EXECUTE executable, cm arguments, format string

VALIDATE DEFAULT

END

where

The following sample AC file loads the system E.EXE to edit FactoryLink Math
and Logic files.

TASK “IML”, “Edit Math Procedures with System Editor”

Note: You must also add the name of the AC file to the
TITLES file. Refer to “Testing the Configuration
Environment” on page 110 for more information.

Parameter Description

task name Name of the FactoryLink run-time task

title string Text that is to appear in the Configuration Manager Main
Menu window

ct name Name of the configuration table

file spec File name to pass to the executable

executable Path of the executable file

cm arguments List of Configuration Manager arguments to be passed

format string Format string for command arguments. If “%s” appears in
the format string, it will be replaced with the file spec option
and passed to the editor as a command line argument.
6 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the Attribute Catalog(s)

4

Introduction
CT “iml”, “procs/*.prg”, “”

EDIT EXECUTE “e.exe”, “”, “%s”

VALIDATE DEFAULT

END

Since the file specification contains a wild card character, the screen displays a
list box of all .PRG files in the /{FLAPP}/PROCS directory. The developer selects
a file name to be passed to the editor. If the file spec contains wild card characters
and is not a full path name, the current application directory is added to the front
of the file name to make a full path name.

If the file spec option does not contain any wild card characters, then the display
does not contain the file list box, and the file spec option is used exactly as it
appears in the AC file.

If the developer selects MYPROC.PRG from the file list box, the following
command is executed:

e.exe /{FLAPP}/PROCS/MYPROG.PRG

If the format string is given as “argument %s”, the following command is
executed:

e.exe argument /{FLAPP}/PROCS/MYPROG.PRG

Note: The string specified as the format string is passed to
the C-language function SPRINTF. Only one %s can be
specified. Also, if a percent sign must be passed as an
argument, denote this by using two percent signs.

Note: This is slightly inconsistent. The format string
should be used in either case, but it is used only if the file
spec contains wild card characters. There is currently no
easy way to pass wild card characters on to the external
editor.
FactoryLink ECS / Programmer’s Access Kit / 107

SETTING UP THE CONFIGURATION ENVIRONMENT
Create the KEY Files

 10

•
•
•
•

CREATE THE KEY FILES

KEY files are used to validate ASCII text strings entered by the developer in the
Configuration Manager. They are also used by the CTGEN utility that generates
the binary CT files to translate ASCII values into binary values used by the
application task. A variety of KEY files can be found in the /{FLINK}/KEY
directory on a FactoryLink system. If a KEY file does not exist that contains the
desired values, create a new KEY file with an ordinary text editor.

Construction of a Key File

Each active line of a KEY file specifies a text-to-binary value conversion.
Comment lines, which are not used by the system and are for information and
documentation purposes only, begin with an asterisk (*).

By convention, the text and its associated value are displayed on the same line
and are separated from each other by a vertical bar (|). Any leading and trailing
blanks surrounding the text or the value are ignored by the Configuration
Manager. The binary values in the KEY file must be entered in decimal notation.

Sample KEY File

A sample KEY file is MONTH.KEY, used for translating abbreviations of the
names of the months to numeric values:

* MONTH.KEY

* NAME | NUMBER

NULL |-1
JAN | 1
FEB | 2
MAR | 3
APR | 4
MAY | 5
JUN | 6
JUL | 7
AUG | 8
SEP | 9
OCT | 10
NOV | 11
DEC | 12
8 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Test the Configuration Environment

4

Introduction
TEST THE CONFIGURATION ENVIRONMENT

Prior to testing the configuration environment, inform FactoryLink that the new
task exists.

Infor ming FactoryLink about the Task

To fully integrate the new task with the FactoryLink, the developer must
configure FactoryLink to load and start up the task.
• Add the name of the AC file to the TITLES file to make the task accessible from

the Configuration Manager Main Menu.
• Add the task to the System Configuration Table.

• Add the task to the Run-Time Manager display to view status and message
information on the Run-Time Manager display.

Adding the Name of the AC File to the TITLES File

When the Configuration Manager starts, it reads the file
/{FLINK}/AC/TITLES which contains a list of all AC files to be loaded by the
Configuration Manager. Therefore, the name of the AC file must be added to the
TITLES file. Perform the following steps to allow access to the task configuration
table(s) from the Configuration Manager Main Menu:

 1 Put the AC file in the /{FLINK}/AC directory.

 2 Using a text editor, add the name of the new AC file to the TITLES file, located in
the /{FLINK}/AC directory. The entry location of the new AC file in the TITLES
file corresponds to the location of that task selection on the Configuration
Manager Main Menu.

 3 Access the Configuration Manager Main Menu.

If the Configuration Manager finds anything wrong with the AC file or if it cannot
locate a KEY file referenced by the AC file, it displays an error panel stating the
nature of the problem.

Note: The System Configuration Table defines reserved
entries. A task can run without an entry; however, it cannot
be automatically started by the Run Manager task, and the
task cannot report its status to the Run-Time Manager
using status and message elements.
FactoryLink ECS / Programmer’s Access Kit / 109

SETTING UP THE CONFIGURATION ENVIRONMENT
Test the Configuration Environment

 11

•
•
•
•

If there are no problems or once any problems have been resolved, the name
specified in the title parameter of the TASK statement in the AC file should
appear as a selection on the Configuration Manager Main Menu.

Adding the Task to the System Configuration Table

To add a task to the System Configuration Table, open the System Configuration
Information panel and complete the fields for the new task. For details about
opening and entering information in the System Configuration Information panel,
refer to “Using System Configuration” in the FactoryLink Fundamentals guide.

Adding the Task to the Run-Time Manager Display

So status and message information will be visible on the Run-Time Manager
Display, add the task to the Run-Time Manager Display drawing and animate the
appropriate fields:

 1 Choose Application Editor from the Configuration Manager Main Menu.

 2 Select the RUNMGR drawing.

 3 On a line not in current use by a defined task, animate the Task field, the Status
field, and the Message field as Output Text fields.

• The name of the element entered for the Task field should match exactly the
name entered in the Display Name field on the System Configuration
Information panel.

• The name of the element entered for the Status field should match exactly
the name entered in the Display Status field on the System Configuration
Information panel.

• The name of the element entered for the Message field should match exactly
the name entered in the Task Message field on the System Configuration
Information panel.

Refer to the Application Editor Guide for detailed instructions about using the
Application Editor.

Testing the Configuration Environment

Test the Attribute Catalog using the Configuration Manager.

Choose the new task from the Configuration Manager Main Menu. If the
Configuration Manager finds anything wrong with the AC file or if it cannot locate
a KEY file referenced by the AC file, it displays an error panel stating the nature
of the problem.
0 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Test the Configuration Environment

4

Introduction
Once these problems are analyzed and corrected, invoke the Configuration
Manager repeatedly, each time entering a variety of simulated data in the panels,
and, therefore, in the developer-created database tables. Using a compatible
database manager or the CDBLIST utility included with the PAK, examine the
resulting database table(s) to ensure that the Configuration Manager is
generating the correct and expected data and placing it in the proper location
within the table.
FactoryLink ECS / Programmer’s Access Kit / 111

SETTING UP THE CONFIGURATION ENVIRONMENT
Operating System Notes

 11

•
•
•
•

OPERATING SYSTEM NOTES

The following sections provide operating system specific information relevant to
this chapter.

For Windows /NT Users

AC File Format (page 92)

This information corresponds to all references to valid name formats.

The PAK for Microsoft Windows currently uses a dBASE-compatible database
library which dictates the following parameters:

For OS/2 Users

AC File Format (page 92)

This information corresponds to all references to valid name formats.

The PAK for OS/2 uses a dBASE-compatible database library which dictates the
following parameters:

Entries: Maximum lengt h/width:

All table
and index
names

Length of a file name

Field
names

11 characters

Field width 255 characters

Entries Maximum length/width

All table
and index
names

Length of a file name

Field
names

11 characters
2 / FactoryLink ECS / Programmer’s Access Kit

SETTING UP THE CONFIGURATION ENVIRONMENT
Operating System Notes

4

Introduction
AC File Format (page 92)

For OS/2, no additional information applies.

Testing the Conf iguration Environment (page 110)

Use a dBASE-compatible database manager.

For UNIX Users

AC File Format (page 92)

This information corresponds to all references to valid name formats.

The Programmer's Access Kit under UNIX currently uses a dBASE-compatible
database library which dictates the following parameters:

EDIT (page 95)

The EXTERNAL entry for the type parameter of the EDIT statement is not valid
in the UNIX environment.

Testing the Conf iguration Environment (page 110)

Use a dBASE-compatible database manager.

Field width 255 characters

Entries Maximum length/width

All table
and index
names

Length of a file name

Field
names

11 characters

Field width 255 characters

Entries Maximum length/width
FactoryLink ECS / Programmer’s Access Kit / 113

SETTING UP THE CONFIGURATION ENVIRONMENT
Operating System Notes

 11

•
•
•
•

4 / FactoryLink ECS / Programmer’s Access Kit

• • • •Chapter 5

Converting Database
Tables to CTs
5

C
onverting D

atabase
T

ables to C
T

s

This chapter provides detailed instructions for the task construction procedure:
converting database tables to CTs. The figure below illustrates the portion of the
Task Construction Flowchart (see page 83) involved in converting database tables
to CTs.

Create CTG Conversion

Script

Create Binary CT File

Problems with CT

File?

No

Yes
 Edit Script

FactoryLink ECS / Programmer’s Access Kit / 115

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

 11

•
•
•
•

When converting database tables to CTs, you must write a configuration table
generator (CTG) script that tells the CTGEN utility (generate binary CT files)
how to extract data from the database tables and combine it to produce a binary
Configuration Table (CT) file. You must also verity that the script performs the
desired conversion.

This section contains the following topics:
• Creating the CTG Conversion Scripts
• Testing the Conversion Process

CREATING THE CTG CONVERSION SCRIPTS

Conversion Overview

The conversion process translates database tables into run-time, binary
configuration tables. This enables FactoryLink run-time tasks to load the tables
with little or no additional processing,

All run-time CTs use a common archive format. Each CT file begins with an
archive header indicating the number of CTs in the archive. The header is
followed by an index entry for each CT. Each CT consists of an optional header
section followed by zero or more records. Each record within a CT has the same
format.

[CT archive header]

[CT index 0]

[CT index 1]

[CT index n]

[CT 0 header]

[CT 0 records]

[CT 1 header]

[CT 1 records]

[CT n header]

Note: The term archive refers to the binary CT file
containing data for more than one database table. For
example, the TIMER.CT file contains information for the
event timer and interval timer database tables.
6 / FactoryLink ECS / Programmer’s Access Kit

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

5

C
onverting D

atabase
T

ables to C
T

s

[CT n records]

The format of the CT archive header is shown below:

typedef struct _CTARC/* entire CT archive header*/

{u16 magic; /* magic number for CT file */

u16 version; /* version number (0x0100 = V 1.0)*/

u16 ncts; /* number of CTs within archive */

/* (equals number of CTNDXs) */

] CTARC;

The format of a CT index is shown below:

typedef struct _CTNDX/* single CT index record */

{

u16 type; /* type of entry (numeric) */

char name[10]; /* name of entry (ASCII) */

u32 offset; /* file offset to header */

u16 hdrlen; /* header length, in bytes */

u16 reclen; /* record length, in bytes */

u16 nrecs; /* number of records */

CTNDX;

These structures can be found in the FLIB.H file. Refer to Chapter 7,
“FactoryLink Kernel and Library” for additional information about this file.

The format of the CT header and CT records varies according to the database
table.

Conversion Script Format

A conversion script, which is processed by the CTGEN utility, controls conversion
of database table information into CT files. Generally, design the conversion script
so the output from CTGEN matches the run-time task's data structures. This
FactoryLink ECS / Programmer’s Access Kit / 117

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

 11

•
•
•
•

allows the run-time task to read the binary data from the CT archive directly into
memory. The /{FLINK}/CTGEN directory contains sample CT conversion scripts.

The format of a conversion script is shown below:

TABLE type, name, hdrlen, reclen
HEADER database, namefield

SORT “FIELD1”,”FIELD2”
DOMAIN “DOMAIN”, S, 8

FIELD name, format, storage, [options]
RECORD database, namefield, indexfile

SORT “FIELD1”,”FIELD2”,”FIELD3”
DOMAIN “DOMAIN”, S, 8
FIELD name, format, storage, [options]
SKIP count, value

The following paragraphs describe this format.

TABLE

The TABLE statement defines one CT type in the archive. The values of the
parameters are placed in the appropriate fields in the CT index record. A single
TABLE definition may result in multiple CT index entries. The HEADER
database determines the number of times the table is repeated.

Multiple TABLE definitions may exist in the script. Each one is processed in
order.

Parameter Description Valid Entries

type Table type ID 0-65536 (Integer value)

name Table name String of up to 10 characters

hdrlen Number of bytes to be written into the
header entry in the archive

0
CTGEN automatically calculates
this value.
8 / FactoryLink ECS / Programmer’s Access Kit

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

5

C
onverting D

atabase
T

ables to C
T

s

HEADER

The HEADER statement defines the format of the header section of the CT. No
more than one header record is written for a CT; however, the header record may
be non-existent.

RECORD

The RECORD statement defines the format of the repeated record entries in a CT.
Multiple RECORD statements are allowed. Each is processed in order.

Parameter Description Valid Entries

database Name of the database table to be used Valid database table name (string of
characters enclosed in quotes).

namefield Controller of the repeated record
section.

Null or non-null string

If the value is:Then:

null stringAll records in the repeated
section are written.

non-null stringThe value of the
indicated
field is used to fill in the
name member of the CT
index record and to select
repeated records.

Parameter Description Valid Entries

database Name of the database table to be used Valid database table name.
FactoryLink ECS / Programmer’s Access Kit / 119

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

 12

•
•
•
•

DOMAIN

Enter the DOMAIN statement exactly as shown below for each configuration
panel in each .CTG file:

DOMAIN “DOMAIN”, S, 8

where DOMAIN is the name of the domain directory specified in the
corresponding .AC file. This name must be the same as the name
in the DOMAIN statement of the corresponding .AC file. For
information about .AC files, refer to Chapter 4, “Setting up the
Configuration Environment.

S Indicates that the domain directory name consists of a character
string.

8 Is the number of characters in the domain directory name. This
number must be the same as the number in the DOMAIN
statement of the corresponding .AC file. For information about
AC files, refer to Chapter 4, “Setting up the Configuration
Environment.”

The DOMAIN statement in the .CTG file places the .CT file in the domain-specific
path specified in this parameter, which is {FLAPP}/{FLDOMAIN}/*.CT.

For FactoryLink to operate correctly, this statement must be included for each
configuration table included in a .CTG file.

namefield Field in the RECORD database that
must match the namefield field in the
current record of the HEADER. If this
parameter is not specified, the
HEADER namefield is not specified,
or the HEADER is non-existent, then
all records in the RECORD database
are written to the CT. This field
should be the primary key.

Valid field name.

indexfile Name of the index file that should be
used to read the records

Index containing namefield as the
primary key.

Parameter Description Valid Entries
0 / FactoryLink ECS / Programmer’s Access Kit

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

5

C
onverting D

atabase
T

ables to C
T

s

FIELD

The FIELD statement defines the translation of one field in the database table to
bytes in the CT entry. Include as many FIELD statements as necessary.

Parameter Description Valid Entries

name Field name of the
database field to be used

Valid field name.

format Type of translation to be
performed on the
database field. The
format is specified by a
single character.

T Use only for TAG fields. Data is a
two-word structure containing
segment offset.

S SCII string. The database field is
copied directly to the output
record.

D Decimal number. The database
field is considered to be a string
of numerical digits representing
a binary value.

X Hexadecimal number
O Octal number
F Floating-point number

storage Number of bytes in the
output record that the
value will occupy. The
database value is
truncated or null-padded
to fit the output field
width. All ASCII strings
should be
null-terminated. The
storage width includes
the terminating byte.

Number of bytes
FactoryLink ECS / Programmer’s Access Kit / 121

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

 12

•
•
•
•

options Specifier of additional
information about how
the data in the input field
is converted. Use as
many FIELD statements
as required.

DEFAULT (Use alone or with any
other option.) Default value to be
used if the database table field
contains a NULL.

TAG (Do not use with TYPE, DIM or
KEY.)
Input field contains a tag name

If format is:Then:
S Tag name is output.
D Tag segment and offset output as

a numerical value
T Tag segment and offset are

written in binary with the offset
in the low two bytes and the
segment in the upper two bytes.

DIM Do not use with TAG, KEY or
TYPE.) The dimensions of the
TAG contained in the database
field is used as the output data.

S The number of dimensions as a
character string

D The number of dimensions as a
binary value

TYPE (Do not use with TAG, DIM or
KEY.) The name parameter is the
name of a TAG field. The type of the
TAG contained in the database field
is used as the output data.

If the output
format is
S

Then the output
is:
The type name

D The type
numeric ID

Parameter Descr iption Valid Entries
2 / FactoryLink ECS / Programmer’s Access Kit

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

5

C
onverting D

atabase
T

ables to C
T

s

SKIP

A SKIP statement causes one or more bytes to be written to the output. The SKIP
statement allows padding of fields to match the task data structures as well as
insertion of specific binary data into the CT file. Include as many SKIP
statements as needed. FIELD and SKIP statements may be mixed in any order.

KEY Do not use with
TYPE, DIM or
TAG.) The input
field contains a
string that must
be converted
using a key file.
The name of the
key file is listed
after the KEY
option.

If the format is:Then:
S The replacement text is

copied to the output
record.

D, X, or O The replacement text is a
string of digits to be
converted to a binary
numeric value.

Parameter Description Valid Entries

count Number of bytes to output Integer value greater than 0

value (Optional) Byte value used to fill the
output record

Value of the byte (default = null)

Parameter Description Valid Entries
FactoryLink ECS / Programmer’s Access Kit / 123

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

 12

•
•
•
•

SORT

The SORT statement defines the sort order of the repeated header or record
entries in a CT. The SORT immediately follows the HEADER or RECORD to
which it applies and may contain one or more field names to be used to sort the
entries. Only one SORT statement is allowed per HEADER or RECORD entry.

Sample Conversion Script

The following file is a sample conversion script included in the PAK software as
SKEL.CTG.

TABLE 0, “”, 4, 4
 HEADER “SKELTRIG.CDB”, “TABLE_NAME”
 FIELD “TRIGGER”, T, 4, TAG
 DOMAIN “DOMAIN”, S, 8

RECORD “SKELTAGS.CDB”, “TABLE_NAME”, “SKELTAGS,CDX”
 FIELD “TAG”, T, 4, TAG
 DOMAIN “DOMAIN”, S, 8

Creating FactoryLink Configuration Tables (CTs)

The binary CT file contains the information specified in the task database
table(s). The CTGEN utility binds (converts) the tag names specified in the
database tables to tag numbers maintained by the real-time database. At run
time, the task loads the CT file and builds any internal structures required to
perform the job. To improve performance, tasks use the tag number from the CT
instead of the tag names in the database table(s) to access the real-time database.

After creating a *.CTG file and placing it into the {FLINK}/CTGEN directory, add
it to the list of .CT files to be generated. Using any text editor, edit the CTLIST
file on the {FLINK}/CTGEN directory. Add the CT name and all database tables
that make up the CT.

ctname: databases . . .

Parameter Description Valid Entries

Sort field Field names “TABLE_NBR”, “DOMAIN”, or
any field name in the header or
record being sorted.
4 / FactoryLink ECS / Programmer’s Access Kit

CONVERTING DATABASE TABLES TO CTS
Creating the CTG Conversion Scripts

5

C
onverting D

atabase
T

ables to C
T

s

After adding the script to the CTLIST file, generate a *.CT file using either of the
following methods:
• Execute the Run-Time Manager by entering the following command at the

system prompt:

FLRUN <Enter>

• Execute the CTGEN utility by entering the command shown below at the
system prompt.

CTGEN uses the CTLIST file to build CTs and rebuild all CTs whose database
tables have changed. CTGEN can be run stand-alone, or with a combination of
parameters. To run CTGEN in stand-alone mode, enter the following command at
the system prompt:

ctgen <Enter>

To run CTGEN with parameters, enter the following command at the system
prompt:

ctgen [-i(name.ctg) -a(application dir) -o(ouput path)
-c -r -v(#) <Enter>

where

-i indicates that only those CTs referenced within the specified
.CTG file are to be rebuilt. Next to -i, enter the file name of the
.CTG file to be used. ({FLINK}/CTGEN is the default directory.)

-a are the CTs in alternate application directories.

-o indicates that the output is to be redirected to the specified file.
(The default is {FLAPP}/CT/NAME.CT.)

-c indicates that all element numbers (segments and locations) are
to be cleared before the CT is generated. (Must be followed by -r)

-r indicates that all files are to be rebuilt. (Usually preceded by -c)

-v(#) indicates verbose mode and level. Each verbose level displays
cumulative messages. For example, v2 displays general activity
messages and historian and client task messages. For general
viewing, choose v1. For debugging, use v2-v4.

Valid entries: Descriptions:

v1 displays general activity messages
FactoryLink ECS / Programmer’s Access Kit / 125

CONVERTING DATABASE TABLES TO CTS
Testing the Conversion Process.

 12

•
•
•
•

If the environment variables ({FLAPP}/{FLNAME}/{FLDOMAIN}/{FLUSER})
have already been set and the developer has logged into the appropriate
FactoryLink user account, -n and -u do not need to be specified.

Adding CT Information to the CM System Table

Refer to “Operating System Notes” on page 127 for operating system-specific notes
on adding CT information to the CM System Table.

TESTING THE CONVERSION PROCESS.

The following utilities provided with the PAK aid in testing the conversion
process:
• CDBLIST - Lists a FactoryLink database table (located on the application

directory).

cdblist *.cdb [*.cdx]

• CTLIST - Lists FactoryLink binary configuration tables (CTs) created by the CT
Generator (CTGEN) located on the /{FLAPP}/CT directory. More than one CT
file may be listed at a time.

ctlist name1.ct name2.ct ...

v2 displays historian and client task messages

v3 displays the parsing of .CTG file tokens

v4 displays tag names as they are written to the
database.

Valid entries: Descriptions:
6 / FactoryLink ECS / Programmer’s Access Kit

CONVERTING DATABASE TABLES TO CTS
Operating System Notes

5

C
onverting D

atabase
T

ables to C
T

s

OPERATING SYSTEM NOTES

The following sections contain operating system specific information relevant to
this chapter.

For OS/2 Users

Conver sion Script Format (page 117)

This information corresponds to all references to formats for valid entries

The PAK for OS/2 currently uses a dBASE-compatible database library which
uses the following parameters:

Creating FactoryLink Configuration Tables (C Ts) (page 124)

PAK for OS/2 does not have any additional CTGEN parameters.

Adding CT Information to the CM System Table (page 126)

This step is not necessary for OS/2

For Windows/NT Users

Conver sion Script Format (page 117)

This information corresponds to all references to valid name formats.

Entries Maximum length/width

All table and index names Length of a file name

Field names 11 characters

Field width 255 characters

FactoryLink ECS / Programmer’s Access Kit / 127

CONVERTING DATABASE TABLES TO CTS
Operating System Notes

 12

•
•
•
•

The PAK for Microsoft Windows uses a dBASE-compatible database library which
uses the following parameters:

Creating FactoryLink Configuration Tables (CTs) (page 124)

PAK for Microsoft Windows does not have any additional CTGEN parameters.

Adding CT Information to the CM System Table (page 126)

This step is not necessary for PAK for Windows.

For UNIX Users

Conversion Scr ipt Format (p age 117)

This information corresponds to all references to valid name formats.

The Programmer's Access Kit under UNIX currently uses a dBASE-compatible
database library which dictates the following parameters:

Adding CT Information to the CM System Table (page 126)

Do not perform this step in a UNIX environment.

Entries: Maximum length/width:

All table and index names Length of a file name

Field names 11 characters

Field width 255 characters

Entries Maximum length/width

All table and index
names

Length of a file name

Field names 11 characters

Field width 255 characters
8 / FactoryLink ECS / Programmer’s Access Kit

• • • •Chapter 6

Using the Run-Time
Manager
6

U
sing the R

un-T
im

e
M

anager
The Run-Time Manager is a program supplied with the FactoryLink Foundation
package. It starts, monitors, and controls the concurrent execution of all
FactoryLink tasks. The Run-Time Manager is itself a FactoryLink task that runs
concurrently with the other FactoryLink tasks.

This section contains information about the following topics:
• Interaction With Other Tasks
• Design Conventions
• Run-Time Requirements
• Sample Task Program Skeleton
FactoryLink ECS / Programmer’s Access Kit / 129

USING THE RUN-TIME MANAGER
Interaction With Other Tasks

 13

•
•
•
•

INTERACTION WITH OTHER TASKS

The Run-Time Manager interacts with the other tasks within a specific domain
through the FactoryLink API and the real-time database as shown in the
following figure.
0 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Design Conventions

6

U
sing the R

un-T
im

e
M

anager
DESIGN CONVENTIONS

Design a custom FactoryLink task using the guidelines listed in Chapter 3,
“Constructing a Task“, Adherence to the following design conventions provides
maximum portability and protects against software obsolescence.
• The program should access the real-time database and Run-Time Task Table

only through the FactoryLink library functions provided expressly for this
purpose. Refer to Chapter 7, “FactoryLink Kernel and Library,” in this manual
for an overview of these functions. Refer to Chapter 8, “FactoryLink API
Reference Guide,” in this manual for details about using these functions.

• If the program accesses window-management functions for display and input, it
should use only standard operating system procedures, such as calling provided
OS utilities.

• User domain instances of the Run-Time Manager should be started up after the
Run-Time Manager instance in the shared domain. If a user instance of the
Run-Time Manager attempts to start when there is no running instance of the
Run-Time Manager in the shared domain, the user domain instance will be
refused initialization by the FactoryLink kernel, and an error message to that
effect is displayed. Should this error message occur, check to ensure that user
domain instances are not started until after the shared domain Run-Time
Manager is running.
FactoryLink ECS / Programmer’s Access Kit / 131

USING THE RUN-TIME MANAGER
Run-Time Requirements

 13

•
•
•
•

RUN-TIME REQUIREMENTS

For the Run-Time Manager to effectively perform FactoryLink task management
duties, each FactoryLink task must adhere to certain run-time requirements as
outlined in Chapter 3, “Constructing a Task“, of this manual. Most of these
requirements are predicated on the fact that the Run-Time Manager monitors
specific database elements in the real-time database on a per-task basis. The
requirements are described below:

Initialization

First, the task attaches with the real-time database (or Kernel) by calling FLIB
function FL_PROC_INIT() to obtain a task id (taskid). Function FL_PROC_INIT()
uses environment variables {FLNAME}, {FLDOMAIN}, and {FLUSER} to
determine which real-time database to attach.

If the call fails (taskid == ERROR), the task writes an appropriate error message
to STDOUT and calls EXIT.

If the call succeeds (taskid!= ERROR), the task obtains the task's environment
elements by calling FL_GET_ENV. The environment elements, which are used to
communicate with the Run-Time Manager, include the following information:
• Status element for reporting task status as an ANALOG value
• Message element for reporting task status as a MESSAGE
• Application path specification
• Program path specification
• Command line arguments

Then the task writes FLS_ACTIVE to its status element and running to its
message element. This causes Active to be displayed in the STATUS column and
running to be displayed in the MESSAGE column of the Run-Time Manager
display.

Note: Refer to Chapter 8, “FactoryLink API Reference
Guide” in this manual for information about FactoryLink
functions included in the following discussion.

Note: Should the task need to attach elsewhere, FLIB
function FL_PROC_INIT_APP() can be called.
2 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Run-Time Requirements

6

U
sing the R

un-T
im

e
M

anager
Kernel check (Conditional)

If proper execution of the task depends on the version of the Kernel installed on
the system, obtain the Kernel's version and release number by calling
FL_GET_VERSION. Check the values obtained against your own list of
compatible values. As a rule an unacceptable version or release number should be
considered a fatal error. If this occurs, write an appropriate error message to
STDOUT and call EXIT.

Error Handling

If the task encounters any errors, failures, or other problems during execution, it
reports appropriate error messages to its environment STATUS and MESSAGE
elements.
• In case of a fatal error, the task exits following the shutdown procedure

described in the Orderly Shutdown requirement.
• In case of a non-fatal error, the task sets its environment STATUS element

to FLS_ERROR. This indicates to the Run-Time Manager the task encountered
problems but is continuing execution, and the Run-Time Manager displays
ERROR in the STATUS column of its display. The task writes a description of
the problem to its environment MESSAGE element.

Termination Notification

A task must shut down when notified by the Run-Time Manager to do so. To check
the current status of the task termination flag, a running task periodically calls
FL_TEST_TERM_FLAG.
• If the value of the flag is 1 (ON), the task goes through the shutdown procedure

in and writes normal shutdown to its environment MESSAGE element.
• If the value of the flag is 0 (OFF), the task continues execution.

Tasks must check the flag often. The operator should be able to terminate the task
from the Run-Time Manager, and the task must terminate along with its
associated FactoryLink session.
FactoryLink ECS / Programmer’s Access Kit / 133

USING THE RUN-TIME MANAGER
Run-Time Requirements

 13

•
•
•
•

Orderly Shutdown

Just before calling EXIT for any reason, the task performs the following actions:
• Writes a message explaining the reason for termination to its environment

MESSAGE element which is then displayed in the MESSAGE column of the
Run-Time Manager display

• Sets its environment STATUS element to FLS_INACTIVE, which causes
Inactive to appear in the STATUS column of the Run-Time Manager display

The task then terminates execution via FL_PROC_EXIT.

Domain Selection

In conformance with the requirements for the Run-Time manager, the task must
respect the domain starting sequence and set its own environment variables. Set
{FLDOMAIN} to shared or user as required; set {FLNAME} to the application
name and fluser to the current user instance name.

Refer to Chapter 2, “FactoryLink Architecture,” for an overview, the “Domains:
User and Shared (Per-User Shared Memory Regions)” on page 39 for additional
information about deciding which domain the task should run in, and Chapter 7,
“FactoryLink Kernel and Library” for details of domain instantiating.
4 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

6

U
sing the R

un-T
im

e
M

anager
SAMPLE TASK PROGRAM SKELETON

A sample FactoryLink program written in the C language follows. This sample
program demonstrates proper programming practices, standards, and
conventions. The example illustrates the interaction of the program with the
Run-Time Manager.

/*

**

 * Copyright 1984-1992 United States Data Corporation. All Rights Reserved.

**

 * - NOTICE -

 *

 * The information contained herein is confidential information of United

 * States Data Corporation, a Delaware corporation, and is protected by

 * United States copyright and trade secret law and international treaties.

 * This information is not to be disclosed, used or copied by or transferred

 * to any individual, corporation, company or other person without the

 * express written permission of United States Data Corporation.

**

 *

 * FactoryLink Skeleton Task

 *

 * This file contains a skeleton for a generic FactoryLink task.

 *

 * A FactoryLink real-time task performs the following steps:

 *

 * 1) register with the FactoryLink kernel

 * 2) load any configuration information

Note: Refer to Chapter 8, “FactoryLink API Reference
Guide” of this manual for API function references.
FactoryLink ECS / Programmer’s Access Kit / 135

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

 13

•
•
•
•

 * 3) scan input values and process the data

 * 4) when the task termination flag is set,

 * perform an orderly shutdown.

 *

 * Normally, the task will be started by the Run Time Manager task

 * using information in the process configuration table. Each task

 * is given a status TAG, a message TAG, and a control TAG. The

 * status and message TAGs are used by the task to communicate

 * internal processing errors to other tasks and the operator.

 * The control TAG is used by other tasks to start and stop this

 * task.

 *

 * At startup, a FactoryLink task must first register with the

 * kernel to obtain a task id. The task id is used in most real-time

 * database access calls.

 *

 * After successfully registering with the kernel, the task loads

 * any configuration information. The standard configuration file

 * is in an archive format. This archive format allows multiple

 * tables to be included in one file.

 *

 * After initialization is complete, the task should issue a

 * fl_change_wait() call to block until one or more database elements

 * have changed. The fl_change_wait() function will return GOOD

 * if elements have changed, or, ERROR if the termination flag has

 * been set for the task. When the termination flag is set, the

 * task should call fl_exit() and then shutdown.

 */

#include<stdlib.h>

#include<string.h>

#include<stdio.h>
6 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

6

U
sing the R

un-T
im

e
M

anager
#include<flib.h> /* FactoryLink definitions */

#defineXBUFSIZE1024 /* fl_xlate buffer size */

/*

 * CT header structure. This structure acts as a template

 * for reading the header portion of a configuration table.

 * The header is optional, and, its structure is task-specific.

 */

typedef structcthdr

{

TAG trigger;

} CTHDR;

/*

 * CT record structure. This structure acts as a template

 * for reading the configuration file records. The structure

 * is task-specific.

 */

typedefstructctrec

{

TAG value;

} CTREC;

TAG *Triggers; /* trigger tags */

uint Trigcount; /* # of triggers */

/*

 * Task global variables

 */
FactoryLink ECS / Programmer’s Access Kit / 137

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

 13

•
•
•
•

id_t Task_id = -1; /* Id for this task */

char *App_dir = ""; /* Application dir. */

char *Pgm_dir = ""; /* Program dir. */

char *Cmd_arg = ""; /* Command argument */

TAG Task_stat = {0xFFFF};/* Task status TAG */

TAG Task_msg = {0xFFFF};/* Task message TAG */

char Task_name[] = "SKEL";/* Process name */

char Task_desc[] = "Skeleton FL Task";/* and Description */

/*

 * Task function prototypes

 */

void shutdown(int);

void status(char *, ANA);

void ctload(void);

void process(void);

/*

 * Task main function

 */

int main(int argc, char *argv[])

{

KENV env;

staticchar xlbuf[XBUFSIZE];

/* Set up for message translation */

fl_xlate_init(Task_name, xlbuf, XBUFSIZE);

/* Acquire a task id */
8 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

6

U
sing the R

un-T
im

e
M

anager
Task_id = fl_proc_init(Task_name, Task_desc);

if (Task_id < 0)

exit(1);

fl_get_env(Task_id, &env); /* get task environment */

Task_stat = env.e_stat; /* task status (ANALOG) */

Task_msg = env.e_msg; /* task message (MSG) */

App_dir = env.e_adir; /* application directory */

Pgm_dir = env.e_pdir; /* program data directory */

Cmd_arg = env.e_cmd; /* task arguments/options */

status("START", FLS_STARTING);/* indicate startup state */

ctload(); /* load task configuration */

status("RUN", FLS_ACTIVE); /* indicate running state */

/*

 * Continuously loop, processing all input until

 * a terminate message has been sent to this task.

 */

while (fl_test_term_flag(Task_id) == OFF)

process(); /* perform processing */

status("STOP", FLS_INACTIVE); /* indicate normal stop */

shutdown(0); /* exit to OS */

return 0;

}

/*

 * shutdown the task.
FactoryLink ECS / Programmer’s Access Kit / 139

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

 14

•
•
•
•

 */

void shutdown(int error)

{

fl_proc_exit(Task_id); /* terminate FL access */

exit(error); /* exit to OS */

}

/*

 * status writes a message and a status value to the task’s status tags.

 * The fl_xlate function is used to convert from the key string to a

 * language dependent message.

 */

void status(char *s, ANA n)

{

MSG m;

if (Task_id < 0)

return;

m.m_ptr = fl_xlate(s);

m.m_len = strlen(m.m_ptr);

m.m_max = MAX_MSG;

fl_write(Task_id, &Task_msg, 1, &m);

fl_write(Task_id, &Task_stat, 1, &n);

}

/*

 * Load task Configuration Table file.

 *

 * This file will typically be named:

 * <app_dir>/ct/<task>.ct
0 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

6

U
sing the R

un-T
im

e
M

anager
 *

 * This code demonstrates how to use the standard FactoryLink

 * configuration table archive format.

 */

void ctload(void)

{

CT ct_buf; /* Configuration Archive buffer */

int num_cts; /* number of tables in the archive */

int num_recs; /* number of records in one table */

int ct_count; /* counter for processing tables */

int rec_count; /* counter for processing records */

i16 info; /* TAG information */

CTHDR hdr_buf; /* buffer for CT header - task defined */

CTREC rec_buf; /* buffer for CT record - task defined */

char ctfile[MAX_FILE_NAME];

/* Build the path name to the CT file */

fl_getvar("FLDOMAIN", ctfile, sizeof(ctfile));

strcat(ctfile, "/ct/skel.ct");

/* Open the CT archive file */

if (ct_open(&ct_buf, App_dir, ctfile) != GOOD)

{

status("NOCT", FLS_INACTIVE);

shutdown(1);

}

/* Determine the number of tables */

num_cts = ct_get_ncts(&ct_buf);

FactoryLink ECS / Programmer’s Access Kit / 141

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

 14

•
•
•
•

if (num_cts < 1)

{

status("NOTRIGGERS", FLS_INACTIVE);

shutdown(1);

}

/* There is one trigger for each configuration table. */

Triggers = malloc(num_cts * sizeof(TAG));

if (Triggers == (TAG *)0)

{

status("NOMEMORY", FLS_INACTIVE);

shutdown(1);

}

Trigcount = 0;

/* Loop through the tables, processing each in turn */

for (ct_count = 0; ct_count < num_cts; ct_count++)

{

/* Read the index for this table */

if (ct_read_index(&ct_buf, ct_count) != GOOD)

{

status("CTINDEX", FLS_INACTIVE);

shutdown(1);

}

/* Read the table header */
2 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

6

U
sing the R

un-T
im

e
M

anager
if (ct_read_hdr(&ct_buf, &hdr_buf) != GOOD)

{

status("CTHEADER", FLS_INACTIVE);

shutdown(1);

}

/*

 * Get information about the tag and verify

 * that the tag is of the correct type

 */

fl_get_tag_info(&hdr_buf.trigger, 1, &info, (u16 *)0);

if (info != FL_DIGITAL)

{

status("BADTAG", FLS_INACTIVE);

shutdown(1);

}

/*

 * Store the trigger tag in the triggers array.

 * Note: Some pre-ANSI compilers cannot perform

 * the in-line structure assignment. Use:

 * memcpy(&Triggers[Trigcount++], hdr_buf.trigger,
sizeof(TAG))

 * instead.

 */

Triggers[Trigcount++] = hdr_buf.trigger;

/*

 * Read the records for this table.

 * Note: If no per-record processing is needed,

 * the ct_read_nrecs() function can be used to
FactoryLink ECS / Programmer’s Access Kit / 143

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

 14

•
•
•
•

 * read all records in one call.

 */

num_recs = ct_get_nrecs(&ct_buf);

for (rec_count = 0; rec_count < num_recs; rec_count++)

{

if (ct_read_rec(&ct_buf, &rec_buf, rec_count) != GOOD)

{

status("CTRECORD", FLS_INACTIVE);

shutdown(1);

}

/* Add code here to process the record */

}

}

ct_close(&ct_buf);

}

/*

 * process is where the main processing takes place.

 *

 * Normally, a task waits on one or more triggers, then, processes

 * the data associated with each trigger as it changes.

 *

 * When the task termination flag is set, fl_change_wait returns

 * an error indication.

 */

void process(void)

{

DIG state;

uint index = 0;
4 / FactoryLink ECS / Programmer’s Access Kit

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

6

U
sing the R

un-T
im

e
M

anager
int e;

while ((e = fl_change_wait(Task_id, Triggers, Trigcount, &index,
&state)) == GOOD)

{

if (state)

{

/* Process values for the trigger here */

}

if (++index >= Trigcount)

index = 0;

}

if (e != GOOD)

{

/* issue a status message to indicate the error */

if (fl_errno(Task_id) != FLE_TERM_FLAG_SET)

status("FLREAD", FLS_ERROR);

}

}

FactoryLink ECS / Programmer’s Access Kit / 145

USING THE RUN-TIME MANAGER
Sample Task Program Skeleton

 14

•
•
•
•

6 / FactoryLink ECS / Programmer’s Access Kit

7

F
act
• • • •Chapter 7

FactoryLink Kernel
and Library
o
ryLink K

ernel
and L

ibrary
This chapter provides an overview of the FactoryLink kernel and library. Refer to
Chapter 8, “FactoryLink API Reference Guide” for details about the use of the
kernel’s services.

This section contains information about the following topics:
• FactoryLink Kernel
• FactoryLink Library
• Kernel Multi-User Environment (MUE) Extensions
• Calling and Return Conventions
• System Shutdown
• Kernel and Library Services
FactoryLink ECS / Programmer’s Access Kit / 147

FACTORYLINK KERNEL AND LIBRARY
FactoryLink Kernel

 14

•
•
•
•

FACTORYL INK KERNEL

The FactoryLink kernel is a software module that provides basic services to
FactoryLink tasks. These services include process management, access to the
real-time database, access to the CT archives, access to the environment, and
mailbox services.

The name of the FactoryLink kernel library is flkernel.
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
FactoryLink Library

7

F
acto

ryLink K
ernel

and L
ibrary
FACTORYLINK LIBRARY

The FactoryLink library is a collection of utility functions serving primarily to
interface application and system programs to the FactoryLink kernel.

All FactoryLink library functions are contained in the file FLIB.LIB, located in
the directory {FLINK}/LIB.

Programs linking with FactoryLink library functions must be large-model C
programs.

A C-language source program must include the header file FLIB.H to use any of
these FactoryLink functions.

Platform-specific header files also exist; however, since you define the specific
operating system in the source code or the compile environment, the inclusion of
FLIB.H automatically includes the appropriate platform-specific header file.
Refer to the “Create the Source Modules” on page 81 in Chapter 3, “Constructing a
Task” for details about defining the operating system in the source code or compile
environment.
FactoryLink ECS / Programmer’s Access Kit / 149

FACTORYLINK KERNEL AND LIBRARY
Kernel Multi-User Environment (MUE) Extensions

 15

•
•
•
•

KERNEL MULTI -USER ENVIRONMENT (MUE) EXTENSIONS

This section describes changes made to the FactoryLink kernel in order to support
multi-user extensions. Current users need not worry about these changes; those
who are upgrading or modifying an existing task may find this information of
interest.

In order to allow multiple independent users of a FactoryLink application, the
following aspects of the FactoryLink kernel have been modified since the previous
releases:
• Allow more than 31 tasks so each user may run a collection of tasks.
• Provide per-user shared memory areas for inter-task communication.
• Provide common shared memory areas for real-time data.
• Allow specification of the user so a task is attached to the correct per-user

shared memory areas.
• Allow multiple applications to run simultaneously.

Increased Task Handling Capability

The number of tasks available under FactoryLink is limited by the number of
change/wait bits per database element and by the number of entries in the
FactoryLink task table. The multi-user extensions allow additional change/wait
bits by allocating a separate memory area for change/wait bits on a per-user basis.
In addition to a per-user set of change bits, each user is also allocated a task table
and a set of semaphores (e.g., LOCK/UNLOCK, P[x]/V[x] flags) for inter-task
signaling.

Domains: User and Shared (Per-User Sh ared Memory Regions)

User Domain

FactoryLink tasks use real-time database elements to control tasks. These
database elements are duplicated for each FactoryLink user. The subset of the
real-time database duplicated on a per-user basis is known as the USER domain.

Multi-user extensions allow duplicate named real-time database element areas by
allocating an array of pointers to database segments for each user. This allows the
element numbers (indices into the pointer array) themselves to remain the same
for each user while allowing the element number to reference a private data area
for each user.
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel Multi-User Environment (MUE) Extensions

7

F
acto

ryLink K
ernel

and L
ibrary
Shared Domain

FactoryLink tasks also use real-time database elements to monitor and control
the state of the process. These database elements must be the same for all users.
The subset of the real-time database shared by all users is known as the SHARED
domain.

In order for database elements to be shared in common among all authorized
users, it is only necessary that each user's pointers to database segments for
shared elements map to the same physical memory. When a new user area is
created, the common element pointers are copied from a master copy associated
with the first user who logged on to the application.

Applicat ion Instances/ Identification

Since multiple copies of a FactoryLink task may be running concurrently, a task
must identify itself to the kernel. The task must specify the application, domain
and user instance as well as the task name.

Each application instance is specified by its invocation name. The invocation
name is a character string of up to MAX_USR_NAME (currently set to 16)
characters long and is used to locate the shared memory segment containing the
global data structure of the kernel. The invocation name identifies an instance of
the FactoryLink real-time database. The invocation name is stored in the
environment variable {FLNAME} by the run-time manager.

The domain within an application is specified by the domain name. The domain
name is a character string of up to MAX_USR_NAME (16) characters long and is
used to determine which real-time database segments the task owns and which
should be shared. In addition, the domain name is used by the task to determine
which CT files should be processed. The domain name is stored in the
environment variable {FLDOMAIN} by the run-time manager.

The user instance is specified by the user name. The user name is a character
string of up to MAX_USR_NAME (16) characters long and is used to determine
which instance of the domain specific real-time database segments the task is to
use. The user name is stored in the environment variable {FLUSER} by the
run-time manager.

When a FactoryLink application is started, the run-time manager must be
supplied with the invocation name, domain name, and user name. Each may be
supplied on the command line or through environment variables. The three
required environment variables are created by the run-time manager if they do
not exist. The values passed to the run-time manager are stored in the
environment of any sub-processes created by the Run-Time Manager.
FactoryLink ECS / Programmer’s Access Kit / 151

FACTORYLINK KERNEL AND LIBRARY
Kernel Multi-User Environment (MUE) Extensions

 15

•
•
•
•

Refer to Chapter 2, “FactoryLink Architecture” in this manual for further
information and a graphical representation of the concept of shared and user
domain data handling.

Calling and Return Conventions

This section discusses the calling and return conventions and includes a reference
list of error numbers.

Conventions

The following calling and return conventions apply to application programs that
call any of the FactoryLink Library functions:
• Most functions in the Library return an item of C data type “int” (16-bit signed

integer). These integers are returned in the AX register. A few return an item of
data type long (32-bit signed integer).

• A return value of -1 (int or long) invariably indicates an error indicating the
function failed. The reason for such a failure depends on the function and the
circumstances under which it is called. The kernel returns an error code filled
in whenever an error occurs but is unchanged by successful kernel calls.

To access the error, the calling task must call FL_ERRNO with its task id.
FL_ERRNO returns the error text. The calling task accesses this variable to
determine the nature of the error and takes appropriate action.

In the source code, the error numbers may be referred to by the integer value or
the symbolic representation of the number. USDATA recommends using the
symbolic representation. For example, the symbolic representation of 0 is GOOD.
A line of code might read as follows:

if (ct_open(&ct_buf, app_dir, “ct/skel.ct”) != GOOD)

This code checks whether the return value from a request to open a CT archive file
indicates an error occurred. If the symbolic representation of GOOD is used, this
code does not require any changes if, for some reason, the integer value of GOOD
later changed to a value other than 0. If the integer value is used in the code and it
changes, the code must be changed and recompiled.

The symbolic representations of these error numbers are found in the header file
FLIB.H.
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel Multi-User Environment (MUE) Extensions

7

F
acto

ryLink K
ernel

and L
ibrary
Return Reference List

Use the following lists (excerpts from FLIB.H) as references for error numbers.

Table 7-13

FactoryLink Error Numbers (Returned by
Kernel Services)

FLE_INTERNAL 1

FLE_OUT_OF_MEMORY 2

FLE_OPERATING_SYSTEM 3

FLE_NO_{FLINK}_INIT 4

FLE_NO_PROC_INIT 5

FLE_BAD_FUNCTION 6

FLE_BAD_ARGUMENT 7

FLE_BAD_DATA 8

FLE_BAD_TAG 9

FLE_NULL_POINTER 10

FLE_NO_CHANGE 11

FLE_PROC_TABLE_FULL 12

FLE_BAD_PROC_NAME 13

FLE_BAD_USER_NAME 14

FLE_BAD_OPTION 15

FLE_BAD_CHECKSUM 16

FLE_NO_OPTIONS 17

FLE_NO_KEY 18

FLE_BAD_KEY 19
FactoryLink ECS / Programmer’s Access Kit / 153

FACTORYLINK KERNEL AND LIBRARY
Kernel Multi-User Environment (MUE) Extensions

 15

•
•
•
•

FLE_NO_PORT 20

FLE_PORT_BUSY 21

FLE_ALREADY_ACTIVE 22

FLE_NOT_LOCKED 23

FLE_LOCK_FAILED 24

FLE_LOCK_EXPIRED 25

FLE_WAIT_FAILED 26

FLE_TERM_FLAG_SET 27

FLE_QSIZE_TOOBIG 28

FLE_QSIZE_CHANGED 29

FLE_NO_TAG_LIST 30

FLE_TAG_LIST_CHANGED 31

FLE_WAKEUP_FAILED 32

FLE_NO_SIGNALS 33

FLE_SIGNALLED 34

FLE_NOT_MAILBOX 35

FLE_NO_MESSAGES 36

FLE_ACCESS_DENIED 37

Table 7-14

CT Access Fu nction Error Numbers

CT_CANNOT_OPEN_FILE 1 file is missing

Table 7-13

FactoryLink Error Numbers (Returned by
Kernel Services)
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
System Shutdown

7

F
acto

ryLink K
ernel

and L
ibrary
FactoryLink Cl ient P rocess Status

SYSTEM SHUTDOWN

A smart run-time task can initiate a shutdown of the FactoryLink system. To
cause the FactoryLink Run-Time Manager to begin an immediate system

CT_CANNOT_CLOSE_FILE 2 program bug

CT_FILE_NOT_OPEN 3 program bug

CT_SEEK_ERROR 4 wrong file size

CT_READ_ERROR 5 wrong file size

CT_WRITE_ERROR 6 drive not ready or disk
full

CT_BAD_MAGIC 7 file corrupted

CT_BAD_DATA 8 file corrupted

CT_NULL_POINTER 9 program bug

CT_BAD_INDEX 10 CT does not exist

CT_BAD_RECORD 11 CT record does not
exist

Table 7-15

FLS_INACTIVE 0 inactive/not running

FLS_ACTIVE 1 active/running

FLS_ERROR 2 non-fatal error encountered

FLS_STARTING 3 starting/initializing

FLS_STOPPING 4 stopping/exiting

Table 7-14

CT Access Function Error Numbers
FactoryLink ECS / Programmer’s Access Kit / 155

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 15

•
•
•
•

shutdown, the task writes a value of 1 (ON) value to the analog element
RTMCMD.

KERNEL AND LIBRARY SERVICES

The kernel and library services can be divided into the following categories:
• Process management
• Database access
• Tag list registration and notification
• Mailbox
• Memory management
• Signaling
• Environment access
• CT access
• Path manipulation
• Format version number
• Message translation
• Expression Processing
• Sleep
• Miscellaneous

This manual assumes that you develop client processes in the C Programming
Language or in a language that provides a calling sequence compatible with the C
language. This section includes information about the service functions and how
to use them.

Function names are case-sensitive. All API function names are entirely
lower-case. For example, a client process calls FL_PROC_INIT in the following
way:

id = fl_proc_init(“RUNMGR”, “Run-Time Manager version 1.0");

Process Management

The process management services provide the means for the following activities:
• Identifying client processes and prospective clients to the kernel
• Preparing for real-time database access
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
• Informing other client processes that they should exit (quit running)
• Determining whether to continue running or to prepare for exiting
• Exiting and renouncing all further access to the database

In general, these functions aid in the control of client processes by the kernel and
by other client processes, notably the FactoryLink Run-Time Manager.

Since a prospective client must make itself known to the kernel before doing
anything, it must successfully call FL_PROC_INIT (which assigns a FactoryLink
ID) before calling any other kernel service. There are a few exceptions to this rule;
namely, the functions that do not have the FactoryLink ID as one of the
arguments. A client process may not call any other kernel service after calling
FL_PROC_EXIT which releases to the system, or “renounces,” the caller's
FactoryLink ID.

Using the Process Mana gement Functions

The process management functions are C functions callable by C-language
application and system programs. The library functions in turn make calls to the
FactoryLink kernel. It is the duty of the kernel to maintain a task table. The task
table holds all information relevant to running tasks and furnishes services
allowing access to and limited manipulation of the data stored in this table.

The process management services consist of the following functions. Refer to
Chapter 8, “FactoryLink API Reference Guide” for details about each of these
functions.

Note: The FL_PROC_INIT function has been removed from
the kernel and placed in the flib library in the current
release of FactoryLink. This should not affect the
functionality at the application developer level.

Table 7-16

Function Description

FL_SET_TERM_FLAG Set the termination flag of a client process.

FL_TEST_TERM_FLAG Ask the kernel the current status of current task's
termination flag.

FL_PROC_EXIT Exit the calling process.

FL_NAME_TO_ID Translate a process name to a FactoryLink ID.
FactoryLink ECS / Programmer’s Access Kit / 157

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 15

•
•
•
•

.

Sample Process Management Function

The following example illustrates the use of the process-management functions. It
does not illustrate the interaction of a task with the Run-Time Manager.

#include “FLIB.H”

char name[] = “MYNAME”; /*my name(name of this task)*/

int taskid; /*task number to be assigned*/

main() /*PROGRAM ENTRY POINT */
{

/*————————-WITHIN START-UP CODE—————————*/
if ((taskid = fl_proc_init(name,desc)) ==

ERROR)
/* first library call: */

{ /* tell the kernel who I am */
printf(“Cannot get task number\n”);
exit(1); /*abort for stated reason */
}
while (fl_test_term_flag() == OFF)

/* continue execution until */
{ /* flag is turned ON */
/*——————-MAIN LOOP OF TASK-DEPENDENT CODE—————*/
/*————————————-GOES HERE——————————-*/
}

/*—————————-WITHIN CLEAN-UP CODE————————*/
fl_proc_exit(taskid);/* tell kernel I'm exiting */

FL_ID_TO_NAME Translate a FactoryLink ID to a process name

Note: The FL_PROC_INIT function is no longer in the
kernel; it resides in the FLIB library. Refer to “fl_proc_init”
on page 288 in Chapter 8, “FactoryLink API Reference
Guide.”

Table 7-16

Function Description
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
 */

exit(0)/* exit to OS */

}

Database Access

The real-time database access functions allow the following activities:
• Reading from the real-time database
• Writing to the real-time database
• Testing to see whether real-time database values have changed
• Waiting for real-time database values to change

A given real-time database element may be read by any task; however, it should
be written by only one task. This task is called the defining task. This restriction
is not enforced, but it is a good design technique to avoid possible ambiguity in the
real-time database.

Using the Database Access Fu nctions

The database access functions are functions callable by C-language application
and system programs.

The Library functions make calls to the FactoryLink kernel. The kernel maintains
the real-time database shared among all client processes. The kernel permits
client processes to access it only through these functions.

The database access services consist of the following functions. Refer to Chapter 8,
“FactoryLink API Reference Guide” for details about each of these functions.

Table 7-17

Function Description

FL_READ Read specified elements from the real-time database.

FL_WRITE Write specified elements into the real-time database.

FL_FORCED_WRITE Force-write a specified element into the real-time
database.

FactoryLink ECS / Programmer’s Access Kit / 159

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 16

•
•
•
•

FactoryLink Real-Time Database

The real-time database is organized as arrays and pointers. There are six arrays
of elements, one array for each data type, and a separate storage area for
messages and mailbox data:

FL_CHANGE_WAIT Read the first real-time database element that has
changed since it was last read; if no change, go to sleep
until a change occurs.

FL_CHANGE_READ Read the first real-time database element that has
changed since it was last read.

FL_SET_CHNG Set the calling task's change-status flags for specified
real-time database elements.

FL_CLEAR_CHNG Clear the calling task's change-status flags for specified
real-time database elements.

FL_SET_SYNC Set the calling task's sync flags for specified real-time
database elements.

FL_CLEAR_SYNC Clear the calling task's sync flags for specified real-time
database elements.

FL_SET_WAIT Set the calling task's wait flags for specified real-time
database elements.

FL_CLEAR_WAIT Clear the calling task's wait flags for specified real-time
database elements.

Table 7-18

Data Type Description

Digital Boolean (logical)

Analog Short integer

Long analog Long integer

Table 7-17

Function Description
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
The corresponding typedefs for each data type are found in FLIB.H.

Database Elements: A real-time database element consists of the following
items:
• One or more bits containing the element's value
• Set of change-status bits
• Set of wait bits
• Set of sync bits

Each set of bits consists of a single bit for each client process or, more properly, for
each potential client process. A process does not officially become a FactoryLink
client process until it registers with the kernel by initializing the FactoryLink
calling process through a call to FL_PROC_INIT, but the bits still exist. Refer to
Chapter 2, “FactoryLink Architecture,” in this manual for additional details.

Change-status bits: For each database element, each possible client process has
one change-status bit. If the value of a bit is 0 (OFF), the value has not changed
since client (or task) number N last read the element, where N = 0 through 30.
The value of the bit is set to 1 (ON) when a new value is written to the element.

Wait bits: Each possible client process has one wait bit. When the client is
currently waiting to read or to write the specified element, the value of the bit is 1
(ON); otherwise, the value is 0 (OFF). A client can set the value of a wait bit to 1
(ON) by performing one of the following actions:
• Call FL_CHANGE_WAIT. This sets the value to 1 (ON) only if none of the

specified elements has changed (it sleeps until someone writes a new value into
one or more of the elements).

• Set the wait bits directly by calling FL_SET_WAIT.

Sync bits: There is one sync bit for each possible client process. A value of
1 (ON) indicates that the specified element is synchronous for that client. A value
of 0 (OFF) indicates it is asynchronous. A client process uses FL_SET_SYNC to

Floating-point IEEE standard double-precision

Message String

Mailbox Variable length data, organized as a queue

Table 7-18

Data Type Description
FactoryLink ECS / Programmer’s Access Kit / 161

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 16

•
•
•
•

create synchronous elements and FL_CLEAR_SYNC to undo this; that is, to make
them revert to asynchronous (default) status.

Tag Number: In the kernel, a tag number completely specifies a database
element because it includes the data type as well as the array index. All database
access service operates on mixed types; that is, on elements of various data types
defined and allocated at run time.

Locking/Unlocking the Database: The kernel automatically locks the database
during execution of any of these database access functions and unlocks it upon
completion. This ensures that service calls are atomic operations in the sense
that, once begun, they cannot be interrupted by service calls from other clients.
The only exception is when the calling process may block another process waiting
to write synchronous elements.

VAL Union Structure

All database types besides message and mailbox are read and written the same
way, accessing the correct member of the union.

where val is a VAL union structure located in FLIB.H.

Sample Database Access Functions

The following examples illustrate the use of the database access functions in the
FactoryLink Library. These examples are not complete C programs. None of the
examples illustrates the interaction of the task with the Run-Time Manager.

Table 7-19

Database Type Union

DIGITAL val.dig

ANALOG val.ana

LONGANA val.lana

FLOAT val.flp

MESSAGE val.msg

MAILBOX val.mbxmsg
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
Example A: Example A demonstrates how to use FL_READ to read messages
from the database.

.

.
int task_id
TAG t;
VAL v;
char buffer[100];

v.msg.m_ptr = buffer;
v.msg.m_len = 0;
v.msg.m_max = sizeof(buffer);
fl_read(task_id, &t, 1, &v);

.

.

Example B: Example B demonstrates how to use FL_WRITE to write messages
into the database.

.

.
int task_id;
TAG t;
VAL v;
char buffer[100];

strcpy(buffer, “The temperature is”);
v.msg.m_ptr = buffer;
v.msg.m_len = strlen(buffer);
v.msg.m_max = sizeof(buffer);
fl_write(task_id, &t, 1, &v);

.

.

Example C: Example C demonstrates how to use FL_READ to read analog
values from the database.

.

.
int task_id;
TAG t;
VAL v;
FactoryLink ECS / Programmer’s Access Kit / 163

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 16

•
•
•
•

fl_read(task_id, &t, 1, &v);
printf(“The ANALOG value is %d\n”, v.ana);

.

.

Example D: Example D demonstrates how to use FL_WRITE to write analog
values to the database.

.

.
int task_id;
TAG t;
VAL v;

v.ana = 100;
fl_write(task_id, &t, 1, &v);

.

.

Tag List Registration and Notification

The tag list registration and notification services allow one FactoryLink process to
establish a list of database elements that serve as trigger elements for another
FactoryLink process referred to as the target process.

The tag list services use the memory management services described later in this
chapter to allocate, access, and free tag lists.

The registration and notification services consist of the following functions. Refer
to Chapter 8, “FactoryLink API Reference Guide” for details about each of these
functions.

Table 7-20

Function Description

FL_SET_TAG_LIST Register the tag list (a list of real-time
database elements) to a target process.
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
Mailbox

A mailbox is a real-time database element that holds a queue of mailbox messages
consisting of structures (typedef MBXMSG) and some associated message data.
Refer to FLDEFS.H to view the MBXMSG structure. Since mailboxes are
real-time database elements, a FactoryLink process can read and write values to
them just as with other types of database elements; that is, FL_READ,
FL_WRITE, FL_FORCED_WRITE, FL_CHANGE_READ, and FL_CHANGE
WAIT work when passed to a mailbox element.

When messages are present in a mailbox, the change bit for the associated
real-time database element is set to 1. When the mailbox is empty, the change bit
for the associated real-time database element is clear (value of 0).

Mailbox services provide an inter-process communication (IPC) mechanism to
FactoryLink processes. The services allow one FactoryLink process to send a
mailbox message (typedef MSG), a structure that can hold arbitrary data of
variable length, to another FactoryLink process.

Signal services, discussed later in this chapter, also provide an IPC mechanism to
FactoryLink processes. Compared with signals, mailboxes allow data passing and
are more flexible; however, they are slower. Also, messages sent to a given

FL_GET_TAG_LIST Retrieve the tag list (a list of real-time
database elements) for the calling
process.

FL_CHANGE_WAIT_TAG_LIST Wait for a change in value of one or more
elements in the list of real-time database
elements in the tag list for the calling
process.

FL_CHANGE_READ_TAG_LIST Read a change in value of one or more
elements in the list of real-time database
elements in the tag list for a calling
process.

Table 7-20

Function Description
FactoryLink ECS / Programmer’s Access Kit / 165

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 16

•
•
•
•

mailbox are placed in a queue so they are read in the same order as they are sent.
Signals are prioritized but not queued.

The message queue associated with a mailbox contains a head and a tail. The
head of the queue is the oldest message in the mailbox; the tail is the newest.
Mailbox message reads occur at the head or relative to the head of the queue;
writes always occur at the tail.

The mailbox services consist of the following functions. Refer to Chapter 8,
“FactoryLink API Reference Guide” for details about each of these functions.

Memory Management

Memory management services provide functions that allocate, access, and free
large blocks of contiguous memory sharable among all FactoryLink processes. The
memory management group contains its own memory merging and compaction
functions (garbage-collection functions) and handles this aspect of its
management duties in a manner totally transparent to FactoryLink processes.

Memory blocks managed by these services are assigned a virtual pointer structure
(typedef VPTR) that can be used to reference them.

Note: FL_READ_MBX allows messages to be read in a
different order than the messages were sent.

Table 7-21

Function Description

FL_COUNT_MBX Determine the number of messages in a mailbox,
validate a mailbox, or monitor a mailbox.

FL_QUERY_MBX Query a mailbox for a range of queued messages.

FL_READ_MBX Read and dequeue a message from a mailbox.

FL_WRITE_MBX Write and queue a message into a mailbox.

FL_SET_OWNER_MBX Set the owner of a mailbox.
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
The memory management services consist of the following functions. Refer to
Chapter 8, “FactoryLink API Reference Guide” for details about each of these
functions.

Signals

Signals are notifications of events, particularly change of status, sent by one
FactoryLink process to another, referred to as the target process. Signals are a
form of inter-process communication (IPC). In some cases, the kernel itself may
send a signal to a target process, but this is still a form of IPC since the kernel
always executes in the context of the calling process and acts on its behalf. The
target process, rather than the caller, is notified of the event or what status has
changed.

Mailbox services, discussed earlier in this chapter, also provide an IPC
mechanism to FactoryLink processes. Compared with signals, mailboxes allow
data passing and are more flexible; however, they are slower. Also, messages sent
to a given mailbox are placed in a queue so they are read in the same order as they
are sent. Signals are prioritized but not queued.

Table 7-22

Function Descr iption

FL_ALLOC_MEM Allocate a specified amount of
memory.

FL_ACCESS_MEM Access memory block.

FL_FREE_MEM Free memory.
FactoryLink ECS / Programmer’s Access Kit / 167

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 16

•
•
•
•

Signals provide a primitive, but very fast, form of IPC; therefore, they are ideally
suited for process synchronization. Each signal is assigned a numerical value in
the range 0-31, so only 32 different events can be described by signals. The
following events are predefined by the kernel and have special meaning:

The signal services consist of the following functions. Refer to Chapter 8,
“FactoryLink API Reference Guide” for details about each of these functions.

Table 7-23

Signal Symbolic Name Meaning

0 FLC_SIG_TERMINATED Process has been
terminated (as

1 FLC_SIG_TERM_FLAG_SET Termination flag is
set.

2 FLC_SIG_TAG_LIST_CHANGED Tag list has been
changed.

3 FLC_SIG_MESSAGE_RECEIVED Message has been
received.

Table 7-24

Function Descr iption

FL_SEND_SIG Send a signal to a target process.

FL_RECV_SIG Receive a signal for the calling process.

FL_HOLD_SIG Prevent or allow signal delivery for the calling
process.
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
Environment Access

The kernel provides read-only access to the environment (KENV) structure
through the environment access services.

The environment access services consist of the following functions. Refer to
Chapter 8, “FactoryLink API Reference GuideFor details about each of these
functions.

CT Access

The CT access functions allow client processes to access the FactoryLink CT
archives. A typical FactoryLink application has a function that opens the task's
CTs and reads them into memory.

The write CT access functions are the complement of the CT read functions. Use
them to create and/or modify the CT archives.

Table 7-25

Function Description

FL_GET_CTRL_TAG Return the control tag, which refers to a digital or
analog real-time database element, for the specified
process.

FL_GET_STAT_TAG Return the value of the real-time database analog
status element for the specified process.

FL_GET_MSG_TAG Return value of the real-time database message
element for the specified process.

FL_GET_PGM_DIR Return the program directory for the specified process.

FL_GET_APP_DIR Return the application directory for the specified
process.

FL_GET_CMD_LINE Return the command line for the specified process.

Note: The term “archive” refers to the binary CT file
containing data for more than one database table. For
example, the TIMER.CT file contains information for the
event timer and interval timer database tables.
FactoryLink ECS / Programmer’s Access Kit / 169

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 17

•
•
•
•

The CT access services consist of the following functions. For details about each of
these functions, refer to Chapter 8, “FactoryLink API Reference Guide.”

Table 7-26

Function Description

CT_OPEN Open a CT archive file.

CT_READ_INDEX Read an index from a CT archive.

CT_READ_HDR Read the header for ctp into buffer.

CT_READ_REC Read a record from the current CT into memory.

CT_READ_RECS Read records from the current CT into memory.

CT_CALC_OFFSET Calculate a CT offset.

CT_CLOSE Close a CT archive.

CT_CREATE Create/truncate/open a CT for update.

CT_UPDATE Open a CT for update.

CT_WRITE_INDEX Write a CT index record.

CT_WRITE_HDR Write the CT header from buffer to the current
CT header.

CT_WRITE_REC Write a CT record to buffer.

CT_WRITE_RECS Write CT records into buffer.

CT_FIND_INDEX Find an index.
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
Path Manipulation

In the current release of FactoryLink, several API functions dealing with path
name manipulation, construction, and normalization have been added. The
functions beginning with the name “FL_PATH_” are all concerned with allowing
developers to write portable code with generic path name structures which can be
automatically converted to be system-specific. The path manipulation function
MAKE_FULL_PATH still exists, for downward compatibility, to combine the
directory and file name into a full path name. For a general explanation of these
new functions, refer to “Path Name Building and Representation” in Chapter 3 of
this manual; for full specifications on the new functions, refer to the appropriate
pages in Chapter 8, “FactoryLink API Reference Guide.”

Format Version Number

The format version number function, FL_DBFMTT, prepares a formatted string
from a set of real-time database element values. For details about this function,
refer to Chapter 8, “FactoryLink API Reference Guide,” in this manual.

Message Translation

The message translation functions provide services so that run-time tasks can
translate and print messages stored in external disk files (message files). Several
enhancements to these functions have taken place since the previous release.

The message translation services consist of the following functions. For details
about each of these functions, refer to Chapter 8, “FactoryLink API Reference
Guide.”

Table 7-27

Functions: Descriptions:

FL_XLATE_INIT Message translation initialization; initializes
a message file and establishes a buffer to it
(use of the buffer enhances performance).
The message translation data structure is a
tree.

FL_XLATE Translate a key to its associated message.
FactoryLink ECS / Programmer’s Access Kit / 171

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 17

•
•
•
•

Overview of Mes sage Translation Functions

Keyword/translation pairs in FactoryLink are kept in a tree data structure. The
translation for a keyword is retrieved using the fl_xlate() function. This tree is
automatically loaded with a set of default translations for FactoryLink tasks. The
translations may be overridden or supplemented by loading another translation
file into the current tree.

Each task may maintain several translation trees.

The loading of translation files may be from a particular library of language
translation files.

In order for all tasks to be language-independent, all tasks should use the fl_xlate
functions for all message output.

If file names or other data need to be imbedded into a message, use fl_xlate() to
retrieve the format string and then sprintf using that format, as in the following
example.

Example 1

The file test.txt contains:

FL_XLATE_LOAD Load the specified file into the current
translation tree, replacing any duplicate
keys. The function returns the number of
entries loaded from this file or returns
ERROR.

FL_XLATE_GET_TREE Returns the address of the current
translation tree or NULL if no translation
files have been loaded.

FL_XLATE_SET_TREE Sets the current translation tree to the tree
at the specified address.

SPOOL Spool a file or line.

TSPRINTF Create a target string according to a format
string using the given argument values.

Table 7-27

Functions: Descriptions:
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
BADFILE“Could not open the file: %s”

The file test.c contains:

char buff[MAX_MSG_SIZE] ;
sprintf(buff, fl_xlate(“BADFILE”), filename);

Some fl_xlate functions, as noted in the following paragraphs, have been added or
modified since the previous release to allow more flexibility and efficiency when
translating FactoryLink keywords. Multi-language support is included.

Loading Translation Files

int fl_xlate_init(char FAR *file, char FAR *buff, uint len)
int fl_xlate_load(char FAR *file)

When loading translation files, the environment variable FLLANG is examined. If
it is defined to be anything besides “C”, it will be appended to the /{FLINK}/MSG
path used to load the master file, as well as user-defined files.

If the user-specified file contains path information, it will be folded into the
/{FLINK}/MSG{/FLLANG} path when loading the file.

The function fl_xlate_init will start a fresh translation tree and load the default
translation file master.txt. The user-specified translation file is then loaded on
top of the existing definitions. Duplicate definitions are superseded by the last file
loaded. The function returns the total number of translations loaded from both the
master.txt file as well as the user-specified file, or it returns ERROR if there has
been an error.

The buff and len parameters of fl_xlate_init are not used by the function, but
were retained to stay compatible with existing code.

The function fl_xlate_load will load the specified file into the current translation
tree, replacing any duplicate keys. The function returns the number of entries
loaded from this file or returns ERROR.

Example 2.

If the FLLANG environment variable is not defined, the following call:

fl_xlate_init(“iml”, NULL, 0)

will load the /{FLINK}/MSG/master.txt file into the tree and then load the
/{FLINK}/MSG/iml.txt file into the tree. The return value is the total number of
translations loaded from both files (duplicates are counted only once.)
FactoryLink ECS / Programmer’s Access Kit / 173

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 17

•
•
•
•

The call

fl_xlate_load(“iml”)

will load the file /{FLINK}/MSG/iml.txt into the tree and return the number of
translations.

The call

fl_xlate_load(“/temp/test”)

will load the file /TEMP/test.txt into the tree and return the number of
translations.

Example 3.

If the FLLANG environment variable is defined to be “GERMAN”, the following
call:

fl_xlate_init(“iml”, NULL, 0)

will load the /{FLINK}/MSG/GERMAN/master.txt file into the tree and then
load the /{FLINK}/MSG/GERMAN/iml.txt file into the tree. The return value is
the total number of translations loaded from both files (duplicates are counted
only once.)

The call

fl_xlate_load(“iml”)

will now load the file /{FLINK}/MSG/GERMAN/iml.txt into the tree and return
the number of translations.

The call

fl_xlate_load(“/temp/test”)

will still load the file /TEMP/test.txt into the tree and return the number of
translations.

Translating

char FAR *fl_xlate(char FAR *key)

The function fl_xlate will return a pointer to the translation text for the
requested key if the key is found in the tree. The pointer to the original key is
returned if no translation is found.
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
Managing Multiple Translation Trees

void FAR *fl_xlate_get_tree(void)

void FAR *fl_xlate_set_tree(void *p)

The function fl_xlate_get_tree() will return the address of the current
translation tree or NULL if no translation files have been loaded.

The function fl_xlate_set_tree() will set the current translation tree to the
specified address. Future file loads and translations will be done using this tree.

Example 4.

void *tree1, *tree2 ; /* pointers to 2 trees */

fl_xlate_load(“file1") ;
tree1 = fl_xlate_get_tree() ;

fl_xlate_load(“file2") ;
tree2 = fl_xlate_get_tree() ;

fl_xlate_set_tree(tree1) ;
printf(“%s\n”, fl_xlate(“token”)) ;

fl_xlate_set_tree(tree2) ;
printf(“%s\n”, fl_xlate(“token”)) ;

fl_xlate_set_tree may also be used to start a fresh tree, as in the following
example.

Example 5.

fl_xlate_set_tree(NULL) ; /* start new tree */

Sleep

The sleep function, FL_SLEEP, delays execution of the task for a specified
amount of time (in milliseconds). For details about this function, refer to Chapter
8, “FactoryLink API Reference Guide.”
FactoryLink ECS / Programmer’s Access Kit / 175

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

 17

•
•
•
•

Miscellaneous

The kernel provides service functions to do miscellaneous “odd jobs” that fall into
none of the other categories. These include database lock/unlock functions
(semaphores), sleep/wake functions, initialization functions, and system data item
retrieval functions.

The miscellaneous services consist of the following functions. For details about
each of these functions, refer to Chapter 8, “FactoryLink API Reference Guide.”

Table 7-28

Function Descr iption

FL_LOCK Lock the real-time database on behalf of the calling process.

FL_UNLOCK Unlock the real-time database for the calling process.

FL_WAIT Wait to read, write, or access the real-time database

or certain elements in the database.

FL_WAKEUP Awaken a mask of FactoryLink client processes.

FL_WAKEUP_PROC Awaken a specified FactoryLink process.

FL_ERRNO Return the last FactoryLink error number generated by the
calling process.

FL_GET_VERSION Get the kernel version number.

FL_GET_TAG_INFO Get the information associated with a specified list of

real-time database elements.

FL_GET_NPROCS Get the number of client processes permitted to run
concurrently.

FL_GET_ENV Return the KENV structure of the client process.

FL_INIT Initialize the FactoryLink kernel and its global data area.

FL_GET_TITLE Return a pointer to the name of the product (“FactoryLink”).

FL_GET_COPYRT Return a pointer to a copyright message for FactoryLink.
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Kernel and Library Services

7

F
acto

ryLink K
ernel

and L
ibrary
Many of these functions may be called internally (that is, by other service
functions) as well as externally. The following chart provides some examples.

FL_GET_TICK maintained and reported by the operating system.

FL_GLOBAL_TAG Retrieve the tag number for one or more global elements.

Table 7-29

Function May be called by

FL_LOCK and
FL_UNLOCK

All of the real-time database access services

FL_WAKEUP FL_READ, FL_WRITE, FL_FORCED_WRITE,

FL_CHANGE_WAIT, FL_CHANGE_READ,
and

FL_CLEAR_CHNG

FL_WAIT FL_WRITE, FL_FORCED_WRITE,

and FL_CHANGE_WAIT

Table 7-28

Function Description
FactoryLink ECS / Programmer’s Access Kit / 177

FACTORYLINK KERNEL AND LIBRARY
Object CT Overview

 17

•
•
•
•

OBJECT CT OVERVIEW

A binary representation of a configuration database file, the object CT is not
unlike any other, task-specific CT. The main difference is that the CT contains the
contents of the application’s object database, which is not tied to any one
particular task. Another difference is that a large application with many objects
requires special handling in order to fit within a standard CT.

Written using the PAK’s ct_...() primitives, the object CT API hides the details of
how the object database contents are coerced into a CT.

Overview of Object CT Services

The Object CT API mirrors the existing ct_...() API and provides the following
services:

Opening and closing of the object CT.

Object definition retrieval based on an object’s name.

Random access, block retrieval for object definitions.

Overview of the Object CT API

Ignoring some organizational overhead, FactoryLink CTs equate to on-disk arrays
of C-structures. The object CT is no different, and consists of many arrays of
following structure:

typedef struct _flobjrec

char tagname[MAX_TAG_NAME+1];

char tagdomain[MAX_USR_NAME+1];

char tagtype[MAX_TYPE_NAME+1];

char tagdescr[MAX_PROC_DESC+1];

char tagdimen[MAX_DIM_LENGTH+1];

u16 tagperwhen;

u16 tagchgbits;

TAG tagno;
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Object CT Overview

7

F
acto

ryLink K
ernel

and L
ibrary
} FLOBJREC;

This structure reflects the current attributes that define a FactoryLink object.
Applications should treat this structure as opaque and not access its members
directly. An function-based interface, included with the Object CT API, should be
used to query FLOBJREC’s values. Using the API shields the PAK task from
future changes that alter the object’s structure and its members, yet leave the
interface alone.

The Object CT API is a data abstracted set of functions. Its usage generally
follows some for variant of the following sequence:
• Open the application’s object table.
• Search for definitions for one or more objects.
• Close the object table.

Code Scrap: Print ing all objects in a particular domain

#include <objct.h>

/*

 * Function print_objs4dom writes to standard output all objects

 * configured for a particular domain.

 */

int print_objs4dom(char *flapp, char *tgt_dom)

{

FLOBJREC rec;

u32 nrecs;

u32 k;

CT objct;

 if (ct_open_obj(&objct, flapp) != GOOD)
FactoryLink ECS / Programmer’s Access Kit / 179

FACTORYLINK KERNEL AND LIBRARY
Object CT Overview

 18

•
•
•
•

 return ERROR

 nrecs = ct_nrecs_obj(objct);

 for (k = 0; k < nrecs; k++)

 {

 ct_read_objs(objct, &rec, k, 1);

 if (strcmp(tgt_dim, flobjrec_get_domain(rec)) == 0)

 {

 printf(“Object %s in domain %s\n”,

 flobjrec_get_name(rec), tgt_dom);

 }

 }

 ct_close_obj(&objct);

 return nrecs;

}

0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK KERNEL AND LIBRARY
Normalized Tag Reference Overview

7

F
acto

ryLink K
ernel

and L
ibrary
NORMALIZED TAG REFERENCE OVERVIEW

A FactoryLink object is a named instantiation of a data type: be it digital, analog,
float, long analog, message, or mailbox. The object may be a single instance of its
data type, or it may be an array containing multiple instances of the same data
type. The name of a FactoryLink object is referred to as the object name.

To connote a structured view, a FactoryLink object may be said to be a member of
another object. A member FactoryLink object has equal standing with its parent
object, save that it cannot have members of its own. A member tag can be arrayed,
but these usually parallel the dimensions of its parent object.

Finally, FactoryLink object may have a local or remote value source. This source
is known as its node. This node is sometimes referred to as an external domain.

A tag refers a single location for within the FactoryLink real-time database. A
FactoryLink object equates to one or more tags, depending on whether it is an
arrayed object and/or whether it has member objects associated with it.

Given these parameters, a reference to a FactoryLink object conforms to the
following syntax:

[{node}:]{name}[dimension][...][.member]

where:

node (optional)
The source
node for the
given tag.

name The base
name for the
tag.

dimension (optional)
The particu-
lar tag ele-
ment for an
arrayed tag.
FactoryLink ECS / Programmer’s Access Kit / 181

FACTORYLINK KERNEL AND LIBRARY
Normalized Tag Reference Overview

 18

•
•
•
•

For example, the object reference “plc1:tagx[4][5].raw” has a node of “plc1”, an id
of “tagx”, the dimensions of “[4][5]”, and a member of “raw”.

The above syntax provides the precision required to resolve an object reference to
a single, real-time database location (tag, for short).

Also given this syntax, the combination of a reference’s node, name, and member
equates to the object’s name, as seen through FLCM’s object list panel. Please
keep in mind that the object’s name component may not be sufficient to uniquely
identify a tag. It must be accompanied by its associated source, dimension, or
member attributes.

member (optional)
The
sub-compo-
nent identifi-
er for the
base tag.
2 / FactoryLink ECS / Programmer’s Access Kit

• • • •Chapter 8

FactoryLink API
Reference Guide
8

F
actoryLink A

P
I

R
eference G

uide
This chapter provides the following information about each API function:.
• Call format: Valid format and syntax for this function
• Arguments: List containing the following information about each argument:

• Type
• Name
• Description
• Method used to pass the argument (by reference or by value)

• Returns: Symbolic representation, known as a keyword, of possible values
returned by the function, such as ERROR, GOOD, or NULL. Keywords (except
NULL) are defined in FLIB.H. NULL is defined by the include files supplied
with the compiler in use.

Examples of other keywords representing return codes are listed below:

GOOD
CT_NULL_POINTER
CT_FILE_NOT_OPEN
CT_BAD_INDEX

• Remarks: Additional information about the function, such as code fragments
in the C language

API functions are listed in alphabetical order.

Refer to “Operating System Notes” on page 342 for operating system-specific notes
concerning file name limitations.
FactoryLink ECS / Programmer’s Access Kit / 183

FACTORYLINK API REFERENCE GUIDE
ct_close

 18

•
•
•
•

CT_CLOSE

Close a CT archive.

Call Format:

int ct_close(ctp)

Arguments:

Returns:

GOOD

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_CANNOT_CLOSE_FILE

Table 8-30

Type Name Descr iption Passed By

CT FAR *ctp CT file buffer Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_close_obj

8

F
actoryLink A

P
I

R
eference G

uide
CT_CLOSE _OBJ

Object CT API.

31220 Prototype:

#include <objct.h>

int ct_close_obj(CT *objct)

31220 Arguments:

31220 Returns:

31220 Description:

Function ct_close_obj() closes the object CT. The CT handle should not be
referenced after being closed.

31220 See Also:

ct_open_obj().

CT* objct (i/o) Object
CT
handle.

GOOD CT closed without error.

CT_NULL_PTR Null pointer passed in for CT.

CT_FILE_NOT_OPEN CT currently not opened.

CT_CANNOT_CLOSE
_FILE

Error occurred closing file.
FactoryLink ECS / Programmer’s Access Kit / 185

FACTORYLINK API REFERENCE GUIDE
ct_create

 18

•
•
•
•

CT_CREATE

Create/truncate/open for update.

Call Format:

int ct_create(ctp, dirp, namep)

Arguments:

Returns:

GOOD

CT_NULL_POINTER

CT_CANNOT_OPEN_FILE

CT_WRITE_ERROR

Remarks:

Write the CT archive header from the caller's ctp→ctarc structure. The caller
must fill in all of ctp→ctarc structure except for “magic.”

Table 8-31

Type Name Descr iption Passed By

CT FAR *ctp CT file buffer Reference

char FAR *dirp Directory where file is created Reference

char FAR *namep Name of file created Reference
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_find_index

8

F
actoryLink A

P
I

R
eference G

uide
CT_FIND_INDEX

Find an index.

Call Format:

int ct_find_index(ctp, ndx)

Arguments:

Returns:

GOOD

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_SEEK_ERROR

CT_READ_ERROR

CT_BAD_DATA

CT_BAD_INDEX

Remarks:

Find an index by matching the name field. The index is returned in ctp→ctndx.

Table 8-32

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

char FAR *ndx Name field Reference
FactoryLink ECS / Programmer’s Access Kit / 187

FACTORYLINK API REFERENCE GUIDE
ct_find_obj

 18

•
•
•
•

CT_FIND_OBJ

Object CT API.

31220 Prototype:

#include <objct.h>

int ct_find_obj(CT *objct, char *objname, FLOBJREC *rec)

31220 Arguments:

31220 Returns:

31220 Descr iption:

Function ct_find_obj() searches the given object CT for the given objname and
returns its definition.

Function ct_find_obj() employs a binary search.

31220 See Also:

ct_open_obj().

CT* objct (i) Object CT handle.

char* objname (i) Name of the object to
find.

FLOBJREC* rec (o) Buffer for object’s
definition.

GOOD Object found.

ERROR Object not found.
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_get_hdrlen

8

F
actoryLink A

P
I

R
eference G

uide
CT_GET_HDRLEN

Get the length of the current CT table header.

Call Format:

int ct_get_hdrlen(ctp)

Arguments:

Returns:

Length of the header. If the CT archive is not opened, the return value is
undefined.

Remarks:

Determine the length of the table header of the currently selected CT table.

Table 8-33

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference
FactoryLink ECS / Programmer’s Access Kit / 189

FACTORYLINK API REFERENCE GUIDE
ct_get_name

 19

•
•
•
•

CT_GET_NAME

Get the name of the current CT table.

Call Format:

char *ct_get_name(ctp)

Arguments:

Returns:

Table name. If the CT archive is not opened, the return value is undefined.

Remarks:

Returns a pointer to the name field of the currently selected CT table. Do not
modify the memory pointed to by the return value.

Table 8-34

Type Name Descr iption Passed By

CT FAR *ctp CT file buffer Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_get_ncts

8

F
actoryLink A

P
I

R
eference G

uide
CT_GET_NCTS

Determine the number of CT tables in the archive.

Call Format:

int ct_get_ncts(ctp)

Arguments:

Returns:

Number of CT tables. If the CT archive is not opened, the return value is
undefined.

Table 8-35

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference
FactoryLink ECS / Programmer’s Access Kit / 191

FACTORYLINK API REFERENCE GUIDE
ct_get_nrecs

 19

•
•
•
•

CT_GET_NRECS

Determine the number of records in the last selected CT table.

Call Format:

int ct_get_nrecs(ctp)

Arguments:

TypeNameDescriptionPassed By

CT FAR*ctpCT file bufferReference

Returns:

Number of records. If the CT archive is not opened, the return value is undefined.
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_get_reclen

8

F
actoryLink A

P
I

R
eference G

uide
CT_GET_RECLEN

Determine the record length of records in current CT table.

Call Format:

int ct_get_reclen(ctp)

Arguments:

Returns:

Length of individual records. If the CT archive is not opened, the return value is
undefined.

Remarks:

All tables have fixed-length records.

Table 8-36

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference
FactoryLink ECS / Programmer’s Access Kit / 193

FACTORYLINK API REFERENCE GUIDE
ct_get_type

 19

•
•
•
•

CT_GET_TYPE

Get the type field from the current CT table.

Call Format:

int ct_get_type(ctp)

Arguments:

Returns:

Table type number. If the CT archive is not opened, the return value is undefined.

Table 8-37

Type Name Descr iption Passed By

CT FAR *ctp CT file buffer Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_open

8

F
actoryLink A

P
I

R
eference G

uide
CT_OPEN

Open a CT archive file.

Call Format:

int ct_open(ctp, dirp, namep)

Arguments:

Returns:

GOOD, if the file was successfully opened; otherwise, one of the following:

CT_NULL_POINTER

CT_CANNOT_OPEN_FILE

CT_READ_ERROR

CT_BAD_MAGIC

Remarks:

CT_OPEN places information about the CT archive into the buffer pointed to by
ctp. The archive is positioned at the first table in the archive.

Table 8-38

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

char FAR *dirp Base path name Reference

char FAR *namep CT file name Reference

FactoryLink ECS / Programmer’s Access Kit / 195

FACTORYLINK API REFERENCE GUIDE
ct_read_hdr

 19

•
•
•
•

CT_READ_HDR

Read the header for ctp into buffer.

Call Format:

int ct_read_hdr(ctp, hdrp)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_SEEK_ERROR

CT_READ_ERROR

Remarks:

Call CT_READ_INDEX before calling CT_READ_HDR.

Table 8-39

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

void FAR *hdrp CT header buffer Reference
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_read_index

8

F
actoryLink A

P
I

R
eference G

uide
CT_READ _INDEX

Read an index from a CT archive.

Call Format:

int ct_read_index(ctp, ndx)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_SEEK_ERROR

CT_READ_ERROR

Remarks:

Each table in the archive has an associated index containing information about
the table. The index is read into the CT file buffer pointed to by ctp. Reading an
index selects a specific CT for reading.

Table 8-40

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

uint ndx Index to read Value
FactoryLink ECS / Programmer’s Access Kit / 197

FACTORYLINK API REFERENCE GUIDE
ct_read_rec

 19

•
•
•
•

CT_READ_REC

Read a record from the current CT into memory.

Call Format:

int ct_read_rec(ctp, recp, rec)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_BAD_RECORD

CT_SEEK_ERROR

CT_READ_ERROR

Remarks:

Read the indicated record from the currently selected CT into the memory pointed
to by the buffer.

Table 8-41

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

void FAR recp Record buffer Reference

uint rec Record number Value
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_read_recs

8

F
actoryLink A

P
I

R
eference G

uide
CT_READ _RECS

Read records from the current CT into memory.

Call Format:

int ct_read_recs(ctp, recp, rec, recs)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_BAD_RECORD

CT_SEEK_ERROR

CT_READ_ERROR

Remarks:

Read the indicated records from the currently selected CT into the memory
pointed to by the buffer. Reading begins at record number rec.

Table 8-42

Type Name Descr iption Passed By

CT FAR *ctp CT file buffer Reference

void FAR *recp Record buffer Reference

uint rec Starting record
number

Value

uint recs Number of records
to read

Value
FactoryLink ECS / Programmer’s Access Kit / 199

FACTORYLINK API REFERENCE GUIDE
ct_update

 20

•
•
•
•

CT_UPDATE

Open a CT for update.

Call Format:

int ct_update(ctp, dirp, namep)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_CANNOT_OPEN_FILE

CT_WRITE_ERROR

Remarks:

Write the CT archive header from the caller's ctp→ctarc structure. The caller
must fill in all fields of the ctp→ctarc structure except “magic” prior to calling this
function.

Table 8-43

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

char FAR *dirp Directory name Reference

char FAR *namep CT file name Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_write_hdr

8

F
actoryLink A

P
I

R
eference G

uide
CT_WRITE_HDR

Write the CT header from buffer to the current CT header.

Call Format:

int ct_write_hdr(ctp, hdrp)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_SEEK_ERROR

CT_WRITE_ERROR

Remarks:

Write the CT header from the caller's buffer to the currently selected CT's header.

Table 8-44

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

void FAR *hdrp CT header
buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 201

FACTORYLINK API REFERENCE GUIDE
ct_write_index

 20

•
•
•
•

CT_WRITE_INDEX

Write a CT index record.

Call Format:

int ct_write_index(ctp, ndx)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_BAD_RECORD

CT_SEEK_ERROR

CT_WRITE_ERROR

Remarks:

Write the specified CT index record from the caller's ctp→ctndx structure. This
implicitly selects a CT as the current one.

Table 8-45

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

uint ndx Index record to write Value
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
ct_write_rec

8

F
actoryLink A

P
I

R
eference G

uide
CT_WRITE_REC

Write a CT record to buffer.

Call Format:

int ct_write_rec(ctp, recp, rec)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_BAD_RECORD

CT_SEEK_ERROR

CT_WRITE_ERROR

Remarks:

Write the specified CT record from the caller's buffer. This only affects the
currently selected CT.

Table 8-46

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

void FAR *recp Record buffer to write Reference

uint rec Record index to write Value
FactoryLink ECS / Programmer’s Access Kit / 203

FACTORYLINK API REFERENCE GUIDE
ct_write_recs

 20

•
•
•
•

CT_WRITE_RECS

Write CT records into buffer.

Call Format:

int ct_write_recs(ctp, recp, rec, recs)

Arguments:

Returns:

GOOD, if successful; otherwise, one of the following:

CT_NULL_POINTER

CT_FILE_NOT_OPEN

CT_BAD_INDEX

CT_BAD_RECORD

CT_SEEK_ERROR

CT_WRITE_ERROR

Remarks:

Write multiple CT records from the caller's buffer. This only affects the currently
selected CT.

Table 8-47

Type Name Description Passed By

CT FAR *ctp CT file buffer Reference

void FAR *recp Records to write Reference

uint rec Record index to start
writing

Value

uint recs Number of records to write Value
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_access_mem

8

F
actoryLink A

P
I

R
eference G

uide
FL_ACCESS _MEM

Access memory block.

Call Format:

 int fl_access_mem(id, vptr, pptrp, sizep)

Arguments:

 Returns:

GOOD or ERROR
• If GOOD, *pptrp and *sizep are filled in.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_BAD_ARGUMENT
• FLE_OUT_OF_MEMORY
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

FL_ACCESS_MEM obtains access to the memory block referenced by the
specified virtual pointer for the calling process. The virtual pointer must have
been previously obtained via FL_ALLOC_MEM. This function translates the
virtual pointer (VPTR) to a physical pointer (void *) and a size (u32). Since the

Table 8-48

Type Name Description Passed By

 id_t id FactoryLink ID of caller Value

 VPTR vptr Virtual pointer Reference

 void FAR **pptrp Pointer to physical pointer to
be filled in by kernel

Reference

 u32 FAR *sizep Pointer to size of memory
block, in bytes, to be filled in
by kernel

Reference
FactoryLink ECS / Programmer’s Access Kit / 205

FACTORYLINK API REFERENCE GUIDE
fl_access_mem

 20

•
•
•
•

physical pointer returned remains valid only while the database is locked, lock the
database before calling this function. It is legal to pass NULL pointers in place of
pptrp and/or sizep.

The following example displays how to allocate and access a one K-byte block of
sharable memory:

id_t id;

VPTR vptr;

void *pptr;

fl_alloc_mem(id, 1024, &vptr);

...

fl_lock(id);

fl_access_mem(id, vptr, &pptr, NULL);

...

fl_unlock(id);
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_alloc_mem

8

F
actoryLink A

P
I

R
eference G

uide
FL_ALLOC _MEM

Allocate a specified amount of memory.

Call Format:

int fl_alloc_mem(id, size, vptrp)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *vptrp is filled in.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_BAD_ARGUMENT
• FLE_NULL_POINTER
• FLE_OUT_OF_MEMORY
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

FL_ALLOC_MEM allocates the specified amount of memory and returns a virtual
pointer to the caller. The memory allocated is contiguous, sharable with other
FactoryLink processes, initialized to all zeros, and is suitably aligned for storage.
The virtual pointer may be subsequently used as a reference to the memory. The
memory remains allocated until freed with FL_FREE_MEM. The size of the
memory block requested must not exceed MAX_MEM_SIZE.

Table 8-49

Type Name Description Passed By

id_t id FactoryLink ID of caller Value

u32 size Size of memory block, in bytes Value

VPTR FAR *vptrp Pointer to virtual pointer to be
filled in by kernel

Reference
FactoryLink ECS / Programmer’s Access Kit / 207

FACTORYLINK API REFERENCE GUIDE
fl_change_read

 20

•
•
•
•

FL_CHANGE_READ

Read the first real-time database element that has changed since it was last read.

Call Format:

int fl_change_read(id, tp, n, ip, vp)

Arguments:

Table 8-50

Type Name Description Passed By

id_t id Caller's FactoryLink
ID

Value

TAG FAR *tp Pointer to tag array
specifying which
elements are to be
examined

Reference

uint n Number of elements
involved

Value

uint FAR *ip Pointer to index into
tag array to be used
and updated, if
necessary, by kernel

Reference

void FAR *vp Pointer to area to
receive the value of the
first changed element,
if r == GOOD

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_change_read

8

F
actoryLink A

P
I

R
eference G

uide
Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_ARGUMENT
• FLE_NO_CHANGE
• FLE_LOCK_FAILED
• FLE_BAD_TAG

Remarks:

Test for a change in value of one or more elements in the real-time database. The
calling process is immediately informed (it is never blocked) as to whether any of
the specified real-time database elements changed since last read. ip specifies the
first element to examine. However, in contrast to FL_CHANGE_WAIT, ip does
not wrap around the tag array.

In the case of a mailbox element, the value passed back is the MBXMSG for the
head message without the associated message data.
FactoryLink ECS / Programmer’s Access Kit / 209

FACTORYLINK API REFERENCE GUIDE
fl_change_read_tag_list

 21

•
•
•
•

FL_CHANGE_READ_TAG _LIST

Read a change in value of one or more elements in a list of real-time database
elements.

Call Format:

int fl_change_read_tag_list(id, tp, ip, vp)

Arguments:

Table 8-51

Type Name Description Passed By

id_t id FactoryLink ID of caller Value

TAG FAR *tp Pointer to a single
trigger element to be
filled in by kernel

Reference

uint FAR *ip Pointer to index to be
filled in by kernel

Reference

void FAR *vp Pointer to value buffer
to be filled in by kernel

Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_change_read_tag_list

8

F
actoryLink A

P
I

R
eference G

uide
Returns:

GOOD or ERROR
• If GOOD, *tp, *ip, and *vp are filled in.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_NO_TAG_LIST
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

FL_CHANGE_READ_TAG_LIST looks for a change in value of one or more
elements in the tag list registered to the calling process. It is similar in operation
to FL_CHANGE_READ in that it does not block the caller.
FactoryLink ECS / Programmer’s Access Kit / 211

FACTORYLINK API REFERENCE GUIDE
fl_change_wait

 21

•
•
•
•

FL_CHANGE_WAIT

Read the first real-time database element that has changed since it was last read;
if no change, go to sleep until a change occurs.

Call Format:

int fl_change_wait(id, tp, n, ip, vp)

Arguments:

Table 8-52

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value

TAG FAR *tp Pointer to tag array specifying
which elements are to be
examined

Reference

uint n Number of elements involved Value

uint FAR *ip Pointer to index into tag array
to be used and updated, if
necessary, by kernel

Reference

void FAR *vp Pointer to area to receive the
value of the first changed
element, if r == GOOD

Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_change_wait

8

F
actoryLink A

P
I

R
eference G

uide
Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_ARGUMENT
• FLE_NO_CHANGE

Remarks:

Wait on a change in value of one or more elements in the real-time database. If
any of these elements have changed, control is returned immediately to the caller
(just as in FL_CHANGE_READ). Otherwise, the calling process is put to sleep
(blocked) until one or more of the specified real-time database elements changes,
at which point it is awakened. While sleeping, the calling task is also awakened if
another process wakes it up (this can be done either directly via FL_WAKEUP or
indirectly via FL_SET_TERM_FLAG). Although all n elements are waited upon,
only one value is read and returned in vp. This is the one detected as the first one
to change. In deciding which element is first, ip is used in wraparound fashion
within the tag array.

In the case of a mailbox element, the value passed back is the MBXMSG for the
head message without the associated message data.
FactoryLink ECS / Programmer’s Access Kit / 213

FACTORYLINK API REFERENCE GUIDE
fl_change_wait_tag_list

 21

•
•
•
•

FL_CHANGE_WAIT_TAG _LIST

Wait for a change in value of one or more elements in the list of real-time database
elements.

Call Format:

int fl_change_wait_tag_list(id, tp, ip, vp)

Arguments:

Table 8-53

Type Name Description Passed By

id_t id FactoryLink ID of caller Value

TAG FAR *tp Pointer to a single trigger
element to be filled in by kernel

Reference

uint FAR *ip Pointer to index to be filled in
by kernel

Reference

void FAR *vp Pointer to value buffer to be
filled in by kernel

Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_change_wait_tag_list

8

F
actoryLink A

P
I

R
eference G

uide
Returns:

GOOD or ERROR
• If GOOD, *tp, *ip, and *vp are filled in.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_NO_TAG_LIST
• FLE_SIGNALLED
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

FL_CHANGE_WAIT_TAG_LIST waits for a change in value of one or more
elements in the tag list registered to the calling process. It is similar in operation
to FL_CHANGE_WAIT in that it blocks the caller until a change occurs or some
other event awakens the caller (such as receipt of a signal).
FactoryLink ECS / Programmer’s Access Kit / 215

FACTORYLINK API REFERENCE GUIDE
fl_clear_chng

 21

•
•
•
•

FL_CLEAR _CHNG

Clear the calling task's change-status flags for specified real-time database
elements.

Call Format:

int fl_clear_chng(id, tp, n)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_LOCK_FAILED
• FLE_BAD_TAG

Remarks:

Clear (to 0) the change state of the specified real-time database elements for the
calling process only. This function undoes the action of FL_SET_CHNG. It is also
useful for establishing initial conditions for a programming loop.

Table 8-54

Type Name Description Passed By

id_t id Caller's FactoryLink
ID

Value

TAG FAR *tp Pointer to tag array
specifying

Reference

which elements are
involved

uint n Number of elements
involved

Value
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_clear_wait

8

F
actoryLink A

P
I

R
eference G

uide
FL_CLEAR _WAIT

Clear the calling task's wait flags for specified real-time database elements.

Call Format:

int fl_clear_wait(id, tp, n)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_LOCK_FAILED
• FLE_BAD_TAG

Remarks:

Clear (to 0) the wait flag of the specified real-time database elements for the
calling process only. Also, use this function to establish initial conditions.

Table 8-55

Type Name Description Passed By

id_t id Caller's FactoryLink
ID

Value

TAG FAR *tp Pointer to tag array
specifying

Reference

which elements are
involved

uint n Number of elements
involved

Value
FactoryLink ECS / Programmer’s Access Kit / 217

FACTORYLINK API REFERENCE GUIDE
fl_count_mbx

 21

•
•
•
•

FL_COUNT_MBX

Determine the number of messages in a mailbox, validate a mailbox, or monitor a
mailbox.

Call Format:

int fl_count_mbx(id, mbx, np)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, also returns *np.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_TAG
• FLE_NOT_MAILBOX
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Table 8-56

Type Name Descr iption Passed By

id_t id FactoryLink
ID of caller

Value

TAG mbx Mailbox to
be accessed

Reference

uint FAR *np Message
count to be
filled in by
kernel

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_count_mbx

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

Use FL_COUNT_MBX to determine how many messages are present in a
mailbox. Generally, call FL_COUNT_MBX prior to allocating space for an array of
MBXMSGs and calling FL_QUERY_MBX. Also, use this function to validate a
mailbox TAG and to monitor a mailbox.
FactoryLink ECS / Programmer’s Access Kit / 219

FACTORYLINK API REFERENCE GUIDE
fl_create_rtdb

 22

•
•
•
•

FL_CREATE_RTDB

Create an instance of the FactoryLink Real-Time Database. This function is called
by the run-time manager to create a formatted, initialized (empty) instance of the
RTDB for each domain.

Call Format:

int fl_create_rtdb(pgm_dir,app_dir,name,users,ucnt,utype,tcnt)

Arguments:

Returns:

GOOD or ERROR

Remarks:

Normally, this function is only called by the run-time manager.

Table 8-57

Type Name Description Passed By

char *pgm_dir FactoryLink program
directory ({FLINK})

Reference

char *app_dir Application directory
({FLAPP})

Reference

char *name Application invocation
name ({FLNAME})

Reference

KUSR ucnt Number of elements in
user structure

Value

KTYPE *utype Database types
information

Reference

int tcnt Number of elements in
utype

Value
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_create_rtdb

8

F
actoryLink A

P
I

R
eference G

uide
The PGM_DIR and APP_DIR arguments contain the program and application
directory names. This information is also placed into the process environment by
the run-time manager.

The NAME argument contains a pointer to a string containing the invocation
name for this application. This name is used by tasks to connect to the correct
instance of the application.

The USERS argument points to an array of KUSR structures. The KUSR
structure type is a new structure that contains information about the number of
users to allocate.

typedef struct _KUSR
{
 char u_name[MAX_USER_NAME];
 char u_parent[MAX_USER_NAME];
 int u_instance;
} KUSR;

The PARENT member is for use in domain processing. The INSTANCE member
defines the number of users that can attach to the database with this domain
name.

The UCNT argument specifies the number of elements in the array pointed to by
USERS.

The UTYPE argument points to an array of KTYPE structures that define the
segments contained in the real-time database.

The TCNT argument specifies the number of elements in the array pointed to by
UTYPE.
FactoryLink ECS / Programmer’s Access Kit / 221

FACTORYLINK API REFERENCE GUIDE
fl_dbfmtt

 22

•
•
•
•

FL_DBFMTT

Prepare a formatted string from a set of real-time database element values.

Call Format:

int fl_dbfmtt(id,maxlen,bp0,fp,args)

Arguments:

Returns:

Length of string

Table 8-58

Type Name Descr iption Passed By

id_t id Task ID used
to access
real-time
database

Value

int maxlen Maximum
number of
characters
that can be
stored in
output buffer

Value

char FAR bp0 Pointer to the
memory
buffer that
stores
formatted
output

Reference

char FAR fp Format
string

Reference

TAG *args Tag array (to
be read from
the real-time
database)

Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_dbfmtt

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

This function is similar to the C-language function SPRINTF.

The format string can contain a format specifier of the following form:

%m.nc

where

m Represents the width of the output (optional). If m is preceded by
a hyphen (-), the output is left justified. By default, the output is
right justified.

n Represents the precision of the output (optional)

cIs one of the following characters:

Character Output

B String representing a DIGITAL value as ON or
OFF

b Number representing a DIGITAL value as 0 or 1

d Integer value in base 10

u Unsigned integer value in base 10

x Integer value in base 16 (hexadecimal)

o Integer value in base 8 (octal)

c Single character

s Character string

f Floating-point number

g Floating-point number

% A percent sign

For each format specifier, the next element in the args array is used to read a
value from the real-time database. The element value is converted to the
appropriate type for the format specifier and then formatted into the output
buffer.
FactoryLink ECS / Programmer’s Access Kit / 223

FACTORYLINK API REFERENCE GUIDE
fl_delete_rtdb

 22

•
•
•
•

FL_DELETE_RTDB

Delete (remove and destroy) an instance of the FactoryLink Real-Time Database.
This function is called by the run-time manager to release all memory associated
with a particular instance of the RTDB in a domain.

Call Format:

int fl_delete_rtdb(rtid)

Arguments:

Returns:

GOOD or ERROR

Remarks:

This function should only be called by the Run-Time Manager.

Table 8-59

Type Name Description Passed By

int rtid FactoryLink ID value
of this RTDB instance
(which was returned
by fl_create_rtdb when
this RTDB instance
was created)

Value
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_errno

8

F
actoryLink A

P
I

R
eference G

uide
FL_ERRNO

Return the last FactoryLink error number generated by the calling process.

Call Format:

int fl_errno(id)

Arguments:

TypeNameDescriptionPassed By

id_tidCaller's FactoryLink IDValue

Returns:

Last error number or GOOD if none

Remarks:

Return the last FactoryLink error number generated by the calling process
(during the last call to the kernel that resulted in an error).
FactoryLink ECS / Programmer’s Access Kit / 225

FACTORYLINK API REFERENCE GUIDE
fl_exit_app

 22

•
•
•
•

FL_EXIT_APP

Exit an instance of an application.

Call Format:

int fl_exit_app(id)

Arguments:

Returns:

GOOD or ERROR

Remarks:

Normally, only the Run-Time Manager should call this function.

FL_EXIT_APP exits an instance of an application in the multi-user environment.
This function should be called by the task that called FL_INIT_APP before that
task exits.

Table 8-60

Type Name Descr iption Passed By

id_t id FactoryLink
task ID

Value
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_forced_write

8

F
actoryLink A

P
I

R
eference G

uide
FL_FORCED_WRITE

Force-write a specified element into the real-time database.

Call Format:

int fl_forced_write(id, tp, n, vp)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_LOCK_FAILED
• FLE_BAD_TAG
• FLE_OUT_OF_MEMORY

Table 8-61

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value

TAG FAR *tp Pointer to tag array specifying
which elements are to be
force-written

Reference

uint n Number of elements to be
force-written

Value

void FAR *vp Pointer to area holding the
values

Reference
FactoryLink ECS / Programmer’s Access Kit / 227

FACTORYLINK API REFERENCE GUIDE
fl_forced_write

 22

•
•
•
•

Remarks:

This function operates similarly to FL_WRITE except that all change states are
set (to 1), regardless of whether the new values written into the database are the
same as the previous values stored there. Upon completion of writing, those client
processes waiting on any of the elements involved are awakened. As before, any
attempt by the writing process to write a value into a synchronous element that is
still unread causes the writer to block until it has been read. Blocking does not
occur until an attempt has been made to write all of the specified elements. All
asynchronous elements are written on the first pass.
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_free_mem

8

F
actoryLink A

P
I

R
eference G

uide
FL_FREE_MEM

Free memory.

Call Format:

int fl_free_mem(id, vptr)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_BAD_ARGUMENT
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

FL_FREE_MEM frees the memory referenced by the specified virtual pointer,
that must have been previously obtained by a call to FL_ALLOC_MEM.
FL_FREE_MEM undoes the action of FL_ALLOC_MEM. The memory is returned
to the free memory pool and the virtual pointer can no longer be used as a
reference to it.

Table 8-62

Type Name Description Passed By

id_t id FactoryLink ID of caller Value

VPTR vptr Virtual pointer Reference
FactoryLink ECS / Programmer’s Access Kit / 229

FACTORYLINK API REFERENCE GUIDE
fl_get_app_dir

 23

•
•
•
•

FL_GET_APP_DIR

Return the application directory for the specified process.

Call Format:

int fl_get_app_dir(id, dir)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *dir is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Remarks:

FL_GET_APP_DIR returns the application directory for the process specified by
the FactoryLink ID (usually, but not necessarily, the ID of the caller). It returns
the application directory as a full path name, including a drive letter, if
applicable. This directory is the root directory for all “dynamic” FactoryLink files;
that is, for all files that are part of a particular FactoryLink application.

Table 8-63

Type Name Description Passed By

id_t id FactoryLink ID Value

char FAR *dir Pointer to directory string
to be

Reference

filled in by kernel
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_app_globals

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_APP_GLOBALS

Read the global flags for a specific instance of an application.

Call Format:

int fl_get_app_globals(id, ugp)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, buffer to which *ugp points is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Remarks:

FL_GET_APP_GLOBALS replaces the FL_GET_GLOBALS function from
previous releases. It returns the global flags for a specific instance of an
application as specified by the FactoryLink task ID passed.

Table 8-64

Type Name Description Passed By

id_t id FactoryLink task ID Value

KGLOBALS *ugp Pointer to global
information return buffer
to be filled in by kernel

Reference
FactoryLink ECS / Programmer’s Access Kit / 231

FACTORYLINK API REFERENCE GUIDE
fl_get_cmd_line

 23

•
•
•
•

FL_GET_CMD_LINE

Return the command line for the specified process.

Call Format:

int fl_get_cmd_line(id, line)

Arguments:

Returns:

GOOD or ERROR.
• If GOOD, *dir is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Remarks:

FL_GET_CMD_LINE returns the command line for the process specified by the
FactoryLink ID (usually, but not necessarily, the ID of the caller). The command
line for a process is an ASCII string that generally contains instructions to the
process to alter its normal behavior, and additional environmental information.

Table 8-65

Type Name Descr iption Passed By

id_t id FactoryLink ID Value

char FAR *line Pointer to command
line to be filled in by
kernel

Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_copyrt

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_COPYRT

Return a pointer to a copyright message for FactoryLink.

Call Format:

char *fl_get_copyrt(void)

Arguments:

None

Returns:

Pointer to copyright message

Remarks:

Do not modify the pointer that is returned by this function.
FactoryLink ECS / Programmer’s Access Kit / 233

FACTORYLINK API REFERENCE GUIDE
fl_get_ctrl_tag

 23

•
•
•
•

FL_GET_CTRL_TAG

Return the control tag, which refers to a digital or analog real-time database
element, for the specified process.

Call Format:

int fl_get_ctrl_tag(id, tag)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *tag is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Remarks:

FL_GET_CTRL_TAG returns the control tag, which refers to a digital or analog
real-time database element, for the process specified by the FactoryLink ID
(which is not necessarily, and usually is not, the ID of the caller). The control tag
for a process is used to control starting and stopping of the process. Any process
may write a value of 1 (or any other nonzero value) to the control tag to tell the
Run-Time Manager to start the process. Likewise, it may write a value of 0 to tell
the Run-Time Manager to stop the process by setting the termination flag of the
process.

Table 8-66

Type Name Descr iption Passed By

id_t id FactoryLink
ID

Value

TAG FAR *tag Pointer to
control tag to
be filled in
by kernel

Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_env

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_ENV

Return the KENV structure of the client process.

Call Format:

int fl_get_env(id, uep)

Arguments:

Returns:

GOOD or ERROR

Remarks:

Return a KENV structure describing the environment of the given client process,
usually the calling process. The Run-Time Manager calls FL_SET_ENV to define
this structure before the client process is started. This function returns all fields
of the KENV structure.

Table 8-67

Type Name Description Passed By

id_t id Client FactoryLink ID
(0-30), used as an index into
the array of KENVs kept by
the kernel

Value

KENV FAR *uep Pointer to KENV structure
to be returned

Reference
FactoryLink ECS / Programmer’s Access Kit / 235

FACTORYLINK API REFERENCE GUIDE
fl_get_msg_tag

 23

•
•
•
•

FL_GET_MSG_TAG

Return the value of the real-time database message element for the specified
process.

Call Format:

int fl_get_msg_tag(id, tag)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *tag is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Remarks:

FL_GET_MSG_TAG returns the value of a real-time database message element
for the process specified by the FactoryLink ID (usually, but not necessarily, the
ID of the caller). The MSG database element is written by the process and read by
the Run-Time Manager. Its ASCII value is assumed to continually describe what
the process is doing, what problems it is encountering, and other similar
information (another self-reporting mechanism). It is passed directly from the
Run-Time Manager to the Real-Time Graphics process for display on the
Run-Time Manager screen.

Table 8-68

Type Name Description Passed By

id_t id FactoryLink ID Value

TAG FAR *tag Pointer to message
element to be filled
in by kernel

Reference
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_nprocs

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_NPROCS

Get the number of client processes permitted to run concurrently.

Call Format:

int fl_get_nprocs()

Arguments:

None

Returns:

Number of client processes
FactoryLink ECS / Programmer’s Access Kit / 237

FACTORYLINK API REFERENCE GUIDE
fl_get_pgm_dir

 23

•
•
•
•

FL_GET_PGM_DIR

Return the program directory for the specified process.

Call Format:

int fl_get_pgm_dir(id, dir)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *dir is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Remarks:

FL_GET_PGM_DIR returns the program directory for the process specified by the
FactoryLink ID (usually, but not necessarily, the ID of the caller). The program
directory is returned as a full path name, including a drive letter, if applicable.
This directory is the root directory for all “static” FactoryLink files, that is, for all
files that are part of an installed FactoryLink system, but are not part of any
FactoryLink application.

Table 8-69

Type Name Descr iption Passed By

id_t id FactoryLink
ID

Value

char FAR *dir Pointer to
directory
string to be
filled in by
kernel

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_stat_tag

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_STAT_TAG

Return the value of the real-time database analog status element for the specified
process.

Call Format:

int fl_get_stat_tag(id, tag)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *tag is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Table 8-70

Type Name Description Passed By

id_t id FactoryLink ID Value

TAG FAR *tag Pointer to status
element to be filled
in by kernel

Reference
FactoryLink ECS / Programmer’s Access Kit / 239

FACTORYLINK API REFERENCE GUIDE
fl_get_stat_tag

 24

•
•
•
•

Remarks:

FL_GET_STAT_TAG returns the value of the status element for the process
specified by the FactoryLink ID (not necessarily the ID of the caller). The ANA
status real-time database element is written by the process and read by the
Run-Time Manager. Its numeric value is assumed to continually reflect the
(self-reported) status of the process, as follows:

The Run-Time Manager converts the status value to an ASCII string and
passes it to the Real-Time Graphics process for display on the Run-Time
Manager screen.

Table 8-71

Status Symbolic Name Meaning

0 FLS_INACTIVE Process is inactive (not running)

1 FLS_ACTIVE Process is active (running)

2 FLS_ERROR Error (non-fatal error occurred)

3 FLS_STARTING Starting (initialization in progress)

4 FLS_STOPPING Stopping (shutdown in progress)

other —- Error (non-fatal error occurred)
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_tag_info

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_TAG_INFO

Get the information associated with a specified list of real-time database
elements.

Call Format:

int fl_get_tag_info(tp, n, dp, op)

Arguments:

Returns:

GOOD or ERROR

Remarks:

The dp array is filled in with one of the following values, which correspond to the
elements passed to it:

Table 8-72

Type Name Description Passed By

TAG FAR *tp Pointer to tag array
specifying which elements
are involved

Reference

uint n Number of elements involved Value

i16 FAR *dp Pointer to description array
to be filled in by kernel and
returned to caller

Reference

u16 FAR *op Pointer to offset array to be
filled in by kernel and
returned to caller

Reference

Table 8-73

Value Description

FL_BAD_DATA Element is out-of-range (bad t_data field)
FactoryLink ECS / Programmer’s Access Kit / 241

FACTORYLINK API REFERENCE GUIDE
fl_get_tag_info

 24

•
•
•
•

The kernel fills in the op array with the offset into the vp buffer, where the value
would be stored if FL_READ, FL_WRITE, or FL_FORCED_WRITE were called
with the argument list (id, tp, n, vp). The caller may set either or both of the
pointers dp or op to NULL if it does not wish to receive the corresponding
information. FL_GET_TAG_INFO returns GOOD if all n elements in the tp array
are valid and ERROR if one or more of them is bad.

FL_BAD_TYPE Element is a bad t_type field

FL_UNDEFINED Element is undefined

FL_DIGITAL Element is a digital (DIG)

FL_ANALOG Element is an analog (ANA)

FL_MESSAGE Element is a message (MSG)

FL_LANALOG Element is a long analog (LONGANA)

FL_FLOAT Element is floating point (FLP)

FL_MAILBOX Element is mailbox (holds MBXMSGs)

Table 8-73

Value Descr iption
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_tag_list

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_TAG_LIST

Retrieve the tag list (a list of real-time database elements) for the calling process.

Call Format:

int fl_get_tag_list(id, tp, n, np)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *tp and *np are filled in.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_NO_TAG_LIST
• FLE_OUT_OF_MEMORY
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Table 8-74

Type Name Description Passed By

id_t id FactoryLink ID of caller Value

TAG FAR *tp Pointer to array of trigger
elements to be filled in by
kernel

Reference

uint n Maximum number of
trigger elements

Reference

uint FAR *np Actual number of trigger
elements filled in by kernel

Reference
FactoryLink ECS / Programmer’s Access Kit / 243

FACTORYLINK API REFERENCE GUIDE
fl_get_tag_list

 24

•
•
•
•

Remarks:

Assuming the tag list (list of real-time database elements) has been registered
using the FL_SET_TAG_LIST function, FL_GET_TAG_LIST retrieves the tag list
for the calling process.
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_tick

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_TICK

Get the current clock tick and/or current date and time maintained and reported
by the operating system.

Call Format:

int fl_get_tick(tickp, datetimep)

Arguments:

Returns:

Always GOOD

Remarks:

The clock tick is graduated in millisecond units and is non-decreasing until
wraparound time (about once a month). The chief use is in measuring elapsed
time. The date and time are stored in a DATETIME structure familiar to the
operating system. Either tickp or datetimep may be NULL, which the kernel
interprets as a lack of interest in the corresponding value; therefore, the kernel
does not store the value.

Table 8-75

Type Name Description Passed By

u32 FAR *tickp Pointer to place to store
clock tick

Reference

KDT FAR *datetimep Pointer to place to store
data and time

Reference
FactoryLink ECS / Programmer’s Access Kit / 245

FACTORYLINK API REFERENCE GUIDE
fl_get_title

 24

•
•
•
•

FL_GET_TITLE

Return a pointer to the name of the product (“FactoryLink”).

Call Format:

char *fl_get_title(void)

Arguments:

None

Returns:

Pointer to name of product

Remarks:

Do not modify the pointer that is returned by this function.
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_get_version

8

F
actoryLink A

P
I

R
eference G

uide
FL_GET_VERSION

Get the kernel version number.

Call Format:

uint fl_get_version()

Arguments:

None

Returns:

FactoryLink kernel version number. Numerically returns version x.y as
(x * 256) + y.
FactoryLink ECS / Programmer’s Access Kit / 247

FACTORYLINK API REFERENCE GUIDE
fl_getvar

 24

•
•
•
•

FL_GETVAR

Returns the lookup value of an environment variable.

Call Format:

char *fl_getvar(name, buf, len)

Arguments:

Returns:

If successful in finding the specified variable, the function returns a pointer to the
buf argument.

If the variable is not found, the function returns NULL.

Remarks:

This function is similar to GETENV from the standard C library. The purpose of
this special API function is to allow the kernel to read the environment under
OS/2.

Table 8-76

Type Name Descr iption Passed By

char *name Pointer to environment
variable name

Value

char *buf Buffer to hold returned value Reference

int len Length of the value buffer
'buf'

Value
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_global_tag

8

F
actoryLink A

P
I

R
eference G

uide
FL_GLOBAL _TAG

Retrieve the tag number for one or more global elements.

Call Format:

int fl_global_tag(tagp, n, ids)

Arguments:

Returns:

Number of elements read from the global CT file.

Remarks:

GLOBAL.CT contains global elements that are available to all tasks. For each
member of the ids array, GLOBAL.CT is searched for a matching value. The
associated element is then copied into the corresponding member of the tagp
array.

The following code illustrates an example of the use of this function:

#include <flib.h>

 ...

uint ids[3] = {GT_SECONDS, GT_MINUTES, GT_HOURS};

TAG gtags[3];

Table 8-77

Type Name Description Passed By

TAG FAR *tagp Array where tag numbers
are returned

Reference

uint n Number of elements to
read

Value

uint *ids Array of identification
numbers

Reference

Note: The id values are defined in FLIB.H.
FactoryLink ECS / Programmer’s Access Kit / 249

FACTORYLINK API REFERENCE GUIDE
fl_global_tag

 25

•
•
•
•

ANA vals[3];

/* Find the tag numbers for the elements where the

 timer task is updating the seconds, minutes, and hours */

fl_global_tag(>ags[0], 3, &ids[0]);

/* Read the time tags */

fl_read(taskid, >ags[0], 3, &vals[0]);

seconds = vals[0];

minutes = vals[1];

hours = vals[2];
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_hold_sig

8

F
actoryLink A

P
I

R
eference G

uide
FL_HOLD_SIG

Prevent or allow signal delivery for the calling process.

Call Format:

int fl_hold_sig(id, sig, hold)

Arguments:

Returns:

The previous hold value (1 or 0) for the signal or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns FLE_BAD_ARGUMENT.

Remarks:

Initially, all signals except 0 and 1 are held; that is, by default, signals 0 and 1 are
deliverable to the calling process, but others are not. A FactoryLink process
wishing to be notified when its tag list of real-time database elements has
changed must therefore execute the following function to allow delivery of this
signal:

fl_hold_sig(id, FLC_SIG_TAG_LIST_CHANGED, 0);

It is legal to hold any signal with FL_HOLD_SIG, including signals 0 and 1.

Table 8-78

Type Name Description Passed By

id_t id FactoryLink ID of caller Value

int sig Signal (0-31) to be
affected

Value

int hold Hold value:
1 = prevent signal
delivery
0 = allow signal delivery

Value
FactoryLink ECS / Programmer’s Access Kit / 251

FACTORYLINK API REFERENCE GUIDE
fl_id_to_name

 25

•
•
•
•

FL_ID_TO_NAME

Translate a FactoryLink ID to a process name.

Call Format:

int fl_id_to_name(id, name)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, *name is filled in.
• If ERROR, an invalid FactoryLink ID is assumed.

Remarks:

FL_ID_TO_NAME checks the FactoryLink ID and, if the ID is valid, returns the
associated process name from the KPROC array.

Table 8-79

Type Name Descr iption Passed By

id_t id FactoryLink ID to be
translated

Value

char FAR *name Pointer to process name to be
filled in by kernel

Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_init

8

F
actoryLink A

P
I

R
eference G

uide
FL_INIT

Initialize the FactoryLink kernel and its global data area. (OBSOLETE; replace
calls with calls to FL_INIT_APP for MUE.)

Call Format:

int fl_init(bp)

Arguments:

Returns:

ERROR (see Remarks)

Remarks:

Only the Run-Time Manager should call this function, and only once during
run-time initialization.

FL_INIT has been retained from previous releases in order to maintain the same
entry points into the kernel for compatibility with older applications, but will
always return ERROR when called from the multi-user environment.

Table 8-80

Type Name Description Passed By

char FAR *bp Pointer to command
specifying kernel's initial
parameters, options, and so
on (currently ignored)

Reference
FactoryLink ECS / Programmer’s Access Kit / 253

FACTORYLINK API REFERENCE GUIDE
fl_init_app

 25

•
•
•
•

FL_INIT_APP

Initialize the FactoryLink kernel and its global data area.

Call Format:

int fl_init_app(name, domain, user, proc)

Arguments:

Returns:

GOOD or ERROR

Remarks:

Normally, only the Run-Time Manager should call this function, and only once
during run-time initialization.

FL_INIT_APP uses the supplied name to locate the shared memory area
containing that instance of the real-time database. The NAME argument points to
a string that uniquely identifies the application. All possible shared memory areas
are searched for the one containing the NAME string. If no match is found,
FL_INIT_APP returns ERROR.

If this real-time database instance is located, fl_init_app searches the kernel
instance table for an unused entry with a domain name the same as the domain
argument. The domain argument must be one of the names passed to
FL_CREATE_RTDB in the KUSR structure.

Table 8-81

Type Name Descr iption Passed By

char *name Application invocation
name ({FLNAME})

Reference

char *domain Domain name
({FLDOMAIN})

Reference

char *user User name ({FLUSER}) Reference

KPROC *proc Process table Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_init_app

8

F
actoryLink A

P
I

R
eference G

uide
When a free entry is located, it is marked as in use and the user argument is
copied into the instance table entry. All tasks which pass the same combination of
{FLNAME},{FLDOMAIN},{FLUSER} to the FL_PROC_INIT_APP function will
use this instance table entry and share the same USER domain data areas.

The index of the instance table entry is returned as the application ID. The ID is
used by tasks as the upper byte of the task ID.

The previous API for database initialization, FL_INIT, will be retained for
compatibility with previous versions so as to maintain the same entry points into
the kernel, but will always return ERROR.
FactoryLink ECS / Programmer’s Access Kit / 255

FACTORYLINK API REFERENCE GUIDE
fl_lock

 25

•
•
•
•

FL_LOCK

Lock the real-time database on behalf of the calling process.

Call Format:

int fl_lock(id)

Arguments:

Returns:

GOOD or ERROR

Remarks:

Only one client process may have the real-time database locked at any given time.
If the calling process calls FL_LOCK and the real-time database is already locked
by that same process, a counter is incremented and the lock remains in effect for
the caller. This counter allows calls to FL_LOCK and FL_UNLOCK to be nested.

If another client process has already locked the real-time database, the caller is
put to sleep (blocked) until his lock request can be honored. Upon return from
FL_LOCK, only the calling process is granted access to the real-time database
until it makes a corresponding call to FL_UNLOCK, provided that it does not
execute FL_WAIT, either directly or indirectly. (FL_WAIT releases its lock and
puts it to sleep. When it is reawakened, the lock is reinstated).

If the caller wants to keep the real-time database locked and thereby retain
exclusive access to it, it must not call FL_CHANGE_WAIT or write any
synchronous elements via FL_WRITE or FL_FORCED_WRITE.

Table 8-82

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_name_to_id

8

F
actoryLink A

P
I

R
eference G

uide
FL_NAME _TO_ID

Translate a process name to a FactoryLink ID.

Call Format:

id_t fl_name_to_id(id, name)

Arguments:

Returns:

FactoryLink ID or ERROR
• If ERROR, an invalid process name is assumed.

Remarks:

FL_NAME_TO_ID searches the KPROC array for the specified process name and,
if the process name is found, returns the associated FactoryLink ID.

Table 8-83

Type Name Description Passed By

char FAR *name Pointer to process
name to be translated

Reference

id_t id Task ID of calling task Value
FactoryLink ECS / Programmer’s Access Kit / 257

FACTORYLINK API REFERENCE GUIDE
fl_path_access

 25

•
•
•
•

FL_PATH_ACCESS

Check file access mode for a given file.

Call Format:

int fl_path_access(path)

Arguments:

Returns:

• The file access mode of the file as one of the following character strings:
• NPATH_READ
• NPATH_WRITE
• NPATH_READ | NPATH_WRITE

• If specified file does not exist, returns ERROR.

Remarks:

The function FL_PATH_ACCESS returns a string informing the calling program
of the mode(s) (read-only, write-enable, or read/write) in which the calling
program is authorized to access the specified file, if available.

See also the other path functions (FL_PATH and related calls).

Table 8-84

Type Name Descr iption Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized path
name buffer

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_add

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_ADD

Catenates two normalized paths.

Call Format:

void fl_path_add(path1,path2)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_ADD catenates two paths. Any missing component of the second path
p2 is taken from the first path p1 or from the current directory if the first path is
null.

See also the other path functions (FL_PATH and related calls).

Table 8-85

Type Name Description Passed By

NPATH *path1 Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference

NPATH *path2 Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 259

FACTORYLINK API REFERENCE GUIDE
fl_path_add_dir

 26

•
•
•
•

FL_PATH_ADD_DIR

Adds one subdirectory specification per call to the end of the directory portion of a
path.

Call Format:

void fl_path_add_dir(path, dir)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_ADD_DIR adds a subdirectory specification to the end of the directory
portion of a path. Only one subdirectory can be added to a path during each call to
FL_PATH_ADD_DIR. The subdirectory name should not contain any
path-separator characters.

See also the other path functions (FL_PATH and related calls).

Table 8-86

Type Name Descr iption Passed By

NPATH *path Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference

char *dir Directory name in
system-specific format

Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_alloc

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_ALLOC

Allocate a normalized path name buffer.

Call Format:

NPATH *fl_path_alloc(void)

Arguments:

None

Returns:

• If successful, returns a pointer to a normalized path buffer. (The pointer is
returned in the variable named in the call; e.g.,
PATH = fl_path_alloc)

• If unsuccessful, returns NULL; an invalid process name is assumed.

Remarks:

The function FL_PATH_ALLOC allocates and returns a pointer to a normalized
path buffer. Programmers should call this function, rather than allocate the
NPATH structure directly, so that a buffer for system-dependent information can
be added to the path buffer.

The C structure NPATH for a normalized path is:

typedef struct _npath

{

 char node[MAX_NODE_NAME];

 char device[MAX_DEVICE_NAME];

 char dir[MAX_DIRECT_NAME];

 char file[MAX_FILE_NAME];

 char wild[MAX_FILE_NAME];

 char version[MAX_VERSION];

 char verwild[MAX_VERSION];

 long dt;

 long size;
FactoryLink ECS / Programmer’s Access Kit / 261

FACTORYLINK API REFERENCE GUIDE
fl_path_alloc

 26

•
•
•
•

 int type;

 int magic;

 void *sysdata;

} NPATH;

See also the other path functions (FL_PATH and related calls).
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_closedir

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_CLOSEDIR

Ends a directory search for a file. (See also FL_PATH_OPENDIR and
FL_PATH_READDIR.)

Call Format:

void fl_path_closedir(path)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_CLOSEDIR ends a directory search.

See also the other path functions (FL_PATH_OPENDIR and related calls).

Table 8-87

Type Name Description Passed By

NPATH *path Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 263

FACTORYLINK API REFERENCE GUIDE
fl_path_create

 26

•
•
•
•

FL_PATH_CREATE

Create an empty file using the complete path specified.

Call Format:

int fl_path_create(path)

Arguments:

Returns:

• If successful, returns GOOD.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_CREATE creates an empty file using the complete path specified in the
call by the pointer p. The file may then be opened, closed, copied, or referenced by
any task with the proper file access privileges.

Table 8-88

Type Name Descr iption Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized path
name buffer

Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_cwd

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_CWD

Build a normalized path for the current working directory.

Call Format:

NPATH *fl_path_cwd(path)

Arguments:

Returns:

• If successful, returns a pointer to a normalized path buffer. (The pointer is
returned in the variable named in the call; e.g.,
PATH = fl_path_cwd)

• If unsuccessful, returns NULL.

Remarks:

FL_PATH_CWD builds a normalized path for the current working directory. If
the NPATH argument is NULL, FL_PATH_CWD first calls FL_PATH_ALLOC to
allocate a NPATH buffer. Either way, the working directory may now be accessed
using the path name built.

Table 8-89

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 265

FACTORYLINK API REFERENCE GUIDE
fl_path_date

 26

•
•
•
•

FL_PATH_DATE

Places formatted system date and time stamp from a specified file's header into
specified buffer.

Call Format:

long fl_path_date(path, buf, length)

Arguments:

Returns:

• If successful, returns file's date-and-time stamp.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_DATE formats the date and time stamp on a file (the date/time the file
was last updated) into the caller's buffer and returns the date and time
(concatenated) as a long integer.

Table 8-90

Type Name Description Passed By

NPATH *path Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference

char *buf Pointer to a buffer for receiving
date

Reference

size_t length Length of output buffer Value
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_get_size

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_GET_SIZE

Returns the size in bytes of the specified file.

Call Format:

long fl_path_get_size(path)

Arguments:

Returns:

• If successful, returns size of file in bytes.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_GET_SIZE returns the size of a specific file in bytes.

Table 8-91

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 267

FACTORYLINK API REFERENCE GUIDE
fl_path_get_type

 26

•
•
•
•

FL_PATH_GET_TYPE

Returns the file type of the specified file.

Call Format:

long fl_path_get_size(path)

Arguments:

Returns:

• If successful, returns file type as one of the constants listed below.

NPATH_REGULAR
NPATH_DIRECTORY
NPATH_FIFO (UNIX only)
NPATH_DEVICE (UNIX only)

• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_GET_TYPE returns the type of the file.

Table 8-92

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_info

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_INFO

Initialize date, time, size, and type of files allowed for the specified path.

Call Format:

int fl_path_info(path)

Arguments:

Returns:

• If successful, returns GOOD.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_INFO initializes the date, time, size, and type for the path. If the path
does not exist, FL_PATH_INFO returns ERROR. Otherwise, it returns GOOD.

This function is called automatically by FL_PATH_OPENDIR and
FL_PATH_READDIR.

Table 8-93

Type Name Description Passed By

NPATH *path Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 269

FACTORYLINK API REFERENCE GUIDE
fl_path_mkdir

 27

•
•
•
•

FL_PATH_MKDIR

Creates the directory specified by the directory portion of the indicated path. (See
also FL_PATH_RMDIR.)

Call Format:

int fl_path_mkdir(path)

Arguments:

Returns:

• If successful, returns GOOD.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_MKDIR creates the directory given by the directory portion of the
path, if the directory does not already exist. It will create all directories and
subdirectories necessary for the path, up to and including the last subdirectory
specified in the NPATH structure.

For example, if none of the following directories exist:

/test

/test/mystuff

/test/mystuff/log

the following code fragment in C would create them all, in hierarchical order:

NPATH *np;

np = fl_path_set_dir(NULL, “/test/mystuff/log”);

fl_path_mkdir(np);

Table 8-94

Type Name Descr iption Passed By

NPATH *path Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_mkdir

8

F
actoryLink A

P
I

R
eference G

uide
This function returns GOOD if the directories already exist. It returns ERROR
only if at least one of the directories cannot be created because of a system error,
insufficient privilege levels on the part of the caller, or the like.

See also the other path functions (FL_PATH_RMDIR and related calls).
FactoryLink ECS / Programmer’s Access Kit / 271

FACTORYLINK API REFERENCE GUIDE
fl_path_norm

 27

•
•
•
•

FL_PATH_NORM

Convert part or all of a system-specific path string into a normalized path.

Call Format:

NPATH *fl_path_norm(path, path_buf)

Arguments:

Returns:

• If successful, returns pointer to the NPATH structure; also, if the pointer
argument p passed in was NULL, a NPATH buffer has
been allocated and the pointer value is now set.

• If unsuccessful, returns NULL.

Remarks:

FL_PATH_NORM converts a system-specific path string into a normalized path.
Any or all components of the path may be left out. If the NPATH argument is
NULL, FL_PATH_NORM first calls FL_PATH_ALLOC to allocate a NPATH
buffer.

Table 8-95

Type Name Descr iption Passed By

NPATH *p Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference

char *path_buf Source string Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_opendir

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_OPENDIR

Begins a directory search for a file. (See also FL_PATH_CLOSEDIR and
FL_PATH_READDIR.)

Call Format:

int fl_path_opendir(path)

Arguments:

Returns:

• If successful in opening directory, returns GOOD.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_OPENDIR begins a directory search operation. The current directory
information contained in NPATH is used as the directory to search, and, the
current wild card pattern is used to select files. FL_PATH_OPENDIR returns
GOOD if the directory could be opened for search, or ERROR if it could not.

FL_PATH_OPENDIR reads the first entry in the directory.

See also the other path functions (FL_PATH_CLOSEDIR and related calls).

Table 8-96

Type Name Description Passed By

NPATH *path Pointer to a previously allocated
NPATH struct containing a
normalized path name buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 273

FACTORYLINK API REFERENCE GUIDE
fl_path_readdir

 27

•
•
•
•

FL_PATH_READDIR

Reads next matching file from directory during a directory search for a file. (See
also FL_PATH_OPENDIR and FL_PATH_READDIR.)

Call Format:

int fl_path_readdir(path)

Arguments:

Returns:

• If successful, returns GOOD.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_READDIR reads the next matching file in the directory and places the
name of the file into the file name component of the path. The file type, date, time,
and size are also stored in the NPATH structure. FL_PATH_ READDIR returns
GOOD if a matching file was found or ERROR if not.

The following code fragment in C demonstrates how to use directory search
functions to print a directory listing.

NPATH *p;
char date[80];
char time[80];
char fullpath[MAX_PATH_NAME];

p = fl_path_norm(NULL, “*.*”);
if (fl_path_opendir(p) == ERROR)

Table 8-97

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_readdir

8

F
actoryLink A

P
I

R
eference G

uide
{
printf(“Directory Not found\n”);
return;
}

do
{
fl_path_date(p, date);
fl_path_time(p, time);
fl_path_sys(p, fullpath);
printf(“%s %s %s\n”, date, time, fullpath);
} while (fl_path_readdir(p) != ERROR);
fl_path_closedir(p);
fl_path_free(p);

See also the other path functions (FL_PATH_ OPENDIR, FL_PATH_CLOSEDIR
and related calls).
FactoryLink ECS / Programmer’s Access Kit / 275

FACTORYLINK API REFERENCE GUIDE
fl_path_remove

 27

•
•
•
•

FL_PATH_REMOVE

Remove (delete) the file specified by the complete path given. (See also
FL_PATH_CREATE.)

Call Format:

int fl_path_remove(path)

Arguments:

Returns:

• If successful, returns GOOD.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_REMOVE removes the file specified by the complete path given.

See also the other path functions (FL_PATH_CREATE and related calls).

Table 8-98

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized path
name buffer

Reference
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_rmdir

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_RMDIR

Remove (delete) the directory specified by the directory portion of the indicated
path. (See also FL_PATH_MKDIR.)

Call Format:

int fl_path_rmdir(path)

Arguments:

Returns:

• If successful, returns GOOD.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_RMDIR deletes the directory given by the directory portion of the path.

See also the other path functions (FL_PATH_MKDIR and related calls).

Table 8-99

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference
FactoryLink ECS / Programmer’s Access Kit / 277

FACTORYLINK API REFERENCE GUIDE
fl_path_set_dir

 27

•
•
•
•

FL_PATH_SET_DIR

Replaces the directory portion of the specified path with the directory argument
specified converted to normalized form.

Call Format:

NPATH *fl_path_set_dir(path, dir)

Arguments:

Returns:

• If successful, returns pointer to NPATH structure.
• If unsuccessful, returns NULL.

Remarks:

FL_PATH_SET_DIR replaces the directory portion of the path with the specified
directory argument after converting the argument to normalized form. If the
NPATH argument is NULL, FL_PATH_SET_DIR first calls FL_PATH_ALLOC to
allocate a NPATH buffer. The file name, extension and version are not modified
by the FL_PATH_SET_DIR function.

The FL_PATH_SET_DIR function can be used to convert a system-specific path
string into a normalized path if the path is known to refer to a directory.

See also the other path functions (FL_PATH and related calls).

Table 8-100

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized path
name buffer

Reference

char *dir Directory name in
system-specific format

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_set_device

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_SET_DEVICE

Replaces the drive (device) name portion of the specified path with the argument
specified, after converting the argument to normalized form.

Call Format:

void fl_path_set_device(path, drive)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_SET_DEVICE replaces the drive (device) name portion of the path
with the specified argument after converting the argument to normalized form.

See also the other path functions (FL_PATH and related calls).

Table 8-101

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference

char *drive Device (drive) name in
system-specific format

Reference
FactoryLink ECS / Programmer’s Access Kit / 279

FACTORYLINK API REFERENCE GUIDE
fl_path_set_extension

 28

•
•
•
•

FL_PATH_SET_EXTENSION

Replaces the file extension portion of the specified path with the argument
specified after converting the argument to normalized form.

Call Format:

void fl_path_set_extension(path, extension)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_SET_EXTENSION replaces the file extension portion of the path with
the specified argument after converting the argument to normalized form.

See also the other path functions (FL_PATH and related calls).

Table 8-102

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference

char *extension File name extension in
system-specific format

Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_set_file

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_SET_FILE

Replaces the file name portion of the specified path with the specified argument
after converting the argument to normalized form.

Call Format:

void fl_path_set_file(path, file)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_SET_FILE replaces the file name portion of the path with the specified
argument after converting the argument to normalized form.

See also the other path functions (FL_PATH and related calls).

Table 8-103

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized path
name buffer

Reference

char *file File name in system-specific
format

Reference
FactoryLink ECS / Programmer’s Access Kit / 281

FACTORYLINK API REFERENCE GUIDE
fl_path_set_node

 28

•
•
•
•

FL_PATH_SET_NODE

Replaces the node name portion of the specified path with the specified argument
after converting the argument to normalized form.

Call Format:

void fl_path_set_node(path, node)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_SET_NODE replaces the node name portion of the path with the
specified argument after converting the argument to normalized form.

See also the other path functions (FL_PATH and related calls).

Table 8-104

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference

char *node Node name in
system-specific format

Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_set_pattern

8

F
actoryLink A

P
I

R
eference G

uide
FL_PATH_SET_PATTERN

Sets a “wild card” pattern for subsequent directory searches.

Call Format:

void fl_path_set_pattern(path, pattern)

Arguments:

Returns:

N/A

Remarks:

FL_PATH_SET_PATTERN sets a wild card pattern in the specified portion of the
path in normalized form for subsequent directory searches.

See also the other path functions (FL_PATH and related calls).

Table 8-105

Type Name Description Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized
path name buffer

Reference

char *pattern Wild card pattern in
system-specific format

Reference
FactoryLink ECS / Programmer’s Access Kit / 283

FACTORYLINK API REFERENCE GUIDE
fl_path_sys

 28

•
•
•
•

FL_PATH_SYS

Convert a normalized path into a system-specific path string

Call Format:

char *fl_path_sys(path, syspath, length)

Arguments:

Returns:

• If successful, returns a pointer to a system-specific converted path string.
• If unsuccessful, returns NULL.

Remarks:

FL_PATH_SYS converts a normalized path into a system-specific path string. If
the path argument is null, FL_PATH_SYS calls the C function malloc to allocate
memory for the resulting path. The caller should call free to release the memory
when it is no longer needed.

Example:

This example opens a specified AC file in the {FLINK}/ac directory.

NPATH *np = (NPATH *)NULL;
FILE *ac_file;
char *flink;/* Buffer containing FLINK path */
char *filename;/* Buffer containing AC file name */
np = fl_path_alloc();
if (np == NULL)

Table 8-106

Type Name Descr iption Passed By

NPATH *path Pointer to a previously
allocated NPATH struct
containing a normalized path
name buffer

Reference

char *syspath Destination string Reference

size_t length string length Value
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_path_sys

8

F
actoryLink A

P
I

R
eference G

uide
return ERROR;
fl_path_sys(path, flink, sizeof(flink));
np = fl_path_add_dir(np, "ac");
fl_path_set_file(np, filename);
fl_path_set_extension(np, "ac");
fl_path_set_version(np, "");
ac_file = fl_path_fopen(np, "r");
fl_path_free(np);
if (ac_file == NULL)
return ERROR;
FactoryLink ECS / Programmer’s Access Kit / 285

FACTORYLINK API REFERENCE GUIDE
fl_path_time

 28

•
•
•
•

FL_PATH_TIME

Places formatted system time stamp from a specified file's header into specified
buffer.

Call Format:

long fl_path_time(path, buf, length)

Arguments:

Returns:

• If successful, returns path’s date and time stamp.
• If unsuccessful, returns ERROR.

Remarks:

FL_PATH_TIME formats the time stamp on a file (the time, not including day or
date, when the file was last updated) into the caller's buffer. The format of the
result from this function is operating-system dependent.

Table 8-107

Type Name Descr iption Passed By

NPATH *path Pointer to a previously
allocated NPATH
struct containing a
normalized path name
buffer

Reference

char *buf Buffer to contain
returned time stamp

Reference

size_t length length of output buffer value
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_proc_exit

8

F
actoryLink A

P
I

R
eference G

uide
FL_PROC_EXIT

Exit the calling process.

Call Format:

int fl_proc_exit(id)

Arguments:

Returns:

GOOD or ERROR

Remarks:

This function renounces all further access to the real-time database.

Table 8-108

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value
FactoryLink ECS / Programmer’s Access Kit / 287

FACTORYLINK API REFERENCE GUIDE
fl_proc_init

 28

•
•
•
•

FL_PROC_INIT

Initialize the FactoryLink calling process. (See also FL_PROC_ INIT_APP.)

Call Format:

int fl_proc_init(char *task, char *desc)

Arguments:

Returns:

If successful at registering the starting-up process with the kernel, function
returns the calling routine's FactoryLink task ID.

If unsuccessful, function returns one of the following negative (sign bit on) error
codes:

• FLE_NO_{FLINK}_INIT
• FLE_BAD_PROC_NAME
• FLE_ALREADY_ACTIVE
• FLE_NULL_POINTER
• FLE_NO_PROC_INIT
• FLE_PROC_TABLE_FULL

Remarks:

This API has been retained from previous releases of FactoryLink to maintain
compatibility for users to upgrade with no changes to existing startup code.
However, new tasks should be written to use FL_PROC_INIT_APP to register
with the kernel. Any task, even one written for a previous release, may now

Table 8-109

Type Name Descr iption Passed By

char *task Pointer to process
name, 32 chars.max,
null-terminated

Reference

char *desc Pointer to process
description, 80 chars
max, null-terminated

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_proc_init

8

F
actoryLink A

P
I

R
eference G

uide
override the environment values (i.e., use command arguments), if desired, by
calling FL_PROC_INIT_APP. This API now calls the new version.

The current FL_PROC_INIT is now implemented as:

int fl_proc_init(char *task, char *desc)
{
char flname[MAX_USR_NAME] ;
char fluser[MAX_USR_NAME] ;
char fldomain[MAX_USR_NAME];
 fl_getvar(“FLNAME”, flname, sizeof(flname)) ;
 fl_getvar(“FLDOMAIN”, fldomain, sizeof(fldomain)) ;
 fl_getvar(“FLUSER”, fluser, sizeof(fluser)) ;
 return fl_proc_init_app(task,desc,flname,fldomain,fluser);
}

The calling process must pass a process name and description to FL_PROC_INIT.
After validating the name, the FactoryLink kernel returns a small number (in the
range 0-30), called the FactoryLink ID, for use in subsequent kernel calls to
identify the caller. The kernel uses FactoryLink IDs to keep track of client
processes in much the same way as the operating system uses file handles to keep
track of open files.

Multiple threads of a single process can execute separate FL_PROC_INIT_ APPs.
In these cases, the kernel regards the threads as different client processes, and
assigns distinct IDs, KPROC and KENV entries, change bits, sync bits, wait bits,
and so on.
FactoryLink ECS / Programmer’s Access Kit / 289

FACTORYLINK API REFERENCE GUIDE
fl_proc_init_app

 29

•
•
•
•

FL_PROC_INIT_APP

Initialize the calling process and register it with the FactoryLink kernel for a
specific application/domain. (Replaces FL_PROC_INIT.)

Call Format:

fl_proc_init_app(task, desc, {FLNAME}, {FLDOMAIN}, {FLUSER}) ;

Arguments:

The {FLNAME} argument specifies the name of the invocation with which the
task is registering.

The {FLDOMAIN} argument specifies the domain for which the task is
registering (the domain with which it is to be associated at run time).

The {FLUSER} argument specifies which instance of the specified domain the
task is registering for.

Table 8-110

Type Name Descr iption Passed By

char *task Pointer to process name, 32
chars. max, null-terminated

Reference

char *desc Pointer to process
description, 80 chars max,
null-terminated

Reference

char *{FLNAME} Pointer to application
invocation name
({FLNAME})

Reference

char *{FLDOMAIN} Pointer to domain name
({FLDOMAIN})

Reference

char *{FLUSER} Pointer to user name
({FLUSER})

Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_proc_init_app

8

F
actoryLink A

P
I

R
eference G

uide
Returns:

If successful, returns the calling routine's FactoryLink task ID. The task ID
contains two fields: the high-order byte contains the instance ID, while the lower
byte contains the index into the instance-specific KPROC array.

If unsuccessful at registering the start-up process with the kernel, returns one of
the following negative (sign bit on) error codes:

• FLE_NO_{FLINK}_INIT
• FLE_BAD_PROC_NAME
• FLE_ALREADY_ACTIVE
• FLE_NULL_POINTER
• FLE_NO_PROC_INIT
• FLE_PROC_TABLE_FULL

Remarks:

The calling process must pass a process name and description to
FL_PROC_INIT_APP. After validating the name, the FactoryLink kernel returns
a small number (in the range 0-30), called the FactoryLink ID, for use in
subsequent kernel calls to identify the caller. The kernel uses FactoryLink IDs to
keep track of client processes in much the same way as the operating system uses
file handles to keep track of open files.

Multiple threads of a single process can execute separate FL_PROC_INIT_ APPs.
In these cases, the kernel regards the threads as different client processes, and
assigns distinct IDs, KPROC and KENV entries, change bits, sync bits, wait bits,
and so on.

This API is the replacement for FL_PROC_INIT. Use this routine wherever
FL_PROC_INIT was previously used to register with the kernel for a specific
application and/or domain.

FL_PROC_INIT has been retained for compatibility, but in current releases of
FactoryLink, it now merely sets up and calls FL_PROC_INIT_APP.
FactoryLink ECS / Programmer’s Access Kit / 291

FACTORYLINK API REFERENCE GUIDE
fl_query_mbx

 29

•
•
•
•

FL_QUERY_MBX

Query a mailbox for a range of queued messages.

Call Format:

int fl_query_mbx(id, mbx, mmp, i, n, np)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, also returns *mmp and *np.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_TAG
• FLE_NOT_MAILBOX
• FLE_NO_MESSAGES
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Table 8-111

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value

TAG mbx Mailbox to be accessed Reference

MBXMSG
FAR

*mmp Pointer to array of mailbox
messages to be filled in by kernel

Reference

uint i Index relative to head of queue Reference

uint n Requested number of mailbox
messages

Value

uint FAR *np Actual number of mailbox
messages to be filled in by kernel

Value
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_query_mbx

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

Use this function to read one or more mailbox messages without reading their
message data and without dequeueing them. The MBXMSG holds information
about the message such as its type, who sent it, and (especially useful) the length
of its data. Therefore, call FL_QUERY_MBX prior to allocating space for the
message data and calling FL_READ_MBX. The argument i specifies where,
relative to the head of the message queue, reading is to begin (i = 0 means start at
the head itself, i = 1 means skip the first message and start with the second, and
so on). The message at the head of the queue is the oldest message in the mailbox.
The argument n specifies how many mailbox messages (maximum) are requested
to be read, and the kernel fills in *np with the actual number that were read.
FactoryLink ECS / Programmer’s Access Kit / 293

FACTORYLINK API REFERENCE GUIDE
fl_read

 29

•
•
•
•

FL_READ

Read specified elements from the real-time database.

Call Format:

int fl_read(id, tp, n, vp)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_LOCK_FAILED
• FLE_BAD_TAG

Table 8-112

Type Name Descr iption Passed By

id_t id Caller's FactoryLink ID Value

TAG FAR *tp Pointer to tag array
specifying which elements
are to be read

Reference

uint n Number of elements to be
read

Value

void FAR *vp Pointer to area to receive
the values

Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_read

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

The elements may have mixed data types, as with all database access calls. The
values of the elements are read from the real-time database and placed in the
private data area of the calling process pointed to by vp. After each value transfer,
vp is incremented by the size of the element. After each element is read, its
change bit for the calling process is cleared (to 0). The change state for other client
processes are unaffected.

Note: vp is incremented by the actual size of each element.
This is important when reading blocks of mixed tag types.
Use fl_get_tag_info () to find out how much memory to
prepare before calling fl_read when reading blocks of mixed
tag types.
FactoryLink ECS / Programmer’s Access Kit / 295

FACTORYLINK API REFERENCE GUIDE
fl_read_mbx

 29

•
•
•
•

FL_READ _MBX

Read and dequeue a message from a mailbox. (Obsolete. See FL_READ_
APP_MBX.)

Call Format:

int fl_read_mbx(id, mbx, mmp, i)

Arguments:

Returns:

GOOD or ERROR
• If GOOD, also returns *mmp and message data.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_TAG
• FLE_NOT_MAILBOX
• FLE_NO_MESSAGES
• FLE_ACCESS_DENIED
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Table 8-113

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value

TAG mbx Mailbox to be accessed Reference

MBXMSG
FAR

*mmp Pointer to a single
mailbox message to be
filled in by kernel

Reference

uint i Index relative to head of
queue

Reference
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_read_mbx

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

This API has been retained from previous releases of FactoryLink to maintain
compatibility for users to upgrade with no changes to existing startup code.
However, new tasks should be written to use FL_READ_APP_MBX (with
additional capabilities for multiuser systems). FL_READ_MBX can only be used
to send messages to tasks in the same domain instance.

Use FL_READ_APP_MBX to read a mailbox by application instance. The
additional argument in the current API allows the caller to specify the ID of the
owner of the mailbox. The owner's ID is used to determine which instance of the
mailbox should be read.

FL_READ_MBX reads a single mailbox message together with its message data.
The message is then deleted from the mailbox (that is, it is dequeued). If the
buffer provided by the caller is not large enough, message data may be lost. Just
as in FL_QUERY_MBX, the argument i specifies which mailbox message, relative
to the head of the message queue, is to be read. However, FL_READ is less
flexible, in that it always reads from the head message. Indeed, the following
function call:

fl_read_mbx(id, &mbx, mmp, 0) ;

is equivalent to the function call shown below:

fl_read(id, &mbx, 1, mmp) ;
FactoryLink ECS / Programmer’s Access Kit / 297

FACTORYLINK API REFERENCE GUIDE
fl_read_app_mbx

 29

•
•
•
•

FL_READ _APP_MBX

Read and dequeue a message from a mailbox in a specific application instance.
(Replaces FL_READ_MBX.)

Call Format:

int fl_read_app_mbx(id, rid, mbx, msg, i)

Arguments:

Returns:

GOOD (on success) or ERROR (on failure)
• If GOOD, also returns *msg and message data.
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_TAG
• FLE_NOT_MAILBOX
• FLE_NO_MESSAGES
• FLE_ACCESS_DENIED
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Table 8-114

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value

id_t rid FactoryLink ID of process
owning the mailbox

Value

MBX mbx Mailbox to be accessed Reference

MBXMSG *msg Pointer to a single mailbox
message to be filled in by kernel

Reference

uint i Index relative to head of queue Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_read_app_mbx

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

Use FL_READ_APP_MBX to read a single mailbox message together with its
message data. After this is done, the message is deleted from the mailbox (that is,
it is dequeued). If the buffer provided by the caller is not large enough, message
data may be lost.

Just as in FL_QUERY_MBX, the argument i specifies which mailbox message,
relative to the head of the message queue, is to be read. However, FL_READ is
less flexible, in that it always reads from the head message. Indeed, the following
call:

fl_read_mbx(id, &mbx, mmp, 0);

is equivalent to the call:

fl_read(id, &mbx, 1, mmp);
FactoryLink ECS / Programmer’s Access Kit / 299

FACTORYLINK API REFERENCE GUIDE
fl_recv_sig

 30

•
•
•
•

FL_RECV_SIG

Receive a signal for the calling process.

Call Format:

int fl_recv_sig(id)

Arguments:

Returns:

The signal (0-31) received or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NO_SIGNALS
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

If two or more signals are active and deliverable when FL_RECV_SIG is called,
the lowest numbered active signal is delivered to the caller. With the exception of
signals 0 and 1, once a signal has been delivered, it is deactivated (that is, it is no
longer present). This means that signals 0 and 1, once activated, can never be
deactivated.

Table 8-115

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_reset_app_mem

8

F
actoryLink A

P
I

R
eference G

uide
FL_RESET_APP_MEM

Reset application memory for a specific instance of an application by clearing all
change bits and setting all data values to zero.

Call Format:

int fl_reset_app_mem(id)

Arguments:

Returns:

GOOD or ERROR

Remarks:

Normally, only the Run-Time Manager should call this function.

FL_RESET_APP_MEM clears all change bits and sets all data values to zero for a
specific instance of an application.

Table 8-116

Type Name Description Passed By

id_t id FactoryLink application task ID Value
FactoryLink ECS / Programmer’s Access Kit / 301

FACTORYLINK API REFERENCE GUIDE
fl_send_sig

 30

•
•
•
•

FL_SEND_SIG

Send a signal to a target process.

Call Format:

int fl_send_sig(id, name, sig)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_BAD_PROC_NAME
• FLE_NO_PROC_INIT
• FLE_BAD_ARGUMENT
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

It is legal to send any signal to any active FactoryLink process. If the intended
recipient of the signal is asleep in the kernel (waiting to lock or to access the
database) and the signal is not being held, the recipient is immediately awakened
and returned the error code FLE_SIGNALLED. At this point, the recipient should
call FL_RECV_SIG to see which signal was sent. Note that the following function:

fl_set_term_flag(id, name);

Table 8-117

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value

char FAR *name Name of FactoryLink process to Reference

whom signal is to be sent

int sig Signal (0-31) to be sent Value
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_send_sig

8

F
actoryLink A

P
I

R
eference G

uide
does precisely the same thing as the function shown below:

fl_send_sig(id, name, FLC_SIG_TERM_FLAG_SET);
FactoryLink ECS / Programmer’s Access Kit / 303

FACTORYLINK API REFERENCE GUIDE
fl_set_chng

 30

•
•
•
•

FL_SET_CHNG

Set the calling task's change-status flags for specified real-time database
elements.

Call Format:

int fl_set_chng(id, tp, n)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_LOCK_FAILED
• FLE_BAD_TAG

Remarks:

Set (to 1) the change state of the specified real-time database elements for the
calling process only. This is useful for establishing initial conditions prior to
entering a programming loop, particularly those that use FL_CHANGE_READ or
FL_CHANGE_WAIT to read real-time database values.

Table 8-118

Type Name Descr iption Passed By

id_t id Caller's FactoryLink ID Value

TAG FAR *tp Pointer to tag array
specifying

Reference

which elements are involved

uint n Number of elements involved Value
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_set_owner_mbx

8

F
actoryLink A

P
I

R
eference G

uide
FL_SET_OWNER_MBX

Set the owner of a mailbox.

Call Format:

int fl_set_owner_mbx(id, mbx, onoff)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_BAD_TAG
• FLE_NOT_MAILBOX
• FLE_ACCESS_DENIED

Remarks:

Use this function to set the owner of a mailbox. If the value of onoff is TRUE, the
owner of the mailbox is set to the calling task. If the value of onoff is FALSE, the
mailbox ownership is removed.

When a write is performed on the mailbox, the owner of a mailbox is signaled with
FLC_SIG_MESSAGE_RECEIVED. For additional information about signals,
refer to “fl_send_sig” on page 302.

Table 8-119

Type Name Description Passed By

id_t id Task ID Value

TAG mbx Mailbox to modify Reference

uint onoff Flag to indicate operation Value
FactoryLink ECS / Programmer’s Access Kit / 305

FACTORYLINK API REFERENCE GUIDE
fl_set_tag_list

 30

•
•
•
•

FL_SET_TAG_LIST

Register the tag list (a list of real-time database elements) to a target process.

Call Format:

int fl_set_tag_list(id, name, tp, n)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_ARGUMENT
• FLE_BAD_PROC_NAME
• FLE_OUT_OF_MEMORY
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Remarks:

FL_SET_TAG_LIST establishes the tag list (list of real-time database elements)
for a target process. If a tag list is already present when this call is made, it is
replaced with the newly specified tag list. If successful, this call sends the signal
FLC_SIG_TAG_LIST_CHANGED to the target process.

Table 8-120

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value

char FAR *name Name of target process Reference

TAG FAR *tp Pointer to array of trigger
elements

Reference

uint n Number of trigger
elements

Value
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_set_term_flag

8

F
actoryLink A

P
I

R
eference G

uide
FL_SET_TERM_FLAG

Set the termination flag of a client process.

Call Format:

int fl_set_term_flag(id, name)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_BAD_PROC_NAME
• FLE_NO_PROC_INIT

Remarks:

Set the termination flag of a client process, possibly different from the calling
process. Normally, only the Run-Time Manager uses this service.

Table 8-121

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value

char FAR *name Pointer to name of process
whose termination flag is
to be set

Reference
FactoryLink ECS / Programmer’s Access Kit / 307

FACTORYLINK API REFERENCE GUIDE
fl_set_wait

 30

•
•
•
•

FL_SET_WAIT

Set the calling task's wait flags for specified real-time database elements.

Call Format:

int fl_set_wait(id, tp, n)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_LOCK_FAILED
• FLE_BAD_TAG

Remarks:

Set (to 1) the wait flag of the specified real-time database elements for the calling
process only. This function is used in conjunction with FL_WAIT to wait on a set
of real-time database elements.

Table 8-122

Type Name Descr iption Passed By

id_t id Caller's FactoryLink ID Value

TAG FAR *tp Pointer to tag array specifying
which elements are involved

Reference

uint n Number of elements involved Value
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_sleep

8

F
actoryLink A

P
I

R
eference G

uide
FL_SLEEP

Delay execution of the task for the indicated number of milliseconds.

Call Format:

void fl_sleep(msecs)

Arguments:

Returns:

None

Remarks:

The actual resolution of the delay is system-specific; however, at most, the delay is
one second. To determine the actual amount of time delay, use FL_GET_TICK.
For information about FL_GET_TICK, refer to “fl_get_tick” on page 245.

Table 8-123

Type Name Description Passed By

ulong msecs Number of milliseconds to delay Value
FactoryLink ECS / Programmer’s Access Kit / 309

FACTORYLINK API REFERENCE GUIDE
fl_test_term_flag

 31

•
•
•
•

FL_TEST_TERM_FLAG

Ask the kernel the current status of current task's termination flag.

Call Format:

int fl_test_term_flag(id)

Arguments:

Returns:

OFF, ON, or ERROR

Remarks:

Test the termination flag of the calling process and return its state (OFF or ON).
If the flag is ON, another client process (usually the Run-Time Manager) has
requested that the caller exit via FL_PROC_EXIT.

Table 8-124

Type Name Descr iption Passed By

id_t id Caller's FactoryLink
ID

Value
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_unlock

8

F
actoryLink A

P
I

R
eference G

uide
FL_UNLOCK

Unlock the real-time database for the calling process.

Call Format:

int fl_unlock(id)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns FLE_NOT_LOCKED.

Remarks:

Calls to FL_LOCK and FL_UNLOCK nest, so one call to FL_UNLOCK undoes one
previous call to FL_LOCK.

Table 8-125

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value
FactoryLink ECS / Programmer’s Access Kit / 311

FACTORYLINK API REFERENCE GUIDE
fl_wait

 31

•
•
•
•

FL_WAIT

Wait to read, write, or access the real-time database or certain elements in the
database.

Call Format:

int fl_wait(id, req)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_BAD_ARGUMENT
• FLE_WAIT_FAILED
• FLE_TERM_FLAG_SET

Table 8-126

Type Name Descr iption Passed By

id_t id Caller's FactoryLink
ID

Value

int req Command; must have
one of the following
symbolic values:
FLC_WAIT_READ,
FLC_WAIT_WRITE
FLC_WAIT_ACCESS

Value

Note: Ensure the fl_wait() function call is embedded
between calls to functions fl_lock() and fl_unlock(),
otherwise, the run-time database will remain locked by the
task.
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_wakeup

8

F
actoryLink A

P
I

R
eference G

uide
FL_WAKEUP

Awaken a mask of FactoryLink client processes.

Call Format:

int fl_wakeup(id, mask, req)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns FLE_BAD_ARGUMENT.

Remarks:

The calling process must pass a pointer to a bit mask of processes to be awakened.
In the mask, bit 0 corresponds to FactoryLink ID number 0, bit 1 to ID 1, and so
on through bit 30. The kernel modifies this bit mask to reflect the processes that
were actually sleeping at the time the call to FL_WAKEUP occurred and were
awakened.

Table 8-127

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value

mask_t FAR *mask Pointer to bit mask of
client processes to be
awakened, updated by
kernel to reflect those
that were actually asleep
and have been awakened

Reference

int req Command; must have
one of the following
symbolic values:
FLC_WAIT_READ,
FLC_WAIT_WRITE
FLC_WAIT_ACCESS

Value
FactoryLink ECS / Programmer’s Access Kit / 313

FACTORYLINK API REFERENCE GUIDE
fl_wakeup

 31

•
•
•
•

The caller must also pass a symbolic command by setting req to one of the
following symbolic commands:
• FLC_WAIT_READ
• FLC_WAIT_WRITE
• FLC_WAIT_ACCESS

Setting req to FLC_WAIT_READ wakes up only those processes waiting to read
the database (which are those that have previously done FL_WAIT, directly or
indirectly, with req to FLC_WAIT_READ). Similarly, setting req to
FLC_WAIT_WRITE wakes up only those waiting to write to the database. Finally,
setting req to FLC_WAIT_ACCESS wakes up all of them waiting to do anything
to the database (which is all of them sleeping while waiting to do anything except
lock the database).
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_wakeup_proc

8

F
actoryLink A

P
I

R
eference G

uide
FL_WAKEUP _PROC

Awaken a specified FactoryLink process.

Call Format:

int fl_wakeup_proc(id, name, req)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns FLE_BAD_ARGUMENT.

Arguments:

FL_WAKEUP_PROC is identical to FL_WAKEUP except that the caller specifies
a task name instead of a mask of tasks to wake up. For information about
FL_WAKEUP, refer to “fl_wakeup” on page 313.

Table 8-128

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value

char FAR *name Name of the task to wake Reference

int req Wake-up request Value
FactoryLink ECS / Programmer’s Access Kit / 315

FACTORYLINK API REFERENCE GUIDE
fl_write

 31

•
•
•
•

FL_WRITE

Write specified elements into the real-time database.

Call Format:

int fl_write(id, tp, n, vp)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_LOCK_FAILED
• FLE_BAD_TAG
• FLE_OUT_OF_MEMORY

Table 8-129

Type Name Descr iption Passed By

id_t id Caller's FactoryLink ID Value

TAG FAR *tp Pointer to tag array
specifying which elements
are to be written

Reference

uint n Number of elements to be
written

Value

void FAR *vp Pointer to area holding the
values

Reference
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_write

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

The elements may have mixed data types. The values of the elements are read
from the private data area pointed to by vp and written into the kernel database.
After each value transfer, vp is incremented by the size of the element. After each
element is written, if its new value is different from its previous value, the change
state for all client processes is set to TRUE. If any other client processes are
waiting for changes of the element, those processes are awakened. Any attempt by
the writing process to write a different value to a synchronous element that is still
unread causes the writer to block until it has been read. However, blocking does
not occur until an attempt has been made to write all of the specified elements. As
a consequence, all asynchronous elements are written on the first pass.

If the tag being written to is a message tag, and the m_prt member of the MSG
structure is set to NULL, and the m_max field is set to a non-zero value, and it is
the first write to the tag, then the kernel will allocate space for the message based
on the value of m_max but will not set the change flag for the tag.
FactoryLink ECS / Programmer’s Access Kit / 317

FACTORYLINK API REFERENCE GUIDE
fl_write_mbx

 31

•
•
•
•

FL_WRITE_MBX

Write and queue a message into a mailbox. (Obsolete. See FL_WRITE_
APP_MBX.)

Call Format:

int fl_write_mbx(id, mbx, mmp)

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_TAG
• FLE_NOT_MAILBOX
• FLE_NO_MESSAGES
• FLE_ACCESS_DENIED
• FLE_OUT_OF_MEMORY
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Table 8-130

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value

TAG mbx Mailbox to be accessed Reference

MBXMSG
FAR

*mmp Pointer to a single mailbox
message

Reference
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_write_mbx

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

This API has been retained from previous releases of FactoryLink to maintain
compatibility for users to upgrade with no changes to existing startup code.
However, new tasks should be written to use FL_WRITE_APP_MBX (with
additional capabilities for multiuser systems). FL_WRITE_MBX can only be used
to send messages to tasks in the same domain instance.

Use FL_WRITE_MBX to write a single mailbox message together with its
message data. The message being written is added to the queue (that is, it is
queued) at the tail of the queue. Prior to making this call, the caller must fill in
the MBXMSG and the message data.

Note that within the same domain instance (non-multi-user environments),
FL_WRITE, when passed a mailbox TAG, does the same thing as
FL_WRITE_MBX. That is, the function call

fl_write_mbx(id, mbx, mmp);

is equivalent to the function call

fl_write(id, &mbx, 1, mmp) ;
FactoryLink ECS / Programmer’s Access Kit / 319

FACTORYLINK API REFERENCE GUIDE
fl_write_app_mbx

 32

•
•
•
•

FL_WRITE_APP_MBX

Write and queue a message into a mailbox. (Replaces FL_WRITE_MBX.)

Call Format:

int fl_write_app_mbx(id, wid, mbx, msg);

Arguments:

Returns:

GOOD or ERROR
• If ERROR, call the FL_ERRNO function with the caller's FactoryLink ID, and it

returns one of the following errors:
• FLE_NULL_POINTER
• FLE_BAD_TAG
• FLE_NOT_MAILBOX
• FLE_NO_MESSAGES
• FLE_ACCESS_DENIED
• FLE_OUT_OF_MEMORY
• FLE_LOCK_FAILED
• FLE_LOCK_EXPIRED

Table 8-131

Type Name Descr iption Passed By

id_t id FactoryLink ID of caller Value

id_t wid FactoryLink ID of
process owning the
mailbox

Value

TAG mbx Mailbox to be accessed Reference

MBXMSG FAR *msg Pointer to a single
mailbox message to be
filled in by kernel

Reference
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_write_app_mbx

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

Use FL_WRITE_APP_MBX to write, to a mailbox by application instance, a single
mailbox message together with its message data. The message being written is
added to the queue (that is, it is queued) at the tail of the queue. Prior to making
this call, the caller must fill in the MBXMSG and the message data. The
additional arguments in the current API allow the caller to specify the ID of the
owner of the mailbox and an index into the queue. The owner's ID is used to
determine which instance of the mailbox to write this message into.

Note that within the same domain instance (non-multi-user environments),
FL_WRITE, when passed a mailbox TAG, does the same thing as
FL_WRITE_APP_MBX. That is, the function call

fl_write_app_mbx(id, mbx, mmp);

is equivalent to the function call

fl_write(id, &mbx, 1, mmp);
FactoryLink ECS / Programmer’s Access Kit / 321

FACTORYLINK API REFERENCE GUIDE
fl_xlate

 32

•
•
•
•

FL_XLATE

Translate a key to its associated message.

Call Format:

char FAR *fl_xlate (key);

Arguments:

Returns:

Pointer to message if key found; equal to keyptr if key not found

Remarks:

This function, along with FL_XLATE_INIT, comprises the message-translation
facility. These two functions allow run-time tasks to print messages stored in
external disk files called “message files.” For details about initialization of the
message-translation facility, refer to “fl_xlate_init” on page 324.

The following examples illustrate the use of the message-translation facility:

Example 1

Allocate a message array, such as message[], and call the translation function to
access messages in the message file and put the result in message[]. In the
following example, the function copies the string normal shutdown (the
message associated with the key SHUTDOWN) into message[].

char message[100];
strcpy(message, fl_xlate(“SHUTDOWN”));

Example 2

The following function puts the string Run Time Manager: errno = 3 into
message[].

Table 8-132

Type Name Descr iption Passed By

char FAR *key Pointer to key for
which to search

Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_xlate

8

F
actoryLink A

P
I

R
eference G

uide
sprintf(message, fl_xlate (“errno”), 3);

The errno key translates to “Run Time Manager: errorno = %d,” and in this
example, %d has the value of 3.

Example 3

The following function prints the message string Cannot open file SYS.CT on
the screen:

printf(fl_xlate(“cantopen”), “SYS.CT”);

The cantopen key translates to “Cannot open file %s,” and in this example, %s has
the value of SYS.CT.
FactoryLink ECS / Programmer’s Access Kit / 323

FACTORYLINK API REFERENCE GUIDE
fl_xlate_init

 32

•
•
•
•

FL_XLATE _INIT

Message translation initialization; initializes a message file and establishes a
buffer for it (use of the buffer enhances performance).

Call Format:

int fl_xlate_init (name, bp, blen);

Arguments:

Returns:

Number of messages read and buffered, or ERROR

Remarks:

This function, along with FL_XLATE, comprises the basis of the FactoryLink
message-translation facility. These two functions allow run-time tasks to print
messages stored in external disk files called “message files.” For details about
message translation, refer to “fl_xlate” on page 322.

A task that uses the message translation facility can be written so that it is
independent of the messages that it prints; it is dependent on the mnemonic keys,
but not the messages. In particular, it may be written so that it is independent of
the language in which the messages are written. Achievement of this
independence is the main purpose of message translation.

Message files are ASCII text files that can be edited and changed with an ordinary
text editor. On a FactoryLink system, the current working copies of these files are
in the directory /{FLINK}/MSG, and all are assumed to have the extension .TXT.
Message files must conform to the following rules:

Table 8-133

Type Name Descr iption Passed By

char FAR *name Name of message file Reference

char FAR *bp Pointer to buffer to be used
to store keys and their
associated messages

Reference

uint blen Size of buffer, in bytes Value
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_xlate_init

8

F
actoryLink A

P
I

R
eference G

uide
• The message translation functions assume that lines beginning with an
asterisk (*) are comments and ignores these lines. They also ignore blank lines.

• Non-comment, non-blank lines serve to translate a key to an associated
message. They must have the following form:

KEY white space MESSAGE

• The message may be enclosed within double quote marks (“) for clarity and to
avoid the stripping of leading and trailing white space by the translation
function. It may contain %, the substitution character used by PRINTF and
SPRINTF.

• A vertical bar (|) is allowed as a separator within the white space, for
compatibility with the format of FactoryLink .KEY files.

• When editing a message file, place the most commonly used messages near the
beginning of the file, so that access to the commonly used messages is quicker
than to other messages, particularly when the buffer in use is small.

To use the message-translation functions, a task first sets up a buffer, such as
buffer[], and then calls the initialization function, which opens the message file
/{FLINK}/MSG/RUNMGR.TXT, as shown in the following example:

char buffer[500];

fl_xlate_init(“RUNMGR”, buffer, sizeof(buffer));

Refusal to designate a buffer is also legal:

fl_xlate_init(“RUNMGR”, NULL, 0);

This function provides unbuffered access to /{FLINK}/MSG/RUNMGR.TXT.
When doing unbuffered access, messages are read into a static buffer in the
Library function. Subsequent reads overwrite this buffer, so the contents must be
used before the next access to the file.

/{FLINK}/MSG/RUNMGR.TXT provides an example of a message file.

See also the related message translation functions fl_xlate, fl_xlate_set_tree, and
fl_xlate_get_tree.
FactoryLink ECS / Programmer’s Access Kit / 325

FACTORYLINK API REFERENCE GUIDE
fl_xlate_load

 32

•
•
•
•

FL_XLATE _LOAD

Load the specified file (passed as a parameter) into the current translation tree,
replacing any duplicate keys.

Call Format:

int fl_xlate_load (fname);

Arguments:

Returns:

If successful, returns the number of entries loaded from this file

If unsuccessful, returns ERROR

Remarks:

This function adds to the functionality of the kernel's message-translation facility
(FL_XLATE). When a new translation file is loaded using this function, duplicate
keys are overridden.

In order for a new tree to be loaded, an alternate tree to the default tree should
have been created previously using the fl_xlate_init function. The new tree will
become the default into which key files are loaded.

Tasks may maintain more than one translation tree. Translation files may be kept
in libraries, one per language used, for ease of use. This guarantees that all tasks
remain language-independent, and allows run-time tasks to use the fl_xlate
functions for all message output.

Example 1

int num_msg;
num_msg = fl_xlate_init("runmgr", NULL, 0);
if (num_msg == 0)

Table 8-134

Type Name Description Passed By

char FAR *fname File name from which to
load tree data

Reference
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_xlate_load

8

F
actoryLink A

P
I

R
eference G

uide
return ERROR;
num_msg = fl_xlate_load("iml");
if (num_msg == 0)
return ERROR;
printf("%s\n", fl_xlate("token"));

 * TSPRINTF: Format a string into a buffer. This is a "tiny"
sprintf()

 * that handles %s, %c, %d, %u, %x, %X, %o, %ld, %lu, %lx, %lX,
%lo, and

* %%. It recognizes width and pad specifications (%3d, %03d,
etc.), long

 * values, and left/right justification. It does not understand
floating

 * point formats (%e, %f, %g) and minimum width.

When loading translation files, the environment variable FLLANG is examined. If
it is defined to be anything besides “C”, it will be appended to the /{FLINK}/MSG
path used to load the master file, as well as user-defined files.

If the user-specified file contains path information, it will be folded into the
/{FLINK}/MSG{/FLLANG} path when loading the file.

The function fl_xlate_init will start a fresh translation tree and load the default
translation file master.txt. The user-specified translation file is then loaded on
top of the existing definitions. Duplicate definitions are superseded by the last file
loaded. The function returns the total number of translations loaded from both the
MASTER.TXT file as well as the user-specified file, or it returns ERROR if there
has been an error.

The buff and len parameters of fl_xlate_init are not used by the function, but
were retained to stay compatible with existing code.

The function fl_xlate_load will load the specified file into the current translation
tree, replacing any duplicate keys. The function returns the number of entries
loaded from this file or returns ERROR.

Example 2

If the FLLANG environment variable is not defined, the following call:

num_msg = fl_xlate_init(“iml”, NULL, 0)
FactoryLink ECS / Programmer’s Access Kit / 327

FACTORYLINK API REFERENCE GUIDE
fl_xlate_load

 32

•
•
•
•

will load the /{FLINK}/MSG/master.txt file into the tree and then load the
/{FLINK}/MSG/iml.txt file into the tree. The return value is the total number of
translations loaded from both files (duplicates are only counted once.)

The call

num_msg = fl_xlate_load(“iml”)

will load the file /{FLINK}/MSG/iml.txt into the tree and return the number of
translations.

The call

num_msg = fl_xlate_load(“/temp/test”)

will load the file /TEMP/test.txt into the tree and return the number of
translations.

Example 3

If the FLLANG environment variable is defined to be “german”, the following call:

num_msg = fl_xlate_init(“iml”, NULL, 0)

will load the /{FLINK}/MSG/GERMAN/master.txt file into the tree and then
load the /{FLINK}/MSG/GERMAN/iml.txt file into the tree. The return value is
the total number of translations loaded from both files (duplicates are counted
only once.)

The call

num_msg = fl_xlate_load(“iml”)

will now load the file /{FLINK}/MSG/GERMAN/iml.txt into the tree and return
the number of translations.

The call

num_msg = fl_xlate_load(“/temp/test”)

will still load the file /TEMP/test.txt into the tree and return the number of
translations.

See also the related message translation functions fl_xlate, fl_xlate_set_tree, and
fl_xlate_get_tree.
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_xlate_get_tree

8

F
actoryLink A

P
I

R
eference G

uide
FL_XLATE _GET_TREE

Returns the address of the current translation tree or the string NULL if no
translation files have been loaded.

Call Format:

void FAR *fl_xlate_get_tree(void) ;

Returns:

Address of the current translation tree; returns NULL if no translation files have
been loaded

Remarks:

This function adds to the functionality of the kernel's message-translation facility
(FL_XLATE.) When a program is maintaining multiple translation trees, the
address of the current translation tree (default translations for FactoryLink
tasks) is returned by calling this function.

Tasks may maintain more than one translation tree. Translation files may be kept
in libraries, one per language used, for ease of use. This guarantees that all tasks
remain language-independent, and allows run-time tasks to use the fl_xlate
functions for all message output.

Example 1

void *english, *french; /* pointers to 2 trees */

int num_msg1, num_msg2;

num_msg1 = fl_xlate_init("english/iml", NULL, 0);

english = fl_xlate_get_tree();

num_msg2 = fl_xlate_init("french/iml", NULL, 0);

french = fl_xlate_get_tree();

fl_xlate_set_tree (english); /* Switch to English tree */

printf ("%s\n", fl_xlate("token");

fl_xlate_set_tree (french); /* Switch to French tree */

printf ("%s\n", fl_xlate("token");
FactoryLink ECS / Programmer’s Access Kit / 329

FACTORYLINK API REFERENCE GUIDE
fl_xlate_get_tree

 33

•
•
•
•

You may switch translation trees at any point in the program, and switch back
when ready, without losing any data.

See also the related message translation functions fl_xlate, fl_xlate_init,
fl_xlate_set_tree, and fl_xlate_load.
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_xlate_set_progpath

8

F
actoryLink A

P
I

R
eference G

uide
FL_XLATE _SET_PROGPATH

Overrides the environment variable {FLINK}, allowing programs to support the
-p command parameter for overriding the default program directory.

Call Format:

int fl_xlate_set_progpath(progname);

Arguments:

Returns:

The number of characters in the program path name.

Table 8-135

Type Name Description Passed by

char FAR *progname Pointer to path of program
directory to be used for
translation

Reference
FactoryLink ECS / Programmer’s Access Kit / 331

FACTORYLINK API REFERENCE GUIDE
fl_xlate_set_tree

 33

•
•
•
•

FL_XLATE _SET_TREE

Sets the current translation tree to the tree at the specified address. Ensuing file
loads and translations will be done using this tree.

Call Format:

void FAR *fl_xlate_set_tree(void *p) ;

Arguments:

Returns:

If successful, returns the pointer sent by the programmer

If no tree exists at the specified address, returns NULL

Remarks:

This function adds to the functionality of the kernel's message-translation facility
(FL_XLATE.) When a program is maintaining multiple translation trees, this
function allows changing the current translation tree (default translations for
FactoryLink tasks.)

This function may also be used to start a fresh translation tree file.

Tasks may maintain more than one translation tree. Translation files may be kept
in libraries, one per language used, for ease of use. This guarantees that all tasks
remain language-independent, and allows run-time tasks to use the fl_xlate
functions for all message output.

Example 1

void *english, *french; /* pointers to 2 trees */

int num_msg1, num_msg2;

num_msg1 = fl_xlate_init("english/iml", NULL, 0);

Table 8-136

Type Name Descr iption Passed by

void FAR *tree pointer to tree to be
used for translation

Reference
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
fl_xlate_set_tree

8

F
actoryLink A

P
I

R
eference G

uide
english = fl_xlate_get_tree();

num_msg2 = fl_xlate_init("french/iml", NULL, 0);

french = fl_xlate_get_tree();

fl_xlate_set_tree (english); /* Switch to English tree */

printf ("%s\n", fl_xlate("token");

fl_xlate_set_tree (french); /* Switch to French tree */

printf ("%s\n", fl_xlate("token");

You may switch translation trees at any point in the program, and switch back
when ready, without losing any data.

fl_xlate_set_tree may also be used to start a fresh tree, as in the following
example.

Example 5.

fl_xlate_set_tree(NULL) ; /* start new tree */

See also the related message translation functions fl_xlate, fl_xlate_init,
fl_xlate_get_tree, and fl_xlate_load.
FactoryLink ECS / Programmer’s Access Kit / 333

FACTORYLINK API REFERENCE GUIDE
make_full_path

 33

•
•
•
•

MAKE _FULL _PATH

Combine the directory and file name into a full path name. (See also FL_PATH
and related functions.)

Call Format:

void make_full_path(fpathp, dpathp, rpathp)

Arguments:

Returns:

No values

Remarks:

The name of the file to be added to the directory may contain a relative path.

To maintain backward compatibility with previous releases, MAKE_FULL_PATH
has been retained in FLIB, but it is currently implemented using the fl_path
functions. For new development, the fl_path functions should be used. Refer to
Chapter 2, “FactoryLink Architecture” for the names of the functions, and to the
definitions of those functions in this chapter.

void make_full_path(pathp, dirp, filep)

{

NPATH *p1;

NPATH *p2;

Table 8-137

Type Name Descr iption Passed By

char FAR *fpathp Buffer where full
path is returned

Reference

char FAR *dpathp Base directory Reference

char FAR *rpathp Name of file to be
added to the
directory

Reference
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
make_full_path

8

F
actoryLink A

P
I

R
eference G

uide
p1 = fl_path_alloc();

p2 = fl_path_alloc();

if (dirp == NULL)

fl_path_cwd(p1);

else

fl_path_set_dir(p1, dirp);

fl_path_norm(p2, filep);

fl_path_add(p1, p2);

fl_path_sys(p1, pathp, MAX_PATH);

fl_path_free(p1);

fl_path_free(p2);

}

FactoryLink ECS / Programmer’s Access Kit / 335

FACTORYLINK API REFERENCE GUIDE
spool

 33

•
•
•
•

SPOOL

Spool a file or line.

Call Format:

int spool (id, flags, message, length)
6 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
spool

8

F
actoryLink A

P
I

R
eference G

uide
Arguments:

Table 8-138

Type Name Description Passed By

id_t id Caller's FactoryLink ID Value

char FAR *flags Pointer to a zero-terminated string. The
string specifies what is to be printed (a file or
a line), what output device is to be used
(Devices 1 through 5), what type of data (text
or binary) is to be expected, and whether to
delete the file (assuming that a file, not a line,
is specified) after successful printing. The
following recognized characters determine
these actions and may or may not appear in
the string:
Char. Action
B Use binary mode in reading and

printing the file or the line. Send
the Binary ON command
sequence before beginning and
the Binary OFF sequence upon
completion of the print job.

D Delete the file after successful
printing.

L Print the line that follows
(“message” specifies a line to be
printed).

Use output Device number #
(where # stands for a digit from
1-5, the default being 1).

Reference

char FAR *message Pointer to a character string. Reference

Note: Do not specify both the L and D flags in the same job
request. Any other combination is legal. The order of
characters in the flags string is immaterial.
FactoryLink ECS / Programmer’s Access Kit / 337

FACTORYLINK API REFERENCE GUIDE
spool

 33

•
•
•
•

Returns:

A signed integer (an int) that indicates the status of the job request. A value of
zero indicates that the request has been accepted and queued by the SPOOL task.
Any non-zero value indicates that some sort of error has occurred. If the return
value is negative, the request was not received by the SPOOL task. If it is
positive, it was received by SPOOL but could not be processed. Specifically, the
return values have the following meanings:

Table 8-139

Type Name Descr iption Passed By

If the flags
argument is:

Then the message
argument is:

L Line to be printed

B, D, or # Path name of file to
be printed

int length Length, in bytes, of the message Value string. Used
if both the L and B flags are specified, which means
that the message string is not necessarily
zero-terminated. (It may contain any ASCII
characters, including 00 hex.) string.

Value

Table 8-140

Return Value Meaning

-3 The request was too long (the flags and the message
strings combined exceed 128 bytes; a program error is
the likely cause).

-2 The request was not sent (caused by another task
repeatedly tying up the channel to the SPOOL task).
This can only be caused by a program error in one of the
tasks running on the system. The task waits a few
seconds (at most) before retrying the request. Should
subsequent retry attempts fail, the calling task should
print an informative error message, such as Print
Spooler is temporarily unavailable, and take
appropriate action.
8 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
spool

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

The SPOOL function is related to the FactoryLink Print Spooler task.

FactoryLink Pr int S pooler Task

The FactoryLink Print Spooler is a FactoryLink task called SPOOL that processes
job requests from other FactoryLink tasks running on the system. These job
requests specify either a file to be printed on a printer or other output device or
file, or a line to be output. For details about the FactoryLink Print Spooler task,
refer to “Print Spooler” in the Core Tasks Configuration Guide.

The task initiating the job request must be an integral part of the request itself or
specify what file or line is to be printed, which output device is to be used, and
what type of data (text or binary) printed.

When the SPOOL task receives a job request, it checks to see whether the
designated output device is busy (presumably processing requests received
earlier). If the output device is busy, it queues, or spools, the current request.
Otherwise, it processes the request immediately. Requests that are queued for

-1 The request was sent to the SPOOL task, but no reply
was received, the likely cause of which is that the
SPOOL task is not running. The task prints an error
message, such as Print Spooler not running, and
either quits or finds some alternate way to output its
data.

0 The request was accepted and queued by the SPOOL
task (all is OK).

1 The request had a bad flags argument and was therefore
rejected, which could be caused by either a non-existent
output device or a program error. If the output device
does not exist, there is no entry in the Print Spooler
Configuration table for the given device number.

2 The request could not be processed because the spool
queue is full; the requesting task may wish to try again
later.

Table 8-140

Return Value Meaning
FactoryLink ECS / Programmer’s Access Kit / 339

FACTORYLINK API REFERENCE GUIDE
spool

 34

•
•
•
•

later processing are handled strictly on a first-come, first-served basis (there is no
prioritization). In effect, printing occurs on all output devices simultaneously.

Examples

The following examples in C illustrate how to use the SPOOL function:

Example 1:

int spool(id, “2", ”C:/CONFIG.SYS", 0);

Meaning: Print the indicated text file on Device 2.

Example 2:

int spool(id, “L”, “** WARNING: Line pressure LOW. *”, 0);

Meaning: Print the indicated line on Device 1 (the default printer).

Example 3:

int spool(id, “B3", ”C:/{FLINK}/USR/TASK.DAT", 0);

Meaning: Print the indicated binary data file on Device 3.

Example 4:

int spool(id, “D”, “C:/SOURCE/TEST.LOG”, 0);

Meaning: Print the indicated text file on Device 1 and delete the file afterwards.

In all of these examples, the value of int should be checked. The only possible
return values in these examples are -2 through 2.
0 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
tsprintf

8

F
actoryLink A

P
I

R
eference G

uide
 TSPRINTF

Create a target string according to a format string using the given argument
values (...).
FactoryLink ECS / Programmer’s Access Kit / 341

FACTORYLINK API REFERENCE GUIDE
Operating System Notes

 34

•
•
•
•

OPERATING SYSTEM NOTES

The following section contains operating system specific notes relevant to the API
Reference Guide.

For OS/2 Users

fl_path_get_type (page 268)

FL_PATH_GET_TYPE returns the file type of the file specified. One of the
following constants is returned.

• NPATH_REGULAR
NPATH_DIRECTORY

tsprintf (page 341)

Create a target string according to a format string using the given argument
values.

Call Format:

int tsprintf (bp, fp, ...);
2 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
Operating System Notes

8

F
actoryLink A

P
I

R
eference G

uide
Arguments:

Returns:

Length of resulting target string, not including the zero terminator. This function
handles width and padding. For example, %3d prints a decimal value in a field of
width at least 3, and %03d pads the field with zeros instead of blanks.

Remarks:

Use this function only for OS/2 multithreaded programs.

Table 8-141

Type Name Descr iption Passed By

char *bp Pointer to target string in which to
put result

Reference

char *fp Pointer to format string to be used Reference

... Argument values. This function
operates in much the same way as
its namesake, SPRINTF, except
that it recognizes only the
following substitution subset:
Value Description
% c Character
%s String, zero-terminated
%d Signed decimal int
%u Unsigned decimal int
%o Unsigned octal int
%x Unsigned hexadecimal

int using A-F
%X Unsigned hexadecimal

int using A-F
%ld Signed decimal long
FactoryLink ECS / Programmer’s Access Kit / 343

FACTORYLINK API REFERENCE GUIDE
Operating System Notes

 34

•
•
•
•

For UNIX Users

This chapter provides details about the FactoryLink functions.

This reminder is repeated from the architecture chapter for the convenience of
those using only the reference guide.

Although colons are valid characters in file names under most UNIX installations,
FactoryLink PAK modules should not use file names that include colons. Due to
the multi-platform nature of FactoryLink and the need for portability, colons (“:”)
in file names cause the FactoryLink system to interpret the portion of the name
preceding the colon as a device name (currently ignored under UNIX); for
example, “/tmp/ava:balt” will be seen as “/tmp/balt”. The system will always
assume that anything preceding a “:” in a file name is a device name, and will skip
it. Therefore, do not place colons in file names.

Note specifically that in calls to make_full_path(), slash_to_norm(), and
fl_path_norm() the returned path and file names will not be as expected if
passed a file name containing a colon; they work as expected when file names
without colons are passed in.

fl_sleep (page 309)

When using the fl_sleep function under SCO UNIX, you must link in libx.a using
the following command line argument:

-1x

fl_path_get_type (page 268)

FL_PATH_GET_TYPE returns the file type of the file specified. One of the
following constants is returned.

• NPATH_REGULAR
NPATH_DIRECTORY
NPATH_FIFO (Unix only)
NPATH_DEVICE (Unix only)

tsprintf (page 341)

Create a target string according to a format string using the given argument
values.

Note: If you do not link libx.a when using the fl_sleep
function, the nap() function will be unresolved.
4 / FactoryLink ECS / Programmer’s Access Kit

FACTORYLINK API REFERENCE GUIDE
Operating System Notes

8

F
actoryLink A

P
I

R
eference G

uide
Remarks:

Do not use this command in the UNIX environment. Instead, use the C-language
SPRINTF. For details, refer to the appropriate C-language documentation.

For Windows/NT Users

fl_path_get_type (page 268)

FL_PATH_GET_TYPE returns the file type of the file specified. One of the
following constants is returned:

• NPATH_REGULAR
NPATH_DIRECTORY

tsprintf (page 341)

To create a target string according to a format string, use the following argument
values:

Call Format:

int tsprintf (bp, fp, ...);
FactoryLink ECS / Programmer’s Access Kit / 345

FACTORYLINK API REFERENCE GUIDE
Operating System Notes

 34

•
•
•
•

Arguments:

Returns:

Length of resulting target string, not including the zero terminator. This function
handles width and padding. For example, %3d prints a decimal value in a field
width of at least 3, and %03d pads the field with zeros instead of blanks.

Table 8-142

Type Name Descr iption Passed By

char *bp Pointer to target string in which to
put result

Reference

char *fp Pointer to format string to be used Reference

... Argument values. This function
operates similarly to, SPRINTF,
except that it recognizes only the
following substitution subset:
Value Description
%c Character
%s String, zero-terminated
%d Signed decimal int
%u Unsigned decimal int
%o Unsigned octal int
%x Unsigned hexadecimal int

using A-F
%X Unsigned hexadecimal int

using A-F
%ldSigned decimal long
6 / FactoryLink ECS / Programmer’s Access Kit

• • • •Chapter 9

Normalized Tag
References
9

N
orm

alized T
ag

R
eferences
Normalization alludes to the deconstruction of a complex entity into its base
components. Once an entity has been decomposed, its base components become
exposed and can be manipulated individually. Eventually, these base components
may be recombined to reform the complex entity.

Tag references equate to complex strings comprised of one or more base
components. The base components for a tag reference are: node, name, dimension,
and member. Normalization of tag references encompasses the services that:
• Decompose a tag reference into its base components.
• Allow the base components to be obtained and modified.
• Reconstruct the base components back into a tag reference.

This section describes the FactoryLink PAK interface for the normalization of tag
references and covers writing a program incorporating the FactoryLink
Normalized Tag (FLNTAG) API. Topics include:
• Normalized Tag Reference Overview
• Normalized Tag Reference API Guide

The order of these topics reflects a top-down approach.
FactoryLink ECS / Programmer’s Access Kit / 347

NORMALIZED TAG REFERENCES
Normalized Tag Reference Overview

 34

•
•
•
•

NORMALIZED TAG REFERENCE OVERVIEW

A FactoryLink object is a named instantiation of a data type of digital, analog,
float, long analog, message, or mailbox. The object may be a single instance of its
data type or it may be an array containing multiple instances of the same data
type. The name of a FactoryLink object is referred to as the object name.

To connote a structured view, a FactoryLink object may be said to be a member of
another object. A member FactoryLink object has equal standing with its parent
object, save that it cannot have members of its own. A member tag can be arrayed,
but these usually parallel the dimensions of its parent object.

Finally, FactoryLink object may have a local or remote value source. This source
is known as its node. This node is sometimes referred to as an external domain.

A tag refers a single location for within the FactoryLink real-time database. A
FactoryLink object equates to one or more tags, depending on whether it is an
arrayed object and/or whether it has member objects associated with it.

Given these parameters, a reference to a FactoryLink object conforms to the
following syntax:

[{node}:]{name}[dimension][...][.member]

where:

node (optional) The source node for the given tag

name The base name for the tag

dimension (optional) The particular tag element for an arrayed tag

member (optional) The sub-component identifier for the base tag

For example, the object reference “plc1:tagx[4][5].raw” has a node of “plc1”, an id
of “tagx”, the dimensions of “[4][5]”, and a member of “raw”.

The above syntax provides the precision required to resolve an object reference to
a single, real-time database location (tag, for short).

Also given this syntax, the combination of a reference node, name, and member
equates to the name of the object, as seen through FLCM object list panel. Please
keep in mind that the object name component may not be sufficient to uniquely
identify a tag. It must be accompanied by its associated source, dimension, or
member attributes.
8 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
Normalized Tag Reference Overview

9

N
orm

alized T
ag

R
eferences
Overview of FLNTAG Services

Obviously, the syntax for a tag reference becomes complex when associated
attributes are prefixed and/or appended onto it. Even a simple reference, such as
x[5], requires a significant amount of parsing and interpretation.

The FLNTAG API consolidates this processing into a single interface. References
can be decomposed into the their base components, have these component
modified individually, and ultimately recombined into a reference string. The API
also provides hooks for obtaining object definitions and RTDB locations.

The services provided by the FLNTAG API are:
• Creation and destruction of an FLNTAG instance.
• Decomposition of a tag reference string into a FLNTAG.
• Object definition and RTDB location retrieval based on the FLNTAG.
• Component level manipulation of a FLNTAG.
• Generation of a string (reference, object name, ...) from a FLNTAG.

Overview of the FLNTAG API

The FLNTAG API is a data-abstracted set of functions. Its operation generally
follows some for variant of the following sequence:

 1 Open the application’s object table (table containing all known objects),

 2 Create an FLNTAG instance.

 3 Load a tag reference string into the FLNTAG.

 4 Obtain the RTDB location for the reference, using the FLNTAG API.

 5 Destroy the FLNTAG instance

 6 Close the object table.

Hence, the reference’s location within the RTDB can be determined in a hands-off
manner. Additionally, should the syntax for a reference change, code based on the
API need not change to support it.
FactoryLink ECS / Programmer’s Access Kit / 349

NORMALIZED TAG REFERENCES
Normalized Tag Reference Overview

 35

•
•
•
•

Code Scrap: Converting a Tag Reference to a TAG

#include <flntag.h>

/*

 * Function convert_ref2tag() returns the RTDB location for the

 * given reference.

 */

int convert_ref2tag(char *flapp, char *tagref, TAG *tag)

{

FLNTAG *ntag;

CT objct;

int rv;

 if (ct_open_obj(&objct, flapp) != GOOD)

 return ERROR

 if ((ntag = flntag_create()) != NULL)

 {

 if ((rv = flntag_parse_ref(ntag, tagref)) ==
FLNTAG_E_GOOD)

 rv = flntag_find_tag(ntag, &objct, tag);

 rv = (rv == FLNTAG_E_GOOD) ? GOOD : ERROR;

 flntag_destroy(ntag);

 }

 else

 {
0 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
Normalized Tag Reference Overview

9

N
orm

alized T
ag

R
eferences
 rv = ERROR;

 }

 ct_close_obj(&objct);

 return rv;

}

FLNTAG Return Codes

The following chart lists the return codes defined in FLNTAG.H. The meaning of
these codes are described in the description of the functions that may return it.

Return Code Value

FLNTAG_E_GOOD 0

FLNTAG_E_GENERAL -1

FLNTAG_E_HANDLE -2

FLNTAG_E_INVARG -3

FLNTAG_E_NOMEM -4

FLNTAG_E_REFSYN -5

FLNTAG_E_INVCHR -6

FLNTAG_E_LENGTH -7

FLNTAG_E_DIMSYN -8

FLNTAG_E_DIMLEN -9

FLNTAG_E_DIMNUM -10

FLNTAG_E_DIMRNG -11

FLNTAG_E_MBRREF -12
FactoryLink ECS / Programmer’s Access Kit / 351

NORMALIZED TAG REFERENCES
Normalized Tag Reference API Guide

 35

•
•
•
•

NORMALIZED TAG REFERENCE API GUIDE

Presented in alphabetical order, the following pages describe the Normalized Tag
API.

flntag_calc_base-

flntag_calc_tag PAGEREF

flntag_create PAGEREF

flntag_destroy PAGEREF

flntag_find_def PAGEREF

flntag_find_tag PAGEREF

flntag_gen_objname PAGEREF

flntag_gen_ref PAGEREF

flntag_gen_str PAGEREF

flntag_get_dimen PAGEREF

flntag_get_member PAGEREF

flntag_get_name PAGEREF

flntag_get_node PAGEREF

flntag_parse_brkt4dims PAGEREF

flntag_parse_comma4dims PAGEREF

flntag_parse_ref PAGEREF

flntag_set_dimen PAGEREF

flntag_set_member PAGEREF

flntag_set_name PAGEREF

flntag_set_node PAGEREF

-

2 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_calc_base

9

N
orm

alized T
ag

R
eferences
FLNTAG _CALC _BASE

Normalized Tag API.

Prototype: #include <flntag.h>

int flntag_calc_base(FLNTAG *ntag, TAG *tag,
 char *def_dims, TAG *base)

Arguments :

Returns :

Description: Given a normalized tag reference, its RTDB location, and its
dimension definition, function flntag_calc_base() calculates the
RTDB location for the base of the given ntag. For nonarrayed
objects, the location of a tag reference always equals the base tag
location obtained from the object’s definition.

FLNTAG* ntag (i) FLNTAG for which to obtain
definition.

TAG* tag (i) The RTDB location (tag) for the
reference contained within the given
ntag.

char* def_di
ms

(i) The dimensions defined for the given
object.

TAG* base (o) The base RTDB location (tag) for the
object referenced by ntag.

FLNTAG_E_GOOD Definition found and RTDB
location returned.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.

FLNTAG_E_DIMNUM The number of dimensions in the
ntag’s reference differs from the
number of dimensions specified by
the object’s definition.

FLNTAG_E_DIMSIZ The size of the dimensions in the
ntag’s reference exceeds from the
maximum dimension sizes specified
in the object’s definition.
FactoryLink ECS / Programmer’s Access Kit / 353

NORMALIZED TAG REFERENCES
flntag_calc_base

 35

•
•
•
•

This function is commonly called during the loading of a task’s
CT. CT’s often contain the reference string, the RTDB location for
the reference string, and the dimension definition for the object
being referenced. This function uses these three pieces of
information to obtain the base location for reference.

See Also: flntag_create(), flntag_find_def().
4 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_calc_tag

9

N
orm

alized T
ag

R
eferences
FLNTAG _CALC _TAG

Normalized Tag API.

Prototype: #include <flntag.h>

int flntag_calc_tag(FLNTAG *ntag, TAG *base,
 char *def_dims, TAG *tag)

Arguments :

Returns :

Description: Given a normalized tag reference, its base RTDB location, and its
dimension definition, function flntag_calc_tag() calculates the
RTDB location for the given ntag. For nonarrayed objects, the
location of a tag reference always equals the base tag location
obtained from the object’s definition.

FLNTAG* ntag (i) FLNTAG for which to obtain
definition.

TAG* base (i) The RTDB location (tag) for the
base of the reference contained
within the given ntag.

char* def_dim
s

(i) The dimensions defined for the
given object.

TAG* tag (o) RTDB location (tag) for the
object referenced by ntag.

FLNTAG_E_GOOD Definition found and RTDB location
returned.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.

FLNTAG_E_DIMNUM The number of dimensions in the
ntag’s reference differs from the
number of dimensions specified by
the object’s definition.

FLNTAG_E_DIMSIZ The size of the dimensions in the
ntag’s reference exceeds from the
maximum dimension sizes specified
in the object’s definition.
FactoryLink ECS / Programmer’s Access Kit / 355

NORMALIZED TAG REFERENCES
flntag_calc_tag

 35

•
•
•
•

Code Scrap: Converting a F LNTAG to a TAG

#include <flntag.h>

/*

 * Function convert_ntag2tag() returns the RTDB location for
the

 * given reference.

 */

int convert_ntag2tag(FLNTAG *ntag, CT *objct, TAG *tag)

{

FLOBJREC def

int rv;

 if ((rv = flntag_find_def(ntag, objct, &def) ==
FLNTAG_E_GOOD)

 {

 rv = flntag_calc_tag(ntag,

 flobjrec_get_tag(&def),

 flobjrec_get_dimen(&def),

 tag);

 }

 return rv;

}

See Also: flntag_create(), flntag_find_def().
6 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_create

9

N
orm

alized T
ag

R
eferences
FLNTAG _CREATE

Normalized Tag API.

Prototype:

#include <flntag.h>

FLNTAG* flntag_create(void)

Returns :

Description: Function flntag_create() allocates a normalized tag instance. This
handle is subsequently passed to all other flntag_...() functions.

See Also: flntag_destroy().

FLNTAG* Normalized tag instance handle.

NULL Memory allocation failure.
FactoryLink ECS / Programmer’s Access Kit / 357

NORMALIZED TAG REFERENCES
flntag_destroy

 35

•
•
•
•

FLNTAG _DESTROY

Normalized Tag API.

Prototype: #include <flntag.h>

FLNTAG* flntag_destroy(FLNTAG *ntag)

Arguments :

Description: Function flntag_destroy() releases all resources associated with
the given handle. This handle should not be referenced after
being destroyed.

See Also: flntag_create().

FLNTAG* ntag (i/o) Handle to release.
8 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_find_def

9

N
orm

alized T
ag

R
eferences
FLNTAG _FIND_DEF

Normalized Tag API.

Prototype:

#include <flntag.h>

int flntag_find_def(FLNTAG *ntag, CT *objct, FLOBJREC *rec)

Arguments:

Returns :

Description: Function flntag_find_def() returns the definition for the object
referenced by the given ntag. This definition is obtained by
searching the application’s object CT.

A required argument for this function, parameter objct can be
obtained via function ct_open_obj().

See Also: flntag_create(), flntag_parse_ref(), ct_open_obj().

FLNTAG* ntag (i) FLNTAG for which to obtain
definition.

CT* objct (i) Object CT handle.

FLOBJREC* rec (o) Definition for the object
referenced by ntag.

FLNTAG_E_GOOD Definition found and returned.

FLNTAG_E_GENERAL Tag definition not found.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.

FactoryLink ECS / Programmer’s Access Kit / 359

NORMALIZED TAG REFERENCES
flntag_find_tag

 36

•
•
•
•

FLNTAG _FIND_TAG

Normalized Tag API.

Prototype:

#include <flntag.h>

int flntag_find_tag(FLNTAG *ntag, CT *objct, TAG *tag)

Argument s:

Returns :

Description: Function flntag_find_tag() returns the RTDB location (the tag)
for the object referenced by the given ntag. This location is
obtained by searching the application’s object CT for the object
definition, obtaining the base RTDB location from that definition,
and. finally, calculating the offset from the base if the tag is an
arrayed element.

For example, if the ntag equates to reference x[3], function
flntag_find_tag() returns RTDB location for x[3], not x[0].

A required argument for this function, parameter objct can be
obtained via function ct_open_obj().

FLNTAG* ntag (i) FLNTAG for which to obtain
RTDB location.

CT* objct (i) Object CT handle.

TAG* tag (o) RTDB location (tag) for the
object referenced by ntag.

FLNTAG_E_GOOD Definition found and RTDB
location returned.

FLNTAG_E_GENERAL Tag definition not found.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.

FLNTAG_E_DIMNUM The number of dimensions in the
ntag’s reference differs from the
number of dimensions specified by
the object’s definition.

FLNTAG_E_DIMSIZ The size of the dimensions in the
ntag’s reference exceeds from the
maximum dimension sizes specified
in the object’s definition.
0 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_find_tag

9

N
orm

alized T
ag

R
eferences
See Also: flntag_create(), flntag_calc_tag(), flntag_parse_ref(),
ct_open_obj().
FactoryLink ECS / Programmer’s Access Kit / 361

NORMALIZED TAG REFERENCES
flntag_gen_objname

 36

•
•
•
•

FLNTAG _GEN_OBJNAME

FLNTAG _GEN_REF

FLNTAG _GEN_STR

Normalized Tag API.

Prototype: #include <flntag.h>

int flntag_gen_str(FLNTAG *ntag, u16 excl,
 char *outstr, int maxlen)

#define flntag_gen_objname(ntag, outstr, maxlen) \
 flntag_gen_str(ntag, FLNTAG_S_DIMEN, outstr,
maxlen)

#define flntag_gen_ref(ntag, tagref, maxlen) \
 flntag_gen_str(ntag, 0, tagref, maxlen)

Arguments:

Returns :

Description: Function flntag_gen_str() generates the reference string to which
the given ntag equates. When nonzero, parameter incl, a bit
mask, includes one or more components from the resulting string.

FLNTAG* ntag (i) FLNTAG for which to generate
string.

u16 incl (i) Bit-wise OR-flags for the
components to include within
the generated string.

FLNTAG_S_NODE
FLNTAG_S_NAME
FLNTAG_S_DIMEN
FLNTAG_S_MEMBER

char* outstr (o) Target buffer for the generated
string. If NULL, then the string
is not generated.

int maxlen (i) Maximum number of
characters to write to the outstr
buffer.

rtn >= 0 Full length of the requested string.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.
2 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_gen_str

9

N
orm

alized T
ag

R
eferences
Normally, the entire reference is desired, and the macro
flntag_gen_ref() can be used to build it.

For cases where the object name is needed, macro
flntag_gen_objname() can be used.

See Also: flntag_create(), flntag_parse_ref().
FactoryLink ECS / Programmer’s Access Kit / 363

NORMALIZED TAG REFERENCES
flntag_get_dimen

 36

•
•
•
•

FLNTAG _GET_DIMEN

FLNTAG _GET_MEMBER

FLNTAG _GET_NAME1
FLNTAG _GET_NODE

Normalized Tag API.

Prototype: #include <flntag.h>

char* flntag_get_dimen(FLNTAG *ntag)

char* flntag_get_member(FLNTAG *ntag)

char* flntag_get_name(FLNTAG *ntag)

char* flntag_get_node(FLNTAG *ntag)

Arguments :

Returns:

Description: Normalized tags consist of four components: node, name,
dimension, and member. This suite of flntag_get_...() functions
allows the caller to obtain the current value of an individual
component. All values are returned as null-terminated strings.

Currently, these entry points are implemented as macros which
return a pointer to the private members of the FLNTAG
structure. These addresses must be treated in a read-only
manner.

See Also: flntag_create(), flntag_gen_str(), flntag_set_dimen(),
flntag_set_member(), flntag_set_name(), flntag_set_node().

FLNTAG* ntag (i) FLNTAG whose components are
being obtained.

Value string Pointer to the requested value.
4 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_parse_brkt4dims

9

N
orm

alized T
ag

R
eferences
FLNTAG _PARSE_BRKT 4DIMS

FLNTAG _PARSE_COMMA4DIMS

Normalized Tag API.

Prototype: #include <flntag.h>

i16 flntag_parse_brkt4dims(char *dimstr,
 u16 *dims, u16 dimslen);

i16 flntag_parse_comma4dims(char *dimstr,
 u16 *dims, u16 dimslen);

Arguments :

Returns:

Description: Functions flntag_parse_brkt4dims() and
flntag_parse_comma4dims() parses the given dimension string
and returns the number of dimension contained within it. These
functions can also return the value of the each individual
dimension as a u16 array.

Function flntag_parse_brkt4dims() expects dimension strings
such as “[2][4]”.

char* dimstr (i) Dimension string to parse.

u16* dims (o) Size of each dimension found
in the parsed string returned
within a array of u16s. If
equal to NULL, this
information is not returned.

u16 dimslen (i) Length of the given dims
array. This prevents
overwrites should the number
of dimensions exceed the size
of the array.

>= 0 Number of dimensions found in the
given string.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.

FLNTAG_E_REFSYN Reference’s syntax illegal for the
dimension.
FactoryLink ECS / Programmer’s Access Kit / 365

NORMALIZED TAG REFERENCES
flntag_parse_comma4dims

 36

•
•
•
•

Function flntag_parse_comma4dims() expects dimension strings
such as “2,4”.

See Also: flntag_parse_ref().
6 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_parse_ref

9

N
orm

alized T
ag

R
eferences
FLNTAG _PARSE_REF

Normalized Tag API.

Prototype: #include <flntag.h>

int flntag_parse_ref(FLNTAG *ntag, char *ref)

Arguments :

Returns:

Description: Function flntag_parse_ref() parses the given object reference
string and loads its components into the given normalized tag
handle. Each component is validated to ensure that it has a legal
syntax.

The previous contents of the given ntag are overwritten by this
operation.

See Also: flntag_create(), flntag_gen_ref().

FLNTAG* ntag (i/o) FLNTAG to load according to
the given reference.

char* ref (i) Reference to parse.

FLNTAG_E_GOOD Reference successfully parsed and
loaded.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.

FLNTAG_E_REFSYN Reference’s syntax illegal for a tag.
FactoryLink ECS / Programmer’s Access Kit / 367

NORMALIZED TAG REFERENCES
flntag_set_dimen

 36

•
•
•
•

FLNTAG _SET_DIMEN

FLNTAG _SET_MEMBER

FLNTAG _SET_NAME

FLNTAG _SET_NODE

Normalized Tag API.

Prototype: #include <flntag.h>

int flntag_set_dimen(FLNTAG *ntag, char *dimen)

int flntag_set_member(FLNTAG *ntag, char *member)

int flntag_set_name(FLNTAG *ntag, char *name)

int flntag_set_node(FLNTAG *ntag, char *node)

Arguments:

Returns:

Description: Normalized tags consist of four components: node, name,
dimension, and member. This suite of flntag_set_...() allows an
individual component of the FLNTAG to be modified.

Valid syntax is enforced by these functions. The enforced rules
are as follows:

FLNTAG* ntag (i/o) FLNTAG whose components
are being set.

char* value (i) Target set value.

FLNTAG_E_GOOD Reference successfully parsed and
loaded.

FLNTAG_E_HANDLE Invalid FLNTAG handle.

FLNTAG_E_INVARG Invalid function arguments.

FLNTAG_E_REFSYN Reference’s syntax illegal for a
component.

flntag_set_node
flntag_set_name
flntag_set_member

Allowed characters are “_@$”.and
alphanumeric. The first character
cannot be numeric.

flntag_set_dimen A string containing dimensions
delineated by brackets (i.e. [4][5]).
8 / FactoryLink ECS / Programmer’s Access Kit

NORMALIZED TAG REFERENCES
flntag_set_node

9

N
orm

alized T
ag

R
eferences
See Also: flntag_create(), flntag_gen_str(),
flntag_get_dimen(), flntag_get_member(),
flntag_get_name(), flntag_get_node().
FactoryLink ECS / Programmer’s Access Kit / 369

NORMALIZED TAG REFERENCES
flntag_set_node

 37

•
•
•
•

0 / FactoryLink ECS / Programmer’s Access Kit

10

O
b

j

• • • •Chapter 10

Object Definitions
ect D
efinitions
A FactoryLink object is a user-defined name associated with a set of attributes.
Examples of an object’s attributes are its type, dimension, and domain, but other
properties exist as well. This set of attributes equates to the object’s definition.

A FactoryLink application consists of many objects. To view the objects defined
within an application, execute the configuration manager (FLCM) and choose
“View - Object List” from its main menu. The resulting list shows all objects, along
with their definitions, known by the application.

This chapter describes the FactoryLink PAK interface for accessing these tag
definitions in a run-time environment.

This section covers the Object CT API. Topics include:
• Object CT Overview
• Object CT API Reference Guide
FactoryLink ECS / Programmer’s Access Kit / 371

OBJECT DEFINITIONS
Object CT Overview

 37

•
•
•
•

OBJECT CT OVERVIEW

A binary representation of a configuration database file, the object CT is not
unlike any other task-specific CT. The main difference is that the CT contains the
contents of the application’s object database, which is not tied to any one
particular task. Another difference is that a large application with many objects
requires special handling in order to fit within a standard CT.

Written using the PAK’s ct_...() primitives, the object CT API hides the details of
how the object database contents are coerced into a CT.

Overview of Object CT Services

The Object CT API mirrors the existing ct_...() API and provides the following
services:
• Opening and closing of the object CT.
• Object definition retrieval based on an object’s name.
• Random access, block retrieval for object definitions.

Overview of the Object CT API

Ignoring some organizational overhead, FactoryLink CTs equate to on-disk arrays
of C-structures. The object CT is no different, and consists of many arrays of
following structure:

typedef struct _flobjrec

{

char tagname[MAX_TAG_NAME+1];

char tagdomain[MAX_USR_NAME+1];

char tagtype[MAX_TYPE_NAME+1];

char tagdescr[MAX_PROC_DESC+1];

char tagdimen[MAX_DIM_LENGTH+1];

u16 tagperwhen;

u16 tagchgbits;

TAG tagno;

} FLOBJREC;

This structure reflects the current attributes that define a FactoryLink object.
Applications should treat this structure as opaque and not access its members
2 / FactoryLink ECS / Programmer’s Access Kit

OBJECT DEFINITIONS
Object CT Overview

10

O
b

ject D
efinitions
directly. A function-based interface, included with the Object CT API, should be
used to query FLOBJREC’s values. Using the API shields the PAK task from
future changes that alter the object’s structure and its members, yet leave the
interface alone.

The Object CT API is a data abstracted set of functions. Its usage generally
follows some for variant of the following sequence:

 1 Open the application’s object table.

 2 Search for definitions for one or more objects.

 3 Close the object table.

Code Scrap: Pr inting all objects in a parti cular domain

#include <objct.h>

/*

 * Function print_objs4dom writes to standard output
all objects

 * configured for a particular domain.

 */

int print_objs4dom(char *flapp, char *tgt_dom)

{

FLOBJREC rec;

u32 nrecs;

u32 k;

CT objct;

 if (ct_open_obj(&objct, flapp) != GOOD)

 return ERROR

 nrecs = ct_nrecs_obj(objct);

 for (k = 0; k < nrecs; k++)

 {
FactoryLink ECS / Programmer’s Access Kit / 373

OBJECT DEFINITIONS
Object CT Overview

 37

•
•
•
•

 ct_read_objs(objct, &rec, k, 1);

 if (strcmp(tgt_dim,
flobjrec_get_domain(rec)) == 0)

 {

 printf(“Object %s in domain %s\n”,

 flobjrec_get_name(rec), tgt_dom);

 }

 }

 ct_close_obj(&objct);

 return nrecs;

}

4 / FactoryLink ECS / Programmer’s Access Kit

OBJECT DEFINITIONS
Object CT API Reference Guide

10

O
b

ject D
efinitions
OBJECT CT API REFERENCE GUIDE

Presented in alphabetical order, the following pages describe the Object CT API.

-

ct_find_obj PAGERE

ct_nrecs_obj PAGEREF

ct_open_obj PAGEREF

ct_read_objs PAGEREF

flobjrec_get_chgbits PAGEREF

flobjrec_get_descr PAGEREF

flobjrec_get_dimen PAGEREF

flobjrec_get_domain PAGEREF

flobjrec_get_perwhen PAGEREF

flobjrec_get_tag PAGEREF

flobjrec_get_type PAGEREF
FactoryLink ECS / Programmer’s Access Kit / 375

OBJECT DEFINITIONS
-ct_close_obj

 37

•
•
•
•

-CT_CLOSE_OBJ

Object CT API.

Prototype: #include <objct.h>

int ct_close_obj(CT *objct)

Arguments :

Returns :

Description: Function ct_close_obj() closes the object CT. The CT handle
should not be referenced after being closed.

See Also: ct_open_obj().

CT* objct (i/o) Object CT handle.

GOOD CT closed without error.

CT_NULL_PTR Null pointer passed in for CT.

CT_FILE_NOT_OPEN CT currently not opened.

CT_CANNOT_CLOSE_FILE Error occurred closing file.
6 / FactoryLink ECS / Programmer’s Access Kit

OBJECT DEFINITIONS
ct_find_obj

10

O
b

ject D
efinitions
CT_FIND_OBJ

Object CT API.

Prototype: #include <objct.h>

int ct_find_obj(CT *objct, char *objname, FLOBJREC *rec)

Arguments :

Returns:

Description: Function ct_find_obj() searches the given object CT for the given
objname and returns its definition.

Function ct_find_obj() employs a binary search.

See Also: ct_open_obj().

CT* objct (i) Object CT handle.

char* objname (i) Name of the object to find.

FLOBJREC* rec (o) Buffer for object’s
definition.

GOOD Object found.

ERROR Object not found.
FactoryLink ECS / Programmer’s Access Kit / 377

OBJECT DEFINITIONS
ct_nrecs_obj

 37

•
•
•
•

CT_NRECS_OBJ

Object CT API.

Prototype: #include <objct.h>

int ct_nrecs_obj(CT *objct, u32 *nrecs)

Arguments:

Returns :

Description: Function ct_nrecs_obj() returns the total number of objects
contained within the given object CT.

See Also: ct_open_obj(), ct_read_objs().

CT* objct (i) Object CT handle.

u32* nrecs (o) Number of objects in the given CT.

GOOD Number of objects returned.

ERROR Unable to determine number of objects.
8 / FactoryLink ECS / Programmer’s Access Kit

OBJECT DEFINITIONS
ct_open_obj

10

O
b

ject D
efinitions
CT_OPEN_OBJ

Object CT API.

Prototype: #include <objct.h>

int ct_open_obj(CT *objct, char *flapp)

Arguments:

Returns:

Description: Function ct_open_obj() opens the object CT. This CT handle is
passed to all subsequent object CT API calls.

See Also: ct_close_obj().

CT* objct (i/o) Object CT handle.

char* flapp (i) Application directory.

GOOD CT closed without error.

CT_NULL_PTR Null pointer passed in for CT.

CT_CANNOT_OPEN_F
ILE

Error occurred opening file.

CT_READ_ERROR Error occurred reading file.

CT_BAD_MAGIC Given file is not an object CT.
FactoryLink ECS / Programmer’s Access Kit / 379

OBJECT DEFINITIONS
ct_read_objs

 38

•
•
•
•

CT_READ_OBJS

Object CT API.

Prototype: #include <objct.h>

int ct_read_objs(CT *objct, FLOBJREC *recs,
 u32 srec, u32 nrecs)

Arguments:

Returns:

Description: Function ct_read_obsj() reads the given number of definitions
(nrecs) into target buffer recs, beginning at record srec.

See Also: ct_open_obj(), ct_nrecs_obj().

CT* objct (i) Object CT handle.

FLOBJREC* recs (o) Buffer for object definitions.

u32 srec (i) Starting record number.

u32 nrecs (i) Number of records to read.

GOOD Objects read into buffer.

ERROR Error occurred reading objects into buffer.
Caller might have attempted to read past end of
the CT.
0 / FactoryLink ECS / Programmer’s Access Kit

OBJECT DEFINITIONS
flobjrec_get_chgbits

10

O
b

ject D
efinitions
FLOBJREC _GET_CHGBITS
FLOBJREC _GET_DESCR
FLOBJREC _GET_DIMEN

FLOBJREC _GET_DOMAIN

FLOBJREC _GET_PERWHEN
FLOBJREC _GET_TAG

FLOBJREC _GET_TYPE

Object CT API.

Prototype: #include <objct.h>

u16 flobjrec_get_chgbits(FLOBJREC *rec)

char* flobjrec_get_descr(FLOBJREC *rec)

char* flobjrec_get_dimen(FLOBJREC *rec)

char* flobjrec_get_domain(FLOBJREC *rec)

u16 flobjrec_get_perwhen(FLOBJREC *rec)

TAG* flobjrec_get_tag(FLOBJREC *rec)

char* flobjrec_get_type(FLOBJREC *rec)

Arguments:

Returns:

Description: This suite of flobjrec_get_...() functions allows the caller to obtain
an attribute’s value from an object’s definition.

While most of the return values are self-explanatory, a few
require more detail:

Function flobjrec_get_chgbits() refers to a persistence attribute,
namely whether to set the change bit on when restoring the
persistent value. The value is 1 for set-the-change-bit, and 0 for
not.

FLOBJREC* rec (i) FLOBJREC whose components
are being obtained.

Value Requested value.
FactoryLink ECS / Programmer’s Access Kit / 381

OBJECT DEFINITIONS
flobjrec_get_type

 38

•
•
•
•

Function flobjrec_get_perwhen() refers to a persistence attribute,
namely whether to save the object’s value based on time, on value
change, or according its domain’s persistence settings. The legal
values for this attribute are:

Function flobjrec_get_tag() returns the base RTDB location. For
arrayed objects, this is the RTDB location for the object whose
dimensions are all equal to zero.

Currently these entry points are implemented as macros which,
in some cases, return a pointer to the private members of the
FLOBJREC structure. These addresses must be treated in a
read-only manner.

See Also: ct_find_obj(), ct_open_obj().

0 No persistence of value.

1 Time-based persistence.

2 Exception-based persistence.

3 Time- & Exception-based persistence.

4 Domain settings persistance
2 / FactoryLink ECS / Programmer’s Access Kit

Index
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A
AC file

comments in 92
creation 79
CT statement 93
DESC statement 93, 100
description 49, 50, 79, 92
EDIT statement 93, 95
END statement 93, 102
example (external editor program) 106
FIELD statement 93, 97
format 92
format (external editor program) 106
HEADING statement 93, 98
INDEX statement 93, 102
PANEL statement 93, 96
RELATE statement 93, 99
sample 102
SELECT statement 93, 101
SEQ statement 93, 101
TASK statement 92
TYPE statement 93, 99
VALIDATE statement 93, 96

AC files
description of 65, 70, 73
EDIT statement 113
format 112

ac files
EDIT statement 113
format 113
 K
A = Application Editor C1 = Core Tasks
C4 = Communications C5 = Power SPC
ANALOG 24
API functions

called by Run-Time Manager only 220,
224, 226, 301
OBSOLETE 253

API, FactoryLink 38
application

exiting an instance of 226
reset data areas of 301

application directory (FLAPP) 66, 71, 74
application directory retrieval 169, 230
application global flags retrieval 231
application-related files 53
architecture

affect on new task development 48
of FactoryLink 21

archive (CT) 116, 169
array

real-time database element 29
arrays 28
ASC files 67, 71, 74
attribute catalog

AC file 92

C
calling and return conventions 152
CDB (database tables) 66, 71, 74
CDBLIST utility 111, 126
CDX (index) 67, 71, 74
change-read call 27, 160, 208
 Index I-383

ey
C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

I-3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
change-status bits
clear 160, 216
description 26, 161
set 160, 304

change-status flags
change-status bits 160

change-wait call 27, 160, 212
client processes

retrieve number of 176, 237
status 155

clock tick 245
CM System Table 128
CMD files 65, 70, 73
command line retrieval 169, 232
components of FactoryLink Software System
23
configuration database tables 49
configuration environment

testing 113
configuration environment setup 78
Configuration Manager 17, 37, 49, 91, 106
configuration tables (CT)

CT file 14
definition for manual 14

control panels 45, 91
control tag retrieval 169, 234
conventions

calling 152
notational 13
return 152
task design 131

conversion script
description 117
format 117
sample 124

conversion script format 127, 128
84 FactoryLink ECS / Programmer’s Access Kit

 K
A = Application Editor C1 = Core Tasks

C4 = Communications C5 = Power SPC
converting database tables to CTs 78, 80, 115
testing 126

copyright message, pointer to 176, 233
cross-reference (XREF) database table 90
CT access services

description 169
list of functions 170

CT archive 116, 169
archive header 117
calculate offset 170
close 170, 184
create/truncate/open for update 170, 186
find index 170, 187
format 117
header 117
index 117, 118
open 170, 195
open for update 170, 200
read header 170, 196
read index 170, 197
read record 170, 198
read records 170, 199
record 117
write header 170, 201
write index record 170, 202
write record 170, 203
write records 170, 204

CT file
creation 124
description 51, 80
header 119
record 119

CT files 67, 72, 75
CT statement (in AC file) 93
CT type definition (CTG script) 118
CT_CALC_OFFSET 170
ey

C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
CT_CLOSE 170, 184
CT_CREATE 170, 186
CT_FIND_INDEX 170, 187
CT_GET_HDRLEN 189
CT_GET_NAME 190
CT_GET_NCTS 191
CT_GET_NRECS 192
CT_GET_RECLEN 193
CT_GET_TYPE 194
CT_OPEN 170, 195
CT_READ_HDR 170, 196
CT_READ_INDEX 170, 197
CT_READ_REC 170, 198
CT_READ_RECS 170, 199
CT_UPDATE 170, 200
CT_WRITE_HDR 170, 201
CT_WRITE_INDEX 170, 202
CT_WRITE_REC 170, 203
CT_WRITE_RECS 170, 204
CTARC structure 117
CTG files 65, 70, 73
CTG script 80

FIELD statement 118, 121
format 117
HEADER statement 118, 119
RECORD statement 118
SKIP statement 118, 123
TABLE statement 118

CTGEN utility 49, 80, 116, 117, 124, 126
CTLIST utility 80, 126
CTNDX structure 117

D
data transfer

examples 47
methods 46
 K
A = Application Editor C1 = Core Tasks
C4 = Communications C5 = Power SPC
data types 24, 90, 160
ANALOG 90
FLOAT (floating-point) 90
LONGANA (long analog) 90
MAILBOX 90
storage in kernel area 26
storage in user area 26
value 26
value range and accuracy 26

database access services
called by miscellaneous functions 177
description 159
list of functions 159
sample 162
use 159

database table
contents 79
converting 78, 80, 115
definition 14, 94
description 49
design 79
field definition 97
format 90
OBJECT 89
task-specific 89
TYPE 89
XREF 89

dBASE
compatible database library 112, 113, 127,
128
compatible database manager 113

debugging tasksprogram' 81
DESC statement (in AC file) 93, 100
designing task-specific database tables 91
DIGITAL 24
dimensions 33
Index I-385

ey
C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

I-3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
directory organization 65, 69, 73
DLL files 66, 71, 74
Domain

defined 22
items associated with 22, 40
shared 39

domains 39
DRW files 67, 72, 75

E
edit procedure 95
EDIT statement (in AC file) 93, 95
EDIT statement in AC file 113
EDIT statement in ac file 113
editing

level of developer 96
editor program execution from CM 106
element array

one dimension 33
three dimension 34
two-dimensional 33

element array dimensions 33
Element Descriptions 35
elements 21, 161

ANALOG 24
DIGITAL 24
FLOAT 24
getting information about 176
LONGANA (long analog) 24
MAILBOX 24
MESSAGE 24
predefined 35
structure 26

END statement (in AC file) 93, 102
environment

reading from OS/2 248
86 FactoryLink ECS / Programmer’s Access Kit

 K
A = Application Editor C1 = Core Tasks

C4 = Communications C5 = Power SPC
environment access services
description 169

environment variables
FLAPP 53, 63, 64, 68
FLINK 53, 63, 64, 68
look up 248

error numbers 176, 225
FactoryLink client process status 155
reference list 153
returned by CT access functions 154
returned by kernel services 153
symbolic representations 152

exception processing 28
EXE files 65, 70, 73
exit the calling process 134, 157, 287
EXT files 67, 71, 74

F
FactoryLink

API 38, 130
architecture 21
components 23
environment variables 53
files and directories 53
how architecture affects new task develop-
ment 48
kernel 23, 148
library 22, 149
library functions 149
multi-user considerations 39
operation 21
real-time database 23, 160
recommended optional programs 38
tasks 35

FactoryLink environment variables
expansion in path names 54
ey

C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
FLDOMAIN 54
FLINK 53
FLNAME 54
FLUSER 54
in path names 54

field
definition 97
heading 98
relational 99
selection 101
translation 121

FIELD statement
in AC file 93, 97
in CTG script 118, 121

files
creating 264

FL.OPT 66, 71, 74
FL_ACCESS_MEM 167, 205
FL_ALLOC_MEM 167, 207

relationship to FL_FREE_MEM 229
FL_CHANGE_READ 160, 208

comparison to FL_CHANGE_WAIT 213
FL_CHANGE_READ_TAG_LIST 165, 210
FL_CHANGE_WAIT 160, 161, 212

comparison to FL_CHANGE_READ 209
similarity to
FL_CHANGE_WAIT_TAG_LIST 215

FL_CHANGE_WAIT_TAG_LIST 165, 214
FL_CLEAR_CHNG 160, 216
FL_CLEAR_SYNC 160, 162
FL_CLEAR_WAIT 160, 217
FL_COUNT_MBX 166, 218
FL_CREATE_RTDB 220
FL_DBFMTT 171, 222
FL_DELETE_RTDB 224
FL_ERRNO 152, 176, 225
 K
A = Application Editor C1 = Core Tasks
C4 = Communications C5 = Power SPC
FL_EXIT_APP 226
FL_FORCED_WRITE 159, 227
FL_FREE_MEM 167, 229

relationship to FL_ALLOC_MEM 207
FL_GET_APP_DIR 169, 230
FL_GET_APP_GLOBALS 231
FL_GET_CMD_LINE 169, 232
FL_GET_COPYRT 176, 233
FL_GET_CTRL_TAG 169, 234
FL_GET_ENV 132, 176, 235
FL_GET_MSG_TAG 236
FL_GET_NPROCS 176, 237
FL_GET_PGM_DIR 169, 238
FL_GET_STAT_TAG 169, 239
FL_GET_TAG_INFO 176, 241
FL_GET_TAG_LIST 165, 243
FL_GET_TICK 177, 245
FL_GET_TITLE 176, 246
FL_GET_VERSION 133, 176, 247
FL_GETVAR 248
FL_GLOBAL_TAG 177, 249
FL_HOLD_SIG 168, 251
FL_ID_TO_NAME 158, 252
FL_INIT 176, 253
FL_INIT_APP 254
FL_LOCK 176, 256

relationship to FL_UNLOCK 311
FL_NAME_TO_ID 157, 257
FL_PATH_ACCESS 56, 258
FL_PATH_ADD 57, 259
FL_PATH_ADD_DIR 54, 57, 260
FL_PATH_ALLOC 57, 261
FL_PATH_CLOSEDIR 57, 263
FL_PATH_CREATE 57, 264
FL_PATH_CWD 57, 265
FL_PATH_DATE 57, 266
Index I-387

ey
C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

I-3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
FL_PATH_FREE 57
FL_PATH_GET_SIZE 267
FL_PATH_GET_TYPE 268
FL_PATH_INFO 57, 269
FL_PATH_MKDIR 57, 270
FL_PATH_NORM 54, 57, 272
FL_PATH_OPENDIR 57, 273
FL_PATH_READDIR 57, 274
FL_PATH_REMOVE 57, 276
FL_PATH_RMDIR 57, 277
FL_PATH_SET_DEVICE 54
FL_PATH_SET_DIR 54, 57, 278
FL_PATH_SET_DRIVE 57, 279
FL_PATH_SET_EXTENSION 57, 280
FL_PATH_SET_FILE 54, 57
FL_PATH_SET_NAME 281
FL_PATH_SET_NODE 54, 57, 282
FL_PATH_SET_PATTERN 54, 57, 283
FL_PATH_SET_VERSION 57
FL_PATH_SIZE 57
FL_PATH_SYS 57, 284
FL_PATH_TIME 57, 286
FL_PATH_TYPE 57
FL_PROC_EXIT 134, 157, 287
FL_PROC_INIT 158
FL_PROC_INIT (obsolete) 288
FL_PROC_INIT_APP 290
FL_QUERY_MBX 166, 292

prior call to FL_COUNT_MBX 219
relationship to FL_READ_MBX 297, 299

FL_READ 159, 294
example 163

FL_READ_APP_MBX 298
FL_READ_MBX 166, 296

relationship to FL_QUERY_MBX 293
FL_RECV_SIG 168, 300
88 FactoryLink ECS / Programmer’s Access Kit

 K
A = Application Editor C1 = Core Tasks

C4 = Communications C5 = Power SPC
relationship to FL_SEND_SIG 302
FL_RESET_APP_MEM 301
FL_SEND_SIG 168, 302
FL_SET_CHNG 160, 304

relationship to FL_CLEAR_CHNG 216
FL_SET_OWNER_MBX 166, 305
FL_SET_SYNC 160, 161
FL_SET_TAG_LIST 164, 306

relationship to FL_GET_TAG_LIST 244
FL_SET_TERM_FLAG 157, 307
FL_SET_WAIT 160, 161, 308
FL_SLEEP 175, 309
FL_TEST_TERM_FLAG 133, 157, 310
FL_UNLOCK 176, 311
FL_WAIT 176, 312
FL_WAKEUP 176, 313
FL_WAKEUP_PROC 176, 315
FL_WRITE 316

 159
comparison to FL_FORCED_WRITE 228
example 163, 164

FL_WRITE_APP_MBX 320
FL_WRITE_MBX 166, 318
FL_XLATE 171, 322
FL_XLATE_GET_TREE 172, 329
FL_XLATE_INIT 171, 324
FL_XLATE_LOAD 172, 326
FL_XLATE_SET_TREE 172, 332
FLAPP 53, 63, 64, 68

/CT 126
ASC 67, 71, 74
CT 67, 72, 75
DRW 67, 72, 75
LOG 67, 72, 75
NET 67, 72, 75
PROCS 67, 72, 75
ey

C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
RCP 67, 72, 75
RPT 67, 72, 75
SPOOL 67, 72, 75

flib library 149
FLIB.H 117, 149, 152, 153, 161, 165
FLINK 53, 63, 64, 68

/AC 79, 109
/CTGEN 80, 118, 124
/KEY 79, 108
/LIB 149
/MSG 324
AC 65, 70, 73
BIN 65, 70, 73
BLANK 65, 70, 73
CTGEN 65, 70, 73
EDI 66, 70, 73
INC 66, 70, 73
INSTALL 66, 70, 73
KEY 66, 70, 73
LIB 66, 71, 73
LOG 66, 71, 74
MSG 66, 71, 74
OPT 66, 71, 74
PAK 66, 71, 74
RPT 74

FLOAT (floating-point) 24
FLREST utility 49, 80
FLRUN 49
FLSAVE utility 49, 80
forced-write call 27, 52, 159, 227
format version number services

description 171
function 171

FRM files 74
functions, representation of 13
 K
A = Application Editor C1 = Core Tasks
C4 = Communications C5 = Power SPC
G
G files 67, 72, 75
GETENV (standard C library fns) 248
GLOBAL.CT 249
GROUPS files 67, 72, 75

H
H files 66, 70, 73
hardware requirements 18
header files

FLIB.H 117, 149, 152, 153, 161, 165
platform-specific 149

HEADER statement (in CTG script) 118, 119
HEADING statement (in AC file) 93, 98
help 46

I
INDEX statement (in AC file) 93, 102
information panels 45, 91
informing FactoryLink about new task 109
initialization

application instance 254
initialize

calling process 132, 158, 288, 290
FactoryLink application 254
FactoryLink kernel 176, 253
multiple threads, same invocation 289,
291

installation
creation of medium 82

inter-process communication (IPC) 165, 167
IPC

inter-process communication (IPC) 165
Index I-389

ey
C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

I-3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
K
KENV structure 169, 176, 235
kernel 23, 27, 148, 159

version number 176, 247
kernel and library services

CT access 156, 169
database access 156, 159
environment access 156, 169
error numbers 153
format version number 156, 171
mailbox 156, 165
memory management 156, 166
message translation 156, 171
miscellaneous 156, 176
path manipulation 156, 171
process management 156
signal 156, 167
sleep 156, 175
tag list registration and notification 156,
164

KEY file
creation 50, 79, 108
description 49, 79, 108
missing 109
sample 108

KEY files 66, 70, 73

L
LIB files 66, 71, 73
library, FactoryLink 22, 50, 149
linking object modules 81
linking the object modules 84, 85
LOCAL files 67, 72, 75
locking the database 162, 176, 256
LONGANA (long analog) 24
90 FactoryLink ECS / Programmer’s Access Kit

 K
A = Application Editor C1 = Core Tasks

C4 = Communications C5 = Power SPC
M
mailbox

definition 165
determining number of messages in 166,
218
monitor 166
query 166, 292
read by application instance 298
read from 166, 296
set owner 305
set owner of 166
validate 166
write to 166, 318
write to (by application instance) 320

mailbox services
comparison to signal services 165
description 165

MAKE_FULL_PATH 171, 334
Manual, PAK User

important terms 14
use 11

MBXMSG structure 165
memory

accessing 167, 205
allocating 167, 207
freeing 167, 229

memory management services
description 166

MESSAGE 24
message translation services

description 171
miscellaneous services

description 176
list of functions 176

Multiple User Environment 22
multi-user considerations 39
ey

C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
N
normalized path name

allocating 261
convert to string 284

normalized path names 55
notational conventions 13

O
OBJECT database table 89, 90, 91
open architecture 17
operator, definition for this manual 14
optional programs, recommended 38

P
PAK

ProgrammersAccessKit' 17
PANEL statement (in AC file) 93, 96
panels 45

control 45, 91
designing 91
information 45, 91
layout 91

Path functions 55, 334
path functions

adding subdirectories 260
build normalized directory path 265
check file access mode 258
concatenating paths 259
create directory 270
create working directory 265
delete directory 277
delete file 276
directory searches 273, 274
ending directory searches 263
file date/time stamp 266
 K
A = Application Editor C1 = Core Tasks
C4 = Communications C5 = Power SPC
file size 267, 268
file time stamp 286
initializing 269
setting directory paths 278
setting drive names (device names) 279
setting file extensions 280
setting file name 281
setting node name 282
setting wildcard search pattern 283

path manipulation services
description 171
function 171

path name
full 171

Path Name Format 54, 55
path name format 63, 64, 69
path names

building 55
normalized 55
with environment variables 54

platform definition 81
pointer return

to copyright message 176
to name of product 246
to product name 176

predefined elements 35
PRG files 67, 72, 75
PRINTF 325
process management services

description 156
sample 158
use 157

process startup
obtaining task ID 291

program directory (/flink) 70
program directory (FLINK) 65, 73
Index I-391

ey
C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

I-3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
program directory retrieval 169, 238
program files 53
programmer, definition for this manual 14
ProgrammersAccessKit

description' 17
softwarerequirements' 18
use' 17

R
read calls

changed value of element 160, 208
changed value of element (sleep if no
change) 160, 212
changed value of element in tag list 165,
210
change-read call 159
change-wait call 159
CT header 170, 196
CT index 170, 197
CT record 170, 198
CT records 170, 199
description 27
message from mailbox 166, 296
message from mailbox by application in-
stance 298
value of element 159, 294

real-time database
description of 23, 50, 160
element 161
locking 162, 176, 256
structure of 24
structure of elements 26
supported data types 24
unlocking 162, 176, 311
wait to read, write, or access 176

RECORD statement (in CTG script) 118, 119
92 FactoryLink ECS / Programmer’s Access Kit

 K
A = Application Editor C1 = Core Tasks

C4 = Communications C5 = Power SPC
RELATE statement (in AC file) 93, 99
relational field 99
requirements

hardware 18
software 18

return conventions 152
RPT files 67, 72, 75
RTDB

creating an instance of 220
deleting an instance of 224

RTMCMD element 156
Run-Time Manager 37, 51, 78, 109, 110, 129,
130, 132, 135

interaction with other tasks 130
run-time requirements 132

S
SELECT statement (in AC file) 93, 101
selection field definition 101
SEQ statement (in AC file) 93, 101
sequence numbers 101
setting up configuration environment 87
shared domain 39
shutting down the system 155
signal services

comparison to mailbox services 167
description 167

signals
definition of 167
preventing/allowing delivery of 168, 251
receiving for calling process 168, 300
sending to target process 168, 302

SKIP statement (in CTG script) 118, 123
sleep services

description 175
function 175
ey

C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
software requirements 18
source modules

compilation example 81
compiling 81, 84, 85
creation 50, 81
creation of 84, 85
example 135
platform definition 81, 84, 85

SPOOL 172, 336
spool file or line 172, 336
SPRINTF 223, 325
status of client processes 155
storage of data types

in kernel area 26
in user area 26

string
creation of target 172
preparation of formatted 171, 222

string, creation of target 342, 344, 345
structures

CTARC 117
CTNDX 117
KENV 169, 235
MBXMSG 165
MSG 165
VAL union 162
VPTR 166

symbolic representations of error numbers 152
sync bits

clear 160
description 161
set 160

sync flags
sync bits 160

System Configuration Table 37, 80, 109
system shutdown 155
 K
A = Application Editor C1 = Core Tasks
C4 = Communications C5 = Power SPC
system-specific path name
convert to normalized 272

T
TABLE statement (CTG script) 118
tag list

read change in value 165, 210
registration 164, 306
retrieval 165, 243
wait for change in value 165, 214

tag list registration/notification services
description 164

tag name
assignment 29

tag names 30
tag number

description 162
retrieval 177

task
defining the name 93
defining the title 93
description 21, 35
design conventions 131
design guidelines 77

TASK statement (in AC file) 92
task-specific database tables

description 89, 90
design 91

termination flag
check status 133, 157, 310
set 157, 307

testing
configuration environment 80, 109, 110
database table conversion process (to CTs)
80, 126

TITLES file 80, 109
Index I-393

ey
C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

I-3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
translation
creation of target string 341
FactoryLink ID to process name 158, 252
get address of current tree 329, 332
key to associated message 171, 322
loading new tree from file 326
message translation initialization 171,
324
of directory and file names into path 55,
334
process name to FactoryLink ID 157, 257

TSPRINTF 172, 341, 342, 344, 345
TXT files 66, 71, 74
TYPE database table 89, 90
TYPE statement (in AC file) 93, 99

U
unlocking the database 162, 176, 311
user domain 39
user, definition for this manual 14
utilities

CDBLIST 111, 126
CTGEN 49, 80, 116, 117, 124, 126
CTLIST 80, 126
FLREST 49, 80
FLSAVE 49, 80

V
VAL union structure 162
VALIDATE statement (in AC file) 93, 96

W
wait bits

clear 160, 217
description 28, 161
94 FactoryLink ECS / Programmer’s Access Kit

 K
A = Application Editor C1 = Core Tasks

C4 = Communications C5 = Power SPC
set 160, 308
wait flags

wait bits 160
wait to read/write/access database 176
wake up

mask of FactoryLink client processes 176,
313
specified FactoryLink process 176, 315

write calls
CT header 170, 201
CT index record 170, 202
CT record 170, 203
CT records 170, 204
description 27
forced-write call 159
message to mailbox 166, 318
message to mailbox (by application in-
stance) 320
value of element 159, 316

writing the tasksprogram' 78, 81

X
XREF database table 89, 90
ey

C2 = Data Logging C3 = Data Reporting
F = Fundamentals R = Reference

	Preface
	About this Manual
	How this Manual is Organized
	How to Use this Manual
	Organization of this Manual
	Notational Conventions in Text
	Representation of Functions

	Important Terms
	Referencing the Operating System Notes

	Introduction to the Programmer's Access Kit (PAK)
	Requirements
	Required Hardware
	Required Software

	Installing the Programmer's Access Kit
	Operating System Notes
	For OS/2 Users
	Required Software (page 18)

	For UNIX Users
	Required Software (page 18)

	For Windows/NT Users
	Required Software (page 18)

	FactoryLink Architecture
	FactoryLink Operation
	Components of FactoryLink
	FactoryLink Kernel
	FactoryLink Real-Time Database
	Structure of the Real-Time Database
	Change-Status Bits
	Element names
	Defining Element Arrays
	Example 1: Defining a one-dimensional element name...
	Example 2: Defining a two-dimensional element name...
	Example 3: Using a one-dimensional array
	Example 4: Using a two-dimensional array
	Example 5: Using a three-dimensional array
	Element Descriptions
	Element name storage
	Predefined elements
	FactoryLink Tasks
	Configuration Manager
	Run-Time Manager
	FactoryLink API (FLIB)
	Recommended Optional Programs

	FactoryLink Domain (Multi-operator) Coding Conside...
	Domains: User and Shared (Per-User Shared Memory R...
	User domain
	Shared Domain
	Application Instances/ Identification
	Application Design Considerations
	Domain Associations

	Application Example
	Single Application/Multiple Users

	Configuring FactoryLink
	How FactoryLink Tasks Transfer Data
	Transfer Methods
	Data Transfer Examples

	How FactoryLink Architecture Affects New Task Deve...

	FactoryLink Triggers
	FactoryLink Files and Directories
	FactoryLink Environment Variables
	Use of Environment Variables in FactoryLink Path N...
	Additional Functionality
	Effects on Existing Tasks
	Path Name Building and Representation

	Path Name Format
	Example 1. Allocating a Normalized Path
	Example 2. Converting To/From a Normalized Path
	Example 3. Modify an Existing Path
	Example 4. Create/Delete Paths
	.Example 5. Search for Matching Files
	Example 6. Get File Information

	FactoryLink Directory Organization

	Operating System Notes
	FactoryLink Environment Variables (page 53)
	Path Name Format (page 56)
	FactoryLink Environment Variables (page 53)
	Use of Environment Variables in FactoryLink Path N...
	Path Name Format (page 56)
	Example 6. Get File Information (page 61)
	FactoryLink Directory Organization (page 62)
	FactoryLink Program Directory (\{FLINK})
	FactoryLink Application Directory (\{FLAPP})
	Element names (page 28)
	FactoryLink Environment Variables (page 53)
	Use of Environment Variables in FactoryLink Path N...
	Example 6. Get File Information (page 61)
	Path Name Format (page 56)
	FactoryLink Directory Organization (page 62)
	FactoryLink Program Directory (/{FLINK})
	FactoryLink Application Directory (/{FLAPP})
	Example 6. Get File Information
	FactoryLink Directory Organization
	FactoryLink Program Directory ({FLINK})
	FactoryLink Application Directory ({FLAPP})

	Constructing a Task
	Task Design Guidelines
	Task Construction Procedure
	Setting up the Configuration Environment
	Design the Database Table(s)
	Create the Attribute Catalog(s).
	Create the KEY Files.
	Test the Configuration Environment.

	Converting the Database Tables to CTs
	Create the CTG Conversion Scripts.
	Test the Conversion Process.

	Writing the Task's Program
	Create the Source Modules
	Compile the Source Modules
	Link the Object Modules
	Debug the program.
	Create the Installation Medium

	Overview

	Operating System Notes
	Create the Source Modules (page 81)
	Compile the Source Modules (page 81)
	Link the Object Modules (page 81)
	Create the Source Modules (page 81)
	Compile the Source Modules (page 81)
	Link the Object Modules (page 81)
	Create the Source Modules (page 81)
	Compile the Source Modules (page 81)
	Link the Object Modules (page 81)

	Setting up the Configuration Environment
	About this Chapter
	Design the Database Table(s)
	TYPE
	OBJECT
	XREF
	Task-Specific
	Task-Specific Example
	Designing the Task-Specific Database Table(s)
	Relationship Between OBJECT and Task-Specific Tabl...

	Create the Attribute Catalog(s)
	AC File Format
	TASK
	CT
	EDIT
	VALIDATE
	PANEL
	FIELD
	HEADING
	RELATE
	TYPE
	DESC
	DOMAIN
	SELECT
	SEQ
	INDEX
	END

	Sample AC File
	Executing an Editor Program from the Configuration...

	Create the KEY Files
	Construction of a Key File
	Sample KEY File

	Test the Configuration Environment
	Informing FactoryLink about the Task
	Adding the Name of the AC File to the TITLES File
	Adding the Task to the System Configuration Table
	Adding the Task to the Run-Time Manager Display

	Testing the Configuration Environment

	Operating System Notes
	AC File Format (page 92)
	AC File Format (page 92)
	AC File Format (page 92)
	Testing the Configuration Environment (page 110)
	AC File Format (page 92)
	EDIT (page 95)
	Testing the Configuration Environment (page 110)

	Converting Database Tables to CTs
	Creating the CTG Conversion Scripts
	Conversion Overview
	Conversion Script Format
	TABLE
	HEADER
	RECORD
	DOMAIN
	FIELD
	SKIP�
	SORT

	Sample Conversion Script
	Creating FactoryLink Configuration Tables (CTs)
	Adding CT Information to the CM System Table

	Testing the Conversion Process.
	Operating System Notes
	Conversion Script Format (page 117)
	Creating FactoryLink Configuration Tables (CTs) (p...
	Adding CT Information to the CM System Table (page...
	Conversion Script Format (page 117)
	Creating FactoryLink Configuration Tables (CTs) (p...
	Adding CT Information to the CM System Table (page...
	Conversion Script Format (page 117)
	Adding CT Information to the CM System Table (page...

	Using the Run-Time Manager
	Interaction With Other Tasks
	Design Conventions
	Run-Time Requirements
	Initialization
	Kernel check (Conditional)
	Error Handling
	Termination Notification
	Orderly Shutdown
	Domain Selection

	Sample Task Program Skeleton

	FactoryLink Kernel and Library
	FactoryLink Kernel
	FactoryLink Library
	Kernel Multi-User Environment (MUE) Extensions
	Increased Task Handling Capability
	Domains: User and Shared (Per-User Shared Memory R...
	User Domain
	Shared Domain
	Application Instances/ Identification
	Calling and Return Conventions

	Conventions
	Return Reference List
	FactoryLink Client Process Status

	System Shutdown
	Kernel and Library Services
	Process Management
	Using the Process Management Functions
	Sample Process Management Function

	Database Access
	Using the Database Access Functions
	FactoryLink Real-Time Database
	VAL Union Structure
	Sample Database Access Functions

	Tag List Registration and Notification
	Mailbox
	Memory Management
	Signals
	Environment Access
	CT Access
	Path Manipulation
	Format Version Number
	Message Translation
	Overview of Message Translation Functions

	Sleep
	Miscellaneous

	Object CT Overview
	Overview of Object CT Services
	Overview of the Object CT API
	Code Scrap: Printing all objects in a particular d...

	Normalized Tag Reference Overview

	FactoryLink API Reference Guide
	ct_close
	Call Format:
	Arguments:
	Returns:

	ct_close_obj
	31220 Prototype:
	31220 Arguments:
	31220 Returns:
	31220 Description:
	31220 See Also:

	ct_create
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_find_index
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_find_obj
	31220 Prototype:
	31220 Arguments:
	31220 Returns:
	31220 Description:
	31220 See Also:

	ct_get_hdrlen
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_get_name
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_get_ncts
	Call Format:
	Arguments:
	Returns:

	ct_get_nrecs
	Call Format:
	Arguments:
	Returns:

	ct_get_reclen
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_get_type
	Call Format:
	Arguments:
	Returns:

	ct_open
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_read_hdr
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_read_index
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_read_rec
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_read_recs
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_update
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_write_hdr
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_write_index
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_write_rec
	Call Format:
	Arguments:
	Returns:
	Remarks:

	ct_write_recs
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_access_mem
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_alloc_mem
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_change_read
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_change_read_tag_list
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_change_wait
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_change_wait_tag_list
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_clear_chng
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_clear_wait
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_count_mbx
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_create_rtdb
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_dbfmtt
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_delete_rtdb
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_errno
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_exit_app
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_forced_write
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_free_mem
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_app_dir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_app_globals
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_cmd_line
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_copyrt
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_ctrl_tag
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_env
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_msg_tag
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_nprocs
	Call Format:
	Arguments:
	Returns:

	fl_get_pgm_dir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_stat_tag
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_tag_info
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_tag_list
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_tick
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_title
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_get_version
	Call Format:
	Arguments:
	Returns:

	fl_getvar
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_global_tag
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_hold_sig
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_id_to_name
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_init
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_init_app
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_lock
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_name_to_id
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_access
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_add
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_add_dir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_alloc
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_closedir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_create
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_cwd
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_date
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_get_size
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_get_type
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_info
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_mkdir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_norm
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_opendir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_readdir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_remove
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_rmdir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_set_dir
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_set_device
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_set_extension
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_set_file
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_set_node
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_set_pattern
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_path_sys
	Call Format:
	Arguments:
	Returns:
	Remarks:
	Example:

	fl_path_time
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_proc_exit
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_proc_init
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_proc_init_app
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_query_mbx
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_read
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_read_mbx
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_read_app_mbx
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_recv_sig
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_reset_app_mem
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_send_sig
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_set_chng
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_set_owner_mbx
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_set_tag_list
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_set_term_flag
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_set_wait
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_sleep
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_test_term_flag
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_unlock
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_wait
	Call Format:
	Arguments:
	Returns:

	fl_wakeup
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_wakeup_proc
	Call Format:
	Arguments:
	Returns:
	Arguments:

	fl_write
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_write_mbx
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_write_app_mbx
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_xlate
	Call Format:
	Arguments:
	Returns:
	Remarks:
	Example 1
	Example 2
	Example 3

	fl_xlate_init
	Call Format:
	Arguments:
	Returns:
	Remarks:

	fl_xlate_load
	Call Format:
	Arguments:
	Returns:
	Remarks:
	Example 1
	Example 2
	Example 3

	fl_xlate_get_tree
	Call Format:
	Returns:
	Remarks:
	Example 1

	fl_xlate_set_progpath
	Call Format:
	Arguments:
	Returns:

	fl_xlate_set_tree
	Call Format:
	Arguments:
	Returns:
	Remarks:
	Example 1

	make_full_path
	Call Format:
	Arguments:
	Returns:
	Remarks:

	spool
	Call Format:
	Arguments:
	Returns:
	Remarks:
	FactoryLink Print Spooler Task
	Examples
	Example 2:
	Example 3:
	Example 4:

	tsprintf
	Operating System Notes
	fl_path_get_type (page 268)
	tsprintf (page 341)
	Call Format:
	Arguments:
	Returns:
	Remarks:
	fl_sleep (page 309)
	fl_path_get_type (page 268)
	tsprintf (page 341)
	Remarks:
	fl_path_get_type (page 268)
	tsprintf (page 341)
	Call Format:
	Arguments:
	Returns:

	Normalized Tag References
	Normalized Tag Reference Overview
	Overview of FLNTAG Services
	Overview of the FLNTAG API
	Code Scrap: Converting a Tag Reference to a TAG
	FLNTAG Return Codes

	Normalized Tag Reference API Guide
	flntag_calc_base
	flntag_calc_tag
	Code Scrap: Converting a FLNTAG to a TAG

	flntag_create
	flntag_destroy
	flntag_find_def
	flntag_find_tag
	flntag_gen_objname
	flntag_gen_ref
	flntag_gen_str
	flntag_get_dimen
	flntag_get_member
	flntag_get_name1
	flntag_get_node
	flntag_parse_brkt4dims
	flntag_parse_comma4dims
	flntag_parse_ref
	flntag_set_dimen
	flntag_set_member
	flntag_set_name
	flntag_set_node

	Object Definitions
	Object CT Overview
	Overview of Object CT Services
	Overview of the Object CT API
	Code Scrap: Printing all objects in a particular d...

	Object CT API Reference Guide
	 ct_close_obj
	ct_find_obj
	ct_nrecs_obj
	ct_open_obj
	ct_read_objs
	flobjrec_get_chgbits
	flobjrec_get_descr
	flobjrec_get_dimen
	flobjrec_get_domain
	flobjrec_get_perwhen
	flobjrec_get_tag
	flobjrec_get_type
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

