El ectri cal

Tabl e of

ECSE- 4790 M croprocessor Systens

Mot orol a 68HC12 User's Manual
Lee Rosenberg

Revision 1.1
8/ 10/ 00

Cont ent s:

I ntroduction

Basi ¢ Programmi ng notes for the 68HCL2
D-Bug 12 Monitor Program

68HC12 Har dwar e

a) Ports

b) A/ D Converter

c) Timer Functions
i) Tinmer Qutput Conpare
ii) Qutput Conpare 7
iii) Tinmer Conpare Force Register
iv) Input Capture

Interrupt Service Routines
a) Overview
b) Interrupt Priority
c) Real Tine Interrupt
d) Timer COverflow Interrupt
e) Pul se Accumul ator Edge Triggered |nterrupt
f) Pul se Accunul ator Overflow Triggered Interrupt
g) Qutput Conpare Interrupt
h) I nput Capture |nterrupt
i) A/D Converter |nterrupt
j) IRQ Interrupt
k) Port H Key Wakeup | nterrupt
) Port J Key Wakeup | nterrupt

and Conputer Systens Engi neering
Renssel aer Pol ytechnic Institute

page

1. Introduction:

The Motorola 68HCL2 is a 16-bit m croprocessor descended fromthe 68HC11.

The design has a nunber of major inprovenents over the 6811 and several new
features that are not found on the 6811. The bi ggest change is the expansion
froman 8-bit bus to a full 16-bit bus for both the data and address. O her

i nprovenents include an increase in the nunber of A/D converter registers,

Ti mer output conpare and input capture pins, and I/O ports. Also added is a
second SCI connector and a new interrupt, called a Key Wakeup interrupt.

This manual is intended to provide a brief introduction to the 68HC12 and how
to programit in Cusing the Introl C conpiler 4.00. This nmanual is intended
primarily for those people who are already famliar with the Mdtorola 68HCL1.
Thi s manual al so assunes that the reader has basic famliarity with the C
programm ng | anguage.

2. Basic Progranm ng Notes:

There are 3 header files that nust be included with any code witten for the
68HC12 using the Introl C conpiler. These are:

HC812A4.H - This file contains all the register declarations for the 6812.

INTROL.H - This file contains several function declarations needed by Introl
to conpile the program

DBUGL2. H - This contains the information need to call the D Bugl2 routines
and to handle interrupts. Omtting this file will result in the calls to the
D-Bugl2 routines being flagged as errors by the conpiler

Your main function nust be of the format: void __main(). The two (2)
underscores before nmain are necessary, as that is the format that Introl uses
to recognize the main function of the program

3. D Bugl2:

D-Bugl2 is the nmonitor programfor the 6812 EVB. This is simlar to the
BUFFALO nonitor used on the 6811. Unlike the BUFFALO nonitor, the D-Bugl2
nmonitor is a series of C functions that are stored in an EPROM on the EVB.
These functions can be called by the user to handle both I/0O and several of
the common C | anguage ANSI functions.

Al calls to the D Bugl2 routines follow the same format. The format is:
DB12->"routi ne nane";

The "DB12->" is used as a cast pointer that allows the conpiler to reference
the EPROM for the different routines. The routine nane is just the name of
the routine and any paraneters that are being passed to the function. |If the
function returns a value to the programthe return value can be assigned to a
variable. This is done as follows:

t enp=DB12- >"routi ne nane";

This assigns the return value of the routine to a variable naned tenp.
As al ways the variable nust be declared in the program

It is inmportant to note that if you do not include the "DB12->" with the
function call the conpiler will return an error nessage. The error nessage
that is returned is that the function does not exist. Putting the "DBl12->"
before the function name will solve this problem

D Bugl2 Functions

Readers interested in a nore in-depth explanation of the D-Bugl2 routines are
referred to Motorola Docunent anl280a, "Using the Callable Routines in D Bug
12" (avail able on the web at

http://ww. ecse. rpi.edu/ Cour ses/ CSt udi o/ appnotes/).

get char
This function will get a single character of input fromthe user
Function Prototype: int getchar(void);
Return Value: This returns the character fromthe keyboard in
hexadeci mal ASCI |

printf
This will display a string of characters to the screen
Function Prototype: int printf(char *s);
Return val ue: The nunber of characters that were transmtted.

NOTE: The Introl 4.0 conpiler has an error in this function. The first
paraneter in the list is not printed properly. There are workarounds for sone
cases that are given in exanples in class handouts. In any case, sinple
strings without variables will work w thout problens.

To display a variable, the variable is represented using % in the printf
statement, where y is chosen fromthe table below to match the variable type
To display a signed decimal integer stored in a variable num the function
call would | ook Iike:

DB12->printf("This is the value of num %", num;

d, i int, signed decimal nunber
0 i nt, unsigned octal nunber
X i nt, unsigned hexadeci mal nunber using a-f for 10-15
X i nt, unsigned hexadeci mal nunber using A-F for 10-15
u i nt, unsigned deci nal
c int, single character
S char *, display froma string until "\0
p void *, pointer
put char

This will display a single ASCIlI character on the screen
Function Prototype: int putchar(int);
Return Val ue: The character that was displ ayed

Get CndLi ne

This function is used to read in a line of data fromthe user and store it in
an array. Each character that is entered is echoed back to the screen using
a call to the putchar function. Only printable ASCI|I characters are accepted
by the function with the exception of carriage return and backspace.

Function Prototype: int GetCndLi ne(char *CndLi neStr, int
CrdLi neLen);
Return Val ue: An error code of NoErr

The | ocation where data that is read in is stored and the nunber of
characters that are to be read, are determ ned by OrlLi neStr and CndLi neLen
respectively.

CrdLi neStr is a char array that is created by the programmer. This is where
the input Iine fromthe user is stored.

CrdLi neLen is the length of the string to be read in. A total of CnrlLineLen
-1 characters may be entered by the user before the Get CndLi ne function
exits. The user may al so use a carriage return to exit before the val ue of
CndLi neLen has been reached.

Backspace may be used to del ete unwanted characters fromthe line that the
user entered. The character will be erased fromthe screen and the nenory
array.

i sxdigit
This routine determines if c is a menber of the set 0..9, a..z and A.Z
Function prototype: int isxdigit(int c);
Return Value: If c is part of the set the function returns
true (1), if c is not a part of the set the function
returns a false (0).

t oupper
This routine is used to convert |ower case letters to upper case letters.
Function Prototype: int toupper(int c);
Return Val ue: The uppercase value of c¢c. |If c is already an
uppercase letter it returns c.

i sal pha
This routine determines if ¢ is a nmenber of the set a.z and A.Z
Function Prototype: int isalpha(int c);
Return Value: If c is part of the set it returns true (1), if it
is not a part of the set it returns a false (0).

strlen
This routine determnes the length of the string that is passed in as a
paraneter. The string nust be null term nated.

Function Prototype: unsigned int strlen(const char *cs);

Return Val ue: The length of the string pointed to by cs.

strcpy
This routine nmakes a copy of string two to string one. The string to be
copi ed nust be null term nated.

Function Prototype: char* strcpy(char *sl, char *s2);

Return Val ue: A pointer to sl

out 2hex

This outputs an 8-bit nunmber on the screen as two hexadeci nal nunbers.
Function Prototype: void out2hex(unsigned int nun);
Return Val ue: None

out 4hex

This outputs a 16-bit number on the screen as four hexadeci mal nunbers.
Function Prototype: void out4hex(unsigned int nun);
Return Val ue: None

Set User Vect or
This routine is used for handling Interrupt Service Routines and will be
described in the section on interrupts.

Not es:

The printf, putchar, out2hex, and out4hex routines do not generate carriage
returns or line feeds when they are called. To do this you must include \n\r
in either a putchar or a printf statenent.

4., 68HC12 Har dwar e:

This section explains the operation of the hardware on the 68HC12. It
includes the 1/O ports, the A/D converter and the tinmer functions. Hardware
interrupts are explained in the next section. For nore information on this
material, refer to Mdtorola docunent MC68HC812A4TS/ D, "Mbdtorol a 68HCL2
Techni cal Summary".

Ports:
Al'l port nanmes are of the format _H12PORTX, where x is the capital letter of
the port you are trying to access. i.e. Port Ais _HL2PORTA

Ports A and B are used as the address bus for the 68HC12. They are not
usable as |/O by the programmer. Port A is the high order byte and port Bis
the | ow order byte.

Ports C and D are used as the data bus for the 68HC12. They are not usable
for /O by the programmer. Port Cis the high order byte and port Dis the
| ow order byte.

Port Eis used to generate control signals needed to access the externa
nenory. As a result the programmer can not use it for I/QO Port Epinlis
used as the input for the IRQ and Port E pin O is used as the input for the
Xl RQ

Port Fis used to control chip selects for the external nenory and ot her
chips. The programer can not use it as |1/QO

Port Gis a 6-bit general purpose |I/O port. The direction of the port is
controlled by HI2DDRG Wien an _H12DDRG bit is set to 0, the port pin is an
input and when it is set to 1 it is an output.

Port His an 8-bit general purpose |/O port. The direction of the port is
controlled by the _H12DDRH. Wien _H12DDRH bit is set to O, the port pinis
an input and when it is set to 1 it is an output.

Port J is an 8-bit general purpose |/O port. The direction of the port is
controlled by the _H12DDRJ. Wien _H12DDRJ bit is set to 0, the port pinis
an input and when it is set to 1 it is an output.

Port Sis used for the SCI and the SPI. It can also be used for general 1/0
if the SCI or SPI are not being used. Bits 0 and 1 are SCI0. These are used
as the interface to the term nal and can not be used as 1/O Bits 2 and 3
are SCI1 and bits 4-7 are the SPI. These can be used as general I/Oif SC1
and the SPI are not being used. The direction of the port is controlled by
_H12DDRS.

Port T is used for the tiner interrupts and the pul se accumulator. |If the
interrupts are not being used then Port T can be used for general I/O The
port direction is controlled by H12DDRTT. Note: The two T's are not a typo.

Port AD is used exclusively as the input to the Ato D converter. |t can not
be used for any other 1/0O

Ports G H, and Port E pin O have optional pull-up resistors inside. These
are controlled by the HI2PUCR register. To enable the pull-up resistor for
Port Hwite a one to bit 7, for Port Gwite a one to bit 6, for Port E

wite a one to bit 4 of _HI2PUCR To disable the pull-up resistors to a
particular port, wite a O to the appropriate bit.

A to D Converter:

This section covers the basic function of the A/D converter. The A/D
converter uses a dedicated port, port AD, for its inputs. There are 8 A/D
converter channels on the HC12 and, unlike the 6811, there are also 8 AID
regi sters allowi ng 8 sinultaneous readings. The inplenentation of the A/D
converter allows for two different nethods of operating the A/D converter.
This section covers the polling nmethod. The interrupt based operation is
explained in the section on interrupts.

The A/ D converter conversion sequence consists of either 4 or 8 conversions
and can convert either one channel or nultiple channels. In scan node
operation, polling based operation, the flag is set after the conversions
have been conpl eted, signaling the conpletion of the A/D cycle.

Before running the A/D converter, the systemnust be initialized by the user.
There are 4 registers that are used to control the A/D Converter. These are
_H12ADTCTL2, _H12ADTCTL3, _H12ADTCTL4, and _H12ADTCTL5.

_H12ADTCTL2 contai ns several of the A/D Converter enable bits. Bit 7 is the
A/ D power up (ADPU). Wen this is set to one the A/D converter is enabl ed,
when it is zero then the A/D converter is disabled. Bit 1 is the AAD
converter interrupt enable (ASCIE). The interrupt is enabled when the bit
equal s one and di sabl ed when the bit is set to zero. In scan node this bit
is set to O, to disable interrupts. Bit O is the interrupt flag (ASCIF) which
is not used in the polling version of the A/D converter.

_H12ADTCTL2:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| ADPU | AFFC | AVAI |unused |unused Junused [ASCIE |ASCF]

_H12ADTCTL3 shoul d al ways be set to 0x00. This is used to control several
actions that are related to how the A/D converter operates in background
debug node. As the D Bugl2 nonitor is being used, the background debug node
is not being used and these features should be disabl ed.

_H12ADTCTL4 is used to select the sanple tine of the A/D converter and to set
the prescalar for the clock.

_HL2ADTCTL4:
bit 7 bit 6 bit5s bit 4 bit 3 bit2 bitl bitO
[unused [SMPL [SMPO [PRS4 [PRS3 [PRS2 | PRSI [PRSO |

There are four different sanple tinmes available for the A/D converter. The
sanple time is selected by setting the value of SMP1L and SMP0. The different
sanple times that can be used are listed in table 1.

Tabl e 1: Sanple Tines

SMP1 SMPO Sanpl e Tine

0 0 2 A/D clock periods
0 1 4 A D clock periods
1 0 8 A/D clock peri ods
1 1 16 A/ D clock periods

The prescalar that is used by the A/D converter is determ ned by the val ue of
PRSO- PRS4. The clock input to the prescalar is an 8 Mz clock. This allows

for an A/D conversion frequency of 500 kHz to 2 MHz. The different prescal ar
values are listed in Table 2.

Tabl e 2: Prescal ar Val ues

Prescal e Val ue D vi sor
00000 Do not use
00001 /4
00010 /6
00011 /8
00100 /10
00101 /12
00110 /14
00111 /16
01xXxx Do not use
IXXXX Do not use

_H12ADTCTL5 is used to sel ect the conversion node, which channels are to be
converted and to initiate the conversions. The conversion sequence is
started by any wite made to this register. |If a wite is nade to this
regi ster while a conversion sequence is in progress, the conversion is
aborted and the SCF and CCF flags are reset.

_H12ADTCTLS:
bit 7 bit 6 bit 5 bit 4 bit 3 bit2 hit1 bit 0
[unused [SBCM [SCAN [MAT [(D [CC [CB [CA |

S8CMis used to sel ect between making 4 conversions, when the bit is set to
zero, and 8 conversions, when the bit is set to one.

SCAN is used to select between performng either a single conversion or
nmul ti ple conversions. If SCANis set to zero, then a single conversion wll
be run and the flag will then be set. If SCANis set to 1, then the A/D
converter will run continuous conversions on the A/ D channels.

MULT determ nes whether the conversion is run on a single channel or on
mul ti pl e channels. When MILT zero, the A/D converter runs all the
conversions on a single channel, which is selected by CD CC CB, and CA. Wen
MULT is one, the conversion is run on several different channels in the group
specified by CD, CC, CB, and CA. The possi bl e channel conbinations are in
Tabl e 3.

Table 3: A/D Converter Settings

S8BCM CD CC CB CA Channel Signal Result in ADRx if MILT = 1

0 0 0O 0* O* ANO ADRO
0 0 0O o 1* AN1 ADR1
0 0 0O 1* oO* AN2 ADR2
0 0 o 1* 1* AN3 ADR3
0 0 1 0* O AN4 ADRO
0 0 1 o0+ 1~ ANS ADR1
0 0 1 1 O~ ANG ADR2
0 0 1 1 1~ AN7 ADR3
0 1 0O O0* o Reser ved ADRO
0 1 0O o0* 1* Reser ved ADR1
0 1 0O 1* o* Reser ved ADR2
0 1 o 1 1* Reser ved ADR3
0 1 1 0* O V RH ADRO

10

0 1 1 o0+ 1~ V RL ADR1
0 1 1 1 O~ (VRH+ VRL)/2 ADR2
0 1 1 1 1~ TEST/ Reser ved ADR3
1 0O o* O0* O* ANO ADRO
1 0O o o0 1* AN1 ADR1
1 0O o* 1* oO* AN2 ADR2
1 0O o 1* 1* AN3 ADR3
1 0O 1* o0* O* AN4 ADR4
1 o 1* o* 1* ANS ADR5
1 o 1* 1* oO* ANG ADRG6
1 o 1* 1* 1* AN7 ADR7
1 1 o0* oO0* O Reser ved ADRO
1 1 o* o* 1% Reser ved ADR1
1 1 o* 1* O~ Reser ved ADR2
1 1 o* 1* 1% Reser ved ADR3
1 1 1~ 0* O~ V RH ADR4
1 1 1 o0+ 1~ V RL ADR5
1 1 1 1 O~ (VRH+ VR)/2 ADR6
1 1 1 1 1~ TEST/ Reser ved ADR7

Stared (*) bits are “don’'t care” if MIUT = 1 and the entire bl ock of four or
ei ght channel s nake up a conversi on sequence. Wen MULT = 0, all four bits
(CD, CC, CB, and CA) nust be specified and a conversion sequence consists of
four or eight consecutive conversions of the single specified channel.

_H12ADSTAT is used to determ ne the status of the conversion process. Unlike
nost of the registers in the HCl2 this is a 16-bit register. The Sequence
Conplete Flag (SCF) is used to signal the conpletion of the conversion cycle.

Wien SCAN = 0, the setting of the SCF signals the conpletion of the cycle,
when SCAN = 1, it signals the conpletion of the first conversion cycle.
_H12ADSTAT:

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
SCF unused unused unused unused cc2 CC1 CCo

CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCFO

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

CC2-CQC0 are the conversion counter.
cycle and reflect which result

They are the pointer for the conversion
register will be witten to next.

CCF7- CCFO are the Conversion Conplete Flags (CCF) for the individual A/D

channel s. Wen the conversion sequence for a channel has been conplete the
flag is set. The flags can be cleared by reading the A/D register for the
channel and by readi ng the _H12STAT register.

The results of the A/D conversions are stored in the A/D converter result
registers. These registers are called _H12ADROH through _H12ADR7H. Wen
converting nultiple channels, the destination register used to store the
results of each channel that is converted is listed in Table 3. Wen
converting a single channel, the results are in _HI2ADROH - _H12ADR3H for a 4

conversi on sequence and _H12ADROH - H12ADR7H for an ei ght conversion
sequence.

Sanpl e Code

This code turns on the A/D converter while disabling the AADinterrupt. It

then perfornms 4 conversi ons on channel
the result that is stored in the result

0 of the A/D converter and displ ays
registers to the screen.

11

_H12ADTCTL2=0x80; /1 turn on ATD and off the interrupt
_H12ADTCTL3=0x00; /1 don't stop at breakpoints
_H12ADTCTL4=0x43; /1l Set prescalar (/8) & sanple tinme 8 periods

_H12ADTCTL5=0x00; /1 check ANO, 4 conversions and stop

whi | e(! (_HL2ADTSTAT & 0x8000)); // wait for flag to be set
DB12- >out 2hex(_H12ADROH) ; /!l Display AADresult registers
DB12->printf("\n\r");

DB12- >out 2hex(_H12ADR1H) ;

DB12->printf("\n\r");

DB12- >out 2hex(_H12ADR2H) ;

DB12->printf("\n\r");

DB12- >out 2hex(_H12ADR3H) ;

12

Ti mer Functi ons:

This section covers the operation of the tinmer nodule when it is used for
non-interrupt based operations, such as output conpare and input capture
functions. Interrupt based timer features are discussed in chapter 5.

The basics of tiner nodul e operation:

There are several basic features of timer nodule that apply to both the input
capture and output conpare functions, as well as interrupt driven Timer
functions.

In order to nake use of any tinmer based operations, the timer nodul e nust
first be enabled. This is done by setting _HI2TSCR to 0x80. This will set
the Tinmer Enable bit (TEN), which then enables all tiner operations.

_HI2TSCR
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| TEN | TSWAI | TSBCK | TFFCA Junused |[unused [unused |unused

The Tiner uses a counter, also called a free running counter, that is

i ncremented by one every clock pul se. The free running counter on the 68HCL2
can be accessed by the user if needed. The free running counter is a 16-bit
value that is stored in the register _HI2TCNT. It can be read at anytine,

but can not be witten to by the user

Port Tis used as |I/O pins for the tinmer input capture and tinmer output
conpare. [Each pin can serve as either an input capture or output conpare
pin. The function of the pinis selected by the state of the _HL2TICS
register. Each bit in _HI2TIOS corresponds to a pin of Port T. Wen the bit
is set to 0, the pin is used as an input capture, when the bit is set to a
one, the pin is used as an output conpare. Any conbination of input captures
and out put conpares can be selected by the user.

_HL2TI Cs:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
pin7 [pin6 [pin5 [pin4 [pin3 J[pin2 [pinl [pinO

The data for the input captures and out put conpares are stored in _H12TQ0 to
_H12TC7. These are 16 bit registers. For input capture operations the value
of the free running counter will be latched into the regi ster when the input
capture is triggered. For output conpare operations the value in the
register is used to trigger an action

The 68HC12 al so allows the user to assign pull-up resistors to the tiner
nodul e inputs. This is done by witing a one to TPE in _HI2TMSK2. This will
enable the pull-ups. A zero will disable them

_HL2TMBK2:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit1l bitO
[TOE Junused [TPE [TDRB [TCRE [PR2 [PRL [PRO |

13

Ti mer Qut put Conpare

The out put conpare on the 68HCL2 is very sinmlar to that of the 68HC11. The
user selects an action to occur when the output conpare is triggered and the
time at which the action occurs. The processor will then carry out this
action accordingly.

The first step is to select which channel (s) will be used. This is done by
using the _HI2TICS regi ster as expl ai ned above. Having done this, the next
step is to select when the output conpare will trigger. This is done by
witing a value to the _HI2TCx register(s) that correspond to the channel (s)
that was sel ected as an output conpare in _H12TIOS

It is then necessary to determ ne what action will occur when the out put
conpare is triggered. There are several different actions that are possible,
whi ch one occurs is deternmined by the values in _HI2TCTL1 and _H12TCTL2.
These registers contain the control bits for each channel, Owh and O.n. The
effect that the different values have are listed in Table 4.

Tabl e 4: Qutput conpare actions

Ovh OLn Acti on

0 0 Ti mer di sconnected from output |ogic

0 1 toggle Ccn output line

1 0 clear Ccn output line to O

1 1 set Ocn output line to 1

_H12TCTL1:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| owr | o7 | OVB | OL6 | OVb | OL5 | Ov4 | OL4
_H12TCTL2:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| OMB | O3 | O | o2 | oML | a1 | OMD | OLO

Havi ng determ ned the action taken on a successful match, the next step is to
make sure tiner interrupts are disabled. This is done by witing 0x00 to
_H12TMBK1. Lastly the tiner nodule is enabl ed, as shown above, allow ng the
out put conpare to trigger

It is inmportant to note when using the output conpare that when an out put
conpare action is triggered the corresponding bit of Port T will
automatically be set as an output, regardl ess of the state of DDRTT.

Sanpl e Code
This code sets up an output conpare and causes the pin output to toggle when
the interrupt is triggered.

_H12TI OS=0xFF; /1 set up the channels as output conpare
_H12TMSK1=0x00; /1 no hardware interrupts

_H12TCTL1=0x5A; /1 set OC7, OC6 for togglel/l OC5, OC4 clear
_H12TCTL2=0x5F; /1 set OC3, OC2 for toggle/ OCl, 000 set
_H12TC0=0x0000; /1 set different trigger tines

_H12TC1=0x2000;
_H12TC2=0x4000;
_H12TC3=0x6000;
_H12TC4=0x8000;
_H12TC5=0xA000;

14

_H12TC6=0xC000;
_H12TC7=0x9000;

_H12TSCR=0x80; /!l turn on the tiner

Qut put Conpare 7

Qut put Conpare 7 has a special feature that nmakes it very powerful.

Qut put Conpare 7 allows the programmer to change the state of any of the
out put conpare pin, wthout changing the operation that is performed by that
Qut put Conpare. This is particularly useful for generating pul sewi dth

nodul ated signals. Anyone interested in this particular application should
refer to the LITEC manual for nore detailed information on pul sewi dth

nodul at i on.

The met hod for using output conpare 7 to control the other output conpares is
set up as follows. Just as with any other output conpare operation, the tine
at which OC7 is triggered nust be stored in _HI2TOC7. The next step is to

sel ect which channels will be controlled by OC7 and what will occur when OC7
triggers. This is done using the H120C7/M and _H120C7D regi sters.

_H120C7M i s used to select which channels are controlled by OC7. Witing a
one to a bit in _HL20C7M assi gns control of the correspondi ng channel to OC7.
The data that is output by the channel is stored in _H120C7D. Wen OC7 is
triggered, for each bit that is set in _HL20C7/M the correspondi ng data bit
in HI20C/D is witten to the output conpare pin.

A successful OC7 event can be used to cause the “free running” counter to be
reset. This is done by witing a one to TCRE in _HI2TMSK2. Note if you
wite a one and set the OC7 event for $0000 the free running counter wll
stay at $0000. Similarly if you set OC7 for $FFFF, the Tiner Overflow Fl ag
wi Il never be set. (See Timer Overflow Interrupt.)

_H120C7M
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| OCTW/ | OC7TMB | OC7Mb | OC7TM4 | OC7TMB | OC7TMR | OC7TML | OC7TMD |
_H120C7D:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| OC7D7 | OC7D6 | OC7D5 | OC7TD4 | OC7D3 | OC7D2 | OC7D1 | OC7D0 |
_H12TMBK2:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| TOE | unused | TPE | TDRB | TCRE | PR2 | PRL | PRO |
Sanpl e Code
This code sinmply shows how to setup OC7.
_H12TC7=0x4000; /1 Set up the tine when the OC triggers
_H120C7M=0x01,; /1 select channel 0
_H120C7D=0x00; /1 cause channel 0 to output a | ow when

/1 triggered

15

Ti mer Conpare Force Register

This is a special register that allows the programmer to cause an out put
conmpare to trigger. Witing to bit nin this register causes the action
which is programed for output conpare n to occur imediately. This is the
same as if a successful conparison had just taken place with the TCn
register.

_HL2CFORC:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit O
[FoC7 [FOC6 [FO5 [Foca [FOC3 [FOC2 [FOCL [FOO0 |

I nput Capture

The operation of the input capture is simlar to that of the output conpare.
The first step is to set up the appropriate Port T bits as input capture pins
using _H12TI CS.

Havi ng done that, it is then necessary to select how the input capture will
be triggered. This is done using _H12TCTL3 and _H12TCTL4. Each channel has
two control bits ED&B and EDGxA, which determ ne which edge triggers the
i nput capture. The different configurations of these bits are in Table 5.

Tabl e 5: Input Capture selects

ED&xB EDGXA Configuration

0 0 Capt ure di sabl ed

0 1 Capture on rising edge

1 0 Capture on falling edge

1 1 Capture on any edge.

_H12TCTLS:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
EDG/B | EDGFA | ED®B |EDGA | EDGGB | EDGGA | EDAB | EDAAA]
_H12TCTLA4:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

EDG3B | EDGBA |ED®B | EDA | EDGIB [EDGIA | EDG@B | EDGOA |

Just as with the output conpare operation, the tinmer interrupts nmust be
di sabl ed and the tinmer nodul e nust be enabled. The values that are read in
by the input capture are stored in the appropriate _H12TCx register.

Sanpl e Code
This code captures the tine of _HI2TCNT when a switch is pressed by the user.

_H12TMSK1=0x00; /1 turn off interrupts

_H12TI OS=0x00; /1 Set up Port T for input capture
_H12TCTL3=0x5A; /1 1Cr7, 1C6 rising edge, 1C5, 1C4 falling edge
_H12TCTL4=0x5F; /1 1C3, IC2 rising edge, ICl, 1CO any edge
_H12TSCR=0x80; /] turn on the tiner

16

5. Interrupt Service Routines Overview

Overvi ew.

The 68HC12 provides a wide array of interrupts that can be used by the
programer. Sone of these are simlar to interrupts found on the 68HC11,
such as the RTI and tiner overflow Qhers are newto the 68HCL2 such as the
key wakeups and A/D converter interrupts. This section will cover all the
different | SRs and how t hey operate.

Interrupts on the 68HCl12 are controlled in part through the D Bugl2 nonitor
program The Set UserVector routine in the D-Bugl2 nonitor is used to program
the 1SR vector table that tells the processor where the different I SRs are

| ocated in nenory.

Wien using a particular interrupt the ISR nust be assigned to the interrupt
in the beginning of the program Each interrupt has an address offset to the
interrupt vector table base address, which is stored in the D Bugl2 header
file. Wen assigning the interrupt, SetUserVector is called and the nane of
the interrupt as well as the ISR nane are passed as paraneters. This wll
store the address of the ISR in the vector table.

For exanple: If you are using the Real Time Interrupt (RTlI) and have it call
an ISR called RTIInt when it is triggered, the code would | ook I|ike:

DB12- >Set User Vect or (RTl, RTlIInt);

The list belowis all of the interrupts and their menonics:

At oD A to D converter interrupt
PAEdge Pul se Accunul at or Edge triggered
PAOvf Pul se Accumul ator Overflow triggered
Ti mer Ovf Ti mer Overfl ow

Ti mer7 Timer 7

Ti mer 6 Tinmer 6

Timer5 Tinmer 5

Ti mer 4 Tiner 4

Ti mer 3 Tinmer 3

Ti mer 2 Timer 2

Timerl Timer 1

Timer0 Tinmer O

RTI Real Tinme |nterrupt

| RQ I RQ interrupt

Xl RQ XIRQ i nterrupt

The format of the ISR is show below. Al ISRs follow this format.

nmod2__ void RTIInt()

{

/1 your code here

}

It also nust include a function prototype of the format:
nmod2__ void RTIInt();

Note: There are 2 underscores both before and after the nod2.

17

Interrupt Priority:

Interrupts on the 68HC12 do not all occur sinultaneously. Rather there is a
hi erarchy of priority for the interrupts. The default priority order is:

1) Reset

2) COP O ock Mnitor Fail Reset
3) COP Failure Reset
4) Trap

5) SwW

6) X RQ

7Y IRQ

8) RII

9) Tiner0
10) Tinmerl
11) Tinmer2
12) Timer3
13) Tinmer4
14) Timer5
15) Timer6
16) Tinmer?7
17) Ti mer Ovf
18) PAOvf

19) PAEdge
20) SPI

21) sCO

22) sC1

23) AtoD

24) Port JKey
25) Port HKey

The priority of these can be changed by using _H12HPRI O register. The first
six interrupts are unmaskabl e and can not have their priority changed. The
other interrupts are all maskable and may have their priority changed. An
interrupt may be nmade the highest priority interrupt by witing its address
value to HI2HPRIO The address values are listed below in hex for each

i nterrupt:

| RQ F2
RTI : FO
Ti mer O: EE
Ti ner 1: EC
Ti ner 2: EA
Ti ner 3: E8
Ti ner 4: E6
Ti mer 5: E4
Ti ner 6: E2
Tinmer7: EO
Ti mer Ovf : DE
PAOVT : DC
PAEdge: DA
SPI : D8
SCl 0: D6
SCl 1: D4
At oD: D2
Por t JKey: DO
Por t HKey: CE

18

Interrupt Service Routines exanple code and expl anati ons

This section includes explanations of all the different interrupts and sanple
code of the function.

Real Tinme Interrupt:

Qperation

The operation of the RTlI is controlled by HI2RTICTL. Bit 7 is the Real Tine
Interrupt Enable (RTIE). Witing a one to this bit will enable the RTI. The
rate at which the RTlI is triggered is determined by the Real Tine Interrupt
Rate (RTR). The different rates are listed in Table 6.

Table 6: RTI rate

RTR2 RTR1L RTRO Peri od

0 0 0 of f

0 0 1 1. 024ns

0 1 0 2.048ns

0 1 1 4.096ns

1 0 0 8.196ns

1 0 1 16. 384ns

1 1 0 32. 768ns

1 1 1 65. 5368

_H12RTI CTL:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| RTI E |RSMAI |RSBCK |unused |RTBYP |RTR2 |RTR1 |RTRO

After the interrupt is triggered the ISR nmust clear the flag. This is done
by witing a one to the Real Tine Interrupt Flag (RTIF) in _HL2RTI FLG
register.

_H12RTI FLG

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| RTIF |unused [unused Junused |unused [unused [unused [unused
Sanpl e Code

This is a sinple programto count the nunber of RTI interrupts that have
occurred.

__nmod2__ void RTIInt(); /1 function prototype

int Timecount; /1 gl obal variable

void __main()
DB12- >Set User Vect or (RTIl, RTl I nt); /] set up interrupt vector
Ti meCount = O;

_H12RTI CTL=0x87; /1 set up the RTI for 65.536ns
whi | e(1)

DB12- >out 2hex(Ti necount) ;
}

19

nmod2__ void RTlIInt() /'l interrupt service routine

{

Ti mecount ++;
_H12RTI FLG=0x80; /1 clear the flag

20

Timer Overflow Interrupt:

Qperation

The Tiner Overflow Interrupt (TA) functions by generating an interrupt every
time the "free running" counter overflows. The free running counter is a 16
bit value and is constantly running in the background when the timer is

enabl ed.

The TA is set up in the _HI2TMSK2 register by witing a one to Tiner
Overflow Interrupt Enable (TOE). After this has been done the Tiner can be
enabl ed. \Whenever the interrupt is triggered the ISRwll be called and
executed. The ISR nust clear the flag by witing a one to the Tinmer Overflow
Flag in the _HI2TFL&2 register.

_HL2TMBK2:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
[TOE [unused |TPE [TDRB [TCRE | PR2 [PRL [PRO |
_HI2TFLG2:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| TOF |unused [unused Junused |unused [unused [unused [unused |
Sanpl e Code

This code calls an interrupt every tine the Timer Overflow I nterrupt occurs.
__nmod2__ void TinmerOvfint(); // function prototype

void __main()

{
DB12- >Set User Vect or (Ti mer Ovf, TinerOvflnt);

_H12TMSK2=0x80; /1 enabl e interrupt
_H12TSCR=0x80; /1 enable the tiner
whi | e(1) /1 idle |oop
{
}

}

_mod2__ void TinerOvflnt() /1l Timer Overflow ISR

{
DB12->printf("Overflow interrupt");
_HI2TFLG2=0x80; /1l clear the flag

}

21

Pul se Accunul at or Edge Triggered Interrupt:

Qperation

This section describes howto set up the Pul se Accumul ator for edge triggered
operation. The Pul se Accumul ator is enabled by setting the Pul se Accumul at or
Enabl e (PAEN) in _H12PACTL to one. There are two other control bits in
_H12PACTL, PAMOD and PEDGE.

Wien PAMOD equal s zero the pul se accunulator is in event counter nobde, when
it isoneit isin gated tine accumul ation node. PEDGE has different effects
based on the state of PAMOD.

Wien PAMOD equal s zero:

| f PEDGE equals 0, then falling edges on the pul se accurmul ator input pin
(Port T bit 7) causes the count to be increnented.

| f PEDGE equals 1, then rising edges on the input cause the count to be
i ncr ement ed.

Wien PAMOD equal s one:

| f PEDGE equal s 0, when the pulse accunmul ator input pin goes high it enables
an internal clock which is connected to the pul se accunul ator and the
trailing falling edge on the pul se accunmulator input sets the PAIF flag. The
internal clock used to increnment the pul se accunul ator is 8MHz/ 64.

| f PEDGE equal s one, when the pul se accunul ator input pin goes low it enables
an internal clock which is connected to the pul se accunul ator and the
trailing rising edge on the pul se accunul ator input sets the PAIF flag. The
internal clock used to increnment the pul se accunul ator is 8MHz/ 64.

The timer nust be enable to use these since the clock generated is based on
the timer prescaler

CLK1 and CLKO are used to control the clock rate at which the pul se
accumul ator is incremented. The different options are listed in Table 7.

Tabl e 7: Pul se Accunul at or C ock Rates

CLK1 CLKO Sel ected clock
0 0 timer prescaler
0 1 8MHz cl ock

1 0 8MHz/ 256 cl ock

1 1 8MHz/ 65536 cl ock

PAl is the Pul se Accunul ator Edge triggered interrupt enable. This nust be
set to 1 to enable edge triggered interrupts.

_HI2PACTL:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit1 hitO0
[unused [PAEN |PAMOD [PEDGE | CLKL _ [CLKO _ [PAOVI [PAl |

After setting PACTL, the hardware will trigger an interrupt whenever the
correct edge is detected at Port T. The ISR nust clear the flag by witing a
one to the Pulse Accurmul ator Interrupt Flag (PAIF) in _HI2PAFLG

22

_H12PAFLG
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bi t

1

bit O

unused [unused [unused [unused [unused |unused [PAOVIF [PAIF

The val ue of the pulse accunulator is stored in _HI2PACNT.

Sanpl e Code
This code detects the edge and triggers an interrupt.

__nod2__ void PAEdgelnt(); /1 function prototype
void __main();
DB12- >Set User Vect or (PAEdge, PAEdgel nt);

_H12PACTL=0x55; /1 set the pul se accunul ator -

whi | e(1) /1 wait
{
}
}
_nmod2__ voi d PAEdgel nt () /1 Pul se Accunul ator ISR
{
DB12->printf("Pul se Accumtriggered \n");
_H12PAFLG=0x01; /1 clear the flag
}

23

ri sing edge

Pul se Accunul ator Overflow Triggered Interrupt:

Qperation

This operation triggers an interrupt every tine the pul se accumnul at or
overflows. Wenever the pul se accunul ator overflows from OxFFFF to 0x0000,
the ISRwill trigger. The set up of this interrupt is very simlar to the
edge triggered interrupt, although PAMOD and PAEDGE have no effect on the
interrupt. Mst of the other settings are the sane as for the edge triggered
operation of the Pulse Accunul ator. However instead of setting PAl to one,
for Overflow operation PAOVI is set to one.

The user nust clear the flag in the ISR by witing a 1 to PAOVIF in the
_H12PAFLG regi ster.

_HL2PACTL:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit1l bitO
[unused [PAEN [PAMD [PEDGE [CLKL _ [CLKO [PAOVI | PAl |
_HL2PAFLG

bit 7 bit 6 bit 5 bit4 bit3 bit 2 bit 1 bit 0

unused [unused |[Unused [unused [unused |unused [PAOVIF [PAIF |

Sanpl e Code
This code sinply displays when the interrupt is triggered.

__nmod2__ void PAO/fINt(); /1 function prototype

void __main()

DB12- >Set User Vect or (PAOvf, PAOvfInt);

_H12PACTL=0x46; /1 set for pulse accunul ator overfl ow
whi | e(1) /1 wait
}

}

_nmod2__ void PAOvfInt () /1 Pulse Accunul ator ISR

{
DB12->printf("triggered");
_H12PAFLG=0x02; /1 clear the flag

}

24

Qut put Conpare Interrupt:

Qperation

The out put conpare interrupt calls an ISR every tine a successful output
conpare is detected. The output conpare is setup |like the non- interrupt
based out put conpare, with the major difference being that the action which
is to occur on a successful conpare does not need to be specified. Instead,
_H12TMSK1 is used to determ ne which channel (s) will be used to generate an
interrupt(s). Each bit in _H12TMSK1 corresponds to a different output
conpare channel. When the interrupt is generated, the ISR for that channel
is called and executed. The flag nmust be cleared by witing a one to the bit
_H12TFLGL regi ster that corresponds to the channel which triggered the

i nterrupt.

_H12TMBK1:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| C71 | Gl | G5l | Al | Q3 | 21 | C1l | OOl |
_HI2FLGL:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| C7F | C6F | G5F | CAF | C3F | C2F | C1F | COF |
Sanpl e Code

This code calls the I SR when the Qut put Conpare O generates an interrupt.
__nmod2__ void TinmerOInt(); /1 function prototype

void __main()

DB12- >Set User Vect or (Ti ner0, Ti nerOl nt);

_H12TI OS=0xFF; /'l sel ect output conpare
_H12TMSK1=0x01; /1 enable the interrupt on pin O
_H12TC0=0x8000; /1 set the value to be conpared agai nst
_H12TSCR=0x80; /1 enable the tiner
whi | e(1) /1 wait
{
}

}

_nmod2__ void Tiner0lnt() /1 Qutput Conpare ISR

{
DB12->printf("tinmer int");
_H12TFLGL=0x01; /1 clear the flag

}

25

I nput Capture Interrupt:

Qperation
Li ke the out put conpare interrupt,

simlar to the non-interrupt based input capture.
and _H12TCTL4 are set up the same as for the non-interrupt

the i nput capture interrupt

is very
The _HI12TIOS and _H12TCTL3
i nput capture.

The difference is that HI2TMBK1 is used to determ ne which channel (s) wll

be used to generate an interrupt(s).
di fferent input capture channel

for that channel
a one to the bit
which triggered the interrupt.

Each

When the interrupt
is called and executed.
in the HI2TFLGL regi ster that corresponds to the channe

bit in _HI2TMSK1 corresponds to a
is generated, the ISR

The flag nust be cleared by witing

_H12TMBK1:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| C7I | Cel | G5l | Al | C3l | 21 | ClI | QoI
_HI2FLGL:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| CTF | C6F | G5F | CAF | C3F | C2F | C1F | QOF
Sanpl e Code

This code calls the I SR when the input capture generates an interrupt.

nmod2__ void TinmerOlnt();

void __main()

/1 function prototype

DB12- >Set User Vect or (Ti ner0, Ti nerOl nt);

_H12TI OS=0x00; /1 select input capture
_H12TMSK1=0x01; /1 enable the interrupt on pin 0
_H12TCTL3=0x5A; /1 1Cr7, 1C6 rising edge, 1C5, 1C4 falling edge
_H12TCTL4=0x5F; /1 1C3, IC2 rising edge, ICl, 1CO any edge
_H12TSCR=0x80; /1 enable the tiner
whi | e(1) /1 wait
}

}

_nmod2__ void Tiner0lnt() /1 Qutput Conpare ISR

{
DB12->printf("tinmer int");
_H12TFLGL=0x01; /1 clear the flag

}

26

A to D Converter Interrupt:

Qperation

This is simlar to the non-interrupt based A/D converter. However instead of

having to poll the flag to deternmi ne when the A/D cycle has been conpl et ed,
an interrupt is generated when the conversion is conpleted.

In order to nake use of the AAD interrupt the ASCIE bit in _HI2ADTCTL2 mnust
be set to 1. This way, when the conversion is conpleted the interrupt wll
be triggered. The flag is cleared by witing a one to ASCIF in _H12ADTCTL2.
The remai nder of the operation is the sanme as the non-interrupt based A/D
converter.

_H12ADTCTL2:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
| ADPU | AFFC | AVAI |unused |unused Junused [ASCIE |ASCF]
Sanpl e Code
This sanple code calls the AAD interrupt when the A/D cycle is conpl eted.
__nmod2__ void AtoDInt(); /1 Function prototype
void __main() /1 main program

{
DB12- >set User Vect or (AtoD, AtoDint); // set the vector address

_H12ADTCTL2=0x82; /1 turn on ATD and on the interrupt
_H12ADTCTL3=0x00; /1 don't stop at breakpoints
_H12ADTCTL4=0x43; /1 Set prescalar (/8) & sanple tine 8 periods
_H12ADTCTL5=0x00; /1 check ANO
whi | e(1) /1 infinite | oop
}
}
_nmod2__ void AtoDint() /1 AD ISR

{
DB12- >out 2hex(_H12ADROH) ; /1 print contents of registers
DB12->printf("\n\r");
DB12- >out 2hex(_H12ADR1H) ;
DB12->printf("\n\r");
DB12- >out 2hex(_H12ADR2H) ;
DB12->printf("\n\r");
DB12- >out 2hex(_H12ADR3H) ;
_H12ADTCTL2=0x83; /1l reset the A/D converter
_H12ADTCTL5=0x00;

}

27

| RQ I nterrupt:

Qperation

The 1RQ is used to generate external interrupts. There are two basic nodes
of operation for the IRQ One is falling edge triggered, the other is |ow

| evel detection. The node of the IRQis controlled by _HI2INTCR IR@EN is
used to turn on the IRQ Wen this bit is set to 1 the IRQis enabled, when
it is set to zero the IRQis disabled. |RQE determ nes whether |ow | evel or
edge triggered operation will be used. Wen this bit is 0, the IRQw || use
low | evel detection. Wien it is 1 the IRQwi Il be falling edge triggered.
The IRQ is automatically cleared by the hardware in the 68HC12.

There are a few differences between the IRQ on the HCl11 and the HCl12. Unlike
the HCl1l, the IRQis not tinme protected. |IRQEN may be witten to and read
fromat any tinme. The value of |RQE, however, nmay only be witten once in

t he program

_HL2I NTCR:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit O

| | RQE |[IREEN | DLY | unused |unused Junused |unused |unused]
Sanpl e Code

This is sanple code that triggers the IRQ every tine a falling edge is
detected. This assunes there is a switch of some sort on the IRQ input to
generate the falling edge.

__nmod2__ void IRQNnt(); /1 function prototype
void __main()
{
DB12- >Set User Vector (IRQ 1 RQ nt); // set up the vector
_H12I NTCR=0xC0; /1 set up the IRQ for falling edge triggered
whi l e(1) /1 infinite | oop
{
}
}
__md2__ IRQAnNt() /1 TRQ ISR
{
DB12->printf ("1 RQ triggered"); /1 display a nessage
}

28

Port H Key Wakeup Interrupt:

Qperation

This is a new feature that was incorporated into the HCl12. This generates an
interrupt when the appropriate edge is detected on the input to the port.
This is ideal for use with a keypad, or can be used as extra IRQ lines for

t he HCl2.

Each bit of Port H can be used to generate a Key Wakeup interrupt when a
falling edge is detected. It is inportant to note that even though each bit
can generate an interrupt independently of the others, the sanme interrupt

will be called regardless of which bit triggered it. The Key Wakeup
Interrupt for each individual bit is enabled using HI2KWEH Witing a 1 to
a bit inthe register will enable the corresponding bit of Port Hto generate
an interrupt when a falling edge is detected. The flag bits for the Key
Wakeup interrupt are located in _HI2KWFH Miltiple flags can be set at the
sane tine, although software nmust be witten in order to determ ne which
flags have been set. The flags are cleared by witing a one to the flag bits
that have been set. It is a good idea to clear the flags before the Key
Wakeup Interrupt is enabled to prevent any fal se triggers.

_H12KW EH.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit O
bit 7 [bit 6 [bit5 [bit4 [bit3 [bit2 [bit1l [bit0o]
_HI2KW FH:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit O

bit 7 [bit 6 [bit5 [bit4 [bit3 [bit2 [bit1l [bit0]

Sanpl e Code
This code will trigger a Port H Key Wakeup interrupt when a falling edge is
detected on any bit of Port H

__nod2__ void KeyH(void); //function prototype

void _ _main(void)

DB12- >Set User Vect or (Port HKey, KeyH); // Set Vector address

_H12KW FH=0xFF; /1 make sure flags aren't set.
_H12KW EH=0xFF; /1 Enabl e all key wakeups for port H
whi | e(1)
}

}

__nmod2__ void KeyH(voi d) /1 Port H Key Wakeup | SR

{
_H12KW FH=_H12KW FH; /1 clear the flags

}

29

Port J Key Wakeup Interrupt:

Qperation

The Port J key Wakeup Interrupt is a nore powerful version of the Port H Key
Wakeup Interrupt. Unlike the Port H Key Wakeup, Port J can be set to trigger
on either a rising edge or a falling edge input. This adds to the
flexibility of the key wakeup but also adds to the conplexity.

The sel ection of which bits will be used to generate interrupts is controlled
by HI2KWEJ. As with port H when a bit is set to 1, the Key Wakeup for
that channel is enabled. Also as with the Port H Key Wakeup, while each bit
can cause an interrupt, they all call the sanme interrupt service routine.

_H12KW EJ:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit O
[bit 7 [bit 6 [bit5 [bit4 [bit3 [bit2 [bit1l J[bit0o]
_HI2KW FJ:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit O
[bit 7 [bit 6 [bit5 [bit4 [bit3 [bit2 [bit1l [bit0o]

Before enabling the Key Wakeup Interrupt it is necessary to set which edge
will trigger the interrupt and to select to use either the pull-up or
pul | down resistors on the input.

Wiich edge will be used to trigger an interrupt is determ ned by the setting
of _HI2KPOLJ. Witing a zero to a bit of _H12KPOLJ nakes that channe
falling edge triggered. Witing a one nmakes the channel rising edge
triggered.

_H12KPQOLJ:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7 [bit 6 [bit5 [bit4 [bit3 [bit2 [bit1l J[bit0o]

The pul |l -up and pul |l down resisters are controlled by HI2PUPSJ and _H12PULEJ.
_H12PUPSJ sel ects between using pull-up resisters and pul | down resisters.
When a bit in _HI2PUPSJ is set to one, the channel has a pull-up resistor
Wien the bit is zero, there is a pulldown resistor on the input. This MJST
be set before the pull-up/pulldown resistors are enabled. _HI2PULEJ is used
to enable the pull-up or pulldown resistor. Witing a one enables the pull -
up or pulldown, while witing a zero will disable it.

_H12PULEJ:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
bit 7 [bit 6 [bit5 [bit4 [bit3 [bit2 [bitl [|bit0 |
_H12PUPSJ:

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7 [bit 6 [bit5 [bit4 [bit3 [bit2 [bitl [|bit0 |

As with the Port H Key Wakeup, the flags are cleared after a Port J Key
Wakeup Interrupt is triggered. This is done by witing a one to the bits in
_HI2KW FJ t hat have been set.

Sanpl e Code

This code sets up the Port J Key Wakeup for falling edge operation on all 8
channel s and enables the pull up resistors for all the bits.

30

nmod2__ void KeyJ(void); /1 function prototype

void _ _main(void)

{
DB12- >Set User Vect or (Port JKey, Keyd); // assign the vector address
_H12KPCOLJ=0x00; /1 falling edge sets flag
_H12KW FJ=0xFF; /1 clear any flags that may be set
_H12PUPSJ=0xFF; /1 pull up
_H12PULEJ=0xFF; /1 pull up enabled all bits
_H12KW EJ=0xFF; /1 Enable all bits of J for keypad
whi | e(1) /1 Infinite |oop
{
}

}

__nmod2__ void KeyJ(void) /1 function prototype

{
_H12KW FJ= H12KW FJ; /1 clear the flag

}

31

