
RTI Queuing Service

User’s Manual

Version 5.2.0

© 2014-2015 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. First printing.
June 2015.

Trademarks
Real-Time Innovations, RTI, NDDS, RTI Data Distribution Service, DataBus, Connext, Micro DDS, the RTI
logo, 1RTI and the phrase, “Your Systems. Working as one,” are registered trademarks, trademarks or
service marks of Real-Time Innovations, Inc. All other trademarks belong to their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
(including electronic, mechanical, photocopy, and facsimile) without the prior written permission of Real-
Time Innovations, Inc. The software described in this document is furnished under and subject to the RTI
software license agreement. The software may be used or copied only under the terms of the license
agreement.
Third-Party Copyright Notices
Portions of this product were developed using libxml2 (http://xmlsoft.org/) and lixslt (http://
xmlsoft.org/libxslt/), which are licensed under the MIT license (http://opensource.org/licenses/mit-
license.html):
The MIT License (MIT)
libxml2: Copyright (C) 1998-2012 Daniel Veillard. All Rights Reserved.
libxslt: Copyright (C) 2001-2002 Daniel Veillard. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Technical Support
Real-Time Innovations, Inc.
232 East Java Drive
Sunnyvale, CA 94089
Phone: (408) 990-7444
Email: support@rti.com
Website: https://support.rti.com/

http://xmlsoft.org/
http://xmlsoft.org/libxslt/
http://xmlsoft.org/libxslt/
https://support.rti.com/
http://opensource.org/licenses/mit-license.html
http://opensource.org/licenses/mit-license.html

Contents

1 Welcome to RTI Queuing Service..1-1

2 Queuing Service Architecture and Operation2-1
2.1 Terms to Know ... 2-1

2.2 Paths Mentioned in Documentation ... 2-2

2.3 Load Balancing by Sharing a Queue ... 2-3

2.4 DataWriter Connection to a SharedReaderQueue .. 2-4
2.4.1 QueueProducer Wrapper .. 2-5
2.4.2 Samples with Large Maximum Size .. 2-5

2.5 DataReader Connection to a SharedReaderQueue ... 2-5
2.5.1 QueueConsumer Wrapper .. 2-6
2.5.2 Samples with Large Maximum Size .. 2-6

2.6 Queuing Service Entities... 2-6

2.7 Sample Distribution to a Selected QueueConsumer .. 2-7

2.8 Interaction of Publish-Subscribe Entities with Queuing Service Entities...................................... 2-8

2.9 Sample Lifecycle In Queuing Service.. 2-9

2.10 Selecting a QueueConsumer for a Sample ..2-11
2.10.1 Round-Robin Dispatch Policy without Explicit QueueConsumer

Availability Feedback..2-11
2.10.2 Round-Robin Dispatch Policy with Explicit QueueConsumer

Availability Feedback... 2-12

2.11 Sending a Reply from QueueConsumer to QueueProducer ... 2-13
2.11.1 Requester Identification... 2-13
2.11.2 Request-Reply Correlation.. 2-14
2.11.3 Sending the Reply Sample to the Associated Requester .. 2-15
2.11.4 QueueRequester Wrapper... 2-15
2.11.5 QueueReplier Wrapper.. 2-15

2.12 Dead-Letter Queues... 2-15

2.13 Detecting the Presence of a SharedReaderQueue ... 2-17

2.14 Queuing Service Persistency .. 2-17
2.14.1 Service State Persistency.. 2-17
2.14.2 SharedReaderQueue Persistency ... 2-18

2.14.2.1 The Restore Process.. 2-20

2.15 SharedReaderQueue Resource Management .. 2-20
2.15.1 Maximum SharedReaderQueue Size... 2-20
iii

2.15.1.1 Initial and Maximum Number of Samples ... 2-20
2.15.1.2 Maximum Number of Bytes in Memory... 2-21

2.15.2 Memory Management for a Sample .. 2-22
2.15.3 High and Low Watermarks... 2-22
2.15.4 Sample Replacement Policy .. 2-23

2.16 High Availability.. 2-24

2.17 Remote Administration... 2-24

2.18 Queuing Service Monitoring.. 2-25

3 Configuring Queuing Service ..3-1
3.1 How to Load the XML Configuration from a File... 3-1

3.2 XML Syntax and Validation ... 3-3

3.3 XML Tags for Configuring Queuing Service ... 3-4
3.3.1 Configuring Queuing Service Types.. 3-4
3.3.2 Configuring Queuing Service... 3-6
3.3.3 Configuring Administration... 3-7

3.3.3.1 Configuring Memory Management for a CommandReply Buffer 3-8
3.3.4 Configuring Monitoring.. 3-10

3.3.4.1 Configuring Request-Reply Monitoring ..3-11
3.3.4.2 Configuring Publish-Subscribe Monitoring ..3-11

3.3.4.2.1 Publish-Subscribe Monitoring Configuration Inheritance.............. 3-12
3.3.4.3 Configuring Statistics Calculation Process ... 3-13

3.3.4.3.1 Statistics Calculation... 3-14
3.3.5 Configuring Persistence Settings ... 3-14
3.3.6 Configuring DomainParticipants... 3-14

3.3.6.1 Configuring Memory Management for Sample Buffers................................... 3-18
3.3.7 Configuring SharedSubscribers.. 3-18
3.3.8 Configuring Session Settings .. 3-19
3.3.9 Configuring SharedSubscribers Sessions.. 3-19
3.3.10 Configuring SharedReaderQueues.. 3-21
3.3.11 Configuring DeadLetterSharedReaderQueues.. 3-26

3.4 Using Variables in XML .. 3-27

3.5 Enabling RTI Distributed Logger in Queuing Service.. 3-27

4 Running Queuing Service ..4-1
4.1 Starting from Launcher .. 4-1

4.2 Starting Manually from the Command Line.. 4-2

4.3 Using Queuing Service as a Windows Service .. 4-4
4.3.1 Enabling Queuing Service to Run as a Windows Service... 4-4
4.3.2 Running RTI Queuing Service as a Windows Service... 4-4
4.3.3 Notes when Running as a Windows Service.. 4-4
4.3.4 Stopping Queuing Service when it is Running as a Windows Service 4-5
4.3.5 Disabling Queuing Service from Running as a Windows Service 4-5

5 Administering Queuing Service from a Remote Location5-1
5.1 Enabling Remote Administration.. 5-1

5.2 Remote Administration API... 5-1
iv

5.2.1 Resource Identifiers.. 5-2
5.2.2 Sample Selector... 5-3

5.3 Remote Administration Topics .. 5-4

5.4 Remote Commands in Queuing Service... 5-5
5.4.1 Create SharedReaderQueue.. 5-5
5.4.2 Delete SharedReaderQueue .. 5-6
5.4.3 Flush SharedReaderQueue ... 5-6
5.4.4 Get SharedReaderQueue Status ... 5-6
5.4.5 Get Service Data.. 5-7
5.4.6 Get Samples From a SharedReaderQueue.. 5-8
5.4.7 Create SharedSubscriber.. 5-9
5.4.8 Delete SharedSubscriber.. 5-9

5.5 Accessing Queuing Service from a Connext DDS application.. 5-9

6 Publish-Subscribe Monitoring of Queuing Service from
a Remote Location...6-1
6.1 Enabling Publish-Subscribe Monitoring Data ... 6-1

6.2 Status Information for a SharedReaderQueue... 6-2

7 High Availability ..7-1
7.1 SharedReaderQueue Replication... 7-1

7.1.1 SharedReaderQueue Replication Protocol.. 7-1
7.1.1.1 Sample Replication Phase ... 7-2
7.1.1.2 Enqueue Phase .. 7-3
7.1.1.3 Consumer Assignment Phase... 7-4
7.1.1.4 Delivery Phase .. 7-4

7.1.2 SharedReaderQueue Master Election Protocol .. 7-4
7.1.3 SharedReaderQueue Replication Configuration ... 7-5

7.1.3.1 Protocol Information Exchange.. 7-6

7.2 Configuration Replication .. 7-7
7.2.1 SharedReaderQueue for Configuration Replication ... 7-7

7.3 Replication Clusters... 7-8

8 Queuing Service Wrapper API...8-1
8.1 QueueProducer Wrapper.. 8-1

8.2 QueueConsumer Wrapper.. 8-1

8.3 QueueRequester Wrapper .. 8-1

8.4 QueueReplier Wrapper ... 8-2

9 Communication Using TCP Transport ..9-1
9.1 Asymmetric TCP Communication With Queuing Service .. 9-1

9.2 Asymmetric TCP Communication with Queuing Service And Replication................................. 9-4
v

1-1

Chapter 1 Welcome to RTI Queuing Service

RTI® Queuing Service is a broker that provides a queuing communication model in which a sam-
ple is stored in a queue until it is consumed by one QueueConsumer. If there are no QueueCon-
sumers available when the sample is sent, the sample is kept in the queue until a
QueueConsumer is available to process it. If a QueueConsumer receives a sample and does not
acknowledge it before a specified amount of time or acknowledges it negatively, the sample will
be redelivered to a different QueueConsumer.

Queuing Service provides an “at-most-once” and “at-least once” delivery semantic.

By default, Queuing Service keeps the samples in memory. To provide fault tolerance, Queuing
Service can be configured to keep the samples on disk.

For high availability, Queuing Service provides mechanisms to replicate its state so that samples
can survive the loss of any particular service and/or computer.

Chapter 2 Queuing Service Architecture and Operation

2.1 Terms to Know
You should become familiar with a few key terms and concepts.

❏ QueuingService instance: A single application process (service) that is deployed and
configured to host the queues.

❏ QueuingServiceName: A string label that uniquely identifies a QueuingService instance
running within a DDS domain.

❏ SharedSubscriber: A container that hosts SharedReaderQueues, allowing remote
QueueConsumers to attach to the shared queues, and providing "exactly once" or "at-
most once" access to the samples in the shared queues. With these access modes, when
one QueueConsumer gets a message, the other QueueConsumers attached to the same
SharedReaderQueue do not get that message. A SharedSubscriber can host one or more
SharedReaderQueues, each one associated with a different DDS Topic name.

❏ SharedSubscriberName: A string label that uniquely identifies a SharedSubscriber
within a DDS domain.

❏ SharedReaderQueue: A logical DataReader queue hosted inside a SharedSubscriber that
provides "exactly once" or "at-most once" access to the Consumers attached to the Share-
dReaderQueue. It is associated with a Topic and the name of the SharedReaderQueue is
derived from the name of the Topic and the SharedSubscriber that hosts it. Implementa-
tion-wise, a SharedReaderQueue is composed of an input (DDS DataReader) and output
(DDS DataWriter) pair that, together with a queue storage, implement the queuing
behavior for a Topic. The input DataReader is matched to the DataWriters associated with
the Queue Producers and the output DataWriter is matched to the DataReaders associated
with the Queue Consumers. The processing logic ensures that each sample in the Share-
dReaderQueue is delivered to only one of the QueueConsumers.

❏ SharedReaderQueueName: A string label that uniquely identifies a SharedReader-
Queue within a DDS domain. It is derived from the name of the SharedSubscriber that
hosts the queue and the name of the associated DDS Topic, as in <aQueueTopic-
Name>@<aSharedSubscriberName>.

❏ Session: Defines a threaded context for a SharedReaderQueue. Sessions are part of
SharedSubscribers. SharedReaderQueues in different sessions can be processed in paral-
lel.

❏ QueueProducer: An application-level entity that is either a DDS DataWriter, or a wrapper
for it, which allows an application to send data on a single Topic to a SharedReader-
Queue.
2-1

Paths Mentioned in Documentation
❏ QueueConsumer: An application-level entity that is either a DDS DataReader, or a simple
wrapper for it, which allows an application to access data on a single DDS Topic from a
SharedReaderQueue hosted inside a SharedSubscriber. The QueueConsumer DataRead-
ers "compete" for the data on the SharedReaderQueue, such that each sample in the
SharedReaderQueue will be received by exactly one QueueConsumer DataReader.

2.2 Paths Mentioned in Documentation
The documentation refers to:

❏ <NDDSHOME>

This refers to the installation directory for Connext DDS.

The default installation paths are:

• Mac OS X systems:

/Applications/rti_connext_dds-version

• UNIX-based systems, non-root user:

/home/your user name/rti_connext_dds-version

• UNIX-based systems, root user:

/opt/rti_connext_dds-version

• Windows systems, user without Administrator privileges:

<your home directory>\rti_connext_dds-version

• Windows systems, user with Administrator privileges:

C:\Program Files\rti_connext_dds-version (for 64-bits machines) or
C:\Program Files (x86)\rti_connext_dds-version (for 32-bit machines)

You may also see $NDDSHOME or %NDDSHOME%, which refers to an environment
variable set to the installation path.

Wherever you see <NDDSHOME> used in a path, replace it with your installation path.

Note for Windows Users: When using a command prompt to enter a command that
includes the path C:\Program Files (or any directory name that has a space), enclose the
path in quotation marks. For example:

“C:\Program Files\rti_connext_dds-version\bin\rtiddsgen”

or if you have defined the NDDSHOME environment variable:

“%NDDSHOME%\bin\rtiddsgen”

❏ RTI Workspace directory, rti_workspace

The RTI Workspace is where all configuration files for the applications and example files
are located. All configuration files and examples are copied here the first time you run
RTI Launcher or any script in <NDDSHOME>/bin. The default path to the RTI Work-
space directory is:

• Mac OS X systems:

/Users/your user name/rti_workspace
2-2

Load Balancing by Sharing a Queue
• UNIX-based systems:

/home/your user name/rti_workspace

• Windows systems:

your Windows documents folder\rti_workspace

Note: 'your Windows documents folder' depends on your version of Windows.
For example, on Windows 7, the folder is C:\Users\your user name\Documents;
on Windows Server 2003, the folder is C:\Documents and Settings\your user
name\Documents.

You can specify a different location for the rti_workspace directory. See the RTI Connext
DDS Core Libraries Getting Started Guide for instructions.

❏ <path to examples>

Examples are copied into your home directory the first time you run RTI Launcher or any
script in <NDDSHOME>/bin. This document refers to the location of these examples as
<path to examples>. Wherever you see <path to examples>, replace it with the appropri-
ate path.

By default, the examples are copied to rti_workspace/version/examples

So the paths are:

• Mac OS X systems:

/Users/your user name/rti_workspace/version/examples

• UNIX-based systems:

/home/your user name/rti_workspace/version/examples

• Windows systems:

your Windows documents folder\rti_workspace\version\examples

Note: 'your Windows documents folder' is described above.

You can specify that you do not want the examples copied to the workspace. See the RTI
Connext DDS Core Libraries Getting Started Guide for instructions.

2.3 Load Balancing by Sharing a Queue
A DDS DataReader has an ingress ReaderQueue that stores received samples. The DataReader can
perform a take() operation to remove the data from the ReaderQueue, in which case a subse-
quent read/take will not see that sample. Two threads can read/take from the same DataReader
to balance the load of processing samples from the queue. However, each DataReader has a dif-
ferent ReaderQueue; therefore, they are independent from each other. "Taking" from one
DataReader does not affect the other DataReaders.

Queuing Service provides a way to share a ReaderQueue (SharedReaderQueue) among DataRead-
ers of the same Topic (see Figure 2.1) running in separate processes, possibly on different com-
puters. By sharing the same ReaderQueue, multiple DataReaders can collaborate, coordinate, and
load-balance among each other.
2-3

DataWriter Connection to a SharedReaderQueue
Figure 2.1 Load-Balancing Using Queuing Service

Realizing the SharedReaderQueue in a separate service also decouples the lifecycle of the sam-
ples from that of the producer (DataWriter) and consumer (DataReader) of the data.

In order to be shared, a ReaderQueue must have a ReaderQueueName, so that a DataReader can
specify which queue to attach to.

Queuing Service provides a way to host the SharedReaderQueues. DataReaders attach to a shared
ReaderQueue by specifying the same ReaderQueueName. Multiple DataReaders can attach to
the same shared ReaderQueue and Queuing Service will ensure that each sample is delivered to
exactly one DataReader.

SharedReaderQueues exist within SharedSubscribers. A SharedSubscriber has a name (Shared-
SubscriberName) that provides a scope for the shared ReaderQueue names. Each SharedReader-
Queue is associated with exactly one DDS Topic. A single SharedSubscriber is not allowed to
host two SharedReaderQueues of the same Topic name; hence the Topic name uniquely identifies
the SharedReaderQueue within the SharedSubscriber. For this reason, the name of a shared
ReaderQueue is defined by combining the two, as in: aTopicName@aSharedSubscriberName.

2.4 DataWriter Connection to a SharedReaderQueue
You can use a DataWriter to send data to a SharedReaderQueue. The DataWriter simply writes to
the Topic that is associated with a SharedReaderQueue.

With regards to QoS, the DataWriter can specify any DataWriter QoS except: reliability.kind
must be set to RELIABLE_RELIABILITY_QOS and reliability.acknowledgment_kind must be
set to APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE.

The DataWriter is typically also configured with durability.kind set to
VOLATILE_DURABILITY_QOS.
2-4

DataReader Connection to a SharedReaderQueue
For every received sample, Queuing Service sends an application-level acknowledgement
(AppAck) message to the QueueProducer's DataWriter indicating successful processing or rejec-
tion the sample.

The sending of the application-level acknowledgement (enabled by default) message is optional
and can be disabled on a per SharedReaderQueue basis by setting the tag
<app_ack_sample_to_producer> under <queue_qos>/<reliability> to false (see Table 3.15,
Queue QoS Tags).

Samples are successfully processed when they are stored in the SharedReaderQueue. Samples
are rejected when they cannot be stored in the SharedReaderQueue.

One possible cause of rejection is when the maximum number of samples that can be stored in
the queue is exceeded.

The response data of the AppAck message for successfully processed samples will be a single
byte set to 1. The response data for rejected samples will be a single byte set to 0.

You may want to capture the AppAck message by installing a listener on the DataWriter that
implements the on_application_acknowledgment() callback.

2.4.1 QueueProducer Wrapper

To simplify the use and configuration of a DataWriter to send samples to a SharedReaderQueue,
Connext DDS provides an abstraction, QueueProducer<aMessageType>, that wraps the DataW-
riter and provides additional services such as an operation to detect if there is a matching Share-
dReaderQueue or an operation to wait for application-level acknowledgement after sending a
sample.

For more information, see Chapter 8: Queuing Service Wrapper API.

Note: In this release, the QueueProducer wrapper API is only supported in the .NET API.

2.4.2 Samples with Large Maximum Size

By default, Connext DDS preallocates the samples in the QueueProducer’s DataWriter queue and
the keys stored with the instances to their maximum size. If the SharedReaderQueue type has
variable-size members (sequences and/or strings) with large maximum size this may lead to
high memory-usage.

For information on how to reduce memory consumption on a DataWriter, see Sample-Data and
Instance-Data Memory Management in the RTI Connext DDS Core Libraries User's Manual.

2.5 DataReader Connection to a SharedReaderQueue
You can use a DataReader to read samples from a SharedReaderQueue as long as the DataReader
is configured as follows:

❏ The DataReader must attach to the SharedSubscriber that contains the SharedReader-
Queue. It does this by setting the property dds.data_reader.shared_subscriber_name in
reader_qos.property with a value that is equal to the SharedSubscriberName. This prop-
erty must be propagated as follows:

<element>
 <name>dds.data_reader.shared_subscriber_name</name>
 <value>MySharedSubscriberName</value>
 <propagate>true</propagate>
</element>
2-5

Queuing Service Entities
❏ The DataReader must set a ContentFilteredTopic on the related_reader_guid. Queuing
Service uses this filter to distribute a sample only to the DataReader that has been selected
for the sample (see Sample Distribution to a Selected QueueConsumer (Section 2.7)).

❏ The DataReader must subscribe to the Topic <SharedReaderQueue Topic-
Name>@<SharedSubscriberName>.

With regards to QoS, the DataReader can specify any DataReader QoS except: reliability.kind
must be set to RELIABLE_RELIABILITY_QOS and reliability.acknowledgment_kind must be
set to APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE.

The DataReader is typically also configured with durability.kind set to
VOLATILE_DURABILITY_QOS.

The application must acknowledge the successful processing or rejection of a received sample
using the DataReader's acknowledge_sample() and/or acknowledge_all() operations.

The response data for successfully processed samples will be a single byte set to 1. The response
data for rejected samples will be a single byte set to 0.

For more information on the sample lifecycle in a SharedReaderQueue, see Sample Lifecycle In
Queuing Service (Section 2.9).

2.5.1 QueueConsumer Wrapper

To simplify the use and configuration of a DataReader to receive samples from a SharedReader-
Queue, Connext DDS provides an abstraction, QueueConsumer<MessageType>, which wraps
the DataReader and provide additional services such as an operation to detect if there is a match-
ing SharedReaderQueue or a blocking operation to receive samples.

For more information, see Chapter 8: Queuing Service Wrapper API.

Note: In this release, the QueueConsumer wrapper API is only supported in the .NET API.

2.5.2 Samples with Large Maximum Size

By default, Connext DDS preallocates the samples in the QueueConsumer’s DataReader queue
and the keys stored with the instances to their maximum size. If the SharedReaderQueue type
has variable-size members (sequences and/or strings) with large maximum size, this may lead
to high memory-usage.

For information on how to reduce memory consumption on a DataReader, see Sample-Data and
Instance-Data Memory Management in the RTI Connext DDS Core Libraries User's Manual.

2.6 Queuing Service Entities
A SharedReaderQueue is the result of the association of a Topic with a SharedSubscriber. For
each SharedReaderQueue, Queuing Service instantiates:

❏ A DataReader to receive data from the QueueProducer<aMessageType>

❏ A DataWriter to send data to the QueueConsumer<aMessageType>

In the entities above, aMessageType refers to the data type of the Topic associated with the
SharedReaderQueue.

The Queuing Service DataReader subscribes directly to the SharedReaderQueue Topic with name
aTopicName. Thus the Queuing Service DataReader which will 'match' the QueuePro-
ducer<aMessageType> DataWriter, subject to normal DDS type and QoS matching.
2-6

Sample Distribution to a Selected QueueConsumer
The Queuing Service DataWriter publishes a Topic whose name is obtained by concatenating the
SharedReaderQueue Topic name aTopicName with the SharedSubscriber name aSharedSub-
scriberName as in aTopicName@aSharedSubscriberName.

With this Topic name:

❏ The Queuing Service DataReader will only match the QueueProducer<aMessageType>

❏ The Queuing Service DataWriter will only match the QueueConsumer<aMessageType>

Figure 2.2 Queuing Service Entities and Topics

2.7 Sample Distribution to a Selected QueueConsumer
Queuing Service implements the logic that decides which QueueConsumer DataReader gets each
sample. To distribute a sample to the selected QueueConsumer, the QueueConsumer DataReader
uses a ContentFilteredTopic on the related_reader_guid. For example:

(@related_reader_guid.value = &hex(00000000000000000000000000000007))
2-7

Interaction of Publish-Subscribe Entities with Queuing Service Entities
Queuing Service uses the write_w_param() operation on the SharedReaderQueue DataWriter to
set the related_reader_guid to the value specified in the filter expression of the selected
DataReader (see Figure 2.3).

In Figure 2.3, when Queuing Service wants to send a sample to the first DataReader, it sets the field
related_reader_guid in WriteParams_t to 0xFF. To send to the second DataReader,
related_reader_guid is set to 0xEF.

2.8 Interaction of Publish-Subscribe Entities with Queuing Service
Entities
A regular DataReader of Topic aQueueTopicName@aSharedSubscriberName will match a
SharedReaderQueue DataWriter for the SharedSubscriber aSharedSubscriberName of Topic
aQueueTopicName. However, Queuing Service will notice that the DataReader's SharedSubscrib-
erName is not set and interpret this to mean that it does not want to share the ReaderQueue.
Instead, the DataReader wants traditional publish-subscribe access, which means it will get a
copy of each sample that is sent to any of the QueueConsumers. See Figure 2.4.

This approach ensures that RTI DDS Spy, RTI Recording Service, and other such tools that observe
data will continue to function without changes.

Note that the QueueProducer has a regular DataWriter of Topic aQueueTopicName. In addition
to the SharedReaderQueue DataReader, it will also match any regular DataReader of that Topic.

Figure 2.3 Sample Distribution to Selected QueueConsumer DataReader
2-8

Sample Lifecycle In Queuing Service
Consequently, the regular Connext DDS tools (such as RTI DDS Spy and RTI Recording Service)
will also receive the data sent by the QueueProducer.

Figure 2.4 Queuing Service Endpoint Matching with non-QueueConsumer DataReaders

2.9 Sample Lifecycle In Queuing Service
The samples received by a Queuing Service instance have a lifecycle described by the following
states:

❏ Enqueued: The sample has been received by Queuing Service and has been stored in the
SharedReaderQueue (persistent or in memory).

In addition, if SharedReaderQueue replication is enabled, the sample must have been
received and stored by a quorum of up-to-date replicas. See Chapter 7: High Availability.

❏ Assigned: The sample has been assigned to one of the QueueConsumers.

In addition, if SharedReaderQueue replication is enabled, the selected QueueConsumer
must have been communicated to the replicas and optionally confirmed by a quorum of
up-to-date replicas. See Chapter 7: High Availability.

❏ Sent: The sample has been sent to the designated QueueConsumer.

❏ Delivered: The sample has been delivered to a QueueConsumer and the (application-
level) acknowledgment of the successful delivery has been received from the QueueCon-
sumer.

In addition, if SharedReaderQueue replication is enabled, the delivery of the sample
must have been communicated to the replicas. See Chapter 7: High Availability.
2-9

Sample Lifecycle In Queuing Service
❏ Rejected: The sample has been delivered to the selected QueueConsumer and the (appli-
cation-level) acknowledgment from the QueueConsumer has been received with an indi-
cation that the message has been rejected.

❏ Timed out: The sample has been delivered to the selected QueueConsumer and it has not
been (application-level) acknowledged from the QueueConsumer for a configurable
maximum time (set using the tag <response_timeout> under <queue_qos>/<redeliv-
ery>, see Table 3.15, Queue QoS Tags).

❏ Expired: Indicates a sample that has exceeded a configurable maximum time to be held
by Queuing Service. The sample lifespan can be configured per SharedReaderQueue or
per QueueProducer:

• To configure the sample lifespan per SharedReaderQueue, use the <lifespan> tag
under <queue_qos>, see Table 3.15, Queue QoS Tags.

• To configure the sample lifespan per QueueProducer, set the Lifespan QoS policy
for the QueueProducer's DataWriter. This way all the samples sent by that Queue-
Producer will have a lifespan equal to the writer_qos.lifespan.duration. The lifes-
pan per QueueProducer, when finite, takes precedence over the lifespan per
SharedReaderQueue.

❏ FailedDelivery: Indicates a sample that has not been successfully delivered to any
QueueConsumer after the maximum number of attempts (configured using the tag
<max_delivery_retries> under <queue_qos>/<redelivery> for a SharedReaderQueue,
see Table 3.15, Queue QoS Tags.

In addition to the state, each sample has a flag that indicates whether the sample may be a dupli-
cate. This flag is set when Queuing Service sends a sample to a QueueConsumer but cannot
ensure that no other QueueConsumer has processed it.

You can inspect the status of the duplicate flag in a received sample by inspecting the field flag
in the SampleInfo. A sample may be a duplicate if the bit DDS_REDELIVERED_SAMPLE is
active.

Table 2.1 State Transitions

State(s) Transition Event to Next State Next State

<Init>

Sample is received by SharedReaderQueue DataReader and
stored in the SharedReaderQueue.

If SharedReaderQueue replication is enabled, sample is
received and stored by a quorum of up-to-date replicas.

Queuing Service sends an AppAck message to the QueuePro-
ducer.

Enqueued

Enqueued

Queuing Service decides which QueueConsumer should get
the sample.

If SharedReaderQueue replication is enabled, the selected
QueueConsumer has been communicated to the replicas
and optionally confirmed by a quorum of up-to-date repli-
cas.

Assigned
2-10

Selecting a QueueConsumer for a Sample
2.10 Selecting a QueueConsumer for a Sample
Queuing Service implements the logic that decides which QueueConsumer gets each sample.
This decision can be made according to different dispatch policies. To configure a dispatch pol-
icy and its properties, use the <distribution> tag under <queue_qos> (see Table 3.15, Queue
QoS Tags).

2.10.1 Round-Robin Dispatch Policy without Explicit QueueConsumer Availability
Feedback

This dispatch mode uses a round-robin approach to dispatch messages among the QueueCon-
sumers that have acknowledged all previous messages sent to them up to a specified threshold.
This dispatch mode does not require explicit feedback from the QueueConsumer.

For example, with a threshold of zero, samples are round-robin'ed among QueueConsumers
that have acknowledged all previous samples that were sent to them. With a threshold of 2, sam-
ples are round-robin'ed among QueueConsumers that have acknowledged all samples sent to
them except up to 2 samples (i.e., have acknowledged all, all but one, or all but two). With a
threshold of UNLIMITED (-1), samples are round-robin'ed among all QueueConsumers, regard-
less of the number of outstanding unacknowledged samples in each one of them.

Assigned

Queuing Service sends the sample to the designated Queue-
Consumer.

If the sample is the last sample in the SharedReaderQueue
that can be received by the QueueConsumer, Queuing Service
can be configured to mark the sample with the flag
DDS_LAST_SHARED_READER_QUEUE_SAMPLE. You
can inspect the status of this flag in a received sample by
inspecting the flag field in the SampleInfo.

Sent

Sent

Queuing Service receives an AppAck message from Queue-
Consumer indicating successful processing.

In addition, if SharedReaderQueue replication is enabled,
the delivery of the sample must is communicated to the rep-
licas.

Delivered

Sent
Queuing Service receives an AppAck message from Queue-
Consumer indicating sample rejection.

AttemptedDeliveryCount is incremented.

Enqueued WHEN
AttemptedDeliveryCount <
MAX_ATTEMPTS

FailedDelivery WHEN
AttemptedDeliveryCount ==
MAX_ATTEMPTS

Sent

Queuing Service does not receive an AppAck message after a
timeout.

DDS_REDELIVERED_SAMPLE is set.

AttemptedDeliveryCount is incremented

Enqueued WHEN
AttemptedDeliveryCount <
MAX_ATTEMPTS

FailedDelivery WHEN
AttemptedDeliveryCount ==
MAX_ATTEMPTS

Any state The lifespan timeout elapses Expired

Table 2.1 State Transitions

State(s) Transition Event to Next State Next State
2-11

Selecting a QueueConsumer for a Sample
With this dispatch mode, the threshold is set per SharedReaderQueue using the property
UNACKED_THRESHOLD. For example:

<distribution>
 <kind>ROUND_ROBIN</kind>
 <property>
 <value>
 <element>
 <name>UNACKED_THRESHOLD</name>
 <value>-1</value>
 </element>
 </value>
 </property>
</distribution>

2.10.2 Round-Robin Dispatch Policy with Explicit QueueConsumer Availability
Feedback

This dispatch mode uses a QueueConsumer Availability Topic, which is published by the
QueueConsumers and provides information about the capability of the QueueConsumer to pro-
cess messages from Queuing Service. The round-robin will be done among the QueueConsumers
that are available.

The ConsumerAvailability topic name is as follows: ConsumerAvailability@<SharedReader-
QueueName>, where <SharedReaderQueueName> is <SharedReaderQueueTopicName>@<Shared-
SubscriberName>.

The topic type is the following and can be found in <NDDSHOME>/resource/idl/QueuingSer-
viceTypes.idl.

struct ConsumerAvailability_t {
 GUID_t consumer_guid; //@key
 boolean reception_enabled;
 long unacked_threshold;
}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

The type is registered with the following name: RTI::QueuingService::ConsumerAvailability_t.

A QueueConsumer can report its availability by updating the unacked_threshold and
reception_enabled fields. The unacked_threshold field is equivalent to the threshold parameter
described in Round-Robin Dispatch Policy without Explicit QueueConsumer Availability Feed-
back (Section 2.10.1) but it can be set per QueueConsumer.

In addition, a QueueConsumer can indicate that it does not want to receive any samples from
Queuing Service by setting the field reception_enabled to DDS_BOOLEAN_FALSE.

The field consumer_id must be used to identify the QueueConsumer that sends the Availability
sample. This field must be the same value that was used to set the QueueConsumer ContentFil-
teredTopic described in Sample Distribution to a Selected QueueConsumer (Section 2.7).

By default, when using ROUND_ROBIN policy, a SharedReaderQueue does not create a
DataReader to receive availability updates from a QueueConsumer. To enable that behavior, set
the property ALLOW_CONSUMER_FEEDBACK to 1. For example:

<distribution>
 <kind>ROUND_ROBIN</kind>
 <property>
 <value>
 <element>
 <name>UNACKED_THRESHOLD</name>
 <value>-1</value>
2-12

Sending a Reply from QueueConsumer to QueueProducer
 </element>
 <element>
 <name>ALLOW_CONSUMER_FEEDBACK</name>
 <value>1</value>
 </element>
 </value>
 </property>
</distribution>

Notice that in a SharedReaderQueue with the previous configuration it is possible to have some
QueueConsumers reporting availability through the new topic and some QueueConsumers not
reporting availability and using the configuration threshold under <distribution>.

2.11 Sending a Reply from QueueConsumer to QueueProducer
Queuing Service also supports a request-reply communication model in which a requester appli-
cation sends a sample to a SharedReaderQueue, and a replier application receives the sample
from the SharedReaderQueue and returns a response to the requester application.

Realizing the request-reply communication model requires creating a new SharedReaderQueue
that will be used to send responses from the replier application to the requester application (see
Figure 2.5).

Figure 2.5 Request-Reply Communication Model

2.11.1 Requester Identification

In a request-reply pattern, requests must uniquely identify the associated QueueProducer so
that each reply sample can be unambiguously delivered to the requester application that sent
the associated request. To identify a QueueProducer, you can use the source GUID.
2-13

Sending a Reply from QueueConsumer to QueueProducer
The source_guid consists of a GUID; it can be set per sample using the source_guid field in the
WriteParams_t parameter provided to the QueueProducer's DataWriter write_w_params() oper-
ation.

If you do not want to set the source GUID of a sample, the QueueProducer's DataWriter will
assign it automatically to be equal to the DataWriter's virtual GUID.

In general, you should always assign the source GUID when sending requests. Otherwise, the
requester application will not be robust to potential restarts. If the source GUID is different
every time the requester application restarts, there may be responses that get lost since Queuing
Service will not know how to route them to the proper requester application.

2.11.2 Request-Reply Correlation

When the replier application receives a request sample from Queuing Service, it must extract the
source GUID and the sample identity in order to send them back as part of the reply to the
requester application. This allows requests and replies to be correlated.

The replier application can extract the identity of a request from the fields
related_original_publication_virtual_guid and
related_original_publication_virtual_sequence_number in the SampleInfo associated with the
request sample (see Figure 2.6).

Figure 2.6 Request Generation

The replier application can extract the source GUID of a request from the field
related_source_guid of the SampleInfo associated with the request sample (see Figure 2.6).

Once the replier application extracts the request sample identity and source GUID from the
request SampleInfo, it must attach them to the reply sample as follows:

❏ The sample identity will be set using the field related_sample_identity in the
WriteParams_t parameter provided to the DataWriter's write_w_params() operation.

❏ The source GUID will be set using the field related_source_guid in the WriteParams_t
parameter provided to the DataWriter's write_w_params() operation.
2-14

Dead-Letter Queues
When the requester application receives the reply, it can associate the reply with the correspond-
ing request by inspecting the related_original_publication_virtual_guid and
related_original_publication_virtual_sequence_number fields in the SampleInfo associated
with the reply sample (see Figure 2.6).

2.11.3 Sending the Reply Sample to the Associated Requester

To guarantee that a reply sample is only distributed to right Requester, the DataReader in the
Requester must use a ContentFilteredTopic on the related_source_guid, where the value is set to
the source GUID associated with the request. For the example in Figure 2.6, the filter would be:

(@related_source_guid.value = &hex(<SGUIDm>))

Alternatively, you can set the filter in the related_reader_guid, as follows:

(@related_reader_guid. value = &hex(<SGUIDm>))

2.11.4 QueueRequester Wrapper

To simplify the use and configuration of the DataReader and DataWriter in the requester applica-
tion, Connext DDS provides an abstraction, QueueRequester<MessageRequestType, Mes-
sageReplyType, which wraps the DataReader and DataWriter usage and provide additional
services such as an operation to wait for the response for a given request.

For more information, see Chapter 8: Queuing Service Wrapper API.

In this release, the QueueRequester wrapper API is only supported in the .NET API.

2.11.5 QueueReplier Wrapper

To simplify the use and configuration of the DataReader and DataWriter in the replier application,
Connext DDS provides an abstraction, QueueReplier<MessageRequestType, MessageReply-
Type>, which wraps the DataReader and DataWriter usage.

For more information, see Chapter 8: Queuing Service Wrapper API.

In this release, the QueueReplier wrapper API is only supported in the .NET API.

2.12 Dead-Letter Queues
Queuing Service provides support for dead-letter queues. A dead-letter queue is a SharedReader-
Queue to which other SharedReaderQueues can send messages that for some reason could not
be successfully delivered and processed.

Queuing Service supports the definition of one dead-letter queue per SharedSubscriber by using
the XML tag <dead_letter_shared_reader_queue>. The dead-letter queue has two limitations
compared with a regular queue:

1. It cannot have a <reply_type>.

2. It cannot have a <type_name>.

The type associated with the samples in a dead-letter queue is DeadLetter_t, defined as follows:

enum UndeliveredReasonKind {
 LIFESPAN_UNDELIVERED_REASON_KIND,
 MAX_RETRIES_UNDELIVERED_REASON_KIND
}
struct GUID_t {
2-15

Dead-Letter Queues
 octet value[16];
};
struct SequenceNumber_t {
 long high;
 unsigned long low;
};
struct SampleIdentity_t {
 GUID_t writer_guid;
 SequenceNumber_t sequence_number;
};
struct SampleBuffer_t {
 sequence<octet> value;
};
struct DeadLetter_t {
 string queue_name;
 SampleIdentity_t sample_identity;
 UndeliveredReasonKind undelivered_reason;
 SampleBuffer_t sample_buffer;
}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

You can find the IDL file that defines the DeadLetter types in <NDDSHOME>/resource/idl/
QueuingServiceTypes.idl.

The queue_name has the format <aQueueTopicName>@<aSharedSubscriberName>.

The sample_identity contains the identity of the undelivered sample.

The sample_buffer contains the sample data in serialized form with CDR representation. To
deserialize the sample data, use the following operations:

❏ C: FooTypeSupport_deserialize_data_from_cdr_buffer()

❏ C++: FooTypeSupport::deserialize_data_from_cdr_buffer()

❏ Java: FooTypeSupport.get_instance().deserialize_from_cdr_buffer()

❏ C++/CLI: FooTypeSupport::deserialize_data_from_cdr_buffer()

❏ C#: FooTypeSupport.deserialize_data_from_cdr_buffer()

For additional information on these deserialization operations, see the Connext DDS API Refer-
ence HTML documentation.

The undelivered_reason is an enumeration describing why the sample was not delivered. There
are two possible reasons:

❏ The lifespan expired for the sample.

❏ The sample exceeded the maximum number of redelivery retries.

For more information on why a sample may be undelivered, see Sample Lifecycle In Queuing
Service (Section 2.9).

By default, SharedReaderQueues do not send undelivered samples to the dead-letter queue. To
enable this behavior, you must use the attribute dead_letter_queue in the
<shared_reader_queue> tag. This attribute must be set to the name of the dead-letter queue in
the configuration file.
2-16

Detecting the Presence of a SharedReaderQueue
2.13 Detecting the Presence of a SharedReaderQueue
You can detect the existence of a SharedReaderQueue for a given QueueProducer or QueueCon-
sumer by monitoring the matched subscriptions associated with the QueueProducer's DataW-
riter and the matched publications associated with the QueueConsumer's DataReader.

The PublicationBuiltinTopicData and SubscriptionBuiltinTopicData include a field called ser-
vice, which, in the case of a Queuing Service DataWriter or DataReader, is set to
QUEUING_SERVICE_QOS.

Since the durability of the QueueProducer DataWriter is normally set to VOLATILE, to guaran-
tee that the initial samples are received by a Queuing Service instance, the application should
check that there is a match between a QueueProducer DataWriter and a SharedReaderQueue
DataReader before starting to publish samples.

For convenience and ease of use, the wrapper APIs offer methods to detect when there are
matching SharedReaderQueue for QueueProducers, QueueConsumers, QueueRequesters, and
QueueRepliers. See Chapter 8: Queuing Service Wrapper API.

2.14 Queuing Service Persistency
By default, both the service state and the SharedReaderQueues samples are kept in memory.

For fault tolerance, and to preserve the current configuration, Queuing Service can be configured
to persist its configuration, as well as the SharedReaderQueues samples to disk.

Figure 2.7 Service State Persistency

2.14.1 Service State Persistency

The configuration of a Queuing Service instance is dynamic. Once the service is bootstrapped
from a configuration file in XML format or remotely by getting the configuration from other
2-17

Queuing Service Persistency
Queuing Service instances, the configuration can be changed at run time by sending remote com-
mands to the service (see Chapter 5: Administering Queuing Service from a Remote Location).
For example, you may decide to add a new SharedReaderQueue or to remove a SharedReader-
Queue.

You can choose to persist the configuration to disk each time it changes by setting the <kind>
tag within <queuing_service>/<service_qos>/<persistence> to PERSISTENT (see Table 3.15,
Queue QoS Tags).

The location of the file where the configuration is persisted, as well as the properties of the stor-
age process, can be configured using the <filesystem> tag under <queuing_service>/
<persistence_settings> (see Configuring Persistence Settings (Section 3.3.5)).

When Queuing Service is restarted, it will look for its persisted configuration using the following
values:

❏ Command-line option -appName (see Queuing Service runs as a separate application.
The script to run the executable is in <NDDSHOME>/bin. There are four ways to start
Queuing Service: (Section))

❏ XML tag values <directory> and <file_prefix> under <persistence_settings>/<filesys-
tem>

If the persisted configuration is found and the service is configured from a XML file, the per-
sisted configuration will be used to configure the service instance. In that case, the input XML
file is only used to find the location of the persistent storage and configure the storage process. If
the persisted configuration is not found, the service will be initialized using the input XML file.

When the service configuration is obtained remotely using the command-line option -cfgRe-
mote (see Table 4.1, RTI Queuing Service Command-Line Options), any persisted configuration
will be dropped and the service will always be initialized using the remote XML configuration.

The location and name of the file where the configuration is persisted is as follows:

[directory]/[prefix]service@[appName].db

Where:

❏ [directory] is configured using the tag <directory> under <persistence_settings>/<file-
system>

❏ [prefix] is configured using the tag <file_prefix> under <persistence_settings>/<filesys-
tem>

❏ [appName] is configured using the command-line parameter -appName.

2.14.2 SharedReaderQueue Persistency

A SharedReaderQueue can be configured to persist the undelivered samples into disk by setting
the XML tag <kind> within <shared_reader_queue>/<queue_qos>/<persistence> to PERSIS-
TENT (see Table 3.15, Queue QoS Tags).

Queuing Service provides two different PERSISTENT implementations:

❏ Without In-Memory State: In this mode, the metadata and user data associated with the
SharedReaderQueue's samples is kept only on disk. Every time the metadata or user data
is used, Queuing Service reads it from disk.

❏ With In-Memory State: In this mode, the metadata for the SharedReaderQueue's sam-
ples is always kept both on disk and in memory. The sample's user data is kept in mem-
ory and on disk only when:
2-18

Queuing Service Persistency
• Its serialized size is smaller than the threshold set using the tag
<domain_participant>/<memory_management>/<sample_buffer_min_size>
(see Memory Management for a Sample (Section 2.15.2)).

• <domain_participant>/<memory_management>/<sample_buffer_trim_to_size>
is set to to false (see Memory Management for a Sample (Section 2.15.2)).

PERSISTENT SharedReaderQueues with in-memory state introduce significant performance
improvements because the sample metadata, and in some cases the sample user data, does not
need to be accessed from disk. The disadvantage is that the number of samples on the Share-
dReaderQueue is limited by the available memory, as the service needs to keep some state per
sample in memory.

To configure a PERSISTENT SharedReaderQueue to keep the sample state in-memory (the
default configuration), you must set the XML tag <in_memory_state> under <queue_qos>/
<persistence> to true.

Samples are persisted before Queuing Service sends an application-level acknowledgement
(AppAck) message to the QueueProducer DataWriter indicating successful processing of the
sample.

Like with the service configuration, the location of the file(s) where the SharedReaderQueue's
samples are persisted, as well as the properties of the storage process, can be configured using
the <filesystem> tag under <queuing_service>/<persistence_settings> (see Configuring Per-
sistence Settings (Section 3.3.5)).

When a SharedReaderQueue is created, the service will locate its persisted samples using the
following values:

❏ Command-line option -appName (see Queuing Service runs as a separate application.
The script to run the executable is in <NDDSHOME>/bin. There are four ways to start
Queuing Service: (Section))

❏ XML tag values <directory> and <file_prefix> under <persistence_settings>/<filesys-
tem>

❏ The SharedSubscriber's name configured using the name attribute in
<shared_subscriber>

❏ The SharedReaderQueue's topic name configured using the XML tag value
<topic_name> under <shared_reader_queue>

❏ The DomainParticipant's domain ID configured using the XML tag value <domain_id>
under <domain_participant>

If the samples are found, the SharedReaderQueue will be initialized with them.

The location and name of the file where the SharedReaderQueue's samples are persisted is as
follows:

❏ Without in-memory state:

[directory]/[prefix] [topicName]@[sharedSubscriberName]@[domainId]@[appName].db

❏ With in-memory state:

For data:
[directory]/[prefix] [topicName]@[sharedSubscriberName]@[domainId]@[appName]_d[fileIndex].db

For metadata:
[directory]/[prefix] [topicName]@[sharedSubscriberName]@[domainId]@[appName]_m[fileIndex].db

Where:
2-19

SharedReaderQueue Resource Management
❏ [directory] is configured using the tag <directory> under <persistence_settings>/<file-
system>

❏ [prefix] is configured using the tag <file_prefix> under <persistence_settings>/<filesys-
tem>

❏ [appName] is configured using the command-line parameter -appName

❏ [topicName] is configured using the tag value <topic_name> under
<shared_reader_queue>

❏ [sharedSubscriberName] is configured using the attribute name under
<shared_subscriber>

❏ [domain_id] is configured using the tag value <domain_id> under
<domain_participant>

❏ *[fileIndex] is the index of the file containing data or metadata. This index always
increases and Queuing Service creates a new file after <filesystem>/<file_max_size> is
reached (see Table 3.9, Filesystem Tags).

2.14.2.1 The Restore Process

Before the samples for a SharedReaderQueue are restored, the service instance will preprocess
them as follows. See Sample Lifecycle In Queuing Service (Section 2.9) for more information.

❏ If there is no DeadLetterSharedReaderQueue, the service will remove expired samples
from disk based on the expiration time set when the samples were first added to the
SharedReaderQueue.

❏ If there is no DeadLetterSharedReaderQueue, the service will remove samples on the
FailedDelivery state from disk.

❏ The service will remove samples on the Delivered state from disk.

❏ The service will move samples in the Assigned, Sent, Rejected, or Timed-out state to the
Enqueued state.

2.15 SharedReaderQueue Resource Management
Queuing Service provides fine-grained control over the resources (memory and disk) associated
with the samples in a SharedReaderQueue. It provides ways to monitor when the space taken
by the samples in a SharedReaderQueue goes above or below configurable watermarks and
when the SharedReaderQueue fills up. Finally, it also provides a way to configure the Share-
dReaderQueue behavior when a new sample arrives and the SharedReaderQueue is full.

2.15.1 Maximum SharedReaderQueue Size

The maximum size of a SharedReaderQueue can be configured based on number of samples,
number of bytes in memory, or both.

2.15.1.1 Initial and Maximum Number of Samples

The tag <resource_limits> under <shared_reader_queue>/<queue_qos> can be used to config-
ure the initial and maximum number of samples in a SharedReaderQueue (see Table 3.15,
Queue QoS Tags) as well as if dynamic allocations are allowed and how they occur.

Example:
2-20

SharedReaderQueue Resource Management
<resource_limits>
<queue_allocation_settings>

<initial_count>10</initial_count>
<max_count>LENGTH_UNLIMITED</max_count>

 <incremental_count>-1</incremental_count>
</queue_allocation_settings>

</resource_limits>

In the above example:

❏ initial_count: Queuing Service will pre-allocate ten queue samples in advance.

❏ max_count: The maximum number of samples that the queue can hold is UNLIMITED.

❏ incremental_count: As additional samples are needed, Queuing Service will double the
amount of extra memory allocated each time memory is needed.

Ranges:

❏ initial_count: positive number and < max_count

❏ max_count: LENGTH_UNLIMITED or positive number

❏ incremental_count: -1 (double) or positive number

Defaults:

❏ initial_count: 1

❏ max_count: LENGTH_UNLIMITED

❏ incremental_count: -1

When max_count is exceeded, the behavior of a SharedReaderQueue when new samples are
received can be configured using <replacement_policy> under <resource_limits>. See Sample
Replacement Policy (Section 2.15.4).

2.15.1.2 Maximum Number of Bytes in Memory

The tag <resource_limits> under <shared_reader_queue>/<queue_qos> can also be used to
configure the maximum size of a SharedReaderQueue based on the number of bytes required to
store the samples in-memory. For example:

<resource_limits>
 <queue_allocation_settings>
 <max_in_memory_bytes>1000000</max_in_memory_bytes>
 </queue_allocation_settings>
</resource_limits>

In the above example the size required to store the SharedReaderQueue samples in-memory
cannot exceed 1,000,000 bytes. Notice that if the SharedReaderQueue does not have any samples
and the size of a new sample exceeds 1,000,000 bytes, this sample will be stored in the Share-
dReaderQueue. Therefore, it is possible to go beyond 1,000,000 bytes when the SharedReader-
Queue is empty.

The configuration parameter max_in_memory_bytes includes both the sample metadata and
the sample user data. The parameter does not take into account the SharedReaderQueue meta-
data and the preallocated samples (metadata and user data) that are not currently used.

If both <max_count> and <max_in_memory_bytes> are set to a finite number, the maximum
size of the SharedReaderQueue will be limited by the limit that is reached first.

<max_in_memory_bytes> is ignored for PERSISTENT SharedReaderQueues where the state is
not kept in-memory.

Ranges:
2-21

SharedReaderQueue Resource Management
❏ max_in_memory_bytes: LENGTH_UNLIMITED or positive number

Defaults:

❏ max_in_memory_bytes: LENGTH_UNLIMITED

2.15.2 Memory Management for a Sample

For every sample in a SharedReaderQueue, Queuing Service will use a buffer to store the content
of the sample in serialized form. The memory for that buffer may come from a pre-allocated
pool of buffers or may be dynamically allocated from the heap upon sample reception. This
behavior is controlled per <domain_participant> using the XML tag <memory_management>
(see Table 3.10, DomainParticipant Tags), which affects all the SharedReaderQueues within the
<domain_participant>.

For example:

<memory_management>
<sample_buffer_min_size>16000</sample_buffer_min_size>
<sample_buffer_trim_to_size>true</sample_buffer_trim_to_size>

</memory_management>

In the above example:

❏ sample_buffer_min_size: If the serialized size of an incoming sample is smaller or equal
to 16000 bytes, Queuing Service will use a pre-allocated buffer from a pool to hold the
sample. The initial and maximum number of buffers in the pool as well as the pool’s
growth policy is configured using the XML tag <resource_limits> under
<shared_reader_queue>/<queue_qos>. When the serialized size of the incoming sample
is greater than 16,000 bytes, Queuing Service will allocate the buffer from the heap dynam-
ically upon sample reception.

❏ sample_buffer_trim_to_size: For dynamically allocated buffers Queuing Service will
release the memory after the sample is removed from the SharedReaderQueue.

For more information on <memory_management> and its default values, see Table 3.10,
DomainParticipant Tags.

2.15.3 High and Low Watermarks

The tag <queue_watermark_settings> under <shared_reader_queue>/<queue_qos>/
<resource_limits> can be used to configure high and low watermarks in a SharedReaderQueue
(see Table 3.15, Queue QoS Tags). Watermarks are expressed as a percentage with respect to the
maximum number of samples or maximum number of bytes allowed in the SharedReader-
Queue. For example:

<resource_limits>
 <queue_allocation_settings>
 <max_count>1000</max_count>
 <max_in_memory_bytes>10000000</max_in_memory_bytes>
 </queue_allocation_settings>
 <queue_watermark_settings>
 <high_watermark>90</low_watermark>
 <low_watermark>10</low_watermark>
 </queue_watermark_settings>
</resource_limits>

In the above example, the high watermark of 90% corresponds to 900 samples (9,000,000 bytes)
and the low watermark of 10% corresponds to 100 samples (1,000,000 bytes).
2-22

SharedReaderQueue Resource Management
An application can monitor if the number of samples in a SharedReaderQueue go over the high
watermark or below the low watermark by retrieving the SharedReaderQueue status using the
remote administration command Get SharedReaderQueue Status (see Get SharedReaderQueue
Status (Section 5.4.4)) or by subscribing to the SharedReaderQueue status monitoring topic (see
Chapter 6: Publish-Subscribe Monitoring of Queuing Service from a Remote Location).

The SharedReaderQueueStatus type used to provide the status of a SharedReaderQueue can be
found <NDDSHOME>/resource/idl/QueuingServiceTypes.idl :

struct SharedReaderQueueStatus {
...
unsigned long long high_watermark_count;
unsigned long long low_watermark_count;
unsigned long long queue_full_count;
...
unsigned long long high_watermark_count_change;
unsigned long long low_watermark_count_change;
unsigned long long queue_full_count_change;
...

}; //@Extensibility MUTABLE_EXTENSIBILITY

Where:

❏ high_watermark_count: Number of times that the SharedReaderQueue went over the
high watermark since the service started.

❏ low_watermark_count: Number of times that the SharedReaderQueue went below the
low watermark since the service started.

❏ high_watermark_count_change: Number of times that the SharedReaderQueue has
gone over the high watermark since the last remote administration command to retrieve
the status of the SharedReaderQueue.

❏ low_watermark_count_change: Number of times that the SharedReaderQueue has gone
below the low watermark since the last remote administration command to retrieve the
status of the SharedReaderQueue.

Notice that it is also possible to monitor how many times the SharedReaderQueue filled up by
inspecting the fields queue_full_count and queue_full_count_change.

2.15.4 Sample Replacement Policy

The tag <replacement_policy> under <shared_reader_queue>/<queue_qos>/
<resource_limits> can be used to configure a SharedReaderQueue behavior when it is full and a
new sample is received. For example:

<resource_limits>
 <replacement_policy>
 <kind>REJECT_WITHOUT_REPLACEMENT</kind>
 </replacement_policy>
</resource_limits>

In the above example, a new incoming sample will be rejected if there is no space for it in the
SharedReaderQueue. When a sample is rejected, and if <app_ack_sample_to_producer> is set
to true for the SharedReaderQueue, Queuing Service will send an AppAck message to the
QueueProducer with a payload byte set to 0.

This version of Queuing Service supports two kinds of replacement policies:

❏ REJECT_WITHOUT_REPLACEMENT: New samples are rejected when the SharedRead-
erQueue is full.
2-23

High Availability
❏ WAIT_WITHOUT_REPLACEMENT: New samples are kept in the SharedReaderQueue's
DataReader cache until they can be added to the SharedReaderQueue.

Default:

❏ kind: REJECT_WITHOUT_REPLACEMENT

Notice that the WAIT_WITHOUT_REPLACEMENT replacement kind allows you to implement
a flow-control mechanism with the QueueProducer's DataWriter in which the DataWriter’s
write() operation will block if new samples cannot be added to the SharedReaderQueue.

To achieve this behavior:

❏ The SharedReaderQueue's DataReader’s cache must have a finite size. This can be done
by configuring <shared_reader_queue>/<datareader_qos>/<resource_limits>/
<max_samples> to a finite number.

❏ The QueueProducer's DataWriter’s send window size must be a finite value. This can be
done by configuring <datawriter_qos>/<protocol>/<rtps_reliable_writer>/
<max_send_window_size>.

If a new sample arrives to the SharedReaderQueue and there is no space for it in the Share-
dReaderQueue's DataReader cache, the sample will be rejected by Connext DDS. The QueuePro-
ducer's DataWriter will not be able to mark that sample or any subsequent samples as
acknowledged and eventually it will block after its send window fills up.

2.16 High Availability
For high availability, you can configure Queuing Service to replicate both the content of the
SharedReaderQueues and the service configuration.

By default, SharedReaderQueues within a Queuing Service instance are not replicated. Share-
dReaderQueues can optionally be replicated across multiple instances of Queuing Service run-
ning on the same or different nodes.

By default, the service configuration is not replicated. The service configuration can optionally
be replicated across multiple instances of Queuing Service running in the same or different nodes.

For more information on SharedReaderQueues and service configuration replication, see
Chapter 7: High Availability.

2.17 Remote Administration
You can control Queuing Service remotely by sending commands through a special topic. Any
Connext application can be implemented to send these commands and receive their correspond-
ing responses.

These remote administration commands will allow you to:

❏ Create SharedReaderQueues

❏ Delete SharedReaderQueues

❏ Flush SharedReaderQueues

❏ Get SharedReaderQueues status

❏ Get service data
2-24

Queuing Service Monitoring
❏ Get samples from a SharedReaderQueue

For more information on remote administration, see Chapter 5: Administering Queuing Service
from a Remote Location.

2.18 Queuing Service Monitoring
With Queuing Service, you can monitor the status of the service and its SharedReaderQueues
using request-reply or publish-subscribe communication patterns.

Request-reply monitoring is done by issuing remote administration commands that retrieve the
status of the different entities in the service. See Chapter 5: Administering Queuing Service from
a Remote Location.

Publish-subscribe monitoring is done by subscribing to monitoring topics. See Chapter 6: Pub-
lish-Subscribe Monitoring of Queuing Service from a Remote Location.
2-25

Chapter 3 Configuring Queuing Service

This chapter describes how to configure Queuing Service. For installation instructions, please see
the Queuing Service Getting Started Guide.

Queuing Service is configured using a configuration in XML format. There are three different
ways to provide the initial configuration to Queuing Service:

❏ Configuration file: The file(s) can be implicit or explicit using the -cfgFile command-line
option (see How to Load the XML Configuration from a File (Section 3.1)).

❏ Database: The Queuing Service configuration can be persisted and restored from disk by
enabling service state Persistency (see Service State Persistency (Section 2.14.1)).

❏ Remote configuration: Queuing Service can be set up to obtain its initial configuration
remotely from a different Queuing Service instance by using the -cfgRemote command-
line option (see Table 4.1).

Before reading this chapter, you should be familiar with Terms to Know (Section 2.1).

This chapter describes:

❏ How to Load the XML Configuration from a File (Section 3.1)

❏ XML Syntax and Validation (Section 3.2)

❏ XML Tags for Configuring Queuing Service (Section 3.3)

3.1 How to Load the XML Configuration from a File
Queuing Service loads its XML configuration file(s) from multiple locations. This section presents
the various approaches, listed in load order.

The first three locations only contain QoS Profiles and are inherited from Connext DDS (see
Chapter 15 in the RTI Connext DDS Core Libraries User's Manual).

❏ <NDDSHOME>/resource/xml/NDDS_QOS_PROFILES.xml

This file contains the Connext DDS default QoS values; it is loaded automatically if it
exists. (First to be loaded)

❏ File in NDDS_QOS_PROFILES

The files (or XML strings) separated by semicolons referenced in this environment vari-
able are loaded automatically.

❏ <working directory>/USER_QOS_PROFILES.xml

This file is loaded automatically if it exists.
3-1

How to Load the XML Configuration from a File
The next locations are specific to Queuing Service:

❏ <NDDSHOME>/resource/xml/RTI_QUEUING_SERVICE.xml

This file contains the default Queuing Service configuration; it is loaded if it exists.
RTI_QUEUING_SERVICE.xml defines a service with an empty SharedSubscriber and
with administration enabled.

❏ <working directory>/USER_QUEUING_SERVICE.xml

This file is loaded automatically if it exists.

❏ File specified using the command line parameter -cfgFile

The command-line option -cfgFile (see Table 4.1, RTI Queuing Service Command-Line
Options) can be used to specify a configuration file.

An example configuration file is seen below. You will learn the meaning of each line as you read
the rest of this chapter.

Example XML Configuration File

<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

 <types>
 <struct name="Foo">
 <member type="string" stringMaxLength="255" name="message"/>
 </struct>

 <struct name="Bar">
 <member type="string" stringMaxLength="255" name="message"/>
 </struct>
 </types>

 <queuing_service name="QueuingService_1">
 <administration>
 <domain_id>56</domain_id>
 </administration>

 <domain_participant name="DomainParticipant_1">
 <domain_id>57</domain_id>

 <shared_subscriber name="SharedSubscriber_1">
 <session_settings>
 <session name="Session_1" />
 </session_settings>

 <dead_letter_shared_reader_queue name="DeadLetter_1"

 session="Session_1">
 <topic_name>DeadLetter</topic_name>
 </dead_letter_shared_reader_queue>

 <shared_reader_queue session="Session_1"
 dead_letter_queue="DeadLetter_1">
 <topic_name>HelloWorld</topic_name>
 <type_name>Foo</type_name>
 <reply_type>Bar</reply_type>

 <queue_qos>
 <distribution>
3-2

XML Syntax and Validation
 <kind>ROUND_ROBIN</kind>
 </distribution>

 <lifespan>
 <duration>
 <sec>120</sec>
 <nanosec>0</nanosec>
 </duration>
 </lifespan>

 <redelivery>
 <reponse_timeout>
 <duration>
 <sec>10</sec>
 <nanosec>0</nanosec>
 </duration>
 </reponse_timeout>
 <max_delivery_retries>10</max_delivery_retries>
 </redelivery>
 </queue_qos>
 </shared_reader_queue>
 </shared_subscriber>
 </domain_participant>
 </queuing_service>
</dds>

3.2 XML Syntax and Validation
The XML configuration file must follow these syntax rules:

❏ The syntax is XML; the character encoding is UTF-8.

❏ Opening tags are enclosed in <>; closing tags are enclosed in </>.

❏ A tag value is a UTF-8 encoded string. Legal values are alphanumeric characters. Queu-
ing Service's parser will remove all leading and trailing spaces from the string before it is
processed. For example, " <tag> value </tag>" is the same as "<tag>value</tag>".

❏ All values are case-sensitive unless otherwise stated.

❏ Comments are enclosed as follows: <!-- comment -->.

❏ The root tag of the configuration file must be <dds> and end with </dds>.

Queuing Service provides an XSD file that describes the format of the XML content. We recom-
mend including a reference to this file in the XML file that contains the Queuing Service configu-
ration—this provides helpful features in code editors such as Visual Studio and Eclipse,
including validation and auto-completion while you are editing the XML file.

The XSD definition of the XML elements is in <NDDSHOME>/resource/schema/
rti_queuing_service.xsd.

To include a reference to the XSD document in your XML file, use the attribute xsi:noN-
amespaceSchemaLocation in the <dds> tag. For example:

<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespace-
SchemaLocation= "<Queuing Service installation directory>/resource/schema/
rti_queuing_service.xsd">
3-3

XML Tags for Configuring Queuing Service
...
</dds>

3.3 XML Tags for Configuring Queuing Service
This section describes the XML tags you can use in a Queuing Service configuration file. The fol-
lowing diagram and Table 3.1 describe the top-level tags allowed within the root <dds> tag.

3.3.1 Configuring Queuing Service Types

Queuing Service allows users to provide type definitions for a SharedReaderQueue using two
different mechanisms:

❏ Type definition in the XML configuration file

❏ Type discovery

See Chapter 15 in the RTI Connext
DDS Core Libraries User’s Manual

See Configuring Queuing Service
Types (Section 3.3.1)

See Configuring Queuing Service
(Section 3.3.2)

Table 3.1 Top-Level Tags in the Configuration File

Tags within
<dds> Description

Number
of Tags

Allowed

<queuing_service>
Specifies a Queuing Service configuration. See Configuring Queuing Service
(Section 3.3.2).

1 or more

(required)

<qos_library>

Specifies a QoS library and profiles.

The contents of this tag are specified in the same manner as for a Connext
DDS QoS profile file. See Chapter 15 in the RTI Connext DDS Core Libraries
User’s Manual.

0 or more

<types>
Defines types that can be used by Queuing Service. See Configuring Queuing
Service Types (Section 3.3.1).

0 or 1
3-4

XML Tags for Configuring Queuing Service
To define and use a type in your XML configuration file:

1. Define your type within the <types> tag. (This is one of the top-level tags, see Table 3.1,
Top-Level Tags in the Configuration File.)

2. Refer to it using its fully qualified name in the SharedReaderQueues that will use it.

For example:

<?xml version="1.0"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

 <types>
 <struct name="Foo">
 <member type="string" stringMaxLength="255" name="message"/>
 </struct>

 <struct name="Bar">
 <member type="string" stringMaxLength="255" name="message"/>
 </struct>
 </types>

 <queuing_service name="QueuingService_1">
 ...
 <domain_participant name="DomainParticipant_1">
 <domain_id>57</domain_id>

 <shared_subscriber name="SharedSubscriber_1">
 <session_settings>
 <session name="Session_1" />
 </session_settings>
 <dead_letter_shared_reader_queue name="DeadLetter_1"

 session="Session_1">
 <topic_name>DeadLetter</topic_name>
 </dead_letter_shared_reader_queue>

 <shared_reader_queue session="Session_1"
 dead_letter_queue="DeadLetter_1">
 <topic_name>HelloWorld</topic_name>
 <type_name>Foo</type_name>
 <reply_type>Bar</reply_type>

 ...
 </shared_reader_queue>
 </shared_subscriber>
 </domain_participant>
 </queuing_service>
</dds>

When types are defined in XML, Queuing Service is registering them with the underlying DDS
DomainParticipant using as the registration name the fully qualified name of the type under the
<type> tag.

If you refer to types that are not defined in the configuration file, Queuing Service has to discover
the type representation (e.g., a typeobject). A SharedReaderQueue cannot be instantiated with-
out the type representation information.
3-5

XML Tags for Configuring Queuing Service
3.3.2 Configuring Queuing Service

A configuration file must have at least one <queuing_service> tag, which is used to configure
an execution of Queuing Service. A configuration file may contain multiple <queuing_service>
tags.

When you start Queuing Service, you can specify which <queuing_service> tag to use to config-
ure the service using the -cfgName command-line parameter.

For example:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

...
 <queuing_service name="QueuingService_1">
 ...
 </queuing_service>

...
 <queuing_service name="QueuingService_2">

...
 </queuing_service>
</dds>

Starting Queuing Service with the following command will use the <queuing_service> tag with
the name QueuingService_1:

Queuingservice -cfgFile example.xml -cfgName QueuingService_1

Because a configuration file may contain multiple <queuing_service> tags, one file can be used
to configure multiple Queuing Service executions.

Table 3.2, Queuing Service Tags describes the tags allowed within a <queuing_service> tag.
Notice that the <domain_participant> tag is required.
3-6

XML Tags for Configuring Queuing Service
3.3.3 Configuring Administration

You can create a Connext DDS application that can remotely control Queuing Service. The
<administration> tag is used to enable remote administration and configure its behavior.

By default, remote administration is turned off in Queuing Service for security reasons. A remote
administration section is not required in the configuration file.

For example:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">
 <queuing_service name="QueuingService_1">
 <administration>
 <domain_id>55</domain_id>
 </administration>

...
 </queuing_service>
</dds>

Table 3.2 Queuing Service Tags

Tags within
<queuing_service> Description

Number
of Tags

Allowed

<administration>
Enables and configures remote administration. See Configuring Adminis-
tration (Section 3.3.3) and Chapter 5: Administering Queuing Service
from a Remote Location.

0 or 1

<domain_participant>

For each <domain_participant> tag, Queuing Service creates one Domain-
Participant to communicate over DDS.

SharedSubscribers are defined within a <domain_participant>.

See Configuring DomainParticipants (Section 3.3.6).

1 or more

(required)

<monitoring>
Enables and configures general remote Pub/Sub monitoring.

See Configuring Monitoring (Section 3.3.4).
0 or 1

<persistence_settings>
Configures the storage settings that are used to persist the service state as
well as the SharedReaderQueues samples. See Configuring Persistence
Settings (Section 3.3.5).

0 or 1

<replication_settings>

Configures the default settings for the replication protocol for Share-
dReaderQueues and configuration.

These settings can be overridden by the settings under:

• <shared_reader_queue_replication> under <service_qos>
• <configuration_replication> under <service_qos>
• <replication> under <queue_qos>

Important: Using this tag does not enable replication. To enable replica-
tion, set:

• <shared_reader_queue_replication> under <service_qos> or <rep-
lication> under <queue_qos> for SharedReaderQueues

• <configuration_replication> under <service_qos> for configuration
See Chapter 7: High Availability.

0 or 1

<service_qos> Configures the QoS for the service. See Table 3.3, Service QoS Tags 0 or 1

<statistics>
Configures the statistics-gathering process for publish-subscribe and
request-reply monitoring. See Configuring Monitoring (Section 3.3.4).

0 or 1
3-7

XML Tags for Configuring Queuing Service
When remote administration is enabled, Queuing Service will create a DomainParticipant, Pub-
lisher, Subscriber, DataWriter, and DataReader. These entities are used to receive commands and
send responses. You can configure these entities with QoS tags within the <administration> tag.

Table 3.4, Remote Administration Tags lists the tags allowed within <administration> tag.
Notice that the <domain_id> tag is required.

For more details, please see Chapter 5: Administering Queuing Service from a Remote Location.

Note: The command-line options used to configure remote administration take precedence over
the XML configuration.

3.3.3.1 Configuring Memory Management for a CommandReply Buffer

The <memory_management> tag under <administration> controls how Queuing Service allo-
cates memory for the string_body or octet_body buffer in a CommandReply.

For example:

<memory_management>
 <sample_buffer_min_size>16000</sample_buffer_min_size>
 <sample_buffer_trim_to_size>true</sample_buffer_trim_to_size>
</memory_management>

Table 3.3 Service QoS Tags

Tags within <service_qos> Description
Number
of Tags

Allowed

<configuration_replication>
Enables configuration replication. See Chapter 7: High
Availability.

0 or 1

<persistence>

Configures whether or not the service state must be per-
sisted on disk. In addition, when the state is persisted, you
can select whether or not to restore it when the service is
restarted.

Example:

<persistence>
 <kind>PERSISTENT</kind>
 <restore>true</restore>
</persistence>

There are two values for the kind:

• VOLATILE: Do not persist service state
• PERSISTENT: Persist service state

Note: If this policy’s kind is configured as VOLATILE and
there are changes to the configuration as a result of running
remote administration commands when the service is
restarted, these changes will be lost.

See Queuing Service Persistency (Section 2.14).

Defaults:

 kind: VOLATILE

 restore: true

0 or 1

<shared_reader_queue_replication>
Enables SharedReaderQueue replication. See Chapter 7:
High Availability.

0 or 1
3-8

XML Tags for Configuring Queuing Service
❏ sample_buffer_min_size: If the size required for the buffer of a CommandReply is
smaller or equal to this value, Queuing Service will use a pre-allocated buffer. The size of
this buffer is equal to this value.

If the size required for the buffer of a CommandReply is greater than this value, Queuing
Service will allocate the buffer from the heap dynamically upon reply generation.

❏ sample_buffer_trim_to_size: This value controls what to do with the CommandReply
buffer that is dynamically allocated. When true, the buffer will be released when the cor-
responding reply is sent. When false, the buffer is retained for future responses. It may be
released later on, but only to be replaced by a larger buffer.

Ranges:

❏ sample_buffer_min_size: -1 (2 GB, the maximum size of a CommandReply) or a positive
number.

❏ sample_buffer_trim_to_size: true or false

Defaults:

❏ sample_buffer_min_size: 32768

❏ sample_buffer_trim_to_size: false

Table 3.4 Remote Administration Tags

Tags within
<administration> Description

Number
of Tags

Allowed

<datareader_qos>

Configures the DataReader QoS for remote administration.

If the tag is not defined, Queuing Service will use the Connext DDS
defaults with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this
value cannot be changed)

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0 or 1

<datawriter_qos>

Configures the DataWriter QoS for remote administration.

If the tag is not defined, Queuing Service will use the Connext DDS
defaults with the following changes:

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
• resource_limits.max_samples = 32

0 or 1

<distributed_logger>
Configures RTI Distributed Logger. See Enabling RTI Distributed Log-
ger in Queuing Service (Section 3.5).

0 or 1

<domain_id>
Specifies which domain ID Queuing Service will use to enable remote
administration.

1
(required)

<memory_management>

Controls how Queuing Service allocates memory for the string_body or
octet_body buffer in a CommandReply.

See Configuring Memory Management for a CommandReply Buffer
(Section 3.3.3.1).

0 or 1

<participant_qos>
Configures the DomainParticipant QoS for remote administration. If the
tag is not defined, Queuing Service will use the Connext DDS defaults.

0 or 1

<publisher_qos>
Configures the Publisher QoS for remote administration. If the tag is
not defined, Queuing Service will use the Connext DDS defaults.

0 or 1

<subscriber_qos>
Configures the Subscriber QoS for remote administration. If the tag is
not defined, Queuing Service will use the Connext DDS defaults.

0 or 1
3-9

XML Tags for Configuring Queuing Service
3.3.4 Configuring Monitoring

With Queuing Service, you can monitor the status of the service and its SharedReaderQueues
using request-reply or publish-subscribe communication patterns.

Request-reply monitoring is done by issuing remote administration commands that retrieve the
status of the different entities in the service. See Chapter 5: Administering Queuing Service from
a Remote Location.

publish-subscribe monitoring is done by subscribing to the monitoring topics. See Chapter 6:
Publish-Subscribe Monitoring of Queuing Service from a Remote Location.

To enable Request/Reply monitoring and configure its behavior, use the <administration> tag
under <queuing_service> (See Configuring Administration (Section 3.3.3)).

To enable Pub/Sub monitoring and configure its behavior, use the <monitoring> tag under
<queuing_service> (See Configuring Publish-Subscribe Monitoring (Section 3.3.4.2)).

By default, both, remote publish-subscribe monitoring and request-reply monitoring are turned
off in Queuing Service for security and performance reasons. A <monitoring> or <administra-
tion> section is not required in the configuration file.

For example:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">
 <queuing_service name="QueuingService_1">
 <administration>
 <domain_id>55</domain_id>
 </administration>
 <monitoring>
 <domain_id>55</domain_id>
 </monitoring>
 ...
 </queuing_service>
</dds>

There are two kinds of monitoring data for en entity (for example, a SharedReaderQueue):

❏ Entity data

❏ Entity status

Entity data provides information about the configuration of the entity. For example, the service
data contains a list of the SharedReaderQueues contained in the service. Entity data information
is updated every time there is a configuration change that affects that data.

Entity status provides information about the operational status of an entity. This kind of infor-
mation changes continuously and is computed and published periodically. For example, the
SharedReaderQueue status contains information such as the SharedReaderQueue's latency and
throughput.

The following table shows the monitoring information available with publish-subscribe and
request-reply monitoring:

Publish-Subscribe Request-Reply

ServiceData No Yes

SharedReaderQueueData No Yes

SharedReaderQueueStatus Yes Yes
3-10

XML Tags for Configuring Queuing Service
For more information on how to retrieve the monitoring data, see Chapter 5: Administering
Queuing Service from a Remote Location and Chapter 6: Publish-Subscribe Monitoring of
Queuing Service from a Remote Location.

3.3.4.1 Configuring Request-Reply Monitoring

See Configuring Administration (Section 3.3.3).

3.3.4.2 Configuring Publish-Subscribe Monitoring

When publish-subscribe remote monitoring is enabled, Queuing Service will create one Domain-
Participant, one Publisher, and one DataWriter to publish SharedReaderQueue status. You can
configure the QoS of these entities with the <monitoring> tag defined under
<queuing_service>.

Table 3.5 Monitoring Tags

Tags within
<monitoring> Description

Number
of Tags

Allowed

<enabled>

Enables/disables publish-subscribe monitoring for the Queuing
Service instance.

Setting this value to true (default value) in the <monitoring> tag
under <queuing_service> enables monitoring in all the entities
unless they explicitly disable it by setting this tag to false in their
local <entity_monitoring> tags.

Setting this tag to false in the <monitoring> tag under
<queuing_service> disables monitoring in all the Queuing Service
entities. In this case, any monitoring configuration settings in the
entities are ignored.

Default value: true

0 or 1

<datawriter_qos>

Configures the DataWriter QoS for remote monitoring.

If the tag is not defined, Queuing Service will use the Connext DDS
defaults with this change:

durability.kind = DDS_TRANSIENT_LOCAL_DURABILITY_QOS

0 or 1

<domain_id>
Specifies which domain ID Queuing Service will use to enable
remote monitoring.

1
(required)

<participant_qos>

Configures the DomainParticipant QoS for remote monitoring.

If the tag is not defined, Queuing Service will use the Connext DDS
defaults with this change:

 resource_limits.type_code_max_serialized_length = 4096

0 or 1
3-11

XML Tags for Configuring Queuing Service
3.3.4.2.1 Publish-Subscribe Monitoring Configuration Inheritance

The <status_publication_period> defined under <queuing_service>/<monitoring> is inher-
ited by all the monitorable entities. An entity can override this value using the
<entity_monitoring> tag.

For example, this how a SharedReaderQueue would override the status publication period:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">
 <queuing_service name="QueuingService_1">
 ...
 <monitoring>
 <domain_id>55</domain_id>
 <status_publication_period>
 <sec>5</sec>
 <nanosec>0</nanosec>
 </status_publication_period>
 </monitoring>
 <domain_participant name="DomainParticipant_1">
 ...
 <shared_subscriber name="SharedSubscriber_1">
 ...
 <shared_reader_queue
 name="SharedReaderQueue_1"
 session="Session_1">
 ...
 <entity_monitoring>
 <enabled>true</enabled>
 <status_publication_period>
 <sec>3</sec>
 <nanosec>0</nanosec>
 </status_publication_period>
 </entity_monitoring>
 </shared_reader_queue>
 </shared_subscriber>

<publisher_qos>
Configures the Publisher QoS for remote monitoring.

If the tag is not defined, Queuing Service will use the Connext DDS
defaults.

0 or 1

<status_publication_period>

Specifies the frequency at which the status of an entity is pub-
lished. For example:

<status_publication_period>
 <sec>3</sec>
 <nanosec>0</nanosec>
</status_publication_period>

If the tag is not defined, the period is 5 seconds.

The status publication period defined in <queuing_service>/
<monitoring> is inherited by all the monitorable entities within
<queuing_service>.

An entity can override the period.

0 or 1

Table 3.5 Monitoring Tags

Tags within
<monitoring> Description

Number
of Tags

Allowed
3-12

XML Tags for Configuring Queuing Service
 </domain_participant>
 </queuing_service>
</dds>

In the above example, the SharedReaderQueue overrides the status publication period, setting it
to 3 seconds.

3.3.4.3 Configuring Statistics Calculation Process

Queuing Service reports multiple statistics as part of the entity status. Some of these statistics are
counters, such as the number of samples received by a SharedReaderQueue; other statistics are
statistics variables, such as the number of samples enqueued per second in a SharedReader-
Queue.

struct SharedReaderQueueStatus {
...
unsigned long long received_message_count;
...
StatisticVariable enqueue_throughput;
...

};

For a given statistic variable, Queuing Service computes the metrics in StatisticMetrics during
specified time frames.

struct StatisticMetrics {
unsigned long long period_ms;
long long count;
float mean;
float minimum;
float maximum;
float std_dev;

};

struct StatisticVariable {
StatisticMetric publication_period_metrics;
sequence<StatisticMetrics, MAX_HISTORICAL_METRICS> historical_metrics;

};

The count is the sum of all values received during the time frame. For example, in the case of
enqueue_throughput, count is the number of samples enqueued during the time frame.

Table 3.6 Entity Monitoring Tags

Tags within
<entity_monitoring> Description

Number
of Tags

Allowed

<enabled>
Enables/disables remote publish-subscribe monitoring for a given
entity. If general monitoring is disabled, this value is ignored.

Default value: true
0 or 1

<status_publication_period>

Specifies the frequency at which the status of an entity is published.
For example:

<status_publication_period>
 <sec>3</sec>
 <nanosec>0</nanosec>
</status_publication_period>

If the tag is not defined, its value is inherited from the general mon-
itoring settings.

0 or 1
3-13

XML Tags for Configuring Queuing Service
Queuing Service always calculates the statistics corresponding to the time between two status
publications (publication_period_metrics field) independently of whether or not publish-sub-
scribe monitoring is enabled. This time is configured using the tag <status_publication_period>
under <monitoring> or <entity_monitoring> (Configuring Publish-Subscribe Monitoring (Sec-
tion 3.3.4.2)).

You can also select additional windows on a per-entity basis using the tag
<historical_statistics> under <statistics> (see Statistics Calculation (Section 3.3.4.3.1)). The
sequence historical_metrics in StatisticVariable contains values corresponding to the windows
that have been enabled:

❏ 5-sec. metrics correspond to activity in the last five seconds.

❏ 1-min. metrics correspond to activity in the last minute.?

❏ 5-min. metrics correspond to activity in the last five minutes.

❏ 1-hour metrics correspond to activity in the last hour.

❏ Up-time metrics correspond to activity since the entity was created.

Each window has a field called period_ms that identifies its size in milliseconds. For the
publication_period_metrics, this field contains the <status_publication_period>. For the up-
time metrics, this field contains the time since the entity was created. For the other windows,
this field contains a fixed value that identifies the window size (5000 for the 5-second window,
60000 for the one-minute window, etc).

3.3.4.3.1 Statistics Calculation

The accuracy of the statistics calculation process is determined by the value of the statistics sam-
pling period. This period specifies how often statistics are gathered and is configured on a per
entity basis using the tag <statistics_sampling_period> under <statistics>.

As a general rule, the statistics_sampling_period of an entity must be smaller than its
status_publication_period for publish-subscribe monitoring and the request period for request-
reply monitoring. A small statistics_sampling_period provides more accurate statistics at
expense of increasing the memory consumption and decreasing performance.

The statistics calculation process is configured using the tags <statistics> under
<queuing_service> and <shared_reader_queue>.

3.3.5 Configuring Persistence Settings

The <persistence_settings> tag configures the store settings that are used to persist the service
state and the SharedReaderQueues’s states (see Queuing Service Persistency (Section 2.14)).

Table 3.8, Persistence Setting Tags lists the tags that you can specify in
<persistence_settings>.

3.3.6 Configuring DomainParticipants

For each <domain_participant> tag, Queuing Service creates one DomainParticipant to communi-
cate over DDS.

Table 3.10, DomainParticipant Tags lists the tags allowed within <domain_participant>.
3-14

XML Tags for Configuring Queuing Service
Table 3.7 Statistics Tags

Tags within <statistics> Description
Number of

Allowed
Tags

<historical_statistics>

Enables or disables the statistic calculation within fixed time
windows.

By default, Queuing Service only publishes the statistics corre-
sponding to the window between two status publications. By
using this tag, you can get the following additional windows:

• 5 seconds
• 1 minute
• 5 minutes
• 1 hour
• Up time (since the entity was enabled)

For example:

<historical_statistics>
<five_second>true</five_second>
<one_minute>true</one_minute>
<five_minute>false</five_minute>
<one_hour>true</one_hour>
<up_time>false</up_time>

</historical_statistics>

If a window is not present (inside <historical_statistics>), it is
considered disabled.

Historical statistics can be overridden on a per entity basis.

0 or 1

<statistics_sampling_period>

Specifies the frequency at which statistics variables (such as
throughput and latency) are updated.

For example:

<statistics_sampling_period>
<sec>1</sec>
<nanosec>0</nanosec>

</statistics_sampling_period>

If the tag is not defined, the period is 1 second.

The statistic sampling period defined in <queuing_service> is
inherited by all the entities inside <queuing_service>.

An entity can override the period.

0 or 1

Table 3.8 Persistence Setting Tags

Tags within
<persistence_settings> Description

Number
of Tags

Allowed

<filesystem>
Configures the file system settings used to persist the service state and
the SharedReaderQueues' states. See Table 3.9, Filesystem Tags.

0 or 1
3-15

XML Tags for Configuring Queuing Service
Table 3.9 Filesystem Tags

Tags within
<filesystem> Description

Number
of Tags

Allowed

<directory>

Specifies the directory of the files in which the service state and the
SharedReaderQueues' states will be persisted.

This directory can also be provided by, and is overridden by, the
-persistentStoragePath command-line option.

The directory must exist; otherwise the service will report an error
upon start up.

Default: Value provided with -persistentStoragePath or the current
working directory if the command-line option is not provided.

0 or 1

<file_max_size>

This tag configures the maximum size (in KB) of the files storing the
SharedReaderQueue data (both metadata and user data). Queuing Ser-
vice will create a new file when this size is exceeded.

Default: 1000 KB

Note: This tag only applies to PERSISTENT SharedReaderQueues cre-
ated with <in_memory_state> set to true (see Configuring Share-
dReaderQueues (Section 3.3.10)).

0 or 1

<file_prefix>

Specifies a name prefix associated with all the files created by Queuing
Service.

This prefix can also be provided by, and is overridden by, the -persis-
tentFilePrefix command-line option.

Default: Value provided with -persistentFilePrefix or 'QS' if the com-
mand-line option is not provided

0 or 1

<journal_mode>

Sets the journal mode of the persistent storage. This tag can take these
values:

• DELETE: Deletes the rollback journal at the conclusion of each
transaction.

• MEMORY: Stores the rollback journal in volatile RAM. This saves
disk I/O.

• OFF: Completely disables the rollback journal. If the application
crashes in the middle of a transaction when the journal mode is
set to OFF, the files containing the samples will very likely be cor-
rupted.

• PERSIST: Prevents the rollback journal from being deleted at the
end of each transaction. Instead, the header of the journal is over-
ridden with zeros.

• TRUNCATE: Commits transactions by truncating the rollback
journal to zero-length instead of deleting it.

• WAL: Uses a write-ahead log instead of a rollback journal to
implement transactions.

Default: DELETE

Note: This does not apply to PERSISTENT SharedReaderQueues cre-
ated with <in_memory_state> set to true (see Configuring Share-
dReaderQueues (Section 3.3.10)).

0 or 1
3-16

XML Tags for Configuring Queuing Service
<synchronization>

Determines the level of synchronization with the physical disk. This
tag can take three values:

• FULL: Every sample is written to physical disk as Queuing Service
receives it.

• NORMAL: Samples are written to disk at critical moments.
• OFF: No synchronization is enforced. Data will be written to

physical disk when the OS flushes its buffers.
Default: OFF

0 or 1

<trace_file>

Specifies the name of the trace file for debugging purposes. The trace
file contains information about all SQL statements executed by the
persistence service.

Default: No trace file is generated

Note: This does not apply to PERSISTENT SharedReaderQueues cre-
ated with <in_memory_state> set to true (see Configuring Share-
dReaderQueues (Section 3.3.10)).

0 or 1

<vacuum>

Sets the auto-vacuum status of the storage. This tag can take these val-
ues:

• NONE: When data is deleted from the storage files, the files
remain the same size.

• FULL: The storage files are compacted every transaction.
Default: FULL

Note: This does not apply to PERSISTENT SharedReaderQueues cre-
ated with <in_memory_state> set to true (see Configuring Share-
dReaderQueues (Section 3.3.10)).

0 or 1

Table 3.10 DomainParticipant Tags

Tags within
<domain_participant> Description

Number
of Tags

Allowed

<domain_id> Specifies the domain ID associated with the DomainParticipant
1
(required)

<memory_management>
Controls how to allocate the memory for a sample buffer.

For details, see Configuring Memory Management for Sample Buffers
(Section 3.3.6.1).

0 or 1

<participant_qos>
Configures the DomainParticipant QoS. If the tag is not defined, Queu-
ing Service will use the Connext DDS defaults.

0 or 1

<shared_subscriber>
Configures a SharedSubscriber. See Configuring SharedSubscribers
(Section 3.3.7).

1 or more

(required)

Table 3.9 Filesystem Tags

Tags within
<filesystem> Description

Number
of Tags

Allowed
3-17

XML Tags for Configuring Queuing Service
3.3.6.1 Configuring Memory Management for Sample Buffers

For every sample in a SharedReaderQueue, Queuing Service uses a buffer to store the content of
the sample in serialized form with CDR representation. The <memory_management> tag con-
trols how to allocate the memory for a sample buffer.

For example:

<memory_management>
 <sample_buffer_min_size>16000</sample_buffer_min_size>

<sample_buffer_trim_to_size> true</sample_buffer_trim_to_size>
</memory_management>

❏ sample_buffer_min_size: If the serialized size of an incoming sample is smaller or equal
to this value, Queuing Service will use a pre-allocated buffer (with size equal to this value)
from a pool to hold the sample.

The initial and maximum number of buffers in the pool as well as the pool's growth pol-
icy is configured using the XML tag <resource_limits> under <shared_reader_queue>/
<queue_qos>.

When the serialized size of the incoming sample is greater than this value, Queuing Ser-
vice will allocate the buffer from the heap dynamically upon sample reception.

❏ sample_buffer_trim_to_size: This value controls what to do with the buffers that are
dynamically allocated. When true, the buffers will be released when the corresponding
samples are remove from the SharedReaderQueues. When false, the buffers are kept
around for future samples. They maybe released later on but only to be replaced by big-
ger buffers.

Ranges:

❏ sample_buffer_min_size: -1 (In a SharedReaderQueue is the maximum serialized size of
its samples) or positive number.

❏ sample_buffer_trim_to_size: true or false

Defaults:

❏ sample_buffer_min_size: 256

❏ sample_buffer_trim_to_size: true

Notice that setting a positive value for sample_buffer_min_size is critical when a data type has
a very high maximum serialized size (e.g., megabytes) but most of the samples sent are much
smaller than the maximum possible size (e.g., kilobytes). In this case, the memory footprint is
reduced dramatically, while still correctly handling the rare cases in which very large samples
are published.

3.3.7 Configuring SharedSubscribers

SharedSubscribers are containers that host SharedReaderQueues, allowing remote QueueCon-
sumers to attach to the shared queues and providing “exactly once” or “at-most once” access to
the samples in the shared queues.

With these access modes, when one QueueConsumer gets a message, the other QueueConsum-
ers attached to the same SharedReaderQueue do not get that message. A SharedSubscriber can
host one or more SharedReaderQueues, each one associated with a different DDS Topic name.

Table 3.11 lists the tags allowed within <shared_subscriber>.
3-18

XML Tags for Configuring Queuing Service
3.3.8 Configuring Session Settings

Table 3.12, Session Settings Tags lists the only tag allowed within <session_settings>.

3.3.9 Configuring SharedSubscribers Sessions

A session defines a threaded context for a SharedReaderQueue. SharedReaderQueues in differ-
ent sessions can be processed in parallel. Sessions are part of SharedSubscribers.

For each Session defined within the tag <session_settings>, Queuing Service will create the fol-
lowing elements:

❏ Two threads: one for storing samples into SharedReaderQueues, and one to distribute
samples from the SharedReaderQueues to QueueConsumers.

❏ One DDS Publisher

❏ One DDS Subscriber

The QoS of the Publisher and Subscriber are configured using the tags <publisher_qos> and
<subscriber_qos> under <shared_subscriber>.

Table 3.13, Session Tags lists the tags allowed within <session>.

Table 3.11 SharedSubscriber Tags

Tags within
<shared_subscriber> Description

Number
of Tags

Allowed

<dead_letter_shared_reader_queue>

Configures the DeadLetterSharedReaderQueue for a
SharedSubscriber.

You can define one dead-letter queue per SharedSub-
scriber.

See Dead-Letter Queues (Section 2.12).

0 or 1

<publisher_qos>
Sets the QoS associated with the session DDS Publishers.
There is one Publisher per session.

0 or 1

<session_settings>

Configures the sessions for the SharedReaderQueues
defined in the SharedSubscriber.

A session defines a threaded context for a SharedReader-
Queue.

See Configuring Session Settings (Section 3.3.8)

1
(required)

<shared_reader_queue>
Configures a SharedReaderQueue in a SharedSubscriber.

See Configuring SharedReaderQueues (Section 3.3.10).
0 or more

<subscriber_qos>
Sets the QoS associated with the session DDS Subscribers.
There is one Subscriber per session.

0 or 1

Table 3.12 Session Settings Tags

Tags within
<session_settings> Description

Number
of Tags

Allowed

<session>
A session defines a threaded context for a SharedReaderQueue.

See Configuring SharedSubscribers Sessions (Section 3.3.9)
1 or more
(required)
3-19

XML Tags for Configuring Queuing Service
SharedReaderQueues and DeadLetterSharedReaderQueues can be associated with a session by
using the XML attribute session in <shared_reader_queue> and
<dead_letter_shared_reader_queue>, respectively.

Table 3.13 Session Tags

Tags within
<session> Description

Number
of Tags

Allowed

<dequeue_period>

Configures the period at which Queuing Service retries sending samples that
have not been delivered to a QueueConsumer upon reception.

This can happen when the available QueueConsumers cannot accept the
samples or if there are no QueueConsumers in the system for a SharedRead-
erQueue.

Example:

<session>
 <thread>
 <dequeue_period>
 <sec>1</sec>
 <nanosec>0</nanosec>
 </dequeue_period>
 </thread>
</session>

Default: 10 msec

0 or 1

<monitoring>
Enables and configures remote Pub/Sub monitoring for the SharedReader-
Queue. See Configuring Monitoring (Section 3.3.4) and Chapter 6: Publish-
Subscribe Monitoring of Queuing Service from a Remote Location.

0 or 1

<replication> Enables SharedReaderQueue replication. See Chapter 7: High Availability. 0 or 1

<statistics>
Configures the statistic gathering process for publish-subscribe or request-
reply monitoring of the SharedReaderQueue.

See Configuring Monitoring (Section 3.3.4).
0 or 1

<thread>

Sets the mask, priority and stack size of the threads associated with this ses-
sion.

Example:

<session>
 <thread>
 <mask>MASK_DEFAULT</mask>
 <priority>
 THREAD_PRIORITY_DEFAULT
 </priority>
 <stack_size>
 THREAD_STACK_SIZE_DEFAULT
 </stack_size>
 </thread>
</session>

Defaults:

• mask = MASK_DEFAULT
• priority = THREAD_PRIORITY_DEFAULT
• stack_size = THREAD_STACK_SIZE_DEFAULT

0 or 1
3-20

XML Tags for Configuring Queuing Service
3.3.10 Configuring SharedReaderQueues

A SharedReaderQueue is a logical DataReader queue hosted inside a SharedSubscriber that pro-
vides “exactly once” or “at-most once” access to the Consumers attached to the SharedReader-
Queue. It is associated with a Topic and the name of the SharedReaderQueue is derived from the
name of the Topic and the SharedSubscriber that hosts it. Implementation-wise, a SharedReader-
Queue is composed of an input (DDS DataReader) and output (DDS DataWriter) pair that,
together with a queue storage, implement the queuing behavior for a Topic.

The input DataReader is matched to the DataWriters associated with the QueueProducers and the
output DataWriter is matched to the DataReaders associated with the QueueConsumers. The pro-
cessing logic ensures that each sample in the SharedReaderQueue is delivered to only one of the
QueueConsumers.

❏ Table 3.14, SharedReaderQueue Tags and Table 3.15, Queue QoS Tags describe the tags
allowed within <shared_reader_queue>.

❏ Table 3.16, <shared_reader_queue> Attributes describes the attributes you may set for
<shared_reader_queue>.

Table 3.14 SharedReaderQueue Tags

Tags within
<shared_reader_queue> Description

Number
of Tags

Allowed

<datareader_qos>

Configures the QoS for the SharedReaderQueue DataReader.

If the tag is not defined, Queuing Service will use the Connext DDS
defaults with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABILITY_QOS
 (this value cannot be changed)

• reliability.acknowledgment_kind =
APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
(this value cannot be changed)

• reader_resource_limits.max_app_ack_response_length = 1
• subscription_name.role_name = QUEUING_SERVICE
• service.kind = QUEUING_SERVICE_QOS

(this value cannot be changed)

0 or 1

<datawriter_qos>

Configures the QoS for the SharedReaderQueue DataWriter.

If the tag is not defined, Queuing Service will use the Connext DDS
defaults with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABILITY_QOS
(this value cannot be changed)

• reliability.acknowledgment_kind =
APPLICATION_EXPLICIT_ACKNOWLEDGMENT_MODE
(this value cannot be changed)

• history.kind = DDS_KEEP_ALL_HISTORY_QOS
(this value cannot be changed)

• service.kind = QUEUING_SERVICE_QOS
(this value cannot be changed)

0 or 1

<queue_qos>
Configures the QoS for the SharedReaderQueue. See Table 3.15,
Queue QoS Tags.

0 or 1
3-21

XML Tags for Configuring Queuing Service
<reply_topic>

The topic name for the implicit Reply SharedReaderQueue created
by setting <reply_type>.

This tag is ignored if <reply_type> is not set.

Default: <topic_name>Reply

0 or 1

<reply_type>

The name of the type associated with a Reply SharedReaderQueue.

When it comes to the creation of a Reply SharedReaderQueue, you
have two options:

• Declare the queue explicitly in the configuration file.
• Declare the queue implicitly through the usage of

<reply_type>. In this case, the configuration of the Reply
SharedReaderQueue matches the configuration of the Share-
dReaderQueue containing <reply_type>.

See Sending a Reply from QueueConsumer to QueueProducer (Sec-
tion 2.11).

0 or 1

<topic_name>

The name of the Topic associated with the SharedReaderQueue.

QueueProducers will publish on this Topic. QueueConsumers will
subscribe to a Topic with name “<topic_name>@SharedSubscriber-
Name” where SharedSubscriberName is the name of the Shared-
Subscriber containing the SharedReaderQueue.

See Queuing Service Entities (Section 2.6).

1

(required)

<type_name>
The name of the type associated with the ShareReaderQueue.

See Configuring Queuing Service Types (Section 3.3.1).

1

(required)

<update_datareader_qos>

Configures the QoS of the DataReader used to receive the status
information required by the SharedReaderQueue replication proto-
col.

If the tag is not defined, Queuing Service will use the Connext
defaults with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this
value cannot be changed)

• history.kind = DDS_KEEP_ALL_HISTORY_QOS (this value
cannot be changed)

0 or 1

<update_datawriter_qos>

Configures the QoS of the DataWriter used to publish the status
information required by the SharedReaderQueue replication proto-
col.

If the tag is not defined, Queuing Service will use the Connext
defaults with the following changes:

• reliability.kind = DDS_RELIABLE_RELIABILITY_QOS (this
value cannot be changed)

• history.kind = DDS_KEEP_ALL_HISTORY_QOS (this value
cannot be changed)

0 or 1

Table 3.14 SharedReaderQueue Tags

Tags within
<shared_reader_queue> Description

Number
of Tags

Allowed
3-22

XML Tags for Configuring Queuing Service
Table 3.15 Queue QoS Tags

Tags within
<queue_qos> Description

Number
of Tags

Allowed

<distribution>

Configures the dispatch policy for the SharedReaderQueue.

Queuing Service uses the dispatch policy to determine which QueueConsumer gets
each sample.

In this release, Queuing Service only supports a ROUND_ROBIN dispatch policy,
with and without explicit availability feedback from QueueConsumers.

You can also configure a SharedReaderQueue so that the last sample in the Share-
dReaderQueue for a QueueConsumer is marked with the flag
DDS_LAST_SHARED_READER_QUEUE_SAMPLE before is sent to the Queue-
Consumer. The QueueConsumer application can inspect the value of this flag by
checking the flag field in SampleInfo.

Example:
<distribution>
 <kind>ROUND_ROBIN</kind>
 <mark_last_undelivered_sample>
 true
 </mark_last_undelivered_sample>
 <property>
 <value>
 <element>
 <name>UNACKED_THRESHOLD</name>
 <value>-1</value>
 </element>
 </value>
 <value>
 <element>
 <name>ALLOW_CONSUMER_FEEDBACK</name>
 <value>1</value>
 </element>
 </value>
 </property>
</distribution>

See Selecting a QueueConsumer for a Sample (Section 2.10) for more information
regarding the dispatch policy.

Defaults:

• kind: ROUND_ROBIN
• UNACKED_THRESHOLD: -1
• ALLOW_CONSUMER_FEEDBACK: 0
• mark_last_undelivered_sample: false

0 or 1

<lifespan>

Configures how long a sample written by a QueueProducer is kept in the
SharedReaderQueue.

Example:

<lifespan>
<duration>

<sec>60</sec>
<nanosec>0</nanosec>

</duration>
</lifespan>

Note: A finite lifespan set on the QueueProducer's DataWriter using the Lifespan
QoS policy takes precedence over this value.

Default: UNLIMITED (no lifespan)

0 or 1
3-23

XML Tags for Configuring Queuing Service
<persistence>

Configures whether or not the SharedReaderQueue state must be persisted on disk
for fault tolerance purposes:

There are two values for this policy:

• VOLATILE: Keep the samples in-memory.
• PERSISTENT: Store the samples into disk.

Example:

 <persistence>
 <kind>PERSISTENT</kind>
 </persistent>

In the case of PERSISTENT SharedReaderQueues, you can choose between two
implementations using the XML tag <in_memory_state>:

• Without In-Memory State: The metadata and user data associated with the
SharedReaderQueue's samples is kept only on disk.

• With In-Memory State: The metadata for the SharedReaderQueue's samples is
always kept both on disk and in memory. The sample's user data is kept in
memory and on disk only when:
o Its serialized size is smaller than the threshold set with

<domain_participant>/<memory_management>/
<sample_buffer_min_size> (see Memory Management for a Sample (Sec-
tion 2.15.2)).

o <domain_participant>/<memory_management>/
<sample_buffer_trim_to_size> is false (see Memory Management for a
Sample (Section 2.15.2)).

Example:

 <persistence>
 <kind>PERSISTENT</kind>
 <in_memory_state>true</in_memory_state>
 </persistent>

Default:

• kind: VOLATILE
• in_memory_state: true

See Queuing Service Persistency (Section 2.14).

0 or 1

Table 3.15 Queue QoS Tags

Tags within
<queue_qos> Description

Number
of Tags

Allowed
3-24

XML Tags for Configuring Queuing Service
<redelivery>

Configures the redelivery policy for the SharedReaderQueue.

Example:

<redelivery>
 <max_delivery_retries>
 10
 </max_delivery_retries>
 <response_timeout>
 <duration>
 <sec>60</sec>
 <nanosec>0</nanosec>
 </duration>
 </response_timeout>
</redelivery>

In the above example:

• <max_delivery_retries> configures the maximum number of redelivery
attempts for a sample in a SharedReaderQueue

• <response_timeout> configures the maximum time that Queue Service waits
for an acknowledgment from the QueueConsumer to which the sample was
sent to. After that timeout expires, the sample is redelivered to a different
QueueConsumer for <max_delivery_retries>

Defaults:

• For max_delivery_retries: 0
• For response_timeout: UNLIMITED

0 or 1

<reliability>

Configures the QoS for reliable delivery of samples from a QueueProducer to the
Queuing Service.

This release supports only one configuration parameter, which allows you to dis-
able the sending of application-level acknowledgement messages from Queuing Ser-
vice to the QueueProducers after samples are stored into a SharedReaderQueue.

Example:

<reliability>
 <app_ack_sample_to_producer>
 false
 </app_ack_sample_to_producer>
</reliability>

Default: app_ack_sample_to_producer = true

0 or 1

<resource_limits>

This policy:

• Provides fine-grained control over the resources (memory and disk) associated
with the samples in a SharedReaderQueue.

• Provides a way to configure the behavior of a SharedReaderQueue when a new
sample arrives and the SharedReaderQueue is full.

• Provides ways to monitor when the space taken by the samples in a Share-
dReaderQueue goes above or below configurable watermarks and when the
SharedReaderQueue fills up.

For default values and additional information, see SharedReaderQueue Resource
Management (Section 2.15).

0 or 1

Table 3.15 Queue QoS Tags

Tags within
<queue_qos> Description

Number
of Tags

Allowed
3-25

XML Tags for Configuring Queuing Service
3.3.11 Configuring DeadLetterSharedReaderQueues

Queuing Service provides support for deal-letter queues. A deal-letter queue is a SharedReader-
Queue to which other SharedReaderQueues can send messages that for some reason could not
be successfully delivered and processed.

Queuing Service supports the definition of one deal-letter queue per SharedSubscriber by using
the XML tag <dead_letter_shared_reader_queue>. The deal-letter queue has two limitations
compared with a regular queue:

❏ It cannot have a <reply_type>.

❏ It cannot have a <type_name>.

By default, SharedReaderQueues do not send undelivered samples to the deal-letter queue. To
enable this behavior, you must use the attribute dead_letter_queue in <shared_reader_queue>.
This attribute must be set to the name of the deal-letter queue in the configuration file.

For more information, see Dead-Letter Queues (Section 2.12).

Table 3.16 <shared_reader_queue> Attributes

Attributes for
<shared_reader_queue> Description Required

dead_letter_queue
The name of the Dead-Letter SharedReaderQueue associated with
this SharedReaderQueue (SeeDead-Letter Queues (Section 2.12)).

No

name

The name of the SharedReaderQueue. This name is needed to
address the queue using remote administration (See Chapter 5:
Administering Queuing Service from a Remote Location). If not
specified, the service generates a random name.

No

session
The name of the session associated with the SharedReaderQueue.
See Configuring SharedSubscribers Sessions (Section 3.3.9) for addi-
tional information on sessions.

Yes
3-26

Using Variables in XML
3.4 Using Variables in XML
The text within an XML tag can refer to a variable. To do so, use the following notation:

$(MY_VARIABLE)

For example:

 <element>
 <name>The name is $(MY_NAME)</name>
 <value>The value is $(MY_VALUE)</value>
 </element>

When the XML parser parses the above tags, it will replace the references to variables with their
actual values as follows:

1. First, it will try to get the variable value from the command-line. The variable value can
be provided using the -var command-line option (see Queuing Service runs as a separate
application. The script to run the executable is in <NDDSHOME>/bin. There are four
ways to start Queuing Service: (Section)).

2. If the value is not found, the parser will try to get it from the OS environment variables.

3. If the value still cannot be found, the parsing process will fail.

3.5 Enabling RTI Distributed Logger in Queuing Service
Queuing Service provides integrated support for RTI Distributed Logger. When you enable Distrib-
uted Logger, Queuing Service will publish its log messages to Connext DDS.

You can use RTI Monitor to visualize the log message data. Since the data is provided in a topic,
you can also use RTI DDS Spy (rtiddsspy) or even write your own visualization tool.

To enable Distributed Logger, modify the Queuing Service XML configuration file. In the <admin-
istration> section, add the <distributed_logger> tag as seen here:

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="rti_queuing_service.xsd">

 <queuing_service name="QueuingService_1">
 <administration>

...
 <distributed_logger>
 <enabled>true</enabled>
 </distributed_logger>
 </administration>

...
 </queuing_service>
</dds>

There are more configuration tags that you can use to control Distributed Logger’s behavior. For
example, you can specify a filter so that only certain types of log messages are published. For
details, see the RTI Distributed Logger Getting Started Guide.
3-27

Chapter 4 Running Queuing Service

Queuing Service runs as a separate application. The script to run the executable is in
<NDDSHOME>/bin. There are four ways to start Queuing Service:

❏ Starting from Launcher (Section 4.1)

❏ Starting Manually from the Command Line (Section 4.2)

❏ Using Queuing Service as a Windows Service (Section 4.3)

If you are starting Queuing Service as a Windows Service, also read Notes when Running as a
Windows Service (Section 4.3.3).

4.1 Starting from Launcher
1. Start RTI Launcher from the Start menu (on Windows systems) or on the command line,

type:
<NDDSHOME>/bin/rtilauncher

2. From the Services tab, select Queuing Service:
4-1

Starting Manually from the Command Line
4.2 Starting Manually from the Command Line
To start Queuing Service, enter:

cd <NDDSHOME>
bin/rtiqueuingservice [options]

Example:

cd <NDDSHOME>
bin/rtiqueuingservice -cfgFile example.xml -cfgName QueuingService_1

Table 4.1 describes the command-line options.

Table 4.1 RTI Queuing Service Command-Line Options

Option Description

-appName <name>

Assigns a name to the execution of Queuing Service.

Remote commands will refer to the queuing service using this name.

In addition, the name of DomainParticipants created by Queuing Service will
be based on this name.

Default: The name given with -cfgName, if present, otherwise it is
RTI_Queuing_Service.

-cfgFile <name>

Specifies a configuration file to be loaded.

This parameter is required.

See Section 3.1, How to Load the XML Configuration, in the Queuing Ser-
vice User’s Manual.

-cfgName <name>
Specifies a configuration name. Queuing Service will look for a matching
<queuing_service> tag in the configuration file.

This parameter is required unless -cfgRemote is used.

-cfgRemote

Specifies that the initial configuration of the service must be obtained
remotely from other running instances.

Using this option also requires the use of -remoteAdministrationDo-
mainId to enable remote administration, because the initial configuration
will be received in the remote administration domain ID.

If you use this option and -cfgName, the service will wait until a configu-
ration with that name is received. Otherwise, the service will use the first
configuration that it receives.

If the service does not receive the initial configuration after a configurable
timeout (see -cfgRemoteTimeout), it will load the configuration from the
input configuration file(s).

-cfgRemoteTimeout <n>
Specifies the maximum amount of time, in seconds, that Queuing Service
will wait for an initial configuration when using -cfgRemote.

Default: 20 seconds

-daemon
Runs Queuing Service as a daemon/Windows service. When this flag is
present, Queuing Service will start in the background. Note that some sys-
tems may require special privileges to do this.

-domainIdBase <ID>

Sets the base domain ID.

This value is added to the domain IDs in the configuration file. For exam-
ple, if you set –domainIdBase to 50 and use domainIDs 0 and 1 in the con-
figuration file, then Queuing Service will use domains 50 and 51.

Default: 0

-help Displays help information.
4-2

Starting Manually from the Command Line
-remoteAdministrationDomainId
<ID>

Enables remote administration and sets the domain ID for remote commu-
nication.

When remote administration is enabled, Queuing Service will create a
DomainParticipant, Publisher, Subscriber, DataWriter, and DataReader in the
designated domain.

See Chapter 5, Administering Queuing Service from a Remote Location, in
the Queuing Service User’s Manual.

This option overrides the value of the tag <domain_id> within a <admin-
istration> tag.

This parameter is required when using -cfgRemote.

Default: Remote administration is not enabled unless it is enabled from the
XML file.

-persistentFilePrefix

Specifies a name prefix to use with all files created by Queuing Service.

This option overrides the value of the tag <file_prefix> within
<persistence_settings>/<filesystem>.

Default: Value in <persistence_settings>/<filesystem>/<file_prefix>.

-persistentStoragePath

Configures the directory for persistent storage.

This option overrides the value of the tag <directory> within
<persistence_settings>/<filesystem>.

Default: Value in <persistence_settings>/<filesystem>/<directory>.

-var <name>=<value>

Sets the value of the variable <name>. This variable can be referenced
within the XML configuration files using the $(<name>) notation. See Sec-
tion 3.4, Using Variables in XML, in the Queuing Service User’s Manual for
more information on configuration variables.

You may have more than one -var flag on the command line.

On Windows platforms, you will need to put quotation marks around the
variable name and value, like this:

-var "MY_VAR=myvalue"

-verbosity <n>

Controls what type of messages are logged:

0 - Silent

1 - Exceptions (Connext DDS and Queuing Service) (default)

2 - Warnings (Queuing Service)

3 - Information (Queuing Service)

4 - Warnings (Connext DDS and Queuing Service)

5 - Tracing (Queuing Service)

6 - Tracing (Connext DDS and Queuing Service)

Each verbosity level, n, includes all the verbosity levels smaller than n.

-version Prints the Queuing Service version number.

Table 4.1 RTI Queuing Service Command-Line Options

Option Description
4-3

Using Queuing Service as a Windows Service
4.3 Using Queuing Service as a Windows Service
Windows Services automatically run in the background when the system reboots.

4.3.1 Enabling Queuing Service to Run as a Windows Service

If you want to run Queuing Service as a Windows Service, you must install it as such before run-
ning it. To install it as a Windows Service, run the following command in a terminal with
Administrator privileges:

<NDDSHOME>\bin\rtiqueuingservice -installService

By default, Queuing Service is installed with the service name rtiqueuingservice520. If you want
to install it with a different service name, you can use the -serviceName flag. For instance (you
would enter this all on one line):

<NDDSHOME>\bin\rtiqueuingservice -installService
 -serviceName mycustomservicename

Using the -serviceName parameter with different names allows you to install multiple Queuing
Service instances on the same host.

4.3.2 Running RTI Queuing Service as a Windows Service

If you added Queuing Service as a Windows Service and want to run it without rebooting, you
can start it as a service from the command line with the Windows sc utility:

sc <serviceName> start

By default, it will start Queuing Service with the "defaultService" configuration that is stored in
<NDDSHOME>\resource\xml\RTI_QUEUING_SERVICE.xml. This configuration contains
a service running with an empty SharedSubscriber with remote administration and monitoring
enabled.

If you want to start Queuing Service with different parameters, you can use the utility nssm. You
can specify the parameters from the command line by setting the option AppParameters. For
example (you would enter this all on one line):

%NDDSHOME%\resource\app\bin\x64Win64VS2008\nssm.exe set <serviceName>
AppParameters "<queuing service arguments>"

For more information and examples, see Notes when Running as a Windows Service (Section
4.3.3).

Additionally, you can start Queuing Service from the Windows Services Control Manager. From
the Start Menu, select Control Panel, Administrative Services, Services. Click on the service in
the list, then right-click to select Start.

4.3.3 Notes when Running as a Windows Service

Here are some things to consider when running Queuing Service as a Windows Service:

❏ All AppParameters arguments must be enclosed in quotation marks.

❏ To refer to variables in the XML configuration file, use the Queuing Service command-line
option -var to set the variable’s value. The syntax for referring to a variable in the XML
file is:

<name>$(NAME)</name>
4-4

Using Queuing Service as a Windows Service
❏ For the AppParameters passed to nssm, use -var like this:

-var MY_DOMAIN=10

For example (you would enter this all on one line):

%NDDSHOME%\resource\app\bin\x64Win64VS2008\nssm.exe set
rtiqueuingservice520 AppParameters
"-cfgFile \"C:\dir with spaces\qsconf-with-vars.xml\"
 -cfgName MyCustomConf -var MY_DOMAIN=10"

❏ If a variable value includes spaces, you must enclose the value in escaped quotes. For
example (you would enter this all on one line):

%NDDSHOME%\resource\app\bin\x64Win64VS2008\nssm.exe
set rtiqueuingservice520 AppParameters
"-cfgFile \"C:\dir with spaces\qsconf-with-vars.xml\"
 -cfgName MyCustomConf -var \"NAME=My QS name\""

❏ If you use environment variables instead of the -var command-line option, you may need
to restart your Windows machine.

❏ If you specify -cfgFile in the Start Parameters field, you must use the full path to the file.

❏ Some versions of Windows do not allow Windows Services to communicate with other
services/applications using shared memory. For this reason, if you plan to run Queuing
Service as Windows Service, you should disable the shared-memory transport in all the
DomainParticipants created by Queuing Service and in the applications communicating
with Queuing Service. For more information on setting builtin transports, see the RTI Con-
next DDS Core Libraries User’s Manual (Section 15.1, Builtin Transport Plugins).

❏ In some scenarios, you may need to add a multicast address (e.g., builtin.udpv4://
239.255.0.1) to your discovery peers. For details on setting the discovery peers, see the
RTI Connext DDS Core Libraries Getting Started Guide (Section 4.1.2, How to Set Your Dis-
covery Peers).

4.3.4 Stopping Queuing Service when it is Running as a Windows Service

To stop Queuing Service when it is running as a Windows Service, use this command:

sc rtiqueuingservice520 stop

You can also start/stop Queuing Service from the Windows Services Control Manager. From the
Start menu, select Control Panel, Administrative Services, Services. Click on the service in the
list, then right-click to select Start or Stop.

4.3.5 Disabling Queuing Service from Running as a Windows Service

To remove Queuing Service from the list of Windows Services on your system, run this command
in a terminal with Administrator privileges:

<NDDSHOME>\bin\rtiqueuingservice -uninstallService

By default, the service rtiqueuingservice520 is uninstalled. If you want to uninstall a different
service instance, add the -serviceName option to the above command.
4-5

Chapter 5 Administering Queuing Service from a
Remote Location

Queuing Service can be controlled remotely by sending commands through a special topic. Any
Connext DDS application can be implemented to send these commands and receive the corre-
sponding responses.

5.1 Enabling Remote Administration
By default, remote administration is disabled in Queuing Service for security reasons.

To enable remote administration, you can use the <administration> tag (see Configuring
Administration (Section 3.3.3)) or the -remoteAdministrationDomainId <ID> command-line
parameter, which enables remote administration and sets the domain ID for remote communica-
tion. For more information about the command-line options, see Queuing Service runs as a sep-
arate application. The script to run the executable is in <NDDSHOME>/bin. There are four
ways to start Queuing Service: (Section).

When remote administration is enabled, Queuing Service will create a DomainParticipant, Pub-
lisher, Subscriber, DataWriter, and DataReader in the designated domain. (The QoS values for these
entities are described in Configuring Administration (Section 3.3.3).)

5.2 Remote Administration API
Queuing Service provides a RESTful-style remote administration API in which the commands
have the following format:

<ACTION> <target_queuing_service> <resource_identifier> [<body>]

Where:

❏ <ACTION> is one the following values: CREATE, DELETE, GET.

❏ <target_queuing_service> can be:

• The application name of a Queuing Service instance, such as “MyQueuingService1”,
as specified at start-up with the command-line option –appName (see Table 4.1, RTI
Queuing Service Command-Line Options)

• A regular expression—as defined by the POSIX fnmatch API (1003.2-1992 section
B.6)—for a Queuing Service application name, such as “MyQueuingService*”
5-1

Remote Administration API
❏ <resource_identifier> identifies the resource to which the action is applied (see Resource
Identifiers (Section 5.2.1)).

❏ <body> identifies the parameters of the action on the resource identified by
<resource_identifier>. For example, when creating a SharedReaderQueue, the body is the
XML snippet for the new queue.

5.2.1 Resource Identifiers

The format of a resource identifier is as follows:

/<resource_kind_1>/<resource_name_1>/.../<resource_kind_N>[/resource_name_N]

Where:

❏ <resource_kind> can have one of the following values:

• domain_participant, shared_subscriber, shared_reader_queue,
dead_letter_shared_reader_queue, status, data, and message. The resource kinds
status, data, and message represent different information for an entity.

• status: Refers to the operational status for a Queuing Service entity. This informa-
tion changes continuously. The status information is composed primarily of statis-
tics.

• data: Refers to configuration data. This data is mostly static and does not change
continuously.

• message: Applies to SharedReaderQueues and refers to samples in the queues.

❏ <resource_name> specifies the name of the resource as defined in the XML configuration
file using the attribute name.

For example, consider the following XML:

<?xml version="1.0"?>
 <dds>
 <queuing_service name=”QueuingService_1”>
 ...
 <domain_participant name=”DomainParticipant_1”>
 ...
 <shared_subscriber name=”SharedSubscriber_1”>
 ...
 <shared_reader_queue name=”SharedReaderQueue_1”>
 </shared_reader_queue>
 </shared_subscriber>
 </domain_participant>
 </queuing_service>
 </dds>

The resource identifier for the DomainParticipant is: /domain_participant/DomainParticipant_1.

The resource identifier for SharedSubscriber is: /domain_participant/DomainParticipant_1/
shared_subscriber/SharedSubscriber_1.

The resource identifier for the SharedReaderQueue is: /domain_participant/
DomainParticipant_1/shared_subscriber/SharedSubscriber_1/shared_reader_queue/
SharedReaderQueue_1.

The resource identifier for the sample(s) in the SharedReaderQueue is: /domain_participant/
DomainParticipant_1/shared_subscriber/SharedSubscriber_1/shared_reader_queue/
SharedReaderQueue_1/message.
5-2

Remote Administration API
The resource identifier for the SharedReaderQueue status is: /domain_participant/
DomainParticipant_1/shared_subscriber/SharedSubscriber_1/shared_reader_queue/
SharedReaderQueue_1/status.

5.2.2 Sample Selector

For requests that apply to messages in a SharedReaderQueue, you may optionally provide a
sample selector as part of the <body>. The sample selector is an SQL-like expression.

Expression Grammar:

Condition::= Predicate
| Condition 'AND' Condition
| Condition 'OR' Condition
| 'NOT' Condition
| '(' Condition ')'

Predicate ::= ComparisonPredicate

ComparisonPredicate ::= ComparisonTerm RelOp ComparisonTerm

ComparisonTerm ::= FieldIdentifier | Parameter

FieldIdentifier ::= FIELDNAME

RelOp ::= '=' | '<>'

Parameter ::=
SEQUENCE_NUMBER |
INTEGER_VALUE|
BOOLEAN_VALUE|
STRING|
OCTET_ARRAY

Token Expressions:

❏ FIELDNAME—A reference to a field in the data structure. A period '.' is used to navigate
through nested structures. The number of dots that may be used in a FIELDNAME is
unlimited. An ‘@’ symbol prepending the field indicates that the field is a metadata field.

❏ INTEGERVALUE—Any series of digits, optionally preceded by a plus or minus sign,
representing a decimal integer value within the range of the system. 'L' or 'l' must be
used for long long, otherwise long is assumed. A hexadecimal number is preceded by 0x
and must be a valid hexadecimal expression.

❏ BOOLEANVALUE—Can either be TRUE or FALSE, and is case insensitive.

❏ STRING—Any series of characters encapsulated in single quotes, except the single quote
itself.

❏ OCTET_ARRAY—An array of octets represented as follows: &hex(hex_octet_values).
For example:

&hex(0708090A0B0C0D0E0F10111213141516)

Here the left-most pair represents the byte and index 0.

❏ SEQUENCE_NUMBER: A sequence number represented by a pair (high, low).

For example: (2,3)
5-3

Remote Administration Topics
Supported Field Names:

The only field names supported in this release are:

❏ @original_sample_identity.writer_guid.value

❏ @original_sample_identity.sequence_number

❏ @sample_queue_status

The original_sample_identity identifies a sample sent by the QueueProducer. The identity con-
sists of a pair (Virtual Writer GUID, Virtual Sequence Number).

By default, the identity of a sample published with a QueueProducer’s DataWriter is automati-
cally set by the middleware. You can access this value by using the write_w_params() operation.
It is also possible to explicitly set the sample identity by using the same write_w_params() oper-
ation. For details on how to set and retrieve the sample identity, see Section 6.3.8, Writing Data,
in the RTI Connext DDS Core Libraries User's Manual.

The sample_queue_status is a mask that represents the status of a sample in a SharedReader-
Queue. The possible statuses are:

❏ UNDELIVERED_MESSAGE_STATUS

❏ SENT_MESSAGE_STATUS

❏ DELIVERED_MESSAGE_STATUS

Sample Selector Examples:

To select all the samples that have been sent to a QueueConsumer but not acknowledged yet:

@sample_queue_status = SENT_MESSAGE_STATUS

To select all the samples that have been not been delivered to a QueueConsumer yet:

@sample_queue_status = SENT_MESSAGE_STATUS| UNDELIVERED_MESSAGE_STATUS

To select all the samples coming from a QueueProducer’s DataWriter identified by virtual GUID
1:

@original_sample_identity.writer_guid.value =

&hex(00000000000000000000000000000001)

To select the sample coming from a QueueProducer’s DataWriter identified by virtual GUID 1
with sequence number 1:

@original_sample_identity.writer_guid.value =
&hex(00000000000000000000000000000001) AND
@original_sample_identity.sequence_number = (0,1)

5.3 Remote Administration Topics
For remote administration, Queuing Service creates two topics:

❏ rti/service/admin/command_request is used to send a command from a client to Queu-
ing Service.

❏ rti/service/admin/command_reply is used to send the command response(s) from Queu-
ing Service to the client.

The topics have these corresponding types:

❏ RTI::Service::Admin::CommandRequest
5-4

Remote Commands in Queuing Service
❏ RTI::Service::Admin::CommandReply

You can find the IDL definitions for these types in <NDDSHOME>/ resource/idl/ServiceAd-
min.idl.

 struct CommandRequest {
 EntityName service_name;
 ServiceKind service;
 CommandActionKind action;
 ResourceIdentifier resource_identifier;
 StringBody string_body;
 OctetBody octet_body;
 }; //@Extensibility EXTENSIBLE_EXTENSIBILITY

 struct CommandReply {
 CommandReplyRetcode retcode;
 long native_retcode;
 StringBody string_body;
 OctetBody octet_body;
 }; //@top-level true
 //@Extensibility EXTENSIBLE_EXTENSIBILITY

The field native_retcode in the CommandReply is reserved for future use.

When generating code for ServiceAdmin.idl in C, C++, and .NET, make sure to use the com-
mand-line option, -unboundedSupport.

5.4 Remote Commands in Queuing Service
This section describes the remote commands available in Queuing Service. Accessing Queuing
Service from a Connext DDS application (Section 5.5) explains how to use remote administration
from a Connext DDS application.

5.4.1 Create SharedReaderQueue

The following command is used to create a SharedReaderQueue:

CREATE <target_queuing_service> <shared_subscriber_resource_identifier>
<xml_url>

Where:

❏ <shared_subscriber_resource_identifier> is the resource identifier for the SharedSubscriber
that will contain the SharedReaderQueue.

❏ <xml_url> contains an XML snippet containing the SharedReaderQueue configuration. A
full file (starting with <dds>...) is not valid. For example:

str://”<shared_reader_queue name=\”SharedReaderQueue_1\”...>
 <topic_name>RequestMessageTopic</topic_name> ... </shared_reader_queue>”

Return Value:

Upon success, this command returns RTI_SERVICE_COMMAND_REPLY_OK in the retcode
field of the reply. Otherwise, this command returns one of the following values, and the field
string_body contains a human-readable string describing the error:

❏ RTI_SERVICE_COMMAND_REPLY_ALREADY_EXISTS: If the SharedReaderQueue
already exists with a different configuration.
5-5

Remote Commands in Queuing Service
❏ RTI_SERVICE_COMMAND_REPLY_DUPLICATED: If the SharedReaderQueue already
exists with the same configuration.

❏ RTI_SERVICE_COMMAND_REPLY_ERROR: For any other creation error.

5.4.2 Delete SharedReaderQueue

The following command is used to delete a SharedReaderQueue:

DELETE <target_queuing_service> <shared_reader_queue_resource_identifier>

Return Value:

Upon success, this command returns RTI_SERVICE_COMMAND_REPLY_OK in the retcode
field of the reply. Otherwise, this command returns
RTI_SERVICE_COMMAND_REPLY_ERROR, and the field string_body contains a human-
readable string describing the error.

5.4.3 Flush SharedReaderQueue

The following command is used to flush all the samples or a set of samples from a SharedRead-
erQueue.

DELETE <target_queuing_service> <shared_reader_queue_resource_identifier>/
message <sample selector>

Parameters:

The <sample_selector> (see Sample Selector (Section 5.2.2)) is a SQL expression that specifies
the set of samples that must be removed and it must be provided in the field string_body of the
CommandRequest.

Return Value:

Upon success, this command returns RTI_SERVICE_COMMAND_REPLY_OK in the retcode
field of the reply. Otherwise, this command returns
RTI_SERVICE_COMMAND_REPLY_ERROR, and the field string_body contains a human-
readable string describing the error.

5.4.4 Get SharedReaderQueue Status

The type of the SharedReaderQueue's status is called SharedReaderQueueStatus; you can find
it in the file <NDDSHOME>/resource/idl/QueuingServiceTypes.idl.

The operational status provides multiple counters describing the status of the SharedReader-
Queue.

Return Value:

Upon success, this command returns RTI_SERVICE_COMMAND_REPLY_OK in the retcode
field of the reply. The operational status is sent in serialized form within the octet_body field in
the CommandReply. If there is an error, this command returns
RTI_SERVICE_COMMAND_REPLY_ERROR and the field string_body contains a human-read-
able string describing the error.

Status Description:

The type of the SharedReaderQueue’s status can be found in the file <NDDSHOME>/resource/
idl/QueuingServiceTypes.idl.

To deserialize the status from the CommandReply octet_body use the following operations:

❏ C: SharedReaderQueueStatusTypeSupport_deserialize_data_from_cdr_buffer()
5-6

Remote Commands in Queuing Service
❏ C++: SharedReaderQueueStatusTypeSupport::deserialize_data_from_cdr_buffer()

❏ C++/CLI:
SharedReaderQueueStatusTypeSupport::deserialize_data_from_cdr_buffer()

❏ C#: SharedReaderQueueStatusTypeSupport.deserialize_data_from_cdr_buffer()

❏ Java: SharedReaderQueueStatusTypeSupport.get_instance().deserialize_from_cdr_
buffer()

When generating code for QueuingServiceTypes.idl in C, C++, and .NET, make sure you use
the -unboundedSupport command-line option.

5.4.5 Get Service Data

The following command is used to get the ServiceData that provides a sequence of SharedRead-
erQueueData. This command provides a way to query all the SharedReaderQueues hosted in a
service instance.

GET <target_queuing_service> /data

Return Value:

Upon success, this command returns RTI_SERVICE_COMMAND_REPLY_OK in the retcode
field of the reply. The ServiceData is sent in serialized form within the field octet_body in the
CommandReply. If there is an error, this command returns
RTI_SERVICE_COMMAND_REPLY_ERROR and the field string_body contains a human-read-
able string describing the error.

Service Data:

The type of the ServiceData can be found in the file <NDDSHOME>/resource/idl/QueuingSer-
viceTypes.idl.

struct SharedReaderQueueData {
 /* Fully qualified name of the SharedReaderQueue within the XML file */
 string<NAME_MAX_LENGTH> queue_name; //@key
 string<NAME_MAX_LENGTH> topic_name;
}; //@Extensibility MUTABLE_EXTENSIBILITY

struct ServiceData {
 sequence<SharedReaderQueueData> shared_reader_queue_data_list;
}; //@Extensibility MUTABLE_EXTENSIBILITY

To deserialize the ServiceData from the CommandReply octet_body, use the following opera-
tions:

❏ C: ServiceDataTypeSupport_deserialize_data_from_cdr_buffer()

❏ C++: ServiceDataTypeSupport::deserialize_data_from_cdr_buffer()

❏ C++/CLI: ServiceDataTypeSupport::deserialize_data_from_cdr_buffer()

❏ C#: ServiceDataTypeSupport.deserialize_data_from_cdr_buffer()

❏ Java: ServiceDataTypeSupport.get_instance().deserialize_from_cdr_buffer()

When generating code for QueuingServiceTypes.idl in C, C++, and .NET, make sure you use
the -unboundedSupport command-line option.
5-7

Remote Commands in Queuing Service
5.4.6 Get Samples From a SharedReaderQueue

The following command is used to get one or more samples from the SharedReaderQueue using
a condition. This is a multi-reply command in which the number of responses is equal to the
number of samples satisfying the condition.

GET <target_queuing_service> <shared_reader_queue_resource_identifier>/mes-
sage <sample_selector>

Parameters:

The <sample_selector> (see Sample Selector (Section 5.2.2)) is a SQL expression that specifies
the set of samples that must be retrieved. This expression must be provided in the field
string_body of the CommandRequest.

Return Value:

Upon success, this command returns X number of replies where X is the number of samples in
the SharedReaderQueue satisfying the <sample_selector> expression. In each one of these
replies the retcode field is set to RTI_SERVICE_COMMAND_REPLY_OK and the octet_body is
initialized with the serialized sample in CDR format.

If there are no samples satisfying the <sample_selector>, the service returns one reply where the
retcode field is set to RTI_SERVICE_COMMAND_REPLY_OK and the octet_body is empty.

In multi-reply commands, you can detect the last reply for a given command by inspecting the
field flag in DDS_SampleInfo. For intermediate replies, the flag
DDS_INTERMEDIATE_REPLY_SEQUENCE_SAMPLE is set. In the last reply this flag is not set.

Samples:

Each one of the samples returned by this command in the field octet_body of the reply is encap-
sulated in a Message type, which has the following definition:

struct Message {
 MessageStatusKind status;
 SampleIdentity_t original_virtual_sample_identity;
 /* CDR-serialized content of the SharedReaderQueue sample */
 SampleBuffer_t sample_buffer;
}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

The type can be found in the file <NDDSHOME>/resource/idl/QueuingServiceTypes.idl.

To deserialize the Message from the CommandReply octet_body use the following operations:

❏ C: MessageTypeSupport_deserialize_data_from_cdr_buffer()

❏ C++: MessageTypeSupport::deserialize_data_from_cdr_buffer()

❏ C++/CLI: MessageTypeSupport::deserialize_data_from_cdr_buffer()

❏ C#: MessageTypeSupport.deserialize_data_from_cdr_buffer()

❏ Java: MessageTypeSupport.get_instance().deserialize_from_cdr_buffer()

The sample_buffer field in Message contains the serialized SharedReaderQueue’s sample. To
deserialize the sample use the following operations (where <Foo> is the type of the SharedRead-
erQueue’s samples):

❏ C: <Foo>TypeSupport_deserialize_data_from_cdr_buffer()

❏ C++: <Foo>TypeSupport::deserialize_data_from_cdr_buffer()

❏ C++/CLI: <Foo>TypeSupport::deserialize_data_from_cdr_buffer()

❏ C#: <Foo>TypeSupport.deserialize_data_from_cdr_buffer()

❏ Java: <Foo>TypeSupport.get_instance().deserialize_from_cdr_buffer()
5-8

Accessing Queuing Service from a Connext DDS application
When generating code for QueuingServiceTypes.idl in C, C++, and .NET, make sure you use
the -unboundedSupport command-line option.

5.4.7 Create SharedSubscriber

The following command is used to create a SharedSubscriber:

CREATE <target_queuing_service> <domain_participant_resource_identifier>
<xml_url>

Parameters:

❏ <domain_participant_resource_identifier> is the resource identifier for the DomainPartici-
pant that will contain the SharedSubscriber.

❏ <xml_url> contains an XML snippet containing the SharedSubscriber configuration. A
full file (starting with <dds>...) is not valid. For example:

str://”<shared_subscriber name=\”SharedSubscriber_1\”...>
... </shared_subscriber>”

Return Value:

Upon success, this command returns RTI_SERVICE_COMMAND_REPLY_OK in the retcode
field of the reply. Otherwise, this command returns one of the following values, and the field
string_body contains a human-readable string describing the error:

❏ RTI_SERVICE_COMMAND_REPLY_ALREADY_EXISTS, if the SharedSubscriber
already exists with a different configuration.

❏ RTI_SERVICE_COMMAND_REPLY_DUPLICATED, if the SharedSubscriber already
exists with the same configuration.

❏ RTI_SERVICE_COMMAND_REPLY_ERROR, for any other creation error.

5.4.8 Delete SharedSubscriber

The following command is used to delete a SharedSubscriber:

DELETE <target_queuing_service> <shared_subscriber_resource_identifier>

Return Value:

Upon success, this command returns RTI_SERVICE_COMMAND_REPLY_OK in the retcode
field of the reply. Otherwise, this command returns
RTI_SERVICE_COMMAND_REPLY_ERROR and the field string_body contains a human- read-
able string describing the error.

5.5 Accessing Queuing Service from a Connext DDS application
You can create a DataWriter for the command topic to write Queuing Service administration com-
mands and create a DataReader for the response topic to receive responses.

A more powerful and easier way is to use the Request-Reply API (only available with Connext
DDS Professional). You can create a Requester for these topics that will write command requests
and wait for replies.

The QoS configurations of your DataWriter and DataReader, or your Requester (if you are using
the Request-Reply API), must be compatible with the one used by Queuing Service (see how this
is configured in Configuring Administration (Section 3.3.3)).
5-9

Accessing Queuing Service from a Connext DDS application
The following C# example uses the Connext DDS Professional Request-Reply API to send com-
mands and receive replies. This example shows a C# application that creates a Requester that can
communicate with the Queuing Service remote administration server. It sends a request (a Queu-
ing Service remote command) to create a SharedReaderQueue. The request receives a reply with
the result for that command.

using System;
using System.Collections.Generic;
using System.Text;
using RTI.Service.Admin;
using DDS;
using RTI.Connext.RequestReply;
using RTI.Connext.Infrastructure;

/**
 * How to use the Queuing Service administration through a Requester
 */
public class CommandExample
{
 private static readonly Duration_t MAX_WAIT =

Duration_t.from_seconds(10);

 public static void Main(string[] args)
 {
 // Create DomainParticipant

 DomainParticipant participant =
DomainParticipantFactory.get_instance()

.create_participant(
 1,

DomainParticipantFactory.PARTICIPANT_QOS_DEFAULT,
null,
StatusMask.STATUS_MASK_NONE);

 if (participant == null)
 {
 throw new SystemException("Participant creation failed");
 }

 try
 {
 // Accessing Queuing Service from a Connext application
 // Create requester for Routing Service remote-admin topics //
 Requester<CommandRequest, CommandReply> requester =
 new Requester<CommandRequest, CommandReply>(
 new RequesterParams(participant,
 CommandRequestTypeSupport.get_instance(),
 CommandReplyTypeSupport.get_instance()).
 SetRequestTopicName(

COMMAND_REQUEST_TOPIC_NAME.VALUE).
 SetReplyTopicName(COMMAND_REPLY_TOPIC_NAME.VALUE));
 try
 {
 System.Console.WriteLine(

"Waiting to discover Queuing Service");
 InstanceHandleSeq handles = new InstanceHandleSeq();
 while (handles.length == 0)
 {
5-10

Accessing Queuing Service from a Connext DDS application
 requester.RequestDataWriter.
get_matched_subscriptions(handles);

 System.Threading.Thread.Sleep(1000);
 }
 System.Console.WriteLine("Matched subscription");
 //
 // Send create command
 //
 WriteSample<CommandRequest> request =

requester.CreateRequestSample();

 request.Data.service_name = "QueuingService_1";
 request.Data.action =

CommandActionKind.RTI_SERVICE_COMMAND_ACTION_CREATE;

 request.Data.resource_identifier =
"/domain_participant/DomainParticipant/shared_subscriber/SharedSubscriber";

 request.Data.string_body =
"str://\"<shared_reader_queue name=\"SharedReaderQueue_1\"" +
"session=\"session\">\n" +
"<topic_name>SharedReaderQueueTopic</topic_name>\n" +
"<type_name> SharedReaderQueueType</type_name>\n" +
"</shared_reader_queue>\"";

 requester.SendRequest(request);

 // Receive the reply
 Sample<CommandReply> reply = requester.CreateReplySample();
 if (!requester.ReceiveReply(reply, MAX_WAIT))
 {
 throw new SystemException("Reply not received");
 }
 System.Console.WriteLine("Received reply: " +
 reply.Data.string_body);
 }
 finally
 {
 requester.Dispose();
 }
 }
 finally
 {
 participant.delete_contained_entities();
 DomainParticipantFactory.get_instance().

delete_participant(ref participant);
 }
 }
}

5-11

Chapter 6 Publish-Subscribe Monitoring of Queuing
Service from a Remote Location

You can monitor Queuing Service remotely by subscribing to special topics. By subscribing to
these topics, any Connext DDS application can receive information about the configuration and
operational status of Queuing Service.

Being able to monitor the state of a Queuing Service instance is an important tool that allows you
to detect problems. For example, looking at the enqueue throughput of a SharedReaderQueue
you might see that the queue is receiving a lot of traffic and you may want to put that queue in
its own session.

There are two kinds of monitoring data for en entity (for example, a SharedReaderQueue):

❏ Entity data provides information about the configuration of the entity. For example, the
service data contains a list of the SharedReaderQueues contained in the service. Entity
data information is updated every time there is a configuration change that affects that
data.

❏ Entity status provides information about the operational status of an entity. This kind of
information changes continuously and is computed and published periodically. For
example, the SharedReaderQueue status contains information such as the SharedReader-
Queue's latency and throughput.

Queuing Service only publishes entity status for SharedReaderQueues. Entity data can be
accessed using remote administration commands (See Chapter 5: Administering Queuing Ser-
vice from a Remote Location.)

6.1 Enabling Publish-Subscribe Monitoring Data
By default, remote publish-subscribe monitoring is disabled in Queuing Service for security rea-
sons. To enable remote monitoring, you can use the <monitoring> tag (see Configuring Publish-
Subscribe Monitoring (Section 3.3.4.2)).

When remote publish-subscribe monitoring is enabled, Queuing Service creates:

❏ 1 DomainParticipant

❏ 1 Publisher

❏ 1 DataWriter to publish status data for SharedReaderQueues

The QoS values for these entities are described in Configuring Publish-Subscribe Monitoring
(Section 3.3.4.2).
6-1

Status Information for a SharedReaderQueue
6.2 Status Information for a SharedReaderQueue
The topic that publishes SharedReaderQueue status is called rti/queuing_service/monitoring/
shared_reader_queue.

The registered type name for the topic is RTI::QueuingService::Monitoring::SharedReader-
QueueStatus.

The type definition of the SharedReaderQueue status is called SharedReaderQueueStatus and it
can be found in the file <NDDSHOME>/resource/idl/QueuingServiceTypes.idl.

Queuing Service reports multiple statistics as part of the SharedReaderQueue status. Some of
these statistics are counters such as the number of samples received by a SharedReaderQueue
and other statistics are statistics variables such as the number of samples enqueued per second
in a SharedReaderQueue.

To see how statistics variable are calculated, see Configuring Statistics Calculation Process (Sec-
tion 3.3.4.3).
6-2

Chapter 7 High Availability

For high availability, Queuing Service can be configured to replicate both, the content of the
SharedReaderQueues and the service configuration.

7.1 SharedReaderQueue Replication
By default, SharedReaderQueues within a Queuing Service instance are not replicated. Share-
dReaderQueues can optionally be replicated across multiple instances of Queuing Service run-
ning in the same or different nodes. See Figure 7.1

Figure 7.1 Replicating SharedReaderQueues

7.1.1 SharedReaderQueue Replication Protocol

Each replicated SharedReaderQueue consists of one master and multiple slaves. Only the mas-
ter SharedReaderQueue distributes messages to the QueueConsumers DataReaders. When the
master goes away the most up-to-date slave is promoted into master.
7-1

SharedReaderQueue Replication
The replication protocol has four different phases:

1. Sample replication

2. Enqueue

3. Consumer assignment

4. Delivery

7.1.1.1 Sample Replication Phase

During this phase, the samples published by a QueueProducer's DataWriter are distributed to all
replicas (master and slaves). There are two ways to do this:

1. The QueueProducer's DataWriter sends directly the samples to all the replicas. This is the
preferred way to distribute the sample as it provides the best performance, especially
with the usage of multicast. See Figure 7.2.

Figure 7.2 Direct Sample Distribution
7-2

SharedReaderQueue Replication
2. The QueueProducer's DataWriter sends the samples to only a subset of the replicas, usu-
ally one. Then the replicas that receive the samples broadcast these samples to all the
other replicas, as seen in Figure 7.3.

Figure 7.3 Relayed Sample Distribution

In this release, the decision of whether or not a replica should broadcast the received samples to
the other replicas is taken by the QueueProducer's application on a per-sample basis by marking
the sample with the flag DDS_REPLICATE_SAMPLE. This can be done by using the DataW-
riter 's write_w_params() operation and setting the bit DDS_REPLICATE_SAMPLE in the flag
field of WriteParams_t.

7.1.1.2 Enqueue Phase

During the enqueue phase, the master makes sure at least a quorum of the most up-to-date rep-
licas (including itself) have received a sample before moving the sample to the ENQUEUE state
(see Sample Lifecycle In Queuing Service (Section 2.9)).

The number of replicas in the quorum is defined as the lowest integer that is higher than half of
the expected number of replicas. The expected number of replicas must be known in advance
and it is configured using the XML tag <queue_instances> under <replication_settings> (see
SharedReaderQueue Replication Configuration (Section 7.1.3)).

After the sample is moved to the ENQUEUE state, the master and slaves send an AppAck mes-
sage to the QueueProducer indicating that the sample has been successfully enqueued. The
response data of the AppAck message for successfully enqueued samples will be a single byte
set to 1. Positive AppAck messages are global AppAck messages. Therefore, when monitoring
AppAck messages, the QueueProducer can assume that a sample has been successfully
enqueued as soon as it receives a positive acknowledgment from any of the replicas (master or
slaves).
7-3

SharedReaderQueue Replication
If there is no a quorum of up-to-date replicas that are able to enqueue the sample, the replicas
will send an AppAck message to the QueueProducer's DataWriter, where the response is set to 0.
Negative AppAck messages are local messages. In order to consider a message as not enqueued,
a QueueProducer must receive a negative AppAck from all replicas.

To make this decision easier, you can use the DataWriter’s is_sample_app_acknowledged()
operation—it returns TRUE when a sample has been application acknowledged (negatively or
positively) by all replicas that were alive when the sample was published. If the QueueProducer
has not received a positive AppAck message for a sample and the
is_sample_app_acknowledged() returns TRUE, the sample can be considered not enqueued. At
this point it is responsibility of the application to decide whether or not to republish the sample.

7.1.1.3 Consumer Assignment Phase

During the consumer assignment phase the master selects a QueueConsumer as the destination
for a message according to the distribution policy configured for the SharedReaderQueue (see
Selecting a QueueConsumer for a Sample (Section 2.10)).

After the QueueConsumer has been selected, the master notifies all the slaves about this selec-
tion. Then, there are two possibilities:

1. The master sends the sample to the QueueConsumer immediately.

2. The master waits until it gets confirmation from the quorum of most up-to-date slaves
indicating that they received the assignment before it sends the sample to the Queue-
Consumer.

This behavior con be configured using the XML tag <synchronize_consumer_assignment>
under <replication_settings> (see SharedReaderQueue Replication Configuration (Section
7.1.3)).

If the master goes away, the slave promoted to master will try first to send the samples to the
assigned QueueConsumer if this QueueConsumer is still in the system. These samples will be
marked with the DDS_REDELIVERED_SAMPLE flag.

7.1.1.4 Delivery Phase

After a QueueConsumer sends an application-level acknowledgment to the master indicating
that a sample has been processed successfully, the master notifies all the slaves about this deci-
sion and it removes the sample from the SharedReaderQueue. When the slaves receive this noti-
fication they also remove the sample from their SharedReaderQueues.

7.1.2 SharedReaderQueue Master Election Protocol

When the master for a SharedReaderQueue goes away the most up-to-date slave is promoted
into master.

How fast the loss of the master is detected depends on a master timeout period configurable
using the XML tag <master_timeout> under <replication_settings> (See SharedReaderQueue
Replication Configuration (Section 7.1.3)).

If a slave does not receive messages from the master during a period greater than the master
timeout, it initiates a voting mechanism to select a new master.

While the new master election is in progress, the samples sent by QueueProducers will be
rejected. The QueueProducer will receive AppAck messages from all replicas with the response
set to 0.
7-4

SharedReaderQueue Replication
7.1.3 SharedReaderQueue Replication Configuration

You can choose between replicating all the SharedReaderQueues within a service or replicating
individual SharedReaderQueues.

To replicate all the SharedReaderQueues within a service, you can set the
<shared_reader_queue_replication> tag within <queuing_service>/<service_qos>. Replica-
tion is automatically enabled when you use this tag. It also allows you to configure the replica-
tion protocol.

Table 7.1, SharedReaderQueue Replication Tags describes the tags allowed within a
<shared_reader_queue_replication> tag.

You can also replicate individual SharedReaderQueues by using the <replication> tag under
<shared_reader_queue>/<queue_qos> (see Table 7.2, Replication Tags).

The replication protocol is configured using the <replication_settings> tag; see Table 7.3, Repli-
cation Settings Tags.

Table 7.1 SharedReaderQueue Replication Tags

Tags within
<shared_reader_queue_replication> Description

Number
of Tags

Allowed

<enabled>

Enables/disables replication for all Share-
dReaderQueues in the service.

You can override this behavior on a per Share-
dReaderQueue basis by setting <replication>
under <shared_reader_queue>/<queue_qos>.

Default: true

0 or 1

<replication_settings>

Configures the replication protocol.

See Table 7.3, Replication Settings Tags.

Default: If not set, replication settings are inher-
ited from the settings in <replication_settings>
under <queuing_service>.

0 or 1

Table 7.2 Replication Tags

Tags within
<replication> Description

Number
of Tags

Allowed

<enabled>
Enables/disables replication for the SharedReaderQueue

Default: true
0 or 1

<replication_settings>

Configures the replication protocol.

See Table 7.3, Replication Settings Tags.

Default: If not set, replication settings are inherited as follows:

First, from the settings in <replication_settings> under
<queuing_service>/<service_qos>/
<shared_reader_queue_replication>

Second, from the settings in <replication_settings> under
<queuing_service>

0 or 1
7-5

SharedReaderQueue Replication
7.1.3.1 Protocol Information Exchange

The replication of SharedReaderQueues requires the exchange of status information among rep-
licas. This is done by creating a DataWriter and a DataReader per SharedReaderQueue to publish
and subscribe to this information.

The QoS for these entities can be configured using the tags <update_datawriter_qos> and
<update_datareader_qos> under the <shared_reader_queue> tag; see Table 3.14, SharedRead-
erQueue Tags.

Table 7.3 Replication Settings Tags

Tags within
<replication_settings> Description

Number of
Tags

Allowed

<queue_instances>
The number of expected replicas (including the master) for a
SharedReaderQueue

Default: 2
0 or 1

<master_timeout>

A new master election process will be initiated if the master
does not send messages to the replicas before this timeout
expires. Example:

<master_timeout>
 <sec>5</sec>
 <nanosec>0</nanosec>
</master_timeout>

Default: 5 seconds

0 or 1

<synchronize_consumer_
assignment>

Indicates if the master must wait for the slaves to receive the
QueueConsumer assignment before sending a sample to the
selected QueueConsumer.

Default: false

0 or 1

<sample_timeout>

Configures the maximum amount of time that a sample can be
in a replica's SharedReaderQueue without having reached
quorum. After this time, the sample is removed from the
SharedReaderQueue, the replica sends an AppAck message to
the QueueProducer (with the response set to 0), and the rep-
lica notifies the master about this event. Notice that the sample
is not sent to the DeadLetterSharedReaderQueue.

This timeout is needed to avoid situations in which a sample
stays in the replicas' SharedReaderQueues permanently. This
could happen if for some reason one of the replicas participat-
ing in the quorum did not receive a sample from the Queue-
Producer. Under this circumstance, the sample would not be
able to be enqueued with quorum and it would stay in the
SharedReaderQueues of the replicas that received the sample
indefinitely.

Default: 7 seconds, measured from the enqueue time

0 or 1
7-6

Configuration Replication
7.2 Configuration Replication
By default, the service configuration is not replicated. Enabling configuration replication
between a set of Queuing Service instances (replication cluster) will require:

❏ Enabling remote administration and using the same remote administration domain ID
for each one of the Queuing Service instances participating in the configuration replication
process. The administration domain ID can be configured using the command-line
option -remoteAdministrationDomainId (see Table 4.1, RTI Queuing Service Com-
mand-Line Options) or the XML tag <administration>/<domain_id> (see Configuring
Administration (Section 3.3.3)).

❏ Assigning an application name to each one of the Queuing Service instances using the
command-line option -appName (see Queuing Service runs as a separate application.
The script to run the executable is in <NDDSHOME>/bin. There are four ways to start
Queuing Service: (Section)). This name should have a common prefix, so that when an
application sends a remote administration command, that command can be applied to all
the instances by selecting a target queuing service using a wildcard expression on the
common prefix.

For example, supposed you have three service instances with application names
Cluster_1_Instance_1, Cluster_1_Instance_2, and Cluster_1_Instance_3. (Notice that
the word "Cluster" is not strictly required, any common prefix will work.) To send a
remote administration command to all three instances, you can use Cluster_1* as the tar-
get queuing service.

❏ Setting the tag <configuration_replication> under <service_qos> in the configuration
file (see SharedReaderQueue for Configuration Replication (Section 7.2.1). This will cre-
ate a special SharedReaderQueue for configuration replication that runs in its own
DomainParticipant.

❏ [Optional] Using the -cfgRemote command-line option in combination with -remoteAd-
ministrationDomainId to obtain the initial configuration from other running instances.
Set -remoteAdministrationDomainId to the administration domain ID that will be used
to send remote commands. If you do not use -cfgRemote, the service will not get the ini-
tial configuration remotely and it will start from the provided file.

When replication is enabled, remote administration commands that change the service configu-
ration, such as adding or removing a SharedReaderQueue, should be sent to all the Queuing Ser-
vice instances by using <CommonPrefix> as the target queuing service (field service_name in
CommandRequest) (see Chapter 5: Administering Queuing Service from a Remote Location). In
the above example, the field service_name would be set to Cluster_1*. The application sending
the command will receive a response from each one of the members in the cluster, confirming
the successful execution of the command.

Notice that an application could still send a command to multiple Queuing Service instances
without enabling replication. The difference in this case is that the final configuration may not
be consistent across instances if multiple applications send remote commands at the same time.
By enabling replication using the tag <configuration_replication>, we guarantee configuration
consistency across all the instances in the cluster.

7.2.1 SharedReaderQueue for Configuration Replication

To enable configuration replication, you must use the <configuration_replication> tag under
<service_qos>. When this occurs, Queuing Service creates a special SharedReaderQueue that is
used to replicate the remote administration commands across all the instances in the replication
7-7

Replication Clusters
cluster. This SharedReaderQueue is replicated and the replication settings are configured using
the <replication_settings> flag under <configuration_replication>. Table 7.4, Configuration
Replication Tags describes the tags allowed within a <configuration_replication> tag.

7.3 Replication Clusters
A replication cluster is a set of Queuing Service instances that coordinate with each other to repli-
cate SharedReaderQueues and/or the service configuration. Instances in different clusters are
isolated form each other.

For SharedReaderQueue replication, all instances within a cluster must have a
<domain_participant> with the same <domain_id> (see Configuring DomainParticipants (Sec-
tion 3.3.6)).

For service configuration replication, all instances within a cluster must use the same
<domain_id> for remote administration (See Configuring Administration (Section 3.3.3))

Table 7.4 Configuration Replication Tags

Tags within
<configuration_replication> Description

Number
of Tags

Allowed

<enabled>
Enables/disables configuration replication.

Default: true
0 or 1

<participant_qos>

Configures the DomainParticipant QoS for configuration
replication. This DomainPartipant runs on the administra-
tion domain ID. If the tag is not defined, Queuing Service
will use the Connext DDS defaults.

0 or 1

<replication_settings>

Configures the configuration replication protocol. See
Table 7.3, Replication Settings Tags

Default: If not set, the replication settings are inherited
from the settings in <replication_settings> under
<queuing_service>.

0 or 1
7-8

Replication Clusters
Figure 7.4 Replication Cluster
7-9

Chapter 8 Queuing Service Wrapper API

RTI Connext DDS provides a wrapper API to make it easier to interact with Queuing Service.

In this release, the wrapper API is only supported in the .NET API and is located in the
namespace RTI.Connext.Queuing.

Important: The wrapper API is only available with the Connext DDS Professional, Evaluation, and
Basic package types (it is not available with the Core package type).

8.1 QueueProducer Wrapper
To simplify the use and configuration of a DataWriter to send samples to a SharedReaderQueue,
Connext DDS provides an abstraction, QueueProducer<aMessageType>, which wraps the
DataWriter and provides additional services such as an operation to detect if there is a matching
SharedReaderQueue or an operation to wait for application-level acknowledgement after send-
ing a sample.

The Connext DDS API Reference HTML documentation contains the full API documentation for
the QueueProducer. Under the Modules tab, navigate to RTI Connext DDS API Reference, RTI
Connext Messaging API Reference, Queuing Pattern, QueueProducer.

8.2 QueueConsumer Wrapper
To simplify the use and configuration of a DataReader to receive samples from a SharedReader-
Queue, Connext provides an abstraction, QueueConsumer<MessageType>, which wraps the
DataReader and provide additional services such as an operation to detect if there is a matching
SharedReaderQueue or a blocking operation to receive samples.

The Connext API Reference HTML documentation contains the full API documentation for the
QueueProducer. Under the Modules tab, navigate to RTI Connext DDS API Reference, RTI
Connext Messaging API Reference, Queuing Pattern, QueueConsumer.

8.3 QueueRequester Wrapper
To simplify the use and configuration of the DataReader and DataWriter in the requester applica-
tion, Connext provides an abstraction, QueueRequester<MessageRequestType, MessageRep-
8-1

QueueReplier Wrapper
lyType>, which wraps the DataReader and DataWriter usage and provide additional services
such as an operation to wait for the response for a given request.

The Connext API Reference HTML documentation contains the full API documentation for the
QueueProducer. Under the Modules tab, navigate to RTI Connext DDS API Reference, RTI
Connext Messaging API Reference, Queuing Pattern, QueueRequester.

8.4 QueueReplier Wrapper
To simplify the use and configuration of the DataReader and DataWriter in the replier application,
Connext provides an abstraction, QueueReplier<MessageRequestType, MessageReplyType>,
which wraps the DataReader and DataWriter usage.

The Connext API Reference HTML documentation contains the full API documentation for the
QueueProducer. Under the Modules tab, navigate to RTI Connext DDS API Reference, RTI
Connext Messaging API Reference, Queuing Pattern, QueueReplier.
8-2

Chapter 9 Communication Using TCP Transport

Queuing Service, and the applications that interact with it, can be configured to communicate
with each other using the TCP transport distributed with Connext DDS. The transport can be
configured via XML using the PropertyQosPolicy of the Queuing Service’s DomainParticipants
and the applications’ DomainParticipants.

This chapter explains how to use and configure TCP communications with Queuing Service. This
chapter does not intend to provide an exhaustive explanation of the TCP transport and all of its
configuration properties. For details on the TCP transport, see the RTI Connext DDS Core Librar-
ies and Utilities User’s Manual.

The TCP transport distributed with Connext DDS can be used to address multiple communica-
tion scenarios that range from simple communication within a single LAN, to complex commu-
nication scenarios across LANs where NATs and firewalls may be involved.

The next sections explain how to configure and use the TCP transport to communicate with
Queuing Service in some typical scenarios.

9.1 Asymmetric TCP Communication With Queuing Service
In this scenario, Queuing Service is behind a NAT/Firewall and the QueueProducers, QueueCon-
sumers, and Remote Administration applications run outside the NAT. TCP connections can be
initiated only by applications running outside the NAT.

Figure 9.1 shows how to configure the system to communicate using the TCP transport. Notice
that it is not necessary to set NDDS_DISCOVERY_PEERS in the Queuing Service instance
because the connections are initiated from the applications running outside the NAT. In this
example, Queuing Service instantiates two instances of the TCP transport: one for administration
and one for SharedReaderQueue traffic. Each instance uses a separate TCP port.
9-1

Asymmetric TCP Communication With Queuing Service
Figure 9.1 Asymmetric TCP Configuration

The following XML snippet shows how to configure the TCP transport in Queuing Service. For
convenience, the participant QoS in the administration and SharedReaderQueue domains inher-
its from a commom QoS profile TCPLibrary::TCPProfile.

 <qos_library name="TCPLibrary">
 <qos_profile name="TCPProfile">
 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.load_plugins</name>
 <value>dds.transport.tcp</value>
 </element>
 <element>
 <name>dds.transport.tcp.library</name>
 <value>nddstransporttcp</value>
 </element>
 <element>
 <name>dds.transport.tcp.parent.classid</name>
 <value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>
 </element>
 <element>
 <name>dds.transport.tcp.create_function</name>
 <value>NDDS_Transport_TCPv4_create</value>
 </element>
 </value>
 </property>
 </participant_qos>
 </qos_profile>
 </qos_library>

 <queuing_service name="Service">
 <administration>
 <domain_id>1</domain_id>
 <participant_qos base_name="TCPLibrary::TCPProfile">
 <property>
 <value>
 <element>
9-2

Asymmetric TCP Communication With Queuing Service
 <name>dds.transport.tcp.server_bind_port</name>
 <value>15001</value>
 </element>
 <element>
 <name>dds.transport.tcp.public_address</name>
 <value>18.181.0.32:15001</value>
 </element>
 </value>
 </property>
 </participant_qos>
 </administration>
 <domain_participant name="DomainParticipant">
 <domain_id>0</domain_id>
 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.tcp.server_bind_port</name>
 <value>15000</value>
 </element>
 <element>
 <name>dds.transport.tcp.public_address</name>
 <value>18.181.0.32:15000</value>
 </element>
 </value>
 </property>
 </participant_qos>
 </domain_participant>
 </queuing_service>

The following XML snippet shows how to configure the applications running outside the NAT.

 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.load_plugins</name>
 <value>dds.transport.tcp</value>
 </element>
 <element>
 <name>dds.transport.tcp.library</name>
 <value>nddstransporttcp</value>
 </element>
 <element>
 <name>dds.transport.tcp.parent.classid</name>
 <value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>
 </element>
 <element>
 <name>dds.transport.tcp.create_function</name>
 <value>NDDS_Transport_TCPv4_create</value>
 </element>
 <element>
 <name>dds.transport.tcp.server_bind_port</name>
 <value>0</value>
 </element>
 </value>
 </property>
 </participant_qos>
9-3

Asymmetric TCP Communication with Queuing Service And Replication
9.2 Asymmetric TCP Communication with Queuing Service And
Replication
In this scenario, one of more instances of Queuing Service are behind a NAT/Firewall and the
QueueProducers, QueueConsumers, and Remote Administration applications run outside the
NAT. The Queuing Service instances are configured to replicate SharedReaderQueues and config-
uration.

Figure 9.2 shows how to configure the system to communicate using the TCP transport. This
includes communication with the applications running outside the NAT and communication
between the Queuing Service instances.

Figure 9.2 Asymmetric TCP Configuration With Replication

In a basic scenario that does not include configuration replication, a Queuing Service instance cre-
ates two DomainParticipants:

1. The first DomainParticipants is used to communicate with QueueProducers and Queue-
Consumers. This DomainParticipants is also used to exchange SharedReaderQueue syn-
chronization information between Queuing Service instances. To configure QoS of this
DomainParticipant, use the <domain_participant>/<participant_qos> tag (see Configur-
ing DomainParticipants (Section 3.3.6)).

2. The second DomainParticipants is used to receive remote administration commands. To
configure its QoS, use the <administration>/<participant_qos> tag (see Configuring
Administration (Section 3.3.3)).
9-4

Asymmetric TCP Communication with Queuing Service And Replication
When Queuing Service is configured to replicate configuration, it creates one more DomainPartic-
ipants to replicate the configuration. The QoS of this DomainParticipants is configured using
<configuration_replication>/<participant_qos> (see SharedReaderQueue for Configuration
Replication (Section 7.2.1)). All this DomainParticipants must be configured to use TCP.

This TCP communication scenario will require creating two instances of the TCP transport in
each one of the DomainParticipants created by the Queuing Service (QS) instances:

❏ The first instance runs in asymmetric mode and is used to allow the Queuing Services to
communicate with Producers, Consumers, and Remote Administration applications.

❏ The second instance runs in symmetric mode and is used for communication between
Queuing Services. Symmetric mode means that each service will create a server socket that
other services will use to establish connections.

The following XML snippet shows how to configure the TCP transport in Queuing Service

 <qos_library name="TCPLibrary">
 <qos_profile name="TCPProfile">
 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.load_plugins</name>
 <value>dds.transport.tcp,dds.transport.tcp2</value>
 </element>
 <element>
 <name>dds.transport.tcp.library</name>
 <value>nddstransporttcp</value>
 </element>
 <element>
 <name>dds.transport.tcp.parent.classid</name>
 <value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>
 </element>
 <element>
 <name>dds.transport.tcp.create_function</name>
 <value>NDDS_Transport_TCPv4_create</value>
 </element>
 <element>
 <name>dds.transport.tcp2.library</name>
 <value>nddstransporttcp</value>
 </element>
 <element>
 <name>dds.transport.tcp2.parent.classid</name>
 <value>NDDS_TRANSPORT_CLASSID_TCPV4_LAN</value>
 </element>
 <element>
 <name>dds.transport.tcp2.create_function</name>
 <value>NDDS_Transport_TCPv4_create</value>
 </element>
 </value>
 </property>
 </participant_qos>
 </qos_profile>
 </qos_library>

 <queuing_service name="Service">
 <administration>
 <domain_id>1</domain_id>
 <participant_qos base_name="TCPLibrary::TCPProfile">
9-5

Asymmetric TCP Communication with Queuing Service And Replication
 <property>
 <value>
 <element>
 <name>dds.transport.tcp.server_bind_port</name>
 <value>15002</value>
 </element>
 <element>
 <name>dds.transport.tcp.public_address</name>
 <value>18.181.0.32:15002</value>
 </element>
 <element>
 <name>dds.transport.tcp2.server_bind_port</name>
 <value>15003</value>
 </element>
 <element>
 <name>dds.transport.tcp2.public_address</name>
 <value>192.168.5.11:15003</value>
 </element>
 </value>
 </property>
 </participant_qos>
 </administration>
 <service_qos>
 <configuration_replication>
 <participant_qos base_name="TCPLibrary::TCPProfile">
 <property>
 <value>
 <element>
 <name>dds.transport.tcp.server_bind_port</name>
 <value>15004</value>
 </element>
 <element>
 <name>dds.transport.tcp.public_address</name>
 <value>18.181.0.32:15004</value>
 </element>
 <element>
 <name>dds.transport.tcp2.server_bind_port</name>
 <value>15005</value>
 </element>
 <element>
 <name>dds.transport.tcp2.public_address</name>
 <value>192.168.5.11:15005</value>
 </element>
 </value>
 </property>
 </participant_qos>
 </configuration_replication>
 </service_qos>
 <domain_participant name="DomainParticipant">
 <domain_id>0</domain_id>
 <participant_qos base_name="TCPLibrary::TCPProfile">
 <property>
 <value>
 <element>
 <name>dds.transport.tcp.server_bind_port</name>
 <value>15000</value>
 </element>
 <element>
 <name>dds.transport.tcp.public_address</name>
9-6

Asymmetric TCP Communication with Queuing Service And Replication
 <value>18.181.0.32:15000</value>
 </element>
 <element>
 <name>dds.transport.tcp2.server_bind_port</name>
 <value>15001</value>
 </element>
 <element>
 <name>dds.transport.tcp2.public_address</name>
 <value>192.168.5.11:15001</value>
 </element>
 </value>
 </property>
 </participant_qos>
 </domain_participant>
 </queuing_service>

The following XML snippet shows how to configure the applications running outside the NAT.

 <participant_qos>
 <property>
 <value>
 <element>
 <name>dds.transport.load_plugins</name>
 <value>dds.transport.tcp</value>
 </element>
 <element>
 <name>dds.transport.tcp.library</name>
 <value>nddstransporttcp</value>
 </element>
 <element>
 <name>dds.transport.tcp.parent.classid</name>
 <value>NDDS_TRANSPORT_CLASSID_TCPV4_WAN</value>
 </element>
 <element>
 <name>dds.transport.tcp.create_function</name>
 <value>NDDS_Transport_TCPv4_create</value>
 </element>
 <element>
 <name>dds.transport.tcp.server_bind_port</name>
 <value>0</value>
 </element>
 </value>
 </property>
 </participant_qos>
9-7

	Contents
	Chapter 1 Welcome to RTI Queuing Service
	Chapter 2 Queuing Service Architecture and Operation
	2.1 Terms to Know
	2.2 Paths Mentioned in Documentation
	2.3 Load Balancing by Sharing a Queue
	2.4 DataWriter Connection to a SharedReaderQueue
	2.4.1 QueueProducer Wrapper
	2.4.2 Samples with Large Maximum Size

	2.5 DataReader Connection to a SharedReaderQueue
	2.5.1 QueueConsumer Wrapper
	2.5.2 Samples with Large Maximum Size

	2.6 Queuing Service Entities
	2.7 Sample Distribution to a Selected QueueConsumer
	2.8 Interaction of Publish-Subscribe Entities with Queuing Service Entities
	2.9 Sample Lifecycle In Queuing Service
	2.10 Selecting a QueueConsumer for a Sample
	2.10.1 Round-Robin Dispatch Policy without Explicit QueueConsumer Availability Feedback
	2.10.2 Round-Robin Dispatch Policy with Explicit QueueConsumer Availability Feedback

	2.11 Sending a Reply from QueueConsumer to QueueProducer
	2.11.1 Requester Identification
	2.11.2 Request-Reply Correlation
	2.11.3 Sending the Reply Sample to the Associated Requester
	2.11.4 QueueRequester Wrapper
	2.11.5 QueueReplier Wrapper

	2.12 Dead-Letter Queues
	2.13 Detecting the Presence of a SharedReaderQueue
	2.14 Queuing Service Persistency
	2.14.1 Service State Persistency
	2.14.2 SharedReaderQueue Persistency

	2.15 SharedReaderQueue Resource Management
	2.15.1 Maximum SharedReaderQueue Size
	2.15.2 Memory Management for a Sample
	2.15.3 High and Low Watermarks
	2.15.4 Sample Replacement Policy

	2.16 High Availability
	2.17 Remote Administration
	2.18 Queuing Service Monitoring

	Chapter 3 Configuring Queuing Service
	3.1 How to Load the XML Configuration from a File
	3.2 XML Syntax and Validation
	3.3 XML Tags for Configuring Queuing Service
	3.3.1 Configuring Queuing Service Types
	3.3.2 Configuring Queuing Service
	3.3.3 Configuring Administration
	3.3.4 Configuring Monitoring
	3.3.5 Configuring Persistence Settings
	3.3.6 Configuring DomainParticipants
	3.3.7 Configuring SharedSubscribers
	3.3.8 Configuring Session Settings
	3.3.9 Configuring SharedSubscribers Sessions
	3.3.10 Configuring SharedReaderQueues
	3.3.11 Configuring DeadLetterSharedReaderQueues

	3.4 Using Variables in XML
	3.5 Enabling RTI Distributed Logger in Queuing Service

	Chapter 4 Running Queuing Service
	4.1 Starting from Launcher
	4.2 Starting Manually from the Command Line
	4.3 Using Queuing Service as a Windows Service
	4.3.1 Enabling Queuing Service to Run as a Windows Service
	4.3.2 Running RTI Queuing Service as a Windows Service
	4.3.3 Notes when Running as a Windows Service
	4.3.4 Stopping Queuing Service when it is Running as a Windows Service
	4.3.5 Disabling Queuing Service from Running as a Windows Service

	Chapter 5 Administering Queuing Service from a Remote Location
	5.1 Enabling Remote Administration
	5.2 Remote Administration API
	5.2.1 Resource Identifiers
	5.2.2 Sample Selector

	5.3 Remote Administration Topics
	5.4 Remote Commands in Queuing Service
	5.4.1 Create SharedReaderQueue
	5.4.2 Delete SharedReaderQueue
	5.4.3 Flush SharedReaderQueue
	5.4.4 Get SharedReaderQueue Status
	5.4.5 Get Service Data
	5.4.6 Get Samples From a SharedReaderQueue
	5.4.7 Create SharedSubscriber
	5.4.8 Delete SharedSubscriber

	5.5 Accessing Queuing Service from a Connext DDS application

	Chapter 6 Publish-Subscribe Monitoring of Queuing Service from a Remote Location
	6.1 Enabling Publish-Subscribe Monitoring Data
	6.2 Status Information for a SharedReaderQueue

	Chapter 7 High Availability
	7.1 SharedReaderQueue Replication
	7.1.1 SharedReaderQueue Replication Protocol
	7.1.2 SharedReaderQueue Master Election Protocol
	7.1.3 SharedReaderQueue Replication Configuration

	7.2 Configuration Replication
	7.2.1 SharedReaderQueue for Configuration Replication

	7.3 Replication Clusters

	Chapter 8 Queuing Service Wrapper API
	8.1 QueueProducer Wrapper
	8.2 QueueConsumer Wrapper
	8.3 QueueRequester Wrapper
	8.4 QueueReplier Wrapper

	Chapter 9 Communication Using TCP Transport
	9.1 Asymmetric TCP Communication With Queuing Service
	9.2 Asymmetric TCP Communication with Queuing Service And Replication

