
The Embedded I/O Company

TDRV004-S
VxWorks Device

Reconfigurable F

Version 2.0.x

User Manu

Issue 2.0.2

April 2011

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
Driver

PGA

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TDRV004-SW-42 – VxWorks Device Driver Page 2 of 109

TDRV004-SW-42

VxWorks Device Driver

Reconfigurable FPGA

Supported Modules:
TPMC630
TCP630

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2006-2011 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue May 04, 2006

1.1.0 New module support, tdrv004DevCreate() error handling enhanced,

Interrupt functions added, New Address TEWS LLC

May 16, 2007

2.0.0 Support for VxBus and API description added December 17, 2009

2.0.1 Legacy vs. VxBus Driver modified March 26, 2010

2.0.2 Layout Revision April 7, 2011

TDRV004-SW-42 – VxWorks Device Driver Page 3 of 109

Table of Contents

1 INTRODUCTION... 5

2 INSTALLATION.. 6

2.1 Legacy vs. VxBus Driver ..7

2.2 VxBus Driver Installation ...7

2.2.1 Direct BSP Builds...8
2.3 Legacy Driver Installation ..9

2.3.1 Include Device Driver in Tornado IDE Project ...9
2.3.2 Special Installation for Intel x86 based Targets ...9
2.3.3 System Resource Requirement ...10

3 API DOCUMENTATION ... 11

3.1 General Functions...11

3.1.1 tdrv004Open ..11
3.1.2 tdrv004Close ..13

3.2 Device Access Functions...15

3.2.1 tdrv004XsvfPlay ...15
3.2.2 tdrv004XsvfPos ..18
3.2.3 tdrv004XsvfLastCommand...20
3.2.4 tdrv004Reconfigure..22
3.2.5 tdrv004SetWaitstates ...24
3.2.6 tdrv004SetClock...26
3.2.7 tdrv004SpiWrite..30
3.2.8 tdrv004SpiRead ...33
3.2.9 tdrv004PlxWrite..36
3.2.10 tdrv004PlxRead ...39
3.2.11 tdrv004ReadU8..42
3.2.12 tdrv004ReadU16..45
3.2.13 tdrv004ReadU32..48
3.2.14 tdrv004WriteU8..51
3.2.15 tdrv004WriteU16..54
3.2.16 tdrv004WriteU32..57
3.2.17 tdrv004ConfigureInterrupts ..60
3.2.18 tdrv004WaitForINT1 ..62
3.2.19 tdrv004WaitForINT2 ..64

4 LEGACY I/O SYSTEM FUNCTIONS.. 66

4.1 tdrv004Drv ...66

4.2 tdrv004DevCreate..68

4.3 tdrv004PciInit...70

4.4 tdrv004Init ..71

5 BASIC I/O FUNCTIONS ... 72

5.1 open..72

5.2 close ...74

5.3 ioctl ...76

5.3.1 FIO_TDRV004_XSVFPLAY...78
5.3.2 FIO_TDRV004_XSVFPOS ..80
5.3.3 FIO_TDRV004_XSVFLASTCMD...81
5.3.4 FIO_TDRV004_RECONFIG ..82
5.3.5 FIO_TDRV004_SETWAITSTATES ...83
5.3.6 FIO_TDRV004_SETCLOCK..84

TDRV004-SW-42 – VxWorks Device Driver Page 4 of 109

5.3.7 FIO_TDRV004_SPIWRITE..87
5.3.8 FIO_TDRV004_SPIREAD..89
5.3.9 FIO_TDRV004_PLXWRITE...91
5.3.10 FIO_TDRV004_PLXREAD ..93
5.3.11 FIO_TDRV004_READ_UCHAR ..95
5.3.12 FIO_TDRV004_READ_USHORT..97
5.3.13 FIO_TDRV004_READ_ULONG ..99
5.3.14 FIO_TDRV004_WRITE_UCHAR ..101
5.3.15 FIO_TDRV004_WRITE_USHORT ..103
5.3.16 FIO_TDRV004_WRITE_ULONG ..105
5.3.17 FIO_TDRV004_CONFIGURE_INT ...107
5.3.18 FIO_TDRV004_WAIT_FOR_INT1 ..108
5.3.19 FIO_TDRV004_WAIT_FOR_INT2 ..109

TDRV004-SW-42 – VxWorks Device Driver Page 5 of 109

1 Introduction
The TRDV004-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x releases and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API) and device-
independent basic I/O interface with open(), close() and ioctl() functions. The basic I/O interface is only
for backward compatibility with existing applications and should not be used for new developments.

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TDRV004-SW-42 device driver supports the following features:

 Program and reconfigure onboard FPGA
 Program onboard clock generator using the Serial Programming Interface (SPI)
 Read/write FPGA registers (32bit / 16bit / 8bit)
 Read/write EEPROM blocks located in clock device using the Serial Programming Interface (SPI)
 Read/write specific PLX9030 registers

The TDRV004-SW-42 supports the modules listed below:

TPMC630 Reconfigurable FPGA with

64 TTL I/O Lines or

32 Differential I/O Lines

(PMC)

TCP630 Reconfigurable FPGA with

64 TTL I/O Lines or

32 Differential I/O Lines

(CompactPCI)

In this document covers all supported modules and devices will be called TDRV004. Specials
for certain devices will be advised.

To get more information about the features and use of TDRV004 devices it is recommended to read
the manuals listed below.

TPMC630 product family User Manual

TPMC630 product family Engineering Manual

Cypress CY27EE16 User Manual

TDRV004-SW-42 – VxWorks Device Driver Page 6 of 109

2 Installation
Following files are located on the distribution media:

Directory path ‘TDRV004-SW-42’:

TDRV004-SW-42-2.0.2.pdf PDF copy of this manual
TDRV004-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TDRV004-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
fpgaexa.zip FPGA example XSVF files
ChangeLog.txt Release history
Release.txt Release information

The archive TDRV004-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tdrv004’:

tdrv004drv.c TDRV004 device driver source
tdrv004def.h TDRV004 driver include file
tdrv004.h TDRV004 include file for driver and application
tdrv004api.c TDRV004 API file
pf_micro.c XSVF player functions (Platform Flash)
pf_micro.h header file for XSVF player functions
pf_lenval.c special functions for XSVF player
pf_lenval.h header file for XSVF functions
pf_ports.c hardware layer for XSVF player
pf_ports.h header file for XSVF hardware layer
Makefile Driver Makefile
40tdrv004.cdf Component description file for VxWorks development tools
tdrv004.dc Configuration stub file for direct BSP builds
tdrv004.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tdrv004exa.c Example application

The archive TDRV004-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tdrv004’:

tdrv004drv.c TDRV004 device driver source
tdrv004def.h TDRV004 driver include file
tdrv004.h TDRV004 include file for driver and application
tdrv004api.c TDRV004 API file
tdrv004pci.c TDRV004 PCI MMU mapping for Intel x86 based targets
tdrv004exa.c Example application
pf_micro.c XSVF player functions (Platform Flash)
pf_micro.h header file for XSVF player functions
pf_lenval.c special functions for XSVF player
pf_lenval.h header file for XSVF functions
pf_ports.c hardware layer for XSVF player
pf_ports.h header file for XSVF hardware layer
include/tdhal.h Hardware dependent interface functions and definitions

TDRV004-SW-42 – VxWorks Device Driver Page 7 of 109

2.1 Legacy vs. VxBus Driver

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier
releases

 VxWorks 6.x releases without
VxBus PCI bus support

 VxWorks 6.6 and later releases
with VxBus PCI bus

 SMP systems (only the VxBus
driver is SMP safe!)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3

rd
-party drivers may

not be available.

2.2 VxBus Driver Installation

Because Wind River doesn’t provide a standard installation method for 3
rd

party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TDRV004-SW-42-VXBUS.zip
to the typical 3

rd
party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be

substituted by the VxWorks installation directory).

After successful installation the TDRV004 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tdrv004.

At this point the TDRV004 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processer (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tdrv004

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

TDRV004-SW-42 – VxWorks Device Driver Page 8 of 109

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv004

C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To integrate the TDRV004 driver with the VxWorks development tools (Workbench), the component
configuration file 40tdrv004.cdf must be copied to the directory installDir/vxworks-
6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv004

C:> copy 40tdrv004.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks

C:> del CxrCat.txt

C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TDRV004
driver and API can be included in VxWorks projects by selecting the “TEWS TDRV004 Driver“ and
“TEWS TDRV004 API” components in the “hardware (default) - Device Drivers” folder with the kernel
configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TDRV004 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tdrv004

C:> copy tdrv004.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> copy tdrv004.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> make vxbUsrCmdLine.c

TDRV004-SW-42 – VxWorks Device Driver Page 9 of 109

2.3 Legacy Driver Installation

2.3.1 Include Device Driver in Tornado IDE Project

For Including the TDRV004-SW-42 device driver into a Tornado IDE project follow the steps below:

(1) Extract all files from the archive TDRV004-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tdrv004 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your Tornado User’s
Guide.

2.3.2 Special Installation for Intel x86 based Targets

The TDRV004 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TDRV004 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tdrv004pci.c contains the function tdrv004PciInit(). This routine finds out all
TDRV004 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tdrv004PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the TDRV004 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

tdrv004PciInit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TDRV004-SW-42 – VxWorks Device Driver Page 10 of 109

2.3.3 System Resource Requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores --- 3

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TDRV004-SW-42 – VxWorks Device Driver Page 11 of 109

3 API Documentation

3.1 General Functions

3.1.1 tdrv004Open

NAME

tdrv004Open – opens a device.

SYNOPSIS

TDRV004_DEV tdrv004Open
(

char *DeviceName
);

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TDRV004 device is named “/tdrv004/0”, the second device is named “/tdrv004/1” and so on.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

/*

** open file descriptor to device

*/

pDev = tdrv004Open(“/tdrv004/0”);

if (pDev == NULL)

{

/* handle open error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 12 of 109

RETURNS

A device descriptor pointer, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV004-SW-42 – VxWorks Device Driver Page 13 of 109

3.1.2 tdrv004Close

NAME

tdrv004Close – closes a device.

SYNOPSIS

int tdrv004Close
(

TDRV004_DEV pDev
);

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

pDev

This value specifies the file descriptor pointer to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

int result;

/*

** close file descriptor to device

*/

result = tdrv004Close(pDev);

if (result < 0)

{

/* handle close error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 14 of 109

RETURNS

Zero, or -1 if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TDRV004-SW-42 – VxWorks Device Driver Page 15 of 109

3.2 Device Access Functions

3.2.1 tdrv004XsvfPlay

NAME

tdrv004XsvfPlay – Play an XSVF file for FPGA programming

SYNOPSIS

STATUS tdrv004XsvfPlay
(

TDRV004_DEV pDev,
TDRV004_XSVF_BUF *pXsvfBuf

);

DESCRIPTION

This function programs the FPGA with a supplied XSVF file. For information on building an XSVF file,
please refer to the Engineering Documentation of the TDRV004 product family.

The device driver is not able to verify the supplied XSVF file content, so please make sure that
the supplied XSVF is of a valid file format.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pXsvfBuf

This parameter specifies a pointer to a TDRV004_XSVF_BUF structure:

typedef struct

{

unsigned long size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_XSVF_BUF;

size

Specifies the total size of the supplied XSVF data.

pData

This dynamically expandable array holds the XSVF data. The data must be included
inside the TDRV004_XSVF_BUF structure.

TDRV004-SW-42 – VxWorks Device Driver Page 16 of 109

PROGRAMMING HINTS

Depending on the XSVF file, there might be a waiting period of approx. 15 seconds at the beginning of
programming. The programming of the delivered FPGA example design XSVF file should not take
much longer than 1 minute, depending on the system load.

If the programming fails, try to increase the used waitstates with control function
FIO_TDRV004_SETWAITSTATES (refer to the corresponding section in this manual). Additionally,
the CLK1 should not be lower than 10MHz for programming.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_XSVF_BUF *pXsvfBuf;

int bufsize;

/*

** allocate enough memory (about 3MB) to hold XSVF content

*/

bufsize = sizeof(TDRV004_XSVF_BUF) + <filesize> * sizeof(unsigned char);

pXsvfBuf = (TDRV004_XSVF_BUF*)malloc(bufsize);

/*

** read XSVF content from file and store it inside pXsvfBuf->pData[]

*/

pXsvfBuf->pData = ...

pXsvfBuf->size = ...

/*

** start FPGA programming

*/

result = tdrv004XsvfPlay(pDev,

pXsvfBuf);

if (result == ERROR)

{

/* handle error */

}

free(pXsvfBuf);

TDRV004-SW-42 – VxWorks Device Driver Page 17 of 109

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL There was an error during XSVF processing.

EINTR The function was cancelled.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 18 of 109

3.2.2 tdrv004XsvfPos

NAME

tdrv004XsvfPos – Retrieve current play-position in XSVF file

SYNOPSIS

STATUS tdrv004XsvfPos
(

TDRV004_DEV pDev,
unsigned int *pXsvfPos

);

DESCRIPTION

This function returns the number of the current processed byte in the XSVF file during programming.
This control function can be used to monitor the programming progress.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pXsvfPos

This parameter specifies a pointer to an unsigned int value which receives the current
processed XSVF byte.

TDRV004-SW-42 – VxWorks Device Driver Page 19 of 109

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

unsigned int XsvfPos;

/*

** Check XSVF position

*/

result = tdrv004XsvfPos(pDev,

&XsvfPos);

if (result != ERROR)

{

/* function succeeded */

printf(“Current XSVF position: %ld\n”, XsvfPos);

} else {

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

This function returns no function specific error codes.

TDRV004-SW-42 – VxWorks Device Driver Page 20 of 109

3.2.3 tdrv004XsvfLastCommand

NAME

tdrv004XsvfLastCommand – Get the last executed XSVF command

SYNOPSIS

STATUS tdrv004XsvfLastCommand
(

TDRV004_DEV pDev,
unsigned int *pXsvfLastCmd

);

DESCRIPTION

This function returns the number of the last executed XSVF command. This value can be used to find
errors inside the supplied XSVF file. This value refers to the line inside the ASCII SVF file.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pXsvfLastCmd

This parameter specifies a pointer to an unsigned int value which receives the last
executed XSVF command (line number of ASCII SVF file).

TDRV004-SW-42 – VxWorks Device Driver Page 21 of 109

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

unsigned int XsvfLastCmd;

/*

** Check Last XSVF command

*/

result = tdrv004XsvfLastCommand (pDev,

&XsvfLastCmd);

if (result != ERROR)

{

/* function succeeded */

printf(“Last XSVF command: %ld\n”, XsvfLastCmd);

} else {

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

This function returns no function specific error codes.

TDRV004-SW-42 – VxWorks Device Driver Page 22 of 109

3.2.4 tdrv004Reconfigure

NAME

tdrv004Reconfigure – Trigger FPGA reconfiguration process

SYNOPSIS

STATUS tdrv004Reconfigure
(

TDRV004_DEV pDev
);

DESCRIPTION

This function starts the reconfiguration process of the FPGA. This control function must be called after
the FPGA is programmed using tdrv004XsvfPlay(). The function returns after the reconfiguration is
done, or an error occurred.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

/*

** Reconfigure FPGA

*/

result = tdrv004Reconfigure (pDev);

if (result != ERROR)

{

/* function succeeded */

} else {

/* handle error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 23 of 109

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

Error code Description

EIO An error occurred during reconfiguration. This may be
caused by an invalid FPGA content located inside the XSVF
file.

EBUSY The device is already busy with XSVF, Reconfig or SPI
action.

TDRV004-SW-42 – VxWorks Device Driver Page 24 of 109

3.2.5 tdrv004SetWaitstates

NAME

tdrv004SetWaitstates – Specify number of waitstates for programming

SYNOPSIS

STATUS tdrv004SetWaitstates
(

TDRV004_DEV pDev,
int WaitStates

);

DESCRIPTION

This function configures the driver to use a number of waitstates during XSVF and SPI programming.
This might be necessary, if the local clock (CLK1) of the onboard clock generator is configured to
rather slow. The local programming interface is clocked with this frequency, which might result in
errors during programming for low CLK1 frequencies and a small amount of waitstates. The system
architecture (existing PCI-to-PCI bridges) might also have an impact.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

WaitStates

This parameter specifies the number of waitstates to be used for XSVF programming. Valid
values are 1 to 1000.

TDRV004-SW-42 – VxWorks Device Driver Page 25 of 109

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

int WaitStates;

/*

** Configure driver to use 3 waitstates

*/

WaitStates = 3;

result = tdrv004SetWaitstates (pDev, WaitStates);

if (result != ERROR)

{

/* function succeeded */

} else {

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

This function returns no function specific error codes.

TDRV004-SW-42 – VxWorks Device Driver Page 26 of 109

3.2.6 tdrv004SetClock

NAME

tdrv004SetClock – Set clock generator parameters

SYNOPSIS

STATUS tdrv004SetClock
(

TDRV004_DEV pDev,
TDRV004_CLOCK_PARAM *pClockParam

);

DESCRIPTION

This function configures the onboard clock generator.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pClockParam

This parameter specifies a pointer to a TDRV004_CLOCK_PARAM structure:

typedef struct

{

unsigned char DeviceAddr;

unsigned char x09_ClkOE;

unsigned char x0C_DIV1SRCN;

unsigned char x10_InputCtrl;

unsigned char x40_CPumpPB;

unsigned char x41_CPumpPB;

unsigned char x42_POQcnt;

unsigned char x44_SwMatrix;

unsigned char x45_SwMatrix;

unsigned char x46_SwMatrix;

unsigned char x47_DIV2SRCN;

} TDRV004_CLOCK_PARAM;

TDRV004-SW-42 – VxWorks Device Driver Page 27 of 109

DeviceAddr

Specifies the desired destination address. The CY27EE16 clock generator provides
several EEPROM banks as well as SRAM. If TDRV004_CLKADR_SRAM (0x69) is
specified, the values are directly stored inside the volatile RAM area and take effect
immediately. If TDRV004_CLKADR_EEPROM (0x68) is specified, the values are stored
in the non-volatile area of the clock generator, and the CY27EE16 loads it after the next
power-up.

x09_ClkOE

Specifies which clock outputs shall be enabled.

x0C_DIV1SRCN

Specifies internal input source 1 and the corresponding frequency divider

x10_InputCtrl

Specifies value for the Input Pin Control register

x40_CPumpPB

Specifies value for Charge Pump and PB counter register

x41_CPumpPB

Specifies value for Charge Pump and PB counter register

x42_POQcnt

Specifies value for PO and Q counter register

x44_SwMatrix

Specifies value for Switching Matrix Register

x45_SwMatrix

Specifies value for Switching Matrix Register

x46_SwMatrix

Specifies value for Switching Matrix Register

x47_DIV2SRCN

Specifies internal input source 2 and the corresponding frequency divider

Please refer to the Cypress CY27EE16 user manual for detailed explanation of the above
register values. Use Cypress’ CyberClocks Version R3.10.00 to determine the correct values.
This program is also part of the TPMC630 or TCP630 Engineering Documentation.

TDRV004-SW-42 – VxWorks Device Driver Page 28 of 109

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_CLOCK_PARAM ClockParam;

/*

** Setup clock generator (SRAM):

** CLK1: 50.0MHz CLK2: 20.0MHz

** CLK3: 10.0MHz CLK4: 1.0MHz

** CLK5: 0.2MHz CLK6: -off-

*/

ClockParam.DeviceAddress = TDRV004_CLKADR_SRAM;

ClockParam.x09_ClkOE = 0x6f;

ClockParam.x0C_DIV1SRCN = 0x64;

ClockParam.x10_InputCtrl = 0x50;

ClockParam.x40_CPumpPB = 0xc0;

ClockParam.x41_CPumpPB = 0x03;

ClockParam.x42_POQcnt = 0x81;

ClockParam.x44_SwMatrix = 0x42;

ClockParam.x45_SwMatrix = 0x9f;

ClockParam.x46_SwMatrix = 0x3f;

ClockParam.x47_DIV2SRCN = 0xe4;

/*

** start FPGA programming

*/

result = tdrv004SetClock(pDev,

&ClockParam);

if (result != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 29 of 109

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL It was tried to disable CLK1. This is not allowed.

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 30 of 109

3.2.7 tdrv004SpiWrite

NAME

tdrv004SpiWrite – Write values to SPI storage

SYNOPSIS

STATUS tdrv004SpiWrite
(

TDRV004_DEV pDev,
TDRV004_SPI_BUF *pSpiIoBuf

);

DESCRIPTION

This function writes up to 256 unsigned char (8bit) values to a specific sub-address of a Serial
Programming Interface (SPI) address. The SPI storages are available in the clock generator device.

Do not use this control function to setup the clock generator. Please use API function
tdrv004SpiWrite() instead.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pSpiIoBuf

This parameter specifies a pointer to a TDRV004_SPI_BUF structure:

typedef struct

{

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_SPI_BUF;

TDRV004-SW-42 – VxWorks Device Driver Page 31 of 109

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. The
following values are possible (refer to file tdrv004.h):

Symbol Value Description

TDRV004_CLKADDR_EEPROM 0x68 Clock Generator EEPROM (non-volatile)

TDRV004_CLKADDR_SRAM 0x69 Clock Generator SRAM (volatile)

TDRV004_CLKADDR_EEBLOCK1 0x40 EEPROM-Bank 1

TDRV004_CLKADDR_EEBLOCK2 0x41 EEPROM-Bank 2

TDRV004_CLKADDR_EEBLOCK3 0x42 EEPROM-Bank 3

TDRV004_CLKADDR_EEBLOCK4 0x43 EEPROM-Bank 4

TDRV004_CLKADDR_EEBLOCK5 0x44 EEPROM-Bank 5

TDRV004_CLKADDR_EEBLOCK6 0x45 EEPROM-Bank 6

TDRV004_CLKADDR_EEBLOCK7 0x46 EEPROM-Bank 7

TDRV004_CLKADDR_EEBLOCK8 0x47 EEPROM-Bank 8

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to write. A maximum of 256 is allowed.

pData

The values are copied from this buffer. It must be large enough to hold the specified
amount of data. The data must be stored inside the structure, no pointer allowed.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_SPI_BUF *pSpiBuf;

int BufferSize;

…

TDRV004-SW-42 – VxWorks Device Driver Page 32 of 109

…

/*

** write 5 bytes to EEPROM block 1, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_SPI_BUF) + 5*sizeof(unsigned char));

pSpiBuf = (TDRV004_SPI_BUF*)malloc(BufferSize);

pSpiBuf->SpiAddr = TDRV004_CLKADDR_EEBLOCK1;

pSpiBuf->SubAddr = 0x00;

pSpiBuf->len = 5;

pSpiBuf->pData[0] = 0x01;

pSpiBuf->pData[1] = 0x02;

pSpiBuf->pData[2] = 0x03;

pSpiBuf->pData[3] = 0x04;

pSpiBuf->pData[4] = 0x05;

result = tdrv004SpiWrite(pDev,

pSpiBuf);

if (result != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pSpiBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 33 of 109

3.2.8 tdrv004SpiRead

NAME

tdrv004SpiRead – Read values from SPI storage

SYNOPSIS

STATUS tdrv004SpiRead
(

TDRV004_DEV pDev,
TDRV004_SPI_BUF *pSpiIoBuf

);

DESCRIPTION

This function reads up to 256 unsigned char (8bit) values from a specific sub-address of a Serial
Programming Interface (SPI) address. The SPI storages are available in the clock generator device.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pSpiIoBuf

This parameter specifies a pointer to a TDRV004_SPI_BUF structure:

typedef struct

{

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_SPI_BUF;

TDRV004-SW-42 – VxWorks Device Driver Page 34 of 109

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. The
following values are possible (refer to file tdrv004.h):

Symbol Value Description

TDRV004_CLKADDR_EEPROM 0x68 Clock Generator EEPROM (non-volatile)

TDRV004_CLKADDR_SRAM 0x69 Clock Generator SRAM (volatile)

TDRV004_CLKADDR_EEBLOCK1 0x40 EEPROM-Bank 1

TDRV004_CLKADDR_EEBLOCK2 0x41 EEPROM-Bank 2

TDRV004_CLKADDR_EEBLOCK3 0x42 EEPROM-Bank 3

TDRV004_CLKADDR_EEBLOCK4 0x43 EEPROM-Bank 4

TDRV004_CLKADDR_EEBLOCK5 0x44 EEPROM-Bank 5

TDRV004_CLKADDR_EEBLOCK6 0x45 EEPROM-Bank 6

TDRV004_CLKADDR_EEBLOCK7 0x46 EEPROM-Bank 7

TDRV004_CLKADDR_EEBLOCK8 0x47 EEPROM-Bank 8

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to write. A maximum of 256 is allowed.

pData

The values are copied to this buffer. It must be large enough to hold the specified amount
of data. The data space must be located inside the structure, no pointer allowed.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_SPI_BUF *pSpiBuf;

int BufferSize;

…

TDRV004-SW-42 – VxWorks Device Driver Page 35 of 109

…

/*

** read 5 bytes from EEPROM block 1, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_SPI_BUF) + 5*sizeof(unsigned char));

pSpiBuf = (TDRV004_SPI_BUF*)malloc(BufferSize);

pSpiBuf->SpiAddr = TDRV004_CLKADDR_EEBLOCK1;

pSpiBuf->SubAddr = 0x00;

pSpiBuf->len = 5;

result = tdrv004SpiRead(pDev,

pSpiBuf);

if (result != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pSpiBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 36 of 109

3.2.9 tdrv004PlxWrite

NAME

tdrv004PlxWrite – Write 16bit value to PLX PCI9030 EEPROM

SYNOPSIS

STATUS tdrv004PlxWrite
(

TDRV004_DEV pDev,
TDRV004_PLX_BUF PlxBuf

);

DESCRIPTION

This function writes an unsigned short (16bit) value to a specific PLX PCI9030 EEPROM memory
offset.

Please note that the PLX9030 reloads the new configuration from the EEPROM after a PCI
reset, i.e. the system must be rebooted to make PLX PCI9030 dependent changes take effect.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pPlxBuf

This parameter specifies a pointer to a TDRV004_PLX_BUF structure:

typedef struct

{

unsigned long Offset;

unsigned short Value;

} TDRV004_PLX_BUF;

TDRV004-SW-42 – VxWorks Device Driver Page 37 of 109

Offset

Specifies the offset into the PLX9030 EEPROM, where the supplied data word should be
written. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W

Refer to the PLX PCI9030 User Manual for detailed information on these registers.

Value

This value specifies a 16bit word that should be written to the specified offset.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_PLX_BUF PlxBuf;

/*

** Change the Subsystem Vendor ID to TEWS TECHNOLOGIES (0x1498)

*/

PlxBuf.Offset = 0x0E;

PlxBuf.Value = 0x1498;

result = tdrv004PlxWrite(pDev,

&PlxBuf);

if (result == ERROR)

{

/* handle the error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 38 of 109

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified offset is invalid, or read-only

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 39 of 109

3.2.10 tdrv004PlxRead

NAME

tdrv004PlxRead – Read 16bit value from PLX PCI9030 EEPROM

SYNOPSIS

STATUS tdrv004PlxRead
(

TDRV004_DEV pDev,
TDRV004_PLX_BUF PlxBuf

);

DESCRIPTION

This function reads an unsigned short (16bit) value from a specific PLX PCI9030 EEPROM memory
offset.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pPlxBuf

This parameter specifies a pointer to a TDRV004_PLX_BUF structure:

typedef struct

{

unsigned long Offset;

unsigned short Value;

} TDRV004_PLX_BUF;

TDRV004-SW-42 – VxWorks Device Driver Page 40 of 109

Offset

Specifies the offset into the PLX PCI9030 EEPROM, where the supplied data word
should be read. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W

Refer to the PLX PCI9030 User Manual for detailed information on these registers.

Value

This value holds the retrieved 16bit word.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_PLX_BUF PlxBuf;

/*

** Read Subsystem ID

*/

PlxBuf.Offset = 0x0C;

result = tdrv004PlxRead(pDev,

&PlxBuf);

if (result != ERROR)

{

/* function succeeded */

printf(“SubsystemID = 0x%04X\n”, PlxBuf.Value);

} else {

/* handle the error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 41 of 109

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified offset is invalid, or read-only

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 42 of 109

3.2.11 tdrv004ReadU8

NAME

tdrv004ReadU8 – Read 8bit values from FPGA resource

SYNOPSIS

STATUS tdrv004ReadU8
(

TDRV004_DEV pDev,
TDRV004_MEMIO_BUF *pMemIoBuf

);

DESCRIPTION

This function reads a number of unsigned char (8bit) values from a Memory or I/O area by using BYTE
(8bit) accesses. The data buffer can be enlarged to the desired needs. The data section must be
included inside the structure.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pMemIoBuf

This parameter specifies a pointer to a TDRV004_MEMIO_BUF structure:

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-
Memory and PCI-I/O areas of the TDRV004 module are restricted and cannot be used by
the application. The second found PCI-Memory area is named TDRV004_RES_MEM_2,
the second PCI-I/O space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by
modifying the PLX PCI9030 EEPROM. Therefore the following table is just an example
how the PCI Base Address Registers could be used.

TDRV004-SW-42 – VxWorks Device Driver Page 43 of 109

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX PCI9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the
specified amount of data.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_MEMIO_BUF pMemIoBuf;

unsigned char *pValues;

int BufferSize;

/*

** read 50 bytes from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 50*sizeof(unsigned char));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

result = tdrv004ReadU8(pDev,

pMemIoBuf);

…

TDRV004-SW-42 – VxWorks Device Driver Page 44 of 109

…

if (result != ERROR)

{

/* function succeeded */

pValues = (unsigned char*)pMemIoBuf->pData;

} else {

/* handle the error */

}

free(pMemIoBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 45 of 109

3.2.12 tdrv004ReadU16

NAME

tdrv004ReadU16 – Read 16bit values from FPGA resource

SYNOPSIS

STATUS tdrv004ReadU16
(

TDRV004_DEV pDev,
TDRV004_MEMIO_BUF *pMemIoBuf

);

DESCRIPTION

This function reads a number of unsigned short (16bit) values from a Memory or I/O area by using
WORD (16bit) accesses. The data buffer can be enlarged to the desired needs. The data section must
be included inside the structure.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pMemIoBuf

This parameter specifies a pointer to a TDRV004_MEMIO_BUF structure:

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-
Memory and PCI-I/O areas of the TDRV004 module are restricted and cannot be used by
the application. The second found PCI-Memory area is named TDRV004_RES_MEM_2,
the second PCI-I/O space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by
modifying the PLX PCI9030 EEPROM. Therefore the following table is just an example
how the PCI Base Address Registers could be used.

TDRV004-SW-42 – VxWorks Device Driver Page 46 of 109

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX PCI9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the
specified amount of data.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_MEMIO_BUF pMemIoBuf;

unsigned short *pValues;

int BufferSize;

/*

** read 50 16bit words from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 50*sizeof(unsigned short));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

result = tdrv004ReadU16(pDev,

pMemIoBuf);

…

TDRV004-SW-42 – VxWorks Device Driver Page 47 of 109

…

if (result != ERROR)

{

/* function succeeded */

pValues = (unsigned short*)pMemIoBuf->pData;

} else {

/* handle the error */

}

free(pMemIoBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 48 of 109

3.2.13 tdrv004ReadU32

NAME

tdrv004ReadU32 – Read 32bit values from FPGA resource

SYNOPSIS

STATUS tdrv004ReadU32
(

TDRV004_DEV pDev,
TDRV004_MEMIO_BUF *pMemIoBuf

);

DESCRIPTION

This function reads a number of unsigned long (32bit) values from a Memory or I/O area by using
DWORD (32bit) accesses. The data buffer can be enlarged to the desired needs. The data section
must be included inside the structure.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pMemIoBuf

This parameter specifies a pointer to a TDRV004_MEMIO_BUF structure:

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE
enumeration contains values for all possible memory and I/O areas. Both first PCI-
Memory and PCI-I/O areas of the TDRV004 module are restricted and cannot be used by
the application. The second found PCI-Memory area is named TDRV004_RES_MEM_2,
the second PCI-I/O space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by
modifying the PLX PCI9030 EEPROM. Therefore the following table is just an example
how the PCI Base Address Registers could be used.

TDRV004-SW-42 – VxWorks Device Driver Page 49 of 109

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX PCI9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the
specified amount of data.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_MEMIO_BUF pMemIoBuf;

unsigned int *pValues;

int BufferSize;

/*

** read 50 32bit dwords from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 50*sizeof(unsigned int));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

result = tdrv004ReadU32(pDev,

pMemIoBuf);

…

TDRV004-SW-42 – VxWorks Device Driver Page 50 of 109

…

if (result != ERROR)

{

/* function succeeded */

pValues = (unsigned int*)pMemIoBuf->pData;

} else {

/* handle the error */

}

free(pMemIoBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 51 of 109

3.2.14 tdrv004WriteU8

NAME

tdrv004WriteU8 – Write 8bit values to FPGA resource

SYNOPSIS

STATUS tdrv004WriteU8
(

TDRV004_DEV pDev,
TDRV004_MEMIO_BUF *pMemIoBuf

);

DESCRIPTION

This function writes a number of unsigned char (8bit) values to a Memory or I/O area by using BYTE
(8bit) accesses. The data buffer can be enlarged to the desired needs. The data section must be
included inside the structure.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pMemIoBuf

This parameter specifies a pointer to a TDRV004_MEMIO_BUF structure:

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to write to. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-
I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-
I/O space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by
modifying the PLX PCI9030 EEPROM. Therefore the following table is just an example
how the PCI Base Address Registers could be used.

TDRV004-SW-42 – VxWorks Device Driver Page 52 of 109

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX PCI9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The values are copied from this buffer. It must be large enough to hold the specified
amount of data.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_MEMIO_BUF pMemIoBuf;

unsigned char *pValues;

int BufferSize;

/*

** write 10 byte to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 10*sizeof(unsigned char));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned char*)pMemIoBuf->pData;

pValues[0] = 0x01;

pValues[1] = 0x02;

…

TDRV004-SW-42 – VxWorks Device Driver Page 53 of 109

…

result = tdrv004WriteU8(pDev,

pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pMemIoBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 54 of 109

3.2.15 tdrv004WriteU16

NAME

tdrv004WriteU16 – Write 16bit values to FPGA resource

SYNOPSIS

STATUS tdrv004WriteU16
(

TDRV004_DEV pDev,
TDRV004_MEMIO_BUF *pMemIoBuf

);

DESCRIPTION

This function writes a number of unsigned short (16bit) values to a Memory or I/O area by using
WORD (16bit) accesses. The data buffer can be enlarged to the desired needs. The data section must
be included inside the structure.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pMemIoBuf

This parameter specifies a pointer to a TDRV004_MEMIO_BUF structure:

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to write to. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-
I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-
I/O space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by
modifying the PLX PCI9030 EEPROM. Therefore the following table is just an example
how the PCI Base Address Registers could be used.

TDRV004-SW-42 – VxWorks Device Driver Page 55 of 109

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX PCI9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The values are copied from this buffer. It must be large enough to hold the specified
amount of data.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_MEMIO_BUF pMemIoBuf;

unsigned short *pValues;

int BufferSize;

/*

** write 10 16bit words to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 10*sizeof(unsigned short));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned short*)pMemIoBuf->pData;

pValues[0] = 0x0001;

pValues[1] = 0x0002;

…

TDRV004-SW-42 – VxWorks Device Driver Page 56 of 109

…

result = tdrv004WriteU16(pDev,

pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pMemIoBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 57 of 109

3.2.16 tdrv004WriteU32

NAME

tdrv004WriteU32 – Write 32bit values to FPGA resource

SYNOPSIS

STATUS tdrv004WriteU32
(

TDRV004_DEV pDev,
TDRV004_MEMIO_BUF *pMemIoBuf

);

DESCRIPTION

This function writes a number of unsigned long (32bit) values to a Memory or I/O area by using
DWORD (32bit) accesses. The data buffer can be enlarged to the desired needs. The data section
must be included inside the structure.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

pMemIoBuf

This parameter specifies a pointer to a TDRV004_MEMIO_BUF structure:

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to write to. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-
I/O areas of the TDRV004 module are restricted and cannot be used by the application.
The second found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-
I/O space found is named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by
modifying the PLX PCI9030 EEPROM. Therefore the following table is just an example
how the PCI Base Address Registers could be used.

TDRV004-SW-42 – VxWorks Device Driver Page 58 of 109

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX PCI9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The values are copied from this buffer. It must be large enough to hold the specified
amount of data.

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

TDRV004_MEMIO_BUF pMemIoBuf;

unsigned int *pValues;

int BufferSize;

/*

** write 10 32bit dwords to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 10*sizeof(unsigned int));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned int*)pMemIoBuf->pData;

pValues[0] = 0x00000001;

pValues[1] = 0x00000002;

…

TDRV004-SW-42 – VxWorks Device Driver Page 59 of 109

…

result = tdrv004WriteU32(pDev,

pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pMemIoBuf);

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual) or a
driver set code described below. Function specific error codes will be described with the function.

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

TDRV004-SW-42 – VxWorks Device Driver Page 60 of 109

3.2.17 tdrv004ConfigureInterrupts

NAME

tdrv004ConfigureInterrupts – Configure local interrupt source polarity

SYNOPSIS

STATUS tdrv004SetWaitstates
(

TDRV004_DEV pDev,
unsigned int InterruptConfig

);

DESCRIPTION

This function configures the polarity of the local PLX PCI9030 interrupt sources.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

InterruptConfig

This value is an OR’ed value using the following definitions (only one value valid for each
interrupt source):

Value Description

TDRV004_LINT1_POLHIGH Local Interrupt Source 1 HIGH active

TDRV004_LINT1_POLLOW Local Interrupt Source 1 LOW active

TDRV004_LINT2_POLHIGH Local Interrupt Source 2 HIGH active

TDRV004_LINT2_POLLOW Local Interrupt Source 2 LOW active

TDRV004-SW-42 – VxWorks Device Driver Page 61 of 109

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

unsigned int IntConfig;

/*

** Setup LINT1 to LOW polarity, and LINT2 to HIGH polarity

*/

IntConfig = TDRV004_LINT1_POLLOW | TDRV004_LINT2_POLHIGH;

result = tdrv004ConfigureInterrupts(pDev, IntConfig);

if (result != ERROR)

{

/* function succeeded */

} else {

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

Error code Description

EINVAL Invalid interrupt configuration specified.

TDRV004-SW-42 – VxWorks Device Driver Page 62 of 109

3.2.18 tdrv004WaitForINT1

NAME

tdrv004WaitForINT1 – Wait for incoming Local Interrupt Source 1

SYNOPSIS

STATUS tdrv004WaitForINT1
(

TDRV004_DEV pDev,
int Timeout

);

DESCRIPTION

This function enables the corresponding interrupt source, and waits for Local Interrupt Source 1
(LINT1) to arrive. After the interrupt has arrived, this specific local interrupt source is disabled.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Timeout

This value specifies the amount of time to wait for the incoming interrupt event. The timeout
value is specified in system ticks. To wait indefinitely, specify -1.

TDRV004-SW-42 – VxWorks Device Driver Page 63 of 109

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

int Timeout;

/*

** Wait at least 5 seconds for incoming interrupt

*/

Timeout = 5 * sysClkRateGet();

result = tdrv004WaitForINT1(pDev, Timeout);

if (result != ERROR)

{

/* function succeeded */

/* acknowledge interrupt source in FPGA logic */

/* to clear the PLX PCI9030 Local Interrupt Source */

} else {

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

Error code Description

ETIME The interrupt did not arrive before the specified timeout.

EBUSY There is already a job waiting for this interrupt.

TDRV004-SW-42 – VxWorks Device Driver Page 64 of 109

3.2.19 tdrv004WaitForINT2

NAME

tdrv004WaitForINT2 – Wait for incoming Local Interrupt Source 2

SYNOPSIS

STATUS tdrv004WaitForINT2
(

TDRV004_DEV pDev,
int Timeout

);

DESCRIPTION

This function enables the corresponding interrupt source, and waits for Local Interrupt Source 2
(LINT2) to arrive. After the interrupt has arrived, this specific local interrupt source is disabled.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

PARAMETERS

pDev

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

Timeout

This value specifies the amount of time to wait for the incoming interrupt event. The timeout
value is specified in system ticks. To wait indefinitely, specify -1.

TDRV004-SW-42 – VxWorks Device Driver Page 65 of 109

EXAMPLE

#include “tdrv004.h”

TDRV004_DEV pDev;

STATUS result;

int Timeout;

/*

** Wait at least 5 seconds for incoming interrupt

*/

Timeout = 5 * sysClkRateGet();

result = tdrv004WaitForINT2(pDev, Timeout);

if (result != ERROR)

{

/* function succeeded */

/* acknowledge interrupt source in FPGA logic */

/* to clear the PLX PCI9030 Local Interrupt Source */

} else {

/* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

Error code Description

ETIME The interrupt did not arrive before the specified timeout.

EBUSY There is already a job waiting for this interrupt.

TDRV004-SW-42 – VxWorks Device Driver Page 66 of 109

4 Legacy I/O System Functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TDRV004 driver. For the
VxBus-enabled TDRV004 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

4.1 tdrv004Drv

NAME

tdrv004Drv - installs the TDRV004 driver in the I/O system

SYNOPSIS

#include “tdrv004.h”

STATUS tdrv004Drv(void)

DESCRIPTION

This function searches for devices on the PCI bus and installs the TDRV004 driver in the I/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

EXAMPLE

#include "tdrv004.h”

/*-------------------

Initialize Driver

-------------------*/

status = tdrv004Drv();

if (status == ERROR)

{

/* Error handling */

}

TDRV004-SW-42 – VxWorks Device Driver Page 67 of 109

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TDRV004-SW-42 – VxWorks Device Driver Page 68 of 109

4.2 tdrv004DevCreate

NAME

tdrv004DevCreate – Add a TDRV004 device to the VxWorks system

SYNOPSIS

#include “tdrv004.h”

STATUS tdrv004DevCreate
(

char *name,
int devIdx,
int funcType,
void *pParam

)

DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devIdx

This index number specifies the device to add to the system.
If modules of the same type are installed the channel numbers will be advised in the order the
VxWorks pciFindDevice() function will find the devices.

Example: A system with 2x TPMC630-10 and 1x TCP630-10 will assign the following device
indices:

Module Device Index

TPMC630-10 (1
st
) 0

TPMC630-10 (2
nd

) 1

TCP630-10 2

TDRV004-SW-42 – VxWorks Device Driver Page 69 of 109

funcType

This parameter is unused and should be set to 0.

pParam

This parameter is unused and should be set to NULL.

EXAMPLE

#include "tdrv004.h”

STATUS result;

/*---

Create the device "/tdrv004/0" for the first TDRV004 device

---*/

result = tdrv004DevCreate("/tdrv004/0",

0,

0,

NULL);

if (result == OK)

{

/* Device successfully created */

} else {

/* Error occurred when creating the device */

}

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

ENXIO No matching device found.

EEXIST The device has already been created by a previous call to
tdrv004DevCreate().

S_ioLib_NO_DRIVER Device driver not installed.

SEE ALSO

VxWorks Programmer’s Guide: I/O System

TDRV004-SW-42 – VxWorks Device Driver Page 70 of 109

4.3 tdrv004PciInit

NAME

tdrv004PciInit – Generic PCI device initialization

SYNOPSIS

void tdrv004PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC630 family PCI spaces (base address register) and to enable the
TDRV004 device for access.

The global variable tdrv004Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tdrv004Status is equal to the
number of mapped PCI spaces

0 No TDRV004 device found

< 0 Initialization failed. The value of (tdrv004Status & 0xFF) is equal to the number of
mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tdrv004PciInit();

…

tdrv004PciInit();

…

TDRV004-SW-42 – VxWorks Device Driver Page 71 of 109

4.4 tdrv004Init

NAME

tdrv007Init – initialize TDRV004 driver and devices

SYNOPSIS

#include “tdrv004.h”

STATUS tdrv004Init(void)

DESCRIPTION

This function is used by the TDRV004 example application to install the driver and to add all available
devices to the VxWorks system.

See also 3.1.1 tdrv004Openfor the device naming convention for legacy devices.

After calling this function it is not necessary to call tdrv004Drv() and tdrv004DevCreate()
explicitly.

EXAMPLE

#include "tdrv004.h”

STATUS result;

result = tdrv004Init();

if (result == ERROR)

{

/* Error handling */

}

TDRV004-SW-42 – VxWorks Device Driver Page 72 of 109

5 Basic I/O Functions
The VxWorks basic I/O interface functions are useable with the TDRV004 legacy and VxBus-enabled
driver in a uniform manner.

5.1 open

NAME

open - open a device or file.

SYNOPSIS

int open
(

const char *name,
int flags,
int mode

)

DESCRIPTION

Before I/O can be performed to the TDRV004 device, a file descriptor must be opened by invoking the
basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened

flags

Not used

mode

Not used

TDRV004-SW-42 – VxWorks Device Driver Page 73 of 109

EXAMPLE

int fd;

/*--

Open the device named "/tdrv004/0" for I/O

--*/

fd = open("/tdrv004/0", 0, 0);

if (fd == ERROR)

{

/* Handle error */

}

RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - open()

TDRV004-SW-42 – VxWorks Device Driver Page 74 of 109

5.2 close

NAME

close – close a device or file

SYNOPSIS

STATUS close
(

int fd
)

DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;

STATUS retval;

/*----------------

close the device

----------------*/

retval = close(fd);

if (retval == ERROR)

{

/* Handle error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 75 of 109

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

Error codes can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TDRV004-SW-42 – VxWorks Device Driver Page 76 of 109

5.3 ioctl

NAME

ioctl - performs an I/O control function.

SYNOPSIS

#include “tdrv004.h”

int ioctl
(

int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request

This argument specifies the function that shall be executed. Following functions are defined:

Function Description

FIO_TDRV004_XSVFPLAY Play an XSVF file for FPGA programming

FIO_TDRV004_XSVFPOS Retrieve current play-position in XSVF file

FIO_TDRV004_XSVFLASTCMD Get the last executed XSVF command

FIO_TDRV004_RECONFIG Trigger FPGA reconfiguration process

FIO_TDRV004_SETWAITSTATES Specify number of waitstates for programming

FIO_TDRV004_SETCLOCK Set clock generator parameters

FIO_TDRV004_SPIWRITE Write values to clock generator

FIO_TDRV004_SPIREAD Read values from clock generator

FIO_TDRV004_PLXWRITE Write 16bit value to PLX PCI9030 EEPROM

FIO_TDRV004_PLXREAD Read 16bit value from PLX PCI9030 EEPROM

FIO_TDRV004_READ_UCHAR Read 8bit values from FPGA resource

FIO_TDRV004_READ_USHORT Read 16bit values from FPGA resource

TDRV004-SW-42 – VxWorks Device Driver Page 77 of 109

FIO_TDRV004_READ_ULONG Read 32bit values from FPGA resource

FIO_TDRV004_WRITE_UCHAR Write 8bit values to FPGA resource

FIO_TDRV004_WRITE_USHORT Write 16bit values to FPGA resource

FIO_TDRV004_WRITE_ULONG Write 32bit values to FPGA resource

FIO_TDRV004_CONFIGURE_INT Configure local interrupt source polarity

FIO_TDRV004_WAIT_FOR_INT1 Wait for incoming Local Interrupt Source 1

FIO_TDRV004_WAIT_FOR_INT2 Wait for incoming Local Interrupt Source 2

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).
Function specific error codes will be described with the function.

SEE ALSO

ioLib, basic I/O routine - ioctl()

TDRV004-SW-42 – VxWorks Device Driver Page 78 of 109

5.3.1 FIO_TDRV004_XSVFPLAY

This I/O control function programs the FPGA with a supplied XSVF file. The function specific control
parameter arg is a pointer to a TDRV004_XSVF_BUF structure. For information on building an XSVF
file, please refer to the Engineering Documentation of the TDRV004 product family.

The device driver is not able to verify the supplied XSVF file content, so please make sure that
the supplied XSVF is of a valid file format.

typedef struct

{

unsigned long size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_XSVF_BUF;

size

Specifies the total size of the supplied XSVF data.

pData

This dynamically expandable array holds the XSVF data. The data must be included inside the
TDRV004_XSVF_BUF structure.

PROGRAMMING HINTS

Depending on the XSVF file, there might be a waiting period of approx. 15 seconds at the beginning of
programming. The programming of the delivered FPGA example design XSVF file should not take
much longer than 1 minute, depending on the system load.

If the programming fails, try to increase the used waitstates with control function
FIO_TDRV004_SETWAITSTATES (refer to the corresponding section in this manual). Additionally,
the CLK1 should not be lower than 10MHz for programming.

EXAMPLE

#include “tdrv004.h”

int fd;

TDRV004_XSVF_BUF *pXsvfBuf;

int bufsize;

int retval;

…

TDRV004-SW-42 – VxWorks Device Driver Page 79 of 109

…

/*

** allocate enough memory (about 3MB) to hold XSVF content

*/

bufsize = sizeof(TDRV004_XSVF_BUF) + <filesize> * sizeof(unsigned char);

pXsvfBuf = (TDRV004_XSVF_BUF*)malloc(bufsize);

/*

** read XSVF content from file and store it inside pXsvfBuf->pData[]

*/

pXsvfBuf->pData = ...

pXsvfBuf->size = ...

/*

** start FPGA programming

*/

retval = ioctl(fd, FIO_TDRV004_XSVFPLAY, (int)pXsvfBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pXsvfBuf);

ERROR CODES

Error code Description

EINVAL There was an error during XSVF processing.

EINTR The function was cancelled.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 80 of 109

5.3.2 FIO_TDRV004_XSVFPOS

This I/O control function returns the number of the current processed byte in the XSVF file during
programming with TDRV004_IOCS_XSVFPLAY. This control function can be used to monitor the
programming progress. The function specific control parameter arg is a pointer to an unsigned int
value.

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned int XsvfPos;

int retval;

/*------------------------

Execute ioctl() function

------------------------*/

retval = ioctl(fd, FIO_TDRV004_XSVFPOS, (int)&XsvfPos);

if (retval != ERROR)

{

/* function succeeded */

printf(“Current XSVF position: %ld\n”, XsvfPos);

} else {

/* handle the error */

}

ERROR CODES

This ioctl function returns no function specific error codes.

TDRV004-SW-42 – VxWorks Device Driver Page 81 of 109

5.3.3 FIO_TDRV004_XSVFLASTCMD

This I/O control function returns the number of the last executed XSVF command. This value can be
used to find errors inside the supplied XSVF file. This value refers to the line inside the ASCII SVF file.
The function specific control parameter arg is a pointer to an unsigned int value.

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned int XsvfLastCmd;

int retval;

/*------------------------

Execute ioctl() function

------------------------*/

retval = ioctl(fd, FIO_TDRV004_ XSVFLASTCMD, (int)&XsvfLastCmd);

if (retval != ERROR)

{

/* function succeeded */

printf(“Last XSVF command: %ld\n”, XsvfLastCmd);

} else {

/* handle the error */

}

ERROR CODES

This ioctl function returns no function specific error codes.

TDRV004-SW-42 – VxWorks Device Driver Page 82 of 109

5.3.4 FIO_TDRV004_RECONFIG

This I/O control function starts the reconfiguration process of the FPGA. This control function must be
called after the FPGA is programmed using FIO_TDRV004_XSVFPLAY. The function returns after the
reconfiguration is done, or an error occurred. The function specific control parameter arg is not used
for this function.

EXAMPLE

#include “tdrv004.h”

int fd;

int retval;

/*------------------------

Execute ioctl() function

------------------------*/

retval = ioctl(fd, FIO_TDRV004_RECONFIG, 0);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

ERROR CODES

Error code Description

EIO An error occurred during reconfiguration. This may be
caused by an invalid FPGA content located inside the XSVF
file.

EBUSY The device is already busy with XSVF, Reconfig or SPI
action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 83 of 109

5.3.5 FIO_TDRV004_SETWAITSTATES

This I/O control function configures the driver to use a number of waitstates during XSVF and SPI
programming. This might be necessary, if the local clock (CLK1) of the onboard clock generator is
configured to rather slow. The local programming interface is clocked with this frequency, which might
result in errors during programming for low CLK1 frequencies and a small amount of waitstates. The
system architecture (existing PCI-to-PCI bridges) might also have an impact. The function specific
control parameter arg is a pointer to an unsigned int value. Valid values are 1 to 1000.

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned long WaitStates;

int retval;

/*

** configure driver to use 3 waitstates

*/

WaitStates = 3;

retval = ioctl(fd, FIO_TDRV004_SETWAITSTATES, (int)&WaitStates);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

ERROR CODES

This ioctl function returns no function specific error codes.

TDRV004-SW-42 – VxWorks Device Driver Page 84 of 109

5.3.6 FIO_TDRV004_SETCLOCK

This I/O control function configures the onboard clock generator. The function specific control
parameter arg is a pointer to a TDRV004_CLOCK_PARAM structure.

typedef struct

{

unsigned char DeviceAddr;

unsigned char x09_ClkOE;

unsigned char x0C_DIV1SRCN;

unsigned char x10_InputCtrl;

unsigned char x40_CPumpPB;

unsigned char x41_CPumpPB;

unsigned char x42_POQcnt;

unsigned char x44_SwMatrix;

unsigned char x45_SwMatrix;

unsigned char x46_SwMatrix;

unsigned char x47_DIV2SRCN;

} TDRV004_CLOCK_PARAM;

DeviceAddr

Specifies the desired destination address. The CY27EE16 clock generator provides several
EEPROM banks as well as SRAM. If TDRV004_CLKADR_SRAM is specified, the values are
directly stored inside the volatile RAM area and take effect immediately. If
TDRV004_CLKADR_EEPROM is specified, the values are stored in the non-volatile area of the
clock generator, and the CY27EE16 loads it after the next power-up.

x09_ClkOE

Specifies which clock outputs shall be enabled.

x0C_DIV1SRCN

Specifies internal input source 1 and the corresponding frequency divider

x10_InputCtrl

Specifies value for the Input Pin Control register

x40_CPumpPB

Specifies value for Charge Pump and PB counter register

x41_CPumpPB

Specifies value for Charge Pump and PB counter register

x42_POQcnt

Specifies value for PO and Q counter register

x44_SwMatrix

Specifies value for Switching Matrix Register

x45_SwMatrix

Specifies value for Switching Matrix Register

TDRV004-SW-42 – VxWorks Device Driver Page 85 of 109

x46_SwMatrix

Specifies value for Switching Matrix Register

x47_DIV2SRCN

Specifies internal input source 2 and the corresponding frequency divider

Please refer to the Cypress CY27EE16 user manual for detailed explanation of the above
register values. Use Cypress’ CyberClocks Version R3.10.00 to determine the correct values.
This program is also part of the TPMC630 or TCP630 Engineering Documentation.

EXAMPLE

#include “tdrv004.h”

int fd;

TDRV004_CLOCK_PARAM ClockParam;

int retval;

/*

** Setup clock generator (SRAM):

** CLK1: 50.0MHz CLK2: 20.0MHz

** CLK3: 10.0MHz CLK4: 1.0MHz

** CLK5: 0.2MHz CLK6: -off-

*/

ClockParam.DeviceAddress = TDRV004_CLKADR_SRAM;

ClockParam.x09_ClkOE = 0x6f;

ClockParam.x0C_DIV1SRCN = 0x64;

ClockParam.x10_InputCtrl = 0x50;

ClockParam.x40_CPumpPB = 0xc0;

ClockParam.x41_CPumpPB = 0x03;

ClockParam.x42_POQcnt = 0x81;

ClockParam.x44_SwMatrix = 0x42;

ClockParam.x45_SwMatrix = 0x9f;

ClockParam.x46_SwMatrix = 0x3f;

ClockParam.x47_DIV2SRCN = 0xe4;

retval = ioctl(fd, FIO_TDRV004_SETCLOCK, (int)&ClockParam);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

TDRV004-SW-42 – VxWorks Device Driver Page 86 of 109

ERROR CODES

Error code Description

EINVAL It was tried to disable CLK1. This is not allowed.

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 87 of 109

5.3.7 FIO_TDRV004_SPIWRITE

This I/O control function writes up to 256 unsigned char values to a specific sub-address of a Serial
Programming Interface (SPI) address. The function specific control parameter arg is a pointer to a
TDRV004_SPI_BUF structure.

typedef struct

{

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. The following
values are possible (refer to file tdrv004.h):

Symbol Value Description

TDRV004_CLKADDR_EEPROM 0x68 Clock Generator EEPROM (non-volatile)

TDRV004_CLKADDR_SRAM 0x69 Clock Generator SRAM (volatile)

TDRV004_CLKADDR_EEBLOCK1 0x40 EEPROM-Bank 1

TDRV004_CLKADDR_EEBLOCK2 0x41 EEPROM-Bank 2

TDRV004_CLKADDR_EEBLOCK3 0x42 EEPROM-Bank 3

TDRV004_CLKADDR_EEBLOCK4 0x43 EEPROM-Bank 4

TDRV004_CLKADDR_EEBLOCK5 0x44 EEPROM-Bank 5

TDRV004_CLKADDR_EEBLOCK6 0x45 EEPROM-Bank 6

TDRV004_CLKADDR_EEBLOCK7 0x46 EEPROM-Bank 7

TDRV004_CLKADDR_EEBLOCK8 0x47 EEPROM-Bank 8

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to write. A maximum of 256 is allowed.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data must be stored inside the structure, no pointer allowed.

Do not use this control function to setup the clockgenerator. Please use control function
FIO_TDRV004_SETCLOCK instead.

TDRV004-SW-42 – VxWorks Device Driver Page 88 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

int BufferSize;

TDRV004_SPI_BUF *pSpiBuf;

int retval;

/*

** write 5 bytes to EEPROM block 1, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_SPI_BUF) + 5*sizeof(unsigned char));

pSpiBuf = (TDRV004_SPI_BUF*)malloc(BufferSize);

pSpiBuf->SpiAddr = TDRV004_CLKADDR_EEBLOCK1;

pSpiBuf->SubAddr = 0x00;

pSpiBuf->len = 5;

pSpiBuf->pData[0] = 0x01;

pSpiBuf->pData[1] = 0x02;

pSpiBuf->pData[2] = 0x03;

pSpiBuf->pData[3] = 0x04;

pSpiBuf->pData[4] = 0x05;

retval = ioctl(fd, FIO_TDRV004_SPIWRITE, (int)pSpiBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pSpiBuf);

ERROR CODES

Error code Description

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 89 of 109

5.3.8 FIO_TDRV004_SPIREAD

This I/O control function reads up to 256 unsigned char values from a specific sub-address of a Serial
Programming Interface (SPI) address. The function specific control parameter arg is a pointer to a
TDRV004_SPI_BUF structure.

typedef struct

{

unsigned char SpiAddr;

unsigned char SubAddr;

unsigned long len;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_SPI_BUF;

SpiAddr

Specifies the Serial Programming Interface (SPI) address of the desired target. The following
values are possible (refer to file tdrv004.h):

Symbol Value Description

TDRV004_CLKADDR_EEPROM 0x68 Clock Generator EEPROM (non-volatile)

TDRV004_CLKADDR_SRAM 0x69 Clock Generator SRAM (volatile)

TDRV004_CLKADDR_EEBLOCK1 0x40 EEPROM-Bank 1

TDRV004_CLKADDR_EEBLOCK2 0x41 EEPROM-Bank 2

TDRV004_CLKADDR_EEBLOCK3 0x42 EEPROM-Bank 3

TDRV004_CLKADDR_EEBLOCK4 0x43 EEPROM-Bank 4

TDRV004_CLKADDR_EEBLOCK5 0x44 EEPROM-Bank 5

TDRV004_CLKADDR_EEBLOCK6 0x45 EEPROM-Bank 6

TDRV004_CLKADDR_EEBLOCK7 0x46 EEPROM-Bank 7

TDRV004_CLKADDR_EEBLOCK8 0x47 EEPROM-Bank 8

SubAddr

Specifies the sub-address (starting offset).

len

This value specifies the amount of data items to read. A maximum of 256 is allowed.

pData

The values are copied to this buffer. It must be large enough to hold the specified amount of
data. The data space must be located inside the structure, no pointer allowed.

TDRV004-SW-42 – VxWorks Device Driver Page 90 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

int BufferSize;

TDRV004_SPI_BUF *pSpiBuf;

int retval;

/*

** read 5 bytes from EEPROM block 1, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_SPI_BUF) + 5*sizeof(unsigned char));

pSpiBuf = (TDRV004_SPI_BUF*)malloc(BufferSize);

pSpiBuf->SpiAddr = TDRV004_CLKADDR_EEBLOCK1;

pSpiBuf->SubAddr = 0x00;

pSpiBuf->len = 5;

retval = ioctl(fd, FIO_TDRV004_SPIREAD, (int)pSpiBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pSpiBuf);

ERROR CODES

Error code Description

EINVAL The specified SubAddr+len exceeds 256, or len is invalid

EIO An error occurred during SPI access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 91 of 109

5.3.9 FIO_TDRV004_PLXWRITE

This I/O control function writes an unsigned short value to a specific PLX PCI9030 EEPROM memory
offset. The function specific control parameter arg is a pointer to a TDRV004_PLX_BUF structure.

typedef struct

{

unsigned long Offset;

unsigned short Value;

} TDRV004_PLX_BUF;

Offset

Specifies the offset into the PLX9030 EEPROM, where the supplied data word should be
written. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W

Refer to the PLX PCI9030 User Manual for detailed information on these registers.

Value

This value specifies a 16bit word that should be written to the specified offset.

Note that the PLX PCI9030 reloads the new configuration from the EEPROM after a PCI reset,
i.e. the system must be rebooted to make PLX PCI9030 dependent changes take effect.

TDRV004-SW-42 – VxWorks Device Driver Page 92 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

TDRV004_PLX_BUF PlxBuf;

int retval;

/*

** Change the Subsystem Vendor ID to TEWS TECHNOLOGIES (0x1498)

*/

PlxBuf.Offset = 0x0E;

PlxBuf.Value = 0x1498

retval = ioctl(fd, FIO_TDRV004_PLXWRITE, (int)&PlxBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

ERROR CODES

Error code Description

EINVAL The specified offset is invalid, or read-only

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 93 of 109

5.3.10 FIO_TDRV004_PLXREAD

This I/O control function reads an unsigned short value from a specific PLX PCI9030 EEPROM
memory offset. The function specific control parameter arg is a pointer to a TDRV004_PLX_BUF
structure.

typedef struct

{

unsigned long Offset;

unsigned short Value;

} TDRV004_PLX_BUF;

Offset

Specifies the offset into the PLX PCI9030 EEPROM, where the supplied data word should be
read. The offset must be specified as even byte-address.
Following offsets are available:

Offset Access

00h – 0Ch R

0Eh R / W

10h – 26h R

28h – 36h R / W

38h – 3Ah R

3Ch – 4Ah R / W

4Ch – 4Eh R

50h – 5Eh R / W

60h – 62h R

64h – 7Eh R / W

80h – 86h R

88h - FEh R / W

Refer to the PLX PCI9030 User Manual for detailed information on these registers.

Value

This value holds the retrieved 16bit word.

TDRV004-SW-42 – VxWorks Device Driver Page 94 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

TDRV004_PLX_BUF PlxBuf;

int retval;

/*

** Read Subsystem ID

*/

PlxBuf.Offset = 0x0C;

retval = ioctl(fd, FIO_TDRV004_PLXREAD, (int)&PlxBuf);

if (retval != ERROR)

{

/* function succeeded */

printf(“SubsystemID = 0x%04X\n”, PlxBuf.Value);

} else {

/* handle the error */

}

ERROR CODES

Error code Description

EINVAL The specified offset is invalid.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 95 of 109

5.3.11 FIO_TDRV004_READ_UCHAR

This I/O control function reads a number of unsigned char values from a Memory or I/O area by using
BYTE (8bit) accesses. The function specific control parameter arg is a pointer to a
TDRV004_MEMIO_BUF structure. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by modifying
the PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base
Address Registers could be used.

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data.

TDRV004-SW-42 – VxWorks Device Driver Page 96 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned long BufferSize;

TDRV004_MEMIO_BUF *pMemIoBuf;

unsigned char *pValues;

int retval;

/*

** read 50 bytes from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 50*sizeof(unsigned char));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

retval = ioctl(fd, FIO_TDRV004_READ_UCHAR, (int)pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

pValues = (unsigned char*)pMemIoBuf->pData;

} else {

/* handle the error */

}

free(pMemIoBuf);

ERROR CODES

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 97 of 109

5.3.12 FIO_TDRV004_READ_USHORT

This I/O control function reads a number of unsigned short values from a Memory or I/O area by using
WORD (16bit) accesses. The function specific control parameter arg is a pointer to a
TDRV004_MEMIO_BUF structure. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by modifying
the PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base
Address Registers could be used.

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned short pointer.

TDRV004-SW-42 – VxWorks Device Driver Page 98 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned long BufferSize;

TDRV004_MEMIO_BUF *pMemIoBuf;

unsigned short *pValues;

int retval;

/*

** read 50 16bit words from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 50*sizeof(unsigned short));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

retval = ioctl(fd, FIO_TDRV004_READ_USHORT, (int)pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

pValues = (unsigned short*)pMemIoBuf->pData;

} else {

/* handle the error */

}

free(pMemIoBuf);

ERROR CODES

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 99 of 109

5.3.13 FIO_TDRV004_READ_ULONG

This I/O control function reads a number of unsigned long values from a Memory or I/O area by using
DWORD (32bit) accesses. The function specific control parameter arg is a pointer to a
TDRV004_MEMIO_BUF structure. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.
The Base Address Register usage is programmable and can be changed by modifying the
PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base Address
Registers could be used.

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to read.

pData

The received values are copied into this buffer. It must be large enough to hold the specified
amount of data. The data pointer is typecasted into an unsigned long pointer.

TDRV004-SW-42 – VxWorks Device Driver Page 100 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned long BufferSize;

TDRV004_MEMIO_BUF *pMemIoBuf;

unsigned int *pValues;

int retval;

/*

** read 50 32bit dwords from MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + read data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 50*sizeof(unsigned int));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 50;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

retval = ioctl(fd, FIO_TDRV004_READ_ULONG, (int)pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

pValues = (unsigned int*)pMemIoBuf->pData;

} else {

/* handle the error */

}

free(pMemIoBuf);

ERROR CODES

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 101 of 109

5.3.14 FIO_TDRV004_WRITE_UCHAR

This I/O control function writes a number of unsigned char values to a Memory or I/O area by using
BYTE (8bit) accesses. The function specific control parameter arg is a pointer to a
TDRV004_MEMIO_BUF structure. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to write to. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by modifying
the PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base
Address Registers could be used.

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to write.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data.

TDRV004-SW-42 – VxWorks Device Driver Page 102 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned long BufferSize;

TDRV004_MEMIO_BUF *pMemIoBuf;

unsigned char *pValues;

int retval;

/*

** write 10 byte to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 10*sizeof(unsigned char));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned char*)pMemIoBuf->pData;

pValues[0] = 0x01;

pValues[1] = 0x02;

…

retval = ioctl(fd, FIO_TDRV004_WRITE_UCHAR, (int)pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pMemIoBuf);

ERROR CODES

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 103 of 109

5.3.15 FIO_TDRV004_WRITE_USHORT

This I/O control function writes a number of unsigned short values to a Memory or I/O area by using
WORD (16bit) accesses. The function specific control parameter arg is a pointer to a
TDRV004_MEMIO_BUF structure. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by modifying
the PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base
Address Registers could be used.

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to write.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned short pointer.

TDRV004-SW-42 – VxWorks Device Driver Page 104 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned long BufferSize;

TDRV004_MEMIO_BUF *pMemIoBuf;

unsigned short *pValues;

int retval;

/*

** write 10 16bit words to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 10*sizeof(unsigned short));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned char*)pMemIoBuf->pData;

pValues[0] = 0x0001;

pValues[1] = 0x0002;

…

retval = ioctl(fd, FIO_TDRV004_WRITE_USHORT, (int)pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pMemIoBuf);

ERROR CODES

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 105 of 109

5.3.16 FIO_TDRV004_WRITE_ULONG

This I/O control function writes a number of unsigned long values to a Memory or I/O area by using
DWORD (32bit) accesses. The function specific control parameter arg is a pointer to a
TDRV004_MEMIO_BUF structure. This data buffer can be enlarged to the desired needs. The data
section must be included inside this structure.

typedef struct

{

TDRV004_RESOURCE Resource;

unsigned long Offset;

unsigned long Size;

unsigned char pData[1]; /* dynamically expandable */

} TDRV004_MEMIO_BUF;

Resource

Specifies the desired PCI resource to read from. The TDRV004_RESOURCE enumeration
contains values for all possible memory and I/O areas. Both first PCI-Memory and PCI-I/O areas
of the TDRV004 module are restricted and cannot be used by the application. The second
found PCI-Memory area is named TDRV004_RES_MEM_2, the second PCI-I/O space found is
named TDRV004_RES_IO_2 and so on.
The Base Address Register (BAR) usage is programmable and can be changed by modifying
the PLX9030 EEPROM. Therefore the following table is just an example how the PCI Base
Address Registers could be used.

BAR PCI Address-Type TDRV004_RESOURCE

0 IO (reserved) TDRV004_RES_IO_1

1 MEM (reserved) TDRV004_RES_MEM_1

2 MEM (used by VHDL Example) TDRV004_RES_MEM_2

3 IO (not implemented by default) TDRV004_RES_IO_2

4 IO (not implemented by default) TDRV004_RES_IO_3

5 MEM (not implemented by default) TDRV004_RES_MEM_3

The PLX9030 default configuration utilizes only BAR0 to BAR2.

Offset

Specifies the offset into the memory or I/O space specified by Resource.

Size

This value specifies the amount of data items to write.

pData

The values are copied from this buffer. It must be large enough to hold the specified amount of
data. The data pointer is typecasted into an unsigned long pointer.

TDRV004-SW-42 – VxWorks Device Driver Page 106 of 109

EXAMPLE

#include “tdrv004.h”

int fd;

unsigned long BufferSize;

TDRV004_MEMIO_BUF *pMemIoBuf;

unsigned int *pValues;

int retval;

/*

** write 10 32bit dwords to MemorySpace 2, offset 0x00

** allocate enough memory to hold the data structure + write data

*/

BufferSize = (sizeof(TDRV004_MEMIO_BUF) + 10*sizeof(unsigned int));

pMemIoBuf = (TDRV004_MEMIO_BUF*)malloc(BufferSize);

pMemIoBuf->Size = 10;

pMemIoBuf->Resource = TDRV004_RES_MEM_2;

pMemIoBuf->Offset = 0;

pValues = (unsigned int*)pMemIoBuf->pData;

pValues[0] = 0x00000001;

pValues[1] = 0x00000002;

…

retval = ioctl(fd, FIO_TDRV004_WRITE_ULONG, (int)pMemIoBuf);

if (retval != ERROR)

{

/* function succeeded */

} else {

/* handle the error */

}

free(pMemIoBuf);

ERROR CODES

Error code Description

EINVAL The specified Offset+Size exceeds the available memory or I/O
space.

EACCES The specified Resource is not available for access.

EBUSY The device is already busy with XSVF, Reconfig or SPI action.

Other returned error codes are system error conditions.

TDRV004-SW-42 – VxWorks Device Driver Page 107 of 109

5.3.17 FIO_TDRV004_CONFIGURE_INT

This TDRV004 control function configures the polarity of the PLX PCI9030 interrupt sources.

The function specific control parameter arg is a pointer to an unsigned long value. This value is an
OR’ed value using the following definitions (only one value valid for each interrupt source):

Value Description

TDRV004_LINT1_POLHIGH Local Interrupt Source 1 HIGH active

TDRV004_LINT1_POLLOW Local Interrupt Source 1 LOW active

TDRV004_LINT2_POLHIGH Local Interrupt Source 2 HIGH active

TDRV004_LINT2_POLLOW Local Interrupt Source 2 LOW active

EXAMPLE

#include “tdrv004.h”

int fd;

int retval;

unsigned int IntConfig;

/*

** Setup LINT1 to LOW polarity, and LINT2 to HIGH polarity

*/

IntConfig = TDRV004_LINT1_POLLOW | TDRV004_LINT2_POLHIGH;

retval = ioctl(fd, FIO_TDRV004_CONFIGURE_INT, (int)&IntConfig);

if (retval == ERROR)

{

/* handle the error */

}

ERROR CODES

This ioctl function returns no function specific error codes.

TDRV004-SW-42 – VxWorks Device Driver Page 108 of 109

5.3.18 FIO_TDRV004_WAIT_FOR_INT1

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 1 (LINT1) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled.

The function specific control parameter arg is a pointer to an int value containing the timeout in system
ticks. To wait indefinitely, specify -1 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

int fd;

int retval;

int Timeout;

/*

** Wait at least 5 seconds for incoming interrupt

*/

Timeout = 5 * sysClkRateGet();

retval = ioctl(fd, FIO_TDRV004_WAIT_FOR_INT1, (int)&Timeout);

if (retval == ERROR)

{

/* acknowledge interrupt source in FPGA logic */

/* to clear the PLX PCI9030 Local Interrupt Source */

} else {

/* handle the error */

}

ERROR CODES

Error code Description

ETIME The interrupt did not arrive before the specified timeout.

EBUSY There is already a job waiting for this interrupt.

TDRV004-SW-42 – VxWorks Device Driver Page 109 of 109

5.3.19 FIO_TDRV004_WAIT_FOR_INT2

This TDRV004 control function enables the corresponding interrupt source, and waits for Local
Interrupt Source 2 (LINT2) to arrive. After the interrupt has arrived, this specific local interrupt source is
disabled.

The function specific control parameter arg is a pointer to an int value containing the timeout in system
ticks. To wait indefinitely, specify -1 as timeout parameter.

The delay between an incoming interrupt and the return of the described function is system-
dependent, and is most likely several microseconds.

For high interrupt load, a customized device driver should be used which serves the module-
specific functionality directly on interrupt level.

EXAMPLE

#include “tdrv004.h”

int fd;

int retval;

int Timeout;

/*

** Wait at least 5 seconds for incoming interrupt

*/

Timeout = 5 * sysClkRateGet();

retval = ioctl(fd, FIO_TDRV004_WAIT_FOR_INT2, (int)&Timeout);

if (retval == OK)

{

/* acknowledge interrupt source in FPGA logic */

/* to clear the PLX PCI9030 Local Interrupt Source */

} else {

/* handle the error */

}

ERROR CODES

Error code Description

ETIME The interrupt did not arrive before the specified timeout.

EBUSY There is already a job waiting for this interrupt.

	1	Introduction
	2	Installation
	2.1	Legacy vs. VxBus Driver
	2.2	VxBus Driver Installation
	2.2.1	Direct BSP Builds

	2.3	Legacy Driver Installation
	2.3.1	Include Device Driver in Tornado IDE Project
	2.3.2	Special Installation for Intel x86 based Targets
	2.3.3	System Resource Requirement

	3	API Documentation
	3.1	General Functions
	3.1.1	tdrv004Open
	3.1.2	tdrv004Close

	3.2	Device Access Functions
	3.2.1	tdrv004XsvfPlay
	3.2.2	tdrv004XsvfPos
	3.2.3	tdrv004XsvfLastCommand
	3.2.4	tdrv004Reconfigure
	3.2.5	tdrv004SetWaitstates
	3.2.6	tdrv004SetClock
	3.2.7	tdrv004SpiWrite
	3.2.8	tdrv004SpiRead
	3.2.9	tdrv004PlxWrite
	3.2.10	tdrv004PlxRead
	3.2.11	tdrv004ReadU8
	3.2.12	tdrv004ReadU16
	3.2.13	tdrv004ReadU32
	3.2.14	tdrv004WriteU8
	3.2.15	tdrv004WriteU16
	3.2.16	tdrv004WriteU32
	3.2.17	tdrv004ConfigureInterrupts
	3.2.18	tdrv004WaitForINT1
	3.2.19	tdrv004WaitForINT2

	4	Legacy I/O System Functions
	4.1	tdrv004Drv
	4.2	tdrv004DevCreate
	4.3	tdrv004PciInit
	4.4	tdrv004Init

	5	Basic I/O Functions
	5.1	open
	5.2	close
	5.3	ioctl
	5.3.1	FIO_TDRV004_XSVFPLAY
	5.3.2	FIO_TDRV004_XSVFPOS
	5.3.3	FIO_TDRV004_XSVFLASTCMD
	5.3.4	FIO_TDRV004_RECONFIG
	5.3.5	FIO_TDRV004_SETWAITSTATES
	5.3.6	FIO_TDRV004_SETCLOCK
	5.3.7	FIO_TDRV004_SPIWRITE
	5.3.8	FIO_TDRV004_SPIREAD
	5.3.9	FIO_TDRV004_PLXWRITE
	5.3.10	FIO_TDRV004_PLXREAD
	5.3.11	FIO_TDRV004_READ_UCHAR
	5.3.12	FIO_TDRV004_READ_USHORT
	5.3.13	FIO_TDRV004_READ_ULONG
	5.3.14	FIO_TDRV004_WRITE_UCHAR
	5.3.15	FIO_TDRV004_WRITE_USHORT
	5.3.16	FIO_TDRV004_WRITE_ULONG
	5.3.17	FIO_TDRV004_CONFIGURE_INT
	5.3.18	FIO_TDRV004_WAIT_FOR_INT1
	5.3.19	FIO_TDRV004_WAIT_FOR_INT2

