

MIAH:
An Application Programming

Interface for HGVbase

By
Iván Rodríguez Rodríguez

 i

ABSTRACT

Genetics is a fascinating field of science which covers a huge range of subjects. One area in
particular has received a huge amount of interest: The area of genetic variation.

The study of polymorphisms, which are common variations in the sequence of DNA among
individuals, has become more popular in the last few years. This area involves studying DNA
sequences to find the relationship between polymorphisms in the genome and human physical
characteristics such as height, weight or more important, the tendency to suffer from a disease
or a method to cure it.

The study of polymorphisms has led to the development of databases to store the information;
one such database is HGVbase. HGVbase is an online database that stores polymorphisms.
Thanks to HGVbase, scientists all over the world can work together, sharing this powerful
tool, to extract and to submit polymorphisms in a quick and easy way.

However, HGVbase has some features that can be upgraded to attain better performance. In
this report we analyse the weak points and suggest some improvements that can be made. The
objective of this report is to give a description of this tool by illustrating what, why and how
things can be upgraded, with the final purpose of upgrading the HGVbase environment.

 ii

FOREWORD

This report is a Master’s Thesis in Computer Science at the department of Numerical Analysis
and Computer Science of KTH, Stockholm. The work was carried out at the Center for
Genomics and Bioinformatics of Karolinska Institutet in the research group directed by
professor Anthony Brookes.

I would like to thank several people, without whom this thesis would not have been possible.
First, to professor Henrik Eriksson who tracked my work, gave me inestimable advice and
calmed me down in the moments I was close to insanity. And next, to David Fredman, who
gave me accurate advice and directed me all through the thesis, to Gil lian Munns, who helped
me with my –terrible– English all along this report, to Daniel Ríos, who supported me with
his experience from his previous Master Thesis, and to all those who patiently read all
versions of this report and gave me adequate and valuable feedback.

Iván Rodríguez.

 iii

ABBREVIATIONS

API Application Programming Interface.
CGB Center for Genomics and Bioinformatics.
CPAN Comprehensive Perl Archive Network.
DBI Database Interface.
DNA Deoxyribonucleic Acid.
GNU A recursive acronym for “GNU is Not Unix” .
HGVbase Human Genome Variation database.
HGVbaseID HGVbase identifier.
HTML Hypertext Markup Language.
I/O Input / Output.
ID Identifier.
KI Karolinska Institutet.
KTH Kungliga Tekniska Högskolan.
MIAH Middleware Integration Application for HGVbase.
MS Microsoft.
ODBC Open Database Connectivity.
OO Object Oriented.
OOD Object Oriented Design.
PERL Practical Extraction and Report Language.
SQL Standard Query Language.
SNP Single Nucleotide Polymorphism.
XML Extensible Markup Language.

 iv

TABLE OF CONTENTS

1 INTRODUCTION... 1

 1.1 A Statement of the Problem .. 1
 1.2 Goals of the Project ... 1
 1.3 Contents of the Thesis ... 2

2 OVERVIEW OF HGVbase.. 3

 2.1 Karolinska Institutet and CGB.. 3
 2.2 HGVbase ... 3

 2.2.1 Purpose.. 3
 2.2.2 Structure .. 4
 2.2.3 Additional Environment.. 4

3 MIAH: DESIGN.. 7

 3.1 Before Start: Introduction to Object-Oriented Design.................... 7
 3.1.1 Classes... 7
 3.1.2 Methods and Attributes... 7
 3.1.3 In Summary... 8

 3.2 General Structure... 8
 3.3 Interface Module ... 10
 3.4 SQL Translator Module .. 10
 3.5 I/O Support Module .. 11
 3.6 History Management Module ... 13

4 MIAH: IMPLEMENTATION... 17

 4.1 Programming Language Used... 17
 4.2 Running Environment ... 17
 4.3 Security Features ... 17
 4.4 Test Suite... 18

5 CONCLUSIONS ... 19

6 REFERENCES.. 21

APPENDIX I. DEFINITIONS

APPENDIX II IMPLEMENTATION EXTENSIONS

 1

1 INTRODUCTION

Genetics is a scientific field that has gained momentum in the last few years. The
Human Genome Project is the largest scientific task ever, and the recent announcement
of the complete human DNA sequence has been given extensive media coverage. It has
also given rise to a common misunderstanding: That the human genome is no longer a
research subject.

On the contrary, one of the main tasks in genetics is still the study of the genome: Now
scientists are looking for differences between individual genomes. Those differences,
called SNPs (Single Nucleotide Polymorphisms), may modify a gene and could be
responsible for the different sets of characteristics that the human species presents all
over the world.

However, the number of SNPs is immense. At present, more than two million SNPs
have been reported, and there are still many more to be found. This is where computer
science enters: Managing such a huge number of registers is a task for modern
computers and database engines like HGVbase.

1.1 A Statement of the Problem
HGVbase is a database that stores SNPs and makes them available to the entire world.
Its users range from a medical scientist performing direct queries for information to a
statistician running programs interacting with the database.

However, as the range of information accommodated in it is growing, modifications and
upgrades need to be done in order to maintain its usefulness. In principle, such
modifications of the database may necessitate modifications of all application programs
using it. This is the main problem addressed by this thesis.

Another difficulty with a database that is constantly being updated by different sources
of varying quality is the need for data record history management, and we will also be
studying that problem.

1.2 Goals of the Project
The primary goal of this thesis is to design a way of hiding the database
implementation, thus minimizing the impact made by database modifications mostly to
the applications that are now running directly against the database.

The secondary goal is to unify the different access methods to the database thus making
the creation of new related functionalities easier.

The final goal is the design of an historical management system to grant optimal
tracking of database records history and good browsing through it by the database user.

 2

1.3 Contents of the Thesis
The objective of this thesis is to show how to design and to implement an application,
which will be called MIAH as an acronym for Middleware Integration Application for
HGVbase, to be placed between database users (computer programs mostly, but also
human users) and the database itself, that is, acting as a gateway. To achieve it, several
functionaliti es will have to be available: Input/output operations, up-to-the-user queries,
general database modifications, and management of upgrades and history of the
database.

As this is an ambitious project, we don’ t claim completeness in our treatment. However,
all of the objectives will be reached at least in a theoretical approach. This means
formulating the problem and describing a method to solve it.

In addition to this report, a user manual for MIAH will be supplied. The manual will
serve as a guide for present and future users, showing the application’s interface, main
features in the code (to allow future programmers to extend and modify the application),
and how to manage the application.

 3

2 OVERVIEW OF HGVbase

Before starting with MIAH, we should give some facts about the environment in which
it fits and in which this thesis has been written.

2.1 Karolinska Institutet and CGB
Karolinska Institutet (KI) is Sweden’s best -known university for medicine. It offers
several training programs as well as numerous further-education and independent
courses. KI is also a research institute which allows students and postgraduate students
to take part in advanced research under the supervision of established researchers.

The Center for Genomics and Bioinformatics (CGB) is a young academic department of
KI (created in 1997) hosting over 100 researchers in the fields of functional, clinical and
structural genomics, as well as genomic technologies and bioinformatics. Through
different ongoing projects, the CGB creates and manages genetic information to
discover connections between genes, proteins and their functions, that will lead to
understanding of human disease and to the development of new drugs and methods to
fight it.

2.2 HGVbase
HGVbase is one of the projects being carried out at CGB by Anthony Brookes’ team,
and MIAH is part of it. Consequently, a brief overview of HGVbase, its behaviour,
structure and purpose may be useful in order to get into MIAH’s context.

2.2.1 Purpose
In a nutshell, HGVbase is a database mounted over MySQL1 that provides an accurate,
highly useful and ultimately fully comprehensive catalogue of normal human gene and
genome variation. Variations in the genome define the genotype2 of each individual; as
phenotype is the physical representation of the genotype, the variations of a genotype
may be responsible for the observable traits of the owner such as hair colour or more
importantly, the presence or absence of a disease. Thus, by summarizing all known
variations in the human genome as a non redundant set of records, the genotype-
phenotype association analyses are facilitated

HGVbase is supported by public (mainly) and private funds, and receives data from
several sources (see figure 2.1 on the next page). Thanks to these periodical
submissions, HGVbase has grown remarkably (from just several ten thousands to more
than two million entries) and today is a major research tool which is used in the study of
the genetic component of human phenotypic variation.

1 MySQL is a database engine. See Appendix II, subsection 2 for a better explanation.
2 See definitions of genetic terms in Appendix I.

 4

Figure 2.1. Different sources for HGVbase.

2.2.2 Structure
HGVbase is a set of non-redundant polymorphism records that accommodate single
base polymorphisms (SNPs), insertion-deletion variants, simple tandem repeat
polymorphisms and generic changes involving alterations not described by the
preceding three alternatives. Identifiers for the database are created by adding a number
(given by a positive counter) to a 3-letter code (that represents the variation). In addition
to the identifier, several other information items are stored on each entry:

¾�Genomic DNA sequences and/or coding sequences.
¾�Gene name and symbol where the variation is located.
¾�An access number to an equivalent register in other relevant databases.
¾�Description and personal information of the submitter.
¾�Polymorphism’s location within the gene.
¾�Information about whether the polymorphism is proven, or suspected and why.
¾�Allele frequency for “populations” , and the number of individuals within a

defined population.

The database has been designed in two levels: Local handling is performed over a MS
Access database that implements an interface connected by ODBC protocol to the
MySQL server; when the data is ready, it is transferred to HGVbase production
database3, which runs in MySQL on Linux4.

2.2.3 Additional Environment
In addition to the small temporal local database (running in MS Access) and the
HGVbase database (running in Linux), there exists a third database. It is called
Denormalized HGVbase, and accommodates a snapshot of HGVbase at a certain

3 See Appendix I for a definition of a production database.
4 Linux is an operating system based on Unix, which is another operating system. Visit www.linux.com

for further information.

 5

moment. Its purpose is to be available in the server as a copy of HGVbase production
database to be downloaded; in that way, two major problems are avoided:

1 No external users have direct access to the HGVbase production database.
2 No extra load is charged to the database server: Exporting a mirror of the

database only involves file transfer, and not any kind of database query.

Denormalized HGVbase is also used as a source for MIAH’s output function. For
further information, go to section 3.5 on page 21.

 6

 7

3 MIAH: DESIGN

3.1 Before Start: Introduction to Object-Oriented Design
Object-Oriented5 design is a method of designing software applications with a different
approach. Instead of the classic structured programming or data-driven design, object-
oriented software is all about objects. An object can be seen as an entity which has
several attributes, and a way of communicating with its environment through sending
and receiving messages. These messages define the interface to the object: Everything
an object can do is represented by its message interface.

Thus, the aim of object-oriented design is to encapsulate private data and internal code
by offering a common, public interface to provide access to it. An example can be seen
in a coffee machine: It has several buttons (the interface) to provide different kinds of
coffee; when you press the “coffee and milk” button, the machine receives your
message, processes and executes it, and finally returns to you a glass and an auditory
warning. So, to ask for coffee you need just a finger (a device to send a message to the
machine) and a proper interface (several buttons with a description of their respective
tasks): Internal details are solved by the machine without your involvement.

That’s how OO works: When interacting with an object, you don’t need to know the
object’s internal structure nor how the object works, just its interface. Consequently,
complexity is managed using abstraction.

3.1.1 Classes
To create a new object you just need to define a class. A class determines everything
about an object, while objects are individual instances of a class. Following our
example, the class would be the abstract image of a coffee machine, defining how it is
constructed internally and all the related messages it may act upon. An object would be
“ the coffee machine in the hall ” , which would instantiate the “coffee machine” class.

3.1.2 Methods and Attributes
A class definition includes attributes and methods of a certain type of object. Attributes
are data related to the object stored within it without direct access. They can be public
(for example, available types of coffee) or private (for example, the amount of coffee
remaining). They are accessed through methods.

Methods, li ke attributes, can be public or private. A method is no more than code that is
executed when somebody calls it; frequently, methods involve the use of attributes (the
method “give_me_coffee_with_milk” would require consulting the attributes
“milk_remaining” and “coffee_remaining”), but not always (a method to emit an
auditory signal wouldn’t use any attributes).

5 Commonly referred as OO, see Abbreviations section.

 8

3.1.3 In Summary
Object-Oriented design may be summarized as follows:

¾�A class is an abstraction for a design problem.
¾�Within the class, its attributes and methods are defined.
¾�Objects instantiate classes.
¾�Objects interact among themselves and with the environment.
¾�Objects can be composed of other objects (as in real life).

This method has several advantages:

¾�The overview increases. Consequently, modeling becomes simpler.
¾�Classes can be reused: This implies faster and cheaper development and

maintenance.
¾�It is a powerful and elegant method of developing software.
¾�Distributing the coding task is easier.

However, drawbacks are also present. Changing from thinking procedurally to OO is a
big learning task, and designing reusable classes is challenging.

Object-Oriented programming offers a new and powerful model for writing software.
Although this chapter has mentioned the most important concepts, topics like
inheritance, or polymorphisms, which are also interesting, are not included because they
are not relevant to this report. If you want to broaden your knowledge of these and other
concepts referring to Object-Oriented design, refer to the References section for several
useful sources.

3.2 General Structure
The goal of MIAH is to present a solution for the problems related in section 1.
Approaching them separately will make clearer and less complex solutions. That is why
four modules have been created within MIAH:

¾�Interface Module
¾�SQL Translator Module
¾�I/O Support Module
¾�History Management Module

Figure 3.1 on the next page illustrates MIAH’s organization graphically.

 9

Figure 3.1. M IAH’s organization .

These modules work together to provide the users with the same functionalities as
before its implantation, but allowing the management team to take a more active
approach to the database, optimising its use and content with minimum impact on users.

Only one module, the Interface module, interacts with users. This module distributes to
the other modules the requests performed by users, and reports back appropriate
feedback not only about the information requested, but also about errors that may have
occurred during the execution.

The I/O Support Module provides import/export options: By supporting XML6-SQL
translation, connectivity and usefulness of HGVbase are upgraded. Using this module
users can request query results in XML format, or insert data in XML format into
HGVbase.

SQL translator module supports the hottest SQL commands (like SELECT or CREATE
TABLE) to allow users to query the database using standard syntax. Therefore, this
module works closely with the History Management module. However, one of the
standard SQL functions, the UPDATE command, must not be executed directly against
the database; it must be managed properly to avoid deletions of data previous to the
update by extracting, handling and properly storing historic data.

6A broader description of XML and SQL is given in Appendix II.

 10

3.3 Interface Module
An interface is a software or hardware system that unrelated entities use to interact. The
purpose of the Interface module is to properly bridge users with functions within
MIAH, no matter which module they are located in. Consequently users will not
distinguish between different modules because they will see MIAH as a unit. The
interface takes care of their request by enrouting it to the correct module within MIAH
and calling it correctly using the arguments supplied. In addition, the Interface module
manages both the results from executed queries and any errors that may occur, and
presents them properly to the user.

The Interface module interacts with all other modules within MIAH. In a theoretical
approach, therefore, every function in every module has a mirror function in the
Interface module to be called from the outside. This means that no user has direct access
to any module but the Interface one. However, in a practical approach this is not
completely true. For optimization reasons, finally the interface module has been merged
with the SQL Translator Module to optimise interactivity between modules.

The design of this module answers one of the problems outlined in section 3.1: The
non-existence of a definite and unique entry point to the database. Now, users can not
see the database any more, only MIAH’s interface. Thus, the database’s structure and
policies have been hidden from outside, reaching one of our objectives.

A description of the interface is available both electronically within the tool and as a
User’s manual.

3.4 SQL Translator Module
MIAH is basically an interface between the database and the set of users. To query the
database, they must use the SQL language, the standard language accepted by the
database engine, MySQL. Consequently, to grant the same access as before to users
thus keeping consistency between the previous access system and MIAH SQL must be
supported.

The SQL Translator module is in charge of executing the SQL queries requested by
users against the database. Using a simple interface, this module takes the parameters
supplied by the user and creates a valid SQL statement to be sent to the database. Once
the database has processed it, the module provides the user with the result sent back
from the database.

The SQL Translator module consists of a set of SQL language functions that are called
from the Interface module. This set comprises almost all SQL functions and certainly all
the most useful ones described in SQL standard. However, the addition of new
functions if required is very easy due to the atomic character of functions within the
module: each one is independent in the set, and can be removed, modified or upgraded
without any side effect on the others. By extension, this also applies to new added
functions.

 11

The set of SQL functions has been enriched with a new, specific function:
select_all_from_HGVbaseID. The task of this function is to extract all the information
available within the database for a given HGVbaseID7. The inclusion of this function
achieves two major goals:

1. Complex query (or join of subqueries) is no longer needed to perform an
extraction of full data related to a HGVbaseID.

2. The structure containing the result of the operation is non-redundant,
therefore saving useful –and sometimes vital– memory space and enhancing
performance.

Furthermore, another advantage of this module is the automatic creation of valid SQL
statements: By using statement templates, a considerable amount of frequent spelli ng
mistakes and syntax errors from the SQL parser, which can be extremely annoying and
time consuming, can be avoided. The SQL Translator module performs several checks
on the parameters supplied looking for inconsistencies and errors, and returns feedback
to the user if applicable.

3.5 I/O Support Module
This module has been included to support import/export operations on the database. In
addition to queries on-line, HGVbase project also offers the possibilit y of downloading
the whole database either as a mirror image of the production HGVbase database or as
an XML translated package.

The XML translated package represents the possibilit y to download the full database in
a format that, in addition to being non-redundant, machine-parsable and fully
documented, can be interpreted directly by a very wide range of web browsers
(including latest versions of Netscape Navigator and Microsoft Internet Explorer). This
enhances HGVbase’s value, and allows it to reach more potential users, now and in the
future.

The export function is the principal feature of this module. It is HGVbaseID–focused
due to design clauses: it returns XML referring to an HGVbaseID supplied as a
parameter. This means that no other queries may be performed producing XML code.
Far from being a disadvantage, this function fulfil s a major need for HGVbase users,
who often want to review all data related to a HGVbaseID.

As can be seen in figure 3.2 (on the next page), a user calls the export function through
the interface supplying a HGVbaseID. This HGVbaseID is used as a key to query the
Denormalized HGVbase8 (storing HGVbaseID–focused data for easier and quicker
access). The result of this query is a set of rows accommodating data related to a single
HGVbaseID (for example, related alleles, frequencies, etc) in a redundant9 way. Figure
3.3 on the next page ill ustrates it in a graphical way.

7 See Appendix I for a definition of HGVbaseID.
8 Definition and purpose of Denormalized HGVbase can be found on section 2.2.3 on page 4.
9 See Appendix I for a definition of redundancy.

 12

Figure 3.2. Overview of how I/O Support Module works.

Before the translation of the result into XML, redundancy on the result may be
eliminated to allow the XML translator to work correctly. Consequently the redundant
set of HGVbaseID–focused data obtained from the query is flattened into a non–
redundant structure (refer to figure 3.3), and translated afterwards into XML. This result
is then sent to the interface, which sends it to the calling user.

Figure 3.3. Result from a SQL query against HGVbase, and two different ways to represent it.

 13

3.6 History Management Module
The History Management Module is in charge of tracking the history of the database:
When a row is modified within HGVbase through a SQL “UPDATE” sentence, the old
value is stored to allow access of it afterwards.

This utility offers two useful properties to the system:

• Protects the database against accidental modifications: Old values can be
restored.

• Stores historical values: thus, information always remains within the database.

Basically, this module represents a call to the SQL “UPDATE” function, which has this
behaviour:

UPDATE TABLE table SET field1=” newValue1” , […], field2=” newValue2” WHERE Key
=”va lue”

Consequently, a call to the “UPDATE” function is considered an atomic access by the
History Management Module. The “UPDATE” statement presents some features that
will be used to design the whole Module:

• Only one table in the same statement can be modified: therefore, any atomic
modification can be done just to one table.

• A “WHERE clause”10 may be used, in order to avoid a massive upgrade of all
the rows in the table. Hence, the field used in the “WHERE clause” to address
the target rows to be modified is also used as a key in the History Management
Module to address the modification.

• An undetermined number of fields can be upgraded at the same time. Supposing
that more than one will be realistic, the fields modified will be stored in a
separate table to reduce redundancy (see below for further information).

Figure 3.4 on the next page illustrates an overview of the module and its internal
organization. Note that the arrow going from the user to the module is unidirectional,
this is, the user can only call the SQL “UPDATE” function, and receive feedback only
about the correctness of it.

This leads us to an important point of this module: It has been designed to store the
modifications in a small database of its own, but not to provide the user with an
interface to browse this database. Such an interface may be part of a possible future
upgrade for this module. In the current design, browsing through the Historical
database must be done using direct SQL statements.

10 WHERE clause is part of the SQL language. Refer to Appendix II for further details.

 14

Figure 3.4. Overview of History Management module.

As can be seen in previous figure (figure 3.4), the module consists of an embedded
database kept parallel to HGVbase in MySQL, and the code needed to manage it
properly and to handle “UPDATE” requests from users. In order to explain in more
detail how data is stored for future use, a quick overview of Historical Database is
presented below.

In a nutshell, the Historical Database is
a very simple database used to store old
values from records present in
HGVbase. It has two tables to keep the
old values and metadata11 about them to
allow them to be addressed and linked
properly. Figure 3.5 shows graphically
the database structure as a Star
Schema12.

The Historical_Table is the main table
in the structure. It stores the ID for
modifications, the table in which the
modification has taken place, and the
date of the modification.

A second table is necessary because a
single update may involve several
fields.

Figure 3.5. Star-schema of the Historical Database.

11 See Appendix I for a definition of metadata.
12 See Appendix I for a definition of a Star Schema.

 15

To insert a set of modifications in a successful call to the “UPDATE” function, several
steps are taken. Let’s take next “UPDATE” statement as an example, to follow the
procedure:

UPDATE TABLE Curators SET CuratorAddress=”Sveavägen 15”, CuratorPhone
=”+46 123 45 67” WHERE CuratorID =”MJ”

Table Curators in HGVbase will be modified as next figure (figure 3.6) shows:

Figure 3.6. Initial and final state of the table “ Curators” dur ing a call to the UPGRADE function.

During the execution of the “UPDATE” statement, and before overwriting information
in HGVbase, History Management Module extracts the fields to be overwritten, and
inserts them properly into the Historical Database. Next figure (figure 3.7) shows how
these old values are stored in the Historical database, continuing with our example:

Figure 3.7. How values
are stored in the
Histor ical database.

 16

Note that the Modification_ID is created by adding a counter as a suffix to the key used
in the “WHERE” clause on the UPDATE statement. Thus, it is easier to track changes:
updates of the same record will have the same root but a different counter suffix (see
figure 3.8).

Figure 3.8. Similarities and differences of several updates on the same HGVbase register.

 17

4 MIAH: IMPLEMENTATION

Although this report describes MIAH mostly on the level of design (which is useful for
giving the essence of the solutions), some brief implementation details are also
important to give a complete description of MIAH.

4.1 Programming Language Used
The language used to implement the required software was Perl, a versatile, easy,
portable and free programming language. These two last reasons were crucial when
making the decision, in addition to the large amount of code libraries13 that are available
through the Internet for it, highly valuable for any Perl developer.

During the implementation of MIAH some of these modules were used. This subsection
lists the modules used and their use.

¾�Module DBI: Is a database interface module for Perl. It defines a set of methods,
variables and conventions that provide a consistent database interface
independent of the actual database being used.

¾�Module XML: Allows the use of XML in Perl applications by providing an

efficient and easy way to parse XML documents.

¾�Module I/O: Is the module used to make the Input/Output in Perl easier and

faster.

4.2 Running Environment
MIAH has been designed to work with “MySQL ”. MySQL is a relational management
system that follows the main SQL syntax standard. However, some syntax rules differ
from other SQL providers (like Oracle or Sybase), and migrating MIAH to these
providers may require modifications of internal code.

4.3 Security Features
MIAH is not designed to serve as a security management tool. Actually, user and
password by default are stored permanently within the structure, which allows direct
connections to the production database14 without explicit authentication and saves time
and effort bypassing redundant re-authentications.

Consequently, security must be managed outside the tool, either by removing implicit
authentication by the tool (probably needed in a distributed version) or limiting
execution privileges on MIAH.

13 These libraries are formed by a set of modules, each one performing a determined task.
14 See Appendix I for a definition of a production database.

 18

4.4 Test Suite
A very important and final step in the development of any software is the test suite. In
it, the author or the team who implemented the software develops a set of tests, in
addition to the code, to prove that everything within the program runs as expected.

MIAH has a set of tests to validate all the modules which compound it. Taking
advantage of MIAH’s modularity, each module has its own set of tests that can be run
independently. This allows tests to be made during the development of each module in
spite of the fact that others may not be implemented yet.

The pattern followed to carry out (and design) the tests goes from inside to outside:

1. Single functions are checked: Internal code, range of possible parameters15,
performance, optimisation and output are carefully considered.

2. Sets of related functions are checked: Interaction between them is carefully

tracked.

3. The entire module is checked: Through its interface, the module’s functionalities

are called to prove, finally, that the module works perfectly.

4. Interaction between modules: Several tests are performed to check how modules

communicate and relate to each other when necessary.

5. MIAH’s functionality: In the final test the full tool is tested from the outside.

During this battery of tests, errors and flaws found are corrected and reported properly
to give a good overview of MIAH’s evolution.

15 With a special attention on dangerous, special or boundary values.

 19

5 CONCLUSION
Genetics is an outstanding field of science that will become one of the most important
fields of the 21st Century due to the relevance and impact of its investigations. New
technologies allow genetic scientists to study in great detail many things about how we
are made: cloning and cures for many diseases are only two examples of break-throughs
achieved in the last years in genetics. These discoveries always lead to new
investigations, which go a step beyond, thus closing the circle of science.

However, we have arrived at a point where human limitations are criti cal in current and
future investigations. To advance in knowledge of what constitutes li fe, scientist have to
rely, not only on specific devices such as powerful microscopes, but also on general
knowledge handling technology.

Computer support is such an example of vital technology used in science. Currently,
computers are used in every project to support scientists in their experiments, not only
for modeling reality, but also to furnish the scientist with an invaluable ‘behind the
scenes’ help. By using computers, scientists can dedicate more time to research, using
computers for mundane repetiti ve tasks.

HGVbase was designed for this purpose: By keeping a comprehensive account of
polymorphisms, genetic scientists all over the world will save precious time during their
research by quickly accessing accurate information on HGVbase.

This project was intended to go a step beyond. MIAH was developed to upgrade
interconnectivity between HGVbase users and HGVbase. By reviewing its weak points,
and providing a good solution for them, HGVbase functionality may be upgraded to
serve its users better.

MIAH, then, provides several upgrades to the HGVbase environment:

¾�Database implementation details have been hidden behind MIAH: Now, users
interact with MIAH’s interface to use the database.

¾�Access to the database has been unified. Now users and applications using the

database go through the same point: MIAH’s interface.

¾�A Historical Management system has been designed. Now, the history of

database records can be successfully tracked.

The main problem during the realization of this Thesis has been the search for the
correct features to implement within MIAH. Sometimes it was very diff icult to clarify
what the user' s needs are, and much time was spent looking for the right and useful
features to be implemented.

MIAH has not been designed to be a static tool. Indeed, some extensions for it are quite
obvious and useful. The first one may be the adaptation of MIAH to work over the
Internet, accepting and serving requests from a web form or web page. Then, a careful
design of a friendly interface to serve as an entrance to the database through MIAH will

 20

turn out as an improvement of HGVbase usefulness. Another extension may be the
upgrade of the History Management module by providing it with a better interface.
Currently it must be used through the common MIAH interface, limiting its
functionality because most of it was designed for computer applications. Thus, a better
interface to access the module will make its use easier and more convenient.

HGVbase is a useful tool that will help genetic scientists to make progress in their
research. By making upgrades such as MIAH, we are not only helping HGVbase to
grow and develop faster, but also helping the community of scientists to obtain a better
understanding of genetics, and consequently, of human nature!

 21

6 REFERENCES

[1] Brookes, Anthony J., Lehväslaiho, Heikki, Siegfried, Marianne, Boehm, Jana G.,
Yuan, Yan P., Sarkar, Chandra M., Bork, Peer & Ortigao, Flavio. 2000. HGBASE:
a database of SNPs and other variations in and around human genes. In
Nucleic Acids Research, 356-360, vol. 28, No. 1. Ed. Oxford University Press.

[2] Cambridge Dictionary Online. [online] in Cambridge University Press.

Available: http://dictionary.cambridge.org/

[3] Castellano, J.G. Tutorial de DBI. [online] in Universidad de Granada. Available:

http://geneura.ugr.es/~javi/dbi/index.htm

[4] Center For Genomics and Bioinformatics. [online] in CGB.com. Available:
http://www.cgb.ki.se

[5] Conway, Damian 1999. Object Oriented Perl. Ed. Manning Publications Co.

[6] Definitions for the most current IT-related words. [online] in Whatis.com.

Available: http://whatis.techtarget.com/

[7] Flynn, Peter. 2002. The XML FAQ. [online] in University College, Cork.

Available: http://www.ucc.ie/xml/#acro

[8] Fredman, D., Siegfried, M., Yuan, Y.P., Bork, P., Lehväslaiho, H, & Brookes, J.

2002. HGBASE: A human sequence variation database emphasizing data
quality and a broad spectrum of data sources. In Nucleic Acids Research, 387-
391, vol. 30, No. 1. Ed. Oxford University Press.

[9] Free On-Line Dictionary of Computing. [online] in The Imperial College

Department of Computing.
Available: http://foldoc.doc.ic.ac.uk/foldoc/index.html

[10] Glossary of Genetic terms. [online] in The National Human Genome Research

Institute.
Available: http://www.nhgri.nih.gov/DIR/VIP/Glossary/pub_glossary.cgi

[11] Gressly, René. 2000. An Introduction to the Java Technology. [online] in

Gressly Systems.
 Available: http://www.gressly.ch/systems/download/Introduction1.4.pdf

[12] Introduction to SQL. [online] in W3Schools.com.

Available : http://www.w3schools.com/sql/sql_intro.asp

[13] Introduction to XML. [online] in W3Schools.

Available: http://www.w3schools.com/xml/xml_whatis.as

 22

[14] Karolinska Institutet. [online] in KI.com.
Available: http://www.ki.se/

[15] Manual de Perl. [online] in Universidad de Oviedo.

Available: http://www.etsimo.uniovi.es/perl/tutor/

[16] Manual de SQL en Español. [online] in Webexperto. In Spanish.

 Available: http://www.webexperto.com/manuales/sql/index.asp?capitulo=1

[17] Montlick, Terry. 1999. What is Object-Or iented Software?. [online] in

Catalog.com.
Available: http://catalog.com/softinfo/objects.html

[18] MySQL: the most popular open source database. [online] in MySQL.com.

Available: http://www.mysql.com/

[19] Rios, Daniel. 2002. RIOSNPS: An automated validation tool for HGVbase.

KTH.

[20] Schwartz, Randal, Olson, Erik, Christiansen, Tom. 1997. Learning Perl on Win32

Systems. Ed. O’Reilly.

[21] SQL Interpreter & Tutor ial. [online] in SQLCourse.com.

Available : http://www.sqlcourse.com/intro.html

[22] The DBI I nterface. [online] in MySQL Official Webpage.

 Available: http://www.mysql.com/doc/P/e/Perl_DBI_Class.html

[23] The language center. [online] in Merriam-Webster online.

 Available: http://www.m-w.com

[24] The monastery gates: Perl Monks. [online] in Perl Monks.com.

 Available: http://www.perlmonks.com

[25] The source for Perl. [online] in Perl.com.

Available: www.perl.com

[26] Torkington, Nathan. 1999. Pragmata II . [online] in Zdnet.

 Available: http://www.zdnet.com/filters/printerfriendly/0,6061,2377498-
84,00.html

[27] XML Basics. [online] in Software AG.

 Available: http://www.softwareag.com/xml/about/starters.htm

[28] Wall, Larry, Christiansen, Tom, Schwartz, Randal L. 1996. Programming Perl.
Ed. O’Reilly.

 1

APPENDIX I. DEFINITIONS

A) Genetic Terms

[1] ALLELE: One of the variant forms of a gene at a particular locus, or location, on a
chromosome. Different alleles produce variation in inherited characteristics such as
hair color or blood type.

[2] DNA: The chemical inside the nucleus of a cell that carries the genetic instructions

for making living organisms.

[3] GENE: The functional and physical unit of heredity passed from parent to

offspring. Genes are pieces of DNA, and most genes contain the information for
making a specific protein.

[4] GENOME: All the DNA contained in an organism or a cell, which includes both

the chromosomes within the nucleus and the DNA in mitochondria.

[5] GENOTYPE: The genetic identity of an individual that does not show as an

outward characteristic.

[6] PHENOTYPE: The observable traits or characteristics of an organism, for

example hair color or the presence or absence of a disease. Phenotypic traits are not
necessarily genetic.

[7] POLYMORPHISM: A common variation in the sequence of DNA among

individuals.

[8] SNP: Acronym for Single Nucleotide Polymorphisms. These are common, but
minute, variations that occur in human DNA at a frequency of one over 1.000
bases. These variations can be used to track inheritance in families.

B) General Terms

[1] API: An application program interface (API) is the specific method used by a

computer operating system or by an application program by which a user can make
requests of the operating system or another application.

[2] BLESS: An action performed in some programming languages for which the

blessed target changes its type, becoming a new instance of the blessing type. For
example, in Perl you can bless an array as a certain object: From then, the array is
no more an array but a instance of the object it has been blessed to.

[3] DATABASE: A collection of data that is organized so that its contents can be

accessed, managed and updated.

 2

[4] HGVbaseID: A unique ID in HGVbase that refers to an unique polymorphism
within HGVbase.

[5] JOIN: A relational database operation which selects rows from two (or more)

tables such that the value in one column of the first table also appears in a certain
column of the second table.

[6] KEY: A value used to identify a record in a database, derived by applying some

fixed functions to the record.

[7] METADATA: Term used in database environments to refer to data that provides

information about or documentation of other data (i.e. size, position, etc) managed
within an application or environment.

[8] ODBC: Is an open standard application programming interface for accessing a

database.

[9] PRODUCTION DATABASE: Database that stores real data. This term is used as

opposed to the term Development Database, which is a database storing dummy
data used to perform tests.

[10] REDUNDANCY: Referring to a state in where something is unnecessary because

it is more than is needed.

[11] STAR SCHEMA: Data model used in databases for which a main table connects
to several secondary tables, thus creating a star-like diagram called Star Schema.

 1

APPENDIX II . IMPLEMENTATION
EXTENSIONS

This section tries to cover several gaps concerning the implementation left out during the
report, through the explanation of some concepts, techniques and languages used to
materialize the design ideas and solutions specified.

II .1 PERL: An Overview
Perl plays a very important role within MIAH: It is the programming language used to
implement and run it. That is why the following subsection gives the reader a brief overview
about Perl and its functionaliti es, to allow the reader to take advantage just in case he/she
would like to take a look on MIAH´s code or run a Perl program him/herself.

II .1.1 Description
Perl, which is an acronym for Practical Extraction and Report Language, is an interpretive1
language developed –and maintained– by Larry Wall especially for processing text. Intended
to be practical rather than beautiful, it combines some of the best features of C –its syntax and
C syntax corresponds quite closely–, sed, awk and sh, so people familiar with these languages
should have littl e diff iculty with it.

Another factor that makes Perl very popular is that it is distributed under the GNU license2,
which means not only that is freely available but has an online code repository3 where many
free modules covering a wide range of issues can be found to be used easily in your programs,
thus saving time and effort.

In addition to these features, Perl is also portable to many different platforms like Unix, DOS
and even Windows with minor modifications.

In a nutshell , Perl is free, easy to understand, well documented, powerful, robust, flexible,
littl e constrained, and is constantly being improved. Those are the reasons why it has been
chosen as one of the standard programming languages in the CGB.

Perl also allows you to implement object-oriented programs, although it was not designed in
such a way. Thanks to some modifications in the original package, Perl provides the user with
two methods to develop software: The classic structured programming4 method or the Object-
Oriented method.

1 It means that programs run through a dataflow tracing mechanism, which prevents many undesired situations.
2 See the Perl Homepage, www.perl.com .
3 This repository is called CPAN, and is located at www.perl.com/CPAN.
4 Also called Imperative programming.

 2

Section 3.1 in this report introduced OO principles. Perl follows them with its own
nomenclature:

¾�Classes are named Packages.
¾�Methods are called subroutines.
¾�Attributes remain attributes.
¾�To create an object, you may bless5 a reference. It will be used to access the object’s

attributes and methods.

Next figure (figure II .1) ill ustrates these principles:

Figure II.1. An example of Object Oriented Perl code.

II.2 SQL: An Overview

HGVbase is mounted over a database management system called MySQL. This system uses a
standard language called SQL as an interface between database users and the database engine.
Consequently, to query HGVbase MIAH must use SQL. That is why a lot of terms referring
to SQL appear during the report, and why the following section gives a brief overview of the
basics of SQL.

5 See Appendix I for a definition of a blessing.

 3

II .2.1 Description
SQL6, which is the acronym for Structured Query Language, is a standard language for
accessing and managing relational database systems. SQL statements are used to perform
tasks such as retrieving data or updating data in a database. This flow of information between
the user and the database using SQL is similar to that ill ustrated in Figure II .2.

Figure II .2. The flow of commands and data between the user and the database.

Some common database engines that use SQL are: Oracle, Sybase, Microsoft SQL Server,
Access and many others. Although they use the SQL standard syntax, unfortunately most of
them also have their own proprietary extensions to the language that may cause confusion to
users jumping between them.

The data contained by the database is stored as records in a set of tables. Tables are identified
by descriptive names (like “Employees” or “Customers”) and are divided into columns and
rows. Rows contain records (li ke one record per customer or product) and columns contain
related data (li ke “first name”, “address” , or “price”). Figure II .3 ill ustrates an example using
a table called “Customers” :

Figure II .3. Table “ Customers” with four columns and three rows containing records of three customers.

SQL gives the user full access to the database. Using SQL statements, all kind of operations
relating the database such as queries or updates can be performed. However, the user must
know the syntax because the interface is not graphical but in command line mode.

6 Pronounced “ess-que-el” .

 4

The most important SQL functions and their syntax are enumerated below7:

1.- SELECT: Extracts data from a database.

2.-UPDATE: Updates data in a database.

3.- DELETE: Deletes data from a database.

4.- INSERT: Inserts new data into the database coming from:

¾�Outside the database:

¾�Inside the database as a result of a nested SELECT statement.

5.- CREATE TABLE: Creates a new database table.

6.- DROP TABLE: Deletes a database table.

7 Note that bold words represent reserved words within SQL syntax.

SELECT fields FROM table WHERE constrains ORDER BY criterium

UPDATE table SET Field1=Value1, Field2=Value2, ... FieldN=ValueN
WHERE constrains

DELETE FROM table WHERE constrains

INSERT INTO table (field1, field2, .., fieldN) VALUES (value1, value2, ..., valueN)

INSERT INTO table SELECT fields FROM SourceTable

CREATE TABLE table (Field1 type (length), Field2 type (length), ...)

DROP TABLE table

 5

II.3 XML: An Overview

XML is the acronym for eXtensible Markup Language. XML is a standard, simple and self-
describing way of encoding and structuring data and text so they can be exchanged across
diverse hardware, operating systems and applications, and used within a wide range of
development tools and utilities.

Similar to HTML8, XML is designed to improve the functionality of the web filling the gaps
in HTML by providing more flexible and adaptable information identification. In fact, it is
called extensible because its format is not fixed like HTML: Actually XML is a
“metalanguage” 9 which lets you design your own customized markup languages for limitless
different types of documents.

For this reason, XML was chosen to be the language used for exports and imports over
HGVbase: It can be used to store or enclose any kind of structured information just what we
need when exporting/importing data in order to pass it between different computing systems.
For example, most web browsers, as well as Perl10 support XML.

After reading this subsection, some strong points may remain in your mind about XML:

¾�It stands for eXtensible Markup Language.
¾�It is a markup language very similar to HTML.
¾�It has been designed to describe data.
¾�Its tags are not predefined. You must define your own tags.
¾�It has been designed to be self-descriptive.

8 Hypertext Markup Language. Indeed, XML and HTML come from the same language.
9 A language for describing other languages.
10 The programming language used for implementing MIAH.

