
Elixir Repertoire User Manual

Release 2.5.0

Elixir Technology Pte Ltd

Elixir Repertoire User Manual: Release 2.5.0
Elixir Technology Pte Ltd

Published 2013
Copyright © 2013 Elixir Technology Pte Ltd

All rights reserved.

Solaris, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. Microsoft and Windows
are trademarks of Microsoft Corporation.

Table of Contents
1. About Elixir Repertoire .. 1

Overview .. 1
Launching Repertoire Designer ... 1

Launching Repertoire Designer with Specific Report, DataSource or
Dashboard .. 1

Repertoire Designer Features .. 1
2. The Elixir Interface ... 3

Overview .. 3
Action Bar .. 3
Elixir Repository .. 5

Types of File ... 5
Types of FileSystem ... 6
Working with FileSystems ... 7
Working with Files ... 9

Recent Files .. 10
The Workspace .. 10

3. Elixir Repertoire Universe .. 11
Overview .. 11
Create a Universe ... 11
Tables .. 11

JDBC Universe Tables ... 11
Repository Universe Tables .. 12
Settings .. 12
Rows ... 15
Inspector ... 15
Summary .. 15

SQL ... 15
4. Elixir Safe ... 16

Introduction .. 16
Using a Safe .. 17

5. Elixir JavaScript Editor .. 18
Introduction .. 18
Function Availability ... 18
Referencing JavaScript .. 18

6. Function Reference ... 19
Overview .. 19
General Functions .. 19

Average .. 19
Comma Separated List .. 19
Comma Separated Set ... 19
Count ... 19
First ... 19
Last ... 19
Max ... 20
Median ... 20
Min ... 20
Percent ... 20
Percent100 .. 20
PercentCount ... 20
PercentCount100 .. 20
Standard Deviation ... 20
Sum ... 20
Variance ... 20
Year To Date ... 21
Month To Date ... 21

iii

Additional Cube Functions ... 21
Nested Percent Variants ... 21

iv

Elixir Repertoire User Manual

List of Figures
2.1. Elixir Repertoire Main Frame ... 3
2.2. Console Window .. 4
2.3. Add FileSystem ... 7
2.4. Add Local FileSystem ... 8
2.5. Add Jar FileSystem ... 8
2.6. Import Wizard ... 9
2.7. Build Jar ... 10
4.1. Add Safe Wizard .. 16
4.2. Safe Password Prompt ... 16

v

Chapter 1
About Elixir Repertoire

Overview
Elixir Repertoire is an integrated Business Intelligence suite, designed for enabling Intelligent Enterprises
to compete effectively in this fast-moving globalized market. Addressing the end-to-end information
life cycle, one can activate the entire suite or the individual products as required to aggregate and
transform, present and deliver, navigate and visualize, monitor and activate enterprise data.

Launching Repertoire Designer
There are 2 ways of launching Repertoire Designer.

1. Go to Repertoire/bin directory. Double-click on Elixir Repertoire.exe. Repertoire Designer will
be launched.

2. Open a command prompt window. Go into Repertoire/bin directory. Enter the following:

java -jar Repertoire-Launcher.jar

After a few moments, Repertoire Designer will be launched.

Launching Repertoire Designer with Specific Report,
DataSource or Dashboard

User can launch Repertoire Designer and open a specific file at the same time. This is applicable to
Report(.rml), DataSource(.ds) and Dashboard(.pml). In order to do this, user will need to launch
Repertoire Designer using a command prompt window, which is the second method mentioned in the
section called “Launching Repertoire Designer”. However, instead of the command mentioned previ-
ously, enter the following instead: java -jar Repertoire-Launcher.jar -maxWorkspace -initialFile
repository:/<PathOfFile>.

Here is an example for launching Repertoire Designer with a Report:

java -jar Repertoire-Launcher.jar -maxWorkspace -initialFile
 repository:/ElixirSamples/Report/Components/Checkbox.rml

Repertoire Designer Features
Elixir Repertoire Designer is a design tool containing the following components:

• Elixir Data Designer for extracting, merging and processing data from a variety of datasources,
either to generate direct data output (for example, Excel files or database records), or to feed data
into Elixir Report and Elixir Dashboard Designers.

• Elixir Report Designer for designing report templates and rendering data into a variety of output
formats, including PDF, Excel and HTML.

1

• Elixir Dashboard Designer for creation of dashboards, allowing interactive visualization and
manipulation of data, combining interactive reporting and data analysis.

One other tool is provided:

• Elixir Report Interactive for rendering reports using an editable snapshot of the data, requiring
no datasource connection.

2

About Elixir Repertoire

Chapter 2
The Elixir Interface

Overview
On launching an Elixir Repertoire application, you will see a window similar to that shown in Figure 2.1,
“Elixir Repertoire Main Frame”. The window consists of three parts, the Elixir Repository, Action
Bar and Workspace.

Figure 2.1. Elixir Repertoire Main Frame

The panel on the left is the Elixir Repository. The Action Bar is across the top on the right and the
Workspace is the area currently filled by the logo and build information below it.

Action Bar
The action bar present at the top of the right panel contains the Expand/Collapse, Save, Save As,
Properties, Global Properties, Help, Show Console, Administration Tools and Close View buttons. It
also includes a Combo Box and the Progress Indicator.

• Expand/Collapse: The Expand/Collapse icon allows you to hide or show the Elixir Repository
panel. The triangle points left to Collapse and then changes to point right, indicating that you can
Expand again.

3

• Save: The Save icon will be enabled when the current view has been modified and not saved.

• Save As: The Save As option allows you to save the current view under a different name in the
repository. Subsequent saves will use the new name. The original file remains unchanged, so this
option is useful for versioning.

• Properties: The Properties icon is only enabled when a view is open in the workspace. On clicking
the icon the appropriate wizard appears.

• Global Properties: The Global Properties icon allows properties of the toolset to be edited. The
precise options available will vary based on the combination of Elixir tools and extensions that are
installed.

• Show Console: On clicking the Show Console icon, the Console window appears as shown in
Figure 2.2, “Console Window”. The Console window lists all the log details. The type of log details
can be selected from the combo box. There are three types of log details displayed they are Internal
Log, JavaScript and the User Log.

Figure 2.2. Console Window

When the Internal Log is selected, all the logged events from the launching of Elixir Ensemble are
displayed. The JavaScript log details are displayed if any errors have occurred during the scripting
process. The User Log is displayed if there are any errors in setting up the security parameters of
the data sources.

Clicking the Clear icon clears the log. The Save icon is used to save a copy of the log to a file.
This is a particularly useful file that can be sent to Elixir's support team so that they can assist with
configuration problems.

• Administration Tools: On clicking of the Admin Tools... icon, the Administration Tools window
appears. It provides a set of tools that help you administer jobs, JDBC driver libraries and the
scheduling of calendars and triggers. For detailed information, refer to Elixir Administration Tools
User Manual.

• Combo Box: The Combo Box present in the toolbar lists the various data sources and other views
currently open in the workspace. The user can select the view they wish to work on by selecting
from the list.

4

The Elixir Interface

• Progress Indicator:The Progress Indicator indicates the progress of the application while the data
is being loaded. This indicator includes a popup menu that allows certain long operations to be
aborted.

• Close View: A left click will close the current view. Right-clicking will show a popup menu with
a list of options:

1. Close This View: On selecting this option, the currently active view is closed (same as left-
click).

2. Close Others: On selecting this option, the views other than the currently active view are
closed.

3. Close All: On selecting this option all the views are closed.

Elixir Repository
The toolbar icon at the top of the Repository panel is used to add new files and file systems. Each
toolbar button launches a wizard to guide you through the process.

Types of File
CSS

CSS is used to create and edit a Cascading Style Sheets file. It can define the styles of a report, including
background, fonts, header, footer and more.

Connection Pool

A Connection Pool allows connections to JDBC databases and connection properties to be shared
amongst multiple datasources. Connection Pools are described in the Elixir Data Designer User Manual.

DataSource

The DataSource is the principal building block in an Elixir Repertoire solution. External data may be
wrapped as a DataSource and multiple DataSources may be merged and processed by a Composite
DataSource. Each kind of DataSource is described in the Elixir Data Designer User Manual.

HTML

HTML is used to create and edit a Hypertext Markup Language file. HTML can be imported into
Dashboard and embedded in Frame or Page.

JavaScript

Elixir Repertoire is an extensible tool, allowing users familiar with Java or JavaScript to integrate the
tool with their code or customize the tool to meet their own requirements. Many parts of the tool allow
JavaScript to be embedded, however if the same scripts are required in multiple locations it is preferable
to create a common JavaScript file in the repository and then to import it into each DataSource, Report
or Dashboard that requires it. This editor is discussed further in Chapter 5, Elixir JavaScript Editor.

Job

Job is used to add tasks that are intended to run together.

Map

Map is usually created to represent geographic areas and adds new dimension to data visualisation.
More information about Map can be found in Elixir Map Designer documentation.

5

The Elixir Interface

Perspective

A Perspective holds the definition for a dashboard - a set of interactive views, including tables, charts,
reports and data cubes. Dashboards are stored in Perspective Markup Language (an XML syntax) with
a file extension .pml. Perspectives are described in the Elixir Dashboard Designer manual.

Report Template

A Report Template holds the specification for a report, including the layout of report components and
reference to the datasources needed to provide the data during rendering. Reports are stored in Report
Markup Language (an XML syntax) with a file extension .rml. Report Templates are described in the
Elixir Report Designer User Manual.

Safe

A Safe is an encrypted text file, used for holding valuable text-based information, such as database
passwords etc. The Safe is described in Chapter 4, Elixir Safe.

Text

A simple text editor/viewer is included for reviewing log files, CSV data etc.

Universe

A Universe is an interface to data. The user can add more than one Universe to handle higher-volume
data processing. Universes hold many tables. There are two types of Universes: Repository and JDBC.
In the Repository Universe, each table maps to a DataSource. Universes can exist anywhere in the
Repository, but are only accessible when mapped to a Universe name. All modules that use Universe
reference the universe name instead of the path. This enables you to easily switch between different
Universes by re-mapping. Universe mapping is a feature only available for administrators.

XML

XML is used to create and edit an Extensible Markup Language file. It can be imported into DataSources
and pass the data.

Types of FileSystem
Regardless of the type of file system, each has a name. This name must be unique as it forms the base
for each repository path. For example, if a file system called FS contains a datasource called mine.ds,
then the full name of the datasource is /FS/mine.ds. Elixir Repository always uses '/' for path separators,
like URLs, regardless of platform. Anywhere a URL can be specified, you can use the special protocol
repository: to refer to files. For example, the URL

repository:/FS/mine.ds

refers to the datasource described above.

Local FileSystem

This file system maps directly to the file system of your operating system. Usually this is used while
designing the data. However, for server side deployment other file systems might be preferred as they
ease the problem of relative path configuration.

Jar FileSystem

This file system is easier to deploy. The design and data is stored either in local or remote machine in
a compressed file i.e. a zip file in Jar format.

6

The Elixir Interface

Working with FileSystems
Clicking the Add FileSystem icon shows the "Add FileSystem" wizard which lists the types of
FileSystem that can be defined.

Figure 2.3. Add FileSystem

Local FileSystem

Choose the Local FileSystem option, as shown in Figure 2.3, “Add FileSystem” and click on the Next
button to see the screen as shown in Figure 2.4, “Add Local FileSystem”. On this page a local directory
name can be entered. Alternatively by clicking the button on the right of the text field, a directory can
be chosen from a dialog. Upon clicking the Finish button the Local FileSystem will be created and
displayed in the Elixir Repository tree.

7

The Elixir Interface

Figure 2.4. Add Local FileSystem

Jar FileSystem

The Jar file system allows read-only access to files in either a jar file or a zip file. Add a FileSystem
and choose the Jar FileSystem option and click on the Next button to see the screen as shown in
Figure 2.5, “Add Jar FileSystem”. On this page the name can be entered. The directory path of the jar
or zip file can be typed in the Jar File text box. Alternatively by clicking the button on the right of the
text field, a jar or zip file can be chosen from a dialog. Upon clicking the Finish button the Jar FileSystem
will be created and displayed in the Elixir Repository tree.

Figure 2.5. Add Jar FileSystem

8

The Elixir Interface

Working with Files
After adding a file system to the Repository, different files, for example DataSources, Dashboards,
Reports and Folders can be added to it.

Each file system, folder and file has a popup menu showing the available actions. File systems and
folders have similar options:

• Add: Using this menu item several kinds of file or a folder can be added. Each will invoke a
specialized wizard to guide you through the creation process.

• Import: Import allows files to be imported into the repository. This option is for files that need
some migration or extraction to be used in the Repertoire tool. Primarily this is for Elixir Report
4 .sav and .template files.

Choose a file system or folder into which the data source or template should be imported, select
Import from the popup menu. The "Import Wizard" appears as shown in Figure 2.6, “Import
Wizard”. You can use the browse button to choose the file to be imported. On clicking Finish, the
file gets imported into the repository. A .sav file contains many datasources, so each will become
a separate .ds file in the chosen location.

Figure 2.6. Import Wizard

Note

It is only necessary to import files from Elixir Report prior to version 5.0. Version 5.0
and later files can be read by the tool without any special import/extraction/migration
step.

• Refresh: (Only applies to file systems, not folders.) On selecting this option the file system will be
refreshed and any changes to the files and folders made outside the tool will be visible.

• Compact: (Only applies to local file systems, not folders.) On selecting this option the file system
will be compacted, meaning that all backup files (.bak) will be deleted to reclaim disk space.

• Build Jar: A jar file can be built using the subtree of files or folders in the repository. Select a file
system, and select Build Jar from the popup menu. The "Build Jar" dialog window opens displaying

9

The Elixir Interface

all the folders and files present in the repository as shown in Figure 2.7, “Build Jar”. The files or
folders to be jarred are selected. On clicking the browse button, the Save dialog box pops up
allowing the output jar filename to be defined.

Figure 2.7. Build Jar

The Extension Jar Filesystem allows a jar to be created with a special loader. If this jar file is placed
in the Elixir Repertoire ext directory it will be automatically loaded as a filesystem next time the
tool is started. The name field allows the jar filesystem to be given a name (if you leave it blank
it will default to the filename). The name should be chosen carefully as all items within the generated
jar will be known based on the full path, which includes the filesystem name at the start.

• Remove: A file system or folder can be removed from the repository when this menu item is selected.

• Delete: A file or folder can be deleted from the filesystem when this menu item is selected. Delete
actually only hides the file by giving it a .bak extension. Files and folders with .bak extensions are
hidden from Repository views, but can be restored (if you made a mistake) by renaming them using
operating system commands. To permanently delete a file or folder, you should Compact after
deleting, which will remove all .bak files.

Recent Files
Below Elixir Repository, files that have been opened recently will be listed under the Recent Files.
Files that are deleted will also be listed, but when user tries to open them, an error will occur informing
the user that the file is no longer available.

A maximum number of five files will be listing under Recent Files. By right-clicking within
Recent Files, user will have the option to clear the history and files listed will be removed from
the panel.

The Workspace
Each component of Elixir Repertoire consists of one or more views that will display in this area. See
the documentation for the individual components for a description of the features available from that
view.

10

The Elixir Interface

Chapter 3
Elixir Repertoire Universe

Overview
There are two categories of Universe: Repository Universe and JDBC Universe. For example, you can
create a Repository Universe and map it for use in Ad-hoc Dashboard.

Repository Universe is for DataSources (except Composite), for backward compatibility for Repertoire.
JDBC Universe is for JDBC relational datasources.

All the modules that use Universe, use the Universe name not the path. Therefore you can easily switch
to a different Universe by re-mapping. A Universe must be given a name before it can be seen in the
Ad-hoc tools. For details on Universe mapping and access control, refer to Elixir Administration Tools
User Manual .

This chapter describes how to create a Universe, work on Universe tables and more.

Create a Universe
Complete the following steps to create a Universe:

1. Right-click a filesystem or sub-directory. On the pop-up menu, select Add > Universe. The Add
Universe window opens.

2. Select JDBC or Repository from the list. Enter a name for the Universe.

3. Click Finish. The Universe file is successfully created with a .universe extension. Double-click
to open the Universe Designer and make further changes.

Tables

JDBC Universe Tables
A JDBC Universe allows data to be read from a relational database using a JDBC driver. If your data
is all defined in a relational database, and a JDBC driver is available, then JDBC Universe is recom-
mended. Before getting started, add the JDBC driver into /opt/elixir/lib/, so that it will be available to
all Java Virtual Machines.

Right-click the Tables node, and select one of the following options:

Configure connection pool...: JDBC allows access to data via SQL statements. For example, you can
install MySQL Workbench and use com.mysql.jdbc.Driver for the JDBC Universe. Modify the host
and dbname in the URL field, enter user name and password, and click Test Connection. If the test
of connection succeeds, you have the option to define Connection Pool Parameters on the next page.
On the Connection Pool JDBC Properties page, you can set any customized properties for your JDBC
driver by setting the keys and values. After you complete the settings, click Finish.

Add tables...: Tables from the relational datasource will display in the Add Tables window. You can
choose from these tables, or invert your selection. Click OK.

11

Add join table: Join SQL combines records from two or more tables from the relational database.
Join SQL combines columns from two tables by using values common to each. There are often two
columns with the same name, and the Universe will add the table name as a prefix to ensure the columns
are unique. Click Finish, and the corresponding SQL will be calculated and executed to determine the
schema.

Add custom table: Enter your SQL expression into the Custom SQL field. If you have entered some
expression in the SQL panel, it will be the default content when you create a new custom table. Dynamic
parameters are supported, and you can use ${substitutions}. Click Finish and the schema will be
automatically inferred. If parameters are involved, you will be prompted to enter a parameter value.

Add folder...: This option helps you categorize tables, which is extremely useful when you have a
large number of tables to work on. Fill in the folder name and click OK.

Edit: This option is available for each table under the Tables tree. Right-click a table, and select this
option. The Edit Table window opens. Select from the Generated SQL list to show the entire table, or
hide certain columns. You can create several Universe tables that are backed by the same physical
table, but expose different columns. This is much more efficient than fetching all columns and filtering
locally.

Show SQL: This option is available for each table under the Tables tree. Right-click a table, and select
this option. It will display the SQL that will be executed for the table. Click the Load Data blue button
to load the table contents.

Paste: This option enables you to copy tables from another JDBC Universe and paste here.

Repository Universe Tables
A Repository Universe is similar to a small repository, which may include hundreds of tables. Each
table maps to a datasource, which is a full copy of the original datasource. If you change either the
table or the mapping datasource, the other one remains unchanged.

A Repository Universe supports all kinds of datasource except Composite, which is replaced by
transforms.

Right-click the Tables node, and select one of the following options:

Add table...: This option enables you to create a new table. Choose a datasource type and fill in
datasource parameters. Click Finish.

Add folder...: This option helps you categorize tables. Fill in the folder name and click OK.

Import datasource...: This option enables you to import from an existing datasource. Choose from
the repository and click OK.

Paste: This option enables you to copy tables from another Repository Universe and paste here.

Settings
The Settings tab displays table settings, including schema, parameters, table attributes and column
attributes. The Settings tab also enables you to add transforms for data manipulation.

Schema

The Schema tab displays column names and data types. The PrimaryKey column is highlighted with
a key icon. If a primary key is not defined, you can add one using the column attributes.

12

Elixir Repertoire Universe

Parameters

Column Attributes

The following types of attributes are supported:

• Enumeration: By defining the attributes of individual fields, Repertoire Data Designer can then
validate the record values using the cleansing process. For example, we might specify that the field
"Gender" is a nominal enumeration of "M" and "F". The cleansing process would then warn us of
any records containing "m" or "Female". Ordinal enumeration attributes allow us to specify the
order to display data, while retaining the original order. For example, we might specify that the
field "Fruit" is an ordinal enumeration of "Apple" and "Orange". Only "Apple" and "Orange"
records can pass the validation in cleansing process.

• ForeignKey: This type of attributes is created by JDBC DataSources, and therefore cannot be
edited.

• Format: Define the format.

• Nullable: Specify whether the data can be Null values.

• PrimaryKey: A PrimaryKey is necessary for all tables in the Repository Universe. Ensure that
each table has a unique PrimaryKey column. This is important for Ad Hoc Dashboard. For most
cases, a table has only one PrimaryKey, therefore the sequence number is 0. If you are working
on a datasource without obvious PrimaryKey such as FruitSales.ds, add a Sequence Transform to
create a new ID column, and add a Column Attribute to mark it as a PrimaryKey. Because Fruit-
Sales.ds uses a composite PrimaryKey, an alternative approach is to add a Column Attribute to
mark “Company” as “PrimaryKey:0”, and add another Column Attribute to mark “Fruit” as
“PrimaryKey:1”.

• Range: Specify the start value and end value.

• Comments: Enter text for comments.

• RegExp: Define and test syntax.

Transforms

The Transforms tab enables you to create and edit transforms to a schema. Click the plus sign, and
the Transform Wizard will be invoked. For detailed information on transform categories, refer to Elixir
Transform User Manual.

JDBC Transforms

Compare

For more information on Compare Transform, refer to Elixir Transform User Manual.

Credentials Check

This restricts access to rows where a specified Credentials Field matches the user credentials. You
have the option to specify users or groups who can access all records.

User credentials refer to the user name and all group names where the user belongs to. In credentials,
users and groups are not distinguished. A blank string matches no credential, while "*" matches any
credential.

The following table shows an example of the input (Credentials Field: Field 3):

13

Elixir Repertoire Universe

Field 3Field 2Field 1

Sales1348.5087

Sales1162.5075

Marketing3628.8064

Marketing2891.7051

*6473.50107

The following table shows the output for users and group with the "Sales" credential:

Field 3Field 2Field 1

Sales1348.5087

Sales1162.5075

*6473.50107

The following table shows the output for users and group with the "Marketing" credential:

Field 3Field 2Field 1

Marketing3628.8064

Marketing2891.7051

*6473.50107

Date Filter

This enables the filtering of Dates and Timestamps. You can filter by the current day of month, month
and year. You also have the option to filter by offsets, either earlier or later, from the current day of
month, month and year.

The following table shows an example of the input:

EmployeeNameHireDate

Chad Mattson2011-05-17

Richard Davis2009-03-25

Amy Franks2012-01-17

Willie Costa2009-05-09

Rebecca Smith2010-05-30

When you set the Filter Field to HireDate, choose to keep records with Offset Month, and set the
Offset value to -1 (assume the current month is June), the following table shows the output:

EmployeeNameHireDate

Chad Mattson2011-05-17

Willie Costa2009-05-09

Rebecca Smith2010-05-30

Formula

This provides a variety of functions which can calculate a new field from your formula. The types of
functions include Numeric, String, System and TimeDate. For more information on how to write a
formula with functions, refer to the online documentation for your chosen database and version. These
documentation are easily searchable online but too numerous and the links are too likely to change to
be included here.

14

Elixir Repertoire Universe

The following shows an example of using the CONCAT function in this formula:

CONCAT ([Name], " joined the company on ", [HireDate])

OutputHireDateName

Richard Davis joined the company on 2009-03-252009-03-25Richard Davis

Amy Franks joined the company on 2012-01-172012-01-17Amy Franks

Willie Costa joined the company on 2009-05-092009-05-09Willie Costa

The following shows an example of using the SUBSTRING function in this formula:

SUBSTRING ([Name], 1, 3)

OutputHireDateName

Ric2009-03-25Richard Davis

Amy2012-01-17Amy Franks

Wil2009-05-09Willie Costa

Sort

For more information on Sort Transform, refer to Elixir Transform User Manual.

Rows
The Rows tab displays either the original data of a table, or the output of column data if there are
transforms created. Click the Load Data blue button to refresh.

Inspector
The Inspector tab enables you to review the contents of a column. It displays column information,
value frequency based on the data type, as well as the chart type and plot.

Summary
The Summary tab displays the column names, data types and PrimaryKey information.

SQL
Select a table under the Tables tree, and click the SQL tab. It will display the SQL that will be executed
for the table. The SQL statements are editable. Click the Load Data blue button to load the table
contents.

15

Elixir Repertoire Universe

Chapter 4
Elixir Safe

Introduction
Elixir Repertoire tools include a Safe file type. A Safe is for holding valuable text-based information,
for example passwords. Each Safe is encrypted on disk using a password. If you lose the password,
no one can get it back for you - the contents are gone for good.

To create a Safe file, choose a location in the Repository and from the popup menu select Add > Safe...
A wizard will appear, as shown in Figure 4.1, “Add Safe Wizard”.

Figure 4.1. Add Safe Wizard

Enter a unique filename and enter and repeat the password. The password will be required each time
you open the file. If the password is lost, the file will be unreadable. When you have entered all required
details and pressed Finish you will be presented with a text editor. You can enter plain text here, in
any format and for any purpose and it will be encrypted automatically each time it is saved.

On subsequent loading, the Safe file prompts for a password to decrypt the file, as shown in Figure 4.2,
“Safe Password Prompt”.

Figure 4.2. Safe Password Prompt

16

Using a Safe
As we've seen, the Safe file contains plain text, so you can use it for any purpose. For example for
storing all the passwords you need to remember. If you store text in the form:

This is a comment
Name=Value
Another=Something Else

then the file can be read as properties, which can be used to parameterize a report or datasource. To
use these external properties within a report, you put a script in your Report OnRenderBegin:

var props = elxfn.getSafeProperties("/Workspace/Data.safe","pass");
setParameters(props);

where "pass" is the password to unlock the Safe. The call to setParameters adds the name=value pairs
into the report parameter list, so they will be passed to datasources etc. as required. Another benefit
of this approach is that it allows you to share a common set of properties across multiple reports and
datasources.

If you don't want to hardcode the password in the script, you can get it from another parameter:

var pass = getParameterValue("Password");
var props = elxfn.getSafeProperties("/Workspace/Data.safe",pass);
setParameters(props);

This can either read Pass from the Report parameters, or prompt for a dynamic parameter as you
choose.

17

Elixir Safe

Chapter 5
Elixir JavaScript Editor

Introduction
Elixir Repertoire tools include a JavaScript editor, connected to a JavaScript engine for immediate
testing and evaluation of expressions. This editor allows the creation of a library of common JavaScript
functions that can be added to any other JavaScript evaluation, such as a Report Function Definitions
script or a Composite DataSource script.

The JavaScript editor supports syntax colouring to make it easy to see at a glance the different aspects
of the code. You can evaluate code using the Popup menu and selecting an option.

• Do It: executes the selected text as a JavaScript expression.

• Show It: evaluates the selected text as a JavaScript expression and outputs the result of evaluation
back into the editor.

• Reset: resets the JavaScript engine to the default state.

Function Availability
Different parts of the Repertoire toolset expose different objects and functions that you can interact
with. For example, a Report script can utilise the Renderer object, to query the mime-type and interact
with the RawReport object. However, it is an error to reference these objects when executing an
Ensemble script (e.g. a Composite DataSource script), because these objects are not available in the
Ensemble context. You need to be aware when creating a reusable JavaScript file what context it will
be running in so that you can ensure you are accessing the appropriate objects.

Referencing JavaScript
Once you have created a JavaScript (.js) file holding some functions you want to reuse, you need to
import it into your tool scripts. The syntax for importing a javascript file is:

importScript("/ElixirWorkspace/MyScripts/Core.js");

To avoid repeated import of the same scripts, the import should be done in a script that is only executed
once. For example the Function Definitions of a Report template, or the Script tab of a Composite
DataSource.

18

Chapter 6
Function Reference

Overview
Many Elixir designers incorporate some form of data manipulation:

• Taking the Count of the customers in Washington using a Cube in a Composite DataSource

• Showing a Running Sum of your accumulated sales in a Report

• Highlighting the Percent of frozen goods sold to a chosen retailer in a Dashboard

There are a standard set of functions such as Count, Sum and Percent mentioned above that can be
used throughout the Repertoire Suite.

General Functions

Average
The Average takes a sequence of values, sums them and divides by the number of values. This function
will work on all numeric types. The result will always be a double.

Comma Separated List
The Comma Separated List takes a sequence of values and returns a single string holding these values
separated by commas. For example, if the selected fields from three records are Apple, Orange,
Strawberry, you will get back a String "Apple, Orange, Strawberry".

Comma Separated Set
The Comma Separated Set takes a sequence of values and returns a single string holding the discrete
values separated by commas. This means duplicates are removed. For example, if the selected fields
from five records are Apple, Berry, Apple, Orange, Berry, you will get back a String "Apple, Berry,
Orange" - each item is only listed once.

Count
The Count result is the number of values that the function has received. This is most useful in cubes
where usually different numbers of records are partitioned into each cell.

First
The First function always replies with the first value that it receives.

Last
The Last function always replies with the last value that it receives.

19

Max
The Max result is the largest value received. This function works for all comparable types, including
strings and dates as well as numbers.

Median
The median function takes a sequence of values, which should have been sorted in increasing order
and returns the value in the middle. If the number of elements is even then it returns the average of
the two values closest to the middle. Hence this function only works on numbers and dates. For instance,
if there are numbers 1,2,2,3,3,4,5,6. There is an even number of values, so the middle or median is
between the first and the second three. As they are the same the median is three, but if they were
different say if the median was between 3 and 4, we would do (3+4)/2=3.5.

Min
The Min result is the smallest value received. This function works for all comparable types, including
strings and dates as well as numbers.

Percent
The Percent result is the sum of all values received divided by the sum of all values available. The
result will be a number between 0 and 1, which can be formatted as a percentage (for example using
the Field Format in Report).

Percent100
The Percent100 result uses the same algorithm as Percent, but the value returned is scaled into the
range of 0 to 100.

PercentCount
The PercentCount result is the count of all values received divided by the count of all values available.
The result will be a number between 0 and 1, which can be formatted as a percentage (for example
using the Field Format in Report).

PercentCount100
The PercentCount100 result uses the same algorithm as PercentCount, but the value returned is scaled
into the range of 0 to 100.

Standard Deviation
The Standard Deviation is the square root of the Variance (see below).

Sum
The Sum result is the summation of all values received. The result will always be a double.

Variance
The Variance is the measure of how spread out a distribution is. It is computed as the average squared
deviation of each number from its mean(average). For example, for the number 1, 2 and 3 the mean
is 2 and the variance is:

20

Function Reference

[(1-2)²+(2-2)²+(3-2)²]/(3-1) = 0.5

Year To Date
The Year To Date sums value(s) of data that has the year corresponding to the current year of the
system.

Month To Date
The Month To Date sums value(s) of data that has the month and year corresponding to the current
month and year of the system.

Additional Cube Functions

Nested Percent Variants
Cube makes available four special functions, which are Nested versions of the Percent, PercentCount,
Percent100 and PercentCount100. The functions behave similarly to the basic percent functions but
the result is the derived from all values received divided by all values in that group. Therefore, unlike
Percent, which will give a percentage out of all records, Nested Percent will give the percentage out
of all siblings in the same level of the cube.

Here's an example, just looking at one Cube axis:

 Percent Nested Percent
USA 100 100
 AZ 30 30
 Apple 15 50
 Orange 10 33
 Pear 5 17
 WA 70 70
 Apple 40 57
 Orange 20 29
 Pear 10 14

Using Percent for USA-AZ-Apple would sum the value of Apples sold in Arizona and sum the value
of all fruit in the USA and work out the percent from that. In other words, the value would be the
percent of Arizona Apples compared to all fruit (15% in this example). Using Nested Percent on the
other hand works out the sum relative to the siblings. In this case USA-AZ-Apple would give the
percentage of Apple sales compared to all fruit sales in Arizona (AZ-Apple+AZ-Orange+AZ-Pear).
In this nested case that is 50%.

In the Percent column all the items at the same level in the tree add up to 100%. In the Nested Percent
column, each element's children add up to 100%.

21

Function Reference

	Elixir Repertoire User Manual
	Table of Contents
	Chapter 1. About Elixir Repertoire
	Overview
	Launching Repertoire Designer
	Launching Repertoire Designer with Specific Report, DataSource or Dashboard

	Repertoire Designer Features

	Chapter 2. The Elixir Interface
	Overview
	Action Bar
	Elixir Repository
	Types of File
	Types of FileSystem
	Working with FileSystems
	Working with Files

	Recent Files
	The Workspace

	Chapter 3. Elixir Repertoire Universe
	Overview
	Create a Universe
	Tables
	JDBC Universe Tables
	Repository Universe Tables
	Settings
	Schema
	Parameters
	Column Attributes
	Transforms
	JDBC Transforms
	Compare
	Credentials Check
	Date Filter
	Formula
	Sort

	Rows
	Inspector
	Summary

	SQL

	Chapter 4. Elixir Safe
	Introduction
	Using a Safe

	Chapter 5. Elixir JavaScript Editor
	Introduction
	Function Availability
	Referencing JavaScript

	Chapter 6. Function Reference
	Overview
	General Functions
	Average
	Comma Separated List
	Comma Separated Set
	Count
	First
	Last
	Max
	Median
	Min
	Percent
	Percent100
	PercentCount
	PercentCount100
	Standard Deviation
	Sum
	Variance
	Year To Date
	Month To Date

	Additional Cube Functions
	Nested Percent Variants

