
Technische Universiteitt(i)Eindhoven
Faculty of Electrical Engineering

ICS
Section of Information and Communication Systems

Master's Thesis:

An intelligent weight
controller using Profibus

H.A.J. Kester

id. Dr. 380381

Location
Coach
Supervisor
Period

: Ellips BV, Eindhoven, The Netherlands
: Ir. I.P.C.F.R. Smeets
: Prof. Ir. M.P.I. Stevens
: March 1997 - September 1997 E~

The Faculty of Electrical Engineering of Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses.

SUMMARY

An intelligent weight controller using Profibus
~

ELLIPS

In this document we will discuss the design of a weight controller that is part of a new
fruit grading system. The weight controller must be able to measure fruit that is
passing by in cups with a precision ofone gram. The weight sensor is a standard load
cell that uses the Wheatstone bridge principle. Up to eight lanes of cups must be
processed, with speeds of twenty cups per second per lane. The results of the weight
measurement must be send to a master computer over a Profibus (Process Fieldbus)
connection using the Profibus protocol. Furthermore, the weight controller must have
the ability to update its software via the same Profibus channel.

The weight controller will be composed with the following components:
• a bridge excitation circuit
• a bridge amplifier
• a multiplexed AID-converter
• a Digital Signal Processor
• an 80C32 host-processor
• a Profibus interface
• anFPGA
Two weight methods will be described:
• filtering the bridge signal with a FIR-filter and averaging ten filtered samples
• extracting the weight from the damping ratio and oscillation frequency ofthe

bridge signal

The designed weight controller is suitable for the new fruit grading system, although
it still has to be tested in practice. The "averaging" weight method works on an Agra
machine with a precision of2 grams. Better mechanical behaviour ofthe machine
might improve this precision. The method using damping ratio and oscillation
frequency still has to be tested.

For future versions of the weight controller it is desirable to implement Profibus-DP
and Profibus-DPE to ensure proper operation in other Profibus-DP networks.
Furthermore, the two weight methods must be tested on data from a different machine
than one from Agra.

2

An intelligent weight controller using Profibus

TABLE OF CONTENTS

E~
1. INTRODUCTION 5

2. FRUIT GRADING SYSTEM OVERVIEW 6

3. PROFIBUS 8

3.1 THEPROFIBUSSTANDARD 8
3.2 PHYSICAL LAYER (PHY) 10
3.3 DATALINKLAYER(FDL) 12

3.3.1 Token Procedures 12
3.3.2 Frames 13
3.3.3 Timing Specifications 16

3.4 PROFIBUS-DP 19

4. WEIGHT CONTROLLER 20

4.1 DESIRED SPECIFICATIONS 20
4.2 CONTROLLER CONCEPT 21

5. DATA ACQUISITION 23

5.1 SENSOR 23
5.2 SIGNAL CONDITIONING 23
5.3 AID-CONVERSION 25
5.4 BRIDGE EXCITATION 26

6. SIGNAL PROCESSING 27

6.1 DIGITAL SIGNAL PROCESSOR 27
6.1.1 Texas Instruments versus Ana/og Devices 27
6.1.2 ADSP-2171 Architecture Overview 29
6.1.3 Memory Maps 31

6.2 SOFTWARE ARCHITECTURE 32
6.2.1 Modu/ar Approach 32
6.2.2 Basic Run/eve/s 33
6.2.3 Measurement Jobs 35

6.3 DATA TRANSFER FROM AID-CONvERTER 36
6.4 SIGNAL ANALySIS 37
6.5 FIR FILTER ALGORITHM 41

6.5.1 FIR Filter Design 41
6.5.2 FIR Filter Software Imp/ementation 44

7. HOST INTERFACE PORT 47

7.1 OVERVIEW 47
7.2 HIP FUNCTIONAL DESCRIPTION 47
7.3 HIP OPERATION 49

7.3.1 Polled Operation 50
7.3.2 Interrupt-Driven Operation 50
7.3.3 HDR Overwrite Mode 51
7.3.4 Software Reset 51

7.4 HIP INTERRUPTS 51
7.5 BOOTING THROUGH THE HIP 53
7.6 USED HIP IMPLEMENTATION 54

8. PROFIBUS INTERFACE 58

8.1 PROFIBUS ASIC 58
8.2 SPC4 SOFTWARE 58

3

An intelligent weight controller using Profibus
M:2E~··. LLIPS

9. HOST OPERATION 60

9.1 HOST PROCESSOR 60
9.2 MEMORY INTERFACE 61
9.3 GLUE LOGIC 62
9.4 80C32 SOFTWARE 63

10. CONCLUSIONS & RECOMMENDATIONS 65

10.1 CONCLUSIONS 65
10.2 RECOMMENDATIONS 65

11. REFERENCES 66

12. ACKNOWLEDGEMENT 67

APPENDIX A: NOMENCLATURE 68

APPENDIX B: PROFIBUS PERFORMANCE 70

APPENDIX C: ADS7809 TIMING CONDITIONS 72

APPENDIX D: FIR FILTER SOURCE 74

APPENDIX E: VHDL SOURCE 75

APPENDIX F: HIP COMMAND OVERVIEW 81

APPENDIX G: PROFIBUS COMMAND OVERVIEW 84

4

An intelligent weight controller using Profibus

1. INTRODUCTION

E~
The last step of the stroll through the Eindhoven University of Technology is not the
easiest one. Each faculty obliges its students to perform graduation work for several
months and to write a report about it. At the faculty of Electrical Engineering this
period contains either six or nine months, depending on whether or not a student
follows the five-year course. A student at this faculty can choose one out of five
sections at which he can graduate.

The section Information and Communication Systems (ICS) focuses on the total
design and implementation trajectory ofboth the hardware and the software of digital
systems. It contains two research chairs: Computer and Communication Systems and
Design Technology. This document describes graduation work at the Computer and
Communication Systems group. Research in this area of digital information systems
covers information systems and computing systems, digital telecommunication and
datacommunication systems (switches and networks), digital processors, operating
systems and integrated circuits. Each student of this group can choose between
graduating at the university itself or graduating in a company. Graduating in a
company has the advantage of gathering work experience and is therefore quite
popular among students. The graduation labour described in this paper was done at a
company called Ellips.

Ellips is specialised in designing electronic control systems for vision applications,
including all relevant software. Images from industrial and natural products are
processed in real time. Examples of these products are raw materials, fruit and
vegetables. Dimensions, contour characteristics, position, colour and quality are
calculated in order to classify these products in terms of control parameters for the
production process. The electronic computer systems are specially designed for easy
integration with existing fruit and vegetable sizing mechanics.

In the next chapters we will discuss the design of an intelligent weight controller that
will be part of the next generation of fruit grading systems.

5

An intelligent weight controller using Profibus
~

ELLIPs

2. FRUIT GRADING SYSTEM OVERVIEW

The concept of the new fruit grading system is outlined in figure 2.1. The general idea
is that maximum flexibility must be offered to any customer using this system.
Therefore, the system's architecture includes communication to the outside world.
This allows Ellips to remotely diagnose and service the system, even when the actual
factory is somewhere abroad. For example: the software of any device attached to the
system can be updated from anywhere in the world by using the modem connection.

The grading system uses sensors for different purposes all attached to one of two
Profibuses. These are special fieldbuses that will be described in chapter 3. One bus is
used for peripherals that require fast data-exchanges in short messages, approximately
100 messages per second, and the other one is intended for devices that will produce

Windows Windows

Sensor/Encoder

Modem ~~--ilJj_!IIl

Vl Vl

CoiorO :::) :::)

.0 .0 I/O
l+= l+=
0 0
~ ~

a.- D...

Colorl Weight« co
V') V')
:::J :::Jco co

Figure 2.1: Fruit Grading Concept

6

An intelligent weight controller using Profibus
~

ELLIFf)
data at a slower rate, for example 10 messages per second, but with more information.
All devices are controlled by only one master computer.

This master computer is a Windows-based machine with the Profibus hardware in it.
The master recognises each new device and configures it according to the user's
specifications. During operation the master receives information of all devices
attached to the buses to completely control the grading process. In the near future the
following devices are possible [1]:
• weight controller - measures the weight of the cup and its contents
• diameter controller - measures the diameter of the fruit by means of a camera
• colour detector - detects the colour of the fruit inside the cup
• encoder - detects the position of the cups
• I/O-card - switches relays on and off to let the cups drop their contents

Since the diameter controller and the colour detector require only one data transfer for
every cup but must be able to send complete images to the master computer, these
devices are attached to the slower Profibus. The encoder is able to generate more than
one message for each cup and thus must be connected to the fast bus. The I/O-card is
used for dropping the contents of the cup, but is suited for any switching purpose.
Therefore, switching at higher rates is also provided and the I/O-cards are also
connected to the fast bus. The weight controller might be attached to both buses since
it requires only one message per cup but does not need to send large messages. For the
moment we will leave it attached to the fast Profibus connection.

Cups are passing by in lanes, with up to eight lanes for each machine. A unique
number, the envelope number, will indicate every row of cups. Once a row of cups,
maximal eight, passes a device, the master computer will indicate that device to start
its measurement and will tell the device the envelope number of that row of cups. All
devices will send their measurement results (such as weight, diameter or colour) to the
master computer, accompanied by the envelope number. The master computer stores
all the information of the cups of that envelope, until it has all the information needed
to send the contents of a cup to a certain exit. This involves a simple and
straightforward manner to sort the fruit.

Advantages of this new Profibus architecture are:
~ only two twisted-pair cables necessary instead of two wires for every device, often

resulting in many kilometres of wire
~ higher speeds possible since the Profibus standard supports bit rates of 12 Mbit/s,

which yields a machine speed of 20 cups per second
~ easy adding and removing of devices to the system
~ easy update of software of each device via the modem-connection and Profibus
~ addition of any third-party device designed for Profibus

7

An intelligent weight controller using Profibus

3. PROFIBUS

3.1 The Profibus Standard

~
ELLIPS

-+-Profibus
___ INTERBUS-S

CAN

--r WortdFIP

Serial fieldbuses are used today primarily as the communication system for exchange
of information between automation systems and distributed field devices. Thousands
of successful applications have provided impressive proof that use of fieldbus
technology can save up to 40% in costs for cabling, commissioning and maintenance
as opposed to conventional technology. Only two wires are used to transmit all
relevant information (i.e., input and output data, parameters, diagnostic data, programs
and operating power for field devices). In the past, incompatible vendor-specific
fieldbuses were frequently used. Virtually all systems in design today are open
standard systems. The user is no longer tied to individual vendors and is able to select
the best and most economical product from a wide variety of products.

Some commonly used fieldbuses are CAN, WorldFIP, INTERBUS-S, P-NET and
Profibus. Of these buses, only three are now standardised in Europe by the European
Fieldbus Norm EN 50170: P-NET, WorldFIP and Profibus. This means that they will
be accepted in all European countries. Several vendors have entered the fieldbus
market and developed their own products for these standards. The Profibus standard is
the most rapidly growing one, according to figure 3.1 (Source: CONSULTIC-Study).

Growth in Market Shares of Fieldbus
Systems in Europe (Enduser + OEM)

MS (0/0)

45
40
35

30
25
20.------ •
15

10
5,-·----- ----- - -------- y

o~f_---------_II
1994 1996

Figure 3.1: Market Shares In Europe

The fastest fieldbus is Profibus as well, which can operate at a maximum speed of 12
Mbit/s. Both the speed and the growing popularity ofProfibus have been reasons for
Ellips to choose this fieldbus for their new fruit grading system, which was described
in chapter 2.

Profibus stands for Process Fieldbus and is developed in Germany. The first parts of
the standards where published in 1991 in DIN 19245 parts 1 and 2, followed by part 3
in 1994. As most communication protocols do, Profibus uses the Open Systems

8

An intelligent weight controller using Profibus E~LLIPS

Interconnection (OSI) model as proposed by the International Organisation for
Standardisation (ISO). This model consists of seven layers, as shown in figure 3.2.

3

4

5

Ii

7

Application
Presentation

Session

Transport
Network

Datalink

Physical

I

Application

FDL
PHY

I

3

4

Ii

7

a
Figure 3.2: a) OSI-ISO 7-Layer Model

b
b) Profibus OSI Model

Layer two is called the Fieldbus Data Link layer (FDL) in the Profibus version. In
order to achieve high efficiency and throughput as well as low hardware and software
costs, the layers 3 to 6 (Network, Transport, Session and Presentation) are left empty.
A few relevant functions of these layers are realised in layer 2 or in layer 7 [2].

Three types of Profibus implementations are standardised:
• Profibus-DP Decentralised Periphery, for high-speed data communication

required in factory automation and building automation;
• Profibus-FMS Fieldbus Message Specification, for object-oriented, general

purpose data communication;
• Profibus-PA Process Automation, meets the requirement of the process

industry and offers applications for intrinsic safety and non
intrinsic safety areas, as well as powering the field device over the
bus.

The high speed of 12 Mbit/s ofProfibus-DP is achieved by removing layer 7 in
addition to the removal of layer 3 to 6. Thus, the DP version can be considered a
standardised application of layer 2. Profibus FMS specifies several services in layer 7
and uses a maximum speed of 1.5 Mbit/s. Both Profibus-DP and Profibus-FMS uses
Non-Return-To-Zero (NRZ) coding. Profibus-PA can achieve data rates of 31.25
kbit/s and uses Manchester coded signals, which implies a different layer 1
implementation, and a slightly different layer 2 to establish the safety requirements.

The Profibus network contains master stations and slave stations. A master is able to
control the bus. This means that it may transfer messages without remote request
when it has the right of access. Several masters can be connected to the same bus, and
the one that has the right of access is the one that is holding the 'token'. The token
circulates in a logical ring formed by the masters, see figure 3.3. If the system
contains only one master, no token passing is necessary. This is a pure single master,
multiple slaves system. In contrast to this a slave is only able to acknowledge a
received message or to transfer data after a remote request. The minimum
configuration comprises one master and one slave, or two masters. The maximum

9

An intelligent weight controller using Profibus E~
amount of devices that can be connected to the bus is 126. A device can be a master, a
slave or a repeater.

Logical Token Ring

.........:; Master 1 _._._...... :; Master 2 --------) Master 3__.._.,

I I I
I Profibus I

I I I

Slave 1 Slave 2 Slave 3 ••• Slave N

Figure 3.3: Profibus Concept

To support manufacturers making Profibus devices, the Profibus User Organisation
was founded. This organisation has offices in numerous European countries, the
United States, Australia, South Africa and Japan. The main goals are advancement of
the technology, know-how transfer and protection of investments by influencing the
standardisation process.

In order to assure that the Profibus network is reliable, even if the attached devices
come from different manufacturers, the Profibus User Organisation has established a
certification procedure for Profibus devices. Only devices that are accompanied by
such a certificate may carry the Profibus trademark. The certification test is a
standardised test procedure performed by experts, working in an accredited test lab.
Experiences so far have shown that only uncertified products have caused system
faults.

3.2 Physical Layer (PHY)

The first layer of the OSI model, the physical layer, describes how the data is send
over the bus. This includes signal transmission, line requirements, data rates and the
maximum number of stations. The Profibus standard uses a balanced line transmission
corresponding to the US standard EIA RS-485.

Two line types are defined for Profibus: type A and type B. Type A is the modem
version of the two, type B is the one described in the first DIN standards. New
Profibus designs should be based on the modem line type A if possible. Both line
types are shielded twisted pair cables. Fibre optics can be utilised as well, but this is
beyond the scope of this text. The parameters for both line types are listed in table 3.1.
The cable of type A is available from a number of manufacturers, for instance Robert
Bosch GmbH or Belden Wire + Cable.

10

An intelligent weight controller using Profibus
~

ELLIPS

Table 3.1: Line Parameters
Parameter LineA Line B (Avoid ifvossible)

Impedance (0) 135 to 165 100 to 130
Capacitance (pF/m) <30 < 60
Loop resistance (nJkrn) < 110 -
Core diameter (rnrn) >0.64 >0.53
Core cross section (rnrn2

) >0.34 >0.22

The maximum line length depends on the data rate and whether or not repeaters are
used. Without a repeater, the line may be as long as 1200 meters if the data rate does
not exceed 93.75 kbit/s. By using three repeaters the line length can be increased to
4800 meters, more than sufficient for most applications. Table 3.2 lists some
combinations of line lengths and data rates.

Table 3.2: Line Len~th versus Transmission Rate Without Repeaters
Transmission 9.6 19.2 93.75 187.5 500 1500 12000
rate in kbit/s
Type A 1200 m 1200 m 1200m 1000 m 400 m 200 m 100 m
Tvve B 1200 m 1200 m 1200 m 600 m 200 m 70 m -

The line should be terminated properly at both sides. For a type A line, three resistors
should be used as in figure 3.4. Note that the data lines A and B have nothing to do
with the cable types A and B as described above!

Signals on the connector
Pin number in brackets

VP (6)

Data line - B (3)

Data line - A (8)

GND (5)

Terminating resistance
of the bus

3900

2200

3900

Figure 3.4: Line Termination

The plug connector is specified to be a 9-pin sub D connector. Four pins ofthis
connector carry signals that are mandatory and must be supported by all devices.
These signals are the same four as shown in figure 3.4. The other five signals are
optional. All pin assignments are listed in table 3.3. The mandatory signals are printed
in bold type.

11

An intelligent weight controller using Profibus

Table 3.3: Pin Assil!nments Of The Bus Connector
Pin Si~nal Desi~nation

1 Shield Shield / Protective Ground
2 M24 Ground of the 24 V output voltage
3 RxDITxD-P Receive data / transmission data

(Data Line - B) positive
4 CNTR-P Control signal for repeaters (direction

control)
5 DGND Data transmission potential

(l!round to 5 V)

6 VP Supply voltage of the terminating
resistance (5 V)

7 P24 Output voltage 24 V
8 RxDITxD-N Receive data / transmission data

(Data Line - A) nel!ative
9 CNTR-N Control signal for repeaters (direction

control)

~
ELLIPs

The user can provide 24 volts on pins 7 and 2 for connection of external operator
control and maintenance devices that do not have their own power supply. The current
carrying capability of the 24-volt connection must be at least 100 rnA.

The line shield should be led to the protective ground of the device to prevent EMC
interference from penetrating the device. This ground is usually the conductive
housing of the device. Pins 4 and 9 are used for repeaters to indicate the direction of
the signals.

3.3 Data Link Layer (FDL)

3.3.1 Token Procedures

As mentioned before and illustrated in figure 3.3, the masters in the Profibus network
form a logical token ring. Only the master that holds the token is allowed to initiate a
transmission. The token is passed from master to master in ascending numerical order
of station addresses. The master with the highest address passes the token to the
master with the lowest address. Each master knows its predecessor or Previous Station
(PS), from which it receives the token. Furthermore each station knows its successor
or Next Station (NS) to which the token is transmitted, as well as its own address or
This Station (TS). Each master possesses a list of all masters in the system, the List of
Active Stations (LAS). The LAS is generated after power on and updated or corrected,
if necessary, later upon receipt of a token frame. If a master receives a token frame
addressed to itself from the station that is marked in its LAS as Previous Station, it
assumes that the token is passed to him. The station now owns the token and may start
transmissions. If the token transmitter is not the registered PS, the addressee will
assume an error and won't accept the token. Only after a second identical token frame
is received, it will assume that the logical token ring is changed, update its LAS, grab
hold of the token and start transmitting.

12

An intelligent weight controller using Profibus
~.

ELLIFf)
Once the master has finished its transmissions, it will pass the token to its successor,
the NS. If the NS does not accept the token within a predefined time, the Slot Time,
two retries will be attempted. If after the second retry the NS has still not responded,
the active master station will assume the NS is no longer in the logical token ring and
the token will be transmitted to the next station in the LAS. This procedure will
continue until a master station accepts the token, or until there are no other masters
left. In the latter case, the transmitter keeps the token or sends it to itself. If it finds an
NS again in a later station registration, it tries again to pass the token.

Slaves are associated to one specific master and their addresses can be in the range
between their master's address (TS) and the address of the NS. This address range is
called the GAP and all the addresses in the GAP are represented in the GAP List
(GAPL), except the address range between the Highest Station Address (HAS) and
127, which does not belong to the GAP. Another list, the Poll List, determines the
order in which the slaves are polled. Once the master has received the token, it will
start to poll the slave at the bottom of the Poll List. All slaves will be serviced in the
order they appear in the Poll List.

Initialisation of the entire Profibus network after power on takes place if a master
detects no bus activity within a certain time-out period. It shall claim the token, take it
and start initialising. By transmitting two token frames addressed to itself, it informs
any other master stations that it is now the only station in the logical token ring. Then
it transmits a "Request FDL status" frame to each station in an incrementing address
sequence, in order to register other stations. Stations responding with the message
"slave station" or "master station not ready" are stored in the GAPL. The first master
station that answers with "ready to enter logical token ring" will be registered as NS
in the LAS and thus closes the GAP range of the master that holds the token. The
token is passed to the master that was just found to allow that master to perform the
same initialisation procedure.

3.3.2 Frames

Each Profibus frame consists of a number of frame characters called UART
characters. The UART character (UC) is a start-stop character for asynchronous
transmission, which is structured as in figure 3.5.

Start bit

Figure 3.5: UART Composition

Stop bit

Parity bit (even)

Five different frames are defined, each serving its own purpose.

• Frames with variable data field length

13

An intelligent weight controller using Profibus E~
DATA UNIT DATA UNIT contains 1..246 octets

• Frames with fixed data field length

~I DATA_UNIT~

• Token frame

[SD4 1 DA I SA I

• Short acknowledgement frame

~

The abbreviations of the DARTs are listed in table 3.4.

Table 3.4: UART Abbreviations
Value Description

SDI IOH Start Delimiter 1
SD2 68H Start Delimiter 2
SD3 A2H Start Delimiter 3
SD4 DCH Start Delimiter 4
SC E5H Single Character
ED 16H End Delimiter
DA - Destination Address
SA - Source Address
FC - Frame Control

FCS - Frame Check Sequence
LE 4..249 Octet Length
LEr 4..249 Octet Length repeated

DATA UNIT contains 8 octets

Station Address, 0 to 127

Extension bit (EXT)

The LE and LEr octets contain the number of octets in the variable data unit field plus
the three previous octets (DA, SA, and FC). The FCS octet is used to check whether or
not transmission was erroneous.

The address octets DA and SA in the frame header are composed as in figure 3.6.

~
Figure 3.6: Address Octet

Address 127 is reserved as global address to broadcast messages to all stations.
Furthermore, address 126 is reserved in some applications for new stations entering
the Profibus network. The extension bit is used to indicate that an address extension
follows immediately after the Fe octet in the first octet of the data unit. Both the
destination and the source address may have this bit set, so two octets might be
occupied in the data unit by address extensions. An address extension has a structure
as in figure 3.7.

14

An intelligent weight controller using Profibus

~6=__0__--=== Extension Address, 0 to 63
Address type

Extension bit (EXT)

Figure 3.7: Address Extension Octet

~.
ELLIPS

If the type bit is set to zero, the address denotes a Link Service Access Point (LSAP)
indicating a particular data transmission service. For the DA this is called a DSAP and
for the SA this is called an SSAP. If the type bit is a one, the address denotes a
regional or segment address used in bus systems with more than one segment. Once
more, the extension bit indicates whether or not an extension to this address extension
follows immediately after this octet.

The frame control octet FC in the frame header indicates the frame type, the function
of the frame and control information to prevent loss and multiplication of messages,
or the station type. Its structure is as in figure 3.8a and 3.8b.

1716151413121 Ilo[

I '------Function, 0 tol5
'--------Frame count bit valid (FCV)

'---------Frame count bit (FCB), alternating 0 or I

'----------Frame type

'-----------Reserved, don't use

Figure 3.8a: Frame Control Octet/or Request Frames

'------Function, 0 to 15

'--------Station type and FDL status

'----------Frame type

'-----------Reserved, don't use

Figure 3.8b: Frame Control Octetfor Response Frames

The reserved bit must really not be used. The FCB and FCVbits are used to prevent
loss and multiplication of frames. Station type messages are listed in table 3.5.

Table 3.5: Station Type And FDL Status Messae:es
b5 b4 Meanin~

0 0 Slave station
0 1 Master station, not ready to enter logical token ring
I 0 Master station, ready to enter logical token ring
I I Master station in logical token ring

The meaning of the function field depends on the frame type bit. The possible
combinations are listed in table 3.6.

15

An intelligent weight controller using Profibus
~

ELLIPS

Table 3.6: Function Codes Of Frame Control Octet
Code Frame Type bit =0 Frame Type bit = I

(Acknowled~ement. Response Frame) (Reauest. Send / Reauest Frame)
0 Acknowledgement positive OK Not used
I Acknowledgement negative UE Not used

FDL user error
2 Acknowledgement negative RR Not used

No resource for send data
3 Acknowledgement negative RS Send data with acknowledge low

No service activated
4 Reserved Send data with no acknowledge low
5 Reserved Send data with acknowledge high
6 Reserved Send data with no acknowledge high
7 Reserved Reserved
8 Response FDL data low DL Not used

(and send data OK)
9 Acknowledgement negative NR Request FDL status with reply

No response FDL data
(and send data OK)

10 Response FDL data high DH Reserved
(and send data OK)

II Reserved Reserved
12 Response FDL data low RDL Send and request data low

No resource for send data
13 Response FDL data high RDH Send and request data high

No resource for send data
14 Reserved Request Ident with reply
15 Reserved Request LSAP status with reply

3.3.3 Timing Specifications

Timing is vital in fieldbus applications, particular in our case of the fruit grading
system. The system must be able to respond in a certain amount of time to commands
issued by the master computer. This is called the System Reaction Time. We shall
examine the reaction time for Profibus systems in this paragraph. We first define the
Massage Cycle Time, TMe, which is the time that elapses between two consecutive
transmissions of a Profibus master station. Figure 3.9 illustrates the Message Cycle
Time.

Master Station Slave Station Master Station

TAIR

I Send / Request 1

~

~-----~L__R_e-,sp,-o_n_s_e__~---------~ Send / Request 2

~~ ~

Figure 3.9: Message Cycle Time

The Message Cycle Time is therefore defined as:

(3.1)

where all times are in bit times (TBIT = 1 / bit rate) and

16

An intelligent weight controller using Profibus
~

ELLIpS
TSIR Transmission time of the action frame = a . 11 bits,

a is the number ofUART-characters to send
TNR Transmission time of the response frame = b . 11 bits,

b is the number ofUART-characters to send
TSDR Station Delay Time of Responders, time that elapses between

request and response
TID Idle Time, time that elapses between response and new request
TTO Transmission Delay Time, time that elapses on the transmission

medium between transmitter and receiver when a frame is
line length (m) . bit rate (bit I s) .

transmitted. TTO = 8 bIt
2·10 (m/s)

The System Reaction Time is detennined from the Message Cycle Time. Suppose we
have one master and np slaves in our system. Furthennore, the maximum amount of
retries for a message is mp. The System Reaction Time is then

TSR = np· TMC + mp· TMc,RET (3.2)

where TMc,RET is the message cycle time for a retry. We shall assume that this is the
same time as the nonnal Message Cycle Time.

In our fruit grading system, two timing values are important. We must be able to
switch the relays within a certain amount of time to ensure that fruit will leave the
system at the correct exit. The time between two consecutive polls of a relay is the
same as the System Reaction Time if we assume that all relays are listed once in the
master's Poll List. The second important timing is the time between two consecutive
polls of the encoder card. To guarantee a certain degree of accuracy, the encoder must
be polled more than once between two consecutive relay polls to give the exact
conveyor position. This means that the encoder must be listed more than once in the
Poll List. The desired specifications are that at a speed of 20 cups per second the
system must be able to control the relays with an accuracy of 1/5 cup. This means that
the System Reaction Time must be less than 10 milliseconds. The encoder precision
must be 1120 cup at the same speed, so the time between two consecutive encoder
polls must be less than 2.5 milliseconds.

Suppose the Poll List is set up in such a way that the master polls n other slaves, then
the encoder, then again n other slaves, the encoder again and so on, until all slave
stations are serviced. Assume furthennore that the relays are polled with an SD2­
frame containing 4 user bytes, thus 13 bytes total. The response of each relay is
simply an acknowledgement with a SC-message of 1 byte. The weight controller has
also 13 bytes in its action frame and uses a total amount of 29 bytes in the response
SD2-frame. The encoder needs a 6-byte SDl-frame and a 13 bytes SD2-frame for its
response. The Message Cycle Times for each device can then be calculated from
equation (3.1).

The total Message Cycle Time will then be:

17

An intelligent weight controller using Profibus E~. LLIPS

T Mc, TOTAL = nr· TMC,RELAY + TMC,WEIGHT + In:;1· TMC,ENcODER (3.3)

where
nr = the number ofllO-cards in the system
np = the total number of slaves in the system
n = the number of slaves polled between two encoder polls

The System Reaction Time TSR can then be determined from (3.2). The time between
two consecutive encoder polls is given by

(3.4)

Figures 3.10 and 3.11 show what the impact is of changing n with respect to the
System Reaction Time and the encoder resolution for various bit rates, for a system
containing one master, one encoder, one weight controller and 28 lIO-cards.

-+-0,5 Mbitls

_1,5 Mbitls

---.!r- 3 Mbitls

-X-6 Mbitls

-...12 Mbitls

151053

_ 50 -,----------------,
CIl
.§.. 45
Ql 40

~ 35
c 30
~ 25u
l8 20
It: 15

~ 10

-a5:F=::::::~==~;;;;;;;;:~~~;;;;;;;;;;=i
II) 0 +----+-------+-__+-__-1

1

n

Figure 3.10: System Reaction Time versus n

-+-0.5 Mbitls

_1,5 Mbitls

---.!r- 3 Mbitls

"""'*""'" 6 Mbitls
-...12 Mbitls

n

Figure 3.11: Encoder Resolution versus n

18

An intelligent weight controller using Profibus
~

ELLIFf)

• To meet the requirements of TSR ~ 10 ms and TENC ~ 2.5 ms, the bit rate should be at
least 1.5 kbit/s for this system, and the encoder should be polled after 8 other slaves,
thus n=8. Tables with the calculated timing parameters, produced with Excel, can be
found in Appendix B.

3.4 Profibus-DP

Since we are using decentralised peripherals in the fruit grading system, the Profibus­
DP protocol seems a logical choice. It supports the highest bit rate of 12 Mbit/s and
has several predefined services or service access points (SAPs):
• Default Data exchange
• SAP54 Master-Master communication
• SAP55 Change station address
• SAP56 Read inputs
• SAP5? Read outputs
• SAP58 Control commands to a DP slave
• SAP59 Read configuration
• SAP60 Read diagnostic information
• SAP61 Transmit parameters
• SAP62 Check configuration

All these SAPS have predefined frame structures, which allows the use of any
Profibus-DP slave from any manufacturer in the fruit grading system.

However, communications with the slaves still take place on a cyclic basis. In
paragraph 3.3.3 we stated that it would be convenient to use a Poll List that contains
the encoder device more than once to guarantee accurate timing. This is impossible in
Profibus-DP. In future, some a-cyclic extensions will be added to the DP standard,
referred to as DPE. As it is not a standard yet, only a few manufacturers support this
feature for the master stations, resulting in astronomical prices. Furthermore, the
solutions that are provided by these manufacturers are not quite elegant. For this
reason, the first version of the fruit grading system will use the FDL layer directly.
Future updates of the Profibus devices will support a-cyclic Profibus-DP.

19

An intelligent weight controller using Profibus

4. WEIGHT CONTROLLER

4.1 Desired Specifications

E~LLIPS

The goal is to design a new weight controller that is able to operate in the environment
as was described in chapter 2. This means that all communications between the weight
controller and the master computer must be established via the Profibus protocol. The
weight controller must have some sense of intelligence, since the master will only tell
the weight controller to start a measurement and asks for the result of the
measurement afterwards. The sequence of operation is as follows:
1. the encoder reports the exact location of a cup to the master computer
2. the master decides whether or not the cup has arrived at the weight controller
3. if the cup is in the right position, the master tells the weight controller to start a

measurement
4. the weight controller measures the desired cup
5. the master asks the weight controller to send the measurement data
6. the weight controller sends the acquired data to the master computer if it has

finished the measurement
Steps 5 and 6 are repeated until the weight controller has finished measuring.

The measurements are done with a standard load-cell that uses the Wheatstone-bridge
measurement technique. Though the load-cells are standard, each user lets them
operate in a different manner. Some of them use heavy cups so that the cup-weight is
large compared to the weight of the fruit. This means that the measurement range is
large as well. In practice, the weight controller must be able to handle a weight
between 0 and 10 kilograms.

Each measurement must be accurate. For sorting purposes the weight controller must
be able to measure with a precision of 1 gram. This requirement is also necessary for
economical reasons. If someone delivers an amount of apples of quality A and B, he
will get a higher price for his A-quality fruit. Prices are related to the weight of the
fruit. Every apple is sorted on its quality and measured on its weight. The total weight
ofA-quality apples is determined by the sum of each single measurement. If those
individual measurements deviate from the true value, someone might get less money
for his apples or the customer pays too much.

The controller must be able to handle as much as 20 cups per second on each line of
cups, with a maximum of eight lines. This yields a maximum of 160 cups to be
measured every second. Since the signals from the load-cells are weak (1 gram
corresponds to a few microvolts) an amplifier must be used. To ensure accurate
measurements this amplifier must have low temperature drift and very low noise
distortion. The amplified signals must be sampled with a sample rate of 1 kHz for
each line ofcups. This means that 8000 samples will be taken every second and must
be processed in an accurate way.

The weight controller must also provide +5V and -5V power lines for each load-cell.
These power signals should be ultra stable to ensure the required precision of the

20

An intelligent weight controller using Profibus
~

ELLIPf)

measurements. Ifthe voltages drift due to an increase in temperature, the weight
controller will measure a different weight than before the increase in temperature.

4.2 Controller Concept

The diagram of the weight controller is shown in figure 4.1. Eight Wheatstone-bridges
are shown, representing the eight load-cells.

AID

f= 8kHz

Figure 4.1: Weight Controller Diagram

21

8

DSP

IJ.p

PROFIBUS

An intelligent weight controller using Profibus
~

ELLIPS

Each bridge is connected to its own amplifier and all eight output-channels are
connected to a multiplexer which selects one signal at a time. Note that the switching
frequency is 8 kHz, since each bridge must be sampled at 1 kHz. An AID-converter
digitises the selected signal. To make sure that the measurement keeps the desired
precision of 1 gram, the digital resolution must be at least 16 bits (see paragraph 5.3).

An ordinary microprocessor is not sufficient for calculating all 8000 measured values
every second. The signals must be filtered and the actual weight must be calculated
rapidly, exceeding the speed of a simple microprocessor. For these purposes, special
digital signal processors (DSPs) are made. Their design and architecture are optimised
for fast calculations and signal processing algorithms. After an AID-conversion has
taken place, the 16 bits of data are transferred serially to the DSP. If a sufficient
amount of data is received, the DSP calculates the weight ofthe selected weight
bridge. To pass the data to the master computer via the Profibus, an ordinary
microprocessor is used. This processor communicates with the DSP via an 8-bit wide
bus, called the Host Interface Port (HIP). The HIP allows the DSP to send status
messages and weight data to the processor, while the processor can give commands to
the DSP. In this configuration, the microprocessor is called the host and the DSP the
slave.

The host processor takes care of the communication with the master computer. In
order to do this, it communicates with the Profibus interface, which will take care of
layer 1 and partly layer 2 of the Profibus protocol. The host has its own memory from
which it can boot and in which it can store the programs running on the DSP.

An example of the complexity of the communication is the updating of the software of
the DSP by someone in another country. Let's assume that the weight controller is
connected to a fruit grading system in Italy and the new software is released in The
Netherlands. First, the software is transferred from a computer in The Netherlands to
the master computer connected to the Profibus network in Italy over the phone line
using two modems. The master computer then invokes its Profibus hardware to set up
communications with the Profibus interface of the host processor of the weight
controller. Once the program is transferred to the host processor's memory, the host
will send it to the memory of the DSP through the Host Interface Port. After the entire
operation is completed, the DSP can execute the new program and continue its work.

In the next chapters, each component of the diagram will be discussed in detail.

22

An intelligent weight controller using Profibus

5. DATA ACQlJISITION

5.1 Sensor

E~

In 1856 Lord Kelvin discovered that applying strain to a wire shifted its resistance.
This effect is repeatable, and is the basis for electrical output strain measurement. As
mentioned before, the weight measurements in the fruit grading system are performed
with standard load-cells that are using Wheatstone bridges as sensors. A diagram of
such a bridge is shown in figure 5.1. If the bridge is in rest, the output voltage is
trimmed to be exactly zero volts.

>---Vout

-5V

Figure 5.1: Wheatstone Bridge

The bridge contains four resistances of which at least one is a strain gauge. Applying
strain to this gauge results in a different resistance for that gauge and thus for a
difference in output voltage. Practical transducers must be trimmed for zero and gain,
and compensated for temperature sensitivity.

In our fruit grading system, the load-cells are activated by the weight ofthe cups and
the fruit inside the cups. The typical bridge output voltage is 2 to 4 mV per volt
excitation. Since the maximum excitation voltage is 10 V for our load-cells, the
maximum output voltage will be about 40 mV only. This maximum output voltage is
reached when a weight of 10 kg is applied to the load-cell. This means that 1 gram
will produce an output voltage of approximately 4 J.1V, indicating very stringent
demands for the analogue circuitry with respect to noise distortion.

5.2 Signal Conditioning

Before the weak bridge signals can be converted to digital values they must be
amplified to enhance the measurement's resolution. Nowadays, complete precision
instrumentation amplifiers are fabricated by several manufacturers and sold in
standard packages. Designers should take several device parameters into consideration
to choose one of these amplifiers. These parameters are listed in table 5.1.

23

An intelligent weight controller using Profibus E~. LLIPS

Table 5.1: Amplifier Parameters
Parameter Description Value
CMRR Common Mode Rejection Ratio - Ifno weight is present 110 dB min

on the load-cells, the voltage difference between the two
output points is zero. However, the voltage difference
between these points and ground voltage might be as
much as 1 V. This results in an increase of the measured
differential output voltage. The CMRR specifies the
attenuation ofthe voltages present on the measurement
points.

Drift Due to a change in temperature the amplifier's output 250nVJOC max
voltage will shift, resulting in measurement errors.

Noise As mentioned before, one gram corresponds with only Less than 4JlV
4JlV. Since the bandwidth is 1kHz, noise disturbance
might introduce measurement errors of 1 gram.

No precision instrumentation amplifier can achieve all of the requirements stated in
table 5.1. The LTC1250 from Linear Technology has insufficient noise performance
and the INA128 from Burr-Brown drifts too much. However, the master computer can
compensate for temperature drift if it keeps track of the initial weight of all empty
cups. Measuring these cups once in a while when empty allows the master to adjust
the weight results. Noise disturbance cannot be compensated since it cannot be
distinguished from the amplified bridge signal. Thus, for our purpose, the INA128
suits best. With the gain set to 100 the maximum output voltage is measured to be 4.6
V and 1 gram corresponds to 460 JlV.

For future updates, the design must have the ability ofsupporting both the
implementations with the LTC1250 and the INA128, which are slightly different with
respect to gain settings with resistances. In this way, any new precision amplifier
based on either of these two components can be used without an entire redesign of the
print layout. Figure 5.2 shows such a design, using replaceable 0 n resistances.

A+50---1I+++-----+----..,

A-5 o--__---.......j-----'u·

Signal

C4
1u

L1
1m

Figure 5.2: Amplifier Schematic

24

An intelligent weight controller using Profibus

5.3 AID-Conversion

rYh-;
E'~LLIPS

The ND-converter must be fast enough to convert analogue signals at a rate of 8 kHz.
The requirement of a measurement precision of 1 gram involves a certain digital
resolution to be obtained. Since most ND-converters have an input range of -5 V to

+5 V, the minimum amount of distinguishable digital levels is ~O V = 21740.
4 0 pV

This involves a resolution of at least 2log 21740 = 14.5 bits. To obtain a safe

margin in processing the signals, a 16 bit ND-converter is appropriate. This yields a
total of65536 different digital levels, which means that the least significant bit
represents a value of 153 flY.

Note that in practice the measurement range is limited to several hundreds of grams,
the weight of an average fruit element. Digital resolution might therefore be reduced
significantly, implying fewer costs. This solution was used in the previous fruit
grading system, not based on Profibus. However, for each single machine, a
potentiometer had to be adjusted to trim the measurement range. As mentioned before,
every customer has its own measurement method with different cup-weights and
therefore different weight offsets. This potentiometer trimming is ineffective and
often unreliable as well. For maximum flexibility, the measurement range is fixed to
the full-scale range of the amplified bridge signal, thus requiring a 16-bit ND­
converter.

Each 16-bit dataword must be transferred to the digital signal processor. These
processors are usually equipped with a serial port for communication purposes. The
ND-converter should therefor provide a serial port as well. Furthermore, the
maximum integral nonlinearity (INL) must be less than 1.5 LSB. The differential
nonlinearity (DNL) must be less than 1 LSB and is preferable zero. As with the
precision instrumentation amplifiers, temperature drift must be small as well.

Only a few ND-converters are suitable for our precision measurements. Since these
ND-converters are expensive and we would not like to be completely dependent of
one single manufacturer, a converter that has the same functionality as and is pin­
compatible with a second converter is preferable. Recently, Analog Devices
announced its new AD977, a 200 kHz 16-bit ND-converter with serial port, as a
second source for the ADS7809 of Burr-Brown. Both converters are suited for our
design with respect to INL, DNL and temperature drift. However, the AD977 is twice
as fast and cheaper.

25

An intelligent weight controller using Profibus

5.4 Bridge Excitation

~
ELLIPS

To ensure an accurate non-drifting excitation voltage for all eight bridges, a precision
voltage reference is used in combination with quality amplifiers. The amplifiers are
used to regulate two power transistors. Since the bridges are standard 350 n load-cells
operating at 10 V, the total supply current for the eight bridges is 0.23 A. The
transistors must be able to supply these currents. Precision 5V voltage references are
common devices as well as zero-drift amplifiers. Figure 5.3 shows the schematic for
the bridge excitation circuitry.

A+a 0-___1>------------_-----,

~-CQ1

+5

A-a

R1 1K

+8

A-a o-----------........------J

Figure 5.3: Bridge Excitation Schematic

-5

The power supply ofthe weight controller must provide the two analogue voltages of
-8 volts and +8 volts. All eight bridges are connected to the A+5 and A-5 lines. Some
manufacturers ofweight sensors use sense-wires to compensate for voltage drops in
the cables to the bridge. A voltage drop will occur in both the positive and the
negative supply cable, so the only result for our bridges will be that the gain is
reduced. This is not important, since the weights have to be calibrated anyway.

26

An intelligent weight controller using Profibus

6. SIGNAL PROCESSING

6.1 Digital Signal Processor

6.1.1 Texas Instruments versus Analog Devices

~
ELLIP,s

Performance
(MIPSIMFLOPS)

Today's leading manufacturers in Digital Signal Processors and Digital Signal
Processor Tools are Texas Instruments and Analog Devices. A large amount of other
companies have also tried to get their products on the market, but had either only
special-functions DSPs, inferior DSP material or could simply not compete with their
big brothers. Of the two leaders, Texas Instruments has the greatest market share at
this time. During the past years, their product line increased steadily which is
illustrated in figure 6.1.

~C8~MUlti.
Processor

.....1 Gen. 32.bit
,uno-::} Floating.Point

~C4~
. 'C3x J lIIeno-. 16-bit
"---'" -..!::ed.Pt;"i fixed.Point

.~S~
. 'C5x J

'C2x~"---""A·V Application
~2~"""" .~ Specific

~C1x"J
Generation

Figure 6.1: Texas Instruments DSP Product Line

The most advanced DSP generations have either 32-bit floating point arithmetic units
or a multiprocessor core. Texas Instruments also provides an amount of software tools
to develop and test DSP applications. These software tools are in general rather
expensive, but since the prices of the DSPs are relatively low, the total development
costs are reasonable if you are selling many DSP applications every year.

Analog Devices has based their DSPs on about the same architecture as Texas
Instruments did. Their product line also features 16-bit fixed point as well as 32-bit
floating point DSPs, growing steadily as well every year. A number of software tools
is available for each DSP and at lower prices than those of Texas Instruments. Since
the DSPs have a slightly higher price than those of Texas Instruments have, one can
expect higher costs for big DSP projects.

Our product will be sold in amounts of approximately 100 each year and for that case,
the costs won't differ very much. We must therefore compare the individual DSPs in
tenns of perfonnance and ease of development. The basic requirements are that the
DSP must be of the 16-bit fixed-point type and must be able to communicate with a
host processor in a simple manner. Furthennore, it must have a serial port for data
acquisition. Both manufacturers have developed fixed-point DSPs with serial ports

27

An intelligent weight controller using Profibus
~

ELLIPS

and a host interface port (HIP). Texas Instruments offers the TMS320C57 as well as
the TMS320C54x and Analog Devices has its ADSP-2171. We shall compare some
differences between these devices in short.

We would like to boot our DSP through the Host Interface Port. Analog Devices has a
predefined procedure for this, which simply lets the host tell the DSP how many
instructions are going to be downloaded and expects the host to put the instructions in
the proper registers of the HIP. This method is simplified by the HIP-splitter utility
that puts all instructions in their proper position. Texas Instruments has a less elegant
method of booting. After reset, the host must grab hold of the databus, write a byte
somewhere in memory to indicate the manner in which the DSP should boot, release
the databus again and must then fill a certain program memory space with
instructions. After these instructions are downloaded, the DSP starts execution at the
first instruction. This works, but the Analog Devices way is more graceful.

We are going to program in the C language, but we must also be able to generate
assembly code for functions that require fast processing. If you take a look at a piece
of assembly program ofa Texas Instruments DSP, you cannot tell within a minute
what the purpose of that particular piece of code will be. Since the assembly
instructions are quite bizarre compared to those of other processors, most people refer
to them as unreadable. Analog Devices excels in the readability of its assembly code
since it uses algebraic expressions instead of ordinary assembly instructions. To
illustrate this, two pieces of assembly code are shown below. Both are the cores of a
FIR filter algorithm.

Texas Instruments code for the TMS320C54x [3]:
fir: LD

STM
RPTBD
STM
LD

fir filter: STL
RPTZ
MAC
STH

fir_filter_loop:
RET

#FIR_DP, DP
#K_FRAME_SIZE-1, BRC
fir_filter_loop - 1
#K_FIR_BFFR, BK
*INBUF_P+, A
A, *FIR_DATA_P+%
A, (K_FIR_BFFR - 1)
*FIR_DATA_P+O%, *FIR_COFF_P+O%, A
A, *OUTBUF_P+

Analog Devices code for the ADSP-21xx [4]:
fir: MR=O, MXO=DM(IO,M1), MYO=PM(I4,MS);

DO sop UNTIL CE;
sop: MR=MR+MXO*MYO(SS), MXO=DM(IO,M1), MYO=PM(I4,MS)i

MR=MR+MXO*MYO(RND) i

IF MV SAT MR;
RTSi

Hence the Analog Devices DSPs require less time to master the assembly code
instructions, reducing development time as well.

The assistance of local sales representatives in developing new applications is vital,
especially for rather complex products as DSPs. Delivery times, availability of

28

An intelligent weight controller using Profibus

products and data sheets are the basic services provided by them. Furthermore,
technical assistance is highly desired, since we do not have the expertise and
experience in developing DSP products yet. The local representatives of Analog
Devices master all these fields in a remarkable way. All questions are being answered
in a minute and they have one person dedicated to technical questions regarding all
Analog Devices DSPs. Texas Instruments failed to find proper representatives. Data
sheets arrived in time, but the promised fax with sharp priced offers has not been seen
yet and technical assistance is set to a poor level.

Thus, the easy-to-use Host Interface Port of the ADSP-2171, the clear assembly
instructions and the outstanding support of Analog Devices local sales representatives
make the difference to choose for this DSP instead of one of Texas Instruments.

6.1.2 ADSP-2171 Architecture Overview

Figure 6.2 is an overall block diagram of the ADSP-2171. The processor contains
three independent computational units: the ALU, the multiplier/accumulator (MAC)
and the shifter. The computational units process 16-bit data directly and have
provisions to support multiprecision computations. The ALU performs a standard set
of arithmetic and logic operations; division primitives are also supported. The MAC
performs single-cycle multiply, multiply/add and multiply/subtract operations with 40
bits of accumulation. The shifter performs logical and arithmetic shifts, normalisation,
denormalization, and derive exponent operations. The shifter can be used to efficiently
implement numeric format control including multiword and block floating-point
representations [5].

The internal result (R) bus directly connects the computational units so that the
output of any unit may be the input of any unit on the next cycle.

It 4 POWERllOWN ,
~ INSTRUCOON !¢=== PIIOGRAM ROM CONTROL

~
REGISTER tKX24 DATA OOOT lOGIC

0 SRAIl ADORessI Dm I II DATA :I PROGRAM SRAM 2KX18 GENERATOR

~ADORESS AOORESS I PROGRAM I 2KX.4GENE:'ATOR GENE:TOR SEOUENCER

JI
F=~ K.~

r----. EXTERNAL

~ PlotABUS
ADDRESS

" I-- BUS

DMABUS
MUX~

F=
..

~ EXTERNAL.. PMOBUS DATA

~m~~E~
BUS

NUX~
7 It ~ DMDBUS --ji H jt i.

~~ I~ = ~ r~ HIP ~III CQMPANOfIlG TIMERINPUT REGS INPUT REGS INPUT REGS ICOIlTlIOl
lOGIC < CIRCUITRY V CONTROL

AlU MAC SHIl'TER
TRANSMIT REG~ TRANSIIIT REG

L1~RECEIVE REG RECEIVE REG DATA
OUTPUTREG9 OUTPUT REGS v- OUTPUT REGS BUS

~7 ~7 It ~7
SERIAl SERIAL

"PORTO PORT 1
REa:eRS

RBUS .~ 5~

Figure 6.2: ADSP-2171 Block Diagram

29

An intelligent weight controller using Profibus E~
A program sequencer and two dedicated data address generators ensure efficient
delivery of operands to the computational units described above. The sequencer
supports computational jumps, subroutine calls and returns in a single cycle. With
internal loop counters and loop stacks, the ADSP-2171 executes looped code with
zero-overhead; no explicit jump instructions are required to maintain the loop.

The two data address generators (DAGs) provide addresses for simultaneous dual
operand fetches (from data memory and program memory). Each DAG maintains and
updates four address pointers. Whenever the pointer is used to access data (indirect
addressing), it is post-modified by the value of one of four possible modify registers.
A length value may be associated with each pointer to implement automatic modulo
addressing for circular buffers.

Efficient data transfer is achieved with the use of five internal buses.
• Program Memory Address (PMA) Bus
• Program Memory Data (PMD) Bus
• Data Memory Address (DMA) Bus
• Data Memory Data (DMD) Bus
• Result (R) Bus
The two address buses (PMA and DMA) share a single external address bus, allowing
memory to be expanded off-chip, and the two data buses (PMD and DMD) share a
single external data bus.

Program memory can store both instructions and data, permitting the ADSP-2171 to
fetch two operands in a single cycle, one from program memory and one from data
memory. Furthermore, the ADSP-2171 can fetch an operand from on-chip memory
and the next instruction in the same cycle.

In addition to the address and data bus for external memory connection, the ADSP­
2171 has a configurable 8- or 16-bit host interface port (HIP) for easy connection to a
host processor. The HIP is made up of 16 data/address pins and 11 control pins. The
HIP is extremely flexible and provides a simple interface to a variety of host
processors, such as the Intel 8051 and the Motorola 68000. The host processor can
initialise the ADSP-2171 's on-chip memory through the HIP.

The ADSP-2171 can respond to eleven interrupts. There can be up to three external
interrupts, configured as edge or level sensitive, and eight internal interrupts generated
by the timer, the serial ports, the HIP, the powerdown circuitry and software.

The two serial ports provide a complete synchronous serial interface with optional
companding in hardware and a wide variety of framed or frameless data transmit and
receive modes of operation. Each port can generate an internal programmable serial
clock or accept an external serial clock.

The ADSP-2171 features three general-purpose flag outputs whose states can be
simultaneously changed through software. These flag outputs can be used to signal an

30

An intelligent weight controller using Profibus
~

ELLiPs
event to an external device. In addition, the data input and output pins on serial port 1
can be alternatively configured as an input flag and an output flag.

A programmable interval timer generates periodic interrupts. A l6-bit count register
(TCOUNT) is decremented every n processor cycles, where n-l is a scaling value
stored in an 8-bit register (TSCALE). When the value ofthe count register reaches
zero, an interrupt is generated and the count register is reloaded from a l6-bit period
register (TPERIOD).

6.1.3 Memory Maps

Program memory can be mapped in two ways, depending on the state of the MMAP
pin. Figure 6.3 shows the different configurations. When MMAP=O, internal RAM
occupies 2K words beginning at address OxOOOO. In this configuration, the boot
loading sequence is automatically initiated after a reset.

2K
INTERNAL RAM

BOOTEO

81<
INTERNAL ROM
(ROMENABLE • l'

OR

BK
EXTERNAL

(ROMENAlILE =0)

6K
EXTERNAL

MMAP.O
BMODE=OOf 1

0000

07ff
0800

27FF
2800

3FFF

2K
EXTERNAL

8K
INTERNAL ROM
(ROMf.NIIBU • "

OR

ax
EXTERNAL

IRO/Alil/lISlE = 0,

4K
EXTE.RNAL

2K
INTERNAL RAM

MMAP.1
8MOOE .. O

0000

07Ff
0&00

27Ff
2800

37FF
3800

3FfF

2K
INTERNAL RAM
NOT BOOTEO

8l<
INTERNAL ROM

lRO/IEl/lIBU
oefAULTs

TOI
OURlNGRES~

6K
eXTERNAL

MMAP.,
BMooe .. 1

0000

07FF
OBOO

27FF
2800

3fff

12K
EXTERNAL

2K
INTERNAL
OATARAM

1K
RESERVED

MEMORY MAPPED
REGISTERS!
RESERVED

OATAMEMORY

0000

2FFF
3000

37Ff
3800

3BfF
3COO

3FFF

Figure 6.3: Program Memory Maps Figure 6.4: Data Memory Map

When MMAP=l, words of external program memory begin at address OxOOOO and
internal RAM is located in the upper 2K words, beginning at address Ox3800. In this
configuration, program memory is not loaded although it can be written to and read
from under program control.

The BMODE pin determines the boot sequence. IfBMODE=O the ADSP-2l7l boots
through the data bus. IfBMODE=l the ADSP-2l7l boots through the host interface
port. In our application, we will use the MMAP=O, BMODE=l configuration: booting
through the host interface port.

31

An intelligent weight controller using Profibus
~

ELLIPS
The on-chip data memory RAM resides in the 2K words of data memory beginning at
address Ox3000, as shown in figure 6.4. In addition, data memory locations from
Ox3800 to the end of data memory at Ox3fff are reserved. Control registers for the
system, timer, wait state configuration, host interface port, and serial port operations
are located in this region of memory. The remaining 12K of data memory are external.

We shall use the MMAP=O, BMODE=1 configuration. Three 8-bit fast 32k SRAM
chips can be used to implement both the 16k 24-bit program memory and the 16k 16­
bit data memory. The remaining 8 kilobytes of memory are unused.

6.2 Software Architecture

6.2.1 Modular Approach

The DSP has a number of tasks to perform. It must be able to retrieve the incoming
data, process it in some way and deliver the resulting weights at the host processor. In
the next paragraphs we will discuss data retrieval and processing. Communicating
with the host processor is an issue described in the next chapter.

Processing signals can be done in a number of ways. We might for instance simply
filter the incoming signal and select an appropriate value to represent the weight. We
can also take a number of filtered values and take the average of them to be the
weight. A third method is not to filter the signal but to analyse the incoming
waveform and try to recover the weight out of it by means ofmore intelligent
algorithms. The processing task can therefore be implemented in more than one way.
However, the acquisition of the data stream and communications with the host
processor will be exactly the same for each method. This implies a software
architecture that has the ability to replace the weight algorithm and has a fixed data­
retrieval and host-communications part.

Figure 6.5: Software Architecture

Figure 6.5 illustrates this concept. The main routine performs the measurement task
with data it receives from the data acquisition routine and sends and receives its
instructions to the host via the host communications routine. Replacing the weight

32

An intelligent weight controller using Profibus E~
algorithm does not affect the other two routines. These routines can communicate
with each other as well, for instance if the host processor asks for a curve of raw data
values straight from the weight bridges. This can be done without notice of the main
weight algorithm. A high degree of flexibility is assured in this way.

Communications between each routine is initiated by means of flags. Ifnew data has
been received by the data acquisition part, it sets a flag for the main routine. The main
routine simply waits for this event to happen and processes the data in its own way. If
the main routine has results to be transferred to the host, it sets data into a
transmission queue and tells the host routine to send it.

6.2.2 Basic Runlevels

The software operates with a number of states or runlevels. Each runlevel has its own
task and its own set ofcommands that can be send by the host. The number of
runlevels depends on the weight algorithm but at least four runleve1s are present, as
shown in figure 6.6.
As can be seen, the four runlevels are:
• Booted - DSP has completed booting;
• Gone - DSP is running loaded program;
• [nit - DSP is initialising parameters;
• Measuring - DSP is measuring weights.

The [nit runlevel is for example used to set up the sample frequency, delay times, the
channels that are going to be used, the filter length or filter constants. Each of these
functions has its own command that can only be executed if the DSP is in the [nit
runlevel. If the host nevertheless sends one of these commands in a different runlevel,
an error message will be returned. Some commands are not associated with a specific
runlevel. These commands are general-purpose messages that need to be serviced at
any time during operation. Table 6.1 shows an overview of the basic commands for
every runlevel and table 6.2 of the general-purpose commands. A complete command
overview can be found in Appendix F. Additional commands might be implemented
for each weight-measuring algorithm.

Note that since only one command can be executed at the same time, the DSP will
return an error message if the host sends a new command while the old one has not
finished yet. There are a few exceptions to this rule, however. The commands that
cause the DSP to switch to a lower runlevel are serviced regardless of the fact that an
older command is in progress. This allows the host to abort all commands
immediately, without having to wait until the DSP has finished them. An example of
such a command is COM_STOP_MEASUREMENTS.

33

An intelligent weight controller using Profibus
~

ELLl.Ps

COM_STOP_MEASUREMENTS

End-Or-Measurements

COM_START_MEASUREMENTS

Figure 6.6: Basic Runlevels

Table 6.1: Basic Command Overview
Runlevel Command Description

Booted COM GO Starts executing the loaded program.
Gone COM_INIT Switches to the initialisation runlevel.

COM_GET_RAW_CURVE Returns a curve of measured points
straight from the AID-converter.
Parameters are the channel number, the
number of points and the sample
frequency.

COM_STOP_GONE Returns to the previous runlevel and stops
measuring the raw curve.

Init COM_SET_DELAY Sets delay values for each channel to adapt
to bridge misplacement errors.

COM_SET_CHANNELS Selects the channels that are going to be
used for measurements.

COM_SET_SAMPLE_FREQ Sets the sample frequency of the AID-
converter for one channel.

COM START MEASUREMENTS Starts measuring on the selected channels.
COM_STOP INIT Returns to the previous runlevel.

MeasurinJ! COM START MEASUREMENTS See above
COM_STOP_MEASUREMENTS Aborts all measurements immediately and

returns to the previous runlevel.

34

An intelligent weight controller using Profibus

Table 6.2: General Purpose Commands
Command Description

COM_GET_RUNLEVEL Reports the current runlevel.
NEW_DATA Host or DSP has send new data through the Host Interface Port.

See chapter 7.
HIP_ACK Acknowledgement of receipt of command or data. See chapter 7.

6.2.3 Measurement Jobs

Figure 6.6 also indicates that in the Measuring runlevel a new measurement can be
started while the other one was not finished yet. This is done by means of measuring
jobs. Once a new measurement is started, a new job is initiated. This job exists as long
as it takes to perform the measurement. After the measurement job is done, the result
is send to the host processor and the job is killed. Once all jobs are killed, the program
returns to a lower runlevel. The default maximum amount ofjobs is four.

The structure of a job is defined to be:

typedef struct jobst
{
uint16 active;
uint16 cup_number;
uint16 timer[8];

} j obt;

/* O=inactive job, l=active job */
/* number of the measured cup */
/* counts down until delay time

has passed */
/* additional data */

Additional data may be added for each weight algorithm. An example of this will be
given in paragraph 6.5. To kill ajob, active is simply set to zero. The cup number
indicates which cup is being measured, in order to be able to tell the master computer
which cup we determined the weight of. The timer array is used to set a delay for
each channel. This is done to take into account that not all eight possible bridges are
set exactly in line. The cup in lane 1 might reach the bridge sooner than the cup in
lane 2, so that the delay value for channel 2 must be set to a higher value.

Whatever the weight algorithm is, it must implement two functions:

void new_data();
void init_new_job(uint16 job number);

The new_data function must process the data that was retrieved from the channel
number indicated by a flag. It must check for all active jobs whether or not the
transferred data is of interest, process it and send the result to the Host
Communications Routine if the job is done. Once the job is done, it must be killed to
allow a new measurement to use it.

35

An intelligent weight controller using Profibus E~LLIPS

The ini t _new_j ob function must fill in the additional data variables in the job
structure. This might be additional counters or the sum of several weight samples.
Note that this function may be left empty ifno additional data is required.

6.3 Data Transfer from AID-converter

The ADS7809 AID-converter has several possibilities of transferring the acquired data
to the DSP [6]. Data will always be clocked out serially in one of two formats. These
formats are Straight Binary or Binary Two's Complement. Since the DSP uses Binary
Two's Complement internally during normal operation, this output format is chosen.
The data bits are clocked out at a rate specified by either the internal data clock or an
externally connected data clock. The internal clock has a fixed rate of 2.3MHz while
the external clock frequency may range from 0.1 to 10 MHz. For maximum flexibility
and speed, we choose for an external clock and let the DSP generate this clock signal.
The DSP is able to produce a clock signal of as high as one-half its processor's clock
rate, so the ADS7809 will be the limiting factor.

With an external clock selected, we have two choices left for the actual transfer. The
first one is to read the results after a conversion has taken place and the second one is
to read the results during conversion. This last method will produce output data from
the previous conversion while the next conversion takes place. Since this method is
more complicated and only necessary for extremely high data throughput, we choose
for the first option.

The required timing diagram is shown in Appendix C. A conversion is initiated by
- -

lowering the R / C signal first, followed by the CS signal for at least 40ns. The

ADS7809 will now make BUSY low, indicating that the conversion is in progress.

This will take maximally 1O~s after which the BUSY signal is made high again. The

conversion is now completed and the data transfer can take place. The R / C signal

must first be set to a high level again, followed by lowering the CS signal. The
ADS7809 will now send a synchronisation pulse to the DSP on the SYNC line. This
pulse is active high so that the DSP must be set to use active high synchronisation
pulses as well. This can be accomplished by setting bit 6 of the Sport 0 Control
Register to zero. After the DSP has received the synchronisation pulse, it will receive
the entire 16-bit dataword automatically. This is true only when SLEN, the lower 4
bits of the Sport 0 Control Register, is set to the binary sequence 1111. The data
transfer takes place while the processor will continue to operate at full speed. After
receiving the last bit, the 16-bit word is stored internally and an interrupt is given. An
interrupt routine must take care of the proper storing of this dataword in the right
memory location, so that the weight algorithms can process it at the earliest
convemence.

36

An intelligent weight controller using Profibus

6.4 Signal Analysis

~.
ELLIPS

As previously mentioned the load cells are Wheatstone bridges. This means that we
can model these load cells as a damped mass-spring system. Such a system is drawn
in figure 6.7.

M

b

r
Figure 6. 7: Model OfDamped Mass-Spring System

This model consists of a mass resting on a spring with spring constant k and a damper
with friction constant b. The force F acting on the mass is given by Newton's law for
motion [7]:

F = -m·y

The same force F is equal to:

F = b·y + k·y

This yields to the equation:

b k
Y + -'Y+-'y= 0

m m

The Laplace transform of this equation produces the transform function R(s) that can
be used to study the system's response to any excitation.

R(s) =
1

2 b k
S +-·s+-

m m

This is the transfer function of a second order system. Therefore, the system's
response will have all the characteristics of a second order system like overshoot,
oscillation and damping.

Suppose we would knock on the weight bridge for a very short time. This knock
would be just like an excitation of the bridge with a Dirac delta function. The response

37

An intelligent weight controller using Profibus
~

ELLIP,S

of the system would be the solution to the homogeneous differential equation above.
In the time domain, this solution will be [8]

where lUo = ~ is the frequency at which the system would oscillate when there

would be no friction (b~). tfwe define llJ, ~ ~llJ~ - b', to be the frequency of the
4m

damped system, then we can rewrite the equation to:

b
--.(

yet) = A·e 2m 'COS(lU1 ·t+tp)

A and tp are real integration constants in this equation, whose values depend on the
initial state of the system. Ifwe could determine the values of the spring constant k
and the friction constant b we would be able to calculate the mass pushing on our
weight bridge by determining the oscillation frequency and the damping ratio of the
output signal. Figure 6.8 illustrates this.

~ ~
Figure 6.8: a) Measured Bridge Impulse Response

b) Simulated Impulse Response ofDamped Mass-Spring System

Figure 6.8a shows the measured response to the knock on the bridge and figure 6.8b is
the calculated curve of the above transfer function. The offset ofthe signals is due to
the presence of an aluminium plate on the bridge. The damping and oscillation can be
determined accurately from these plots. The procedure will be that we produce a
damped oscillating signal with a calibrated weight. From the damping and the known
value of m we can calculate the friction constant b. With these two variables the
spring constant k can be determined from monitoring the oscillation frequency. Once
the model's parameters are known we can calculate the mass by observing the output
signals.

38

An intelligent weight controller using Profibus
~

ELLIPS
In practice, the cups will slide on the weight bridge with a certain speed and will roll
off afterwards. This is comparable with an excitation of our damped mass-spring
system with a pulse shaped like in figure 6.9.

\

Figure 6.9: Excitation Signal ofA Cup

The speed at which the pulse rises and falls depends on the speed of the cups. The
faster the machine runs, the faster the cup is on the bridge and the faster the pulse
reaches its final value. A simulation of the system's behaviour with an excitation like
this produces the result of figure 6.10.

Figure 6.10: Simulated Cup Response ofthe Weight Bridge

As can be seen from this plot, the output is indeed that of a second order system. The
signal overshoots its final value first, settles to that value and then rolls offquickly
when the cup leaves the bridge, resulting in undershoot. Once again, if we can
determine the frequency of the oscillations, either when the cup is on or off the bridge,
and the damping of these signals, we would be able to calculate the mass of the fruit
inside the cup very accurately.

Unfortunately, the bridge signals are not as 'neat' as in the simulation. Some signals
coming out of the Wheatstone bridge are presented in figure 6.11. These signals are
monitored with an oscilloscope on a fruit-grading machine. The machine is from the
firm Agra and is running at a speed of 2.2 cups per second. The weights in the cup are
calibrated.

39

An intelligent weight controller using Profibus

Figure 6.11: Bridge Output Signals

E~LLIPS

Figure 6.11 shows five different weights coming over the bridge, ranging from 100
grams to 500 grams in steps of 100 grams. The weight of the cup is the same for all
the measurements. The signals suffer heavily from noise, due to machine vibrations.
Furthermore, the cups are dragged over the bridge by chains, accelerated by chain
wheels. This construction causes the cups to move in a slightly non-linear manner,
resulting in the poor graphs of figure 6.11. Removing the noise out of the signal with
a filter, does not lead to the desired plot ofthe simulated system in figure 6.10.
Somehow, the machine or the non-linear movements cause the damped oscillations to
vanish. Consequently, on an Agra machine, the mass of the fruit cannot be determined
from the oscillation frequency and the damping. What we can do is filter the signal
even more thoroughly to flatten the section of the signals where the cup is on the
bridge and is oscillating to reach its final value. The resulting flattened curve is the
weight of the cup with fruit in it. Figure 6.12 shows the filtered signals.

Figure 6.12: Filtered Bridge Output Signals

40

An intelligent weight controller using Profibus E~
As can be seen from this figure, the output signals are quite flat, but are definitely not
straight lines when the cup is on the bridge. If we take one value from this flat section,
we might as well take a value that is a few grams to high or low. It is probably better
to take the average of a small number of filtered values to represent the weight of that
cup.

6.5 FIR Filter Algorithm

6.5.1 FIR Filter Design

A finite impulse response (FIR) filter is a discrete linear time-invariant system whose
output is based on the weighted summation of a finite number of past inputs. FIR
filters, unlike infinite impulse response (IIR) filters, are nonrecursive and require no
feedback loops in their computation. This property allows simple analysis and
implementation on microprocessors such as the ADSP-2l7l. A graphic representation
ofa FIR filter is shown in figure 6.13.

x(n)

J------I~,--.......~ffi--~-yen)

Figure 6.13: FIR filter

The realisation of a FIR filter can take many forms, although the most useful in
practice is generally the transversal structure. A FIR transversal filter structure can be
obtained directly from the equation for discrete-time convolution.

N-I

y(n) = Lhk(n).x(n-k)
k=O

In this equation, x(n) and y(n) represent the input to and output from the filter at time
n. The output y(n) is formed as a weighted linear combination of the current and past
input values of x, x(n-k). The weights, hk(n) , are the transversal filter coefficients at
time n. (For a nonadaptive filter, the coefficients do not change with n.) In the
equation, x(n-k) represents the past value of the input signal "contained" in the
(k+l)th tap of the transversal filter. For example, x(n), the present value of the input
signal, would correspond to the first tap, while x(n-42) would correspond to the forty­
third filter tap.

The FIR filter is designed using a Kaiser window. This window is defined to be

41

An intelligent weight controller using Profibus
~

ELL1Ps

W[n]

for O:S: n < N

o otherwise

where

and 10 is the modified zero order Bessel function [9].

By changing the parameter awe can change the suppression of the side-lobs of the
filter response. Figure 6.14 shows the Kaiser window function for N=201 (201 taps),
a=6, a sample frequency of 1kHz and a bandwidth of 1Hz. The resulting frequency
response is drawn in figure 6.15.

200100

o'- --l

o

0.5

n
Figure 6.14: Kaiser Window

This filter is the same one that was used for the plots in figure 6.12. Note that both the
DSP and the weights to be measured limit the number of taps and the bandwidth of
the filter. The DSP has a finite time to calculate the entire FIR filter. The larger the
number of taps, the better the filter will be but the more time the DSP needs to
calculate the filter's response. Since the DSP is quite fast, the limiting factor in most
cases will be the weights to be measured. The larger the number of taps, the longer it
takes the filtered signal to reach its desired value. If the weight is too heavy, the filter
won't reach the final value at all. This can be seen in figure 6.12, where the 'hills' get
sharper when the weight increases. For even higher weights than 500 grams the
filter's response would have been too slow.

42

An intelligent weight controller using Profibus
~

ELLIPf)

10 100 1000
fQog)

Figure 6.15: Filter Response

The results of measuring with the above filter, using 201 taps and averaging over 10
filtered values, are listed in table 6.3.

Table 6.3: Results With FIR Filter Implementation
Calibrated Calculated weight in grams, Calculated weight in grams,

weight 1.0 cups per second, 2.2 cups per second,
delay = 650 ms delay = 410 ms

1 2 3 1 2 3
100 100 100 100 99 100 99
200 204 204 205 202 202 201
300 301 301 304 298 302 302
400 401 401 402 399 401 401
500 499 501 500 496 498 496

It is clear that due to the poor mechanical behaviour of the Agra machine a precision
of 1 gram cannot be established, even with a large FIR filter. An accuracy of ±2 grams
is more realistic for these machines. Note that for 500 grams at a speed of2.2 cups per
second, the FIR filter is too slow to calculate the weight. Lowering the number of taps
might increase the reliability of these measurements at the cost of reduced filter
performance and thus measurement accuracy for lower weights. In general, a trade-off
must be made between high accuracy for low weights (long FIR filter possible) or
lower accuracy for a larger range of weights (shorter FIR filter necessary).

43

An intelligent weight controller using Profibus

6.5.2 FIR Filter Software Implementation

~
ELLIPS

The software for this FIR filter uses a runlevel scheme with one additional runlevel,
the Filtering runlevel, as shown in figure 6.16.

COM_STOP]ILTERING

COM_STOP_MEASUREMENTS

End-Or-Measurements
COM_START_MEASUREMENTS

Figure 6.16: Filter Runlevels

In this new runlevel, the DSP is filtering all incoming data with the downloaded FIR
filter. Note that this does not imply any measurement action, but only the filtering of
the signals. The actual measuring is done in the Measuring runlevel. This runlevel
takes the average ofa given number of samples and takes this to be the weight of the
measured cup. The additional commands that are used for the FIR filter
implementation are listed in table 6.4. A complete command overview can be found in
Appendix F.

44

An intelligent weight controller using Profibus
~.

ELLlp,5

Table 6.4: Additional FIR Filter Command Overview
Runleve! Command DescriTJtion

Init COM]ILTER_LEN Set the desired length of the FIR-filter.
COM_SET_SAMPLES Set the number of samples from which

the average will be calculated.
COM_SET_FILTER_CONST Set the filter constants. The filter length

determines the number of constants.
COM_START]ILTERING Start filtering on all channels, even if

certain channels are not used.
Filtering COM_GETJILTERED_CURVE Returns a curve of filtered data.

Parameters are the channel number, the
number of points and the sample
frequency.

COM_STOP_FILTERING Stop filtering and return to a lower
runleveI.

COM_START_MEASUREMENTS Starts measuring on the selected
channels.

The measurement jobs use some extra variables to keep track ofthe state of the data
while it passes through the FIR filter.

typedef struct jobst
(
uint16 active;
uint16 cup number;
uint16 tim~r[B);
uint16 counter[B];
int32 weight_sum[B);
uint16 weight count[B);

} jobt; -

/* O=inactive job, l=active job
/* number of the measured cup
/* counts down until delay time has passed
/* counts down until data is rippled through the filter
/* sum of ten weighted values of this cup
/* number of weights for average

*/
*/
*/
*/
*/
*/

The counter array is initially set to the filter length and is decremented each time
new data for a channel has arrived. Once it reaches zero, the data that is coming out of
the FIR filter is the data that was to be measured. The weight_sum array contains the
sum ofthe filtered values for each channel to be able to calculate the averages. The
weight_count is initially filled with the number of samples for this average and is
decremented each time new data arrives for a channel. Once it reaches zero, the
average of weight_sum can be calculated and the measurement for that channel is
finished.

The complete source of the FIR filter function can be found in Appendix D. This FIR
filter algorithm requires 86+N cycles plus some interrupt overhead, where N is the
number of taps. When running at a rate of 24"NIhz, a 101-taps filter will be calculated
within 7.8 microseconds. Figure 6.17 shows the percentage of time that is used for the
FIR filter algorithm at full load (four measurement jobs).

45

An intelligent weight controller using Profibus

FIR filter calculation time

E~LLIPS

>­
g 3000 Hz
Gl
::l
CT

~ 1000 Hz
Gl
Q.

~ 500 Hz
U) .l!=~i=::=:;z=:::;i::==:;Z===i=:==7

o 5 10 15 20 25 30

Percentage of total CPU time

Figure 6.17: FIR Filter Calculation Time

Although the AID-converter can sample up to 100kHz, the practical limit of the
sample frequency is 24kHz. In this case, every channel is sampled at a rate of 3kHz
and the DSP can serve these interrupts just in time when using an instruction rate of
24Mhz (24 MIPS).

46

An intelligent weight controller using Profibus

7. HOST INTERFACE PORT

7.1 Overview

~
ELLIPS

The ADSP-2171 digital signal processor has a host interface port (HIP). The HIP is a
parallel I/O port that allows the processor to be used as a memory-mapped peripheral
of a host processor. Examples ofhost processors include the Intel 8051, Motorola
68000 family and even older ADSP-21xx processors [10].

The host interface port can be thought of as an area ofdual-ported memory or mailbox
registers that allow communication between the host and the processor core of the
ADSP-2171. The host addresses the HIP as a segment of 8- or 16-bit words of
memory. To the processor core, the HIP is a group of eight data-memory-mapped
registers.

The operation speed of the HIP is similar to that ofthe processor data bus. A read or
write operation can occur within a single instruction cycle. Because the HIP is
normally connected to devices that are much slower, the host processor usually limits
the data transfer rate.

The host interface port is completely asynchronous to the rest of the ADSP-2171 's
operations. The host can write data to or read data from the HIP while the ADSP-2171
is operating at full speed. The HIP can be configured for operation on an 8-bit or 16­
bit data bus and for either a multiplexed address/data bus or separate address and data
buses.

7.2 HIP Functional Description

The HIP consists of three functional blocks, shown in figure 7.1: a host control
interface block (HCI), a block of six data registers (HDR5-0) and a block of two status
registers (HSR7-6). The HIP also includes an associated HMASK register for masking
interrupts generated by the HIP. The HCI provides the control for reading and writing
the host registers. The two status registers provide status information to both the host
and the ADSP-2171 core.

The HIP data registers HDR5-0 are memory-mapped into internal data memory at
locations Ox3FEO (HDRO) to Ox3FE5 (HDR5). These registers can be thought ofas a
block of dual-ported memory. None of the HDRs are dedicated to either direction;
they can be read or written by either the host or the ADSP-2171. When the host reads
an HDR register, a maskable HIP read interrupt is generated. When the host writes an
HDR, a maskable HIP write interrupt is generated.

The read/write status ofthe HDRs is also stored in the HSR registers. These status
registers can be used to poll HDR status. Thus, data transfers through the HIP can be
managed by using either interrupts or a polling scheme, described later in this chapter.

47

An intelligent weight controller using Profibus
~

ELLIPS

rn
::J
m
C:eo

16

... HSIZE
....... BMODE

.... HMD1

.... HMOO

~~ --
HACK

Host
.... - HSEL... Control ...

Interlace - HWRIHDS
Boot

Control .. HRDlHRW..... HA2JALE...
.... HA1-o 2/

/

.... Overwrite Bit

--
4~

I~ Readlwrite control

l'HDRO
.- -- HDR1-- - HDR2

HDR3

"
HDR4

HDRS
I IHMASK

HSR6
.... SOFT RESET

HSR7

.... 2/ I t 16 J
I ...

HIP f -
"

INTERRUPTS HD1S00

Figure 7.1: HIP Block Diagram

The HSR registers are shown in figure 7.2. Status infonnation in HSR6 and HSR7
shows which HDRs have been written. The lower byte ofHSR6 shows which HDRs
have been written by the host computer. The upper byte of the HSR6 shows which
HDRs have been written by the ADSP-2171. When an HDR register is read, the
corresponding HSR bit is cleared.

The lower six bits of HSR7 are copied from the upper byte ofHSR6 so that 8-bit hosts
can read both sets of status. Bits 7 and 6 ofHSR7 control the overwrite mode and
software reset, respectively; these functions are described later in this chapter. The
upper byte of HSR7 is reserved. All reserved bits and the software reset bit read as
zeros. The overwrite-bit is the only bit in the HSRs that can be both written and read.
At reset, all HSR bits are zeros except for the overwrite-bit, which is a one.

48

An intelligent weight controller using Profibus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E~LLIPS

HSR7

OVERWRITE ---1

MODE

SOFTWARE ---'
RESET

Ox3FE7

II L 2'" HOAO W'"
21 xx HDR1 Write

21xx HDR2 Write

L....- 21xx HDR3 Write

L....- 21lCX HDR4 Write

L....- 21xx HDRS Write

13 12 11 10 9 8 7 6 5 4 3 2 1 0

HSR6

21"HDRSW,",~
21xx HDR4 Write -------'

21xlC HDR3 Write ----J

21xx HDR2 Write ---------'

21xx HDR1 Write ---------

21xx HOROWmeJ

Figure 7.2: HIP Status Registers

7.3 HIP Operation

Ox3FE6

Host HORO Write

Host HDR1 Write

Host HDR2 Write

Host HOR3 Write

Host HOR4 Write

Host HDRS Write

The ADSP-2l7l core can place a data value into one of the HDRs for retrieval by the
host computer. Similarly, the host computer can place a data value into one ofthe
HDRs for retrieval by the ADSP-2l71. To the host computer, the HDRs function as a
section ofmemory. To the ADSP-2l7l, the HDRs are memory-mapped registers, part
ofthe internal data memory space.

Because the HIP typically communicates with a host computer that has both a slower
instruction rate and a multicycle bus cycle, the host computer is usually the limiting
factor in the speed ofHIP transfers. During a transfer, the ADSP-2l7l executes
instructions normally, independent ofHIP operation. This is true even during a
multicycle transfer from the host.

For host computers that require handshaking, the ADSP-2l7l returns HACK in the
same cycle as the host access, except in overwrite mode. In overwrite mode, the
ADSP-2l7l can extend a host access by not asserting the HACK acknowledge until
the cycle is complete. The user can enable and disable overwrite-mode by setting and
clearing a bit in HSR7. Overwrite mode is described in more detail later in this
chapter.

49

An intelligent weight controller using Profibus
~

ELL[PS
The HDRs are not initialised during either hardware or software reset. The host can
write information to the HDRs before a reset, and the ADSP-2171 can read this
information after the reset is finished. During reset, however, HIP transfers cannot
occur; the HACK pin is deasserted and the data pins are tristated.

Because a host computer that requires handshaking must wait for an
acknowledgement from the ADSP-2171, it is possible to cause such a host to hang. If,
when the host has initiated a transfer, but has not yet received an acknowledgement,
the ADSP-2171 is reset, then the acknowledgement can not be generated, thus causing
the host to wait indefinitely.

There is no hardware in the HIP to prevent the host from writing a register that the
ADSP-2171 core is reading (or vice versa). If the host and the ADSP-2171 try to write
the same register at the same time, the host takes precedence. Simultaneous writes
should be avoided, however: since the ADSP-2171 and the host operate
asynchronously, simultaneous writes can cause unpredictable results.

7.3.1 Polled Operation

Polling is one method of transferring data between the host and the ADSP-2171.
Every time the host writes to an HDR a bit is automatically set in the lower byte of
HSR6. This bit remains set until the ADSP-2171 reads the HDR. Similarly, when the
ADSP-2171 writes to an HDR, a bit in the upper byte ofHSR6 (and the lower byte of
HSR7) is set. This bit is cleared automatically when the host reads the HDR.

For example, the ADSP-217l can wait in a loop reading an HSR bit to see if the host
has written new data. When the ADSP-2171 sees that the bit is set, it conditionally
jumps out of the loop, processes the new data, then returns to the loop. When
transferring data to the host, the ADSP-2171 waits for the host to read the last data
written so that new data can be transferred. The host polls the HSR bits to see when
the new data is available.

7.3.2 Interrupt-Driven Operation

Using an interrupt-driven protocol frees the host and the ADSP-2171 from polling the
HSR(s) to see when data is ready to be read. For interrupt-driven transfers to the
ADSP-2171, the host writes data into an HDR, and the HIP automatically generates
an internal interrupt. The interrupt is serviced like any other interrupt.

For transfers to the host, the ADSP-2l71 writes data to an HDR, then sets a flag
output, which is connected to a host interrupt input, to signal the host that new data is
ready to be transferred. If the ADSP-2171 passes data to the host through only one
HDR, then that HDR can be read directly by the host when it receives the interrupt. If
more than one HDR is used to pass data, then the host must read the appropriate
HSR(s) to determine which HDR was written by the ADSP-2l71.

50

An intelligent weight controller using Profibus

7.3.3 HDR Overwrite Mode

~
ELLIFJ"S

In most cases, the ADSP-2171 reads host data sent through the HIP faster than the
host can send them. However, if the host is sufficiently fast, ifthe ADSP-2171 is
busy, or ifthe ADSP-2171 is driven by a slow clock, there may be a delay in servicing
a host write interrupt. If the host computer uses a handshaking protocol requiring the
ADSP-2171 to assert HACK to complete a host transfer, the ADSP-2171 can
optionally hold off the next host write until it has processed the current one.

Ifthe HDR overwrite bit (bit 7 in HSR7) is cleared, and if the host tries to write to a
register before it has been read by the ADSP-2171, HACK is not asserted until the
ADSP-2171 has read the previously written data. The host processor must wait for
HACK to be asserted. As described earlier, however, there is a delay from when the
host writes data to when the status is synchronised to the ADSP-2171. During this
interval, it is possible for the host to write an HDR a second time even when the
overwrite-bit is cleared.

If the HDR overwrite bit is set, the previous value in the HDR is overwritten and
HACK is returned immediately. Ifthe ADSP-2171 is reading the register that is being
overwritten, the result is unpredictable. After reset, the HDR overwrite bit is set. If the
host does not require an acknowledge (HACK is not used), the HDR overwrite bit
should always be set, because there is no way for the ADSP-2171 to prevent
overwrite.

7.3.4 Software Reset

Writing a 1 to bit 6 ofHSR7 causes software reset ofthe ADSP-2171. If the ADSP­
2171 writes the software-reset bit, the reset happens immediately. Otherwise, the reset
happens as soon as the write is synchronised to the ADSP-2171 system clock. The
internal software reset signal is held for five ADSP-2171 clock cycles and then
released.

7.4 HIP Interrupts

HIP interrupts can be masked using either the IMASK register or the HMASK
register. Bits in the IMASK register enable or disable all HIP read interrupts or all
HIP write-interrupts. The HMASK register, on the other hand, has bits for masking
the generation ofread- and write-interrupts for individual HDRs, see figure 7.3. In
order for a read or write of an HDR to cause an interrupt, the HIP read or write
interrupt must be enabled in IMASK, and the read or write to the particular HDR must
be enabled in HMASK. HMASK is mapped to memory location Ox3FE8.

A host write-interrupt is generated whenever the host completes a write to an HDR. A
host read interrupt is generated when an HDR is ready to receive data from the ADSP­
2171-this occurs when the host has read the previous data, and also after reset,

51

An intelligent weight controller using Projibus
~

ELLIPs
before the ADSP-2171 has written any data to the HDR. HMASK, however masks all
HIP interrupts at reset. The read interrupt allows the ADSP-2171 to transfer data to
the host at a high rate without tying up the ADSP-2171 with polling overhead.
HMASK allows reads and writes of some HDRs to not generate interrupts. For
example, a system might use HDR2 and HDR1 for data values and HDRO for a
command value. Host write-interrupts from HDR2 and HDR1 would be masked off,
but the write interrupt from HDRO would be unmasked, so that when the host wrote a
command value, the ADSP-2171 would process the command. In this way, the
overhead of servicing interrupts when the host writes data values is avoided.

HMASK
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Host HDR5 Read

Host HOR4 Read

Host HDR3 Read

Host HOR2 Read

Host HDR1 Read

Host HDRO Read

INTERRUPT ENABLES
1=enable
O=disable

Figure 7.3: HMASK Register

Host HDRO Write

Host HDR1 Write

Host HDR2 Write

Host HDR3 Write

Host HDR4 Write

Host HDRS Write

The HMASK register is organised in the same way as HSR6; the mask bit is in the
same location as the status bit for the corresponding register. The lower byte of
HMASK masks host write-interrupts and the upper byte masks host read interrupts.
The bits are all positive sense (O=masked, 1=enabled). HMASK is mapped to the
internal data memory space at location Ox3FE8. At reset, the HMASK register is all
zeros, which means that all HIP interrupts are masked.

HIP read and write-interrupts are not cleared by servicing such an interrupt. Reading
the HDR clears a write interrupt, and writing the HDR clears a read interrupt. The
logical combination of all read- and write-interrupt requests generates a HIP interrupt.
Pending interrupt requests remain until all HIP interrupts are cleared by either reading
or writing the appropriate HIP data register. If the ADSP-2171 is reading registers that
the host might be writing, it is not certain that an interrupt will be generated. To
ensure that all host writes generate interrupts, you must make sure that the ADSP­
2171 is not reading the HDRs that the host is writing. While servicing the interrupt,
the status register can be read to determine which operation generated the interrupt
and whether multiple interrupt requests need to be serviced.

52

An intelligent weight controller using Projibus

HIP interrupts cannot be forced or cleared by software, as other interrupts can. The
HIP write-interrupt vector is location Ox0008. The HIP read interrupt vector is
location OxOOOC.

7.5 Booting through the HIP

The entire internal program RAM of the ADSP-2171, or any portion of it, can be
loaded using a boot sequence. Upon hardware or software reset, the boot sequence
occurs if the MMAP pin is O. If the MMAP pin is 1, the boot sequence does not occur.

The ADSP-2171 can boot in either of two ways: from external memory (usually
EPROM), through the boot memory interface, or from a host processor, through the
HIP. The BMODE pin selects which type of booting occurs. When the BMODE=l,
booting occurs through the HIP.

Booting through the HIP occurs in the following sequence:
1. After reset, the host writes the length of the boot sequence to HDR3.
2. The host waits at least two ADSP-2171 processor cycles.
3. Starting with the instruction which is to be loaded into the highest address of

internal program memory, the host writes an instruction into HDRO, HDR2 and
HDR1 (in that order), one byte each. The upper byte goes into HDRO, the lower
byte goes into HDR2 and the middle byte goes into HDR1.

4. The address of the instruction is decremented, and Step 3 is repeated. This
continues until the last instruction has been loaded into the HIP.

The ADSP-2171 reads the length ofthe boot load first, then bytes are loaded from the
highest address downwards. This results in shorter booting times for shorter loads.
The number of instructions booted must be a multiple of eight. The boot length value
IS gIven as:

I h
number of24- bit program memory words

engt = - 1
8

That is, a length of 0 causes the HIP to load eight 24-bit words. In most cases, no
handshaking is necessary, and the host can transfer data at the maximum rate it is
capable of. If the host operates faster than the ADSP-2171, wait states or NOPs must
be added to the host cycle to slow it down to one write every ADSP-2171 clock cycle.

The following example shows the data that a host would write to the HIP for a 1000­
instruction boot:

Data
Page Length (124 decimal)

Upper Byte of Instruction at 999
Lower Byte of Instruction at 999

53

Location
HDR3

HDRO
HDR2

An intelligent weight controller using Profibus E~LLIPS

Middle Byte of Instruction at 999

Upper Byte of Instruction at 998
Lower Byte of Instruction at 998
Middle Byte of Instruction at 998

Upper Byte of Instruction at 997
Lower Byte ofInstruction at 997
Middle Byte of Instruction at 997

•
•
•

Upper Byte of Instruction at 0
Lower Byte ofInstruction at 0
Middle Byte of Instruction at 0

HDRI

HDRO
HDR2
HDRI

HDRO
HDR2
HDRI

HDRO
HDR2
HDRI

A 16-bit host boots the ADSP-2171 at the same rate as an 8-bit host. Either type of
host must write the same data to the same the HDRs in the same sequence (HDRO,
HDR2, and HDR1). If a 16-bit host writes 16-bit data, the upper byte of the data must
be OxOO. The following example, loading the instruction OxABCDEF, illustrates this:

1st Write (to HDRO)
2nd Write (to HDR2)
3rd Write (to HDRl)

8-Bit Host
OxAB
OxEF
OxCD

16-Bit Host
OxOOAB
OxOOEF
OxOOCD

7.6 Used HIP Implementation

In chapter 9 we will discuss the host processor and its operation. An 8-bit host
processor will be chosen for our fruit grading system. This means that the HIP must
be configured to operate in 8-bit mode as well. The host processor uses a multiplexed
address/data bus, so the HIP is also configured to use this kind of architecture.

Since the ADSP-2171 's main task is filtering and analysing incoming signals, polling
the HIP to see whether or not the host has written new data to it, is not efficient. The
software is set up to use interrupts each time the host writes or reads from a HIP
register. When the ADSP-2171 writes a value into one of its HIP registers, the host is
interrupted by a flag output ofthe ADSP-2171. This allows the host processor to
operate in an interrupt-based manner as well.

To prevent simultaneous writes by the host and the DSP, the six data registers are
divided into two parts of three registers each as shown in figure 7.4. The lower three
registers are used for messages from the host to the DSP and the upper three registers
are used for messages from the DSP to the host. In this way, no collisions can occur
during normal operation.

54

An intelligent weight controller using Profibus
~

ELLIPS

HDRO
"HOST) HDR1
/

HDR2
/ '",

",,/YHDR3
/ DSPHDR4 1<
"HDRS

Figure 7.4: HIP Communication

The protocol that is used to establish a secure communication channel is
straightfOlward. HDRO is used as the command register in which the host processor
puts the command that must be executed. The other two registers, HDRl and HDR2,
are used to transfer data values if present. On the other side, the same layout is used.
HDR3 is the DSP status register in which the DSP puts its return messages. The other
two registers, HDR4 and HDR5, are used to transfer data values.

Each time the host writes a new command in HDRO, the DSP will generate an internal
interrupt. The DSP is configured in such a way that only HDRO will produce a HIP
write-interrupt. The DSP can answer in two ways: an acknowledgement by putting
HIP_ACK in HDR3, or an error message. If the DSP sends an acknowledgement, the
host can proceed with sending data values if they are required for that specific
command. Data values are set in HDRl and HDR2 and after setting them up, the host
puts aNEW_DATA command in HDRO. Each data transmission is acknowledged by
the DSP with a HIP_ACK return message. Transfers from the DSP to the host operate
in the same manner. The host acknowledges each transfer with a HIP_ACK in HDRO.
Figures 7.5a, 7.5b and 7.5c illustrate what happens during normal transmission and
transmissions in which an error occurs.

!HOSTI

Command in HDRO

External interrupt

HIP write-interrupt

Error number in HDRJ

Error handler

Figure 7.5a: Transfer from host to DSP with error.

55

An intelligent weight controller using Profibus E~
\HOSTI

Command in HDRO

External interrupt

Data in HDRI and 2

NEW DATA in HDRO

External interrupt

Data in HDRI and 2

NEW DATA in HDRO

End of transmission

HIP write-interrupt

HIP_ACK in HDR3

HIP write-interrupt

HIP ACK in HDR3

HIP write-interrupt

HIP ACK in HDR3

Figure 7.5b: Transfer from host to DSP, no errors.

!HOSTI

External interrupt

HIP ACK in HDRO

External interrupt

HIP ACK in HDRO

External interrupt

HIP ACK in HDRO

Message in HDR3

HIP write-interrupt

Data in HDR4 and 5

NEW DATA in HDR3

HIP write-interrupt

Data in HDR4 and 5

NEW DATA in HDR3

End of transmission

Figure 7.5c: Transfer from DSP to host, no errors.

56

An intelligent weight controller using Profibus E~
The external interrupt from the host is generated by one ofthe flag output pins of the
ADSP-2171. The external interrupt is cleared whenever the host reads a data value
from HDR3, HDR4 or HDR5. This read action from the host causes the DSP to
generate a HIP read interrupt. The HIP read interrupt routine clears the flag output pin
and clears the internal interrupt ofthe DSP by reading the contents ofHDR3, 4 and 5
and writing them to these registers again. Since writing to the HIP-registers is the only
way ofclearing the HIP read interrupt, this method is the only possibility ofclearing
that interrupt without destroying the contents of the HIP registers.

57

An intelligent weight controller using Profibus

8. PROFIBUS INTERFACE

8.1 Profibus ASIC

E~

Several ASICs (Application Specific Integrated Circuits) are available to take care of
the lowest Profibus layer. These dedicated chips drastically simplify the
implementation of the Profibus protocol. For our application, we need an ASIC that is
capable of communicating at speeds up to 12 Mbit/s. Furthermore, we wish to be able
to implement Profibus-DP, both cyclic and a-cyclic, in future versions of the fruit
grading system. Siemens AG offers the SPC-series (Siemens Profibus Controller) to
be used as Profibus interface. Both the SPC3 and the SPC4 are suited for our
application, but the software provided by Siemens does only include cyclic Profibus­
DP, not the a-cyclic extensions. However, another company does support a-cyclic
Profibus-DP communications in software for the SPC4, so this ASIC will be used in
the weight controller and other Profibus slave devices.

The main features of the SPC4 are:
• complete layer 1 fulfilling
• filtering of erroneous telegrams
• bit rates from 9.6 kbit/s up to 12 Mbit/s
• interface to 8-bit microprocessors using multiplexed or separate data/address bus
• communication with the microprocessor through 1 kilobytes of Dual Ported Ram
• indication buffer to indicate which SAP has received a service request

Additional hardware is required to attach the SPC4 to the Profibus cable. A standard
interface connection described in all Profibus specifications is sufficient to perform
this task. The Profibus signals are not directly fed to the weight controller but are
directed through opto-couplers. Ifby accident hazardous voltages appear on the
Profibus cable, only the opto-couplers will be damaged and not the more expensive
SPC4.

8.2 SPC4 Software

The software for the SPC4 is supplied by TMG i-tec GmbH. It consists of several
modules in the C language, taking care of the FDL-layer (layer 2) and all Profibus-DP
and DPE functions. The user can rapidly build its own application by initialising some
variables and calling the proper functions in the various modules.

Since the first version of the weight controller will not use any DP or DPE functions
but accesses the FDL-layer directly, we only need the basic FDL-functions. These
functions are not described in the manuals, so a brief overview is presented here:
• void sap_activate(byte sap, sap_verwaltung *sap_config);

used to activate a service access point (SAP)
• void sap_xaccess(byte sap_nr, byte access, byte sap);

used to change the access to a SAP

58

An intelligent weight controller using Profibus E~
• puffer *get_sapJ>uffer (byte sap);

returns a pointer to a buffer (German: puffer) in which the user can fill in the
data that has to go to the master computer. The user has to fill in the following
items:
• puffer. modus Transmit mode (MULTIPLE or SINGLE) and

priority (LOW or HIGH).
• puffer .laenge Length of the data in lltpdu.
• puffer .1liJ>du [245] The user data, depends on the application.

• fdl_reply_update (puffer *point);

sends the buffer, filled by the user, to the master computer and frees the buffer
space for future use. The buffer has to be requested first with the
get_saPJ>uffer function.

The puffer type contains the following items:
typedef struct pufferinhalt
{

void *next;

byte reservedlli;

byte fdl_kr;

byte modus;

byte laenge;

byte pa;

byte osap;

byte psap;

byte lliJ>du[245];
puffer;

linked list of empty buffers
forDPE only
not used
transmit mode (MULTIPLE, SINGLE) and
priority (LOW, HIGH)
length of data in lli---'pdu
remote address
local SAP
remote SAP
user data

The sap_verwaltung type for activation ofa SAP is defined as:
typedef struct
{

byte access;

byte access_sap;

byte akt_dienste;

byte max_fdl_laenge_s;

byte max_fdl_laenge_r;

queue leer_schlange;

byte ChipSegment;

pub_list *publisher;
sap_verwaltung;

remote FDL address access or ALL
remote FDL sap access or ALL
activated services
maximum length of send buffer
maximum length of receive buffer
queue of empty buffers
page in SPC4
not used

The user application should check repeatedly whether or not an indication for the used
SAPs has been received. If the indication is received, the SPC4 has already sent the
previously filled buffer. The user can now ask for a new buffer with get_sapJ>uffer,

fill it with the requested data and put it in the SPC4 with the fdl_reply_update

function. Next time the master polls the device with this SAP, the reply is transmitted.

59

An intelligent weight controller using Profibus

9. HOST OPERATION

9.1 Host Processor

E~. LLIPS

The host processor has to communicate with both the DSP and the SPC4. Basically, it
doesn't do much more than passing messages between those two components. One
could wonder if the DSP would not be able to communicate with the SPC4 directly.
Didn't figure 6.17 show us that the DSP uses less than 6% of its CPU power under
normal operating conditions? Indeed, the CPU power is sufficient to perform this
extra task, but the ADSP-2171 has a 16-bit architecture and cannot write bytes to a
memory location. This means that the Dual Ported Ram of the SPC4 cannot be
accessed without special tricks. It is cheaper and easier to use an extra micro
controller instead.

The VO-card uses an 80C32 micro controller to communicate with the SPC4 and to
switch the relays. Since we don't like to master several development environments,
we will choose the 80C32 for the weight controller as well. It is an 8-bit micro
controller which main features are (see also figure 9.1):

• Fully compatible to standard 8051 micro controller
• Versions for 12/24/40 MHz operating frequency
• 256 x 8 RAM
• Four 8-bit ports
• Three 16-bit timers / counters (timer 2 with up/down counter feature)

• USART
• Six interrupt sources, two priority levels
• Power saving modes

Vee
~

XTAL1
XTAL2

RESET

ALE/PROC

PSEN

rA/vpp

RA~

TImer 0

Timer 1

Timer 2

Interrupt Unit

Serial Channel
(USART)

Figure 9.1: 80C32 Diagram

60

Port 0
8-Bit Digit. I/O

Pori 1
8-Bit Digit. I/O

Port 2
8-Bit Digit. I/O

Port 3
8-Bit Digit. I/O

An intelligent weight controller using Profibus
~

ELLJPS

With the EA input connected to ground, all program fetches are directed to external
memory. Up to 64 kilobytes can be addressed in this way_ Apart from this external
memory, 256 bytes of internal memory are present as well as 128 bytes in a special
function register area.

9.2 Memory Interface

The host processor will need some non-volatile memory that can store its program.
Apart from that, ordinary static RAM (SRAM) is necessary for storing variables. We
could use an EEPROM as program memory, but this would be inconvenient with
respect to software updates. For a fruit grading system abroad this would mean that a
new EEPROM has to be shipped every time the software is changed. Flash memory
has the advantage that the host processor itself can program it. After power on, the
host will transfer its program from flash memory to SRAM and run from SRAM
afterwards. If the master computer sends new software, the host processor will store it
in flash memory, from which it can boot next time or right away. This results in a very
flexible upgrade service, since the actual program code can be send to the master
station over the phone line using two modems.

In addition, the DSP software can be stored in the same flash memory. The host
processor can send it through the HIP in the boot sequence as described in paragraph
7.5. No extra hardware is needed to boot the DSP in this way.

The host processor can perform all of the above actions if it is able to choose from one
of three memory configurations, shown in figure 9.2. The left side in each figure is
program memory, the right side is data memory.

FFF

000

0000

cooo

DSP-Boot/Debug

F

GLUE

Flash-
bank

8

RAM RAM

FFFF FFFF

GLUE GLUE
F cooo F
L L
A A
S 8000 S
H H

0 RAM RAM

0000 0000

Boot Normal

Figure 9.2: Host Processor Memory Configurations

After power-on the host will start in the boot-configuration, in which it will run its
program from flash-memory. The flash memory is 128kB and only the lower 64kB
will be used in this state. The processor will start running from address 0 and this is
where its "survival code" is located. This piece of code allows the host to download
new software over the Profibus. In this way, the system will always run, even ifby
accident the rest of the host software is erased.

61

An intelligent weight controller using Profibus
~

ELLIPS

The upper 64kB of the flash memory is used in the normal-configuration. This allows
the host to run a different program by simply switching the memory configuration.
The lower 64kB of the flash-memory can for example be filled with the "survival­
code" and the DSP software, while the actual weight functions are located in the upper
64kB of the flash-memory.

The third memory mode is the DSP-Boot/Debug mode. In this mode, the program and
data memory are the same 32kB ofRAM and a l6kB bank: of flash-memory can be
mapped in data memory. The DSP software in flash-memory can therefore be read
entirely and sent through the HIP to the ADSP-2l71. Furthermore, the entire flash­
memory can be written to update the host software. This mode is also used for debug
purposes, since the debugger uses some se1f-modifying-code tricks that cannot be
employed with flash-memory. Note that in this mode the program must first be copied
from flash-memory to RAM before switching.

The memory mode can be written to and read from a special register, stored in the
Glue logic. The flash bank: is selected with a second write-only register in the Glue
(see paragraph 9.3).

Bus arbitration is necessary, since only one multiplexed data/address bus is used to
address the flash memory, the SRAM, the SPC4 and the HIP. Furthermore, the
different memory modes imply that program instructions are fetched from both RAM
and flash-memory. The selection of the appropriate chips is done by the Glue logic.

9.3 Glue Logic

The Glue logic is the piece of hardware that makes all the other hardware work in
harmony. It "glues" together all the individual memory components, processors and
other peripherals. For the weight controller, its functions are:
• controlling memory addressing
• switching the multiplexer
• starting and controlling AID-conversions
• supplying a 12 MHz clock signal for the DSP

These tasks can be accomplished by using an FPGA and programming it with the
VHDL-language. For our purpose, the Quick-Logic QL8x12B, QL12x16B and the
newer QL2003 can be used. These FPGAs are pin-compatible and differ only in size
and price.

The 12 MHz clock signal for the DSP is simply derived from the 24 MHz clock signal
coming out of the SPC4. Switching the multiplexer is done by switching the
multiplexer on and off at a rate predicted by one of the DSP serial port clocks. Ifwe
wish to switch the multiplexer at 8 kHz (1 kHz sample rate for each channel), then the
DSP should be programmed to produce a 16 kHz clock signal. The speed duplication
is used to switch the multiplexer off first during one clock period and on again at the

62

An intelligent weight controller using Profibus
~

ELLIPS
next channel for the next clock period. In this way we are sure that there are never two
bridges connected to the AID-converter at the same time.

When the multiplexer is switched to the next channel, the AID-conversion is started.
The AID-converter will send the result automatically to a serial port of the DSP after
the conversion has taken place. The state machine for controlling the AID-conversions
can be found in Appendix E.
Memory management is done by looking at the value of two memory-mapped
registers: Memmode and Flashbank. The possible values ofMemmode are:

00
01
10
11

Boot mode
Normal mode
DSP-Boot/Debug mode
undefined

The upper six bits of this register are unused and always zero. The Flashbank register
selects which flash bank is mapped in the DSP-Boot/Debug mode. Its value can range
from 0 to 7, so only the lower three bits are used.

The upper 16kB ofthe data-memory is reserved for the Glue logic and its organisation
is as in table 9.1.

Table 9.1: Glue Loeic Memorv Oreanisation
Address Function

EOOO-E5FF SPC4 dual ported RAM
FOOO Memmode register
FOOl Flashbank register (write-only)

FOlO-F017 HIP registers

According to the address and the memory mode, either the SPC4, flash, SRAM or
HIP is selected. The complete VHDL-code for the Glue logic can be found in
Appendix E.

9.4 80C32 Software

As mentioned previously, the 80C32 basically passes incoming commands from the
Profibus to the DSP. We could therefore simply take the command set defined for the
Host Interface Port and use it again for the Profibus. This would mean that the already
heavily occupied master station has to take care of switching to the proper DSP
runlevel and all the low-level commands. The performance ofthe master would
degrade while the weight controller has CPU power left, both on the DSP and the
80C32. Shifting the low-level tasks to the 80C32 seems more logical. The master
station can send higher-level commands like "cup number 273 is on the bridge,
measure its weight", while the 80C32 has to instruct the DSP to go to the proper
runlevel and start the measurement.

In this manner, the master station has only five commands to choose from:

63

An intelligent weight controller using Profibus

• Get a curve
• Initialise delays, channels and sample frequency
• Initialise the FIR filter
• Start a measurement
• Abort all measurements

~.
ELLlPS

Besides that, it can receive one of three messages from the weight controller:
• An error message
• A result from a weight measurement
• A result from a curve measurement

The precise command description can be found in Appendix G. One SAP is reserved
for the weight controller. The first byte of the user data unit is defined to be the
command or the return message. All other bytes depend on the specific command.
Whenever a message for our SAP is received, an indication is set. This indication is a
pointer to a puffer type as described in paragraph 8.2. In the main loop of the 80C32
program we call a function that checks whether or not the indication is received. If
this is true, appropriate commands are send to the DSP, depending on the first byte of
the data unit.

The DSP will give an interrupt each time it sends a message. This can be an
acknowledge, an error or a message that weight or curve results are coming up. To
keep track of the data stream coming from or going to the DSP, the 80C32 uses a state
machine. In each state it knows what data it is expecting and what it has to do with it.
After all data is processed, it will enter the IDLE state until a new command is
received. Transmission of a frame to the master station is handled by the SPC4. The
80C32 can only use the FDL functions described in paragraph 8.2 to update the reply
message in the SPC4's Dual Ported Memory. To avoid overwriting a message that has
not been sent yet, the 80C32 may only update the reply immediately after receipt of an
indication. At that time, the previous reply has already been send by the SPC4 and
updating it is consequently safe.

64

An intelligent weight controller using Profibus E~
10. CONCLUSIONS & RECOMMENDATIONS

10.1 Conclusions

We designed a weight controller that consists of the following components:
./ Bridge excitation circuitry
./ Bridge amplifier
./ Multiplexed ND-converter
./ Digital Signal Processor
./ 80C32 host-processor
./ Profibus interface
./ Glue logic
All of these components are described and a hardware design of the weight controller
has been made. The software for both the DSP and the 80C32 has been written and
simulated. A VHDL program has been written and simulated for the Glue logic in
order to let all weight controller components work together.

Two methods for weight measurements were opposed. The first one is filtering the
bridge signals with a FIR-filter and averaging ten filtered samples. This method was
tested on an Agra machine and resulted in a weight precision of 2 grams. The second
one is analysing the damping ratio and oscillation frequency of a bridge signal. This
can only be done on machines with more sophisticated mechanical behaviour than the
Agra machines.

The communication protocol between the DSP and the 80C32 has been implemented
and simulated and the various messages have been described. The Profibus protocol
has been described in detail as well, but since it is performed by the SPC4 in hardware
and the weight controller's hardware is not assembled yet, it still has to be tested.

10.2 Recommendations

Future versions of the weight controller will have to be able to communicate via the
Profibus-DP protocol to ensure proper installation in other Profibus-DP networks. For
the same reason it is useful to implement the a-cyclic Profibus-DPE protocol, so that
slaves can be polled more than once in a poll-cycle. This is necessary for the desired
timing specifications as described previously.

Both weight methods have to be tested on data from a machine other than one from
Agra. The desired precision of one gram might then be obtained with the "averaging"
method. The method using damping ratio and oscillation frequency might give even
better results.

65

An intelligent weight controller using Profibus

11. REFERENCES

~
ELL1PS

[1] David, C.F.L.
DESIGN OF AN ACTUATOR-CONTROLLER USING PROFIBUS-DP.
Infonnation and Communication Systems Section, Faculty of Electrical
Engineering, Eindhoven University of Technology, 1997.

[2] Popp, M.
THE RAPID WAY TO PROFIBUS-DP.
Profibus Nutzerorganisation, 1997.

[3] TMS320C54X DSP APPLICATIONS GUIDE, Preliminary Revision.
Texas Instruments Incorporated, 1996.

[4] DIGITAL SIGNAL PROCESSING APPLICATIONS USING THE
ADSP-2100 FAMILY, Volume 1.
New Jersey: Prentice Hall, 1992.

[5] ADSP-2100 FANIILY USER'S MANUAL, 3nl edition.
Norwood: Analog Devices Incorporated, September 1995.

[6] ADS7809, 16-BIT lOllS SERIAL CMOS SAMPLING ANALOG-TO­
DIGITAL CONVERTER.
Tucson: Burr-Brown Corporation, 1996.

[7] Franklin, G.F. and J.D. Powell, A Emami-Naeini
FEEDBACK CONTROL OF DYNAMIC SYSTEMS, 3rd edition.
New York: Addison-Wesley, 1994.

[8] Borghouts, AN.
INLEIDING IN DE MECHANICA, 3nl edition.
Delft: Delftse Uitgevers Maatschappij, 1976.

[9] Ritzerfe1d, J. and H. Hegt, P. Sommen, H. van Meer
REALISERING VAN DIGITALE SIGNAALBEWERKENDE SYSTEMEN.
Faculty of Electrical Engineering, Eindhoven University of Technology, 1993.
Collegedictaat nr. 5750.

[10] DSP MICROCOMPUTER ADSP-2171/ADSP-2172/ADSP-2173, Revision A
Norwood: Analog Devices Incorporated, 1995.

66

An intelligent weight controller using Profibus

12. ACKNOWLEDGEMENT

E~. LLIPS

I would like to thank everyone at Ellips for their help and support during my
graduation period. In particular Ivo Kleuters for his help with test equipment and
demolishing the Agra-machine, Harry Stox for his Profibus and software hints and
tips, Jean-Paul Smeets for all the hardware clues and suggestions, Sandra de Groot for
several administrational jobs and the cookies, Erwin Bakker for the graduation place,
Camile David for his work on the VO-card, Tiago Gons for the racing game (without
fun no quality!) and Roland Scheffer for his miraculous soldering work and Orcad­
knowledge.

Furthermore I would like to thank Ronnie te Lintelo from EurodislTexim Electronics
for his help with choosing hardware components and delivering samples without
delay and professor Stevens for his comments on this graduation work.

67

An intelligent weight controller using Profibus

ApPENDIX A: NOMENCLATURE

~
ELLIPS

.
AID-converter - Analog to Digital converter, converts analogue signals to discrete

digital levels.
ALU - Arithmetic and Logical Unit, provides a standard set of arithmetic and logical

functions such as add, subtract, negate, AND, OR, NOT, etc.
ASIC - Application Specific Integrated Circuit.
Digital Signal Processor - Microprocessor optimised for digital signal processing and

other high-speed numeric processing applications.
DSP - See Digital Signal Processor.
FC - Frame Control octet, indicates the frame type, the function and control

information to prevent loss and multiplication of messages.
FDL - Fieldbus Data Link layer, layer 2 of the Profibus model.
FPGA - Field Programmable Gate Array, array oflogic cells that communicate with

one another and with I/O via wires within routing channels.
Frame - Sequence ofUARTs that conveys a message.
GAP - The address range between This Station (TS) and the address of the Next

Station (NS). See also TS and NS.
GAPL - GAP List, list of addresses of all slave stations in the GAP.
HDR - HIP data register, one of the memory locations of the Host Interface Port. See

also HIP and HSR.
HIP - Host Interface Port, parallel I/O port that allows a processor to be used as

memory-mapped peripheral of a host computer. See also HDR and HSR.
HSR - Host Status Register, one ofthe status registers of the Host Interface Port. See

also HIP and HDR.
MAC - Multiplier/Accumulator, provides high-speed multiplication, multiplication

with cumulative addition, multiplication with cumulative subtraction, saturation
and clear-to-zero functions.

NS - Next Station, the master station to which the token will be transmitted.
Poll List - List that indicates in which order the slaves will be polled by the master

station.
Profibus - Process Field Bus, German field bus standard
Profibus-DP - Decentralised Periphery, Profibus standard for high-speed data

communication required in factory automation and building automation.
PS - Previous Station, the master station from which the token is received.
SD1-frame - Frame of fixed length without a data field.
SD2-frame - Frame with variable data field length.
SD3-frame - Frame with fixed data field length.
Sport - Serial port ofthe Digital Signal Processor, SportO refers to serial port zero and

Sport1 refers to serial port 1.
TAIR - Transmission time of the response frame.
TENC - Time between two polls of the encoder.
TID - Idle Time, time that elapses between response and new request.
TMC - Message Cycle Time, the time that elapses between two consecutive

transmissions of a Profibus master station.
TSDR - Station Delay Time ofResponders, time that elapses between request and

68

An intelligent weight controller using Profibus
~

ELLIFS

response.
TSiR - Transmission time of the action frame.
TSR - System Reaction Time, the amount of time needed to poll all slaves.
TTD - Transmission Delay Time, time that elapses on the transmission medium

between transmitter and receiver when a frame is transmitted.
Token - Symbolic indication to denote the master that has the right of access to the

Profibus.
TS - This Station, the address of the master station under consideration.
UART-character - Universal Asynchronous Receiver/Transmitter character.
VHDL - Very high speed integrated circuit Hardware Description Language, language

to describe and build hardware logic.

69

An intelligent weight controller using Profibus
~

ELLIPS

APPENDIX B: PROFIBUS PERFORMANCE

Equations:
T SR = TMC,TOTAL + mp· TMC,RET

T MC = T S/ R + T SDR + T A / R + TID + 2·TTD

T Mc, TOTAL = nr· TMC,RELAY + TMC,WEIGlIT + In:1, TMC,ENCODER

T.

Assume:

T MC RET = TMC,RELAY

mp =

1 for 187.5 kbit/ s, 500 kbit/ sand 1.5 Mbit/ s

2 for 3 Mbit / s

3 for 6 Mbit / s

4 for 12 Mbit/ s

nr = 28
np = 30

{
I43 bits for the relay controller and the weight controller

TS
/
R = 66 bits for the encoder

{

II bits

TA/R = 143 bits

319 bits

for the relay controller

for the encoder

for the weight controller

Description:
This simulated Profibus system consists ofone master and 30 slaves ofwhich
one is a weight controller, one an encoder and 28 are I/O-cards. The Poll List
of the master station is constructed in such a way that it will poll n slaves, then
the encoder, n other slaves, the encoder again, and so on. Decreasing n will
enhance the encoder resolution, but reduce the System Reaction Time TSR'

Tables B1 and B2 on the next page show calculations for several values ofn
and different bit rates. Greyed values are acceptable for the fruit grading
system.

70

An intelligent weight controller using Profibus
~

ELLIPS

Table BI: System Reaction Time T~R (ms)
187.5 kbit/s 500 kbit/s 1.5 Mbit/s 3 Mbit/s 6 Mbit/s 12 Mbit/s

n=l 100.4 47.2 17.8 10.0 7.2 5.5
n=3 64.5 30.6 11.6 6.6 4.8 3.7
n=5 57.4 27.3 10.3 5.9 4.3 3.4
n=8 53.8 25.6 9.7 5.6 4.1 3.2
n=10 52.0 24.8 9.4 5.4 4.0 3.1
n=15 50.2 23.9 9.1 5.2 3.8 3.0

Table B2: Encoder Resolution T I<NC (ms)
187.5 kbit/s 500 kbit/s 1.5 Mbit/s 3 Mbit/s 6 Mbit/s 12 Mbit/s

n=l 3.5 1.6 0.6 0.3 0.2 0.2
n=3 6.5 3.1 1.2 0.7 0.5 0.4
n=5 9.6 4.5 1.7 1.0 0.7 0.6
n=8 13.4 6.4 2.4 1.4 1.0 0.8
n=10 17.3 8.3 3.1 1.8 1.3 1.0
n=15 25.1 12.0 4.5 2.6 1.9 1.5

71

>
~
~
t'fj

Z
t:'
1-4

><
n ~

::l
••

::l

> ~--tj ~.

en ::l....

"" ~

00 ~

QQ'a ;::..
~

....
~..., <)
::l
~1-4 <)

~ --~
1-4 ""I

Z ;;:
c..,....

CJ ::l
Oq

n ~

0 ~c::r-

(Z ;;:
c..,

t:'
1-4

I-i

~
1-4

0
Z
(f)

~.

IJ).'

13

>,
,-, ,. \

\ ".\ ~\-------I-----+-~"...---.....,Ir----...,,--~

\ ., ,__________,-:" ;~ ..,.----I--+_---..n..----II--_;'.

/1' ,I

----------..\ ~\--------+--"',..----,,...---...,Jr-----...r-...., \, ,, ,
___________--:" i'-\ +_--J'..... n'-- ..IL n ..__~

;" ~:

nny./;! [7//(
I l I

I 01 .'

~ \ \ \" \ ". ,
'\ '" \ ,

Ir----'". ". "\ "\"/ ~ ", .' I I" ,.' /-1_----+--------------...' ,:.'+<-..L.L..L.L-'-'-'-'U-'--_
, ,. I ,

t 4; t s

rrrrrr\l'·. ··'t"'T"TTTT.,..,..,..rT'TiI--t----+--------------\" \,0:-------------------------
\. \.

.~ ;-., ,, ,, ,
,...--'--+-----+---------------t ..'-------------------------"\, ,, ,

\ ,
\ ,, ,, ,

J'-------------:' ,;.,'-----------------------

RiC

SYNC

TAG

DATA

EXTERNAL
DATAClK

,.......,
0\.........

An intelligent weight controller using Profibus

ADS7809 Timing Specifications

SYMBOL DESCRIPTION MIN TYP MAX UNITS

11 Convert Pulse Widlh 40 6000 OS

12 BUSY Delay 65 os

13 BUSY LOW 8 IlS
--

4 BUSY Delay alter 220 os
End of Conversion

15 Aperture Delay 40 os

tE; Conversion Time 7.6 8 ~s

t7 Acquisition Time 2 ~

to+h Throughput Time 9 10 ~s

Ig RiC lOW to OATAClK Delay 450 os

19 OATAClK Period 440 ns

t lO Data Valid to DATACLK 20 7S os
HIGH Delay

tll Data Valid alter 100 125 os
DATAClK LOW Delay

t12 External OATAClK 100 ns

113 External DATAClK HIGH 20 os

1,.\ External DATACLK LOW 30 os

t15 DATAClK HIGH 20 t12 +S os
Setup Time

tu; RIC 10 CS Setup Time 10 os

1,7 SYNC Delay After 15 35 os
DATACLK HIGH

tHI Dala Valid Delay 2S 5S os
-

119 CS to Rising Edge Delay 2S os

120 Data Available after CS LOW 6 11$

73

~
ELLlpS

An intelligent weight controller using Profibus

ApPENDIX D: FIR FILTER SOURCE

/*

~
ELLIPS

This function computes the (FIR) filtered response of a given
input sample. The function returns the filtered value of the input.

H. Kester, June 11, 1997

- uses non-circular state-buffer

int firfilt(int sample, int coeffs[], int state[], int taps);
*/

#include <asm_sprt.h>

. MODULE

. ENTRY

function_entry;
save_reg;

MRO=AR;
MRl=AYl;

/* Function prologue
/* Save registers

/* Hold input sample
/* Hold coeff pointer

*/
*/

*/
*/

readsfirst(SRO) ;
IO=SRO;
AYl=readsnext;

AR=AYl;
AR=SRO+AYl;
Il=AR;

I6=Il;
AR=DM(Il, Ml);
SRl=MXO, AR=PASS AR;
IF EQ AR=PASS SRO;

Il=AR;
DM (Il, Ml) =MRO;

/* Fetch pointer to state array */
/* Store for calculations */
/* Fetch number of TAPS */

/* Load number of TAPS */
/* Calculate pointer address */
/* Store for reading */

/* Hold address of state ptr */
/* Load state pointer */
/* Test for first invocation */
/* Point to beginning of array */

/* Point to current location */
/* Place input into delay line */

AYO=I6; /* Load address of state ptr */
AR=Il; /* Load current pointer */
AR=AR-AYO; /* Are they equal? */
AR=Il; /* If not, still use old ptr */
IF EQ AR=PASS SRO; /* Else, point to beginning */
MRO=AR; /* Copy pointer for write */
AR=AYl-l, DM(I6,MS)=MRO;/* Write new pointer into state */
I6=MRl; /* Point to coeff array */
SRO=MSTAT; /* Save mode for later */
DIS M MODE; /* Enter integer mode */
MS=l;- /* Set to proper value */
MR=O, MXO=DM(IO,Ml), MYl=PM(I6,MS);/* Load delay, coeff */
CNTR=AR; /* LOOp TAPS-l */
DO __convolution UNTIL CE;

__convolution: MR=MR+MXO*MYI (SS), MXO=DM(IO,Ml), MYl=PM(I6,MS);
MR=MR+MXO*MYI (RND);
IF MV SAT MR;
MXO=SRl, AR=PASS MRl; /* Restore MXO for return */
MSTAT=SRO; /* Restore old mode */
restore_reg; /* Restore registers */
exit; /* Function epilogue */

.ENDMOD;

74

An intelligent weight controller using Profibus

ApPENDIX E: VHDL SOURCE

State transitions occur on the rising
edge of the data clock of the AD­
Converter.

Counter = 20

~
ELLIP,s

Figure £1: State Machinefor AD-Converter Control

Profibus weight card glue logic

Revision history
14-08-1997 first version
21-08-1997 addition of MMU

library ieee;
use ieee.std logic 1164.all;
use ieee.std=logic=unsigned.all;

entity gwmemdec is
port (

ale
psen
rd_inn
wrn
clk_in
sample_clk
ad_dclk
rst_80c32
sync
ad_busyn
addr_in_7_0

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std logic;
in std=logic;
in std logic;
in std=logic;
in std logic;
in std-logic;
inout ~td_logic_vector(7 downto 0);

75

An intelligent weight controller using Projibus
~

ELLLPS

) ;

end gwmemdec;

addr_in_1S_12
addr_out_7_0
addr out 16 14- --
rd_outn
flash csn
ram_csn
spc4_csn
hseln
ad csn
ad rc
mux out
clk_dsp

in std_Iogic_vector(lS downto 12) ;
out std logic vector(7 downto 0);
out std-Iogic-vector(16 downto 14) ;
out std=:logic--;
out std_Iogic;
out std logic;
out std-Iogic;
out std-Iogic;
out std-Iogic;
out std-Iogic;
out std-Iogic vector(7 downto 0);
out std=:IOgic-

architecture memdec_arch of gwmemdec is

(channelO off, channelO on,channell off, channell on,
chan~el2 off, cha~el2 on,cha~eI3 off, cha~el3 on,
channeI4-off, channeI4-on, channelS-off, channelS on,
channeI6-off, channeI6-on,channeI7-off, channeI7-on);

(ad idle, ad wait, ad rc low~ ad start conY, ad end start,
- ad_busY_Iow , ad=:transmit, ad_end=:conv); - -

constant spc4_base: std logic vector (lS downto 0) .- X"EOOO";
constant glue_base: std=:logic=:vector (lS downto 0) .- X"FOOO";

-- local signals
signal latched addr 7 0 : std logic vector(7 downto 0);
signal memmode-: std_logic_vector(l-downto 0);
signal flash_bank: std_Iogic_vector(2 downto 0);
signal mux-present_state, mux_next_state : mux_state_type;
signal ad-present_state, ad_next_state : ad_state_type;
signal count_clk_dsp : std_Iogic;
signal ad_flag : std_Iogic;
signal count_ad : std_Iogic_vector (4 downto 0);

begin

-- mux outputs
mux_state-proc: process (mux-present_state)
begin
case mux-present_state is

when channelO off =>

ad_flag <= '0';
mux_out <= "00000000";
mux_next_state <= channeIO_on;

when channelO_on =>

ad_flag <= '1';
mux_out <= "00000001";
mux_next_state <= channell_off;

when channell_off =>

ad_flag <= '0';
mux_out <= "00000000";
mux_next_state <= channell_on;

when channell_on =>

ad_flag <= '1';
mux_out <= "00000010";
mux next state <= channel2 off;

when chann~2 off => -

ad_flag <= '0';
mux_out <= "00000000";
mux_next_state <= channeI2_on;

when channel2 on =>
ad_flag <= -, l' ;
mux_out <= "00000100";
mux_next_state <= channeI3_off;

when channel3_off =>

ad_flag <= '0';

76

An intelligent weight controller using Profibus

mux_out <= "00000000";
mux_next_state <= channel3_on;

when channel3 on =>

ad_flag <= '1';
mux_out <= "00001000";
mux next state <= channel4_off;

when c-hanne""l4_off =>

ad_flag <= '0';
mux_out <= "00000000";
mux_next_state <= channel4_on;

when channel4_on =>

ad_flag <= '1';
mux_out <= "00010000";
mux next state <= channelS off;

when channels_off => -

ad_flag <= '0';
mux_out <= "00000000";
mux next state <= channelS_on;

when ~hanne""lS_on =>

ad_flag <= '1';
mux_out <= "00100000";
mux_next_state <= channel6_off;

when channel6 off =>

ad_flag <= '0';
mux_out <= "00000000";
mux_next_state <= channel6_on;

when channel6_on =>

ad_flag <= '1';
mux_out <= "01000000";
mux_next_state <= channel7_off;

when channel7_off =>

ad_flag <= '0';
mux_out <= "00000000";
mux_next_state <= channel7_on;

when channel7 on =>

ad_flag <= '1';
mux_out <= "10000000";
mux_next_state <= channelO_off;

end case;
end process;

-- state transition for mux
mux_state_change: process (sample_clk, sync)
begin
if sync = '0' then -- mux reset

mux-present_state <= channelO_off;
else

if (sample_clk'event and sample_clk = '1') then
mux-present_state <= mux_next_state;

end if;
end if;

end process;

-- control AID-conversions
ad_state-proc: process (ad-present_state, ad_busyn, ad_flag, count_ad)
begin

case ad-present_state is
when ad idle =>

ad_rc <= '1';
ad csn <= '1';
if-ad_flag = '1' then

ad_next_state <= ad_wait;
else

ad_next_state <= ad_idle;
end if;

when ad_wait =>

ad_rc <= '1';
ad_csn <= '1';
ad_next_state <= ad_rc_low;

when ad_rc_low =>

ad_rc <= '0';
ad_csn <= '1';

77

E~LLIPS

An intelligent weight controller using Profibus

ad_next_state <= ad_start_conv;
when ad_start_cony =>

ad_rc <= '0';
ad_csn <= '0';
ad_next_state <= ad_end_start;

when ad_end_start =>

ad_rc <= '1';
ad csn <= '1';
if-ad_busyn = '0' then

ad_next_state <= ad_busy_Iow;
else

ad_next_state <= ad_end_start;
end if;

when ad_busy_Iow =>

ad_rc <= '1';
ad_csn <= '1';
if ad busyn = '1' then

ad=next state <= ad_transmit;
else

ad_next_state <= ad_busy_low;
end if;

when ad_transmit =>
ad_rc <= '1';
ad csn <= '0';
if-count_ad = "10100" then -- wait 20 ad_dclk cycles

ad_next state <= ad_end_conv;
else

ad next state <= ad_transmit;
end if; -

when ad_end_conv =>

ad_rc <= '1';
ad csn <= '1';
if-ad_flag = '0' then

ad_next_state <= ad idle;
else

ad_next state <= ad_end_conv;
end if;

end case;
end process;

-- ad counter
ad_count-proc: process (ad_dclk, ad-present_state, sync)
begin
if sync = '0' then

count_ad <= "00000";
else

if (ad_dclk'event and ad dclk = '1') then
case ad-present_state is

when ad_transmit => count_ad <= count ad + 1;
when others => count_ad <= "00000";

end case;
end if;

end if;
end process;

-- ad state transitions
ad state change: process (ad_dclk, sync)
begin -
if sync = '0' then

ad-present_state <= ad_idle;
else

if (ad_dclk'event and ad_dclk = '1') then
ad-present_state <= ad_next_state;

end if;
end if;
e~d process;

-- DSP clock must run at half the clk_in rate
clock_dsp-proc: process (clk_in, rst_BOc32)
begin

if rst_BOc32 = '1' then
count_clk_dsp <= '0';

78

E~LLIPS

An intelligent weight controller using Profibus
~

ELLIPS
else

if (clk_in'event and clk in = '1') then
count clk dsp <= not count_clk_dsp;

end if;- -
end if;

end process;

'0' else '0';

Memory control --

address latch
addr_Iatch-Froc: process (ale, addr_in_7_0)
begin
if ale = '1' then

latched addr 7 ° <= addr_in_7_0;
end if; - - -

end process;

-- assert rd_out if either psen or rd in is asserted
rd outn <= not (not psen or not rd_i~);

"OOOOO"}} then

'O') then
glue_base(15 downto 12)) and

(latched addr 7 0(4 downto D)
<= addr_in_7_0(1 do~to 0):memmode

end if;
end if;

end if;
end process;

- - memmode write
memmode_wr-Froc: process (wrn, rst 80c32)
begin
if rst_80c32 = '1' then

memmode <= "00";
else

if (wrn'event and wrn =
if «addr_in_15_12

- - memmode read
memmode_rd-Froc: process (rd_inn)
begin
if (rd inn'event and rd inn = 'O') then

if (addr_in_15_12 =-glue_base(15 downto
(latched addr 7 0(4 downto D)

addr_in_7_0 <=- "000000" & memmode;
else

addr in 7 ° <= "ZZZZZZZZ";
endif;- --

end if;
end process;

12)) and
"OOOOO"}} then

-- flash bank write
flashbank-Froc: process (wrn, rat_80c32)
begin
if rst 80c32 = '1' then

flash bank <= "000";
else

if (wrn'event and wrn = '1') then
if «addr_in_15_12 = glue_base(15 downto 12)} and

(latched addr 7 0(4 downto D) = "OOOOl"}} then
flash_bank -::= addr=-in_7_0 (2 downto D);

end if;
end if;

end if;
end process;

-- chip select control
select-Froc: process (psen, addr_in_15_12, memmode, flash_bank, latched_addr_7_0)
begin
if psen = '0' then -- program memory

79

An intelligent weight controller using Profibus
~

ELLIPS
case memrnode is

when "00" => -- lower 64K of flash
addr_out_16_14 <= 'O'&addr_in_15_12 (15 downto 14);
flash_csn <= '0';
ram_csn <= '1';
spc4_csn <= '1';
hseln <= '1';

when "01" => -- upper 64K of flash
addr_out_16_14 <= 'l'&addr_in_15_12 (15 downto 14);
flash_csn <= '0';
ram_can <= 11';
spc4_csn <= '1';
hseln <= '1';

when "10" => -- 32K RAM only
addr_out_16 14 <= '-'&addr_in_15 12(15 downto 14);
flash_csn <= '1';
ram_can <= 10 1

;

spc4_csn <= '1';
hseln <= '1';

when "11" => -- illegal mode
addr_out_16_14 <= 'O'&addr_in_15 12(15 downto 14);
flash_csn <= '1';
ram_can <= 11' i

spc4_csn <= '1';
hseln <= '1';

end case;
else -- data memory

if addr_in_15_12 (15) = '0' then -- lower 32K is RAM
addr_out_16_14 <= '-'&addr_in_15_12 (15 downto 14);
flash_csn <= '1';
ram_can <= 10' i

spc4_csn <= '1';
hseln <= '1';

else
if addr_in_15_12 (14) = '1' then -- upper 16K is Glue

addr_out_16_14 <= "---";
flash_csn <= '1';
ram can <= 11';
if addr_in_15_12 = spc4_base(15 downto 12) then

spc4_csn <= '0';
else

spc4_csn <= '1';
end if;
if «addr_in_15_12 = glue_base(15 downto 12» and

(latched_addr_7_0(4)='l'» then
hseln <= '0';

else
hseln <= '1';

end if;
else -- flash area

if memmode = "10" then -- flash only mapped when in mode "01"
addr_out_16_14 <= flash_bank;
flash_csn <= '0';
ram_csn <= '1';
spc4_csn <= '1';
hseln <= '1';

else -- illegal mode
addr_out_16_14 <= "---";
flash_csn <= '1';
ram_csn <= '1';
spc4_csn <= '1';
hseln <= '1';

end if;
end if;

end if;
end if;

end process;

end memdec_arch;

80

An intelligent weight controller using Profibus
~

ELLIPS

ApPENDIX F: HIP COMMAND OVERVIEW
/* Messages from and to the DSP .**/

1* DSP runlevels **/
#define RUN_BOOTED 0 fo DSP has completed booting ° f
#define RUN_GONE 1 fo DSP is running loaded program ° f
#define RUN_INIT 2 fo DSP is initializing of
#define RUN_FILTERING 3 fo DSP is filtering data of
#define RUN_MEASURING 4 fo DSP is measuring weights ° f

/* Host (SOc32) commands *****~**/

/* Operation:
1. Set command in command register of hip- structure
2. Wait for HIP ACK
3. Set data in data registers of hip-structure
4. Set NEW_DATA in command register of hip structure
Repeat step 2,3 and 4 until all data is transmitted.

DSP interrupt is set on writing the command register.
Of

#define COM_GO OxOO fO Start program of

#define COM_INIT OxlO fo Switch to INIT runlevel of
#define COM GET RAW- CURVE OxIl fO Get curve of raw data of
/* parameters

host_datal channel_nr [1. .. B]

host datal MSB sample frequency
host=data2 LSB sample frequency

host datal MSB number of points
host=data2 LSB number of points

Of
#define COM_STOP_GONE Ox12 /* switch to BOOTED runlevel Of

#define COM SET DELAY Ox20 /* Set measurement delay
/* parameters -

host datal MSB delay_value channel
host=data2 LSB delay_value channel (I LSB is 100 microseconds)

host datal MSB delay_value channel
host=data2 LSB delay_value channel

host_datal MSB delay_value channel
host_data2 LSB delay_value channel

Of

Of
#define COM SET CHANNELS
/* parameters -

host_datal channel_masK

Ox2l /* Select weight channels

bit 0 • channel I, OFF=O ON-I
bit 7 = channel 8

°f

Of
#define COM SET_SAMPLE_FREQ Ox22
/* parameters

host_datal MSB of frequency
host_data2 LSB of frequency

Of
#define COM SET FILTER LEN Ox23
/* parameters - -

host_datal filter_len
Of
#define COM SET SAMPLES Ox24
/* parameters -

host_datal number_of_samples

/* Set sample frequency for one channel * /

fO Set filter length °f

/* set number of samples for averaging * /

Ox25
Ox26
Ox27

Of
#define COM STOP INIT
#define COM-START FILTERING
#define COM-SET FILTER CaNST
/* parameters - -

host datal MSB filter constantl
host:data2 LSB filter=constantl

host datal MSB filter constant2
host:data2 LSB filter:constant2

host datal MSB last filter constant
host=data2 LSB last=filter=constant

Of

/* Stop initializing filter
/* Start filtering on all channels
/* Set filter constants

Of
Of
Of

#define COM START MEASUREMENTS Ox30
/ * parameters

host datal MSB cup_number
host=data2 LSB cup_number

·f

/* Start weight measurements on selected channels */

81

An intelligent weight controller using Profibus
~

ELLIPS
#define COM STOP FILTERING Ox3l
#define COM-GET FILTERED CURVE Ox32'* parameters - -

host_datal channel_nr

host datal MSB sample frequency
host=data2 LSB sample frequency

host datal MSB number of points
host=data2 LSB number of points

-I

/* Stop filtering data'* Get curve of filtered data
-I
-I

Ox40 '* Stop all weight measurements -I

#define COM_GET_RUNLEVEL
#define NEW DATA
#define HIP::ACK

Ox7F
OxFE
OxFF

/* Get current OSP runlevel
/* New data has arrived
/* Acknowledge that previous
/* data has been received

-I
- I

command or * /
-I

/* DSP messages ••••• w••• * •• * ••• ** •••• *•• ***.**.*.* ••••• *•••••• * ••••• * •••••• **.**/

I-
Operation:
1. Confirm receipt of message with HIP_ACK in command register of hip-structure
2. Wait for NEW DATA in clap status register
J. Read data in-dap datal and dap data2 registers
4. Send HIP ACK to command register
Repeat step-2,3 and 4 until all data is transmitted

-I

#define DSP OK
#define DSP::WEIGHTS
I- data

dsp_datal MSB cup_number
dsp_data2 LSB cup_number

OxDO
OxDl

,. No messages .,
,. Measured weights of selected channels .,

dsp_datal MSB weight lowest selected channel
dsp_data2 LSB weight lowest selected channel

dsp_datal MSB weight second lowest selected channel
dsp_data2 LSB weight second lowest selected channel

dsp_datal MSB weight highest selected channel
dsp_data2 LSB weight highest selected channel

-I

#define DSP_CURVE OxD2 I- Curve of requested channel -I
I- Filtered or not filtered -I

I- data
dsp_datal MSB channel nr
dsp_data2 LSB channel:nr

dsp_datal MSB sample frequency
dsp_data2 LSB sample frequency

dsp_datal MSB number of points
dsp_data2 LSB number of points

dsp_datal MSB datawordl
dsp_data2 LSB datawordl

dsp_datal MSB dataword2
dsp_data2 LSB dataword2

dsp_datal MSB last dataword
dsp_data2 LSB las(~dataword

-I

#define DSP RUNLEVEL OxD3
I- data -

dsp datal MSB dsp_runlevel
dsp::data2 LSB dsp_runlevel

-I

,. Current DSP runlevel -I

,. DSP error messages •• ,

#define DSP_NOT_ALLOWED OxEO I- Command not allowed for this runlevel -I
#define DSP_NOT_FINISHED OxEl I- Previous cormnand not finished yet -I
#define DSP NO COMMAND OxE2 I- No command specified yet -I
#define DSP-FILT TOO LONG OxE3 I- Requested filter length is too long -I
#define DSP::INVALID_FREQ OxE4 I- Invalid sample frequency requested -I
#define DSP_INVALID_CURVE_LEN OxES I- Invalid curve length requested -I
#define DSP_INVALID_CHANNEL OxE6 I- Invalid channel requested -I
#define DSP_NO_CHANNEL OxE7 I- No channel selected -I
#define DSP_TOO_MANY_JOBS OxES I- Too many measurement jobs in progress -I

82

An intelligent weight controller using Profibus

/* Structures •• ** •• ****/

typedef struct hipst
(
uchar command:
uchar host datal:
uchar host-data2;
uchar dap status;
uchar dap-datal;
uchar dsp:=data2;
uchar hip_status_reg6:
uchar hip status reg?;

) hipt; - -

83

~
ELLIPS

An intelligent weight controller using Profibus
~

ELLIPS

ApPENDIX G: PROFIBUS COMMAND OVERVIEW

/* ProfibuB messages from and to the weight controller ****************** •• */

#define RAW
#define FILTERED

'* Raw curve .. /
/* Filtered curve .. /

/.*******************.***
Commands for the weight controller

Operation:
The first byte of the data unit (byte 0) of a frame is the conmand.
All other bytes depend on the specific command.

** •••• *******************.************/

#define PCOM GET CURVE
/* parameters -

byte 1 packet number (1. .N)
byte 2 - channel number (1..8)
byte 3 type (RAW, FILTERED)
byte 4 • MSB sample frequency
byte 5 LSB sample frequency
byte 6 - MSB number of points
byte 7 LSB number of points

/* Request a curve * f

*f

#define PCOM INIT
/* parameters

byte 1 MSB delay of channel
byte 2 = LSB delay of channel

/* Setup measurement parameters *1

(1 LSB = 100 microseconds)

*f

byte 15
byte 16
byte 17
byte 18
byte 19

= MSB delay of channel 8
.. LSB delay of channel 8

• channel mask, bitO "" channel
- MSB of sample frequency
= LSB of sample frequency

1 (OFF=O, ON=l) , bit7 • channel 8

#define PCOM INIT FILTER f* Setup FIR filter
/* parameters -

byte 1 • total number of packets (l .. N)
byte 2 = packet number of this packet (1.. N)

* f

if (packet numbera-1)
byte 3 :- filter length (1. .241)
byte 4 number of samples for averaging
byte 5 • MSB filter constant 1 (1.15 format !)
byte 6 a LSB filter constant 1
byte 7 "" MSB filter constant 2
byte 8 • LSB filter constant 2

byte 19 MSB filter constant
byte 20 "" LSB filter constant

if (packet number>l)
byte 3 : MSB filter constant (packet number)*9+9
byte 4 a LSB filter constant (packet-number}*9+9
byte 5 • MSB filter constant {packet-number)*9+10
byte 6 - LSB filter constant (packet=number)*9+10

byte 19 • MSB filter constant (packet number)*9+17
byte 20 a LSB filter constant (packet=number)*9+17

*f

#define PCOM MEASURE
/* parameters

byte 1 • MSB cup number
byte 2 • LSB cup number

/ * Start measurement *f

*f

#define PCOM ABORT
/* parameters

none

4 /* Abort all measurements *f

f*

/**
Messages from the weight controller

Operation:
The first byte of the data unit (byte 0) of the frame is the message.
All other bytes depend on the specific message.

**/

f/ weight controller errorOx80#define WEIGHT ERROR
/* data -

byte 1 DSP error code, see "MESSAGE.H" or
UNKNOWN_COMMAND (see below)
ILLEGAL_LENGTII (see below)

*f

84

An intelligent weight controller using Profibus
~

ELLIPS

#define WEIGHT CURVE OxBl f* Curve data
f* data -

byte 1 total number of packets [1 .. Nl
byte 2 packet number of this packet Il .. NI

if (packet number •• 1)
byte 3 · MSB channel number
byte 4 · LSB channel number
byte 5 · MSB sample frequency
byte 6 LSB sample frequency
byte 7 · MSB number of points
byte 8 LSB number of points
byte 9 · MSB data word 1
byte 10 LSB data word 1
byte 11 · MSB data word 2
byte 12 LSB data word 2

byte 19 MSB data word 6
byte 20 • LSB data word 6

if (packet number :> 1)
byte 3 z M5B data word (packet_number-l)*9+7
byte 4 LSB data word (packet_number-l)*9+7
byte 5 • MSB data word (packet_number-l)*9+S
byte 6 LSB data word (packet_number-l)*9+9

byte 19 • MSB data word (packet number-l}*9+15
byte 20 .. LSB data word (packet:number-l)*9+15

*f

* f

#define
I'" data

byte 1
byte 2
byte 3
byte 4
byte 5
byte 6

MSB
- LSB

MSB
LSB

- MSB
LSB

cup number
cup number
weight lowest
weight lowest
weight second
weight second

OxB2 f* Weight data

selected channel
selected channel
lowest selected channel
lowest selected channel

* f

byte n-l_ MSB weight highest selected channel
byte n ~ LSB weight highest selected channel

* f

/* Additional error messages
Hdefine UNKNOWN COMMAND
Hdefine ILLEGAL=LENGTH

(see WEIGHT ERROR) ****************************/
OxFF - /* unknown command in frame */
OxPE /* Wrong number of bytes in frame*/

85

	Voorblad
	Summary
	Table of contents
	1 Introduction
	2 Fruit grading system overview
	3 Profibus
	4 Weight controller
	5 Data aquisition
	6 Signal processing
	7 Host interface port
	8 Profibus interface
	9 Host operation
	10 Conclusions and recommendations
	11 References
	12 Acknowledgement
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

