
1 

ECSE-4790 Microprocessor Systems 
 

Motorola 68HC12 User's Manual 
Lee Rosenberg 

Electrical and Computer Systems Engineering 
Rensselaer Polytechnic Institute 

Revision 1.1 
8/10/00 

 
 
 
Table of Contents:        page 
 
 1. Introduction         2 
 
 2. Basic Programming notes for the 68HC12     3 
 
 3. D-Bug 12 Monitor Program       4 
 
 4. 68HC12 Hardware        7 
  a) Ports         7 
  b) A/D Converter        9 
  c) Timer Functions      13 
   i) Timer Output Compare     14 
   ii) Output Compare 7     15 
   iii) Timer Compare Force Register   16 
   iv) Input Capture      16 
 
 5. Interrupt Service Routines      17 
  a) Overview        17 
  b) Interrupt Priority      18 
  c) Real Time Interrupt      20 
  d) Timer Overflow Interrupt     22 
  e) Pulse Accumulator Edge Triggered Interrupt  23 
  f) Pulse Accumulator Overflow Triggered Interrupt 24 
  g) Output Compare Interrupt     25 
  h) Input Capture Interrupt     26 
  i) A/D Converter Interrupt     27 
  j) IRQ Interrupt       28 
  k) Port H Key Wakeup Interrupt    29 
  l) Port J Key Wakeup Interrupt    30 
 



2 

1. Introduction: 
 
The Motorola 68HC12 is a 16-bit microprocessor descended from the 68HC11.  
The design has a number of major improvements over the 6811 and several new 
features that are not found on the 6811.  The biggest change is the expansion 
from an 8-bit bus to a full 16-bit bus for both the data and address.  Other 
improvements include an increase in the number of A/D converter registers, 
Timer output compare and input capture pins, and I/O ports.  Also added is a 
second SCI connector and a new interrupt, called a Key Wakeup interrupt. 
 
This manual is intended to provide a brief introduction to the 68HC12 and how 
to program it in C using the Introl C compiler 4.00.  This manual is intended 
primarily for those people who are already familiar with the Motorola 68HC11.  
This manual also assumes that the reader has basic familiarity with the C 
programming language. 
 



3 

2. Basic Programming Notes: 
 
There are 3 header files that must be included with any code written for the 
68HC12 using the Introl C compiler.  These are: 
 
HC812A4.H - This file contains all the register declarations for the 6812. 
 
INTROL.H - This file contains several function declarations needed by Introl 
to compile the program. 
 
DBUG12.H - This contains the information need to call the D-Bug12 routines 
and to handle interrupts.  Omitting this file will result in the calls to the 
D-Bug12 routines being flagged as errors by the compiler. 
 
Your main function must be of the format: void _ _main().  The two (2) 
underscores before main are necessary, as that is the format that Introl uses 
to recognize the main function of the program. 
 



4 

3. D-Bug12: 
 
D-Bug12 is the monitor program for the 6812 EVB.  This is similar to the 
BUFFALO monitor used on the 6811.  Unlike the BUFFALO monitor, the D-Bug12 
monitor is a series of C functions that are stored in an EPROM on the EVB.  
These functions can be called by the user to handle both I/O and several of 
the common C language ANSI functions. 
 
All calls to the D-Bug12 routines follow the same format.  The format is: 

DB12->"routine name"; 
 
The "DB12->" is used as a cast pointer that allows the compiler to reference 
the EPROM for the different routines.  The routine name is just the name of 
the routine and any parameters that are being passed to the function.  If the 
function returns a value to the program the return value can be assigned to a 
variable.  This is done as follows: 
 
  temp=DB12->"routine name"; 
 
This assigns the return value of the routine to a variable named temp. 
As always the variable must be declared in the program. 
 
It is important to note that if you do not include the "DB12->" with the 
function call the compiler will return an error message.  The error message 
that is returned is that the function does not exist.  Putting the "DB12->" 
before the function name will solve this problem. 
 
D-Bug12 Functions 
Readers interested in a more in-depth explanation of the D-Bug12 routines are 
referred to Motorola Document an1280a, "Using the Callable Routines in D-Bug 
12" (available on the web at 
http://www.ecse.rpi.edu/Courses/CStudio/appnotes/). 
 
getchar 
This function will get a single character of input from the user. 
 Function Prototype: int getchar(void); 

Return Value: This returns the character from the keyboard in 
  hexadecimal ASCII. 

 
printf 
This will display a string of characters to the screen. 
 Function Prototype: int printf(char *s); 
 Return value: The number of characters that were transmitted. 
 
NOTE: The Introl 4.0 compiler has an error in this function. The first 
parameter in the list is not printed properly. There are workarounds for some 
cases that are given in examples in class handouts. In any case, simple 
strings without variables will work without problems. 
 
To display a variable, the variable is represented using %y in the printf 
statement, where y is chosen from the table below to match the variable type. 
To display a signed decimal integer stored in a variable num, the function 
call would look like: 



5 

DB12->printf("This is the value of num: %d", num); 
 

d, i int, signed decimal number 

o int, unsigned octal number 

x int, unsigned hexadecimal number using a-f for 10-15 

X int, unsigned hexadecimal number using A-F for 10-15 

u int, unsigned decimal 

c int, single character 

s char *, display from a string until '\0' 

p void *, pointer 
 
putchar 
This will display a single ASCII character on the screen. 
 Function Prototype: int putchar(int); 
 Return Value: The character that was displayed. 
 
 
GetCmdLine 
This function is used to read in a line of data from the user and store it in 
an array.  Each character that is entered is echoed back to the screen using 
a call to the putchar function.  Only printable ASCII characters are accepted 
by the function with the exception of carriage return and backspace. 
 

Function Prototype: int GetCmdLine(char *CmdLineStr, int 
     CmdLineLen); 
Return Value: An error code of NoErr. 
 

The location where data that is read in is stored and the number of 
characters that are to be read, are determined by CmdLineStr and CmdLineLen 
respectively. 
 
CmdLineStr is a char array that is created by the programmer.  This is where 
the input line from the user is stored. 
 
CmdLineLen is the length of the string to be read in.  A total of CmdLineLen 
-1 characters may be entered by the user before the GetCmdLine function 
exits. The user may also use a carriage return to exit before the value of 
CmdLineLen has been reached. 
 
Backspace may be used to delete unwanted characters from the line that the 
user entered.  The character will be erased from the screen and the memory 
array. 

 
isxdigit 
This routine determines if c is a member of the  set 0..9, a..z and A…Z 
 Function prototype: int isxdigit(int c); 

Return Value: If c is part of the set the function returns 
  true (1), if c is not a part of the set the function 
  returns a false (0). 

 



6 

toupper 
This routine is used to convert lower case letters to upper case letters. 
 Function Prototype: int toupper(int c); 
 Return Value: The uppercase value of c.  If c is already an 
     uppercase letter it returns c. 
 
isalpha 
This routine determines if c is a member of the set a…z and  A…Z 
 Function Prototype: int isalpha(int c); 

Return Value: If c is part of the set it returns true (1), if it 
  is not a part of the set it returns a false (0). 

 
strlen 
This routine determines the length of the string that is passed in as a 
parameter.  The string must be null terminated. 
 Function Prototype: unsigned int strlen(const char *cs); 
 Return Value: The length of the string pointed to by cs. 
 
strcpy 
This routine makes a copy of string two to string one.  The string to be 
copied must be null terminated. 
 Function Prototype: char* strcpy(char *s1, char *s2); 
 Return Value: A pointer to s1. 
 
out2hex 
This outputs an 8-bit number on the screen as two hexadecimal numbers. 
 Function Prototype: void out2hex(unsigned int num); 
 Return Value: None 
 
out4hex 
This outputs a 16-bit number on the screen as four hexadecimal numbers. 
 Function Prototype: void out4hex(unsigned int num); 
 Return Value: None 
 
SetUserVector 
This routine is used for handling Interrupt Service Routines and will be 
described in the section on interrupts. 
 
 
Notes: 
 
The printf, putchar, out2hex, and out4hex routines do not generate carriage 
returns or line feeds when they are called.  To do this you must include \n\r 
in either a putchar or a printf statement. 
 



7 

4. 68HC12 Hardware: 
 
This section explains the operation of the hardware on the 68HC12.  It 
includes the I/O ports, the A/D converter and the timer functions.  Hardware 
interrupts are explained in the next section.  For more information on this 
material, refer to Motorola document MC68HC812A4TS/D, "Motorola 68HC12 
Technical Summary". 
 
 
Ports: 
All port names are of the format _H12PORTx, where x is the capital letter of 
the port you are trying to access. i.e. Port A is _H12PORTA. 
 
Ports A and B are used as the address bus for the 68HC12.  They are not 
usable as I/O by the programmer. Port A is the high order byte and port B is 
the low order byte. 
 
Ports C and D are used as the data bus for the 68HC12.  They are not usable 
for I/O by the programmer. Port C is the high order byte and port D is the 
low order byte. 
 
Port E is used to generate control signals needed to access the external 
memory.  As a result the programmer can not use it for I/O.  Port E pin 1 is 
used as the input for the IRQ and Port E pin 0 is used as the input for the 
XIRQ. 
 
Port F is used to control chip selects for the external memory and other 
chips. The programmer can not use it as I/O. 
 
Port G is a 6-bit general purpose I/O port. The direction of the port is 
controlled by _H12DDRG.  When an _H12DDRG bit is set to 0, the port pin is an 
input and when it is set to 1 it is an output. 
 
Port H is an 8-bit general purpose I/O port. The direction of the port is 
controlled by the _H12DDRH.  When _H12DDRH bit is set to 0, the port pin is 
an input and when it is set to 1 it is an output. 
 
Port J is an 8-bit general purpose I/O port. The direction of the port is 
controlled by the _H12DDRJ.  When _H12DDRJ bit is set to 0, the port pin is 
an input and when it is set to 1 it is an output. 
 
Port S is used for the SCI and the SPI.  It can also be used for general I/O 
if the SCI or SPI are not being used.  Bits 0 and 1 are SCI0. These are used 
as the interface to the terminal and can not be used as I/O.  Bits 2 and 3 
are SCI1 and bits 4-7 are the SPI.  These can be used as general I/O if SCI1 
and the SPI are not being used.  The direction of the port is controlled by 
_H12DDRS. 
 
Port T is used for the timer interrupts and the pulse accumulator.  If the 
interrupts are not being used then Port T can be used for general I/O.  The 
port direction is controlled by _H12DDRTT.  Note: The two T's are not a typo. 
 
Port AD is used exclusively as the input to the A to D converter.  It can not 
be used for any other I/O. 
 
Ports G, H, and Port E pin 0 have optional pull-up resistors inside.  These 
are controlled by the _H12PUCR register.  To enable the pull-up resistor for 
Port H write a one to bit 7, for Port G write a one to bit 6, for Port E 



8 

write a one to bit 4 of _H12PUCR.  To disable the pull-up resistors to a 
particular port, write a 0 to the appropriate bit. 
 



9 

A to D Converter: 
 
This section covers the basic function of the A/D converter.  The A/D 
converter uses a dedicated port, port AD, for its inputs.  There are 8 A/D 
converter channels on the HC12 and, unlike the 6811, there are also 8 A/D 
registers allowing 8 simultaneous readings. The implementation of the A/D 
converter allows for two different methods of operating the A/D converter.  
This section covers the polling method.  The interrupt based operation is 
explained in the section on interrupts. 
 
The A/D converter conversion sequence consists of either 4 or 8 conversions 
and can convert either one channel or multiple channels. In scan mode 
operation, polling based operation, the flag is set after the conversions 
have been completed, signaling the completion of the A/D cycle. 
 
Before running the A/D converter, the system must be initialized by the user.  
There are 4 registers that are used to control the A/D Converter.  These are 
_H12ADTCTL2, _H12ADTCTL3, _H12ADTCTL4, and _H12ADTCTL5. 
 
_H12ADTCTL2 contains several of the A/D Converter enable bits.  Bit 7 is the 
A/D power up (ADPU).  When this is set to one the A/D converter is enabled, 
when it is zero then the A/D converter is disabled.  Bit 1 is the A/D 
converter interrupt enable (ASCIE).  The interrupt is enabled when the bit 
equals one and disabled when the bit is set to zero.  In scan mode this bit 
is set to 0, to disable interrupts. Bit 0 is the interrupt flag (ASCIF) which 
is not used in the polling version of the A/D converter. 
 
_H12ADTCTL2: 
bit 7     bit 6  bit 5     bit 4    bit 3    bit 2    bit 1    bit 0 
ADPU AFFC AWAI unused unused unused ASCIE ASCIF 
 
_H12ADTCTL3 should always be set to 0x00.  This is used to control several 
actions that are related to how the A/D converter operates in background 
debug mode.  As the D-Bug12 monitor is being used, the background debug mode 
is not being used and these features should be disabled. 
 
_H12ADTCTL4 is used to select the sample time of the A/D converter and to set 
the prescalar for the clock. 
 
_H12ADTCTL4: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2    bit 1    bit 0 
 unused SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 
 
There are four different sample times available for the A/D converter. The 
sample time is selected by setting the value of SMP1 and SMP0.  The different 
sample times that can be used are listed in table 1. 
 
Table 1: Sample Times 
 
SMP1 SMP0  Sample Time________ 
0 0  2 A/D clock periods 
0 1  4 A/D clock periods 
1 0  8 A/D clock periods 
1 1  16 A/D clock periods 
 
The prescalar that is used by the A/D converter is determined by the value of 
PRS0-PRS4.  The clock input to the prescalar is an 8 MHz clock.  This allows 



10 

for an A/D conversion frequency of 500 kHz to 2 MHz.  The different prescalar 
values are listed in Table 2. 
 
Table 2: Prescalar Values 
 
Prescale Value Divisor___ 
 00000  Do not use 
 00001  /4 
 00010  /6 
 00011  /8 
 00100  /10 
 00101  /12 
 00110  /14 
 00111  /16 
 01xxx  Do not use 
 1xxxx  Do not use 
 
_H12ADTCTL5 is used to select the conversion mode, which channels are to be 
converted and to initiate the conversions.  The conversion sequence is 
started by any write made to this register.  If a write is made to this 
register while a conversion sequence is in progress, the conversion is 
aborted and the SCF and CCF flags are reset. 
 
_H12ADTCTL5: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2    bit 1     bit 0 
unused S8CM SCAN MULT CD CC CB CA 
 
S8CM is used to select between making 4 conversions, when the bit is set to 
zero, and 8 conversions, when the bit is set to one. 
 
SCAN is used to select between performing either a single conversion or 
multiple conversions. If SCAN is set to zero, then a single conversion will 
be run and the flag will then be set.  If SCAN is set to 1, then the A/D 
converter will run continuous conversions on the A/D channels. 
 
MULT determines whether the conversion is run on a single channel or on 
multiple channels.  When MULT zero, the A/D converter runs all the 
conversions on a single channel, which is selected by CD,CC,CB, and CA.  When 
MULT is one, the conversion is run on several different channels in the group 
specified by CD,CC,CB, and CA.  The possible channel combinations are in 
Table 3. 
 
Table 3: A/D Converter Settings 
 
S8CM  CD  CC  CB  CA  Channel Signal  Result in ADRx if MULT = 1 
0  0   0  0*  0* AN0   ADR0 
0  0   0  0*  1* AN1   ADR1 
0  0   0  1*  0* AN2   ADR2 
0  0   0  1*  1* AN3   ADR3 
0  0   1  0*  0* AN4   ADR0 
0  0   1  0*  1* AN5   ADR1 
0  0   1  1*  0* AN6   ADR2 
0  0   1  1*  1* AN7   ADR3 
0  1   0  0*  0* Reserved  ADR0 
0  1   0  0*  1* Reserved  ADR1 
0  1   0  1*  0* Reserved  ADR2 
0  1   0  1*  1* Reserved  ADR3 
0  1   1  0*  0* V RH   ADR0 



11 

0  1   1  0*  1* V RL   ADR1 
0  1   1  1*  0* (V RH + V RL )/2 ADR2 
0  1   1  1*  1* TEST/Reserved ADR3 
1  0  0*  0*  0* AN0   ADR0 
1  0  0*  0*  1* AN1   ADR1 
1  0  0*  1*  0* AN2   ADR2 
1  0  0*  1*  1* AN3   ADR3 
1  0  1*  0*  0* AN4   ADR4 
1  0  1*  0*  1* AN5   ADR5 
1  0  1*  1*  0* AN6   ADR6 
1  0  1*  1*  1* AN7   ADR7 
1  1  0*  0*  0* Reserved  ADR0 
1  1  0*  0*  1* Reserved  ADR1 
1  1  0*  1*  0* Reserved  ADR2 
1  1  0*  1*  1* Reserved  ADR3 
1  1  1*  0*  0* V RH   ADR4 
1  1  1*  0*  1* V RL   ADR5 
1  1  1*  1*  0* (V RH + V RL )/2 ADR6 
1  1  1*  1*  1* TEST/Reserved ADR7 
 
Stared (*) bits are “don’t care” if MULT = 1 and the entire block of four or 
eight channels make up a conversion sequence. When MULT = 0, all four bits 
(CD, CC, CB, and CA) must be specified and a conversion sequence consists of 
four or eight consecutive conversions of the single specified channel. 
 
 
_H12ADSTAT is used to determine the status of the conversion process.  Unlike 
most of the registers in the HC12 this is a 16-bit register.  The Sequence 
Complete Flag (SCF) is used to signal the completion of the conversion cycle.  
When SCAN = 0, the setting of the SCF signals the completion of the cycle, 
when SCAN = 1, it signals the completion of the first conversion cycle. 
 
_H12ADSTAT: 
bit 15   bit 14   bit 13   bit 12    bit 11   bit 10   bit 9    bit 8 
SCF unused unused unused unused CC2 CC1 CC0 
CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 
bit 7     bit 6   bit 5    bit 4     bit 3    bit 2     bit 1    bit 0 
 
CC2-CC0 are the conversion counter.  They are the pointer for the conversion 
cycle and reflect which result register will be written to next. 
 
CCF7-CCF0 are the Conversion Complete Flags (CCF) for the individual A/D 
channels.  When the conversion sequence for a channel has been complete the 
flag is set.  The flags can be cleared by reading the A/D register for the 
channel and by reading the _H12STAT register. 
 
The results of the A/D conversions are stored in the A/D converter result 
registers.  These registers are called _H12ADR0H through _H12ADR7H.  When 
converting multiple channels, the destination register used to store the 
results of each channel that is converted is listed in Table 3.  When 
converting a single channel, the results are in _H12ADR0H - _H12ADR3H for a 4 
conversion sequence and _H12ADR0H - _H12ADR7H for an eight conversion 
sequence. 
 
Sample Code 
This code turns on the A/D converter while disabling the A/D interrupt.  It 
then performs 4 conversions on channel 0 of the A/D converter and displays 
the result that is stored in the result registers to the screen. 



12 

 
_H12ADTCTL2=0x80;   // turn on ATD and off the interrupt 

 _H12ADTCTL3=0x00;   // don't stop at breakpoints 
 _H12ADTCTL4=0x43;   // Set prescalar (/8) & sample time 8 periods 
 

_H12ADTCTL5=0x00;   // check AN0, 4 conversions and stop 
 while(!(_H12ADTSTAT & 0x8000)); // wait for flag to be set 
 DB12->out2hex(_H12ADR0H);   // Display A/D result registers 
 DB12->printf("\n\r"); 
 DB12->out2hex(_H12ADR1H); 
 DB12->printf("\n\r"); 
 DB12->out2hex(_H12ADR2H); 
 DB12->printf("\n\r"); 
 DB12->out2hex(_H12ADR3H); 
 



13 

Timer Functions: 
 
This section covers the operation of the timer module when it is used for 
non-interrupt based operations, such as output compare and input capture 
functions.  Interrupt based timer features are discussed in chapter 5. 
 
The basics of timer module operation: 
There are several basic features of timer module that apply to both the input 
capture and output compare functions, as well as interrupt driven Timer 
functions. 
 
In order to make use of any timer based operations, the timer module must 
first be enabled. This is done by setting _H12TSCR to 0x80.  This will set 
the Timer Enable bit (TEN), which then enables all timer operations. 
 
_H12TSCR: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2    bit 1    bit 0 
TEN TSWAI TSBCK TFFCA unused unused unused unused 
 
The Timer uses a counter, also called a free running counter, that is 
incremented by one every clock pulse.  The free running counter on the 68HC12 
can be accessed by the user if needed.  The free running counter is a 16-bit 
value that is stored in the register _H12TCNT.  It can be read at anytime, 
but can not be written to by the user. 
 
Port T is used as I/O pins for the timer input capture and timer output 
compare.  Each pin can serve as either an input capture or output compare 
pin.  The function of the pin is selected by the state of the _H12TIOS 
register.  Each bit in _H12TIOS corresponds to a pin of Port T.  When the bit 
is set to 0, the pin is used as an input capture, when the bit is set to a 
one, the pin is used as an output compare.  Any combination of input captures 
and output compares can be selected by the user. 
 
_H12TIOS: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2    bit 1    bit 0 
pin 7 pin 6  pin 5  pin 4  pin 3  pin 2 pin 1 pin 0 
 
The data for the input captures and output compares are stored in _H12TC0 to 
_H12TC7. These are 16 bit registers.  For input capture operations the value 
of the free running counter will be latched into the register when the input 
capture is triggered.  For output compare operations the value in the 
register is used to trigger an action. 
 
The 68HC12 also allows the user to assign pull-up resistors to the timer 
module inputs.  This is done by writing a one to TPE in _H12TMSK2.  This will 
enable the pull-ups.  A zero will disable them. 
 
_H12TMSK2: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
TOIE unused TPE TDRB TCRE PR2 PR1 PR0 
 



14 

Timer Output Compare 
 
The output compare on the 68HC12 is very similar to that of the 68HC11.  The 
user selects an action to occur when the output compare is triggered and the 
time at which the action occurs.  The processor will then carry out this 
action accordingly. 
 
The first step is to select which channel(s) will be used.  This is done by 
using the _H12TIOS register as explained above.  Having done this, the next 
step is to select when the output compare will trigger.  This is done by 
writing a value to the _H12TCx register(s) that correspond to the channel(s) 
that was selected as an output compare in _H12TIOS. 
 
It is then necessary to determine what action will occur when the output 
compare is triggered.  There are several different actions that are possible, 
which one occurs is determined by the values in _H12TCTL1 and _H12TCTL2. 
These registers contain the control bits for each channel, OMn and OLn.  The 
effect that the different values have are listed in Table 4. 
 
Table 4: Output compare actions 
 
OMn OLn  Action______________________________ 
0 0  Timer disconnected from output logic 
0 1  toggle Ocn output line 
1 0  clear Ocn output line to 0 
1 1  set Ocn output line to 1 
 
_H12TCTL1: 
bit 7    bit 6    bit 5    bit 4     bit 3    bit 2    bit 1    bit 0 
OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4 
 
_H12TCTL2: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2    bit 1    bit 0 
OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0 
 
Having determined the action taken on a successful match, the next step is to 
make sure timer interrupts are disabled.  This is done by writing 0x00 to 
_H12TMSK1.  Lastly the timer module is enabled, as shown above, allowing the 
output compare to trigger. 
 
It is important to note when using the output compare that when an output 
compare action is triggered the corresponding bit of Port T will 
automatically be set as an output, regardless of the state of DDRTT. 
 
Sample Code 
This code sets up an output compare and causes the pin output to toggle when 
the interrupt is triggered. 
 
 _H12TIOS=0xFF;  // set up the channels as output compare 
 _H12TMSK1=0x00;  // no hardware interrupts 
 _H12TCTL1=0x5A;  // set OC7, OC6 for toggle/ OC5,OC4 clear 
 _H12TCTL2=0x5F;  // set OC3, OC2 for toggle/ OC1,OC0 set 
 _H12TC0=0x0000;  // set different trigger times 
 _H12TC1=0x2000; 
 _H12TC2=0x4000; 
 _H12TC3=0x6000; 
 _H12TC4=0x8000; 
 _H12TC5=0xA000; 



15 

 _H12TC6=0xC000; 
 _H12TC7=0x9000; 
 
 _H12TSCR=0x80;  // turn on the timer 
 
 
Output Compare 7 
 
Output Compare 7 has a special feature that makes it very powerful. 
Output Compare 7 allows the programmer to change the state of any of the 
output compare pin, without changing the operation that is performed by that 
Output Compare.  This is particularly useful for generating pulsewidth 
modulated signals.  Anyone interested in this particular application should 
refer to the LITEC manual for more detailed information on pulsewidth 
modulation. 
 
The method for using output compare 7 to control the other output compares is 
set up as follows.  Just as with any other output compare operation, the time 
at which OC7 is triggered must be stored in _H12TOC7. The next step is to 
select which channels will be controlled by OC7 and what will occur when OC7 
triggers.  This is done using the _H12OC7M and _H12OC7D registers. 
 
_H12OC7M is used to select which channels are controlled by OC7.  Writing a 
one to a bit in _H12OC7M assigns control of the corresponding channel to OC7. 
The data that is output by the channel is stored in _H12OC7D.  When OC7 is 
triggered, for each bit that is set in _H12OC7M, the corresponding data bit 
in _H12OC7D is written to the output compare pin. 
 
A successful OC7 event can be used to cause the “free running” counter to be 
reset.  This is done by writing a one to TCRE in _H12TMSK2.  Note if you 
write a one and set the OC7 event for $0000 the free running counter will 
stay at $0000.  Similarly if you set OC7 for $FFFF, the Timer Overflow Flag 
will never be set.  (See Timer Overflow Interrupt.) 
 
_H12OC7M: 
bit 7    bit 6    bit 5    bit 4     bit 3    bit 2    bit 1    bit 0 
OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0 
 
_H120C7D: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2    bit 1    bit 0 
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0 
 
_H12TMSK2: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
TOIE unused TPE TDRB TCRE PR2 PR1 PR0 
 
Sample Code 
This code simply shows how to setup OC7. 
 
 _H12TC7=0x4000;  // Set up the time when the OC triggers 

_H12OC7M=0x01;  // select channel 0 
_H12OC7D=0x00; // cause channel 0 to output a low when 
 // triggered 

 



16 

Timer Compare Force Register 
 
This is a special register that allows the programmer to cause an output 
compare to trigger.  Writing to bit n in this register causes the action 
which is programmed for output compare n to occur immediately.  This is the 
same as if a successful comparison had just taken place with the TCn 
register. 
 
_H12CFORC: 
bit 7    bit 6    bit 5    bit 4     bit 3    bit 2    bit 1    bit 0 
FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0 
 
 
Input Capture 
 
The operation of the input capture is similar to that of the output compare.  
The first step is to set up the appropriate Port T bits as input capture pins 
using _H12TIOS. 
 
Having done that, it is then necessary to select how the input capture will 
be triggered. This is done using _H12TCTL3 and _H12TCTL4.  Each channel has 
two control bits EDGxB and EDGxA, which determine which edge triggers the 
input capture.  The different configurations of these bits are in Table 5. 
 
Table 5: Input Capture selects 
 
EDGxB EDGxA  Configuration__________ 
0 0  Capture disabled 
0 1  Capture on rising edge 
1 0  Capture on falling edge 
1 1  Capture on any edge. 
 
_H12TCTL3: 
bit 7    bit 6    bit 5    bit 4     bit 3    bit 2    bit 1    bit 0 
EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A 
 
_H12TCTL4: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A 
 
Just as with the output compare operation, the timer interrupts must be 
disabled and the timer module must be enabled.  The values that are read in 
by the input capture are stored in the appropriate _H12TCx register. 
 
Sample Code 
This code captures the time of _H12TCNT when a switch is pressed by the user. 
 
 _H12TMSK1=0x00; // turn off interrupts 
 _H12TIOS=0x00; // Set up Port T for input capture 
 _H12TCTL3=0x5A; // IC7, IC6 rising edge, IC5, IC4 falling edge 
 _H12TCTL4=0x5F; // IC3, IC2 rising edge, IC1, IC0 any edge 
 _H12TSCR=0x80; // turn on the timer 



17 

5. Interrupt Service Routines Overview: 
 
 
Overview: 
 
The 68HC12 provides a wide array of interrupts that can be used by the 
programmer.  Some of these are similar to interrupts found on the 68HC11, 
such as the RTI and timer overflow.  Others are new to the 68HC12 such as the 
key wakeups and A/D converter interrupts.  This section will cover all the 
different ISRs and how they operate. 
 
Interrupts on the 68HC12 are controlled in part through the D-Bug12 monitor 
program.  The SetUserVector routine in the D-Bug12 monitor is used to program 
the ISR vector table that tells the processor where the different ISRs are 
located in memory. 
 
When using a particular interrupt the ISR must be assigned to the interrupt 
in the beginning of the program.  Each interrupt has an address offset to the 
interrupt vector table base address, which is stored in the D-Bug12 header 
file.  When assigning the interrupt, SetUserVector is called and the name of 
the interrupt as well as the ISR name are passed as parameters.  This will 
store the address of the ISR in the vector table. 
 
For example: If you are using the Real Time Interrupt (RTI) and have it call 
an ISR called RTIInt when it is triggered, the code would look like: 
 
 DB12->SetUserVector(RTI, RTIInt); 
 
The list below is all of the interrupts and their mnemonics: 
 
 AtoD   A to D converter interrupt 
 PAEdge  Pulse Accumulator Edge triggered 
 PAOvf   Pulse Accumulator Overflow triggered 
 TimerOvf  Timer Overflow 
 Timer7  Timer 7 
 Timer6  Timer 6 
 Timer5  Timer 5 
 Timer4  Timer 4 
 Timer3  Timer 3 
 Timer2  Timer 2 
 Timer1  Timer 1 
 Timer0  Timer 0 
 RTI   Real Time Interrupt 
 IRQ   IRQ interrupt 
 XIRQ   XIRQ interrupt 
 
The format of the ISR is show below.  All ISRs follow this format. 
 
_ _mod2_ _ void RTIInt() 
{ 
// your code here 
} 
 
It also must include a function prototype of the format: 
 
_ _mod2_ _ void RTIInt(); 
 
Note: There are 2 underscores both before and after the mod2. 



18 

Interrupt Priority: 
 
Interrupts on the 68HC12 do not all occur simultaneously.  Rather there is a 
hierarchy of priority for the interrupts.  The default priority order is: 
 
1)  Reset 
2)  COP Clock Monitor Fail Reset 
3)  COP Failure Reset 
4)  Trap 
5)  SWI 
6)  XIRQ 
7)  IRQ 
8)  RTI 
9)  Timer0 
10) Timer1 
11) Timer2 
12) Timer3 
13) Timer4 
14) Timer5 
15) Timer6 
16) Timer7 
17) TimerOvf 
18) PAOvf 
19) PAEdge 
20) SPI 
21) SCI0 
22) SCI1 
23) AtoD 
24) PortJKey 
25) PortHKey 
 
 
The priority of these can be changed by using _H12HPRIO register.  The first 
six interrupts are unmaskable and can not have their priority changed.  The 
other interrupts are all maskable and may have their priority changed.  An 
interrupt may be made the highest priority interrupt by writing its address 
value to _H12HPRIO.  The address values are listed below in hex for each 
interrupt: 
 
IRQ:  F2 
RTI:  F0 
Timer0: EE 
Timer1: EC 
Timer2: EA 
Timer3: E8 
Timer4: E6 
Timer5: E4 
Timer6: E2 
Timer7: E0 
TimerOvf: DE 
PAOvf: DC 
PAEdge: DA 
SPI:  D8 
SCI0:  D6 
SCI1:  D4 
AtoD:  D2 
PortJKey: D0 
PortHKey: CE 



19 

Interrupt Service Routines example code and explanations 
 
This section includes explanations of all the different interrupts and sample 
code of the function. 
 
 
Real Time Interrupt: 
 
Operation 
The operation of the RTI is controlled by _H12RTICTL. Bit 7 is the Real Time 
Interrupt Enable (RTIE).  Writing a one to this bit will enable the RTI.  The 
rate at which the RTI is triggered is determined by the Real Time Interrupt 
Rate (RTR).  The different rates are listed in Table 6. 
 
Table 6: RTI rate 
 
RTR2  RTR1  RTR0  Period___ 
0 0 0  off 
0 0 1  1.024ms 
0 1 0  2.048ms 
0 1 1  4.096ms 
1 0 0  8.196ms 
1 0 1  16.384ms 
1 1 0  32.768ms 
1 1 1  65.536ms 
 
_H12RTICTL: 
bit 7    bit 6    bit 5    bit 4    bit 3     bit 2    bit 1    bit 0 
RTIE RSWAI RSBCK unused RTBYP RTR2 RTR1 RTR0 
 
After the interrupt is triggered the ISR must clear the flag.  This is done 
by writing a one to the Real Time Interrupt Flag (RTIF) in _H12RTIFLG 
register. 
 
_H12RTIFLG: 
bit 7    bit 6    bit 5    bit 4     bit 3    bit 2    bit 1    bit 0 
RTIF  unused unused unused unused unused unused unused 
 
Sample Code 
This is a simple program to count the number of RTI interrupts that have 
occurred. 
 
_ _mod2_ _ void RTIInt();    // function prototype 
 
int Timecount;     // global variable 
 
void _ _main() 
{ 
 DB12->SetUserVector(RTI,RTIInt); // set up interrupt vector 
 
 TimeCount = 0; 
 
 _H12RTICTL=0x87;    // set up the RTI for 65.536ms 
 while(1) 
 { 
 DB12->out2hex(Timecount); 
 } 
} 



20 

 
_ _mod2_ _ void RTIInt()    // interrupt service routine 
{ 
 Timecount++; 
 _H12RTIFLG=0x80;    // clear the flag 
} 



21 

Timer Overflow Interrupt: 
 
Operation 
The Timer Overflow Interrupt (TOI) functions by generating an interrupt every 
time the "free running" counter overflows.  The free running counter is a 16 
bit value and is constantly running in the background when the timer is 
enabled. 
 
The TOI is set up in the _H12TMSK2 register by writing a one to Timer 
Overflow Interrupt Enable (TOIE).  After this has been done the Timer can be 
enabled.  Whenever the interrupt is triggered the ISR will be called and 
executed.  The ISR must clear the flag by writing a one to the Timer Overflow 
Flag in the _H12TFLG2 register. 
 
_H12TMSK2: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
TOIE unused TPE TDRB TCRE PR2 PR1 PR0 
 
_H12TFLG2: 
bit 7    bit 6    bit 5    bit 4     bit 3    bit 2    bit 1    bit 0 
TOF unused  unused  unused  unused unused unused unused 
 
Sample Code 
This code calls an interrupt every time the Timer Overflow Interrupt occurs. 
 
 _ _mod2_ _ void TimerOvfInt(); // function prototype 
 
 void _ _main() 
 { 
 DB12->SetUserVector(TimerOvf, TimerOvfInt); 
 

_H12TMSK2=0x80;   // enable interrupt 
 _H12TSCR=0x80;   // enable the timer 
 while(1)    // idle loop 
 { 
 } 
} 
 
_ _mod2_ _ void TimerOvfInt()  // Timer Overflow ISR 
{ 
 DB12->printf("Overflow interrupt"); 
 _H12TFLG2=0x80;   // clear the flag 
} 
 



22 

Pulse Accumulator Edge Triggered Interrupt: 
 
Operation 
This section describes how to set up the Pulse Accumulator for edge triggered 
operation. The Pulse Accumulator is enabled by setting the Pulse Accumulator 
Enable (PAEN) in _H12PACTL to one.  There are two other control bits in 
_H12PACTL, PAMOD and PEDGE. 
 
When PAMOD equals zero the pulse accumulator is in event counter mode, when 
it is one it is in gated time accumulation mode.  PEDGE has different effects 
based on the state of PAMOD. 
 
When PAMOD equals zero: 
If PEDGE equals 0, then falling edges on the pulse accumulator input pin 
(Port T bit 7) causes the count to be incremented. 
If PEDGE equals 1, then rising edges on the input cause the count to be 
incremented. 
 
When PAMOD equals one: 
If PEDGE equals 0, when the pulse accumulator input pin goes high it enables 
an internal clock which is connected to the pulse accumulator and the 
trailing falling edge on the pulse accumulator input sets the PAIF flag.  The 
internal clock used to increment the pulse accumulator is 8MHz/64. 
 
If PEDGE equals one, when the pulse accumulator input pin goes low it enables 
an internal clock which is connected to the pulse accumulator and the 
trailing rising edge on the pulse accumulator input sets the PAIF flag.  The 
internal clock used to increment the pulse accumulator is 8MHz/64. 
 
The timer must be enable to use these since the clock generated is based on 
the timer prescaler. 
 
CLK1 and CLK0 are used to control the clock rate at which the pulse 
accumulator is incremented. The different options are listed in Table 7. 
 
Table 7: Pulse Accumulator Clock Rates 
 
CLK1 CLK0  Selected clock__ 
0 0  timer prescaler 
0 1  8MHz clock 
1 0  8MHz/256 clock 
1 1  8MHz/65536 clock 
 
 
PAI is the Pulse Accumulator Edge triggered interrupt enable. This must be 
set to 1 to enable edge triggered interrupts. 
 
_H12PACTL: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
unused PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI 
 
After setting PACTL, the hardware will trigger an interrupt whenever the 
correct edge is detected at Port T.  The ISR must clear the flag by writing a 
one to the Pulse Accumulator Interrupt Flag (PAIF) in _H12PAFLG. 
 



23 

_H12PAFLG: 
bit 7     bit 6    bit 5    bit 4    bit 3    bit 2     bit 1    bit 0 
unused unused unused unused unused unused PAOVIF PAIF 
 
The value of the pulse accumulator is stored in _H12PACNT. 
 
Sample Code 
This code detects the edge and triggers an interrupt. 
 
_ _mod2_ _ void PAEdgeInt(); // function prototype 
 
void _ _main(); 
{ 
 DB12->SetUserVector(PAEdge, PAEdgeInt); 
 
 _H12PACTL=0x55;  // set the pulse accumulator - rising edge 
 while(1)   // wait 
 { 
 
 } 
} 
 
_ _mod2_ _ void PAEdgeInt() // Pulse Accumulator ISR 
{ 
 DB12->printf("Pulse Accum triggered \n"); 
 _H12PAFLG=0x01;  // clear the flag 
} 
 



24 

Pulse Accumulator Overflow Triggered Interrupt: 
 
Operation 
This operation triggers an interrupt every time the pulse accumulator 
overflows.  Whenever the pulse accumulator overflows from 0xFFFF to 0x0000, 
the ISR will trigger.  The set up of this interrupt is very similar to the 
edge triggered interrupt, although PAMOD and PAEDGE  have no effect on the 
interrupt.  Most of the other settings are the same as for the edge triggered 
operation of the Pulse Accumulator.  However instead of setting PAI to one, 
for Overflow operation PAOVI is set to one. 
 
The user must clear the flag in the ISR by writing a 1 to PAOVIF in the 
_H12PAFLG register. 
 
_H12PACTL: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
unused PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI 
 
_H12PAFLG: 
bit 7     bit 6    bit 5    bit 4    bit 3    bit 2     bit 1    bit 0 
unused unused Unused unused unused unused PAOVIF PAIF 
 
Sample Code 
This code simply displays when the interrupt is triggered. 
 
_ _mod2_ _ void PAOvfInt(); // function prototype 
 
void _ _main() 
{ 
 DB12->SetUserVector(PAOvf, PAOvfInt); 
 
 _H12PACTL=0x46;  // set for pulse accumulator overflow 
 while(1)   // wait 
 { 
 } 
} 
 
_ _mod2_ _ void PAOvfInt() // Pulse Accumulator ISR 
{ 
 DB12->printf("triggered"); 
 _H12PAFLG=0x02;  // clear the flag 
} 
 



25 

Output Compare Interrupt: 
 
Operation 
The output compare interrupt calls an ISR every time a successful output 
compare is detected.  The output compare is setup like the non- interrupt 
based output compare, with the major difference being that the action which 
is to occur on a successful compare does not need to be specified.  Instead, 
_H12TMSK1 is used to determine which channel(s) will be used to generate an 
interrupt(s).  Each bit in _H12TMSK1 corresponds to a different output 
compare channel.  When the interrupt is generated, the ISR for that channel 
is called and executed.  The flag must be cleared by writing a one to the bit 
_H12TFLG1 register that corresponds to the channel which triggered the 
interrupt. 
 
_H12TMSK1: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
C7I C6I C5I C4I C3I C2I C1I C0I 
 
_H12FLG1: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
C7F C6F C5F C4F C3F C2F C1F C0F 
 
Sample Code 
This code calls the ISR when the Output Compare 0 generates an interrupt. 
 
_ _mod2_ _ void Timer0Int(); // function prototype 
 
void _ _main() 
{ 
 DB12->SetUserVector(Timer0, Timer0Int); 
 
 _H12TIOS=0xFF;  // select output compare 
 _H12TMSK1=0x01;  // enable the interrupt on pin 0 
 _H12TC0=0x8000;  // set the value to be compared against 
 _H12TSCR=0x80;  // enable the timer 
 
 while(1)   // wait 
 { 
 } 
} 
 
_ _mod2_ _ void Timer0Int() // Output Compare ISR 
{ 
 DB12->printf("timer int"); 
 _H12TFLG1=0x01;  // clear the flag 
} 
 



26 

Input Capture Interrupt: 
 
Operation 
Like the output compare interrupt, the input capture interrupt is very 
similar to the non-interrupt based input capture. The _H12TIOS and _H12TCTL3 
and _H12TCTL4 are set up the same as for the non-interrupt input capture.  
The difference is that _H12TMSK1 is used to determine which channel(s) will 
be used to generate an interrupt(s).  Each bit in _H12TMSK1 corresponds to a 
different input capture channel.  When the interrupt is generated, the ISR 
for that channel is called and executed.  The flag must be cleared by writing 
a one to the bit in the _H12TFLG1 register that corresponds to the channel 
which triggered the interrupt. 
 
_H12TMSK1: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
C7I C6I C5I C4I C3I C2I C1I C0I 
 
_H12FLG1: 
bit 7    bit 6     bit 5   bit 4     bit 3    bit 2    bit 1    bit 0 
C7F C6F C5F C4F C3F C2F C1F C0F 
 
Sample Code 
This code calls the ISR when the input capture generates an interrupt. 
 
_ _mod2_ _ void Timer0Int(); // function prototype 
 
void _ _main() 
{ 
 DB12->SetUserVector(Timer0, Timer0Int); 
 
 _H12TIOS=0x00;  // select input capture 
 _H12TMSK1=0x01;  // enable the interrupt on pin 0 
 _H12TCTL3=0x5A;  // IC7, IC6 rising edge, IC5, IC4 falling edge 
 _H12TCTL4=0x5F;  // IC3, IC2 rising edge, IC1, IC0 any edge 

_H12TSCR=0x80;  // enable the timer 
 
 while(1)   // wait 
 { 
 } 
} 
 
_ _mod2_ _ void Timer0Int() // Output Compare ISR 
{ 
 DB12->printf("timer int"); 
 _H12TFLG1=0x01;  // clear the flag 
} 
 



27 

A to D Converter Interrupt: 
 
Operation 
This is similar to the non-interrupt based A/D converter.  However instead of 
having to poll the flag to determine when the A/D cycle has been completed, 
an interrupt is generated when the conversion is completed. 
 
In order to make use of the A/D interrupt the ASCIE bit in _H12ADTCTL2 must 
be set to 1.  This way, when the conversion is completed the interrupt will 
be triggered.  The flag is cleared by writing a one to ASCIF in _H12ADTCTL2.  
The remainder of the operation is the same as the non-interrupt based A/D 
converter. 
 
_H12ADTCTL2: 
bit 7     bit 6  bit 5     bit 4    bit 3    bit 2    bit 1    bit 0 
ADPU AFFC AWAI unused unused unused ASCIE ASCIF 
 
Sample Code 
This sample code calls the A/D interrupt when the A/D cycle is completed. 
 
 _ _mod2_ _ void AtoDInt(); // Function prototype 
 
 void _ _main()   // main program 
 { 
 DB12->setUserVector(AtoD, AtoDInt); // set the vector address 
 

_H12ADTCTL2=0x82;  // turn on ATD and on the interrupt 
 _H12ADTCTL3=0x00;  // don't stop at breakpoints 
 _H12ADTCTL4=0x43;  // Set prescalar (/8) & sample time 8 periods 
 _H12ADTCTL5=0x00;  // check AN0 
 while(1)   // infinite loop 
 { 
 } 
 } 
 
_ _mod2_ _ void AtoDInt()  // A/D ISR 
{ 
 
 
 DB12->out2hex(_H12ADR0H); // print contents of registers 
 DB12->printf("\n\r"); 
 DB12->out2hex(_H12ADR1H); 
 DB12->printf("\n\r"); 
 DB12->out2hex(_H12ADR2H); 
 DB12->printf("\n\r"); 
 DB12->out2hex(_H12ADR3H); 
 _H12ADTCTL2=0x83;   // reset the A/D converter 
 _H12ADTCTL5=0x00; 
} 
 



28 

IRQ Interrupt: 
 
Operation 
The IRQ is used to generate external interrupts.  There are two basic modes 
of operation for the IRQ.  One is falling edge triggered, the other is low 
level detection.  The mode of the IRQ is controlled by _H12INTCR.  IRQEN is 
used to turn on the IRQ.  When this bit is set to 1 the IRQ is enabled, when 
it is set to zero the IRQ is disabled.  IRQE determines whether low level or 
edge triggered operation will be used.  When this bit is 0, the IRQ will use 
low level detection.  When it is 1 the IRQ will be falling edge triggered.  
The IRQ is automatically cleared by the hardware in the 68HC12. 
 
There are a few differences between the IRQ on the HC11 and the HC12.  Unlike 
the HC11, the IRQ is not time protected.  IRQEN may be written to and read 
from at any time.  The value of IRQE, however, may only be written once in 
the program. 
 
_H12INTCR: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
IRQE IRQEN DLY unused unused unused unused unused 
 
Sample Code 
This is sample code that triggers the IRQ every time a falling edge is 
detected.  This assumes there is a switch of some sort on the IRQ input to 
generate the falling edge. 
 
_ _mod2_ _ void IRQInt();  // function prototype 
 
void _ _main() 
{ 
 
 DB12->SetUserVector(IRQ, IRQInt); // set up the vector 
 
 _H12INTCR=0xC0;  // set up the IRQ for falling edge triggered 
 
 while(1)   // infinite loop 
 { 
 
 } 
} 
 
_ _mod2_ _ IRQInt()   // IRQ ISR 
{ 
 DB12->printf("IRQ triggered"); // display a message 
} 
 



29 

Port H Key Wakeup Interrupt: 
 
Operation 
This is a new feature that was incorporated into the HC12.  This generates an 
interrupt when the appropriate edge is detected on the input to the port.  
This is ideal for use with a keypad, or can be used as extra IRQ lines for 
the HC12. 
 
Each bit of Port H can be used to generate a Key Wakeup interrupt when a 
falling edge is detected.  It is important to note that even though each bit 
can generate an interrupt independently of the others, the same interrupt 
will be called regardless of which bit triggered it.  The Key Wakeup 
Interrupt for each individual bit is enabled using _H12KWIEH.  Writing a 1 to 
a bit in the register will enable the corresponding bit of Port H to generate 
an interrupt when a falling edge is detected.  The flag bits for the Key 
Wakeup interrupt are located in _H12KWIFH.  Multiple flags can be set at the 
same time, although software must be written in order to determine which 
flags have been set.  The flags are cleared by writing a one to the flag bits 
that have been set.  It is a good idea to clear the flags before the Key 
Wakeup Interrupt is enabled to prevent any false triggers. 
 
_H12KWIEH: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
bit 7 bit 6 bit 5  bit 4  bit 3 bit 2 bit 1 bit 0 
 
_H12KWIFH: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
bit 7 bit 6 bit 5  bit 4  bit 3 bit 2 bit 1 bit 0 
 
Sample Code 
This code will trigger a Port H Key Wakeup interrupt when a falling edge is 
detected on any bit of Port H. 
 
_ _mod2_ _ void KeyH(void); //function prototype 
 
void _ _main(void) 
{ 
 DB12->SetUserVector(PortHKey,KeyH); // Set Vector address 
 
 _H12KWIFH=0xFF;  // make sure flags aren't set. 
 _H12KWIEH=0xFF;  //Enable all key wakeups for port H 
 
 while(1) 
 { 
 } 
} 
 
_ _mod2_ _ void KeyH(void) // Port H Key Wakeup ISR 
{ 
 _H12KWIFH=_H12KWIFH; // clear the flags 
} 
 



30 

Port J Key Wakeup Interrupt: 
 
Operation 
The Port J key Wakeup Interrupt is a more powerful version of the Port H Key 
Wakeup Interrupt.  Unlike the Port H Key Wakeup, Port J can be set to trigger 
on either a rising edge or a falling edge input.  This adds to the 
flexibility of the key wakeup but also adds to the complexity. 
 
The selection of which bits will be used to generate interrupts is controlled 
by _H12KWIEJ.  As with port H, when a bit is set to 1, the Key Wakeup for 
that channel is enabled.  Also as with the Port H Key Wakeup, while each bit 
can cause an interrupt, they all call the same interrupt service routine. 
 
_H12KWIEJ: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
bit 7 bit 6 bit 5  bit 4  bit 3 bit 2 bit 1 bit 0 
 
_H12KWIFJ: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
bit 7 bit 6 bit 5  bit 4  bit 3 bit 2 bit 1 bit 0 
 
Before enabling the Key Wakeup Interrupt it is necessary to set which edge 
will trigger the interrupt and to select to use either the pull-up or 
pulldown resistors on the input. 
 
Which edge will be used to trigger an interrupt is determined by the setting 
of _H12KPOLJ.  Writing a zero to a bit of _H12KPOLJ makes that channel 
falling edge triggered.  Writing a one makes the channel rising edge 
triggered. 
 
_H12KPOLJ: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
bit 7 bit 6 bit 5  bit 4  bit 3 bit 2 bit 1 bit 0 
 
The pull-up and pulldown resisters are controlled by _H12PUPSJ and _H12PULEJ.  
_H12PUPSJ selects between using pull-up resisters and pulldown resisters.  
When a bit in _H12PUPSJ is set to one, the channel has a pull-up resistor.  
When the bit is zero, there is a pulldown resistor on the input.  This MUST 
be set before the pull-up/pulldown resistors are enabled.  _H12PULEJ is used 
to enable the pull-up or pulldown resistor.  Writing a one enables the pull-
up or pulldown, while writing a zero will disable it. 
 
_H12PULEJ: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
bit 7 bit 6 bit 5  bit 4  bit 3 bit 2 bit 1 bit 0 
 
_H12PUPSJ: 
bit 7    bit 6    bit 5     bit 4    bit 3    bit 2     bit 1   bit 0 
bit 7 bit 6 bit 5  bit 4  bit 3 bit 2 bit 1 bit 0 
 
As with the Port H Key Wakeup, the flags are cleared after a Port J Key 
Wakeup Interrupt is triggered.  This is done by writing a one to the bits in 
_H12KWIFJ that have been set. 
 
Sample Code 
This code sets up the Port J Key Wakeup for falling edge operation on all 8 
channels and enables the pull up resistors for all the bits. 
 



31 

_ _mod2_ _ void KeyJ(void); // function prototype 
 
void _ _main(void) 
{ 
 DB12->SetUserVector(PortJKey, KeyJ); // assign the vector address 
 
 _H12KPOLJ=0x00;  // falling edge sets flag 
 _H12KWIFJ=0xFF;  // clear any flags that may be set 
 _H12PUPSJ=0xFF;  // pull up 
 _H12PULEJ=0xFF;  // pull up enabled all bits 
 _H12KWIEJ=0xFF;  // Enable all bits of J for keypad 
 
 while(1)   // Infinite loop 
 { 
 } 
} 
 
_ _mod2_ _ void KeyJ(void) // function prototype 
{ 
 _H12KWIFJ=_H12KWIFJ; // clear the flag 
} 
 


