

The Embedded I/O Company

TIP610-SW
Linux Device D

Digital I/O
Version 1.1.x

User Manu
Issue 1.2

February 200

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek / Germany
Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19
e-mail: info@tews.com www.tews.com

TEWS
1 E. Lib
Phone:
e-mail:
-82
river

al

4

TECHNOLOGIES LLC
erty Street, Sixth Floor Reno, Nevada 89504 / USA
 +1 (775) 686 6077 Fax: +1 (775) 686 6024
 usasales@tews.com www.tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TIP610-SW-82 - Linux Device Driver Page 2 of 28

TIP610-SW-82
Digital I/O

Linux Device Driver

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2004 by TEWS TECHNOLOGIES GmbH

Issue Description Date
1.0 First Issue July 20, 2001
1.1 Changes for driver installation August 23, 2001
1.2 Support for IPAC CARRIER DRIVER, DEVFS and SMP February 10, 2004

TIP610-SW-82 - Linux Device Driver Page 3 of 28

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build and install the device driver...5
2.2 Uninstall the device driver ...5
2.3 Install device driver into the running kernel ..6
2.4 Remove device driver from the running kernel ...6
2.5 Change Major Device Number ...7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8
3.1 open() ...8
3.2 close()...10
3.3 read() ..11
3.4 write() ...13
3.5 ioctl() ..15

3.5.1 T610_IOCG_READ_DIR..17
3.5.2 T610_IOCS_WRITE_DIR ..19
3.5.3 T610_IOCG_READ_POL...21
3.5.4 T610_IOCS_WRITE_POL ...23
3.5.5 T610_IOCX_EVENT_READ ..25

4 DEBUGGING.. 28

TIP610-SW-82 - Linux Device Driver Page 4 of 28

1 Introduction
The TIP610-SW-82 Linux device driver allows the operation of a TIP610 IPAC module on Linux
operating systems with kernel version 2.4.4 or higher installed.

Because the TIP610 device driver is stacked on the TEWS TECHNOLOGIES IPAC carrier driver, it’s
necessary to install also the appropriate IPAC carrier driver. Please refer to the IPAC carrier driver
user manual for further information.

The TIP610 device driver includes the following features:

! reading the actual port values
! writing new port values
! configure port directions
! configure port polarity
! wait for selectable input events (match, high-, low-, any-transition on the input line(s) of port A

and port B)

TIP610-SW-82 - Linux Device Driver Page 5 of 28

2 Installation
The software is delivered on a PC formatted 3½" HD diskette.

The directory A:\TIP610-SW-82 contains the following files:

TIP610-SW-82.pdf This manual in PDF format
TIP610-SW-82.tar.gz GZIP compressed archive with driver source code

The GZIP compressed archive TIP610-SW-82.tar.gz contains the following files and directories:

tip610/tip610drv.c Driver source code
tip610/tip610def.h Driver include file
tip610/tip610.h Driver include file for application program
tip610/makenode Script to create device nodes on the file system
tip610/makefile Device driver make file
tip610/example/example.c Example application
tip610/example/makefile Example application make file

In order to perform an installation, extract all files of the archive TIP610-SW-82.tar.gz to the desired
target directory.

Before building a new device driver, the TEWS TECHNOLOGIES IPAC carrier driver must be
installed properly, because this driver includes the header file ipac_carrier.h, which is part of
the IPAC carrier driver distribution. Please refer to the IPAC carrier driver user manual in the
directory path A:\CARRIER-SW-82 on the distribution diskette.

2.1 Build and install the device driver
• Login as root

• Change to the target directory

• To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

• Also after the first build we have to execute depmod to create a new dependency description
for loadable kernel modules. This dependency file is later used by modprobe to automatically
load the correct IPAC carrier driver modules.

depmod –aq

2.2 Uninstall the device driver
• Login as root

• Change to the target directory

• To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

TIP610-SW-82 - Linux Device Driver Page 6 of 28

• Update kernel module dependency description file

depmod –aq

2.3 Install device driver into the running kernel
• To load the device driver into the running kernel, login as root and execute the following

commands:

modprobe tip610drv

• After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled the device file system (devfs) then you have to skip running the makenode
script. Instead of creating device nodes from the script the driver itself takes creating and
destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TIP610 module found. The first
TIP610 can be accessed with device node /dev/tip610_0, the second TIP610 or the second channel of
the first TIP610 with device node /dev/tip610_1 and so on.

The allocation of device nodes to physical TIP610 modules depends on the search order of the IPAC
carrier driver. Please refer to the IPAC carrier user manual.

Loading of the TIP610 device driver will only work if kernel KMOD support is installed,
necessary carrier board drivers already installed and the kernel dependency file is up to date.
If KMOD support isn’t available you have to build either a new kernel with KMOD installed or
you have to install the IPAC carrier kernel modules manually in the correct order (please refer
to the IPAC carrier driver user manual).

2.4 Remove device driver from the running kernel
• To remove the device driver from the running kernel login as root and execute the following

command:

modprobe tip610drv –r

If your kernel has enabled devfs, all /dev/tip610_x nodes will be automatically removed from your file
system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tip610drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TIP610-SW-82 - Linux Device Driver Page 7 of 28

2.5 Change Major Device Number
The TIP610 driver use dynamic allocation of major device numbers by default. If this isn’t suitable for
the application it’s possible to define a major number for the driver. If the kernel has enabled devfs the
driver will not use the symbol TIP610_MAJOR.

To change the major number edit the file tip610drv.c, change the following symbol to appropriate
value and enter make install to create a new driver.

TIP610_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means dynamic
number allocation.

Example:

#define TIP610_MAJOR 122

TIP610-SW-82 - Linux Device Driver Page 8 of 28

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C). See also the GNU C Library
documentation for more information about the open function and open flags.

TIP610-SW-82 - Linux Device Driver Page 9 of 28

EXAMPLE

{
 int fd;

 fd = open(“/dev/tip610_0”, O_RDWR);
}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP610-SW-82 - Linux Device Driver Page 10 of 28

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

{
 int fd;

 if (close(fd) != 0) {
 /* handle close error conditions */
 }
}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

ENODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP610-SW-82 - Linux Device Driver Page 11 of 28

3.3 read()

NAME

read() – read from a device

SYNOPSIS

#include <unistd.h>

ssize_t read(int filedes, void *buffer, size_t size)

DESCRIPTION

The read function attempts to read the port registers of the TIP610 associated with the open file
descriptor, filedes, into the read buffer pointed to by buffer. Remember the values depend on the port
configuration, polarity and direction.

A pointer to the callers read buffer (T610_RW_BUFFER) and the size of this structure is passed by the
parameters buffer and size to the device.

typedef struct
{
 unsigned char portA;
 unsigned char portB;
 unsigned char portC;
 unsigned char wrenaPort;
} T610_RW_BUFFER, *PT610_RW_BUFFER;

portA, portB, portC
These parameters receive the actual state of the corresponding port registers.

wrenaPort
Is not used for the read function

TIP610-SW-82 - Linux Device Driver Page 12 of 28

EXAMPLE
{
 int fd;
 ssize_t num_bytes;
 T610_RW_BUFFER io_buf;

 ...

 /*
 ** Send the read request to the driver
 */
 num_bytes = read(fd, &io_buf, sizeof(io_buf));

 /*
 ** Check the result of the last device I/O operation
 */
 if (num_bytes > 0)
 {
 printf("\nRead input lines successful\n");
 printf("Port A: %02Xh\n", io_buf.portA);
 printf("Port B: %02Xh\n", io_buf.portB);
 printf("Port C: %02Xh\n", io_buf.portC);
 }
 else
 {
 printf("\nRead failed --> Error = %d\n", errno);
 }

 ...
}

RETURNS

On success read returns the size of the structure T610_IO_BUFFER. In the case of an error, a value
of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the read buffer is too small.

EFAULT Invalid pointer to the read buffer.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP610-SW-82 - Linux Device Driver Page 13 of 28

3.4 write()

NAME

write() – write to a device

SYNOPSIS

#include <unistd.h>

ssize_t write(int filedes, void *buffer, size_t size)

DESCRIPTION

The write function attempts to write to the port registers of the TIP610 associated with the open file
descriptor, filedes, from the buffer pointed to by buffer

A pointer to the callers write buffer (T610_RW_BUFFER) and the size of this structure is passed by
the parameters buffer and size to the device.

typedef struct
{
 unsigned char portA;
 unsigned char portB;
 unsigned char portC;
 unsigned char wrenaPort;
} T610_RW_BUFFER, *PT610_RW_BUFFER;

portA, portB, portC
These parameters receive the actual state of the corresponding port registers.

wrenaPort
Set of bit flags that controls the write operation. If the corresponding port flag is set the port
register will be written otherwise the port is inhibit from write.

The following flags could be OR’ed

T610_ENABLE_PORTA The contents of the member portA will be written to
the corresponding PORTA register (lines 9..16).

T610_ENABLE_PORTB The contents of the member portC will be written to
the corresponding PORTB register (lines 1..8).

T610_ENABLE_PORTC The contents of the member portC will be written to
the corresponding PORTC register (lines 17..20).

TIP610-SW-82 - Linux Device Driver Page 14 of 28

EXAMPLE

{
 int fd;
 ssize_t NumBytes;
 T610_RW_BUFFER io_buf;

 ...

 /*
 ** Write 0xBB to PORTB and 0x04 to PORTC. Inhibit
 ** PORTA from writing.
 */
 io_buf.portA = 0x00;
 io_buf.portB = 0xBB;
 io_buf.portC = 0x04;
 io_buf.wrenaPort = T610_ENABLE_PORTB | T610_ENABLE_PORTC;

 NumBytes = write(fd, &io_buf, sizeof(io_buf));

 if (NumBytes > 0)
 {
 /* Data successful written */
 }

 ...
}

RETURNS

On success write returns the size of the structure T610_RW_BUFFER. In the case of an error, a value
of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
size of the write buffer is too small.

EFAULT Invalid pointer to the write buffer.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TIP610-SW-82 - Linux Device Driver Page 15 of 28

3.5 ioctl()

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in TIP610.h:

Value Meaning
T610_IOCG_READ_DIR Read current port direction configuration
T610_IOCS_WRITE_DIR Write new port direction configuration
T610_IOCG_READ_POL Read current port polarity configuration
T610_IOCS_WRITE_POL Write new port polarity configuration
T610_IOCX_EVENT_READ Read port after specified input event occur

See behind for more detailed information on each control code.

To use these TIP610 specific control codes the header file TIP610.h must be included in the
application

TIP610-SW-82 - Linux Device Driver Page 16 of 28

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

EINVAL Invalid argument. This error code is returned if the
requested ioctl function is unknown. Please check
the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TIP610 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TIP610-SW-82 - Linux Device Driver Page 17 of 28

3.5.1 T610_IOCG_READ_DIR

NAME

T610_IOCG_READ_DIR - Read current port direction configuration

DESCRIPTION

This ioctl function attempts to read the contents of all port direction registers of the TIP610 associated
with the open file descriptor, filedes, into the read buffer pointed to by argp.

The read buffer (T610_RW_BUFFER) has the following layout:

typedef struct
{
 unsigned char portA;
 unsigned char portB;
 unsigned char portC;
 unsigned char wrenaPort;
} T610_RW_BUFFER, *PT610_RW_BUFFER;

portA, portB, portC
These parameters receive the contents of the corresponding port direction register. A 0 in bit
position specifies the corresponding bit of the port as an output bit, while a 1 specifies it as an
input.

wrenaPort
It’s not used for this ioctl function.

TIP610-SW-82 - Linux Device Driver Page 18 of 28

EXAMPLE

{
 int fd;
 int result;
 T610_RW_BUFFER io_buf;

 ...

 result = ioctl(fd, T610_IOCG_READ_DIR, &io_buf);

 /*
 ** Check the result of the last device I/O control operation
 */
 if (result >= 0)
 {
 printf(" Direction Port A: %02Xh\n", io_buf.portA);
 printf(" Direction Port B: %02Xh\n", io_buf.portB);
 printf(" Direction Port C: %1Xh\n", io_buf.portC);
 }
 else
 {
 printf("Read direction failed --> Error = %d\n", errno);
 }
 ...
}

SEE ALSO

ioctl man pages

TIP610-SW-82 - Linux Device Driver Page 19 of 28

3.5.2 T610_IOCS_WRITE_DIR

NAME

T610_IOCS_WRITE_DIR - Write new port direction configuration

DESCRIPTION

This ioctl function attempts to write to the port direction registers of the TIP610 associated with the
open file descriptor, filedes, from the write buffer pointed to by argp.

The write buffer (T610_RW_BUFFER) has the following layout:

typedef struct
{
 unsigned char portA;
 unsigned char portB;
 unsigned char portC;
 unsigned char wrenaPort;
} T610_RW_BUFFER, *PT610_RW_BUFFER;

portA, portB, portC
These parameters contain the new values for the corresponding port direction register. A 0 in bit
position specifies the corresponding bit of the port as an output bit, while a 1 specifies it as an
input. All bits of port A and B must have the same direction. The direction of port C can be setup
individually for each bit. A reset forces all bits to 0 (output) but this causes no problems because
the port isn't enabled at this moment.

wrenaPort
Set of bit flags that control the write port direction operation. If the corresponding port flag is set
the port direction register will be written otherwise the port direction register is inhibit from write.

The following flags could be OR’ed

T610_ENABLE_PORTA The contents of the member portA will be written to
the corresponding PORTA direction register (lines
9..16).

T610_ENABLE_PORTB The contents of the member portC will be written to
the corresponding PORTB direction register (lines
1..8).

T610_ENABLE_PORTC The contents of the member portC will be written to
the corresponding PORTC direction register (lines
17..20).

TIP610-SW-82 - Linux Device Driver Page 20 of 28

EXAMPLE

{
 int fd;
 int result;
 T610_RW_BUFFER io_buf;
 ...
 /*
 ** Set direction for
 ** Port A : input
 ** Port B : output
 ** Port C : bit 2 input, bit 0,1,3 output
 */
 io_buf.portA = 0xFF;
 io_buf.portB = 0x00;
 io_buf.portC = 0x04;

 io_buf.wrenaPort = T610_ENABLE_PORTA | T610_ENABLE_PORTB|
 T610_ENABLE_PORTC;

 result = ioctl(fd, T610_IOCS_WRITE_DIR, &io_buf);

 if (result < 0)
 {
 /* handle ioctl error */
 }
 ...
}

ERRORS

EFAULT Invalid pointer to the write buffer.

SEE ALSO

ioctl man pages

TIP610-SW-82 - Linux Device Driver Page 21 of 28

3.5.3 T610_IOCG_READ_POL

NAME

T610_IOCG_READ_POL - Read current port polarity configuration

DESCRIPTION

This ioctl function attempts to read the contents of all port polarity registers of the TIP610 associated
with the open file descriptor, filedes, into the read buffer pointed to by argp.

The read buffer (T610_RW_BUFFER) has the following layout:

typedef struct
{
 unsigned char portA;
 unsigned char portB;
 unsigned char portC;
 unsigned char wrenaPort;
} T610_RW_BUFFER, *PT610_RW_BUFFER;

portA, portB, portC
These parameters receive the contents of the corresponding port polarity register. A 0 in a
particular bit position specifies the corresponding bit path of the port as non-inverting (that is, a
HIGH level at the I/O connector is a 1). If a bit is written with 1, the data path is programmed
inverting.
After reset the data path is non-inverting.

wrenaPort
It’s not used for this ioctl function.

TIP610-SW-82 - Linux Device Driver Page 22 of 28

EXAMPLE

{
 int fd;
 int result;
 T610_RW_BUFFER io_buf;
 ...

 result = ioctl(fd, T610_IOCG_READ_POL, &io_buf);
 if (result >= 0)
 {
 printf("Polarity Port A: %02Xh\n", io_buf.portA);
 printf("Polarity Port B: %02Xh\n", io_buf.portB);
 printf("Polarity Port C: %1Xh\n", io_buf.portC);
 }
 else
 {
 printf("Read polarity failed --> Error = %d\n", errno);
 }
 ...
}

ERRORS

EFAULT Invalid pointer to the read buffer.

SEE ALSO

ioctl man pages

TIP610-SW-82 - Linux Device Driver Page 23 of 28

3.5.4 T610_IOCS_WRITE_POL

NAME

T610_IOCS_WRITE_POL - Write new port polarity configuration

DESCRIPTION

This ioctl function attempts to write to the port polarity registers of the TIP610 associated with the open
file descriptor, filedes, from the write buffer pointed to by argp.

The write buffer (T610_RW_BUFFER) has the following layout:

typedef struct
{
 unsigned char portA;
 unsigned char portB;
 unsigned char portC;
 unsigned char wrenaPort;
} T610_RW_BUFFER, *PT610_RW_BUFFER;

portA, portB, portC
These parameters contain the new values for the corresponding port polarity register. A 0 in a
particular bit position specifies the corresponding bit path of the port as non-inverting (that is, a
HIGH level at the I/O connector is a 1). If a bit is written with 1, the data path is programmed
inverting.
After reset the data path is non-inverting.

wrenaPort
Set of bit flags that control the write port polarity operation. If the corresponding port flag is set
the port polarity register will be written otherwise the port polarity register is inhibit from write.

The following flags could be OR’ed

T610_ENABLE_PORTA The contents of the member portA will be written to
the corresponding PORTA polarity register (lines
9..16).

T610_ENABLE_PORTB The contents of the member portC will be written to
the corresponding PORTB polarity register (lines
1..8).

T610_ENABLE_PORTC The contents of the member portC will be written to
the corresponding PORTC polarity register (lines
17..20).

TIP610-SW-82 - Linux Device Driver Page 24 of 28

EXAMPLE

{
 int fd;
 int result;
 T610_RW_BUFFER io_buf;

 ...

 /*
 ** Port A : bit 0..3 non-inverting, bit 4..7 inverting
 ** Port B : non-inverting
 ** Port C : unchanged
 */
 io_buf.portA = 0xF0;
 io_buf.portB = 0x00;
 io_buf.portC = 0x00;

 io_buf.wrenaPort = T610_ENABLE_PORTA | T610_ENABLE_PORTB;

 result = ioctl(fd, T610_IOCS_WRITE_POL, &io_buf);

 if (result < 0)
 {
 /* handle ioctl error */
 }
 ...
}

ERRORS

EFAULT Invalid pointer to the write buffer.

SEE ALSO

ioctl man pages

TIP610-SW-82 - Linux Device Driver Page 25 of 28

3.5.5 T610_IOCX_EVENT_READ

NAME

T610_IOCX_EVENT_READ - Read port after specified input event occur

DESCRIPTION

The ioctl function reads the contents of the input ports after a specified event occur. Possible events
are rising or falling edge or both, at a specified input bit or a pattern match of masked input bits.

A pointer to the callers read buffer (T610_EVRD_BUFFER) is passed by the argument argp to the
driver. The T610_EVRD_BUFFER structure has the following layout:

typedef struct
{
 unsigned char portA;
 unsigned char portB;
 unsigned char portC;
 unsigned char maskA;
 unsigned char maskB;
 unsigned char matchA;
 unsigned char matchB;
 unsigned char mode;
 unsigned long timeout;
} T610_EVRD_BUFFER, *PT610_EVRD_BUFFER;

portA, portB, portC
These parameters receive the contents of the corresponding port registers.

maskA, maskB
These parameters specify a bit mask. A 1 value marks the corresponding bit position as
relevant.

matchA, matchB
These parameters specify a pattern that must match to the contents of the input port. Only the
bit positions specified by maskA/maskB must compare to the input port.

mode
It specifies the “event” mode for this read request. Possible is one of the following modes:

T610_MATCH The driver reads the input port if the masked input
bits match to the specified pattern. The input mask
must be specified in the parameter maskA/maskB.
A 1 value in maskA/maskB means than the input bit
value “must-match” identically to the corresponding
bit in the matchA/matchB parameter.

TIP610-SW-82 - Linux Device Driver Page 26 of 28

T610_HIGH_TR If a high-transition at the specified input bit position
occurs, the driver reads the input port. A 1 value in
maskA/maskB specifies the bit position of the input
port. If you specify more than one bit position the
events are OR’ed. That means the read is
completed if a high-transition at least at one
relevant bit position occur.

T610_LOW_TR If a low-transition at the specified input bit position
occurs, the driver reads the input port. A 1 value in
maskA/maskB specifies the bit position of the input
port. If you specify more than one bit position the
events are OR’ed. That means the read is
completed if a low-transition at least at one relevant
bit position occur.

T610_ANY_TR If a high- or low-transition at the specified input bit
position occurs, the driver reads the input port. A 1
value in maskA/maskB specifies the bit position of
the input port. If you specify more than one bit
position the events are OR’ed. That means the read
is completed if a transition at least at one relevant
bit position occur.

timeout
Specifies the amount of time (in ticks) the caller is willing to wait for the specified event to occur.
A value of 0 means wait indefinitely.

EXAMPLE

{
 int fd;
 int result;
 T610_EVRD_BUFFER ev_buf;
 ...
 /*
 ** Read the input port after..
 ** bit 0 = 0
 ** bit 1 = 1
 ** bit 6 = 0
 ** bit 7 = 1
 */
 ev_buf.mode = T610_MATCH;
 ev_buf.maskA = 0xC3; /* bit 0,1,6,7 are relevant */
 ev_buf.matchA = 0x82;
 ev_buf.maskB = 0; /* port B isn't relvant */
 ev_buf.matchB = 0;
 ev_buf.timeout = 100; /* ticks */

 result = ioctl(fd, T610_IOCX_EVENT_READ, &ev_buf);

 if (result >= 0)
 {
 printf("Port A: %02Xh\n", ev_buf.portA);

TIP610-SW-82 - Linux Device Driver Page 27 of 28

 printf("Port B: %02Xh\n", ev_buf.portB);
 printf("Port C: %02Xh\n", ev_buf.portC);
 }
 else
 {
 /* handle read error */
 }

 /*
 ** Read the input port after a high-transition at
 ** input line 8 occured (Port B bit 7)
 */
 ev_buf.mode = T610_HIGH_TR;
 ev_buf.maskB = 1<<7; /* high-transition at bit 7 */
 ev_buf.maskA = 0;
ev_buf.timeout = 100; /* ticks */

 result = ioctl(fd, T610_IOCX_EVENT_READ, &ev_buf);
 if (result >= 0)
 {
 printf("Port A: %02Xh\n", ev_buf.portA);
 printf("Port B: %02Xh\n", ev_buf.portB);
 printf("Port C: %02Xh\n", ev_buf.portC);
 }
 else
 {
 /* handle read error */
 }

 ...
}

ERRORS

EFAULT Invalid pointer to the read buffer.
EBUSY The maximum number of concurrent read requests

is exceeded. Increase the value of the symbol
MAX_REQUESTS in tip610def.h.

ETIME The allowed time to finish the read request is
elapsed.

EINTR Interrupted function call; an asynchronous signal
occurred and prevented completion of the call.
When this happens, you should try the call again.

SEE ALSO

ioctl man pages

TIP610-SW-82 - Linux Device Driver Page 28 of 28

4 Debugging
For debugging output see tip610drv.c. You will find the two following symbols:

#undef TIP610_DEBUG_INTR
#undef TIP610_DEBUG_VIEW

To enable a debug output replace “undef” with “define”.

The TIP610_DEBUG_INTR symbol controls debugging output from the ISR.

TIP610 : interrupt entry
TIP610 : IACK[0] vector = 0004

The TIP610_DEBUG_VIEW symbol controls debugging output from the remaining part of the driver.

TIP610 : Probe new TIP610 mounted on <TEWS TECHNOLOGIES - (Compact)PCI
IPAC Carrier> at slot B

TIP610 : Create minor node /dev/tip610_0 (devfs).

TIP610 : IP I/O Memory Space
00000000 : FF 01 FF 01 FF 01 FF 01 FF 01 FF 01 FF 01 FF 01
00000010 : FF 01 FF 01 FF 01 FF 01 FF 01 FF 01 FF 01 FF 01

IP I/O Memory Space after initialization
00000000 : FF F9 FF 00 FF 00 FF 84 FF FB FF 00 FF 00 FF 84
00000010 : FF F9 FF 00 FF 00 FF 84 FF FB FF 00 FF 00 FF 84

...

	Introduction
	Installation
	Build and install the device driver
	Uninstall the device driver
	Install device driver into the running kernel
	Remove device driver from the running kernel
	Change Major Device Number

	Device Input/Output functions
	open()
	close()
	read()
	write()
	ioctl()
	T610_IOCG_READ_DIR
	T610_IOCS_WRITE_DIR
	T610_IOCG_READ_POL
	T610_IOCS_WRITE_POL
	T610_IOCX_EVENT_READ

	Debugging

