nlﬂ:: &
== D, o &} %%-
/JVETcE)léﬂw”@\ g@% @4}?—}
é@% KONST Qg;g Zaadf) :
%XCEQ? % l: _1‘.%:3}*?
KTH

MIAH:

An Applicaion Programming
Interface for HGVbase

By
Ivan Rodriguez Rodriguez

D

P

\

.

ABSTRACT

Genetics is a fascinating field of science which covers a huge range of subjects. One area in
particular has received a huge amount of interest: The area of genetic variation.

The study of polymorphisms, which are common variations in the sequence of DNA among
individuals, has become more popular in the last few years. This areainvolves studying DNA
sequences to find the relationship between polymorphisms in the genome and human physical
characteristics such as height, weight or more important, the tendency to suffer from a disease
or amethod to cureit.

The study of polymorphisms has led to the development of databases to store the information;
one such database is HGVbase. HGVbase is an online database that stores polymorphisms.
Thanks to HGVbase, scientists all over the world can work together, sharing this powerful
tool, to extract and to submit polymorphismsin a quick and easy way.

However, HGVbase has some features that can be upgraded to attain better performance. In
this report we analyse the weak points and suggest some improvements that can be made. The
objective of this report is to give a description of this tool by illustrating what, why and how
things can be upgraded, with the final purpose of upgrading the HGV base environment.

FOREWORD

Thisreport isaMaster’'s Thesis in Computer Science & the department of Numericd Analysis
and Computer Science of KTH, Stockham. The work was caried out at the Center for
Genomics and Bioinformatics of Karolinska Institutet in the research group direded by
professor Anthory Brookes.

| would like to thank several people, without whom this thesis would na have been possible.
First, to professor Henrik Eriksson who tracked my work, gave me inestimable alvice and
calmed me down in the moments | was close to insanity. And rext, to David Fredman, who
gave me acarrate alvice and dreded me al through the thesis, to Gillian Munns, who hel ped
me with my —terrible- English al aong this report, to Daniel Rios, who suppated me with
his experience from his previous Master Thesis, and to all those who patiently read all
versions of this report and gave me adequate and valuable feedbadk.

Ivan Rodriguez.

API
CGB
CPAN
DBI
DNA
GNU
HGVbase
HGVbasel D
HTML
/0

ID

Kl
KTH
MIAH
MS
ODBC
o]e)
O0D
PERL
SQL
SNP
XML

ABBREVIATIONS

Application Programming I nterface.
Center for Genomics and Bioinformatics.
Comprehensive Perl Archive Network.
Database Interface.

Deoxyribonucleic Acid.

A recursive acronym for “GNU is Not Unix”.
Human Genome Variation database.
HGVbase identifier.

Hypertext Markup Language.

Input / Output.

[dentifier.

Karolinska Institutet.

Kungdiga Tekniska Hogskolan.

Middeware Integration Applicationfor HGVbase.

Microsoft.

Open Database Connectivity.

Object Oriented.

Object Oriented Design.

Practical Extraction and Report Language.
Standard Query Language.

Single Nucleotide Polymorphism.
Extensible Markup Language.

TABLE OF CONTENTS

1 INTRODUCTION ...ttt st 1
1.1 A Statement of the Problem...........cccoooiiieic e 1
1.2 GoalSOof the PrOJECE.......cccveeieecee e 1
1.3 Contents of the TheSIS........ccoeiiiiiececeeee e 2

2 OVERVIEW OF HGVDASE.......ccceeivceesece sttt 3
2.1 Karolinskalnstitutet and CGB.........cccocevievieviieceereecee e 3
2.2 HGVDESE......coiee e 3

2.2.1 PUIMPOSE.....ciiiieeieesiee sttt 3
2.2.2 SIHIUCLUIE......eee ettt e e et e e e e e sre e e e nnnneeens 4
2.2.3 Additiona Environment...........cccceevieevieesieeciee e csee e 4
N o I N 7
3.1 Before Start: Introduction to Object-Oriented Design.................... 7
I N R O = 5= 7
3.1.2 Methods and AttribULES.........cccveeciee i, 7
3.1.3 1N SUMMAIY ...t 8
3.2 GeNneral SITUCLUIE.........cccueeieeciee et 8
3.3 InterfaCe MOAUIE..........ceeieeeecee e 10
3.4 SQL Trandator MOAUIEccceeeiveeiieeeceee et 10
3.5 1/O SUpport ModUuIe..........cceeeeeeecee e 11
3.6 History Management Module............ccocoeeiieiieiie e, 13

4 MIAH: IMPLEMENTATION. ..o 17
4.1 Programming Language USed.........c.cccceveeveeiieciiecsee e 17
4.2 RUNNiNg ENVIFONMENTcccooiiiiiiecieceesee et s 17
4.3 SECUNtY FEAIUIES.......ccoeecee et 17
R = B U] (= 18

5 CONCLUSIONS ...ttt st 19

6 REFERENCES.........o oottt 21

APPENDIX |. DEFINITIONS

APPENDIX Il IMPLEMENTATION EXTENSIONS

1 INTRODUCTION

Genetics is a scientific field that has gained momentum in the last few years. The
Human Genome Project is the largest scientific task ever, and the recent announcement
of the complete human DNA sequence has been given extensive media coverage. It has
also given rise to a common misunderstanding: That the human genome is no longer a
research subject.

On the contrary, one of the main tasks in genetics is still the study of the genome: Now
scientists are looking for differences between individual genomes. Those differences,
caled SNPs (Single Nucleotide Polymorphisms), may modify a gene and could be
responsible for the different sets of characteristics that the human species presents all
over the world.

However, the number of SNPs is immense. At present, more than two million SNPs
have been reported, and there are still many more to be found. This is where computer
science enters. Managing such a huge number of registers is a task for modern
computers and database engines like HGV base.

1.1 A Statement of the Problem

HGVbase is a database that stores SNPs and makes them available to the entire world.
Its users range from a medical scientist performing direct queries for information to a
statistician running programs interacting with the database.

However, as the range of information accommodated in it is growing, modifications and
upgrades need to be done in order to maintain its usefulness. In principle, such
modifications of the database may necessitate modifications of all application programs
using it. Thisisthe main problem addressed by thisthesis.

Another difficulty with a database that is constantly being updated by different sources
of varying quality is the need for data record history management, and we will also be
studying that problem.

1.2 Goals of the Project

The primary goal of this thesis is to design a way of hiding the database
implementation, thus minimizing the impact made by database modifications mostly to
the applications that are now running directly against the database.

The secondary goal is to unify the different access methods to the database thus making
the creation of new related functionalities easier.

The final goal is the design of an historical management system to grant optimal
tracking of database records history and good browsing through it by the database user.

1.3 Contents of the Thesis

The objedive of this thesis is to show how to design and to implement an application,
which will be cdled MIAH as an aadonym for Middeware Integration Application for
HGVbase, to be placal between database users (computer programs mostly, bu also
human users) and the database itsdlf, that is, ading as a gateway. To achieve it, severa
functionaliti es will have to be available: Inpu/output operations, up-to-the-user queries,
general database modificaions, and management of upgrades and hstory of the
database.

Asthisis an ambitious projed, we don't claim completenessin ou treament. However,
all of the objedives will be reated at least in a theoreticd approach. This means
formulating the problem and describing a methodto solveit.

In addition to this report, a user manual for MIAH will be supgied. The manua will
serve & a guide for present and future users, showing the gplicaion's interface main
fedures in the code (to all ow future programmers to extend and modify the gplication),
and hawv to manage the goplication.

2 OVERVIEW OF HGVbase

Before starting with MIAH, we should give some facts about the environment in which
it fitsand in which this thesis has been written.

2.1 Karolinska Institutet and CGB

Karolinska Ingtitutet (KI) is Sweden’s best-known university for medicine. It offers
several training programs as well as numerous further-education and independent
courses. Kl is aso aresearch institute which allows students and postgraduate students
to take part in advanced research under the supervision of established researchers.

The Center for Genomics and Bioinformatics (CGB) is a young academic department of
Kl (created in 1997) hosting over 100 researchers in the fields of functional, clinical and
structural genomics, as well as genomic technologies and bioinformatics. Through
different ongoing projects, the CGB creates and manages genetic information to
discover connections between genes, proteins and their functions, that will lead to
understanding of human disease and to the development of new drugs and methods to
fight it.

2.2 HGVbase

HGVbase is one of the projects being carried out at CGB by Anthony Brookes' team,
and MIAH is part of it. Consequently, a brief overview of HGVbase, its behaviour,
structure and purpose may be useful in order to get into MIAH's context.

2.2.1 Purpose

In a nutshell, HGVbase is a database mounted over MySQL* that provides an accurate,
highly useful and ultimately fully comprehensive catalogue of normal human gene and
genome variation. Variations in the genome define the genotype® of each individual; as
phenotype is the physical representation of the genotype, the variations of a genotype
may be responsible for the observable traits of the owner such as hair colour or more
importantly, the presence or absence of a disease. Thus, by summarizing al known
variations in the human genome as a non redundant set of records, the genotype-
phenotype association analyses are facilitated

HGVbase is supported by public (mainly) and private funds, and receives data from
several sources (see figure 2.1 on the next page). Thanks to these periodical
submissions, HGV base has grown remarkably (from just several ten thousands to more
than two million entries) and today is a major research tool which is used in the study of
the genetic component of human phenotypic variation.

! MySQL is a database engine. See Appendix |1, subsection 2 for a better explanation.
2 See definitions of genetic termsin Appendix I.

Individual Submissions Published Genetic Literature

Major Public Genome Databases

Figure 2.1. Different sourcesfor HGVbase.

2.2.2 Structure

HGVbase is a set of non-redundant polymorphism records that accommodate single
base polymorphisms (SNPs), insertion-deletion variants, simple tandem repeat
polymorphisms and generic changes involving alterations not described by the
preceding three alternatives. Identifiers for the database are created by adding a number
(given by a positive counter) to a 3-letter code (that represents the variation). In addition
to the identifier, several other information items are stored on each entry:

Genomic DNA sequences and/or coding sequences.

Gene name and symbal where the variationis locaed.

An accessnumber to an equivalent register in ather relevant databases.
Description and personal information o the submitter.

Polymorphism’s locaion within the gene.

Information abou whether the polymorphism is proven, a suspeded and why.
Allele frequency for “popdations’, and the number of individuals within a
defined popuation.

VVVYVYVYVY

The database has been designed in two levels: Locd handing is performed over aMS
Access database that implements an interface onneded by ODBC protocol to the
MySQL server; when the data is realy, it is transferred to HGVbase production
database®, which runsin MySQL on Linux®.

2.2.3 Additiona Environment

In addition to the small temporal locd database (running in MS Accesy and the
HGVbase database (running in Linux), there eists a third database. It is cdled
Denormalized HGVbase, and acommodates a snapshat of HGVbase & a cetan

% SeeAppendix | for a definiti on of a production database.
* Linuxis an operating system based on Unix, which is another operating system. Visit www.linux.com
for further information.

moment. Its purpose is to be available in the server as a copy of HGVbase production
database to be downloaded; in that way, two major problems are avoided:

1 No external users have direct access to the HGV base production database.
2 No extra load is charged to the database server: Exporting a mirror of the
database only involves file transfer, and not any kind of database query.

Denormalized HGVbaseis also used as a source for MIAH’s output function. For
further information, go to section 3.5 on page 21.

3 MIAH: DESGN

3.1 Before Start: Introduction to Objed-Oriented Design

Objed-Oriented® design is a method d designing software gplications with a different
approadh. Instead of the dasdc structured programming or data-driven design, oljed-
oriented software is all abou objeds. An oljed can be seen as an entity which has
several attributes, and a way of communicating with its environment through sending
and receving messages. These messages define the interfaceto the objed: Everything
an oljed can dois represented by its message interface

Thus, the am of objed-oriented design is to encapsulate private data and internal code
by offering a common, pulbdic interfaceto provide accesto it. An example can be seen
in a offee madine: It has ®vera buttons (the interfacg to provide different kinds of
coffee when you pess the “coffee ad milk” button, the madine recaves your
message, processes and exeautes it, and finally returns to you a glass and an auditory
warning. So, to ask for coffeeyou reel just afinger (a deviceto send a message to the
machine) and a proper interface (severa buttons with a description d their respedive
tasks): Internal detail s are solved by the machine withou your involvement.

That's how OO works: When interading with an olged, you dort need to know the
objed’s interna structure nor how the objed works, just its interface Consequently,
complexity is managed using abstradion.

3.1.1 Classs

To crede anew objed you just need to define a ¢ass A class determines everything
abou an objed, while objeds are individual instances of a dass Following our
example, the dasswould be the éstrad image of a mffeemadhine, defining how it is
constructed internally and all the related messages it may ad upon.An oljed would be
“the mffeemadhinein the hall”, which would instantiate the “coffeemadine” class

3.1.2 Methods and Attributes

A classdefinition includes attributes and methods of a cetain type of objed. Attributes
are data related to the objed stored within it withou dired access They can be pubdic
(for example, available types of coffeg or private (for example, the anourt of coffee
remaining). They are accesed through methods.

Methods, like dtributes, can be puldic or private. A methodis no more than code that is
exeauted when somebody cdls it; frequently, methods invave the use of attributes (the
method “give_me_coffee with_milk” would require cnsulting the dtributes
“milk_remaining” and “coffee remaining”’), bu not aways (a method to emit an
auditory signal wouldn't use any attributes).

® Commonly referred as OO, seeAbbreviations edion.

3.1.3 In Summary

Object-Oriented design may be summarized as follows:

A classis an abstraction for adesign problem.

Within the class, its attributes and methods are defined.
Objects instantiate classes.

Objects interact among themselves and with the environment.
Objects can be composed of other objects (asin redl life).

VVVYY

This method has several advantages:

The overview increases. Consequently, modeling becomes simpler.

Classes can be reused: This implies faster and cheaper development and
mai ntenance.

It isapowerful and elegant method of developing software.

Distributing the coding task is easier.

Y V

>
>

However, drawbacks are also present. Changing from thinking procedurally to OO is a
big learning task, and designing reusable classes is challenging.

Object-Oriented programming offers a new and powerful model for writing software.
Although this chapter has mentioned the most important concepts, topics like
inheritance, or polymorphisms, which are also interesting, are not included because they
are not relevant to this report. If you want to broaden your knowledge of these and other
concepts referring to Object-Oriented design, refer to the References section for severa
useful sources.

3.2 Generd Structure

The goa of MIAH is to present a solution for the problems related in section 1.
Approaching them separately will make clearer and less complex solutions. That is why
four modules have been created within MIAH:

» Interface Module

» SQL Trandator Module

» 1/0 Support Module

» History Management Module

Figure 3.1 on the next page illustrates MIAH’s organization graphically.

HGVbase

MIAH

Figure 3.1. MIAH’s organization .

These modules work together to provide the users with the same functionalities as
before its implantation, but allowing the management team to take a more active
approach to the database, optimising its use and content with minimum impact on users.

Only one module, the Interface module, interacts with users. This module distributes to
the other modules the requests performed by users, and reports back appropriate
feedback not only about the information requested, but also about errors that may have
occurred during the execution.

The 1/0 Support Module provides import/export options: By supporting XML°-SQL
trandation, connectivity and usefulness of HGVbase are upgraded. Using this module
users can request query results in XML format, or insert data in XML format into
HGV base.

SQL trandlator module supports the hottest SQL commands (like SELECT or CREATE
TABLE) to adlow users to query the database using standard syntax. Therefore, this
module works closely with the History Management module. However, one of the
standard SQL functions, the UPDATE command, must not be executed directly against
the database; it must be managed properly to avoid deletions of data previous to the
update by extracting, handling and properly storing historic data.

®A broader description of XML and SQL is given in Appendix II.

3.3 Interface Module

An interface is a software or hardware system that unrelated entities use to interact. The
purpose of the Interface module is to properly bridge users with functions within
MIAH, no matter which module they are located in. Consequently users will not
distinguish between different modules because they will see MIAH as a unit. The
interface takes care of their request by enrouting it to the correct module within MIAH
and calling it correctly using the arguments supplied. In addition, the Interface module
manages both the results from executed queries and any errors that may occur, and
presents them properly to the user.

The Interface module interacts with al other modules within MIAH. In a theoretical
approach, therefore, every function in every module has a mirror function in the
Interface module to be called from the outside. This means that no user has direct access
to any module but the Interface one. However, in a practica approach this is not
completely true. For optimization reasons, finally the interface module has been merged
with the SQL Translator Module to optimise interactivity between modul es.

The design of this module answers one of the problems outlined in section 3.1: The
non-existence of a definite and unique entry point to the database. Now, users can not
see the database any more, only MIAH’s interface. Thus, the database’s structure and

policies have been hidden from outside, reaching one of our objectives.

A description of the interface is available both electronically within the tool and as a
User's manual .

3.4 SQL Trandator Module

MIAH is basically an interface between the database and the set of users. To query the
database, they must use the SQL language, the standard language accepted by the
database engine, MySQL. Consequently, to grant the same access as before to users
thus keeping consistency between the previous access system and MIAH SQL must be
supported.

The SQL Translator module is in charge of executing the SQL queries requested by
users against the database. Using a simple interface, this module takes the parameters
supplied by the user and creates a valid SQL statement to be sent to the database. Once
the database has processed it, the module provides the user with the result sent back
from the database.

The SQL Translator module consists of aset of SQL language functions that are called
from the Interface module. This set comprises amost al SQL functions and certainly all
the most useful ones described in SQL standard. However, the addition of new
functions if required is very easy due to the atomic character of functions within the
module: each one is independent in the set, and can be removed, modified or upgraded
without any side effect on the others. By extension, this also applies to new added
functions.

10

The set of SQL functions has been enriched with a new, spedfic function:
select_all_ from_HGVbasel D. The task of thisfunctionisto extrad all the information
avail able within the database for a given HGVbaselD’. The inclusion d this function
adhieves two major goals:

1. Complex query (or join of subqteries) is no longer needed to perform an
extradion d full datarelated to aHGVbaselD.

2. The structure @ntaining the result of the operation is nonredundant,
therefore saving useful —and sometimes vital— memory space ad enhancing
performance

Furthermore, another advantage of this modue is the automatic aedion o valid SQL
statements: By using statement templates, a considerable amourt of frequent spelling
mistakes and syntax errors from the SQL parser, which can be extremely annoying and
time @nsuming, can be avoided. The SQL Translator modue performs svera chedks
on the parameters supdied looking for inconsistencies and errors, and returns feedbacdk
to the user if applicable.

3.5 1/O Suppat Modue

This modue has been included to suppat import/export operations on the database. In
addition to queries on-line, HGVbase projed aso offers the possbility of downloading
the whole database ather as a mirror image of the production HGVbase database or as
an XML translated padage.

The XML translated padkage represents the paosshility to dowvnload the full database in
a format that, in addtion to being nonredundant, madine-parsable and fully
documented, can be interpreted dredly by a very wide range of web browsers
(including latest versions of Netscape Navigator and Microsoft Internet Explorer). This
enhances HGVbase's value, and alows it to reat more patential users, now andin the
future.

The export function is the principal feaure of this modue. It is HGVbasel D—focused
due to design clauses: it returns XML referring to an HGVbaselD supfdied as a
parameter. This means that no aher queries may be performed producing XML code.
Far from being a disadvantage, this function fulfils a major need for HGVbase users,
who dten want to review all datarelated to aHGVbaselD.

As can be seen in figure 3.2 (on the next page), a user cdls the export function through
the interfacesuppying a HGVbaselD. This HGVbaselD is used as a key to query the
Denormalized HGVbase® (storing HGVbaselD—focused data for easier and qucker
accesy. The result of this query is a set of rows acoommodating data related to a single
HGVbaselD (for example, related al eles, frequencies, etc) in a redundant® way. Figure
3.3 onthe next pageill ustratesit in agraphicd way.

" SeeAppendix | for a definition of HGVbasel D.
8 Definition and purpose of Denormalized HGVbase can be found on sedtion 2.2.3 on page 4.
® SeeAppendix | for a definition of redundancy.

11

Denormalized
HGVbase

| _
| I * —— SetofFows
HG VhaselD
Pt »SELECTION
| T
REQUEST - FLATTENING
F
A Set of Rows
e TRANSLATION f—
E Data in — {E
m HEVhaseD E L
— (=
/O SUPPORT MODULE

Figure 3.2. Overview of how /O Support M odule works.

Before the trandation of the result into XML, redundancy on the result may be
eliminated to allow the XML trandlator to work correctly. Consequently the redundant
set of HGVbaselD—focused data obtained from the query is flattened into a non—
redundant structure (refer to figure 3.3), and translated afterwards into XML. This result
is then sent to the interface, which sends it to the calling user.

HGVhaseID | AlleleID | DNAseg

Redundant @ ALDOD | AATAG
structure
SNPOODL)| ALODOZ | AACAG

Same data stored twice!

AATAG
ALOO0L {

Equivalent Here data appears
non-redundant SNPOO01 i PP
S’[I'llct‘ure Al0onz { AACAG © y onee

Figure 3.3. Result from a SQL query against HGVbase, and two different waysto represent it.

12

3.6 History Management Module

The History Management Module is in charge of tracking the history of the database:
When arow is modified within HGVbase through a SQL “UPDATE” sentence, the old
valueis stored to allow access of it afterwards.

This utility offers two useful properties to the system:
» Protects the database against accidental modifications. Old values can be
restored.
» Stores historical values: thus, information always remains within the database.

Basicaly, this module represents a call to the SQL “UPDATE” function, which has this
behaviour:

UPDATE TABLE table SET field1="newValuel”, [...], field2="newValue2” WHERE K ey
="value’

Consequently, a call to the “UPDATE” function is considered an atomic access by the
History Management Module. The “UPDATE”" statement presents some features that
will be used to design the whole Module:

* Only one table in the same statement can be modified: therefore, any atomic
modification can be done just to one table.

« A “WHERE clause”'® may be used, in order to avoid a massive upgrade of all
the rows in the table. Hence, the field used in the “WHERE clause” to address
the target rows to be modified is also used as a key in the History Management
Module to address the modification.

* An undetermined number of fields can be upgraded at the same time. Supposing
that more than one will be redistic, the fields modified will be stored in a
separate table to reduce redundancy (see below for further information).

Figure 3.4 on the next page illustrates an overview of the module and its internal
organization. Note that the arrow going from the user to the module is unidirectional,
thisis, the user can only call the SQL “UPDATE” function, and receive feedback only
about the correctness of it.

This leads us to an important point of this module: It has been designed to store the
modifications in a small database of its own, but not to provide the user with an
interface to browse this database. Such an interface may be part of a possible future
upgrade for this module. In the current design, browsing through the Historical
database must be done using direct SQL statements.

Y \WHERE clauseis part of the SQL language. Refer to Appendix |1 for further details.

13

I

I

p !

T

E

@4 R ——> —

F Historical
CALL TO THE
“UJPD ATE” A Database
FUNCTION

C

E

HISTORY MANAGEMENT MODULE

Figure 3.4. Overview of History M anagement module.

As can be seen in previous figure (figure 3.4), the module consists of an embedded
database kept paralle to HGVbase in MySQL, and the code needed to manage it
properly and to handle “UPDATE” requests from users. In order to explain in more
detail how data is stored for future use, a quick overview of Historical Database is
presented below.

In a nutshell, the Historical Database is

avery simple database used to store o!d Historical Tahle

values from records present in -

HGVbase. It has two tables to keep the Modification_ID _

old values and metadata’ about themto | | Updated Table Main table

allow them to be addressed and linked Date_of Modification

properly. Figure 3.5 shows graphically

the database structure as a Star 1

Schema®.

The Historical_Table is the main table 1.*

in the structure. It stores the ID for \

modifications, the table in which the Recording_Table

modification has taken place, and the Modification_ID

date of the modification. Updated_Field Auziliary table
Updated Value

A second table is necessary because a

single update may involve several

fields.

Figure 3.5. Star-schema of the Historical Database.

! See Appendix | for a definition of metadata.
12 See Appendix | for a definition of a Star Schema.

14

To insert a set of modificaions in a successul cdl to the ‘UPDATE” function, several
steps are taken. Let’s take next “UPDATE” statement as an example, to follow the

procedure:

UPDATE TABLE Curators SET CuratorAddress="Sveavagen 15", CuratorPhore

="+46 123 45 67 WHERE CuratorID ="MJ’

Table Curatorsin HGVbase will be modified as next figure (figure 3.6) shows:

Initial state of

HGVhase's Curators Table

Curators
CuratorID | CuratorName | CuratorAddress | CuratorPhone
I Mark Jones 34 of Camp Street | +44 387 654 32
Ezecution of the UPGRADE statement
Curators
CuratorID} | CuratorName | CuratorAddress | CuratorPhone
AT Mark Jones Sveavagen 15 +46 123 45 67

Final state of

HGVhase's Curators Table

Figure 3.6. Initial and final state of thetable” Curators’ during acall to the UPGRADE function.

During the exeaution d the ‘UPDATE" statement, and kefore overwriting information
in HGVbase, History Management Modue extrads the fields to be overwritten, and
inserts them properly into the Historica Database. Next figure (figure 3.7) shows how
these old values are stored in the Historica database, continuing with our example:

Figure 3.7. How values

are stored

in the

Historical database.

Historical Table

Modification_ID

Updated_Tahle

Date_of Modification

W00 1)

Curators

21/05/2002 12:38

-

Recording Table

Modification_ID

Updated_Field

Ol1d_Value

LLIO01
[

Curatoréddress

34 of Camp Street

CuratorPhone

+44 987 654 32

)

15

Note that the Modification_ID is created by adding a counter as a suffix to the key used
in the “WHERE” dause on the UPDATE statement. Thus, it is easier to track changes:
updates of the same record will have the same root but a different counter suffix (see
figure 3.8).

Modification ID Updated Field Updated Value

Joni1 Curatoraddress 34 of Camp
street

{ MJ001 \ CuratorPhone +44 D37 654 32

’ MI002 ‘ Curator&ddress Sveavagen 15
MJ003 / CuratorDrepartment CGE

\I‘u‘LTEID3/ CuratorFax +46 555 55 55

L Same root { M), different suffiz (001, 0002 and 50 on)

Figure 3.8. Similarities and differences of several updates on the same HGVbaseregister.

16

4 MIAH: IMPLEMENTATION

Although this report describes MIAH mostly on the level of design (which is useful for
giving the essence of the solutions), some brief implementation details are also
important to give a complete description of MIAH.

4.1 Programming Language Used

The language used to implement the required software was Perl, a versdtile, easy,
portable and free programming language. These two last reasons were crucial when
making the decision, in addition to the large amount of code libraries™ that are available
through the Internet for it, highly valuable for any Perl developer.

During the implementation of MIAH some of these modules were used. This subsection
lists the modules used and their use.

» Module DBI: Is a database interface module for Perl. It defines a set of methods,
variables and conventions that provide a consistent database interface
independent of the actual database being used.

» Module XML: Allows the use of XML in Perl applications by providing an
efficient and easy way to parse XML documents.

» Module I/O: Is the module used to make the Input/Output in Perl easier and
faster.

4.2 Running Environment

MIAH has been designed to work with “MySQL ”. MySQL is a relationa management
system that follows the main SQL syntax standard. However, some syntax rules differ
from other SQL providers (like Oracle or Sybase), and migrating MIAH to these
providers may require modifications of internal code.

4.3 Security Features

MIAH is not designed to serve as a security management tool. Actually, user and
password by default are stored permanently within the structure, which alows direct
connections to the production database™ without explicit authentication and saves time
and effort bypassing redundant re-authentications.

Consequently, security must be managed outside the tool, either by removing implicit
authentication by the tool (probably needed in a distributed version) or limiting
execution privileges on MIAH.

3 These libraries are formed by a set of modules, each one performing a determined task.
14 See Appendix | for a definition of a production database.

17

4.4 Test Suite

A very important and final step in the development of any software is the test suite. In
it, the author or the team who implemented the software develops a set of tests, in
addition to the code, to prove that everything within the program runs as expected.

MIAH has a set of tests to validate all the modules which compound it. Taking
advantage of MIAH’s modularity, each module has its own set of tests that can be run
independently. This allows tests to be made during the development of each module in
spite of the fact that others may not be implemented yet.

The pattern followed to carry out (and design) the tests goes from inside to outside:

1. Single functions are checked: Internal code, range of possible parameters™,
performance, optimisation and output are carefully considered.

2. Sets of related functions are checked: Interaction between them is carefully
tracked.

3. The entire module is checked: Through itsinterface, the modul€'s functionalities
are called to prove, finally, that the module works perfectly.

4. Interaction between modules: Severa tests are performed to check how modules
communicate and relate to each other when necessary.

5. MIAH’sfunctionality: In the final test the full tool is tested from the outside.

During this battery of tests, errors and flaws found are corrected and reported properly
to give agood overview of MIAH's evolution.

15 With a special attention on dangerous, special or boundary values.

18

5 CONCLUSION

Genetics is an oustanding field of science that will beaome one of the most important
fields of the 21st Century due to the relevance and impad of its investigations. New
tecdhndogies all ow genetic scientists to study in grea detail many things abou how we
are made: cloning and cures for many diseases are only two examples of bre&-throughs
adiieved in the last yeas in genetics. These discoveries always leal to new
investigations, which go a step beyond,thus closing the drcle of science

However, we have arived at a point where human limitations are aiticd in current and
future investigations. To advancein knavledge of what constitutes life, scientist have to
rely, na only on spedfic devices such as powerful microscopes, bu also on genera
knowledge handling techndogy.

Computer suppat is such an example of vital techndogy used in science Currently,
computers are used in every projed to suppat scientists in their experiments, na only
for modeling redity, bu also to furnish the scientist with an invaluable ‘behind the
scenes’ help. By using computers, scientists can dedicae more time to reseach, using
computers for mundane repetiti ve tasks.

HGVbase was designed for this purpose: By keeguing a cwmprehensive acount of
poymorphisms, genetic scientists all over the world will save predous time during their
reseach by quickly accessng acairate information onHGVbase.

This projea was intended to go a step beyond. MIAH was developed to upgrade
interconredivity between HGVbase users and HGVbase. By reviewing its wed& paints,
and providing a good solution for them, HGVbase functionality may be upgraded to
serve its users better.

MIAH, then, provides sveral upgrades to the HGVbase environment:

» Database implementation details have been hidden behind MIAH: Now, users
interad with MIAH’s interfaceto use the database.

» Accessto the database has been unfied. Now users and applicaions using the
database go through the same point: MIAH’s interface

» A Historicd Management system has been designed. Now, the history of
database records can be successully tradked.

The main problem during the redization d this Thesis has been the seach for the

corred feaures to implement within MIAH. Sometimes it was very difficult to clarify

what the user' s neeals are, and much time was gent looking for the right and uwseful
feduresto beimplemented.

MIAH has not been designed to be astatic tod. Indeed, some extensions for it are quite
obvious and wseful. The first one may be the alaptation d MIAH to work over the
Internet, acceoting and serving requests from a web form or web page. Then, a caeful
design of afriendly interfaceto serve a an entrance to the database through MIAH will

19

turn out as an improvement of HGVbase usefulness. Another extension may be the
upgrade of the History Management module by providing it with a better interface.
Currently it must be used through the common MIAH interface, limiting its
functionality because most of it was designed for computer applications. Thus, a better
interface to access the module will make its use easier and more convenient.

HGVbase is a useful tool that will help genetic scientists to make progress in their
research. By making upgrades such as MIAH, we are not only helping HGVbase to
grow and develop faster, but aso helping the community of scientists to obtain a better
understanding of genetics, and consequently, of human nature!

20

6 REFERENCES

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Brookes, Anthory J., Lehvéaslaiho, Heikki, Siegfried, Marianne, Boehm, Jana G.,
Yuan, Yan P., Sarkar, Chandra M., Bork, Pea & Ortigao, Flavio. 2000 HGBASE:
a database of SNPs and other variations in and around human genes. In
Nucleic Acids Research, 356-360, vd. 28,No. 1.Ed. Oxford University Press

Cambridge Dictionary Online. [onling] in Cambridge University Press.
Avail able: http://dictionary.cambridge.org/

Castellano, J.G. Tutorial de DBI. [onling] in Universidad de Granada. Avail able:
http://geneura.ugr.es/~javi/dbi/i ndex.htm

Center For Genomics and Bioinformatics. [online] in CGB.com. Available:
http://www.cgb.ki.se

Conway, Damian 1999.0bject Oriented Perl. Ed. Manning Publications Co.

Definitions for the most current IT-related words. [online] in Whatis.com.
Avail able: http://whatis.techtarget.com/

Flynn, Peter. 2002. The XML FAQ. [online] in University College, Cork.
Avail able: http://www.ucc.ie/xml/#aao

Fredman, D., Siegfried, M., Yuan, Y.P., Bork, P., Lehvaslaiho, H, & Brookes, J.
2002. HGBASE: A human sequence variation database emphasizing data
quality and a broad spectrum of data sources. In Nucleic Acids Research, 387
391, vd. 30,No. 1.Ed. Oxford University Press

Free On-Line Dictionary of Computing. [online] in The Imperial College
Department of Computing.
Avail able: http://foldoc.doc.ic.acuk/foldoc/index.html

Glossary of Genetic terms. [online] in The National Human Genome Research
Institute.
Avail able: http://www.nhgri.nih.gov/DIR/VIP/Glossary/pub_glossary.cgi

Gresdy, René. 2000.An Introduction to the Java Technology. [online] in
Gressly Systems.
Avail able: http://www.gresdy.ch/systems/download/Introduction1.4.pd

Introduction to SQL. [online] in W3Schools.com.
Available : http://www.w3schods.com/sgl/sgl_intro.asp

Introduction to XML. [online] in W3Schools.
Avail able: http://www.w3schods.com/xml/xml_whatis.as

21

22

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Karolinska Institutet. [online] in KI.com.
Available: http://www.ki.se/

Manual de Perl. [onling] in Universidad de Oviedo.
Available: http://www.etsimo.uniovi.es/perl/tutor/

Manual de SQL en Espafiol. [online] in Webexperto. In Spanish.
Available: http://www.webexperto.com/manual es/sgl/index.asp?capitul o=1

Montlick, Terry. 1999. What is Objed-Oriented Software?. [online] in
Catalog.com.
Available: http://catal og.com/softinfo/objects.html

MySQL: the most popular open source database. [online] in MySQL.com.
Available: http://www.mysgl.com/

Rios, Daniel. 2002. RIOSNPS: An automated validation tod for HGVbase.
KTH.

Schwartz, Randal, Olson, Erik, Christiansen, Tom. 1997. L earning Perl on Win32
Systems. Ed. O'Rellly.

SQL Interpreter & Tutorial. [online] in SQLCourse.com.
Available : http://www.sglcourse.com/intro.html

The DBI | nterface [onling] in MySQL Official Webpage.
Available: http://www.mysgl.com/doc/P/e/Perl_DBI_Class.html

Thelanguage center. [online] in Merriam-Webster online.
Available: http://www.m-w.com

The monastery gates. Perl Monks. [online] in Perl Monks.com.
Available: http://www.perlmonks.com

Thesource for Perl. [online] in Perl.com.
Available: www.perl.com

Torkington, Nathan. 1999. Pragmata Il . [onling] in Zdnet.
Available: http://www.zdnet.com/filters/printerfriendly/0,6061,2377498-
84,00.html

XML Basics. [online] in Software AG.
Available: http://www.softwareag.com/xml/about/starters.htm

Wall, Larry, Christiansen, Tom, Schwartz, Randal L. 1996. Programming Perl.
Ed. O'Rellly.

APPENDIX |. DEFINITIONS

A) Genetic Terms

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

ALLELE: One of the variant forms of agene at a particular locus, or location, on a
chromosome. Different alleles produce variation in inherited characteristics such as
hair color or blood type.

DNA: The chemical inside the nucleus of a cell that carries the genetic instructions
for making living organisms.

GENE: The functiona and physical unit of heredity passed from parent to
offspring. Genes are pieces of DNA, and most genes contain the information for
making a specific protein.

GENOME: All the DNA contained in an organism or a cell, which includes both
the chromosomes within the nucleus and the DNA in mitochondria

GENOTYPE: The genetic identity of an individual that does not show as an
outward characteristic.

PHENOTYPE: The observable traits or characteristics of an organism, for
example hair color or the presence or absence of a disease. Phenotypic traits are not
necessarily genetic.

POLYMORPHISM: A common variation in the sequence of DNA among
individuals.

SNP: Acronym for Single Nucleotide Polymorphisms. These are common, but
minute, variations that occur in human DNA at a frequency of one over 1.000
bases. These variations can be used to track inheritance in families.

B) Genera Terms

[1]

[2]

[3]

API: An application program interface (API) is the specific method used by a
computer operating system or by an application program by which a user can make
requests of the operating system or another application.

BLESS. An action performed in some programming languages for which the
blessed target changes its type, becoming a new instance of the blessing type. For
example, in Perl you can bless an array as a certain object: From then, the array is
no more an array but ainstance of the object it has been blessed to.

DATABASE: A collection of data that is organized so that its contents can be
accessed, managed and updated.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

HGVbaselD: A unique ID in HGVbase that refers to an unique polymorphism
within HGV base.

JOIN: A relational database operation which selects rows from two (or more)
tables such that the value in one column of the first table also appears in a certain
column of the second table.

KEY: A value used to identify a record in a database, derived by applying some
fixed functions to the record.

METADATA: Term used in database environments to refer to data that provides
information about or documentation of other data (i.e. size, position, etc) managed
within an application or environment.

ODBC: Is an open standard application programming interface for accessing a
database.

PRODUCTION DATABASE: Database that stores real data. Thistermis used as
opposed to the term Development Database, which is a database storing dummy
data used to perform tests.

REDUNDANCY:: Referring to a state in where something is unnecessary because
it is more than is needed.

STAR SCHEMA: Data model used in databases for which a main table connects
to several secondary tables, thus creating a star-like diagram called Star Schema.

APPENDIX II. IMPLEMENTATION
EXTENSIONS

This sdion tries to cover several gaps concerning the implementation left out during the
report, through the explanation d some ncepts, tedhniques and languages used to
materiali ze the design ideas and solutions gedfied.

I1.1 PERL: An Overview

Perl plays a very important role within MIAH: It is the programming language used to
implement and run it. That is why the following subsedion gives the reader a brief overview
abou Perl and its functionalities, to allow the reader to take alvantage just in case he/she
would like to take alook onMIAH"s code or run a Perl program him/herself.

II.1.1 Description

Perl, which is an aaonym for Pradicd Extradion and Report Language, is an interpretive'
language developed —and maintained— by Larry Wall espedally for processng text. Intended
to be pradicd rather than beautiful, it combines ssme of the best feaures of C —its g/ntax and
C syntax corresponds quite dosely—, sed, awk and sh, so people familiar with these languages
shoud have littl e difficulty with it.

Another factor that makes Perl very popuar is that it is distributed uncer the GNU license?,
which means nat only that is fredy avail able but has an orline @de repasitory® where many
freemodues covering a wide range of isaues can be foundto be used easily in your programs,
thus saving time and eff ort.

In addition to these fedures, Perl is also partable to many different platforms like Unix, DOS
and even Windows with minor modificaions.

In a nutshell, Perl is freg easy to understand, well documented, powverful, robust, flexible,
little constrained, and is constantly being improved. Those ae the reasons why it has been
chasen as one of the standard programming languages in the CGB.

Perl also allows you to implement objea-oriented programs, athough it was nat designed in
such away. Thanks to some modificationsin the original padcage, Perl provides the user with
two methods to develop software: The dassc structured programming® method a the Objed-
Oriented method.

! 1t means that programs run through a dataflow tracing mechanism, which prevents many undesired situations.
2 See the Perl Homepage, www.perl.com .

% This repository is called CPAN, and is located at www.perl.conVCPAN.

* Also called Imperative programming.

Section 3.1 in this report introduced OO principles. Perl follows them with its own
nomenclature:

Classs are named Packages.

Methods are cdl ed subroutines.

Attributes remain attributes.

To crede a1 oljed, you may bless areference It will be used to accessthe objed’s
attributes and methodk.

YV YV

Next figure (figure I1.1) ill ustrates these principles:

package coffee machine, - ClaSS Name

other classes used

Useful statement to
prevent strange errors.

use paper_glass package;
use repository_package,

use buttons_package;, }

use strict; =

{
my §_cumrent date;
my ¥eset_of buttons =

Sl =L, Set of Attributes. As a
coffed” == 2, . .
).”coffee and mill” =>3 convention, attributes
my $_amount_of_cnfee;’ that start with a ”_”

my $_amount_of mill;
)

sub give me coffee

{

#his 15 a cormnimented line

are considered private.

Set of available methods

farmount_of coffes = $amount_of cofes—1;

-

Figurell.1. An example of Object Oriented Per| code.

11.2 SQL: An Overview

HGVbase is mounted over a database management system called MySQL. This system uses a
standard language called SQL as an interface between database users and the database engine.
Consequently, to query HGVbase MIAH must use SQL. That is why alot of terms referring
to SQL appear during the report, and why the following section gives a brief overview of the
basics of SQL.

® See Appendix | for adefinition of ablessing.

II.2.1 Description

SQL®, which is the aconym for Structured Query Language, is a standard language for
accessing and managing relational database systems. SQL statements are used to perform
tasks such as retrieving data or updating data in a database. This flow of information between
the user and the database using SQL is smilar to that ill ustrated in Figure 11.2.

SQL request
e ——p| Database 3
. — Management |-fm—)- |)otahase
System

Data

Figure Il .2. The flow of commands and data between the user and the database.

Some mmmon chtabase engines that use SQL are: Orade, Sybase, Microsoft SQL Server,
Accessand many others. Although they use the SQL standard syntax, unfortunately most of
them aso have their own proprietary extensions to the language that may cause confusion to
users jumping between them.

The data contained by the database is gored as recrds in a set of tables. Tables are identified
by descriptive names (like “Employees’ or “Customers’) and are divided into columns and
rows. Rows contain recrds (like one record per customer or product) and columns contain
related data (like “first name”, “address’, or “price”). Figure 1.3 ill ustrates an example using
atable cdled “Customers’:

Full Name Address City Account Number
Johatsson, Gudnin Sweavagen, 15 Atockholm 0046 125 4563

Sveaborg, Pia Proffessorslingan, 6 Umed 0046 198 4532

Glick, Warcus Wlain Street, 124 Mew York noot 11 45875

Figure I .3. Table“ Customers’ with four columns and three rows containing recor ds of three austomers.

SQL gives the user full accessto the database. Using SQL statements, all kind o operations
relating the database such as queries or updates can be performed. However, the user must
know the syntax because the interfaceis not graphicd but in command line mode.

® Pronounced “essque-el”.

The most important SQL functions and their syntax are enumerated below’:

1.- SELECT: Extracts data from a database.

SELECT fieddds FROM table WHERE constrains ORDER BY criterium

2.-UPDATE: Updates data in a database.

UPDATE table SET Fidd1=Vauel, Fidd2=Vaue2, ... FieldN=VaueN
WHERE constrains

3.- DELETE: Deletes data from a database.

DELETE FROM table WHERE constrains

4.- INSERT: Inserts new data into the database coming from:

> Outside the database:

INSERT INTO table (fieldl, field2, .., fieldN) VALUES (valuel, value2,

..., vaueN)

> Inside the database as aresult of anested SELECT statement.

INSERT INTO table SELECT fields FROM SourceTable

5.- CREATE TABLE: Creates a new database table.

CREATE TABLE table (Fieldl type (length), Field2 type (length), ...)

6.- DROP TABLE: Deletes a database table.

DROP TABLE table

” Note that bold words represent reserved words within SQL syntax.

1.3 XML: An Overview

XML is the acronym for eXtensible Markup Language. XML is a standard, simple and self-
describing way of encoding and structuring data and text so they can be exchanged across
diverse hardware, operating systems and applications, and used within a wide range of
development tools and utilities.

Similar to HTML®, XML is designed to improve the functionality of the web filling the gaps
in HTML by providing more flexible and adaptable information identification. In fact, it is
called extensible because its format is not fixed like HTML: Actually XML is a
“metalanguage’ ° which lets you design your own customized markup languages for limitless
different types of documents.

For this reason, XML was chosen to be the language used for exports and imports over
HGVbase: It can be used to store or enclose any kind of structured information just what we
need when exporting/importing data in order to pass it between different computing systems.
For example, most web browsers, as well as Perl™® support XML.

After reading this subsection, some strong points may remain in your mind about XML:

It stands for eXtensible Markup Language.

It isamarkup language very similar to HTML.

It has been designed to describe data.

Its tags are not predefined. Y ou must define your own tags.
It has been designed to be self-descriptive.

YVYVVYV

8 Hypertext Markup Language. Indeed, XML and HTML come from the same language.
° A language for describing other languages.
19 The programming language used for implementing MIAH.

