
bonus

chapter

 bonus chapter: the unix crash course 1

The Unix Crash Course

As you’re certainly aware by now, Mac OS X’s resemblance to the original Mac
operating system is only superficial. The engine underneath the pretty skin is
utterly different. In fact, it’s Unix, one of the oldest and most respected operat-

ing systems in use today. The first time you see it, you’d swear that Unix has about as
much in common with the original Mac OS as a Jeep does with a melon (see Figure 1).

What the illustration at the bottom of Figure 1 shows, of course, is a command line
interface: a place where you can type out instructions to the computer. This is a world
without icons, menus, or dialog boxes. The mouse is almost useless here.

Surely you can appreciate the irony: The brilliance of the original 1984 Macintosh
was that it eliminated the command line interface that was still the ruling party on
the computers of the day (like Apple II and DOS machines). Most nongeeks sighed
with relief, delighted that they’d never have to memorize commands again. Yet here’s
Mac OS X, Apple’s supposedly ultramodern operating system, complete with a com-
mand line! What’s going on?

Actually, the command line never went away. At universities and corporations
worldwide, professional computer nerds kept right on pounding away at the little C:
or $ prompts, appreciating the efficiency and power such direct computer control
afforded them.

You’re forgiven if your reaction to the idea of learning Unix is, “For goodness’ sake—
can’t I finish learning one way to control my new operating system before I have to
learn yet another one?”

Absolutely. You never have to use Mac OS X’s command line. In fact, Apple has swept
it far under the rug, obviously expecting that most people will use the beautiful icons

2 mac os x: the missing manual bonus chapter: the unix crash course 3

TerminalThe Unix Crash
Course

and menus of the regular desktop. There are, however, some tasks you can perform
only at the command line, although fewer with each release of Mac OS X.

For intermediate or advanced Mac fans with a little time and curiosity, however, the

command line opens up a world of possibilities. It lets you access corners of Mac OS X
that you can’t get to from the regular desktop. It lets you perform certain tasks with
much greater speed and efficiency than you’d get by clicking buttons and dragging
icons. And it gives you a fascinating glimpse into the minds and moods of people
who live and breathe computers.

If you’ve ever dabbled in Excel macros, experimented with AppleScript, or set up a
Mac on a network, you already know the technical level of the material you’re about
to read. The Unix command line may be unfamiliar, but it doesn’t have to be especially
technical, particularly if you have some “recipes” to follow like the ones in this chapter.

Note: Unix is an entire operating system unto itself. This chapter is designed to help you find your footing
and decide whether or not you like the feel of Unix. If you get bit by the bug, Google can help you find
endless reams of additional Unix help.

Terminal
The keyhole into Mac OS X’s Unix innards is a program called Terminal, which sits
in your ApplicationsÆUtilities folder (see Figure 2). Terminal is named after the
terminals (computers that consist of only a monitor and keyboard) that used to tap
into the mainframe computers at universities and corporations. In the same way,
Terminal is just a window that passes along messages to and from the Mac’s brain.

The first time you open Terminal, you’ll notice that there’s not much in its window
except the date, time and source of your last login, and the command line prompt
(Figure 2).

Figure 1:
Top: What most
people think of
when they think
“Macintosh”
is a graphical
user interface
(GUI)—one that
you control with
a mouse, using
icons and menus
to represent files
and commands.

Bottom: Terminal
offers a second
way to control
Mac OS X: a com-
mand line inter-
face, which you
operate by typing
out programming
commands.

Mac OS X’s Unix Roots
In 1969, Bell Labs programmer Ken Thompson found himself
with some spare time after his main project, an operating
system called Multics, was canceled. Bell Labs had withdrawn
from the expensive project, disappointed with the results
after four years of work.

But Thompson still thought the project—an OS that worked
well as a cooperative software-development environment—
was a promising idea. Eventually, he and colleague Dennis
Ritchie came up with the OS that would soon be called
Unix (a pun on Multics). Bell Labs saw the value of Unix,
agreed to support further development, and became the
first corporation to adopt it.

In the age when Thompson and Ritchie started their work
on Unix, most programmers wrote code that would work on
only one kind of computer (or even one computer model).
Unix, however, was one of the first portable operating sys-
tems; its programs could run on different kinds of computers
without having to be completely rewritten. That’s because
Thompson and Ritchie wrote Unix using a new programming
language of their own invention called C.

In a language like C, programmers need only write their code
once. After that, a software Cuisinart called a compiler can
convert the newly hatched software into the form a particular
computer model can understand.

Unix soon found its way into labs and, thanks to AT&T’s
low academic licensing fees, universities around the world.
Programmers all over the world added to the source code,

fixed bugs, and then passed those modifications around.

In the mid-1970s, the University of California at Berkeley
became the site of especially intense Unix development.
Students and faculty there improved the Unix kernel (the
central, essential part of the OS), added features, and wrote
new Unix applications. By 1977, they had enough additional
software to release their own version of Unix, the first of
several Berkeley Software Distribution (BSD) versions.

As it happened, the government’s Defense Advanced
Research Projects Agency (DARPA) was seeking a uniform,
portable OS to use for its growing wide-area network, origi-
nally called ARPAnet (and now called the Internet).

DARPA liked Unix and agreed to sponsor further research
at Berkeley. In January 1983, DARPA changed ARPAnet’s
networking protocol to TCP/IP—and the Internet was born,
running mostly on Unix machines.

Cut to 1985. Steve Jobs left Apple to start NeXT Computer,
whose NeXTSTEP operating system was based on BSD
Unix. When Apple bought NeXT in 1996, Jobs, NeXTSTEP
(eventually renamed OpenStep) and its Terminal program
came along with it. The Unix that beats within Mac OS X’s
heart is just the latest resting place for the OS that Jobs’s
team developed at NeXT.

So the next time you hear Apple talk about its “new” op-
erating system, remember that its underlying technology is
actually over 40 years old.

up to speed

4 mac os x: the missing manual bonus chapter: the unix crash course 5

For user-friendliness fans, Terminal doesn’t get off to a very good start; this prompt
looks about as technical as computers get. It breaks down like this:

•• office-mac: is the name of your Mac (at least, as Unix thinks of it). It’s usually the
Mac’s computer name (as it appears in the Sharing pane of System Preferences),
but it’s occasionally the name your Mac goes by on the Internet.

•• ~ indicates what folder you’re “in” (Figure 2). It denotes the working directory—that
is, the currently open folder. (Remember, there are no icons on the command line.)
Essentially, this notation tells you where you are as you navigate your machine.

The very first time you try out Terminal, the working directory is set to the symbol
~. That tilde symbol is important shorthand; it means “your own Home folder.”
It’s what you see the first time you start up Terminal, but you’ll soon be seeing the
names of other folders here—office-mac: /Users or office-mac: /System/Library, for
example. (More on this slash notation on page 26.)

Note: Before Apple came up with the user-friendly term folder to represent an electronic holding tank for
files, folders were called directories. In this chapter, you’ll encounter the term directory almost exclusively. In
any discussion of Unix, “directory” is simply the correct term.

Besides, using a term like “working folder” within earshot of Unix geeks is likely to get you lynched.

•• chris$ begins with your short user name. It reflects whoever’s logged into the shell
(see the box on the facing page), which is usually whoever’s logged into the Mac
at the moment. As for the $ sign, think of it as a colon. In fact, think of the whole
prompt shown in Figure 2 as Unix’s way of saying, “OK, Chris, I’m listening.
What’s your pleasure?”

Unless you’ve fiddled with Terminal’s preferences, the insertion point looks like a
tall rectangle at the end of the command line. It trots along to the right as you type.

Figure 2:
On the Web, Mac OS X’s Terminal
is one of the most often-discussed
elements of Mac OS X. Dozens of
step-by-step tutorials for perform-
ing certain tasks circulate online,
usually without much annotation
as to why you’re typing what
you’re typing. As you read this
chapter, remember that capital-
ization matters in Terminal, even
though it doesn’t in the Finder. As
far as most Unix commands are
concerned, “Hello” and “hello”
are two different things.

What’s Been Lionized in Terminal
Terminal received a makeover in Lion/Mountain Lion. For
example, its scroll bars are usually hidden, and the ƒ but-
ton sits in the corner of the window so you can make its
window go full screen.

Terminal windows’ new proxy icon (in the title bar) works
like it has in other programs, too: You can c-click it to see
the parent folders of the current working directory; click
one, and that folder opens in the Finder. There are even
new window themes in PreferencesÆSettings, like Silver
Aerogel: It lets you see through your Terminal window to
whatever is behind it (the background appears blurry when
your Aerogel window is active, or crisp when it’s inactive.)

Terminal also benefits from Lion’s Resume feature: When
you reopen Terminal, all windows from your previous

Terminal session reopen to their same working directories;
any text output from the previous session is preserved, too.

Terminal’s tabs and Dock icons have become animated: They
now indicate status changes of any inactive windows, and
Terminal’s Dock icon displays a running count of any alerts
(“bell”) signals received by inactive windows.

Finally, windows you’ve minimized to the Dock show Ter-
minal activity live, right on their icons. Try it: Execute a long
running command like ls -R / (which lists the contents of
your entire drive) and then minimize that window. Now look
at the Dock icon and watch the tiny lines fly by!

up to speed

Bash, Terminal, and Shells
One Unix program runs automatically when you open a
Terminal window: bash. It’s Apple’s chosen shell for Mac
OS X 10.7.

A shell is a Unix program that interprets the commands
you’ve typed, passes them to the kernel (the operating
system’s brain), and then shows you the kernel’s response.

In other words, the shell is the Unix Finder. It’s the program
that lets you navigate the contents of your hard drive, see
what’s inside certain folders, launch programs and docu-
ments, and so on.

There are actually several different shells available in Unix,
each with slightly different command syntax. All the popular
ones—like tcsh, ksh, and zsh—come with Mac OS X. (You can
choose among them as your default shell using, of all things,
the Users & Groups pane of System Preferences. Click the l,
enter your Administrator password, and then Control-click or

right-click your account name in the list; choose Advanced
Options. There, on the Advanced Options panel, you’ll find
the Login Shell box, where you can make the change.) But on
a clean installation of Lion, Terminal comes set to use bash.

Bash evolved from the original sh shell, which was named
the Bourne shell after its inventor. Bash got its name, then,
as the Bourne Again Shell (get it?).

You can open additional Terminal windows (100 or more,
depending on how many other programs are running) by
choosing ShellÆNew WindowÆBasic. Even slicker, Ter-
minal lets you open multiple sessions in tabs (just like with
Safari) by choosing ShellÆNew TabÆBasic.

Each window and tab runs independently of any others. For
proof, try opening several windows and then running the
cal command in each.

up to speed

TerminalTerminal

6 mac os x: the missing manual bonus chapter: the unix crash course 7

Unix Programs
An enormous number of programs have been written for Unix. And thanks to thou-
sands of open-source developers—programmers all over the world who collaborate
and make their work available for the next round of modification—much of this
software is freely available to all, including Mac OS X users.

Each Unix command generally calls up a single application (or process, as geeks call
it) that launches, performs a task, and closes. Many of the best-known such applica-
tions come with Mac OS X.

Here’s a fun one: Just type uptime and press Enter or Return. (That’s how you run a
Unix program: Type its name and press Return.) On the next line, Terminal shows
you how long your Mac has been turned on continuously. It shows you something
like: “13:09 up 8 days, 15:04, 1 user, load averages: 1.24, 1.37, 1.45”—meaning your
Mac has been running for 8 days, 15 hours, nonstop.

You’re finished running the uptime program. The $ prompt returns, suggesting that
Terminal is ready for whatever you throw at it next.

Try this one: Type cal at the prompt, and then press Return. Unix promptly spits out
a calendar for the current month.

OfficeMac:~ chris$ cal

 August 2011

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

OfficeMac:~ chris$

This time, try typing cal 4 2012, cal -y, or cal -yj. These three commands make Unix
generate a calendar of April 2012, a calendar of the current year, and a calendar of
Julian days of the current year, respectively.

Tip: The mouse isn’t very useful at the command line. You generally move the cursor only with the < and
> keys. (The Delete key works as it always does.)

You can use the mouse, however, to select text from anywhere in the window (or other programs) and
paste it in at the prompt. You can also use the mouse to drag an icon off your desktop into the Terminal
window, as shown in Figure 3.

Navigating in Unix
If you can’t see any icons for your files and folders, how are you supposed to work
with them?

You have no choice but to ask Unix to tell you what folder you’re looking at (using
the pwd command), what’s in it (using the ls command), and what folder you want
to switch to (using the cd command), as described in the following pages.

pwd (Print Working Directory, or “Where am I?”)
Here’s one of the most basic navigation commands: pwd, which stands for print
working directory. The pwd command doesn’t actually print anything on your printer.
Instead, the pwd command types out, on the screen, the path Unix thinks you’re in
(the working directory).

Try typing pwd and pressing Return. On the next line, Terminal may show you
something like this:

/Users/chris/Movies

Figure 3:
This may be the quickest way of all
to identify a directory or file you
want to manipulate: Don’t type
anything. When you drag icons
directly from the desktop into a
Terminal window, the icon’s path-
name appears automatically at the
insertion point. Terminal even adds
backslashes to any special charac-
ters in these pathnames for you (a
necessary step known as escaping
the special characters).

Pathnames 101
In many ways, browsing the contents of your hard drive us-
ing Terminal is just like doing so with the Finder. You start
with a folder and move down into its subfolders, or up into
its parent folders.

In this chapter, you’ll be asked to specify a certain file or
folder in this tree of folders. But you can’t see their icons
from the command line. So how are you supposed to identify
the file or folder you want?

By typing its pathname. The pathname is a string of folder
names, something like a map, that takes you from the root

level to the next nested folder, then to the next one, and
so on.

(The root level is, for learning-Unix purposes, the rough
equivalent of your main hard drive window. It’s represented
in Unix by a single slash. The phrase /Users, in other words,
means “the Users folder in my hard drive window”—or, in
Unix terms, “the Users directory at the root level.”)

One way to refer to the Documents folder in your own Home
folder, for example, would be /Users/chris/Documents (if
your name is Chris, that is).

up to speed

TerminalTerminal

8 mac os x: the missing manual bonus chapter: the unix crash course 9

Terminal is revealing the working directory’s path—a list of folders-in-folders, sepa-
rated by slashes, that specifies a folder’s location on your hard drive. /Users/chris/
Movies pinpoints the Movies folder in Chris’s Home folder (which, like all Home
folders, is in the Users directory).

Tip: Remember that capitalization counts in Unix. Command names are almost always all lowercase (like
cal and pwd). But when you type the names of folders, be sure to capitalize correctly.

ls (List, or “What’s in here?”)
The ls command, short for list, makes Terminal type out the names of all the files and
folders in the folder you’re in (that is, your working directory). You can try it right
now: Just type ls and then press Return. Terminal responds by showing you the names
of the files and folders inside in a list, like this:

Desktop Downloads Movies Pictures

Documents Library Music Public

In other words, you see a list of the icons that, in the Finder, you’d see in your Home
folder.

Note: Terminal respects the limits of the various Mac OS X accounts (Chapter 12). In other words, a Standard
or Administrator account holder isn’t generally allowed to peek further into someone else’s Home folder. If
you try, you’ll be told, “Permission denied.”

You can also make Terminal list what’s in any other directory (one that’s not the
working directory) just by adding its pathname as an argument. Arguments are extra
pieces of information after the command that refine how the command should run.
(Remember the calendar example? When you wanted the April 2011 calendar, you
typed cal 4 2011. The “4” and “2011” parts were the arguments—that is, everything
you typed after the command itself.)

To see a list of the files in your Documents directory, then, you could just type
ls /Users/chris/Documents. Better yet, because the ~ symbol is short for “my home
directory,” you could save time by typing ls ~/Documents. The pathname “~/Docu-
ments” is an argument that you’ve fed the ls command.

About flags
As part of a command’s arguments, you can sometimes insert option flags (also called
switches)—modifying characters (or short phrases) that affect how the command
works, just like option settings do in GUI applications. In the calendar example, you
can type cal -y to see a full-year calendar; the -y part is an option flag.

Option flags are almost always preceded by a hyphen (-), although you can usually
run several flags together following just one hyphen. If you type ls -al, both the -a
and -l flags are in effect.

Here are some useful options for the ls command:

•• -a. The unadorned ls command even displays the names of invisible files and fold-
ers—at least by the Finder’s definition. The Unix shell uses its own system of denot-
ing invisible files and folders and ignores the Finder’s. That doesn’t mean you’re
seeing everything; files that are invisible by the Unix definition still don’t show up.

You can use one of the ls command’s flags, however, to force even Unix-invisible
files to appear. Just add the -a flag. In other words, type this: ls -a. Now when you
press Return, you might see something like this:

. 		 Desktop			 Music

.. 		 Documents		 Pictures

.CFUserTextEncoding	 Downloads		 Public

.DS_Store 		 Library		

.Trash			 		 Movies

•• -F. As you see, the names of invisible Unix files all begin with a period (Unix folk
call them dot files). But are these files or folders? To find out, use ls with the -F
option (capitalization counts), like this: ls -aF. You’re shown something like this:

./ 		 Desktop/		 Music/

../ 		 Documents/		 Pictures/

.CFUserTextEncoding	 Downloads/		 Public/

.DS_Store 		 Library/		

.Trash/ 		 Movies/

The names of the items themselves haven’t changed, but the -F flag makes slashes
appear on directory (folder) names. This example shows that in your home direc-
tory, there are 12 other directories and two files.

•• -G. Here’s a fascinating flag that makes ls display color-coded results: blue for di-
rectories, red for programs, normal black-on-white type for documents, and so on.

•• -R. The -R flag produces a recursive listing—one that shows you the directories
within the directories in the list. Listing all of the home directory could take several
pages, but if you type ls -R Movies, for example, you might get something like this:

Bad Reviews.doc Old Tahoe Footage 2 Picnic Movie 2 Reviews.doc

./Old Tahoe Footage 2:

Tahoe 1.mov Tahoe 3.mov Tahoe Project File

Tahoe 2.mov Tahoe 4.mov

./Picnic Movie 2:

Icon? Media Picnic Movie 2 Project

./Picnic Movie 2/Media:

Picnic Movie 1 Picnic Movie 3 Picnic Movie 5

Picnic Movie 2 Picnic Movie 4 Picnic Movie 6

In other words, you’ve got two subdirectories here, called Old Tahoe Footage 2 and
Picnic Movie 2—which itself contains a Media directory.

Navigating in UnixNavigating in Unix

10 mac os x: the missing manual bonus chapter: the unix crash course 11

Tip: As you can tell by the cal and ls examples, Unix commands are very short. They’re often just two-letter
commands, and an impressive number of those use alternate hands (ls, cp, rm, and so on).

The reason has partly to do with conserving the limited memory of early computers and partly to do with
efficiency: Most programmers would just as soon type as little as possible to get things done. User-friendly
it ain’t, but as you type these commands repeatedly over the months, you’ll eventually be grateful for the
keystroke savings.

cd (Change Directory, or “Let Me See Another Folder”)
Now you know how to find out what directory you’re in, and how to see what’s in it,
all without double-clicking any icons. That’s great information, but it’s just informa-
tion. How do you do something in your command line Finder—like switching to a
different directory?

To change your working directory, use the cd command, followed by the path of the
directory you want to switch to. Want to see what’s in the Movies directory of your
home directory? Type cd /Users/chris/Movies and press Return. The $ prompt shows
you what it considers to be the directory you’re in now (the new working directory).
If you perform an ls command at this point, Terminal shows you the contents of your
Movies directory.

That’s a lot of typing, of course. Fortunately, instead of typing out that whole path
(the absolute path, as it’s called), you can simply specify which directory you want to
see relative to the directory you’re already in.

For example, if your Home folder is the working directory, the relative pathname of
the Trailers directory inside the Movies directory would be Movies/Trailers. That’s a
lot shorter than typing out the full, absolute pathname (/Users/chris/Movies/Trailers).

If your brain isn’t already leaking from the stress, here’s a summary of the three dif-
ferent ways you could switch from ~/(your home directory) to ~/Movies:

•• cd /Users/chris/Movies. That’s the long way—the absolute pathname. It works no
matter what your working directory is.

•• cd ~/Movies. This, too, is an absolute pathname that you could type from anywhere.
It relies on the ~ shorthand (which means “my home directory,” unless you follow
the ~ with another account name).

•• cd Movies. This streamlined relative path exploits the fact that you’re already in
your home directory.

Lion Watch: Actually, there are ways to specify a directory that involve no typing at all: One is dragging
the icon of the directory you want to specify directly into the Terminal window. (Figure 3 should make this
clear.) In Lion, you can even drag the proxy icon in any Terminal window title bar. Even slicker, you can now
drag a Finder folder icon onto Terminal’s own application icon (whether in the Dock or in a Finder window).
A new Terminal window opens for you, pre-parked in that directory.

.. (Dot-Dot, or “Back Me Out”)
So now you’ve burrowed into your Movies directory. How do you back out?

Sure, you could type out the full pathname of the directory that encloses Movies—if
you had all afternoon. But there’s a shortcut: You can type a double period (..) in
any pathname. This shortcut represents the current directory’s parent directory (the
directory that contains it).

To go from your home directory up to /Users, for example, you could just type cd ..
(that is, cd followed by a space and two periods).

You can also use the dot-dot shortcut repeatedly to climb multiple directories at once,
like this: cd ../.. (which would mean “switch the working directory to the directory
two layers out.”) If you were in your Movies directory, ../.. would change the working
directory to the Users directory.

Another trick: You can mix the .. shortcut with actual directory names. For example,
suppose your Movies directory contains two directories: Trailers and Shorts. Trailers
is the current directory, but you want to switch to the Shorts directory. All you’d have
to do is type cd ../Shorts, as illustrated in Figure 4.

Keystroke-Saving Features
By now, you might be thinking that clicking icons would still be faster than doing all
this typing. Here’s where the typing shortcuts of the bash shell come in.

Tab completion
You know how you can highlight a file in a Finder window by typing the first few
characters of its name? The tab-completion feature works much the same way. Over
time, it can save you miles of finger movement.

It kicks in whenever you’re about to type a pathname. Start by typing the first letter or
two of the path you want, and then press Tab. Terminal instantly fleshes out the rest
of the directory’s name. As shown in Figure 5, you can repeat this process to specify
the next directory-name chunk of the path.

Some tips for tab completion:

•• Capitalization counts.

•• Terminal adds backslashes automatically if your directory names include spaces, $
signs, or other special characters. But you still have to insert your own backslashes
when you type the “hint” characters that tip off tab completion.

•• If it can’t find a match for what you typed, Terminal beeps.

If it finds several files or directories that match what you typed, Terminal beeps;
when you press Tab again, terminal shows you a list of them. To specify the one
you really wanted, type the next letter or two and then press Tab again.

Navigating in UnixNavigating in Unix

12 mac os x: the missing manual bonus chapter: the unix crash course 13

Using the history
You may find yourself at some point needing to run a previously entered command,
but dreading the prospect of re-entering the whole command. Retyping a command,
however, is never necessary. Terminal (or, rather, the shell it’s running) remembers
the last 500 commands you entered. At any prompt, instead of typing, just press the ,
or . keys to walk through the various commands in the shell’s memory. They flicker
by, one at a time, at the $ prompt—right there on the same line.

Wildcards
Wildcards are special characters that represent other characters—and they’re huge
timesavers.

The most popular wildcard is the asterisk (*), which means “any text can go here.”
For example, to see a list of the files in the working directory that end with the letters
te, you could type ls *te. Terminal would show you files named Yosemite, BudLite,

Brigitte, and so on—and hide all other files in the list. If the wildcard matches any
directories, you’ll also see the contents of those directories as well, just as though you’d
used ls with each of the full directory names.

Likewise, to see which files and directories begin with Old, you could type ls Old*
and press Return. You’d be shown only the names of icons in the working directory
called Old Yeller, Old Tahoe Footage, Olduvai Software, and so on.

If you add the asterisk before and after the search phrase, you find items with that
phrase anywhere in their names. Typing ls *jo* will show you the files named Mojo,
johnson, Major Disaster, and so on.

Tip: Using * by itself means “show me everything.” To see a list of what’s in a directory and in the
directories inside it (as though you’d highlighted all the folders in a Finder list view and then pressed
c-right arrow), just type ls *.

Directory Switching
A hyphen (-) after the cd command means “Take me back to the previous working
directory.” For example, if you changed your working directory from ~/Movies/Movie
1 to ~/Documents/Letters, simply enter cd - to change back to ~/Movies/Movie 1. Use
cd - a second time to return to ~/Documents/Letters. (Note the space between cd and
the hyphen.)

Figure 4:
The double dot tells Unix
to switch its attention
to the Movies directory
(walking upward through
the directory tree); the rest
tells it to walk down the
Movies directory into the
Shorts directory. Note that
the prompt always identi-
fies the current working
directory.

Figure 5:
Top: You type cd /U and then press Tab.

Second from top: Terminal finishes the direc-
tory name Users for you.

Third from top: You type c and then press
Tab.

Bottom: Terminal finishes the home-
directory name, chris. You can also use tab
completion to specify file names, as when
you type ls -l Movies/R and then press Tab;
Terminal finishes the name Reviews.doc.

Navigating in UnixNavigating in Unix

14 mac os x: the missing manual bonus chapter: the unix crash course 15

Tip: If you’re doing a lot of switching between directories, you’ll probably find it quicker to open and switch
between two Terminal windows or tabs, each with a different working directory.

The ~ Shortcut
You already know that the tilde (~) character is a shortcut to your home directory.
But you can also use it as a shortcut to somebody else’s home directory simply by
tacking on that person’s account name. For example, to change to Miho’s home di-
rectory, use cd ~miho.

Special keys
The bash shell offers dozens of special keystroke shortcuts for navigation. You may
recognize many of them as useful undocumented shortcuts that work in any Cocoa
application, but even more are available (and useful) in Terminal:

Keystroke	 Effect
Control-U	 Erases the entire command line you’re working on (to the insertion

point’s left).

Control-A	 Moves the insertion point to the beginning of the line.

Control-E	 Moves the insertion point to the end of the line.

Control-T	 Transposes the previous two characters.

Esc-F	 Moves the insertion point to the beginning of the next word.

Esc-B	 Moves the insertion point to the beginning of the current word.

Esc-Delete	 Erases the previous word (defined as “anything that ends with a space,
slash, or most other punctuation marks; periods and asterisks not
included”). You have to hold down Esc as you press Delete; repeat for
each word.

Esc-D	 Erases the word, or section of a word, following the insertion point.

Esc-C	 Capitalizes the letter following the insertion point.

Esc-U	 Changes the next word or word section to all uppercase letters.

Esc-L	 Changes the next word or word section to all lowercase letters.

Working with Files and Directories
The previous pages show you how to navigate your directories using Unix commands.
Just perusing your directories isn’t particularly productive, however. This section
shows you how to do something with the files you see listed—copy, move, create, and
delete directories and files.

Tip: You’re entering Serious Power territory, where it’s theoretically possible to delete a whole directory with
a single typo. As a precaution, consider working through this section with administrator privileges turned off
for your account, so that you won’t be able to change anything outside your home directory—or to be really
safe, create a new, test account just for this exercise so even your personal files won’t be at risk.

cp (Copy)
Using the Unix command cp, you can copy and rename a file in one move. (Try that
in the Finder!)

The basic command goes like this: cp path1 path2, where the path placeholders rep-
resent the original file and the copy, respectively.

Copying in place
To duplicate a file called Thesis.doc, you would type cp Thesis.doc Thesis2.doc. (That’s
just one space between the names.) You don’t have to call the copy Thesis2—you
could call it anything you like. The point is that you wind up with two identical files
in the same directory with different names. Just remember to add a backslash before
a space if you want to name the copy with two words (Thesis\ Backup, for example).

Tip: If this command doesn’t seem to work, remember that you must type the full names of the files you’re
moving—including their file name suffixes like .doc or .gif, which Mac OS X usually hides. Using the ls com-
mand before a copy may help you find out what the correct, full file names should be. Or you may just want
to use the Tab-completion feature, making Terminal type the whole name for you.

No Spaces Allowed
Terminal doesn’t see a space as a space. It thinks that a
space means, for example, “I’ve just typed a command,
and what follows is an argument.” If you want to see what’s
in your Short Films directory, therefore, don’t bother typing
ls ~/Movies/Short Films. You’ll only get a “No such file or
directory” error message, thanks to the space in the Short
Films directory name.

Similarly, symbols like $, *, %, and & have special meanings
in Unix. If you try to type one in a pathname (because a
directory name contains *, for example), you’ll have noth-
ing but trouble.

Fortunately, you can work around this quirk by using a third
reserved, or special, character: the backslash (\). It says,
“Ignore the special meaning of the next character—a space,
for example. I’m not using it for some special Unix meaning.
I’m using the following space as, well, a space.” (At a Unix
user-group meeting, you might hear someone say, “Use the
backslash character to escape the space character.”)

The correct way to see what’s in your Short Films direc-
tory, then, would be ls ~/Movies /Short\ Films. (Note how

the backslash just before the space means, “This is just a
space—keep it moving, folks.”)

Of course, if you have to enter a lot of text with spaces, it’d
be a real pain to type the backslash before every single one.
Fortunately, instead of using backslashes, you can enclose
the whole mess with single quotation marks. That is, instead
of typing this:

cd /Users/chris/My\ Documents/Letters\ to\ finish/Letter\
to\ Craig.doc

…you could just type this:

cd ‘/Users/chris/My Documents/Letters to finish/Letter to
Craig.doc’

It can get even more complicated. For example, what if
there’s a single quote in the path? (Answer: Protect it with
double quotes.) Ah, but you have years of study ahead of
you, grasshoppa.

up to speed

Navigating in UnixNavigating in Unix

16 mac os x: the missing manual bonus chapter: the unix crash course 17

Copying and renaming
To copy the same file into, say, your Documents folder instead, just change the last
phrase so that it specifies the path, like this: cp Reviews.doc ~/Documents/Reviews2.doc. ​

Tip: Note that cp replaces identically named files without warning. Use the -i flag (that is, cp -i) if you want
to be warned before cp replaces a file like this.

Copying without renaming
To copy something into another directory without changing its name, just use a
pathname (without a file name) as the final phrase. So to copy Reviews.doc into
your Documents folder, for example, you would type cp Reviews.doc ~/Documents.

Tip: You can use the “.” directory shortcut (which stands for the current working directory) to copy files from
another directory into the working directory, like this: $ cp ~/Documents/Reviews.doc . (Notice the space
and the period after Reviews.doc.)

Multiple files
You can even copy several files or directories at once. Where you’d normally specify
the source file, just list their pathnames separated by spaces, as shown in Figure 6.

You can also use the * wildcard to copy several files at once. For example, suppose
you’ve got these files in your iMovie Projects directory: Tahoe1.mov, Tahoe2.mov,
Tahoe3.mov, Tahoe4.mov, Script.doc, and Tahoe Project File. Now suppose you want
to copy only the QuickTime movies into a directory called FinishedMovies. All you’d
have to do is type cp *mov ../FinishedMovies and press Return; Mac OS X instantly
performs the copy.

If you wanted to copy all those files (not just the movies) to another directory, you’d
use the * by itself, like this: cp * ../Finished Movies.

Unfortunately, if the iMovie Projects directory contains other directories and not just
files, that command produces an error message. The Unix cp command doesn’t copy

directories within directories unless you explicitly tell it to, using the -R option flag.
Here’s the finished command that copies everything in the current directory—both
files and directories—into FinishedMovies: cp -R * ../FinishedMovies.

Here’s one more example, a command that copies everything (files and directories)
with Tahoe in its name into someone else’s Drop Box directory: cp -R *Tahoe* ~miho/
Public/Drop\ Box.

mv (Moving and Renaming Files and Directories)
Now that you know how to copy files, you may want to move or rename them. To do
so, you use the Unix command mv almost exactly the same way you’d use cp (except
that it always moves directories inside of directories you’re moving, so you don’t
have to type -R).

Figure 6:
The first argument of this
command lists two different
files. The final clause indicates
where they go.

The files you want to copy Where you want to put them

The Slash and the Colon
OK, I’m really confused. You say that slashes denote nested
directories. But I also know that traditionally, colons (:)
denote the Mac’s internal folder notation, and that’s why I
can’t use colons in the names of my icons. What’s the story?

The Mac’s file system (called HFS Plus) uses colons as path
separators instead of slashes. Therefore, in the Finder, you
are allowed to use slashes in file names, but not colons.

Conversely, in Terminal, you can use colons in file names
but not slashes!

Behind the scenes, Mac OS X automatically converts one
form of punctuation to the other, as necessary. For example,
a file named Letter 6/21/2012 in the Finder shows up as
Letter 6:21:2012 in Terminal. Likewise, a directory named
Attn: Jon in Terminal appears with the name Attn/ Jon in
the Finder. Weird—and fun!

frequently asked question

Your Metadata is Safe with Us
Metadata means “data about data.” For example, the
handwritten note on a shoebox of photos is metadata for
the image data inside, reminding you of the photos’ date,
location, camera information, or even which CDs hold the
digital versions. This metadata lets you locate and access the
actual data quickly (and also helps you decide if you should
go to the trouble in the first place).

Computer files have metadata, too, and the more the
computer can scribble down, the easier it can operate with
the bazillions of files living on your hard drive. The Mac has
always stored some file metadata in one way or another
(last-modified date, permissions, and so on). But these days,
it really goes whole hog. It now recognizes a Unix feature
called extended attributes to store all kinds of file metadata.

In fact, many of the features described in this book, like Time
Machine and Downloaded Application Tagging, depend on

extended attributes to perform their magic. Apple also uses
extended attributes now to keep track of traditional Mac
metadata like resource forks (features carried over from
OS 9 that Mac OS X still has to recognize).

When you create, modify, or move files in the Finder, you
don’t have to worry about extended attributes; the Mac
always keeps them together with their associated files.

When you’re working with files on the command line, how-
ever, you have to be more cautious. Ever since Tiger (Mac
OS X 10.4), the most common Unix file tools, like cp, mv,
tar, and rsync (with the -E flag), manage extended attributes
correctly. However, as you explore with other tools, it’s wise
to use them to duplicate rather than move files, until you’re
sure all the bits stay together.

The command line tool for peeking in on your extended attri-
butes is xattr, which you’ll learn about later on in this chapter.

Up To Speed

Working with Files
and Directories

Working with Files
and Directories

18 mac os x: the missing manual bonus chapter: the unix crash course 19

The syntax looks like this: mv oldname newname. For example, to change your
Movies directory’s name to Films, you’d type mv Movies Films. You can rename both
files and directories this way.

Moving files and directories
To rename a file and move it to a different directory simultaneously, just replace the
last portion of the command with a pathname. To move the Tahoe1 movie file into
your Documents directory—and rename it LakeTahoe at the same time—type this:
mv Tahoe1.mov ~/Documents/LakeTahoe.mov.

All the usual shortcuts apply, including the wildcard. Here’s how you’d move everything
containing the word Tahoe in your working directory (files and directories) into your
Documents directory: mv *Tahoe* ~/Documents.

Option flags
You can follow the mv command with any of these options:

•• -i. Makes Terminal ask your permission before replacing a file with one of the
same name.

•• -f. Overwrites like-named files without asking you first. (Actually, this is how mv
works if you don’t specify otherwise.)

•• -n. Doesn’t overwrite like-named files; just skips them without prompting.

•• -v. Displays verbose (fully explained) explanations on the screen, letting you know
exactly what got moved.

Tip: If you use a combination of options that appear to contradict one another—like the -f, -i, and -n op-
tions—the last option (farthest to the right) wins.

By the way, the mv command never replaces a directory with an identically named
file. It copies everything else you’ve asked for, but it skips files that would otherwise
wipe out folders.

mkdir (Create New Directories)
In the Finder, you make a new folder by choosing FileÆNew Folder. In Terminal, you
create one using the mkdir command (for make directory).

Follow the command with the name you want to give the new directory, like this:
mkdir ‘Early iMovie Attempts’ (the single quotes in this example let you avoid having
to precede each space with a backslash).

The mkdir command creates the new directory in the current working directory,
although you can just as easily create it anywhere else. Just add the pathname to your
argument. To make a new directory in your DocumentsÆFinished directory, for
example, type mkdir ~‘/Documents/Finished/Early iMovie Attempts’. (The first quote
comes after the ~, so that it preserves that character’s special meaning by not escap-

ing it.) Thanks to Spotlight’s constant eye on file activity, the new directory appears
immediately in the Finder.

Tip: If there is no directory called Finished in your Documents directory, you just get an error message—un-
less you use the -p option, which creates as many new directories as necessary to match your command. For
example, mkdir -p ~‘/Documents/Finished/Early iMovie Attempts’ would create both a Finished directory
and an Early iMovie Attempts directory inside of it.

touch (Create Empty Files)
To create a new, empty file, type touch filename. For example, to create the file practice.
txt in your working directory, use touch practice.txt.

And why would you bother? For the moment, you’d use such new, empty files primar-
ily as targets for practicing the next command.

rm (Remove Files and Directories)
Unix provides an extremely efficient way to trash files and directories. With a single
command, rm, you can delete any file or directory—or all those that you’re allowed
to access with your account type.

The dangers of this setup should be obvious, especially in light of the fact that dele-
tions are immediate in Unix. There is no Undo, no Empty Trash command, no “Are
you sure?” dialog box. In Unix, all sales are final.

The command rm stands for “remove,” but it could also stand for “respect me.” Pause
for a moment whenever you’re about to invoke it. For the purpose of this introduc-
tion to rm, double-check that administration privileges are indeed turned off for
your account.

To use this command, just type rm, a space, and the exact name of the file you want
to delete from the working directory. To remove the file practice.txt you created with
the touch command, for example, you’d just type rm practice.txt.

To remove a directory and everything in it, add the -r flag, like this: rm -r PracticeFolder.

If you’re feeling particularly powerful (and you like taking risks), you can even use
wildcards with the rm command. Now, many experienced Unix users make it a rule
to never use rm with wildcards while logged in as an administrator, because one false
keystroke can wipe out everything in a directory. But here, for study purposes only,
is the atomic bomb of command lines, the one that deletes everything in the working
directory: rm -rf *.

Tip: Be doubly cautious when using wildcards in rm command lines, and triply cautious when using them
while logged in as an administrator.

If you’re using Time Machine, you have a safety net, of course. But why tempt fate?

Just after the letters rm, you can insert options like these:

Working with Files
and Directories

Working with Files
and Directories

20 mac os x: the missing manual bonus chapter: the unix crash course 21

•• -d deletes any empty directories it finds, in addition to files. (Otherwise, empty
directories trigger an error message.)

•• -f attempts to remove the files without asking you for confirmation, regardless of
the file’s permissions. The command proceeds, full speed ahead.

•• -i (for interactive) makes the Mac ask for confirmation before each deletion.

•• -P securely overwrites the file three times. (It’s an alternative to the srm command
described next.)

srm (Secure Removal)
srm is a command line version of the Finder’s Secure Empty Trash function (page 95).
It lets you choose just how thoroughly Mac OS X scrubs the hard drive spot where
the deleted file once sat.

The srm utility lets you specify three general levels of deletion:

•• Simple. The -s flag tells srm to perform a simple secure removal, overwriting the
deleted material with random data just once. It’s faster than the Finder’s Secure
Empty Trash, but not as thorough.

•• Medium. The -m flag designates medium level, which overwrites the unwanted data
seven times with various types of random and not-so-random data. This is similar
to what you get when you use the Finder’s Secure Empty Trash command, and
it’s thorough enough to meet U.S. Department of Defense security requirements.

•• Strong. If you don’t specify either -s or -m, srm will perform a strong secure
removal. That entails recording over the spot where the deleted file sat 35 times,
each time using a different string of data as specified by the Gutmann algorithm.
(And what is the Gutmann algorithm? A series of data patterns that make recov-
ery of an erased file almost impossible. More than you ever wanted to know is at
www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html.)

The bottom line: To make sure no one ever, ever reads that poem you typed out for
your cat one lonely, bleary-eyed evening, type srm ‘My Twinkie.doc’. That will be the
end of it, and neither the CIA nor software like DataRescue will ever know what it was.

echo (A Final Check)
You can make rm or srm less risky by prefacing it with the echo command. It makes
Terminal type out the command a second time, this time with a handy list of exactly
what you’re about to obliterate. If you’ve used wildcards, you see the names of the files
that will be affected by the * character. If you type echo rm -r *, for example (which,
without the echo part, would normally mean “delete everything in this directory”),
you might see a list like this:

rm -r Reviews.doc Tahoe Footage Picnic Movie Contract.doc

Once you’ve reviewed the list and approved what Terminal is about to do, then you
can retype the command without the echo portion.

Note: The rm command doesn’t work on file or directory names that begin with a hyphen (-). To delete
these items from your working directory, preface their names with a dot slash (./), like this: rm ./-Recipes.doc.

Unix Help
Mac OS X comes with over 1,400 Unix programs like the ones described in this chapter.
How are you supposed to learn what they all do?

Fortunately, almost every Unix program comes with a help file. It may not appear
within an elegant, gradient-gray Lion window—in fact, it’s pretty darned plain—but
it offers much more material than the regular Mac Help Center.

These user-manual pages, or manpages, hold descriptions of virtually every command
and program available. Mac OS X, in fact, comes with manpages on almost 4,500
topics—over 35,000 printed pages’ worth.

Alas, manpages rarely have the clarity of writing or the learner-focused approach
of the Mac Help Center. They’re generally terse, just-the-facts descriptions. In fact,
you’ll probably find yourself needing to reread certain sections again and again. The
information they contain, however, is invaluable to new and experienced Unix fans
alike, and the effort spent mining them is usually worthwhile.

Using man
To access the manpage for a given command, type man followed by the name of the
command you’re researching. For example, to view the manpage for the ls command,
enter: man ls.

Tip: The -k option flag lets you search by keyword. For example, man -k applescript produces a list of all
manpages that refer to AppleScript, whereupon you can pick one of the names in the list and man that
page name.

Now the manual appears, one screen at a time, as shown in Figure 7.

A typical manpage begins with these sections:

•• Name. The name and a brief definition of the command.

•• Synopsis. Presents the syntax of the command, including all possible options and
arguments, in a concise formula. For example, the synopsis for du (disk usage) is
as follows: du [-H | -L | -P] [-a | -s | -d depth] [-c] [-h | -k | -m | -g] [-x] [-I mask]
[file ...].

That line shows all the flags available for the du command and how to use them.

Brackets ([]) surround the optional arguments. (All the arguments for du are
optional.)

Working with Files
and Directories

Working with Files
and Directories

22 mac os x: the missing manual bonus chapter: the unix crash course 23

Vertical bars called pipes (|) indicate that you can use only one item (of the group
separated by pipes) at a time. For example, when choosing options to use with du,
you can use either -H, -L, or -P—not two or all three at once.

The word file in the synopsis means “type a pathname here.” The ellipsis (…) fol-
lowing it indicates that you’re allowed to type more than one pathname.

•• Description. Explains in more detail what the command does and how it works.
Often, the description includes the complete list of that command’s option flags.

For more information on using man, view its own manpage by entering—what
else?—man man.

Tip: The free program Bwana, available for download at www.missingmanuals.com, is a Cocoa manual-pages
reader that provides a nice looking, easier-to-control window for reading manpages.

Other Unix Help
Sometimes Terminal shoves a little bit of user manual right under your nose—when
it thinks you’re having trouble. For example, if you use the mkdir command without
specifying a pathname, mkdir interrupts the proceedings by displaying its own syn-
opsis as a friendly reminder (subtext: “Um, this is how you’re supposed to use me”)
like this: usage: mkdir [-pv] [-m mode] directory...

Terminal Preferences
If you spend endless hours staring at the Terminal screen, as most Unix junkies
do, you’ll eventually be grateful for the preference settings that let you control how
Terminal looks and acts. In fact, Terminal lets you manage your preferences in an
ingenious way.

Instead of having a single set of options saved (as with other applications), Terminal
manages your options as named settings groups, allowing you to quickly apply different
settings to different windows at any time using the Inspector window (ShellÆShow
Inspector).

You can also save the layout of entire groups of windows, each with their own settings
in effect, into a single configuration, allowing you to recreate those layouts in an instant.

Configure your settings using Terminal’s Preferences panel (Figure 8), which you get
to by choosing TerminalÆPreferences (of all places).

Startup
The Startup tab lets you configure what Settings or Window group Terminal should
use to open (in case you want something besides the factory settings). This tab also
gives you another way to switch from bash to a different default shell. (Where it says
“Shells open with,” choose “command (complete path)” and then type /bin/bash for
bash, or /bin/tcsh for tcsh. New Terminal windows will then open with that shell.)

Using two other pairs of pop-up menus, one for new windows and the other for
new tabs, you can answer two questions. First: Do you want new windows or tabs to
open with the same settings as the current active one—or to use the default settings?
Second: Do you want new windows or tabs to open in the same working directory as
the current active one, or to use the default working directory?

Settings
This tab is the heart of Terminal’s preferences management. On the left: a list of set-
tings categories. On the right: the options for the currently selected category. Terminal
comes with several preconfigured settings, and you can add and remove these and
your own using the + and - buttons below the list. (To restore all the options for the
prepackaged settings to their original state, select Restore Defaults from the F menu.)

To see your changes reflected instantly in a Terminal window, make sure the window
you’re watching is using the same setting you’re modifying.

Text
Here’s where you control what the insertion point looks like, along with choices of
fonts and colors.

Note: No matter what font you choose, typed characters align vertically. Terminal spaces them out that way,
even if they’re not monospaced fonts like Courier, Monaco, or Menlo (Terminal’s standard font).

Figure 7:
To move on to the next
man screen, press the
space bar. To go back,
press the , key or the b
key. To close the manual
and return to a prompt,
press q. You can also
search for a certain
phrase by typing a / (to
produce the “find what?”
prompt); thereafter, type n
to find the next occur-
rence.

Terminal
Preferences

Unix Help

24 mac os x: the missing manual bonus chapter: the unix crash course 25

Window
•• Title. Turn on the elements you’d like the current Terminal window to display in
the title bar. Remember, your preferences can be different for each setting group;
you might therefore want the windows’ title bars to identify the differences.

•• Window Size. The Dimensions boxes affect the width in characters (columns) and
height in lines (rows) of new Terminal windows. (Of course, you can always resize
an existing window by dragging its lower-right corner. As you drag, the title bar
displays the window’s current dimensions.)

•• Background Color. Not only can you set the background color, but you also can
set its opacity as well, making your Terminal windows translucent—a sure way to
make novices fall to their knees in awe. Just drag the slider to the right and watch
the background of the active window nearly disappear, like the Cheshire Cat, leav-
ing only text. If you like the translucency but find the background too distracting,
use the blur slider to fuzz it out. (You can even set opacity and blur separately for
active and inactive windows.)

Tip: This effect looks especially cool if you make the Terminal window black with white or yellow writing.

•• Background Image. If you prefer to look at your favorite moonscape or WWE
wrestler as you work at the command line, you can choose an appropriate image
file here. Or choose an entire folder of images; Terminal will choose one randomly
for the background of each newly opened window.

•• Scrollback. As your command line activity fills the Terminal window with text, older
lines at the top disappear from view. So that you can get back to these previous
lines for viewing, copying, or printing, Terminal offers a scrollback buffer, which
sets aside a certain amount of memory—and adds a scroll bar—so that you can
do so. Terminal stores the data in this buffer very efficiently, so you should have
no problem keeping this at its default unlimited setting. However, if you do get
the crazy urge to display all one million lines from the manpages, you just might
run out of memory if you don’t set a limit.

Note: And how would you do that? By running this command, of course: find `cat /etc/manpaths` -type f
-exec man -P cat {} \;

Shell
•• Startup. Enter a command here (for example, cal -y), and each time you open a
new window, you’ll see its output and then get a new prompt. (If you just want
the output without a new prompt, turn off “Run inside shell.”)

•• When the shell exits. When you’re finished fooling around in Terminal, you end
your session either by closing the window, or more properly, by typing exit (or
pressing Control-D) at the prompt. The When the Shell Exits setting determines
what happens when you do that.

•• Prompt before closing. Shell commands can take some time to complete. In some
cases, when you attempt to close a Terminal window before its work is finished,
Terminal asks you if you’re sure you want to cancel the process and lose your work.
The options here let you configure when you want to be prompted, if ever, and
even which processes you don’t want Terminal to warn you about.

Keyboard
These controls let you choose keyboard shortcuts that help you navigate your Terminal
window, or that send strings of canned text to the shell. As your Unix prowess grows,
these shortcuts become more useful.

Tip: For some Unix geeks, the non-Unixy location of the Control key has been frustrating enough to keep
them from using Macs. They use that key constantly and would rather not have to rewire their brains to
handle the changed location.

But this problem is easily remedied. In System Preferences, in Keyboard & Mouse, the Modifier Keys button
lets you swap the Control and Caps Lock keys’ functions, allowing the confused pinkies of Unix-heads to
once again find their way.

Figure 8:
Here in Settings,
you can tailor the
look and person-
ality of Terminal
to within an inch
of its life. Later,
you can apply a
saved set of set-
tings to an exist-
ing window with
one quick click
in the Terminal
Inspector (choose
TerminalÆShow
Inspector, or
press c-I).

Terminal
Preferences

Terminal
Preferences

26 mac os x: the missing manual bonus chapter: the unix crash course 27

Window Groups
Once you’ve gone to town with Terminal settings, you might end up with a mosaic
of windows spread across your display (or displays)—your main Terminal window,
a couple of man (user-manual) windows, a top window showing all the running
programs, and so on. You gotta love it: Each window has its own color scheme and
title to reflect what it’s doing, and all the windows are sized perfectly to contain their
text output.

Thanks to Lion’s Resume feature, each time you open Terminal, your windows re-
appear as you last left them. But sometimes, you might prefer your windows to be
exactly as they were when you started your previous session, and it would be a shame
to lose all of that when you quit Terminal. Fortunately, you won’t have to, thanks to
Window Groups.

Choose WindowÆSave Windows as Group and name the group. You’ll be able to
recreate your masterpiece when you return to Terminal by selecting that group name
from WindowÆOpen Window Group. (Unlike resumed windows, your original
output won’t be there, but any commands you’ve configured to run at startup will
display their new output.)

The Window Groups Preferences tab is just a place to view these groups and delete
any you no longer need. Using the F pop-up menu, you can also export these groups
as files to import into other machines (or other accounts).

Connect to Server
When you use Terminal to connect to other computers across a network—a common
Terminal task—you use commands like ssh and ftp in conjunction with the other
computers’ names or IP addresses. For example, you might type ssh bertha.acmeco.
com or ssh 192.168.43.76.

The trouble is, these IP names and addresses are hard to remember—and the numbers
may change. To make connecting easier, Terminal can use the magic of Bonjour—a
networking feature in which Macs announce their presence to the network, using
their plain-English names. Bonjour lets you browse other Macs on your network just
as you’d browse them in the Finder (Chapter 13).

To get started, choose ShellÆNew Remote Connection. Continue as shown in Figure 9.

Tip: Even if the remote machine isn’t running Bonjour, you can still add its address to the Server list manually
by clicking the + button below it. Likewise, all command lines entered in the bottom field get added to the
pop-up menu beside it, allowing you to quickly reconnect without having to browse at all.

Terminal Tips and Tricks
After you’ve used Terminal awhile, you may feel ready for a few of these power tips:

Split Windows
If you choose WindowÆSplit Pane (c-D), you wind up splitting your Terminal win-
dow into an upper pane and a lower pane. That can be handy when you keep certain
scripts running all the time. The two panes mirror the same command, but now you
can scroll to different positions within each pane, keeping watch over different parts
of the same output simultaneously.

Switching Windows
You can switch among your various Terminal windows by pressing c-1, c-2, and
so on (up to c-9). You’ll be able to identify the windows easily if you choose to
include the Command key in the title bars. (Use the Window section of the Settings
Preference pane.)

Noncontiguous Selection
You can select blobs of text, just as in Microsoft Word or TextEdit. To select a single
rectangle of text anywhere in the window, Option-drag through it. To select multiple
rectangles, Option-c-drag. You can then copy and paste just those selected blobs.

Double-Clickable Unix Tools
Most people are used to thinking of Unix applications as programs you run from
within Terminal. Many, though, appear in the Finder as regular old icons—and you
can open them by double-clicking, just as you would a traditional Mac OS X program.

Figure 9:
From the left side, choose the service you
want; from the right, choose from a list of
machines whose Remote Login checkboxes
are turned on in the Sharing panel of Sys-
tem Preferences. Type your account name
into the User box. As you adjust the connec-
tion options, the box at the bottom shows
the Unix command you’re building. Click
Connect to open a new Terminal window
and send that command inside it.

Terminal Tips
and Tricks

Terminal
Preferences

28 mac os x: the missing manual bonus chapter: the unix crash course 29

This trick isn’t very useful for commands that require flags. But for some, like cal, click-
ing provides a quick way to run the program, especially if you keep it in your Dock.

To double-click a Unix program, though, you first have to find it—and that may not
be easy. Mac OS X’s Unix directory structure is labyrinthine indeed.

But why not ask Terminal where the program is? You can do exactly that using the
which command: which cal, for example. Terminal responds with /usr/bin/cal, telling
you that cal resides in the /usr/bin directory.

To get there, use the open command in Terminal, like this: open /usr/bin. A window
opens in the Finder; inside, you’ll find the cal icon. Drag the icon to the right side
of the Dock.

From now on, when you click that Dock icon, a new Terminal window opens, auto-
matically displaying this month’s calendar. You’ve shaved several precious seconds off
the time it would have taken you to open iCal.

Services for Terminal
Lion comes with a few useful new Services for the Terminal application (see Chapter
8 for more on Services).

Note: You won’t see them, however, until you visit System PreferencesÆKeyboardÆKeyboard Shortcuts,
click Services at left, and inspect the Files and Folders list at right.

•• New Terminal at Folder, New Terminal Tab at Folder. When you’ve selected a folder
in the Finder, you can choose these Services’ names from the FinderÆServices
menu to open a new Terminal window or tab. The selected folder becomes the
current working directory.

•• Open man Page in Terminal, Search man Pages in Terminal. Start by selecting some
text in a program that works with Services. These Services open a new Terminal
window displaying either the man page for the selected text (if there is one) or the
result of a man -k command on the selected text.

Changing Permissions
Permissions is a largely invisible, but hugely important, Mac OS X and Unix feature.
The behind-the-scenes permissions setting for a file or folder determines whether or
not you’re allowed to open it, change it, or delete it. Permissions are the cornerstone
of several important Mac OS X features, including the separation of user accounts
and the relative invulnerability of the operating system itself.

As you know from Chapter 12, you can get a good look at the permissions settings for
any file, folder, or disk by highlighting it and choosing FileÆGet Info in the Finder.
But even there, you’re not seeing all the permission settings Unix provides, and every
now and then, you might want to. Suppose, for example, that you’re a teacher in charge
of a computer lab containing 25 Macs. On each computer, you’ve created Standard
accounts (see Chapter 12) for five students, for a total of 125 student accounts.

Soon after the students start using the lab, you notice a bit more giggling and frantic
typing than you’d expect from students researching Depression-era economics. You
nonchalantly stroll to the end of the room and do a quick about-face at one of the
desks. Aha—iChat! Horribly depressed by the comments you read there regarding
your fashion sense, you vow to keep students from using that application ever again.

You have several options:

•• Delete iChat from the Applications folder. Unfortunately, the Computer Club
meets in your classroom after school, and its members routinely use iChat to
communicate. (Talking out loud, after all, is so 20th century.)

•• Use Parental Controls. You can open System Preferences, click Accounts, and click
Parental Controls. You’d then click to configure Finder & System, select Some
Limits, and turn off the iChat checkbox from the list of allowable applications.
Repeat 124 times. (Though it is nice that Screen Sharing lets you do this remotely.)

•• Buy, install, and configure Mac OS X Server. Then you can create and configure
workgroups with any permission settings you want. (Apple offers a four-day train-
ing course if you get stuck.)

•• Use Terminal. Go to a Mac, fire up Terminal, and type a quick command to turn
off iChat’s execute permissions for Standard account holders. (This process won’t
affect the Computer Club, because its members all have Administrator accounts.)
Repeat only 24 times.

In fact, if walking to each machine is too much work, you can even use the ssh
technique described in Chapter 21 to run the command remotely from a single
machine, while seated in the comfort of your own teacher’s chair.

This, of course, is by far the best solution. It’ll take several pages to work through
this example. But in the process, you’ll learn an amazing amount about Terminal
and the Unix underpinnings of Mac OS X.

Note: The original Unix permission system has been around longer than disco, and still serves well in Mac
OS X. But Leopard (Mac OS X 10.5) introduced a secondary permission system to help make some of its
new features work. These access control lists (ACLs) provide much finer control of permissions, allowing
you, for example, to assign multiple owners and groups to a single file. ACLs are also behind the file-sharing
permissions described on page 534.

Not all files, or even most files, on your Mac use ACLs. But when they’re present, the ACL permissions over-
ride the file’s Unix permissions. For details on ACLs, download this chapter’s free appendix, “Access Control
Lists,” from the “Missing CD” page at www.missingmanuals.com.

Looking at Permissions
In general, when you double-click a file icon in the Finder, it opens either as a program
or opens into a program (if it’s a document).

Changing
Permissions

Terminal Tips
and Tricks

30 mac os x: the missing manual bonus chapter: the unix crash course 31

But most Mac OS X application icons in the Finder are really folders posing as single
files. Inside the folder, or package, are all the files that application depends on to run,
including the actual application file itself, the one that opens when you double-click
the package icon. If you turn off the execute permission for that inner nugget, you
prevent it from running—and, as in this classroom example, you can turn it off for
certain kinds of account holders and not others.

To inspect the permissions for iChat, open the Applications folder. Control-click the
iChat icon. From the shortcut menu, choose Show Package Contents. A new Finder
window opens, revealing the contents of the iChat application package.

Open the ContentsÆMacOS folder; inside you’ll find the individual iChat program
file. (Nobody would ever bother opening iChat by double-clicking this icon, but it’s
possible.) You could inspect its permissions by highlighting the inner iChat icon,
choosing FileÆGet Info, and then expanding the Sharing and Permissions section.

The Unix way is faster. In Terminal, just use the ls command, like this:

ls -l /Applications/iChat.app/Contents/MacOS

The -l flag produces a long list—an expanded display showing extra information
about each item in the directory, in this case its single iChat file. Terminal’s response
is something like this:

total 4544

-rwxr-xr-x 1 root wheel 5989968 Jul 20 11:50 iChat

Thanks to the -l option, the first line displays the grand total size on disk of all the
loose files in the directory: 4544. (It’s measured in 512-byte blocks. If you also included
the -k flag, you would see this measurement in kilobytes. Starting in Snow Leopard,
Apple began saving a lot of disk space by compressing many of Mac OS X’s system files
on the disk. That’s why the “on disk” size and actual size of a folder’s contents don’t
always add up. TextEdit, for example, seems to be 9 megabytes big in the Finder—but
Terminal reports its size at only 3.9 megs.)

Next you see the name of the one inhabitant of the MacOS directory: iChat. (If there
were more, you would see each item on its own line.) But what is -rwxr-xr-x? Is Ter-
minal having a meltdown?

Not at all; you’re just seeing more Unix shorthand, listed in what are supposed to be
helpful columns. Figure 10 breaks down the meaning of each clump of text.

•• Type. The first character of the line indicates the file type—usually d (a directory), l
(a symbolic link—the Unix version of an alias), or, as in this case, a hyphen (a file).

•• File mode. Rammed together with the type (like this: rwxr-xr-x) is a string of nine
characters. It indicates, in a coded format, the actual access permissions for that
item, as described in the next section.

•• Owner. Terminal’s response also identifies the account name of whoever owns this
file or directory, which is usually whoever created it. Remember, root means that

Mac OS X itself owns it. That’s why even administrators generally aren’t allowed
to delete directories that bear “root” ownership.

Note: In the Finder’s Get Info windows, you may see ownership listed as System. That’s Apple’s kinder,
gentler term for root.

•• Group. After the owner comes the name of the group that owns this file or directory.
“Wheel,” as in “big wheel,” indicates the group with the highest powers (adminis-
trators are not part of this group); the “admin” group contains all administrators.

•• Pathname. At the end of the line (following the file’s size and date) comes the path
of this file or directory, relative to the listed directory.

File-Mode Code
To understand the coded nine-character file-mode section, you need a good grasp
of the topics covered in Chapter 12. There you’ll find out that as you create new files
and directories, you can specify who else is allowed to see or make changes to them.
In fact, you can specify these permissions for three different categories of people: the
owner (usually yourself), your group, and everyone else.

The file-mode column is made of three subcolumns (Figure 10), which correspond
to those same three categories of people: owner, group, and everybody else.

Within each sequence, three characters describe the read (r), write (w), and execute
(x) permissions that this person or group has to this file or directory (more on these
concepts in a moment). A hyphen (-) means, “Nope, this person isn’t allowed this
kind of access.” In Figure 10, you can see that, if you were the owner of this file, you
could do anything you want to it—because there are no hyphens.

There’s an x in the other columns, too, meaning that anyone can execute (launch) this
file. Since there’s also a w in the owner column, that user (root) could, in theory, even
make changes to the file (although there would never be a reason to do so).

The three forms of access—read, write, and execute—have slightly different meanings
when applied to files and directories:

Figure 10:
It isn’t just a string of random
letters—it’s three distinct sets
of information that tell you
who’s allowed to do what. -rwxr-xr-x

Owner
permissions

Group
permissions

Other
permissionsType

Changing
Permissions

Changing
Permissions

32 mac os x: the missing manual bonus chapter: the unix crash course 33

•• Read access to a file means someone can open and read it. (In the case of a program
like iChat, the system needs to “read” the file on your behalf in order to run it.)
Read access to a directory (folder), on the other hand, just means someone using
Terminal can see a list of its contents using a command like ls.

•• Write access to a file means someone can modify and save changes to it. Write
access to a directory means someone can add, remove, and rename any item the
folder contains (but not necessarily the items within its subdirectories).

Note: Turning off write access to a certain file doesn’t protect it from deletion. As long as write access is
turned on for the folder it’s in, the file is still trashable.

To protect a certain file from deletion, in other words, you must also worry about the access settings of the
folder that encloses it.

•• Execute access, when applied to an application, means people can run that par-
ticular program. (In fact, Unix distinguishes applications from ordinary files by
checking the status of this setting.)

Of course, you can’t very well “run” a directory. If this x bit is turned on for a direc-
tory, it’s called the searchable bit (as opposed to the execute access bit), and it means
you can make it the working directory, using the cd command. You still can’t see
what’s in the folder if you don’t also have read permissions, but you’re welcome
to read or copy a file in it as long as you know its full pathname.

Group Detective Work
Back to the task of keeping iChat from launching. The x in every user category tells
you that anyone can run this program. Your mission, should you choose to accept it,
is to change these settings so that one class of account holder can run iChat (Admin),
but not another (Standard).

As you’ve seen, every file’s set of permissions identifies both an owner and a group.
The group that owns the iChat file is wheel, but as you would expect, the Admin class
of users is part of the admin group (though not part of wheel). If you want to allow
only administrators and anyone else in the admin group to run the program, then
you need to also change its group to admin.

You just have to make sure that no other account holders—Standard ones—are also
part of the admin group. That’s easy enough to find out.

To find out what Unix groups you belong to, type id in Terminal and press Return. On the
next line, Terminal types out a list of items beginning with your account name—that’s
your user ID (your uid)—followed by the name of your primary group (your gid). Next
are the names of all the groups that include your account. (The Mac refers to accounts
and groups by number, which are listed here.) If you have an Administrator account,
it’s probably something like uid=506(chris) gid=20(staff) groups=20(staff),217(com.
apple.access_loginwindow),402(com.apple.sharepoint.group.1),403(com.apple.
sharepoint.group.2),401(com.apple.access_screensharing),12(everyone),33(_

appstore),61(localaccounts),79(_appserverusr),80(admin),81(_appserveradm),98(_
lpadmin),100(_lpoperator),204(_developer).

But you want to find what groups incorporate Standard account holders. To determine
what groups someone else’s account belongs to, type id casey (or whatever the account
name is). You’ll probably see that Casey doesn’t belong to the admin group. And, in
fact, that’s true for all Standard account holders. (If you prefer a little less output, the
groups command used similarly will show you only the group names.)

All right then: The admin group contains only Admin users. As far as permissions
are concerned, then, Standard account holders fall into the everyone else category.

You just need to turn off iChat’s execute permissions for everyone else and change
iChat’s group to admin to complete your task. Doing so allows only the file’s owner
(root) and members of its group (admin) to execute the file (that is, to open the
program). All other account holders, meaning Standard account holders, are out of
luck. They’ll have to actually pay attention in class.

chmod (Change Mode)
The Unix command for changing file modes (permissions) is chmod (for change
mode). Here’s the command you use on the iChat file:

chmod o-x /Applications/iChat.app/Contents/MacOS/iChat

And here’s how to understand it.

The command line begins, naturally, with the chmod command itself, and ends with
the pathname of the iChat file.

In between are three characters that make up the three parts of a mode-change
clause: o-x.

The first character, o, represents the class of user that the change affects. In this spot,
you can type u to symbolize the file’s owner, g for its group, o for other (everyone
else), and a to indicate all three classes at once.

The second character represents the operation to perform, which in most cases is
either to add a permission (use the + symbol) or remove one (use the - sign).

The final character specifies which permission to change: r for read, w for write, or
x for execute.

The complete chmod command provided above, then, says, “Remove the execute
permissions for others,” which is precisely what you want to do.

Permission to Change Permissions
If you actually try the chmod command described above, however, you get only an
error message (“Operation not permitted”).

Only the owner of an item can change its permissions. And you’re not iChat’s owner;
root is (that is, Mac OS X itself).

Changing
Permissions

Changing
Permissions

34 mac os x: the missing manual bonus chapter: the unix crash course 35

So how do you solve the problem? One solution would be to turn on the root account
as described on page 671, and then log on as root. But that’s a hassle, and turning on
the root account always entails a security risk.

Instead, you could open the Get Info window for the iChat application file, make
yourself the owner, and then type in your name and password to prove you’re an
administrator. Then open Terminal, use the chmod command now that you’re the
file’s owner, return to the Finder, open Get Info again, and change the file’s permis-
sions back to root.

For a Unix guru, that’s an awful lot of steps for something that should take only a
few keystrokes. As it turns out, the final possibility is quick and easy, which explains
its popularity in Unix circles. It’s the sudo command.

sudo
sudo is a cool command name. Technically, it’s short for superuser do, which means
you’re allowed to execute any command as though you’d logged in with the root
(superuser) account—but without actually having to turn on the root account, log
out, log back in again, and so on.

It’s also a great command name because it looks as though it would be pronounced
“pseudo,” as in, “I’m just pretending to be the root user for a moment. I’m here under
a pseudonym.” (In fact, you pronounce it “SOO-doo,” because it comes from superuser
do. In the privacy of your own brain, though, you can pronounce it however you like.)

Note: Only Administrator account holders can use the sudo command.

If you have the root account—or can simulate one using sudo—you can override any
permissions settings, including the ones that prevent you from changing things in the
Applications directory (like iChat).

Now you’re ready to change the permissions of that infernal iChat application file. To
use sudo, you must preface an entire command line with sudo and a space. Type this:

sudo chmod o-x /Applications/iChat.app/Contents/MacOS/iChat

Taken slowly, this command breaks down as follows:

•• sudo. “Give me the power to do whatever I want.”

•• chmod. “Change the file mode…”

•• o-x. “…in this way: remove execute permission for others…”

•• /Applications/iChat.app/Contents/MacOS/iChat. “…from the file called iChat,
which is inside the ApplicationsÆiChat.appÆContentsÆMacOS folder.”

The first time you run sudo, you’re treated to a stern talking-to that means business:

“Warning: Improper use of the sudo command could lead to data loss or the deletion
of important system files. Please double-check your typing when using sudo. Type
‘man sudo’ for more information.

“To proceed, enter your password, or type Ctrl-C to abort.”

In other words, sudo is a powerful tool that lets you tromp unfettered across delicate
parts of Mac OS X, so you should proceed with caution. At the outset, at least, you
should use it only when you’ve been given specific steps to follow, as in this chapter.

Now sudo asks for your usual login password, just to confirm that you’re not some
seventh-grader up to no good. If you are indeed an administrator, and your password
checks out, sudo gives you a 5-minute window in which, by prefacing each command
with sudo, you can move around as though you’re the all-high, master root account
holder. (If you don’t use sudo again within a 5-minute span, you have to input your
password again.)

The last step, then, is to change the iChat’s group to admin.

chgrp (Change Group)
The Unix command for changing a file’s group ownership is chgrp (for change group),
and it will do the deed:

sudo chgrp admin /Applications/iChat.app/Contents/MacOS/iChat

By this point, you should be able to guess that this command allows you (with sudo)
to change the group ownership to admin of the file /Applications/iChat.app/Contents/
MacOS/iChat.

Now whenever anyone who isn’t an administrator tries to open iChat, its icon bounces
in the Dock until you click it, allowing iChat to die painlessly.

To restore its original permissions, use the same commands, but in the chmod com-
mand, replace the - with a +, like this:

sudo chmod o+x /Applications/iChat.app/Contents/MacOS/iChat

Then rerun the chgrp command, but replace admin with wheel:

sudo chgrp wheel /Applications/iChat.app/Contents/MacOS/iChat

Note: Apple has these default permissions set for a reason: utmost security. While your changes won’t im-
mediately let the bad guys in, it’s best not to leave these permissions in place unless you really need them.
In any case, whenever you run the Mac’s Repair Permissions function (either automatically, which happens
each time you install a Mac OS X update, or manually, using Disk Utility), iChat returns to its original permis-
sions settings. You have to rerun the command if you want its protections in place.

Protecting Files En Masse
It could happen to you. You’ve got yourself a folder filled with hundreds of files—
downloaded photos from your digital camera, for example. Most are pretty crummy,

Changing
Permissions

Changing
Permissions

36 mac os x: the missing manual bonus chapter: the unix crash course 37

but the ones you took in Tahoe (which therefore have Tahoe in their file names) are
spectacular. You want to protect those files from deletion without having to turn on
the Locked checkbox (page 95) of every file individually.

Here again, you could operate in the Finder, just like ordinary mortals. You could use
Spotlight to round up all files with Tahoe in their names, highlight them in the search
results window, choose FileÆGet Info, and then turn on Locked for all of them at
once. But doing it the Unix way builds character.

When you turn on a file’s Locked checkbox, Mac OS X turns on an invisible switch
known to Unix veterans as the user immutable flag. Not even the superuser is allowed
to change, move, or delete a file whose user immutable flag is turned on.

The command you need to change such flags is chflags—short for change flags, of
course. You can follow the chflags command with three arguments: its own option
flags, the file flags, and the pathname of the file whose flags are being changed. In this
case, the flag you care about is called uchg (short for user changeable; in other words,
this is the immutable flag).

To protect all the Tahoe shots in one fell swoop, then, here’s what you’d type at the
prompt:

chflags uchg ~/Pictures/*Tahoe*

The asterisks are wildcards that mean “all files containing the word Tahoe in their
names.” So in English, you’ve just said, “Change the immutable flag (the Locked
checkbox setting) for all the Tahoe files in my Pictures folder to ‘locked.’ ”

Tip: To unlock a file, thus turning off its uchg flag, just add the prefix “no,” like this: chflags nouchg ~/
Pictures/*Tahoe*.

To view the results of your handiwork right in Terminal, issue this command: ls -lO
~/Pictures (or any other path to a folder containing locked items). That’s the familiar
ls (list) command that shows you what’s in a certain directory, followed by an -l flag
for a more complete listing, and an -O flag that produces a “flags” column in the
resulting table.

In any case, Terminal might spit out something like this:

total 830064

-rw-r—r—1 chris chris - 158280000 Jun 16 20:05 Sunset.jpg

-rw-r—r—1 chris chris uchg 58560000 Jun 16 20:05 Tahoe New-

Moon.jpg

-rw-r—r—1 chris chris uchg 107520000 Jun 16 20:05 Tahoe.jpg

-rw-r—r—1 chris chris uchg 100560000 Jun 16 20:05 Buddy.

jpg

The fourth column, the product of the -O flag, lists any file flags that have been set for
each file. In this case, three of the files are listed with uchg, which represents the user
immutable (locked) flag. (The hyphen for the first listed file means “no flags”—that
is, not locked.)

Making Files Hide
Back at the school computer lab, you’re still grumpy. The students leave piles of file
and folder icons splattered across all the Macs’ desktops, and you’ve had enough. Not
only is it a sign of laziness and disorganization, but the icons cover the desktop picture
of the hallowed school mascot: the Southern hairy-nosed wombat.

You’ve warned them enough, and now it’s time for action: No World of Warcraft at
lunchtime unless the desktops are clean in 15 minutes!

As you finish writing the new rule on the whiteboard, you turn to face the students’
Mac screens—and you’re stunned. The full, uncluttered image of your beloved mar-
supial gazes back from the Macs’ displays; the offending icons are gone. How could
that be? There hasn’t even been time for the students to select all the icons and drag
them to the Trash!

Apparently the students weren’t as lazy as you thought: They’ve been learning the
Way of the Terminal. What they actually did was sweep all those icons under the rug,
Unix style, with this command:

chflags hidden ~/Desktop/*

They manipulated another file flag, called the hidden flag. The command turns on
the hidden flag for all files (indicated by the asterisk) in the Desktop folder—and
so their icons disappear. The actual file is still there; but you just can’t see it in the
Finder anymore.

Of course, you’re not about to let some punk kids pull one over on you. In your copy
of Terminal, you deftly type chflags nohidden ~/Desktop/* to bring the icons back.

Beware the Dread Typo
Use sudo with caution, especially with the rm command.
Even a single typing error in a sudo rm command can be
disastrous.

Suppose, for example, that you intended to type this:

sudo rm -ri /Users/Jim/Pictures

…but you accidentally inserted a space after the first slash,
like this:

sudo rm -ri / Users/Jim/Pictures

You’ve just told Terminal to delete all data on all drives!

Because of the extra space, the rm command sees its first

pathname argument as being only /, the root directory. The
-r flag means “and all directories inside it.”

Good thing you added the -i flag, which instructs Mac OS X
to ask you for confirmation before deleting each directory.
It’s almost always a good idea to include -i whenever you
use sudo with rm.

History buffs (and Unix fans) may remember that Apple’s
first iTunes 2 installer, released in October 2001, contained
a tiny bug: the tendency to erase people’s hard drives.
(Oops!) Apple hastily withdrew the installer and replaced it
with a fixed one. Behind the scenes, an improperly formed
rm command was the culprit.

Up To Speed

Changing
Permissions

Changing
Permissions

38 mac os x: the missing manual bonus chapter: the unix crash course 39

The students have 13 minutes left to really clean their desktops.

20 Useful Unix Utilities
So far, you’ve read about only a handful of the hundreds of Unix programs that are
built into Mac OS X and ready to run. Yes, ls and sudo are very useful tools, but they’re
only the beginning. As you peruse beginner-level Unix books and Web sites, for ex-
ample, you’ll gradually become familiar with a few more important terms and tools.

Here’s a rundown of some more cool (and very safe) programs that await your ex-
perimentation.

Tip: If you don’t return to the $ prompt after using one of these commands, type q or, in some cases, quit,
and then hit Return.

bc
Mac OS X and Windows aren’t the only operating systems that come with a basic
calculator accessory; Unix is well equipped in this regard, too.

When you type bc and hit Enter, you get a copyright notice and then…nothing. Just
type the equation you want to solve, such as 2+2, or 95+97+456+2-65, or (2*3)+165-
95*(2.5*2.5), and then press Return. On the next line, bc instantly displays the result
of your calculation.

(In computer land, * designates multiplication and / represents division. Note, too,
that bc solves equations correctly; it calculates multiplication and division before
addition and subtraction, and inner parentheses before the outer ones. For more bc
tricks and tips, type man bc at the prompt.)

kill
Mac OS X offers no shortage of ways to cut the cord on a program that seems to be
locked up or running amok. You can force quit it, use Activity Monitor, or use kill.

The kill program in Terminal simply force quits a program, as though by remote
control. (It even works when you SSH into your Mac from a remote location, as
described in Chapter 21.) All you have to do is follow the kill command with the ID
number of the program you want to terminate.

And how do you know its ID number? You start by running top—described in a mo-
ment—whose first column shows the PID (process ID) of every running program.

Tip: Unless you also use sudo, you can kill only programs you “own”—those running under your account.
(The operating system itself—root—is always running programs of its own, and it’s technically possible that
other people, dialing in from the road, are running programs of their own even while you’re using the Mac!)

When you hear Unix fans talk about kill online, they often indicate a number flag
after the command, like this: kill -9. This flag is a “noncatchable, non-ignorable kill.”

In other words, it’s an industrial-strength assassin that accepts no pleas for mercy
from the program you’re killing.

If you check top and find out that BeeKeeper Pro’s process ID is 753, you’d abort it by
typing kill 753 and then pressing Return. If it still appears to be breathing, add the -9
flag like this: kill -9 753, which should deliver the fatal blow. You might even need to
rerun the command until you receive output similar to kill: 753: no such pid, telling
you that indeed, that process is no more; please hold your fire.

Tip: If that’s too much work, another command, killall, does its dirty work using only the name of the process
you want to off. For example, to kill BeeKeeper Pro with killall, enter killall ‘BeeKeeper Pro’. (You can use
the -9 flag with killall, as well.)

Be aware, however, that killall is not as discriminate as kill; as its name implies, it kills all instances of the
application—at least those that you have permission to eliminate. So, for example, if someone else is logged
in using Screen Sharing and also using BeeKeeper Pro, killall, if run as root, kills that person’s BeeKeeper
Pro session as well as your own.

open
What operating system would be complete without a way to launch programs? In Mac
OS X’s version of Unix, the command is easy enough: open -a, as in open -a Chess. The
-a flag allows you to specify an application by name, regardless of where it is on your
hard drive, exactly the way Spotlight does it. You can even specify which document
you want to open into that program like this: open -a Preview FunnyPhotoOfCasey.tif.

Tip: The -e flag opens any text document in TextEdit (or whatever your default text editor may be), like this:
open -e Diary.txt. This shortcut saves you from having to specify TextEdit itself.

The real utility of this command might not be apparent at first, but imagine doing
something like this in the Finder: Select from a folder of hundreds of HTML files
those that contain the word “Sequoia” in their file names and preview them all with
the Firefox browser, regardless of what application they’re actually associated with.
You could do it with the help of the Spotlight command, but that would take quite a
few steps. In Terminal, though, you just switch to that directory (using the cd com-
mand) and type open -a Firefox *Sequoia*. Done!

Of course, you may not often bother simply launching programs and documents this
way. Nevertheless you can see how useful open can be when you’re writing automated
scripts for your Mac, like those used by the launchd command scheduler program
(page 666).

ps
The ps (process status) command is another way to get a quick look at all the pro-
grams running on your Mac, even the usually invisible ones, complete with their ID
numbers. (For the most helpful results, use the -e and -f flags like this: ps -ef. For a
complete description of these and other flags, type man ps and hit Return.)

20 Useful
Unix Utilities

Changing
Permissions

40 mac os x: the missing manual bonus chapter: the unix crash course 41

shutdown
It’s perfectly easy to shut down your Mac from the a menu. But using shutdown with
its -h flag (for halt) in Terminal has its advantages. For one thing, you can control
when the shutdown occurs, using one of these three options:

•• Now. You can safely shut down by typing shutdown -h now. (Actually, only the
root user is allowed to use shutdown, so you’d really type sudo shutdown -h now
and then type in your administrator’s password when asked.)

•• Later today. Specify a time instead of now. Typing sudo shutdown -h 2330, for
example, shuts down your machine at 11:30 p.m. today (2330 is military time
notation for 11:30 p.m.).

•• Anytime in the next 100 years. To make the machine shut down at 5:00 p.m. on
December 9, 2012, for example, you could type sudo shutdown -h 1212091700.
(That number code is in year [last two digits]:month:date:hour:minute format.)

Tip: Once you set the auto-shutdown robot in motion, you can’t stop it easily. You must use the kill command
described earlier to terminate the shutdown process itself. To find out shutdown’s ID number in order to
terminate it, look for the pid number in the output of the shutdown command, or use the top or ps command.

There are still more useful flags. For example, using the -r flag instead of -h means
“restart instead of just shutting down,” as in sudo shutdown -r now.

One of the most powerful uses of shutdown is turning off Macs by remote control,
either from across the network or across the world via Internet. That is, you can use
SSH (described in Chapter 21) to issue this command.

tar, gzip, zip
You know how Mac OS X can create compressed .zip archive files?

Terminal lets you stuff and combine files in these formats with the greatest of ease.
To compress a file, just type gzip, a space, and then the pathname of the file you want
to compress (or drag the file directly from the desktop into the Terminal window).
When you press Return, Mac OS X compresses the file.

“Tarring” a folder (combining its contents into a single file—a tarball, as Unix hepcats
call it) is only slightly more complicated. You have to specify the resulting file’s name,
followed by the actual directory pathname, like this: tar -cf Memos.tar /Users/chris/
Memos. Add the -z flag if you want to tar and compress the folder: tar -czf Memos.
tar.gz /Users/chris/Memos.

To combine and compress files using zip, just specify a name for the zip file and the
names of the items to zip, like this: zip StaffordLake.zip Stafford* (which would cram all
files in the working directory whose name begins with Stafford into a single archive).

To zip a folder, include the -r flag as well: zip -r Memos /Users/chris/Memos.

In any case, if you switch to the Finder, you see that the file or folder you specified is
now compressed (with the suffix .gz), combined (with the suffix .tar), or both (with
the suffix tar.gz or .zip).

Unfortunately, neither the command line zip nor the gzip utility handle extended
attributes properly (see the next page), so stick to tar with gzip if you want to create
guaranteed Mac-friendly archives. The best format, then, is a gzipped tarball, which
the Finder will properly open with a double-click. You can also use these utilities to
open combined and compressed files, but they can easily overwrite existing items of
the same name if you’re not careful. Use the Finder or StuffIt Expander to eliminate
that worry.

Note: The gzip command deletes the original file after gzipping it. The tar and zip commands, on the other
hand, “stuff” things but leave the originals alone.

top (table of processes)
When you type top and press Return, you get a handy table that lists every program
currently running on your Mac, including the obscure background ones you probably
never even knew existed (Figure 11).

You also get statistics that tell you how much memory and speed (CPU power) they’re
sucking down. There’s also a line that shows the amount of data moved to and from
the network, as well as the amount read or written to disk (since you last started your
Mac). In this regard, top is similar to Activity Monitor.

Tip: If you type top -u, you get a list sorted by CPU usage, meaning the power-hungry programs are listed
first. If your Mac ever seems to be sluggish, checking top -u to see what’s tying things up is a good instinct.

xattr (extended attributes)
The xattr command lets you see and manage the extended attributes (EAs) of your
files—the invisible metadata that describes all kinds of characteristics of every file,
from the exposure of a digital camera shot to the tempo of a song in iTunes. (Chapter
3 has much more on metadata and searching for it.)

Running xattr * lists any EAs in your working directory. If you ran it in your ~/
Downloads folder, the command might look like this:

MacChris:Downloads chris$ xattr *

GoogleEarthMac.dmg: com.apple.diskimages.fsck

GoogleEarthMac.dmg: com.apple.diskimages.recentcksum

GoogleEarthMac.dmg: com.apple.metadata:kMDItemWhereFroms

GoogleEarthMac.dmg: com.apple.quarantine

MacPorts-2.0.2-10.7-Lion.dmg: com.apple.diskimages.fsck

MacPorts-2.0.2-10.7-Lion.dmg: com.apple.diskimages.recentcksum

MacPorts-2.0.2-10.7-Lion.dmg: com.apple.

metadata:kMDItemDownloadedDate

MacPorts-2.0.2-10.7-Lion.dmg: com.apple.

20 Useful
Unix Utilities

20 Useful
Unix Utilities

42 mac os x: the missing manual bonus chapter: the unix crash course 43

metadata:kMDItemWhereFroms

MacPorts-2.0.2-10.7-Lion.dmg: com.apple.quarantine

Viscosity1.3.4.dmg: com.apple.metadata:kMDItemDownloadedDate

Viscosity1.3.4.dmg: com.apple.metadata:kMDItemWhereFroms

Viscosity1.3.4.dmg: com.apple.quarantine

Only three files are listed, but each of their EAs gets its own line. What you’ll find in
common to all of these files is that they hold a “com.apple.quarantine” EA.

You know how, the first time you open a program on your Mac, you get a warning
dialog box, asking if you’re sure? Now you know how the Mac knows that this is the
first time you ran it: That detail was stored as one of its extended attributes.

If you really can’t stand those messages, you could use another Unix command to
prevent the nag box from appearing. For example, before installing Viscosity, you
could simply remove the quarantine EA from its downloaded disk image file using
the xattr command’s -d flag, like this:

xattr -d com.apple.quarantine Viscosity1.3.4.dmg

You can also use the ls command to see EAs. When you use just the -l flag with ls, files
with EAs show an @ sign at the end of the permission codes:

MacChris: Downloads ls -l Viscosity1.3.4.dmg

--rw-r--r--@ 1 chris staff 6653836 Aug 2 08:45 Viscosity1.3.4.dmg

To see what those EAs are, add the @ flag:

MacChris:Downloads chris$ ls -l@ Viscosity1.3.4.dmg

-rw-r--r--@ 1 chris staff 6653836 Aug 2 08:45

Viscosity1.3.4.dmg

 com.apple.metadata:kMDItemDownloadedDate	 53

 com.apple.metadata:kMDItemWhereFroms	 155

 com.apple.quarantine	 74

Aliases
Aliases in Unix have nothing to do with traditional Macintosh icon aliases. Instead,
Unix aliases are more like text macros, in that they’re longish commands you can
trigger by typing a much shorter abbreviation.

For example, remember the command for unlocking all the files in a folder? (It was
sudo chflags -R nouchg [pathname]. To unlock everything in your account’s Trash, for
example, you’d type sudo chflags -R nouchg ~/.Trash.)

Using the alias command, however, you can create a much shorter command (unlock,
for example) that has the same effect. (The alias command takes two arguments:
the alias name you want, and the command it’s supposed to type out, like this: alias
unlock=‘sudo chflags -R nouchg ~/.Trash’.)

The downside is that aliases you create this way linger in Terminal’s memory only
while you’re still in the original Terminal window. As soon as you close it, you lose your
aliases. When you get better at Unix, therefore, you can learn to create a .bash_profile
file that permanently stores all your command aliases. (Hint: Open or create a file
called .bash_profile in your home directory, and add to it one alias command per line.)

nano
One way to create and edit text files containing aliases (and to perform other com-
mand-related tasks) is to use nano, a popular text editor that’s an improved version
of the pico editor (see Figure 12). In fact, if you try to run pico, nano opens instead.

As you’ll discover just by typing nano and pressing Return, nano is a full-screen Unix
application. You enter text in nano much as you do in TextEdit, yet nano is filled with
features that are specially tailored to working with Unix tasks and commands.

Nor is nano the only text editor that’s built into the Unix under Mac OS X. Some
Unix fans prefer the more powerful and complex vim or emacs, in the same way that
some people prefer Microsoft Word to TextEdit.

date
Used all by itself, the date command simply displays the current date and time. How-
ever, you can use its long list of date “conversion specifications” (enter man date to see
all of them) to format the date string in any conceivable way. Begin the string with a
+ and then enter the formatting you like, mixing in any regular text as well, like this:

office-mac:~ chris$ date +”I can’t believe it’s already week %V

of %Y, here in the %Z time zone. But what do you expect on a %A

at %l:%M %p?”

Figure 11:
The top display remains onscreen,
automatically updating itself as
you work, until you type q to quit
the program. The plain-English
program names are in there
somewhere.

Process ID Program name Memory use

Virtual-memory use

20 Useful
Unix Utilities

20 Useful
Unix Utilities

44 mac os x: the missing manual bonus chapter: the unix crash course 45

I can’t believe it’s already week 25 of 2012, here in the PDT

time zone. But what do you expect on a Saturday at 3:42 PM?

Note: Be careful about using date with sudo. If you do, and accidentally forget the leading +, you reset
your Mac’s built-in clock.

grep
The grep program is a filter, a powerful program designed to search data for text that
matches a specified pattern. It can pass on the processed result to another program,
file, or the command line itself.

You specify the text pattern you want grep to search using a notation called regular
expressions. For example, the regular expression dis[ck] searches for either disk or
disc. Another example: To search for lines in a file containing the addresses from
200 to 299 Redwood Way, you could tell grep that you’re looking for “\<2[0-9][0-9]
Redwood Way”.

One terrific thing about grep is that its search material can be part of any file, especially
plain text files. The text files on your Mac include HTML files, log files, and—possibly
juiciest of all—your email mailbox files. Using grep, for example, you could search all
your Mail files for messages matching certain criteria, with great efficiency and even
finer control than with Spotlight.

find
With Spotlight on the scene, you might wonder why you would need to use the Unix
find command. Well, for one, find takes file searching to a whole new level. For example,
you can find files based on their permissions, owner name, flag settings, and of course
any kind of name pattern you can think of using regular expressions.

Also, like with most other Unix commands, you can “pipe” the find command’s list
of found files straight into another program for further processing. You might do
this to change their names, convert them to other formats, or even upload them to
a network server.

Perhaps best of all, since you can run find with sudo, you can look for files existing
anywhere on your hard disk, regardless of directory permission settings.

To find all the files in your home directory with “Bolinas” in their names, for example,
you would use this command:

find ~/ -name ‘*Bolinas*’

Or, to ignore capitalization:

find ~/ -iname ‘*Bolinas*’

And this command searches for all the locked files in your home directory:

find ~/ -flags uchg

mdfind
If you have a soft spot in your heart for Spotlight, you’ll be happy to see the mdfind
command in Terminal. It performs the same kinds of searches, finding by metadata
like music genre or exposure data for photos.

To find all reggae songs, for example, try:

Figure 12:
A new nano session. One key
difference between nano and,
say, TextEdit: To scroll, you
must use the , and . keys, or
the Prev Page and Next Page
commands—not the Terminal
scroll bar.

Eliza, I Have Issues with My Mother
Therapy, whether it’s about your frustrations with your Mac
or any other subject, is expensive. Still, it feels good to talk
to someone about whatever is
bothering you—and Mac OS X
is ready to listen.

Hidden in the emacs text-
editing program is a fully
unlicensed automated psycho-
analyst named Eliza. To enter
her office, open Terminal,
type emacs and press Return.
After the introductory screen
has appeared, press Shift-Esc,
type xdoctor, and then press
Return.

“I am the psychotherapist,” Eliza begins. “Please, describe
your problems. Each time you are finished talking, type RET

twice.” (She means, “Press the
Return key twice.”)

As you can see from this
illustration, she isn’t exactly
Sigmund Freud. But she’s very
entertaining, and surprisingly
responsive.

When your session is finished,
press Control-X and then Con-
trol-C to exit Eliza and emacs.

Gem in the Rough

20 Useful
Unix Utilities

20 Useful
Unix Utilities

46 mac os x: the missing manual bonus chapter: the unix crash course 47

mdfind ‘kMDItemMusicalGenre == “Reggae”’

To find all photos you shot with the flash on:

mdfind ‘kMDItemFlashOnOff == “1”’

The mdls command reveals all the metadata for a particular file, like the IMG_3033.
jpg picture in this example:

MacChris:Photos chris$ mdls IMG_3033.cr2

kMDItemAcquisitionMake = “Canon”

kMDItemAcquisitionModel = “Canon EOS 40D”

kMDItemAperture = 4

kMDItemBitsPerSample = 64

kMDItemColorSpace = “RGB”

kMDItemContentCreationDate = 2010-12-19 18:50:30 +0000

kMDItemContentModificationDate = 2010-12-19 18:50:31 +0000

kMDItemContentType = “com.canon.cr2-raw-image”

You can find more about constructing your queries here: http://developer.apple.
com/mac/library/documentation/Carbon/Conceptual/SpotlightQuery/Concepts/
QueryFormat.html.

launchd
launchd is a multitalented Unix program responsible for launching system programs,
during startup or anytime thereafter. Part of its job is triggering certain commands
according to a specified schedule, even when you’re not logged in. People can use
launchd to trigger daily backups or monthly maintenance, for example. You can pro-
gram your unattended software robot by editing simple property list files.

Mac OS X comes set up to run launchd automatically; it’s the very first process that
starts up when the Mac does. It launches all your other startup items, in fact. (If you
open the Activity Monitor program in your ApplicationsÆUtilities folder, you’ll see
it listed among the administrator processes that your Mac is running all the time.)

In fact, launchd comes with three under-the-hood Unix maintenance tasks already
scheduled: a daily job, a weekly job, and a monthly job. They come set to run at 3:15
a.m. (the first two), and 5:30 a.m. If your Mac isn’t generally turned on in the middle
of the night, these healthy jobs run the next time it’s awake.

But if you’re feeling ambitious, you can change the time for them to be run. A glance
at man launchd.plist shows you how. (Hint: It involves using sudo nano and editing the
three com.apple.periodic property list files in /System/Library/LaunchDaemons—but
be careful not to mess with anything else in there!)

Note: Some other Unix systems (and versions of Mac OS X) use the cron utility to run these jobs. cron also
exists on Lion and will start working as it does elsewhere—the minute you add a new cron job. See the cron
and crontab manpages for details.

sips
Sips (Scriptable Image Processing System), an Apple Unix utility included with Lion,
lets you process graphics files like TIFF, JPEG, and GIF files from within Terminal. You
can use sips to get more information about such files (type, size, or attached ColorSync
profile), for example, or to remove or attach ColorSync profiles.

Better still, sips can modify the images by scaling, rotating, flipping, or converting
them to other formats (like PNG or Photoshop). You can also generate custom Finder
icons for images files without them.

Consult the sips manpage to see the list of image file properties that sips can work with.

For example, to flip a digital photo called TenLakes.jpg vertically (and save the flipped
version with the name TenLakesFlipped.jpg), type this:

sips -f vertical TenLakes.jpg --out TenLakesFlipped.jpg

(If you fail to include the --out option and a new filename, sips will permanently
transform the original image file instead of spinning out a new one.)

You can even include multiple sips actions in one command. So, for example, to make
the same flip but also transform the file into a TIFF file, enter this:

sips -f vertical -s format tiff TenLakes.jpg --out TenLakesFlipped.tif

FTP and SFTP
FTP (and its relative, telnet) aren’t exclusively Unix programs, of course. Techies
from all walks of operating-system life have used telnet for years whenever they want
to tap into another computer from afar, and FTP to deliver and download software

Secrets of Virtual Memory
The top command’s table offers a fascinating look at the
way Mac OS X manages memory. In the “VM” section,
for example, you’ll see current statistics for pageins and
pageouts—that is, how many times the virtual-memory
system has had to “set down” software code for a moment
as it juggles your open programs in actual memory. (These
numbers are pointed out in Figure 11.)

The pageins and pageouts statistics are composed of two
different numbers, like this: 45451(0) pageins, 42946(0)
pageouts. The bigger number tells you how many times
your Mac has had to shuffle data in and out of memory since
the Mac started up. The number in parentheses indicates
how much of this shuffling it’s done within the past second.

The pageouts value is the number to worry about. If it stays
above zero for a while, your Mac is gasping for RAM (as the
hard drive thrashing sounds and program-switching delays
are probably also telling you).

In the listing of individual programs, columns 9 through
14 provide details about the memory usage of each listed
program. The one you care about is the RPRVT (Resident
Private) column, which shows how much memory each
program is actually using at the moment. This number goes
up and down as you work, illustrating a handy trait of Mac
OS X: Programs don’t just grab a chunk of memory and sit
there with it. They put that RAM back in the pot when they
don’t need it.

Up to Speed

20 Useful
Unix Utilities

20 Useful
Unix Utilities

48 mac os x: the missing manual bonus chapter: the unix crash course 49

files. The problem with both of these programs is their utter lack of security; they
transmit passwords and data across the network unencrypted. The modern, secure
versions of these programs are SFTP, which you use much like FTP, and the previ-
ously introduced SSH.

Tip: Unlike FTP, which requires a remote FTP server, SFTP needs the SSH (or Remote Login) service run-
ning on the remote host.

Putting It Together
The Unix syntax and vocabulary presented in this chapter is all well and good, and it’ll
give you the rosy glow of having mastered something new. But it still doesn’t entirely
explain why Unix gives programmers sweaty palms and dilated pupils.

The real power of Unix comes down the road—when you start stringing these com-
mands together.

Suppose, for example, you want to round up all the TIFF image files related to your
Yosemite project, scale them to a common size, convert them to JPEG files, and copy
them to an FTP site. How would you go about it?

You could, of course, use Spotlight to search for all TIFF files that have “Yosemite”
in their names. But what if your images were named otherwise but kept in folders
with Yosemite in their names? You would have to find those folders first, and then
the TIFF files within them.

You could perform the next step (scaling and converting the image) either manually or
by a preprogrammed script or Automator workflow, using a program like Photoshop
or even iPhoto. Once the images were all done, you’d need to collect them and then
use your favorite FTP program to upload them to the server.

If you’ve mastered Unix, though, you could shave 12 minutes off of your workday
just by changing to an empty working directory (in this example, ~/Stage) and typ-
ing this as one long line:

find ~ -type f -ipath ‘*yosemite*tif’ -print0 | xargs -0 sips -Z

250 -s format jpeg --out ~/Stage && echo “put -r /Users/chris/

Stage/* /Incoming/” | sftp chris@coast-photo.com

Even after almost 50 pages of Unix basics, that mass of commands probably looks
a tad intimidating. And, indeed, if you’ve never programmed before, even the fol-
lowing breakdown may make your eyes glaze over. Nevertheless, pieces of it should
now look familiar:

•• find ~ -type f -ipath ‘*yosemite*tif ’ -print0 |. This segment searches your home
directory (~) for files (-type f) whose pathnames (-ipath, meaning “capitalization
doesn’t matter”) contain the word Yosemite and end in tif. Remember, the asterisks
here are wildcard characters. The command so far makes a list of all matching files,
which it keeps in its little head.

The -print0 command formats this list of found files’ pathnames, separating them
with the null character (a special character programmers use to indicate where
one string of text ends and another begins) instead of the usual spaces. It lets the
command work with pathnames that contain spaces, a common occurrence on
Macs (but a rarity in Unix). You’ll see how it does this shortly.

Then comes the pipe (the vertical bar), which you can use to direct the results
(output) of one command into the input of another. In this case, it sends the list
of found pathnames on to the next command.

•• xargs -0 sips -Z 250 -s format jpeg --out ~/Stage &&. xargs is an argument builder.
In this case, it builds an argument from the list of files it received from the find
command and provides it to sips for processing. In other words, xargs hands a list
of files to sips, and sips runs the same command on each one.

The -0 flag tells xargs that the pathnames are separated by the null character.
(Otherwise, xargs would separate pathnames at each space character, which would
choke sips.)

Putting It Together20 Useful
Unix Utilities

X11
If you’ve ever poked around in your /Applications/Utilities
folder, you might have spotted the program called X11.

No, it’s not the code name of a top-secret project Apple
forgot to remove before shipping Lion. X11 is another
name for the X Window System, a GUI that came to being
on Unix systems at about the same time the Macintosh was
introduced. (“GUI” stands for graphic user
interface, and it means “icons, windows,
and menus like you’re used to—not typing
commands at a prompt.”)

More importantly, X11 lets your Mac run
many of the Unix GUI applications, both free
and commercial, that have become available
over the years.

Getting X11 to work right with Mac OS X used
to require some fiddling. But in Lion, you can run it without
fuss. X11 comes with several “X” programs, which are found
in /usr/X11/bin. Your shell knows about this directory, and
Terminal knows about X11, so you can run these applications
like any other command.

To launch the X11 clock, for example, start in Terminal.
Type xclock and press Return. After a moment, the X11 icon
appears in your Dock—and a small clock window appears
beside your other windows, just like any normal program.

(As you’ll discover, X11 programs are more visually pleasing
than Unix code. But they have not, ahem, been designed by

Apple’s finest.)

To stop the X application, you can close its
window, or press Control-C in Terminal. (No
new prompt appears while the X application
is running.)

Many other X applications come with Lion;
in Terminal, type ls /usr/X11/bin to list them.
Some interesting ones to try are xterm, xcalc,
glxgears, and xedit. You can even add more

X applications by downloading and compiling source code
(a daunting task for anyone new to Unix), or through a
“ports” system like MacPorts (www.macports.org), which
provides software packages “ported” to Mac OS X for easier
installation.

Up to Speed

50 mac os x: the missing manual bonus chapter: the unix crash course 51

For each file it gets, sips first scales the image’s largest dimension to 250 pixels, and its
other dimension proportionally. (That way, any image will fit into a 250 × 250-pixel
box on a Web page, for example.)

sips then sets the format (-s format) of the image to JPEG and saves it, with the
correct .jpg extension, in the ~/Stage directory.

The double ampersands (&&) at the end of this fragment tell the shell to run the
next command only when it’s successfully finished with the previous one. (If it fails,
the whole thing stops here.) So, once sips is done with each file it gets from xargs,
the shell moves on to this:

•• echo “put -r /Users/chris/Stage/* /Incoming/” | sftp chris@coast-photo.com.
The sftp utility can run ftp instructions fed to it through a pipe; in this case you
need to put (or upload) the multiple (-r) files that exist in /Users/chris/Stage/ to
the /Incoming/ directory on the remote server. The echo command pushes this
instruction through the pipe to the sftp command, which then connects to the
specified remote account, chris@coast-photo.com, and once you’ve provided your
password, performs the upload.

When you press Return or Enter after this gigantic command, Mac OS X scans
all the directories inside your home directory, rounds up all the Yosemite-related
images, scales them, converts and renames them, and then uploads each to the remote
directory.

Once you’ve gained some experience with Unix commands and programs like these,
you’ll find it fairly easy to adapt them to your own tasks. For example, here’s a more
versatile command that searches a directory called Projects for all TIFF files modified
after 6:00 that morning, converts them to thumbnail-sized JPEGs, plops them into
the images directory of your FTP-accessible Web server, and then moves them all to
your Backup directory:

cd ~/Stage && find ~/Projects -type f -iname *tif -newermt 6:00

-print0 | xargs -0 sips -Z 128 -s format jpeg --out ~/Stage &&

ftp -u ftp://carlos:birdie@ftp.coast-photo.com/htdocs/images *

&& mv * ~/Backup/

The Famous Animated-Desktop Trick
It was one of the first great Mac OS X hacks to be passed
around the Internet: the classic “screen-saver-on-the-​desk-
top”​ trick. In this scheme, your desktop shows more than
some wussy, motionless desktop picture. It actually displays
one of the Screen Effects animation modules.

Start by choosing the screen saver module you prefer, using
the Screen Effects panel of System Preferences. (The one
called “flurry” makes a good choice.)

Then, in Terminal, type: /System/Library/Frameworks/Screen
Saver.framework/Resources/ScreenSaverEngine.app/
Contents/MacOS/ScreenSaverEngine -background &

Finally, press Return. (Note that there are no Returns in the
command, even though it appears broken onto more than
one line here.)

Presto: The active screen saver becomes your desktop
picture! Fall back into your chair in astonishment.

Once you’ve regained your composure, look in the Terminal
window again. The number that follows the [1] in the fol-
lowing line is the process ID of your background desktop
program.

You’ll need that number when it comes time to turn off
the effect, which is a good idea, since the desktop/screen
saver business drains a massive amount of your Mac’s
processing power. The whole thing is a gimmicky showoff
stunt you’ll generally want to turn off before conducting any
meaningful work.

To turn off this effect, type kill 496 (or whatever the process
ID is), and then press Return.

And if you get tired of typing out that long command,
download xBack from www.gideonsoftworks.com/xback.
html. It’s a simple piece of shareware that lets you turn this
effect, plus many additional options, on and off with the
click of a mouse.

Power Users’ Clinic

Putting It TogetherPutting It Together

The Root Account
Standard, Administrator, Managed, Sharing Only, and Guest
aren’t the only kinds of accounts. There’s one more, one that
wields ultimate power, one person who can do anything
to any file anywhere. This person is called the superuser.

Unix fans speak of the superuser account—also called the root
account—in hushed tones, because it offers absolutely unre-
stricted power. The root account holder can move, delete,
rename, or otherwise mangle any file on the machine, no
matter what folder it’s in. One wrong move—or one malicious
hacker who manages to seize the root account—and you’ve
got yourself a $2,000 doorstop. That’s why Mac OS X’s root
account is completely hidden.

Truth is, you can enjoy most rootlike powers without actually
turning on the root account. Here are some of the things
the root account holder can do—and the ways you can do
them without ducking into a phone booth to become the
superuser:

See crucial system files that are ordinarily invisible. Of
course, you can also see them easily by using the freeware
program TinkerTool. You can also use the Terminal program
described in this chapter.

Peek into other account holders’ folders (or even trash
them). You don’t have to be the superuser to do this—you
just have to be an administrator who’s smart enough to use
the Get Info command, as described on page 96.

Use powerful Unix system commands. Some of the Unix
commands you can issue in Mac OS X require superuser
powers. As noted in this chapter, however, there’s a simple
command—the sudo command—that grants you root pow-
ers without you actually having to log into the root account.
Details are on page 654.

Using the sudo command is faster, easier, and more secure
than using the root account. It doesn’t present the risk that
you’ll walk away from your Mac while logged in as the root
user, thereby opening yourself up to complete annihilation
from a passing evildoer (in person or over the Internet).

But if you’re a Unix geek, and you want to poke around the
lowest levels of the operating system, or you’re in a time
of crisis, and you really, really need to log in with the root
account, see the free downloadable appendix to this chapter
(“Enabling the Root Account”). It’s available on this book’s
“Missing CD” page at www.missingmanuals.com.

PoWer Users’ Clinic

52 mac os x: the missing manual

Tip: You don’t have to type out that entire command line every time you need it; you can save the whole
thing as a .command file on your desktop that runs when double-clicked.

First, create a new plain text document; you can use TextEdit. Type in the entire command you want to me-
morialize. Save the document with a name ending with .command—for example, ProcessImages.command.
(Documents with this extension appear with a spiffy icon in the Finder.)

Next, make that file itself executable by using the chmod command. If, for example, you want only the owner
of the ProcessImages.command file, you would type: chmod u+x ProcessImages.command.

With just a few more keystrokes, you could modify that command to collect some
files, lock them, and place copies of each in every account holder’s home directory, as
well as several different servers at the same time. What’s more, it emails you a report
when it’s done. Using launchd, you could even configure this routine to trigger itself
automatically every day at 11:00 p.m. Considering the hundreds of Unix programs
included with Mac OS X and the thousands of others available on the Internet, the
possibilities are limitless.

Putting It Together

