

Technical Manual

SPIRIT[®] II 400

Automatic Plasma Cutting System with FineLine[™] High Definition Technology

Register your equipment: http://www.burny.com/warranty

Save for future reference

Date Purchased:

Model Number:

Serial Number:

BK718117 Rev I I Issue Date: 01-SEP-2015 © Lincoln Global, Inc. All Rights Reserved THE LINCOLN ELECTRIC COMPANY 4130 Carolina Commerce Pkwy • Ladson, SC 29456 • U.S.A. Phone: +1.843.695.4000 • www.lincolnelectric.com

Revision History

Rev	ECO#	Author	Date	Description of Change	
А	-	CAD	02/04/2013	Initial Release.	
В	LAD0202	CAD	06/07/2013	Added 100A/150A silver electrodes, replaced RHF with ISC added argon marking, corrected system interconnect diagrams, changed rated inlet gas pressure to 115 psi, added 100 psi minimum to inlet gas pressure.	
с	LAD0217	CAD	08/06/2013	error to warning message. Expanded notes on System Interconnection diagrams to clarify cabling requirements for various configurations.	
D	LAD0228	CAD	08/28/2013	Corrected contact ratings on page 3-20. Added pinouts to CII, FII, JII cables in Parts List.	
E	LAD0260	CAD	03/18/2014	Inductor (707150) replaced by (707155). ISC Console (300500) replaced by (300505). AGC (300400) replaced by	
F	LAD0264	CAD	03/31/2014	Added "BK" prefix to all part numbers. Added PCB Outline	
G	LAD0276 LAD0199 LAD0284 LAD0288	CAD	09/18/2014	Clarified fuse/breaker types in Installation section, updated Parts List with second o-ring in Q-D Head on cathode adapter, corrected several parts numbers in the Parts List, updated interior drawings of ISC console throughout, added hot parts warning.	
Н	LAD0313	CAD	01/30/2015	Changed ISC to ASC. Updated branding throughout. Combined RHF and CleanStrike [™] Technology throughout.	
I	LAD0234 LAD0317 LAD0323 LAD0330 LAD0296	CAD	09/01/2015	Updated part numbers for terminal blocks. Updated manifold part numbers. Updated coolant pump part number. Updated warranty. Added pierce capability for 1.25" (32mm) MS at 150A and 1.5" (38mm) MS at 275A. Removed 220VAC and 240VAC PS models.	

Trademark Notice

Spirit is a registered trademark of Lincoln Global, Inc.

FASTON is a trademark of the TE Connectivity Ltd family of companies.

All other trademarks are property of their respective owners.

This documentation may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable format without explicit written permission from Lincoln Electric.

Table of Contents

Section 1: Safety

General Precautions	1-1
Ultraviolet Radiation Protection	1-1
Noise Protection	1-1
Toxic Fume Prevention	1-2
Electric Shock Prevention	1-2
Fire Prevention	1-3
Explosion Prevention	1-3
Health Support Equipment	1-4
Safety Standards Booklet Index	

Section 2: Specifications

System Description	2-1
System Components	2-2
Power Supply Specifications	
Cooling System Specifications	
Torch Coolant Specifications	
Automatic Gas Console (AGC) Specifications	
Gas Supply Requirements	2-7
Plasma Console Specifications	
Arc Starting Console (ASC) Specifications with RHF	2-9
Arc Starting Console (ASC) Specifications with CleanStrike [™]	2-10
Torch and 2-Gang Manifold Specifications	
5-Gang Manifold Specifications	2-12
Airborne Noise Emissions	2-13
Electromagnetic Compatibility (EMC)	2-13

Section 3: Installation

Section 4: Operation

Operating the Plasma Console	4-1
Setting up to Cut or Mark	4-3
Verifying Important Parameters	4-4
Viewing the Required Torch Parts	4-4
Checking System Status	4-5
Purging Pressure Regulators	4-6
Making a Cut or Mark	4-7
Piercing Thick Materials	4-8
Moving Pierces and Edge Starts	4-8
Cut Quality	4-9
Customizing Cutting or Marking Settings	4-10
Saving Customized Settings	4-11
Restoring or Deleting Customized Settings	4-12
Configuration Tab	4-13
Advanced Config Tab	4-14
Network Settings Tab	4-15
Software Updates Tab	4-16
System Info Tab	4-18
Tools Tab (Restart Plasma Console)	4-18
Pressures/Coolant Tab	4-19
RS422 Tab	4-20
Electrical Tab	4-21
Cut Info Tab	4-21
Power Supply Tab	4-23
Error Log Tab	4-23
Messages Tab	4-24

Section 5: Torch Consumables and Cutting Charts

Installing / Removing the Torch Head	5-1
Installing / Replacing Consumables	
Maximizing Consumable Life	
Inspecting for Damage	5-6
Selecting Consumables	
Cutting Charts	

Section 6: Maintenance and Troubleshooting

Routine Maintenance	. 6-1
Replacing the Torch Coolant and Filter	6-4
Power Supply Microprocessor (DSP) Status Indicators	6-5
Power Supply Microprocessor (DSP) Sequence of Operation	6-5
Error Codes	. 6-7
General Troubleshooting	. 6-9
Chopper Test Procedure	

Section 7: Parts List

Power Supply (BK300234 - BK300239)	7-1
Cooling System (BK300275)	7-4
Automatic Gas Console (BK300418)	7-5
Plasma Console (BK300800)	7-8
Arc Starting Console (BK300505) with RHF	7-9
Arc Starting Console (BK300505) with CleanStrike [™]	7-10
Torch and Manifold Assemblies	
Shielded Torch Leads	7-12
CAN Communication Cable and Terminator Plug	7-12
Manifold Control Cables	7-12
Gas Hose Package with AGC	7-13
Cooling System Control Cable	7-13
Coolant and Power Leads	7-14
Work Ground Lead	7-14
Oxygen Supply Gas Hose (Optional)	7-15
Nitrogen Supply Gas Hose (Optional)	7-15
Air Supply Gas Hose (Optional)	7-15
H17 Supply Gas Hose (Optional)	7-15
Argon Supply Gas Hose (Optional)	7-15
"CII" Cable (for Optional External Inova)	7-16
"FII" Cable (for Optional Internal Inova)	7-17
"JII" Cable (for Optional Internal Inova)	7-18
PCB Assemblies – Component Reference Locations	7-19

Section 8: Internal Inova Console Option

Overview	8-1
Plug Identification	
Unique Interconnect Cables	
Grounding	
Parts List	

Appendix A: Electromagnetic Compatibility (EMC)

Background	A-1
Installation and Use	
Assessment of Area	
Methods of Reducing Emissions	
	······································

Appendix B: Serial Communication

Initializing the Spirit System	B-1
Transmitting Parameters to the Spirit System	
Communication Error Checking	B-2
Default Cutting Parameters	B-3
Troubleshooting Serial Communication	B-3
RS-422 Serial Commands	B-4

LIMITED WARRANTY

Burny Kaliburn, A Lincoln Electric Company ("Kaliburn"), warrants that all new Kaliburn-manufactured controllers and plasma cutting equipment, torch height control systems, plasma torches, consumables (expendables), and accessories (collectively, "Goods") will be free of defects in workmanship and material, subject to the terms of this Limited Warranty.

WARRANTY REMEDY:

Purchaser must promptly report any defect or failure of the Goods to Kaliburn, an authorized service center, or an authorized OEM/ integrator/distributor. Such notice must be in writing and received within the warranty periods set forth herein. Upon receiving such written notice, and if Kaliburn or Kaliburn's authorized service facility confirms the existence of a defect covered by this warranty, Kaliburn's request, the purchaser must return to Kaliburn or its authorized service facility any Goods claimed to be defective. Kaliburn reserves the right to refuse to perform the warranty remedies set forth herein if the Goods are not received by Kaliburn within sixty (60) days of the return request date. The purchaser is solely responsible for shipment of any defective Goods to and from Kaliburn's facility or that of its authorized service facility and all related freight costs.

WARRANTY PERIODS

All warranty periods start from the date of shipment from Kaliburn.

PARTS FOR: All Plasma Power Supplies, Gas Consoles, Cooling Tower, Plasma Controllers for the Spirit® II series (as applicable), Spirit series Three (as applicable), ProLine® series (as applicable), (3) years Dagger[®] 100 and other legacy plasma cutters Integrated INOVA[™] electronics within the power supply for Spirit II and ProLine series products PARTS FOR: • All Burny[®] shape cutting controllers such as product models for Phantom[™], Phantom II, Phantom ST, Phantom ST II, Burny 10LCD Plus and Dagger NC and others as applicable All chassis and front panel upgrades (as applicable) Dagger 100 torch and leads • All plasma cutting torches and torch leads for One Spirit II, Spirit, ProLine and other plasma cutters (1) year • All other plasma cutting system components such as Arc Starting Consoles • All torch height control systems and collision sensors • All purchased non-expendable replacement parts All torch valve assemblies I ABOR All warranty labor for Plasma power supplies, gas consoles, cooling tower, and plasma controllers for Spirit series (as applicable), Spirit II, and INOVA One (1) year electronics within the power supply for Spirit II - applicable in U.S. only SPARE PARTS (all repair parts) Ninety

(90) days

WARRANTY LIMITATIONS

The Goods are intended for commercial use only and are not intended for personal, family, or household purposes.

Kaliburn is not responsible for cable or torch leads wear or any damage resulting from cable wear due to flexing and abrasion. Purchaser is solely responsible for routine inspection of cables.

Kaliburn is not responsible for repair or replacement of any part or Goods due to normal wear and tear.

Parts and equipment manufactured for Kaliburn is subject to the terms of the original manufacturer's warranty, and Kaliburn has no warranty obligations for defect in such equipment.

THIS WARRANTY IS VOID IF:

- A. THE GOODS HAVE BEEN ABUSED, ALTERED, OR MISUSED;
- B. THE GOODS HAVE BEEN REPAIRED BY THE PURCHASER OR ANY THIRD PARTY WITHOUT THE AUTHORIZATION OR PRIOR WRITTEN APPROVAL OF KALIBURN;
- C. THE SPIRIT II, SPIRIT OR PROLINE SYSTEM HAS BEEN OPERATED WITH NON-GENUINE KALIBURN OR LINCOLN ELECTRIC TORCH CONSUMABLES;
- D. KALIBURN SERIAL NUMBERS OR WARRANTY DECALS HAVE BEEN REMOVED OR ALTERED; OR
- E. THE GOODS HAVE BEEN SUBJECTED TO IMPROPER INSTALLATION, IMPROPER CARE, UNAPPROVED PURPOSES, OR ABNORMAL OPERATIONS.

SERVICE AND REPAIR SHOULD ONLY BE PERFORMED BY KALIBURN FACTORY TRAINED PERSONNEL. UNAUTHORIZED REPAIRS PERFORMED ON THIS EQUIPMENT MAY RESULT IN DANGER TO THE TECHNICIAN AND MACHINE OPERATOR AND WILL INVALIDATE YOUR FACTORY WARRANTY.

THE EXPRESS LIMITED WARRANTIES SET FORTH HEREIN ARE THE SOLE AND EXCLUSIVE WARRANTIES FOR THE GOODS. ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE EXPRESSLY DISCLAIMED.

KALIBURN'S LIABILITY UNDER THIS WARRANTY SHALL NOT EXCEED THE COST OF REPAIRING OR REPLACING THE DEFECTIVE GOODS.

IN NO EVENT, WHETHER IN CONTRACT, TORT OR OTHERWISE (INCLUDING BREACH OF WARRANTY, NEGLIGENCE AND STRICT LIABILITY IN TORT), WILL KALIBURN BE LIABLE FOR INDIRECT, EXEMPLARY, PUNITIVE, SPECIAL, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO LOSS OF BUSINESS OR LOST PROFITS), EVEN IF KALIBURN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES IN ADVANCE AND EVEN IF A REMEDY SET FORTH HEREIN IS FOUND TO HAVE FAILED OF ITS ESSENTIAL PURPOSE.

The Lincoln Electric Company 4130 Carolina Commerce Parkway, Ladson, SC 29456 Phone: +1.843.695.4000 | www.lincolnelectric.com

Section 1: Safety

General Precautions

Whereas plasma cutting has been used safely for years, it does require certain precautions to ensure the safety of the operator and other people around the equipment. The following safety information must be provided to each person who will operate, observe, perform maintenance, or work in close proximity to this piece of equipment. Always wear appropriate personal protective equipment (PPE).

Installation, operation, and repairs made to the Spirit system should only be performed by qualified personnel. The system makes use of both A.C. and D.C. circuitry for operation. Fatal shock hazard does exist. Exercise extreme caution while working on the system.

Ultraviolet Radiation Protection

Plasma cutting produces ultraviolet radiation similar to a welding arc. This ultraviolet radiation can cause skin and eye burns. For this reason, it is essential that proper protection be worn. The eyes are best protected by using safety glasses or a welding helmet with an AWS No. 12 shade or ISO 4850 No. 13 shade, which provides protection up to 400 amperes. All exposed skin areas should be covered with flame-retardant clothing. The cutting area should also be prepared in such a way that ultraviolet light does not reflect. Walls and other surfaces should be painted with dark colors to reduce reflected light. Protective screens or curtains should be installed to protect additional workers in the area from ultraviolet radiation.

Noise Protection

The system generates high noise levels while cutting. Depending on the size of the cutting area, distance from the cutting torch, and arc current cutting level, acceptable noise levels may be exceeded. Proper ear protection should be used as defined by local or national codes. See Section 2 for noise emission levels.

Toxic Fume Prevention

Care should be taken to ensure adequate ventilation in the cutting area. Some materials give off toxic fumes that can be harmful or fatal to people in the vicinity of the cutting area. Also, some solvents decompose and form harmful gases when exposed to ultraviolet radiation. These solvents should be removed from the area prior to cutting. Galvanized metal can produce harmful gases during the cutting process. Ensure proper ventilation and use breathing equipment when cutting these materials.

Certain metals coated with or containing lead, cadmium, zinc, beryllium, and mercury produce harmful toxins. Do not cut these metals unless all people subjected to the fumes wear proper air breathing equipment.

Electric Shock Prevention

The Spirit system uses high open circuit voltages that can be fatal. Extreme care should be used when operating or performing maintenance on the system. Only qualified personnel should service the system. Observe the following guidelines to protect against electric shock:

- A wall-mounted disconnect switch should be installed and fused according to local and national electrical codes. The disconnect switch should be located as close as possible to the power supply so it can be turned off in case of an emergency.
- The primary power cord should have a 600 volt minimum rating in order to protect the operator. In addition, it should be sized according to local and national electrical codes. Inspect the primary power cord frequently. Never operate the system if the power cord is damaged in any way.
- Make sure the primary power ground wire is connected to the input power ground stud on the power supply. Make sure the connection is securely tightened.
- Make sure the positive output (work ground) of the power supply is connected to a bare metal area on the cutting table. A driven ground rod should be placed no further than five feet from this connection. Make sure this ground point on the cutting table is used as the star ground point for all other ground connections.
- Inspect the torch leads frequently. Never use the system if the leads are damaged in any way.
- Do not stand in wet, damp areas when operating or performing maintenance on the system.
- Wear insulated gloves and shoes while operating or performing maintenance on the system.
- Make sure the system is switched off at the wall disconnect before servicing the power supply or torch.

- Never change torch consumable parts unless the system is switched off at the wall disconnect.
- Do not attempt to remove any parts from beneath the torch when cutting. Remember that the workpiece forms the current path back to the power supply.
- Never bypass the safety interlock devices.
- Before removing any of the covers, switch the system off at the wall disconnect. Wait at least five (5) minutes before removing any cover. This will give the capacitors inside the unit time to discharge. See Section 6 for additional safety precautions.
- Never operate the system without all of the covers in place. See Section 6 for additional safety precautions.
- Preventive maintenance should be performed daily to avoid possible safety hazards.

Fire Prevention

When using the Spirit system, it is necessary to exercise good judgment. While cutting, the arc produces sparks that could cause a fire if they fall on flammable materials. Make sure that all flammable materials are a suitable distance away from the cutting area. All flammable liquids should be at least 40 feet away from the cutting area, preferably stored in a metal cabinet. Plasma cutting should never be attempted on containers that contain flammable materials. Make sure that fire extinguishers are readily accessible in the cutting area.

Make sure that the cutting area is properly ventilated when using oxygen as a cutting gas.

Explosion Prevention

The Spirit system uses compressed gases. Use proper techniques when handling compressed gas cylinders and other compressed gas equipment. Observe the following guidelines to protect against explosion:

- Never operate the system in the presence of explosive gases or other explosive materials.
- Never cut pressurized cylinders or any closed container.
- When using a water table and cutting aluminum under water or with water touching the underside of the aluminum plate, hydrogen gas is produced. This hydrogen gas may collect under the plate and explode during the cutting process. Make sure the water table is properly aerated to help prevent the accumulation of hydrogen gas.
- Handle all gas cylinders in accordance with safety standards published by the U.S. Compressed Gas Association (CGA), American Welding Society (AWS), Canadian Standards Association (CSA), or other local or national codes.

- Compressed gas cylinders should be maintained properly. Never attempt to use a cylinder that is leaking, cracked, or has other signs of physical damage.
- All gas cylinders should be secured to a wall or rack to prevent accidental knock over.
- If a compressed gas cylinder is not being used, replace the protective valve cover.
- Never attempt to repair compressed gas cylinders.
- Keep compressed gas cylinders away from intense heat, sparks, or flames.
- Clear the compressed gas cylinder connection point by opening the valve momentarily prior to installing a regulator.
- Never lubricate compressed gas cylinder valves or pressure regulators with any type of oil or grease.
- Never use a compressed gas cylinder or pressure regulator for any purpose other than which it is intended.
- Never use a pressure regulator for any gas other than which it is intended.
- Never use a pressure regulator that is leaking or has other signs of physical damage.
- Never use oxygen hoses and pressure regulators for any gas other than oxygen.
- Never use any gas hose that is leaking or has other signs of physical damage.

Health Support Equipment

The Spirit system creates electric and magnetic fields that may interfere with certain types of health support equipment, such as pacemakers. Any person who uses a pacemaker or similar item should consult a doctor before operating, observing, maintaining, or servicing the system. Observe the following guidelines to minimize exposure to these electric and magnetic fields:

- Stay as far away from the power supply, torch, torch leads, and arc starting console as possible.
- Route the torch leads as close as possible to the work ground cable.
- Never place your body between the torch leads and work ground cable. Keep the work ground cable and the torch leads on the same side of your body.
- Never stand in the center of a coiled up set of torch leads or work ground cable.

Safety Standards Booklet Index

For further information concerning safety practices to be exercised with plasma arc cutting equipment, please refer to the following publications:

- 1. AWS Standard AWN, *Arc Welding and Cutting Noise*, obtainable from the American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- 2. AWS Standard C5.2, *Recommended Practices for Plasma Arc Cutting*, obtainable from the American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- 3. AWS Standard FSW, *Fire Safety in Welding and Cutting*, obtainable from the American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- 4. AWS Standard F4.1, Recommended *Safe Practices for Preparation for Welding and Cutting of Containers and Piping*, obtainable from the American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- 5. AWS Standard ULR, *Ultraviolet Reflectance of Paint*, obtainable from the American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- 6. AWS / ANSI Standard Z49.1, *Safety in Welding, Cutting, and Allied Processes,* obtainable from the American Welding Society, 550 NW LeJeune Road, Miami, FL 33126.
- 7. ANSI Standard Z41.1, *Standard For Men's Safety-Toe Footwear*, obtainable from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- 8. ANSI Standard Z49.2, *Fire Prevention in the Use of Cutting and Welding Processes*, obtainable from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- 9. ANSI Standard Z87.1, *Safe Practices For Occupation and Educational Eye and Face Protection,* obtainable from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- 10. ANSI Standard Z88.2, *Respiratory Protection*, obtainable from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.
- 11. OSHA Standard 29CFR 1910.252, *Safety and Health Standards,* obtainable from the U.S. Government Printing Office, Washington, D.C. 20402.

This information is subject to the controls of the Export Administration Regulations [EAR]. This information shall not be provided to non-U.S. persons or transferred by any means to any location outside the United States contrary to the requirements of the EAR.

- 12. NFPA Standard 51, Oxygen Fuel Gas Systems for Welding, Cutting, and Allied *Processes*, obtainable from the National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269.
- 13. NFPA Standard 51B, *Cutting and Welding Processes*, obtainable from the National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269.
- 14. NFPA Standard 70, *National Electrical Code*, obtainable from the National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02269.
- 15. CGA booklet P-1, *Safe Handling of Compressed Gases in Containers*, obtainable from the Compressed Gas Association, 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202.
- 16. CGA booklet P-14, Accident Prevention in Oxygen-Rich and Oxygen-Deficient Atmospheres, obtainable from the Compressed Gas Association, 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202.
- 17. CGA booklet TB-3, *Hose Line Flashback Arrestors*, obtainable from the Compressed Gas Association, 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202.
- 18. CSA Standard W117.2, *Safety in Welding, Cutting, and Allied Processes*, obtainable from Canadian Standards Association, 178 Rexdale Boulevard, Toronto, Ontario M9W IR3, Canada.
- 19. Canadian Electrical Code Part 1, *Safety Standard for Electrical Installations,* obtainable from the Canadian Standards Association, 178 Rexdale Boulevard, Toronto, Ontario M9W 1R3, Canada.

Section 2: Specifications

System Description

The Spirit II 400 is a 400 amp microprocessor controlled, 100% duty cycle high current density plasma cutting and marking system. It utilizes a precision, dual gas torch that is capable of cutting mild steel up to 3" thick and stainless steel up to 1-1/2" thick.

The system contains a computer controlled automatic gas console with a touch screen interface (plasma console). All cutting parameters are controlled through the plasma console. Setting up a cut is as simple as selecting the material type, material thickness, and process (cutting or marking). All gas types and pressures are set automatically.

The operator can easily view pictures and part numbers of the torch consumables. Another screen shows the recommended cutting speed and torch height for making the cut. These parameters can be transmitted to an X/Y machine controller or an arc voltage control system via RS-422 serial communication. The RS-422 port also allows for full control of the cutting parameters from an x/y machine controller. The system keeps a detailed record of errors that may have occurred during the cutting sequence. Additionally, systems utilizing the automatic gas console can use argon for marking, which produces improved mark quality.

The Spirit II system is available with an Arc Starting Console (ASC) that utilizes CleanStrike[™] technology, which results in reduced EMI and thereby minimizes interference with sensitive electronic equipment.

For cutting mild steel, the system uses oxygen for the plasma gas and either oxygen or air for the shielding gas. When cutting stainless steel or other non-ferrous materials, air or H17 (17.5% hydrogen, 32.5% argon, 50% nitrogen) is used for the plasma gas and either air or nitrogen is used for the shielding gas. Oxygen and nitrogen are used for the preflow and postflow gases.

The torch is water-cooled and consumables are machined to exacting dimensions and checked with the latest computerized measuring systems. Nine nozzle sizes (30, 50, 70, 100, 150, 200, 260, 275, and 400 amps) are available to produce excellent cut quality throughout the cutting range.

Each enclosure in the system is rated for IP21S sealing, which is intended for indoor use only. The system is not suitable for use in rain or snow.

Systems containing an ASC with CleanStrike[™] Technology are only recommended for use with downdraft cutting tables.

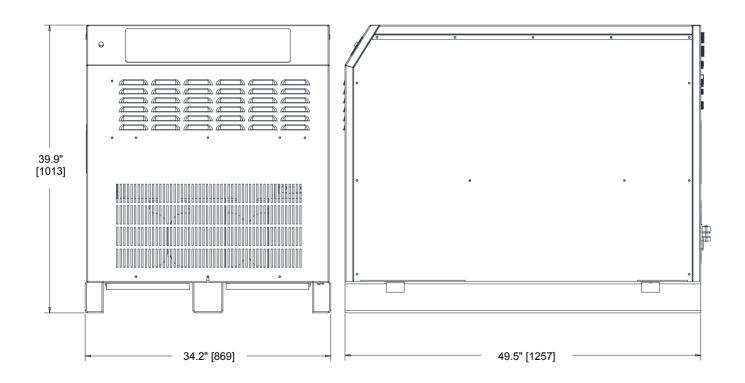
System Components

The Spirit II 400 System consists of the following components:

Standard Components

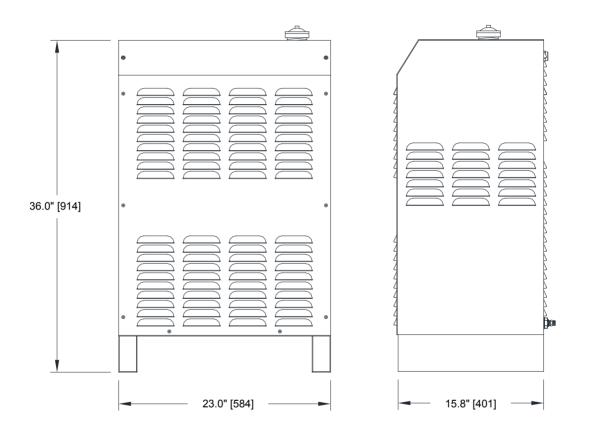
- Power Supply
- Cooling System (includes torch coolant)
- Cooling System Control Cable
- Automatic Gas Console
- Plasma Console (Touch Screen)
- CAN Cables
- CAN Termination Plug
- Arc Starting Console (ASC) with Remote High Frequency (RHF)
 or -
 - Arc Starting Console (ASC) with CleanStrike[™] Technology
- ASC Control Cable
- ASC Ground Cable
- Torch and Handle Assembly
- Torch Lead Set
- 5-gang Manifold Assembly
- 5-gang Manifold Control Cable
- 2-gang Manifold Assembly
- 2-gang Manifold Control Cable
- 17 Inch Plasma Hose
- Coolant and Power Leads
- Gas Hose Package
- Work Ground Lead
- Spirit II User's Manual

Optional Components


- Supply Gas Hoses
- Internal Inova Console

Power Supply Specifications

Power Supply Description	Part Number	Input Current at Maximum Output
380 VAC, 3Ø, 50/60Hz	BK300234	152 amps
400 VAC, 3Ø, 50/60Hz	BK300235	144 amps
415 VAC, 3Ø, 50/60Hz	BK300236	140 amps
440 VAC, 3Ø, 50/60Hz	BK300237	131 amps
480 VAC, 3Ø, 60Hz	BK300238	120 amps
600 VAC, 3Ø, 60Hz	BK300239	96 amps

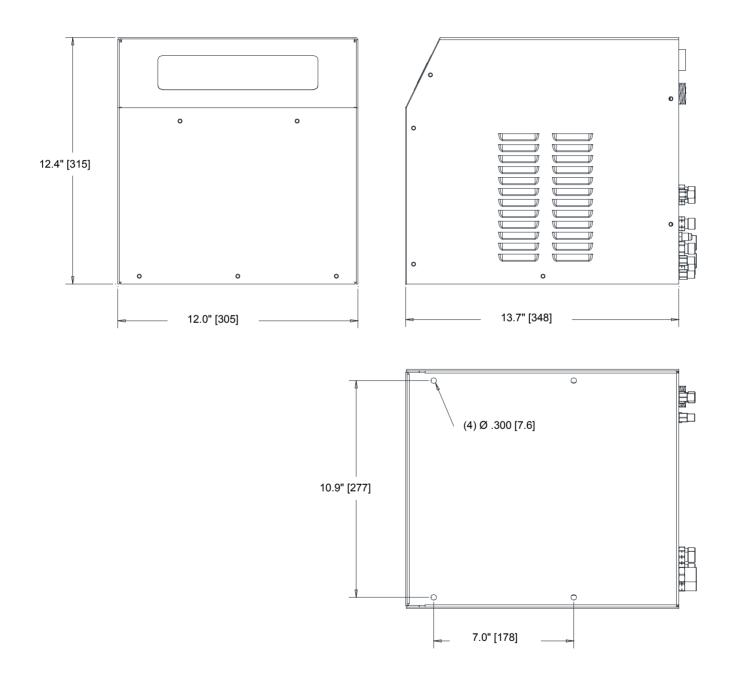

Open Circuit Voltage	370 VDC
Output Current (drooping characteristic)	10 - 400 amps
Maximum Output Voltage	200 VDC
Duty Cycle	100% @ 80 kW
Maximum Ambient Temperature	104° F (40° C)

Weight 1	922 lbs (872 kg)
----------	------------------

Cooling System Specifications

Part Number	BK300275
Discharge pressure	150 psi (10.2 bar)
Flow rate	
Coolant fluid	Propylene glycol solution
Coolant tank capacity	3.2 gal (12 liters)
Weight	141 lbs (64 kg) (without coolant)

Torch Coolant Specifications


Note: Refer to the supplier's most current Material Safety Data Sheet for information regarding safety, handling, and storage of torch coolant.

The Spirit system is shipped without torch coolant in the reservoir. **Coolant must be added before applying power to the system.** Only use approved torch coolant solution for optimal system performance as commercially available antifreeze contains corrosion inhibitors that will damage the cooling system. The standard coolant solution consists of 25% industrial grade propylene glycol and provides freezing protection down to -13° C (9° F). The standard solution can be ordered in one-gallon containers, PN BK500695. For operating temperatures below -13° C, a 50% solution of industrial grade propylene glycol can be ordered in one-gallon containers, PN BK500895, providing protection down to -36° C (-33° F).

Failure to use the proper propylene glycol solution may result in cooling system and/or torch damage.

The torch coolant should be flushed out of the Spirit system every six months and replaced with new coolant. The coolant filter / deionization cartridge should also be changed at the same time. See Section 6 for details.

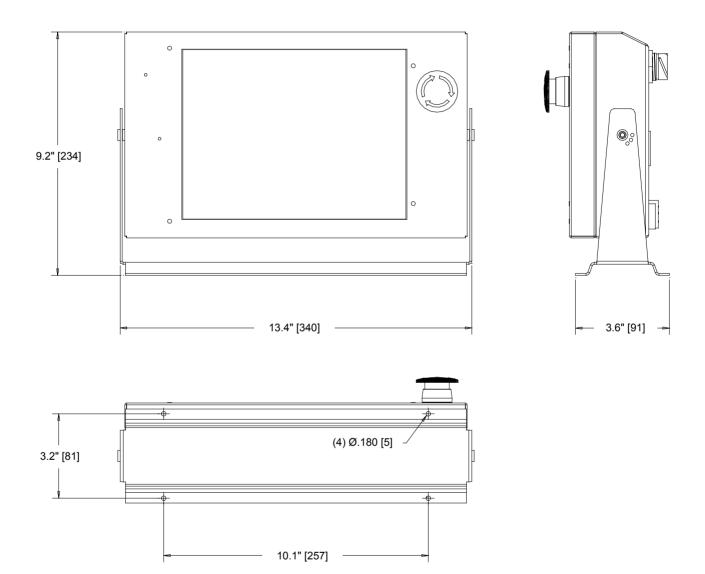
Automatic Gas Console (AGC) Specifications

Gas Supply Requirements

Shield gas types: Mild Steel Mild Steel Oxygen or Air Stainless Steel Air or Nitrogen Aluminum Air or Nitrogen Preflow gas type Oxygen and Nitrogen Marking gas type Nitrogen or Argon Plasma gas flow rate (maximum): 78 scfh (2209 liters/hour) Air 67 scfh (1897 liters/hour) H17 or Nitrogen 106 scfh (3002 liters/hour)
Stainless Steel.Air or NitrogenAluminumAir or NitrogenPreflow gas typeOxygen and NitrogenMarking gas type.Nitrogen or ArgonPlasma gas flow rate (maximum):78 scfh (2209 liters/hour)Oxygen78 scfh (1897 liters/hour)Air67 scfh (1897 liters/hour)H17 or Nitrogen106 scfh (3002 liters/hour)
Preflow gas typeOxygen and NitrogenMarking gas typeNitrogen or ArgonPlasma gas flow rate (maximum): Oxygen78 scfh (2209 liters/hour)Air67 scfh (1897 liters/hour)H17 or Nitrogen106 scfh (3002 liters/hour)
Marking gas typeNitrogen or ArgonPlasma gas flow rate (maximum): Oxygen
Plasma gas flow rate (maximum): Oxygen
Oxygen
Shield gas flow rate (maximum):
Oxygen 19 scfh (538 liters/hour)
Air
Nitrogen
Preflow gas flow rate (maximum)
Marking gas flow rate (maximum) 89 scfh (2520 liters/hour)

Rated Inlet gas pressure	115 psi (7.9 bar)
Minimum Inlet gas pressure	110 psi (7.6 bar)
Maximum Inlet gas pressure	145 psi (10.0 bar)

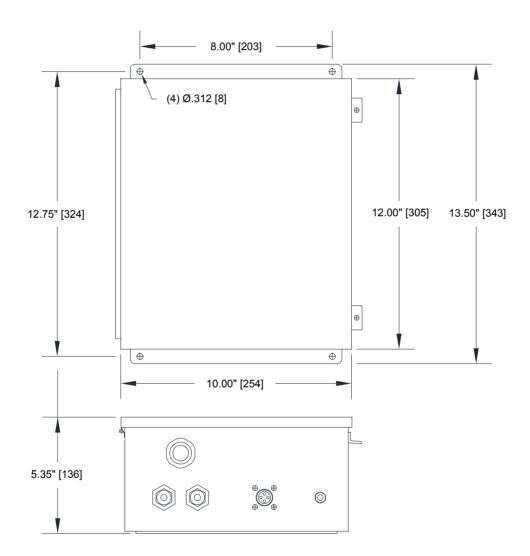
Oxygen and nitrogen should be supplied with a purity of at least 99.5%. H17 purity should be at least 99.995%. Argon purity should be at least 99.99%. All should be clean, dry and oil-free.


A potential fire hazard exists when cutting with oxygen. It is recommended that an exhaust ventilation system be used when cutting with oxygen. Flashback arrestors must be supplied (unless they are not available for the chosen gases and pressures) to prevent a possible fire from propagating back to the gas supplies.

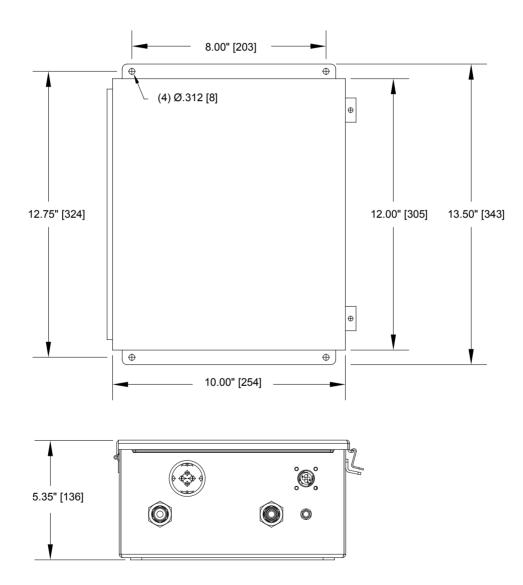
Ensure that oxygen lines remain free from contaminants such as oil and grease. The mixture of such contaminants with oxygen presents an additional fire hazard.

Compressed air must be clean, dry, and oil-free and may be supplied from compressed cylinders or from an air compressor. Be aware that shop air systems are prone to oil and moisture contamination. If shop air is used, it must be cleaned to ISO 8573.1: Class 1.4.1. Specify dry air when using compressed cylinders. Breathing quality air contains moisture and must not be used.

3/8" (inside diameter) hoses are required for all inlet gas connections. Mating connectors are supplied with the unit. **Quick-connect fittings must not be used.**


Plasma Console Specifications

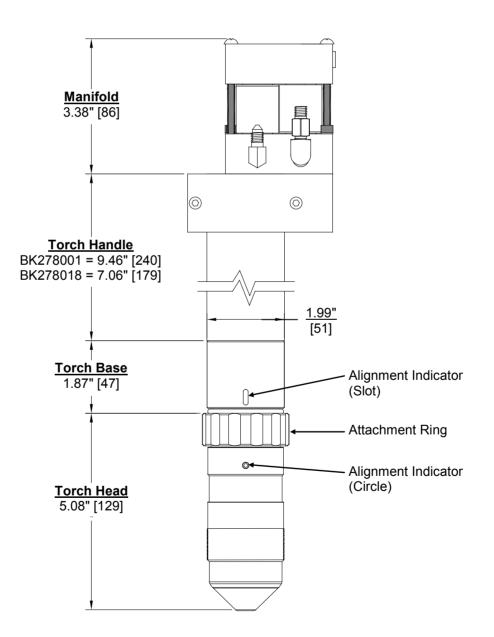
Arc Starting Console (ASC) Specifications with Remote High Frequency (RHF)


Part Number	BK284500
Weight	24 lbs (10.9 kg)
Spark gap distance	0.015 in (0.381 mm)

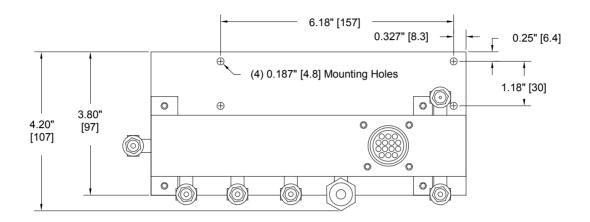
Note: The Spirit II system requires either an ASC with RHF or an ASC with CleanStrike[™] Technology, but not both.

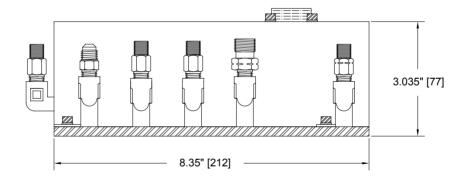
Arc Starting Console (ASC) Specifications with CleanStrike[™] Technology

Note: The Spirit II system requires either an ASC with RHF or an ASC with CleanStrike[™] Technology, but not both. Systems containing an ASC with CleanStrike[™] Technology are only recommended for use with downdraft cutting tables.



Torch and 2-Gang Manifold Specifications


Part Number:	
2-Gang Manifold Assembly	BK284214
Torch Handle (standard)	BK278001
Torch Handle (short)	BK278018
Torch Base	BK279000
Torch Head (Copper Electrode)	BK279100
Torch Head (Silver Electrode)	BK279060


Max Weight:

Manifold/Bracket, Handle (BK278001), Base and Head 8.3 lbs (3.8 kg)

5-Gang Manifold Specifications

Airborne Noise Emissions

The system generates high noise levels while cutting. Depending on the size of the cutting area, distance from the cutting torch, and arc current cutting level, acceptable noise levels may be exceeded. Proper ear protection should be used as defined by local or national codes. The following chart gives the noise levels generated by the system when operating at 400 amps, 205 arc volts. The measurements were made with a sound level meter.

Distance From Torch	A-Weighted Sound Pressure Level	C-Weighted Sound Pressure Level
1 meter horizontal / 1.6 meters above the workpiece	120 dB	115 dB

The maximum noise level is 131 dB at a distance of 3 inches (76.2 mm) from the torch while cutting at 400 amps, 205 arc volts.

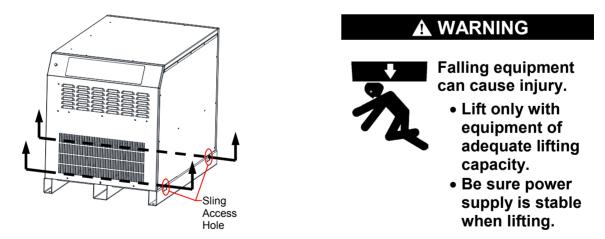
Electromagnetic Compatibility (EMC)

The 380V 50/60Hz and 415V 50/60Hz CE marked Spirit II plasma cutting systems are manufactured to comply with the European standard EN 60974-10 (Electromagnetic compatibility (EMC) – Product standard for arc welding equipment). Information about the EMC standard EN 60974-10 can be found in Appendix A.

BLANK

Section 3: Installation

Initial Inspection


All systems undergo full testing before being shipped from the factory. In the unlikely event that one of the components is defective or missing, please contact customer service so that a replacement can be sent. Also, special care has been taken in the packaging of the system. If the system was damaged during shipment, file a claim with the shipping company, and then contact customer service to order the necessary parts.

Component Placement

Plasma Power Supply

The power supply should be lifted by a forklift, pallet jack or crane. In order to prevent damaging the power supply when lifting with a forklift or pallet jack, the forks should be of adequate length to protrude on the far side of the power supply. If lifting with a sling (lifting straps), ensure the following:

- Sling and material handling equipment must comply with local and national laws and regulations. The personnel involved in the move must be properly trained and qualified to use such equipment.
- All power supply covers must be securely installed.
- Two slings are required. Each sling should pass through all three (3) structural members on the bottom of the power supply. See sling access holes below.
- Lift slowly -not more than 8 in. (203 mm) high- to ensure even weight distribution.
- Move slowly to prevent uncontrollable acceleration/deceleration.

The proper location of the power supply will provide dependable service and reduce periodic maintenance time. Choose a location that will provide unrestricted air movement into and out of the power supply. Maintain **at least 24 inches** of space on **all** sides of the unit. The location should subject the power supply to the least amount of dust, dirt, moisture, and corrosive vapors. The surface on which the power supply is located should have a grade of no greater than 10° to eliminate the risk of toppling over.

The power supply must be cleaned as often as necessary to prevent the accumulation of metallic dust inside the unit. See Section 2 for unit dimensions.

Automatic Gas Console (AGC)

The AGC is usually mounted on the gantry of the cutting machine. See Section 2 for mounting dimensions.

Plasma Console

The plasma console should be mounted near the CNC controller so that it is easy accessible by the operator. See Section 2 for mounting dimensions.

Arc Starting Console (ASC)

The ASC should be mounted in a convenient location that is away from other electronic control devices. The ASC with CleanStrike[™] Technology offers significantly reduced emissions compared to ASC with RHF, however, the high voltage pulse generated inside the unit may interfere with the operation of sensitive control electronics. The ASC is usually mounted on the gantry of the cutting machine or on the cutting table. See Section 2 for mounting dimensions.

5-Gang Manifold

The 5-gang manifold assembly must be mounted within 6 feet (1.8 m) of the torch. See Section 2 for mounting dimensions.

2-Gang Manifold

The 2-gang manifold assembly must be mounted to the torch. See Section 2 for mounting dimensions.

Torch

The torch must be installed on the positioner of an arc voltage control (height control) capable of maintaining the cutting arc voltage within 1 arc volt. The arc voltage must be adjustable in 1 arc volt increments. The positioner must be rigid to ensure cut quality and a torch collision sensor is highly recommended. See Section 2 for mounting dimensions.

Cooling System

The cooling system must be located within 8 feet (2.4 meters) of the plasma power supply. The surface on which the cooling system is located should have a grade of no greater than 10° to eliminate the risk of toppling over. See Section 2 for unit dimensions.

System Interconnection

The Spirit II system interconnection diagrams on the following pages will assist in the planning and installation of the system as well as identifying cables and hoses upon receipt. The optional lnova torch height control is also shown to assist with its connections, whether as an external console or internal to the plasma power supply.

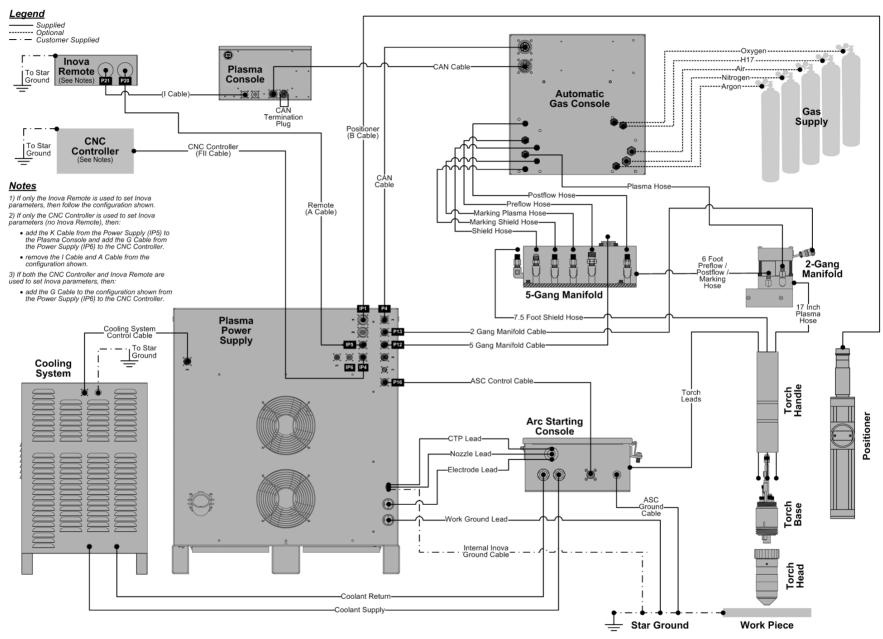


Figure 1a: Spirit II System (AGC, Internal Inova, ASC with RHF)

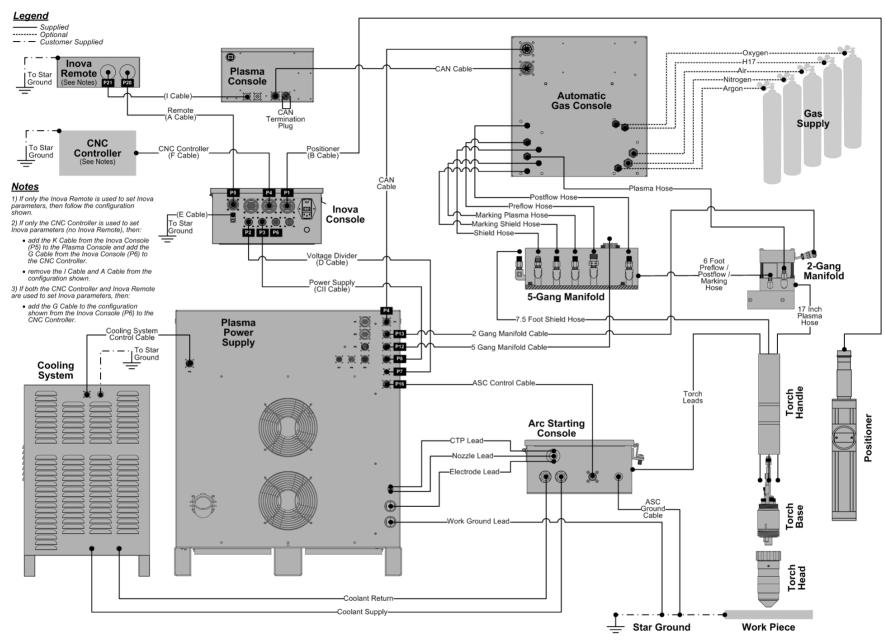


Figure 1b: Spirit II System (AGC, External Inova, ASC with RHF)

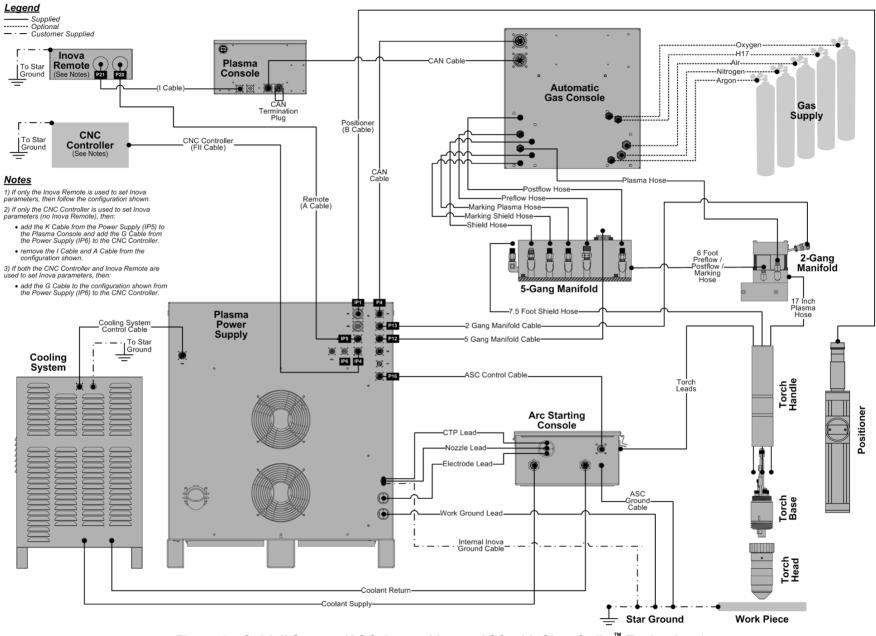


Figure 1c: Spirit II System (AGC, Internal Inova, ASC with CleanStrike[™] Technology)

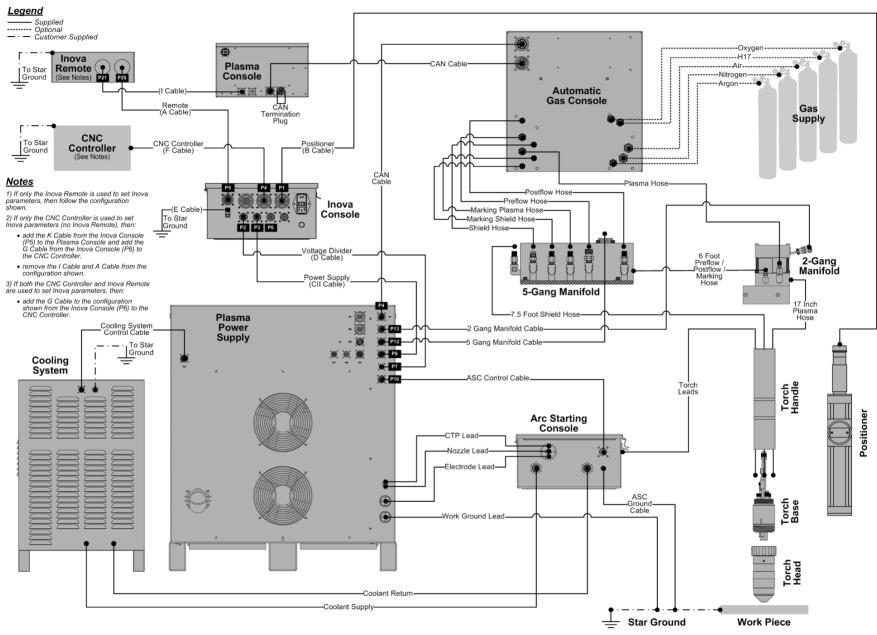


Figure 1d: Spirit II System (AGC, External Inova, ASC with CleanStrike[™] Technology)

Power Supply Primary Power Connections

** Before connecting primary power, check the data plate on the power supply to verify the voltage required **

A primary disconnect switch, switching all ungrounded supply conductors, should be provided for each Spirit system. The disconnect switch should be located as close as possible to the power supply so it can be turned off quickly in case of an emergency. **The disconnect switch must be equipped with time delay fuses only.** The magnetic inrush current of the power supply can be up to 30 times the steady state load current for 0.01 seconds and up to 12 times for 0.1 sec. With non-delay fuses, the fuse will clear due to the inrush current. The same applies for circuit breakers which have an instantaneous magnetic trip. Use of a motor-start circuit breaker or equivalent is recommended if time delay fuses are not used or allowed by local or national codes.

The main feed device (breaker or fuse) and any branch protection (breaker or fuse) upstream of the power supply must be sized to handle all branch loads for both steady state and inrush current.

The disconnect switch should be sized according to local and national codes.	Ihe
rating must meet or exceed the continuous rating of the fuses used. See the follo chart for recommended fuse sizes:	wing

3 Phase Input Voltage (VAC)	Input Current at Maximum Output (amps)	Recommended Time-Delay Fuse Size (amps)
380 VAC, 50/60Hz	152	200
400 VAC, 50/60Hz	144	175
415 VAC, 50/60Hz	140	175
440 VAC, 50/60Hz	131	175
480 VAC, 60Hz	120	150
600 VAC, 60Hz	96	125

Connection to the supply circuit can be by means of flexible supply cables or supply cables through conduit to a permanent installation. The supply cables should have a 600 volt minimum rating and should be sized according to local and national codes.

Route flexible supply cables through the strain relief on the back of the power supply and connect to the input terminal block TB5 as shown. For supply cables through conduit, install the conduit in place of the strain relief and connect the associated supply cables to the input terminal block TB5. See Figure 3 on the next page.

TB5 is located on the rear of the power supply and is accessible with the right-side cover removed. Be sure to connect the primary ground cable to the ground stud on the input terminal block.

Under no circumstances are the supply cables to be routed through the opening in the power supply cabinet without conduit or an appropriate strain relief as per local and national codes.

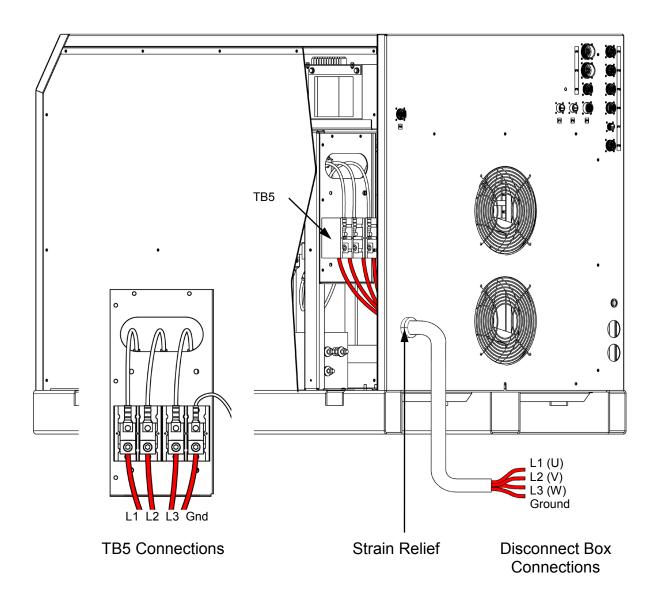


Figure 3: Power Supply Primary Connections

Power Supply Output Connections

Perform the following steps to connect the output of the power supply to the arc starting console and the work table. See Figure 4 on the next page.

Power Supply Electrode Lead (1)

- 1. Route one end of the #4/0AWG power supply electrode lead through the upper strain relief on the rear of the power supply and connect it to the electrode terminal.
- 2. Route the other end of the power supply electrode lead through the strain relief on the arc starting console and connect it to the cathode manifold.

Power Supply Nozzle Lead 2

- 1. Route the larger ring terminal end of the #10AWG power supply nozzle lead through the bushing on the rear of the power supply and connect it to the nozzle terminal.
- 2. Route the smaller ring terminal end of the power supply nozzle lead through the strain relief on the arc starting console, then:
 - For systems that include ACS with RHF, connect it to the angled bracket on the printed circuit board using the provided Phillips-head screw.
 - For systems that include ACS with CleanStrike[™] Technology, connect it to the angled bracket on the red standoff using the provided Phillips-head screw.

Power Supply CTP Sensor Lead \Im

- 1. Route the ring terminal end of the #14AWG power supply CTP sensor lead through the bushing on the rear of the power supply and connect it to the CTP terminal.
- 2. Route the FASTON end of the power supply CTP sensor lead through the strain relief on the arc starting console and connect it to the CTP sensor lead with FASTON connector.

Work Ground Lead 4

- 1. Route one end of the #4/0AWG work ground lead through the bottom strain relief on the rear of the power supply and connect it to the work terminal.
- 2. Connect the other end of the work ground lead to the star ground point on the cutting table.

The star ground point is generally referred to as the common ground point on the cutting table where all subsystems of the machine are grounded. This point is then connected to a driven earth ground rod that should be as close as possible to the star ground. The ground rod should have no other wires connected to it. The ground rod should be at least 3/4 inches in diameter and should be driven into the earth's permanent moisture layer. The length of the ground rod varies from installation to installation and should be installed according to local and national codes. Refer to the National Electrical Code, Article 250, Section H, Ground Electrode System for additional information.

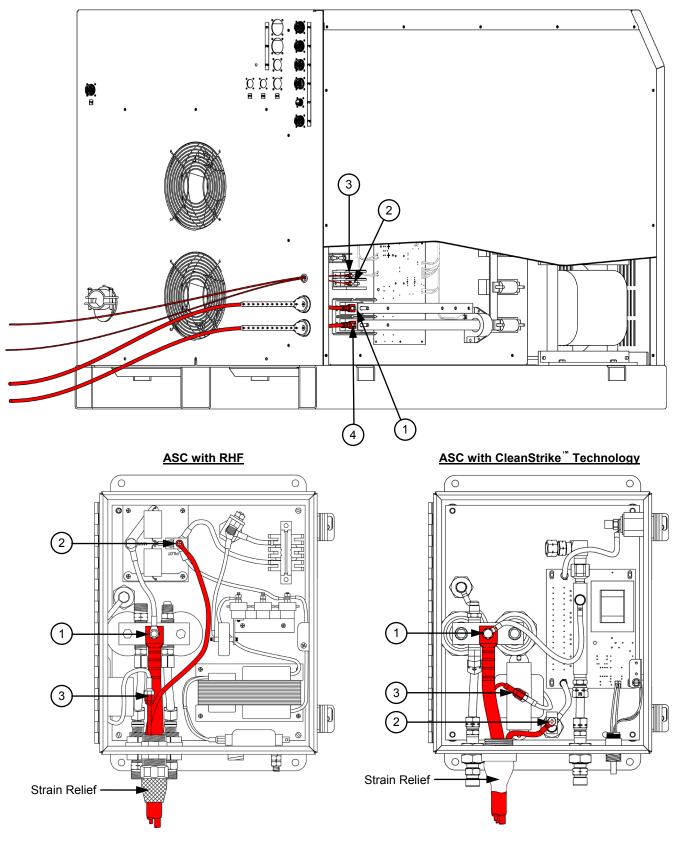


Figure 4: Power Supply Output Connections

ASC Control Cable and ASC Ground Connections

Perform the following steps to connect the ASC control cable and ASC ground. See Figure 5 on the next page.

ASC Control Cable 5

- 1. Connect the ASC control cable plug labeled P16 to the connector labeled P16 on the rear of the power supply.
- 2. Connect the ASC control cable plug labeled P1 to the connector labeled P1 on the arc starting console.

ASC Ground Cable 6

- 1. Connect one end of the ASC ground cable to the ground stud on the arc starting console.
- 2. Connect the other end of the ASC ground cable to the star ground on the cutting table. Make sure that good metal-to-metal contact is made.

Cooling System Connections

Perform the following steps to connect the cooling system to the power supply and the arc starting console. See Figure 5 on the next page.

Coolant Supply Hose (7)

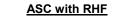
- 1. Connect one end of the coolant supply hose to the coolant out fitting on the rear of the cooling system. Note that the coolant out fitting has right hand threads.
- 2. Connect the other end of the coolant supply hose to the coolant in fitting on the arc starting console. Note that the coolant in fitting has right hand threads.

Coolant Return Hose (8)

- 1. Connect one end of the coolant return hose to the coolant in fitting on the rear of the cooling system. Note that the coolant in fitting has left hand threads.
- 2. Connect the other end of the coolant return hose to the coolant out fitting on the arc starting console. Note that the coolant out fitting has left hand threads.

Cooling System Control Cable (9)

- 1. Connect the cooling system control cable plug labeled P14 to the connector labeled P14 on the rear of the power supply.
- 2. Connect the cooling system control cable plug labeled P1 to the connector labeled P1 on the cooling system.


Cooling System Ground Connection (10) (Customer Supplied)

The Cooling System must be connected to protective earth ground in accordance with national or local codes. The Cooling System receives its power from the plasma power supply and as such must be connected to the same protective ground as the plasma power supply.

Use a minimum of 8AWG (10 mm²) wire connected from the cooling system grounding stud to the plasma power supply protective earth ground. Note: the customer must supply grounding wire.

This information is subject to the controls of the Export Administration Regulations [EAR]. This information shall not be provided to non-U.S. persons or transferred by any means to any location outside the United States contrary to the requirements of the EAR.

0

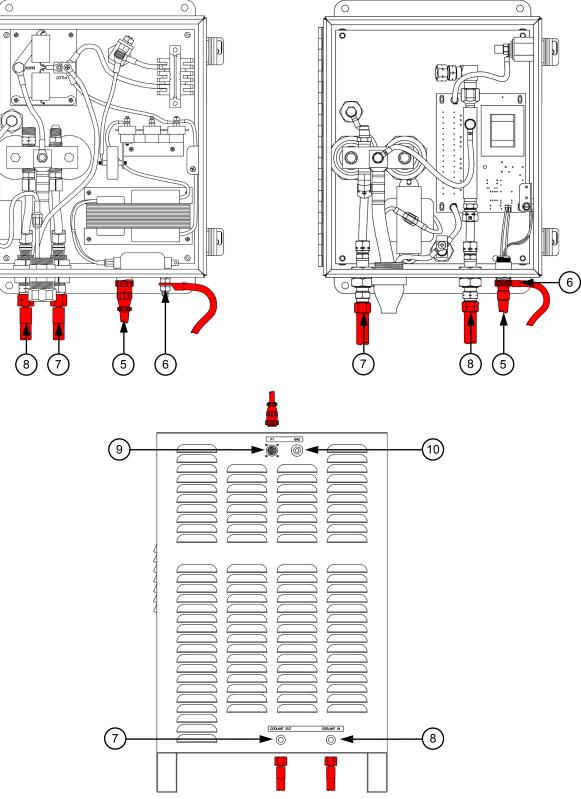


Figure 5: Cooling System Connections

Torch Leads to Arc Starting Console Connections

Perform the following steps to connect the torch leads to the arc starting console. See Figure 6 on the next page.

Note: When making hose connections, only tighten the brass fittings enough to make water or gas seals. The fittings are subject to damage if over tightened.

Braided Shield (11)

- 1. Remove the threaded ring from the brass shield connector on the end of the braided shield. Route the torch leads through the opening in the arc starting console and push the shield connector through the hole until it is seated against the side of the console.
- 2. Slide the threaded ring over the torch leads, thread it onto the brass shield connector, and **tighten firmly**. The shield connector should ground the braided shield to the case of the arc starting console in order to help reduce high frequency noise emission. Using an ohmmeter, measure for zero ohms between the braided shield and the ground stud located on the outside of the arc starting console.

Torch Electrode/Coolant Supply Lead (12)

• Connect the torch electrode/coolant supply lead to the brass cathode manifold. Note that the torch electrode/coolant supply lead has right hand threads.

Torch Coolant Return Lead (13)

- For systems that include ACS with RHF, connect the torch coolant return lead to the brass cathode manifold. Note that the torch coolant return lead has left hand threads.
- For systems that include ACS with CleanStrike[™] Technology, connect the torch coolant return lead to the brass elbow fitting on the ASC manifold. Note that the torch coolant return lead has left hand threads.

Torch Nozzle Lead (14)

- For systems that include ACS with RHF, connect the torch nozzle lead to the angled bracket on the red standoff. Note that the torch nozzle lead has right hand threads.
- For systems that include ACS with CleanStrike[™] Technology, connect the torch nozzle lead to the fitting on the red standoff. Note that the torch nozzle lead has right hand threads.

Torch CTP Sensor Lead (15)

• Connect the #18AWG torch CTP sensor lead to the red standoff as shown.

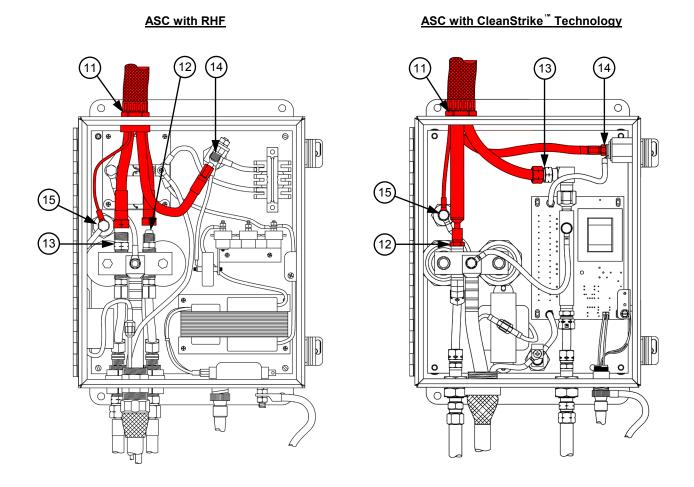


Figure 6: Torch Leads to Arc Starting Console Connections

Torch Leads to Torch Base Connections

Perform the following steps to connect the torch leads to the torch base.

Note: When making hose connections, only tighten the brass fittings enough to make water or gas seals. The fittings are subject to damage if over tightened. Also, use two wrenches when tightening the torch fittings to avoid damaging the torch base.

Torch Lead through Torch Handle Installation

• Route the torch leads through the torch handle. Note that the threaded end of the torch handle mates with the torch base.

Torch Electrode/Coolant Supply Lead (16)

• Connect the torch electrode/coolant supply lead to the torch base as shown.

Torch Coolant Return Lead (17)

• Connect the torch coolant return lead to the torch base as shown. Note that the torch coolant return lead fitting has left hand threads.

Torch Nozzle Lead (18)

• Connect the torch nozzle lead to the torch base as shown.

Torch CTP Sensor Lead (19)

• Connect the torch CTP sensor lead to the torch base as shown.

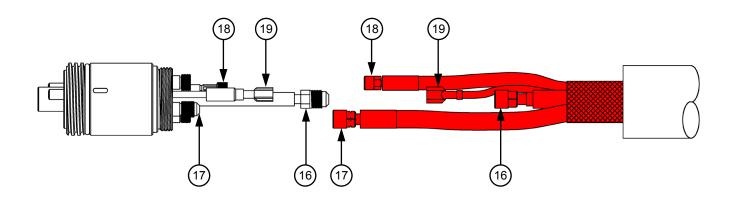


Figure 7: Torch Leads to Torch Base Connections

Torch Gas Connections

Perform the following steps to connect the torch gas hoses to the automatic gas console, torch base, and manifold assemblies. See Figure 8.

Note: When making hose connections, only tighten the brass fittings enough to make gas seals. The fittings are subject to damage if over tightened.

7.5 Foot Shield Gas Hose 20

- 1. Route one end of the 7.5 foot (2.3 m) shield gas hose through the torch handle and connect to the shield gas fitting on the torch base.
- 2. Connect the other end of the 7.5 foot (2.3 m) shield gas hose to the shield gas outlet on the 5-gang manifold.

17 Inch Plasma Gas Hose 21

- 1. Route one end of the 17 inch (432 mm) plasma gas hose through the torch handle and connect to the plasma gas fitting on the torch base.
- 2. Thread the torch handle onto the torch base, being careful not to twist the torch leads and gas hoses when tightening the torch handle.
- 3. Tighten the base to the handle using a pin style adjustable spanner wrench (fits 2" diameter with ¼" diameter pin).
- 4. Attach the 2-gang manifold assembly to the torch handle. The top of the manifold bracket should be flush with the top of the torch handle.
- 5. Connect the other end of the 17 inch (432 mm) plasma gas hose to the plasma gas outlet on the 2-gang manifold.
- 6. Mount the torch handle/base/manifold to the positioner. Note the alignment indicators on the torch base (slot) and torch head (circle). These aid in aligning the quick-disconnect torch base and head and should be oriented so they are clearly visible when the operator is changing heads.

6 Foot Preflow/Postflow/Marking Gas Hose (22)

- 1. Connect one end of the 6 foot (1.8 m) preflow/postflow/marking gas hose to the preflow/postflow/marking outlet on the 5-gang manifold.
- 2. Connect the other end of the 6 foot (1.8 m) preflow/postflow/marking gas hose to the preflow/postflow/marking inlet on the 2-gang manifold.

Marking Shield Gas Hose 23

- 1. Connect one end of the marking shield gas hose to the marking shield outlet on the rear of the AGC.
- 2. Connect the other end of the marking shield gas hose to the marking shield inlet on the 5-gang manifold.

Marking Plasma Gas Hose (24)

- 1. Connect one end of the marking plasma gas hose to the marking plasma outlet on the rear of the AGC.
- 2. Connect the other end of the marking plasma hose to the marking plasma inlet on the 5-gang manifold.

Postflow Gas Hose (25)

- 1. Connect one end of the postflow hose to the postflow outlet on the rear of the AGC. Note that the postflow hose fittings have left hand threads.
- 2. Connect the other end of the postflow hose to the postflow inlet on the 5-gang manifold.

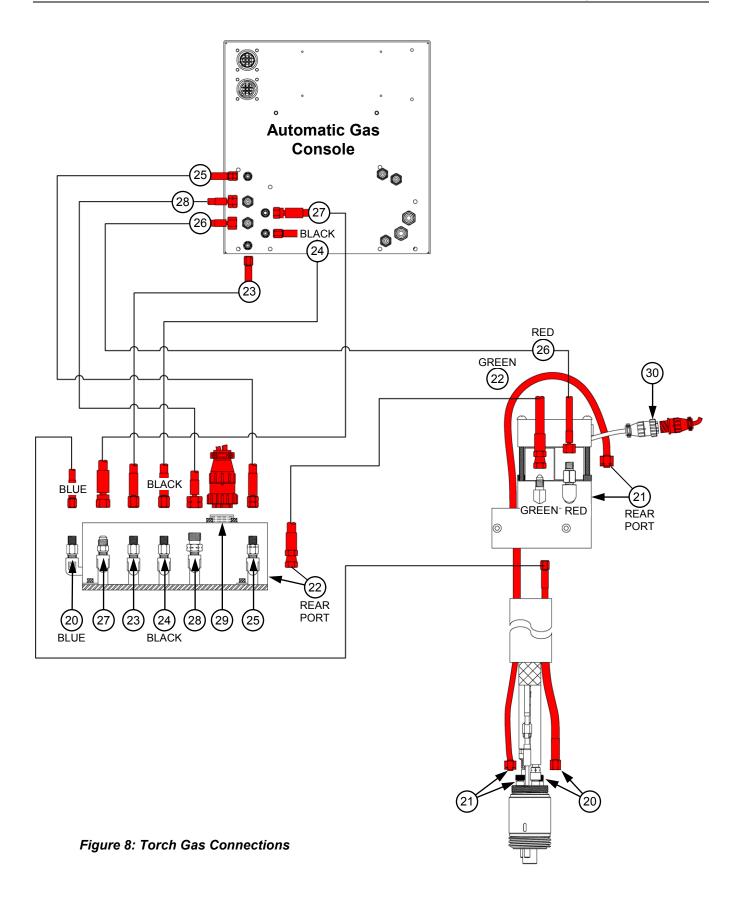
Plasma Gas Hose (26)

- 1. Connect on end of the plasma hose to the plasma outlet on the rear of the AGC.
- 2. Connect the other end of the plasma hose to the plasma inlet on the 2-gang manifold.

Shield Gas Hose (27)

- 1. Connect one end of the shield hose to the shield outlet on the rear of the AGC.
- 2. Connect the other end of the shield hose to the shield inlet on the 5-gang manifold.

Preflow Gas Hose 28


- 1. Connect one end of the preflow hose to the preflow outlet on the rear of the AGC. Note that the preflow hose fittings have left hand threads.
- 2. Connect the other end of the preflow hose to the preflow inlet on the 5-gang manifold.

5-Gang Manifold Control Cable 29

- 1. Connect the 5-gang manifold control cable plug marked P15 to the 5-gang manifold as shown.
- 2. Connect the 5-gang manifold control cable plug labeled P12 to the connector labeled P12 on the rear of the power supply.

2-Gang Manifold Control Cable 30

- 1. Connect the 2-gang manifold control cable plug marked P18 to the 2-gang manifold as shown.
- 2. Connect the 2-gang manifold control cable plug labeled P13 to the connector labeled P13 on the rear of the power supply.

Gas Supply Connections

Perform the following steps to connect the gas supply lines to the AGC. See Section 2 for gas supply requirements. Connectors are sized for 3/8 inch inside diameter hose. Do not change the inlet gas supply fittings to quick-connect fittings. Using quick-connect fittings to connect and disconnect pressurized hoses may cause damage to the system.

Note: When making hose connections, only tighten the brass fittings enough to make gas seals. The fittings are subject to damage if over tightened.

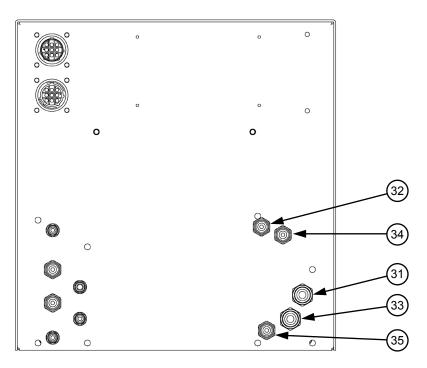
Air Inlet (31) (ISO 3821 hose color - black)

• Air must be supplied to the unit at all times, regardless of the cutting current or material type.

Oxygen Inlet (32) (ISO 3821 hose color - blue)

• Oxygen must be supplied to the unit at all times, unless stainless steel is being cut with H17 plasma.

Nitrogen Inlet (33) (ISO 3821 hose color - black)


 Nitrogen must be supplied to the unit at all times, regardless of the cutting current or material type.

H17 Inlet (34) (ISO 3821 hose color - red)

• H17 must be supplied to the unit when stainless steel is being cut with H17 as the plasma gas. See cutting charts in Section 5 for more information.

Argon Inlet (35)

 Argon is optional and provides improved marking capabilities. If not used, this inlet should be capped.

Plasma Console Connections

Perform the following steps to connect the plasma console to the Spirit system.

CAN Communications (36)

• Insert the male end of the CAN communication cable. See "CAN Communication Connections" for more details.

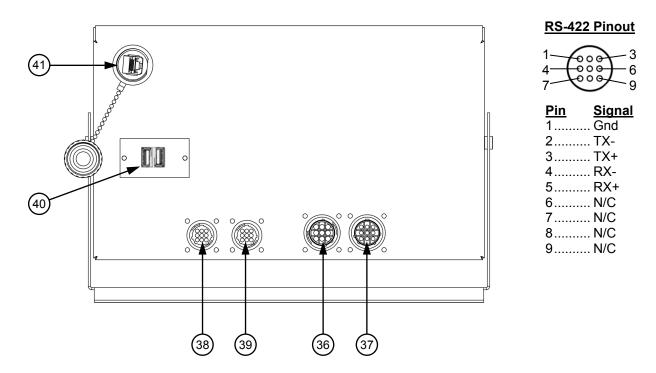
CAN Communications 37

 Insert the female end of the CAN communication cable or the CAN termination plug, depending upon the connection scheme. See "CAN Communication Connections" for more details.

RS-422 Communications (38)

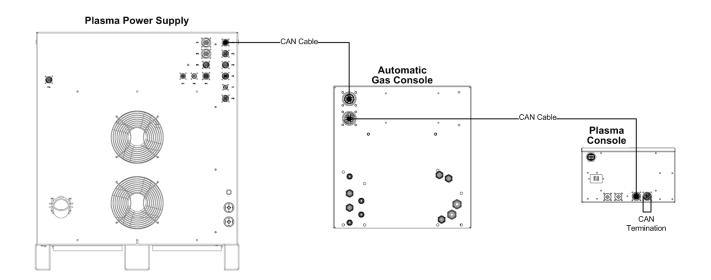
• Insert an RS-422 cable, if necessary, to connect to other devices.

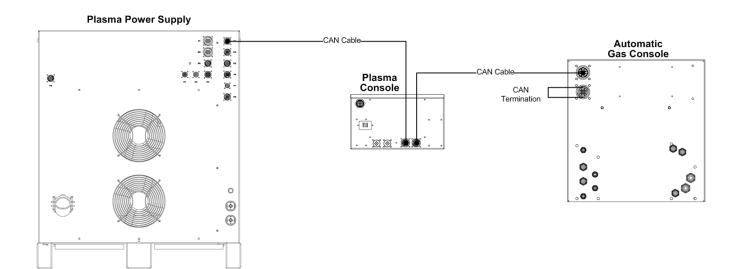
RS-422 Communications (39)


• Insert an RS-422 cable, if necessary, to connect to other devices.

USB 40

• Either USB port can be used to update the Spirit II software.


Ethernet (41)


• No connection. For future development.

CAN Communication Connections

Choose one of the schemes below to connect the Spirit system for CAN communications. Both schemes require two CAN cables and a CAN termination plug.

CNC Machine Interface Connections

Perform the following steps to properly interface the Spirit system with a CNC cutting machine. See the system schematic for additional information.

Plasma Start Input

The power supply requires a contact closure between P8 pins 3 and 4 to commence the cutting or marking sequence. The sequence is terminated when the contacts are opened. The contacts should be rated for 24VDC - 7.3mA.

Plasma Cut/Mark Input

The power supply requires a contact closure between P8 pins 1 and 2 to put the system in plasma marking mode. Opening the contacts puts the system in cutting mode. The operating mode should be selected prior to applying a start signal. The contacts should be rated for 24VDC - 7.3mA.

Arc Hold Input

The power supply requires a contact closure between P8 pins 10 and 11 to inhibit arc starting even though a plasma start signal has been applied to the unit. When the contacts are opened, the arc is initiated. This feature is used to decrease cycle time by allowing pre-cut gas and contact sequencing to occur simultaneously with initial torch height positioning. The contacts should be rated for 24VDC - 7.3mA.

Motion Output

The power supply provides a maintained contact closure output between P8 pins 12 and 14 as long as an arc is maintained between the torch and the workpiece. The motion contacts are rated for 24VDC – 10mA.

Remote On/Off Input

The power supply requires a maintained contact closure between P8 pins 5 and 6 to energize the system from a remote location, provided that the OFF Button on the plasma console is released. The contacts should be rated for 24VAC - 10mA. Opening the contacts deenergizes the system. If the remote on/off feature is to be used, remove the jumper between positions 1 and 2 on the J17 connector on the microprocessor DSP board.

Power Supply Ready Output

The power supply provides a maintained contact closure output between P8 pins 7 and 8 when the system is ready to cut or mark. The contacts are open during gas purge or when an error occurs. The contacts are rated for 24VDC – 10mA.

RS-422 Serial Communication Link

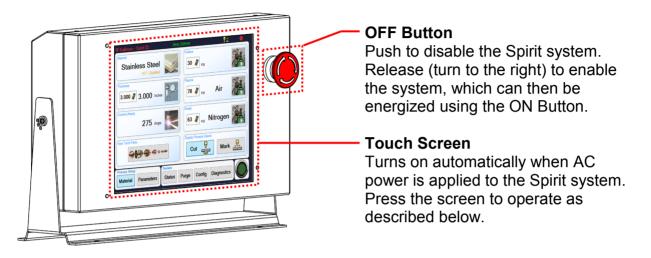
An RS-422 serial communication link can be connected between the plug on the rear of the plasma console and a CNC machine or automatic height control system. All process parameters can be controlled via the RS-422 communication link. Also, cutting or marking information such as initial height, cutting or marking height, recommended arc voltage, and recommended travel speed can be transmitted from the plasma console to the CNC machine or height control. See Appendix B for additional serial communication information.

Filling the Cooling System

M WARNING: Do not touch the fans inside the cooling system.

Important: Never turn on the system when the coolant reservoir is empty.
 Important: When handling coolant, wear nitrile gloves and safety glasses.
 Important: Only use approved coolant. Commercially available antifreeze contains corrosion inhibitors that will damage the cooling system. See Section 2 for more information.

- 1. Remove primary power from the Spirit system.
- 2. Ensure the torch base and torch head (with consumables) are properly installed.
- 3. Ensure the coolant supply (in and out) hoses are properly installed.
- 4. Remove the coolant reservoir cap/level gauge and then remove the cover from the cooling system.
- 5. Ensure the coolant filter housing is tightened securely.
- 6. Ensure the drain petcock on the bottom of the reservoir is tightened securely.
- 7. Fill the reservoir with approximately 2 ¹/₂ gallons of approved coolant.
- 8. Apply primary power to the Spirit system and enable it by releasing (turn right) the OFF Button on the plasma console.
- 9. On the plasma console, press the Diagnostics navigation button to access the Pressures/Coolant tab.
- 10. Press the Fill/Flush button to start the coolant pump circulating coolant through the system. Note: the Coolant Flow indicator (press the Status navigation button) will remain red until the coolant has filled the entire system and begins flowing back into the tank. The coolant pump will turn off automatically if the coolant level drops below the minimum level inside the reservoir. If this happens, add more coolant. If the Fill/Flush button is not available (grayed out), release (turn right) the OFF Button.
- 11. With the coolant pump running, locate the small red push-button on top of the coolant filter housing. Press and hold the red button until no air or bubbles are seen inside the filter housing. Dry any coolant that leaks out.
- 12. Check for coolant leaks at all hose connections, the arc starting console, and at the torch.
- 13. Once the flow rate has stabilized (see Diagnostics > Pressures/Coolant tab), press the Fill/Flush button again to stop the coolant pump.
- 14. Remove primary power from the Spirit system.
- 15. Fill the reservoir with coolant until the coolant gauge indicates full.
- 16. Replace the cooling system cover and replace the coolant reservoir cap/level gauge.
- 17. End of procedure.


This information is subject to the controls of the Export Administration Regulations [EAR]. This information shall not be provided to non-U.S. persons or transferred by any means to any location outside the United States contrary to the requirements of the EAR.

BLANK

Section 4: Operation

Operating the Plasma Console

The Plasma Console is the touch screen interface to the entire Spirit system when the Automatic Gas Console (AGC) is used instead of the Manual Gas Console (MGC).

Navigation and ON Button

Press the navigation buttons to access the various screens described in this section. Change settings by simply pressing that part of the screen.

🕲 Kaliburn - Spirit II :	Setup: Optimum	72 🔍	
Material Stainless Steel H17 - Disabled	Preflow 30 2 Psi	2	
Thickness 3.000 3.000 Inche	s Plasma 78 Psi	Air 🏭	
Current (Amps) 275 Amps	Shield	Nitrogen	/
View Torch Parts	Display cocess G	Mark 🖳	
Process Setup Material Parameters	System Status Purge Config	Diagnostics	

– Navigation Buttons

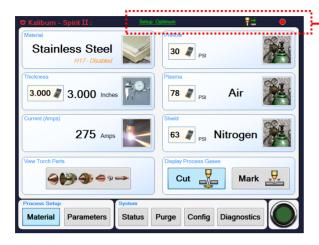
Press to access the desired screen.

ON Button

Press to energize the system (the OFF Button must be released first).

This button also indicates three different system conditions:

The system is ON; cooling fans and coolant pump are running.


The system is OFF. Press to turn the system ON.

The system is OFF, but enabled (OFF Button has been released). Press to turn the system ON.

Important Messages and Icons

Messages and icons at the top of the screen provide additional important information.

Messages and Icons

- Edge start is required
- The power supply is ON
- The power supply is OFF
- A valve is open
- Warning message see Error Log
- Le The system is cutting
 - The system is marking
 - Gas pressures are adjusting

Setup: Optimum

Current, pressures and gasses are set to the cutting chart defaults for the selected material and thickness.

Setup: Custom - Not Saved

Changes to cutting chart defaults have been made but not yet saved.

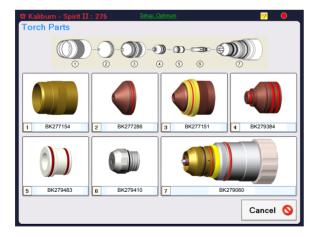
Setup: Custom - Saved

Changes to cutting chart defaults have been saved as a custom setup.

Setting up to Cut or Mark

Press the Material navigation button to setup a cut or mark. Material type, material thickness, and process (cut or mark) are the only parameters that must be selected. All other parameters are adjusted automatically; however, these parameters can be customized. See Customizing Cutting or Marking Settings for more information.

Verifying Important Parameters


Prior to making a cut or mark with the system, the torch height control and the X/Y controller must be configured properly. To view the recommended cutting data, press the Parameters navigation button.

See RS422 Parameter Control for more information on how to adjust these settings.

Viewing the Required Torch Parts

Once the material and thickness have been selected, the torch parts are determined automatically. To see which consumables need to be built up in the torch head, press the View Torch Parts button on the Material screen. Press Cancel to return to the Material screen.

Checking System Status

To view the system status indicators, press the Status navigation button. Each indicator will be either Green or Red.

🕼 Kaliburn - Spirit II :	Setup: Optimum					
O DC Power						
0	3 Phase Power					
6	Gas Console					
0	ASC Door					
0	Ocolant Temperature					
•	Ocolant Level					
6	Coolant Flow					
Process Setup	System					
Material Parameters						

DC Power Indicator

Green when the main contactor has been energized and D.C. current is flowing through the torch. Red when no D.C. current is flowing.

3 Phase Power Indicator

Green when 3 phase power is satisfactory. Red when there is a problem with main 3 phase power.

Gas Console Indicator

Green when the automatic gas console is operational. Red when there is a problem with the gas system. Check the message screen for errors.

ASC Door Indicator

Green when the arc starting console door is closed. Red when the arc starting console door is open.

Coolant Temperature Indicator

Green when the torch coolant temperature is satisfactory. Red when the coolant temperature is too hot. If this indicator turns Red, leave the system on until it turns Green again.

Coolant Level Indicator

Green when the coolant level inside the reservoir is satisfactory. Red when coolant must be added.

Coolant Flow Indicator

Green when the coolant flow through the system is satisfactory. Red when the coolant flow is restricted.

Purging Pressure Regulators

Press the Purge navigation button to access the screen described below.

The background color of the actual pressure reading will change;

- Green for pressures at the set point
- Yellow for pressures not at the setpoint

Press the Adjust button to automatically adjust the gas pressures.

🕲 Kaliburn - Spirit II :	Setup: Optimum	•
P	ressure Regulators Adjusted	
Cutting Gasses		
Set Point S	Isma Set Point 80 psi Actual 0.0 rsi Set Point 35 psi Actual 0.0 rsi	Postflow Set Point 80 psi Actual
Marking Gasses		psi
25 _{psi} Actual 0.0 _{psi}	25 _{psi} Actual 0.0 _{psi}	Adjust
Process Setup Material Parameters	Status Purge Config Di	iagnostics

 A message at the top of the screen indicates the status of the regulators in the automatic gas console:

Pressure Regulators Adjusted

Actual reading equals the Set Point. The background color of the Actual reading will be Green.

Regulators Need Adjusted

Actual pressures do not equal the Set Point; the background color of the Actual reading will be Yellow. Press the Adjust button.

Pressure Regulators Adjusting

The system is in the process of adjusting the pressures to reach the Set Point.

Making a Cut or Mark

Once the material type, material thickness, and process have been selected; the correct torch parts (consumables) installed; and the X/Y controller and torch height control are properly configured; the system is ready to cut or mark.

- 1. Release the OFF Button (turn to the right) and then press the ON Button on the Plasma Console.
- 2. The AGC will purge the gas hoses and set the correct gas pressures automatically. After the pressures have been set, the Gas Console indicator on the Status Screen will change from red to green.
- 3. Once the Gas Console indicator is green, the system is ready for cutting or marking.
- 4. When the system receives a start signal from the X/Y controller, the following sequence is initiated:
 - Two second gas preflow
 - RHF/CleanStrike[™] circuit energized
 - Pilot arc initiation
 - Transferred arc (cutting or marking arc) established
 - Motion output relay energized

When the start signal is removed, the arc is extinguished and the motion output relay is deenergized.

Check the troubleshooting section if any indicators in this procedure fail to change from red to green after 10 seconds.

Note: The DC Power indicator will only turn green while cutting.

Piercing Thick Materials

Care must be taken when piercing thick materials in order to prevent damage to the shield cap and nozzle. As with all thicknesses, the pierce height must be set high enough so the metal ejected while piercing does not come into contact with the shield cap. Also, some of the material ejected during the pierce may adhere to the top side of the plate and form a ring of solidified material around the pierce point.

Action must be taken so the torch does not move from the pierce height down to the cutting height and come into contact with this solidified metal. The torch should not move from the pierce height down to the cutting height until the X/Y controller has moved the torch away from the pierce point.

One way to accomplish this may be to program the pierce time on the torch height control system to a value that is longer than the X/Y controller motion delay time.

Moving Pierces and Edge Starts

On very thick materials, an edge start or moving pierce may be required to prevent damage to the torch consumables.

With a moving pierce, the X/Y machine should begin moving at approximately 5–10 inches/minute (125–250 mm/min) as soon as the arc transfers to the plate. After the arc completely penetrates the plate, the torch should be positioned at the proper cutting height and the X/Y machine speed should be increased to the correct level.

With an edge start – the edge start required icon (**1**) will appear at the top of the screen – the torch should be positioned at the edge of the material prior to starting the arc.

Cut Quality

Before the optimum cutting condition can be achieved on a particular material type and thickness, the machine operator must have a thorough understanding of the cutting characteristics of the Spirit system. When the cut quality is not satisfactory, the cutting speed, torch height, or gas pressures may need to be adjusted in small increments until the proper cutting condition is obtained. The following guidelines should be useful in determining which cutting parameter to adjust.

Note: Before making any parameter changes, verify that the torch is square to the workpiece. Also, it is essential to have the correct torch parts in place and to ensure that they are in good condition. Check the electrode for excessive wear and the nozzle and shield cap orifices for roundness. Also, check the parts for any dents or distortions. Irregularities in the torch parts can cause cut quality problems.

- 1. A positive cut angle (top dimension of piece smaller than the bottom dimension) usually occurs when the torch standoff distance is too high, when cutting too fast, or when excessive power is used to cut a given plate thickness.
- 2. A negative cut angle (top dimension of piece larger than the bottom dimension) usually occurs when the torch standoff distance is too low or when the cutting speed is too slow.
- 3. Top dross usually occurs when the torch standoff distance is too high.
- 4. Bottom dross usually occurs when the cutting speed is either too slow (slow-speed dross) or too fast (high-speed dross). Low-speed dross is easily removed, while high-speed dross usually requires grinding or chipping off. When using oxygen as the shielding gas, bottom dross can sometimes be removed by increasing the shield gas pressure. However, increasing the shield pressure too much can cause cut face irregularities (see below). Bottom dross also occurs more frequently as the metal heats up. As more pieces are cut out of a particular plate, the more likely they are to form dross.
- 5. When using oxygen as a shielding gas, cut face irregularities usually indicate that the shield gas pressure is too high or the torch standoff distance is too low.
- 6. A concave cut face usually indicates that the torch standoff distance is too low or the shield gas pressure is too high. A convex cut face usually indicates that the torch standoff distance is too high or the shield gas pressure is too low.
- 7. Note that different material compositions have an effect on dross formation.
- 8. If the material is not being completely severed, the likely causes are that the cutting current is too low, the travel speed is too high, the gas pressures are incorrect, the incorrect gas types are selected, the incorrect consumables are installed in the torch, or the consumables are worn.

This information is subject to the controls of the Export Administration Regulations [EAR]. This information shall not be provided to non-U.S. persons or transferred by any means to any location outside the United States contrary to the requirements of the EAR.

Customizing Cutting or Marking Settings

Changes to any of these factory default settings will cause the Setup message at the top of the screen to change from <u>Setup: Optimum</u> to <u>Setup: Custom - Not Saved</u>. See the next section to save custom settings.

Status

Purge Config Diagnostics

SAVE 🖌

Parameters

Material

- Altering the Current Set Point

To alter the current set point from the default setting, press the Current (Amps) button on the Material Screen and choose from the list of available values.

Note: When marking is the selected process, the current cannot be changed.

Altering Gas Types

On the Material Screen, press the Plasma or Shield button and select the desired gas type.

The plasma gas can be changed to Air, Oxygen, Nitrogen, or H17. Shield gas can be changed to Air, Oxygen, or Nitrogen.

Preflow gas cannot be changed.

Altering Gas Pressures

Normally, the preflow gas and plasma gas pressures should not be changed. The shield gas can be adjusted in small increments to fine-tune a cut. Use the data entry button to enter a desired pressure. Note that all of the gases have minimum and maximum limits and cannot be programmed beyond these limits.

🕲 Kaliburn - Spirit II :	•
Cutting Parameters	Marking Parameters
Cut Pierce Time: 1000 🥒 ms	Mark Pierce Time: 1000 🥒 ms
Cutting Height: 0.000	Marking Height: 0.000 2 Inches
Pierce Height: 0.000 Inches	Initial Height: 0.000 🖉 Inches
Arc Voltage: 0.000 a Volts	Arc Voltage: 0.000 a
Kerf Width: 0.000 Inches	Travel Speed: 00000 IPM
Transfer Height: 0.000 Inches	External RS422 Manage Custom Setups
Travel Speed: 00000 IPM	Manual Transmit
Process Setup Material Parameters Status	Purge Config Diagnostics

Altering Important Parameters

With the RS422 Parameter Control set to Manual, certain values on the Parameters Screen can be changed manually. Press the corresponding data entry button and enter the desired value.

Once a value has been changed, press the Manual Transmit button to send the value to the X/Y machine or torch height control.

Saving Customized Settings

If one of the default cutting or marking parameters was altered, the new configuration can be saved for later use.

Custom Setu ← → 1/1 CurrentSetup Save 📔 Current: 260 Amps Stainless Steel 3.000 Inches Time: 1500 ms Cuttina: re: 96 PSI tage: 215.0 Volts 30 PSI leight: 0.290 Inches sma Gas: Air re: **78** PSI rce Height: 0.350 Inches Shield Gas: Nitrogen re: 63 PSI Travel Speed: 5 IPM Marking: Arc Voltage: 107.0 Volts Marking Height: 0.100 Inches ma Gas: Nitrogen Initial Height: 0.100 Inches Plasma Pressure: 25 PSI Shield Gas: Nitrogen Shield Pressure: 25 PSI Travel Speed: 250 IPM Cancel 🚫 - Press the Manage Custom Setups button on the Parameters Screen.

 Press the Save button and enter a name using the on-screen keyboard.

This name is added to the list of existing custom setup files and can be accessed again by scrolling through the list using the left (Prev) or right (Next) arrow buttons.

Restoring or Deleting Customized Settings

If a new setup configuration was saved for later use, it can be restored at any time or deleted permanently from the list.

Value Marking Parameters Cutting Parameters Marking Parameters Cutting Height: 0.290 Inches Pierce Height: 0.350 Inches Arc Voltage: 215.0 Volts Kerf Width: 0.205 Inches Transfer Height: 0.300 Inches Travel Speed: 5 IPM Process Setup System Process Setup System Parameters Status Purge Config Diagnostics	Press the Manage Custom Setups button on the Parameters Screen.
Current Setup Save Image: Current Setup Image: Current Setup </th <td>Press the left (Prev) or right (Next) arrow button to scroll through the list of existing custom setups. The name of the selected setup will appear under Setup Name.</td>	Press the left (Prev) or right (Next) arrow button to scroll through the list of existing custom setups. The name of the selected setup will appear under Setup Name.
Kaliburn - Spirit II: Setup: Name Prov. Nat Setup: Name Curson: Solup Files Prov. Nat MH_0_250_70 Restore 20 Delete 10 Solution Solup Files Material: Stainless Steel Current: 70 Amps Thickness: 0.250 Inches Cutting: Postflow Pressure: 74 PSI Arc Voltage: 116.0 Volts Prefore Pressure: 75 PSI Cutting Height: 0.110 Inches Planma Gas: Oxygen Plasma Pressure: 76 PSI Precet Height: 0.255 Inches Shield Gas: Air Shield Pressure: 40 PSI Travel Speed: 120 IPMI Marking: Air Shield Pressure: 25 PSI Indial Height: 0.100 Inches Shield Gas: Nitrogen Plasma Pressure: 25 PSI Indial Height: 0.100 Inches Shield Gas: Nitrogen Shield Pressure: 25 PSI Indial Height: 0.100 Inches Shield Gas: Nitrogen Shield Pressure: 25 PSI Indial Height: 0.100 Inches	When the desired setup is displayed, press the Restore or Delete button.

Configuration Tab

Press the Config navigation button followed by the Configuration tab to access the screen described below.

🕼 Kaliburn - Spirit II :	Setup: Optimum	(
Configuration Advanced Config	Network Settings Software	Updates System Info Tool	s
RS422 PARAMETER CONTROL	Auto	Manual Disabled	
CUT/MARK CONTROL	Local	Hard Wire Comm	
HYDROGEN CUTTING (H17)		Enabled Disabled	
UNITS OF MEASURE		Imperial Metric	
	Русский	Português	
	Deutsch	English Français	
	中文	Español Polska	
Process Setup Material Parameters	Status Purge Cor	nfig Diagnostics	

RS422 Parameter Control

Controls how the Spirit communicates with the X/Y controller and height control system. With the RS422 Parameter Control set to Automatic, the Inova is automatically updated with the correct arc voltage, pierce (initial) height, and cutting (marking) height any time a new condition is loaded, the process (cutting or marking) is changed, or when the arc voltage, pierce (initial) height, or cutting (marking) height is changed on the Parameters Screen.

With the value set to Manual, the parameters are transmitted using the Manual Transmit button on the Parameters Screen. Choose Disable to prevent the system from sending RS422 communications.

Cut/Mark Control

The Spirit system has the capability of plasma cutting and plasma marking with the same set of consumables. The process (cutting or marking) can be set by the RS-422 serial interface (COMM), by a hard signal (Hard Wire) on the CNC interface plug, or locally (Local) through the plasma console.

Hydrogen Cutting (H17)

When hydrogen cutting is enabled, the H17 hydrogen mixture will automatically be selected as the plasma gas for certain material types and thicknesses. To prevent the use of H17, hydrogen cutting must be disabled.

Units of Measure

The Spirit system will display Imperial units or Metric units. Press to select.

Language

Press to select the desired language.

Advanced Config Tab

Press the Config navigation button followed by the Advanced Config tab to access the screen described below.

🕲 Kaliburn - Spirit II :	Setup: Optimum	•
Configuration Advanced Config	Network Settings Software Updates System	m Info Tools
SET RS422 NODE	1 2 3 4 5 6 7 8	Disabled
SET CAN DOMAIN	0 1 2 3 4	5 6 7
TORCH SELECTION	Silver Head	Copper Head
ALLOW ERROR SUPPRESSION	Enabled	Disabled
ARC OFF DELAY	[0 🦉 ms
Material Parameters	Status Purge Config Diagnos	stics

Set RS422 Node

When multiple Spirit systems are being used together on an RS-422 serial communication link, each system must have a unique identification number (node number) to identify itself to the network. To set the communication node number, simply choose from node 1 through 8.

When using an Inova torch height control system with the Spirit, the communication node feature must be disabled. To disable the communication node, press the Disabled button.

Set CAN Domain

Make sure the CAN domain is set to 1. All other selections are for future use.

Torch Selection

Choose which type of Quick-Disconnect head is being used. The type of head corresponds to the type of electrodes being used; either copper or silver.

Allow Error Suppression

Press Enable to allow error suppression. Press Disable to stop error suppression.

Arc Off Delay

In some instances, such as when cutting thicker stainless steel materials, it may be desirable to delay the extinction of the cutting arc after a stop signal is received. To program an arc off delay, press the data entry button (a) and enter the desired delay time in milliseconds. The delay can be set from 0 to 2000 mS.

Network Settings Tab

Press the Config navigation button followed by the Network Settings tab to access the screen described below.

To enable networking, press the red exclamation graphic next to Network Disabled. The graphic will change to a green check mark. Enter the appropriate IP Address, Subnet Mask, and Gateway.

If DHCP is necessary, press the red exclamation graphic next to DHCP Disabled. The graphic will change to a green check mark. Enter the required information.

🕲 Kaliburn - Spirit II :	Setup: Optimum	•
Configuration Advanced Config	Network Settings Software Up	odates System Info Tools
IP Address: 192	. 168 . 1 . 10	
Subent Mask: 255	. 255 . 255 . 0	
Gateway: 192	. 168 . 1 . 0	
	Set	DHCP Disabled
		Network Enabled
Material Parameters	Status Purge Config	Diagnostics

Software Updates Tab

Press the Config navigation button followed by the Software Updates tab to update the Spirit system software.

🕼 Kaliburn - Spirit II :	Setup: Optimu	m		•
Configuration Advanced Config	Network Settings	Software Updates	System Info	Tools
Prev	Selected Update 1		1/1	
Process Setup Material Parameters	System Status Purg	e Config Di	agnostics	

See the next page for details on updating the software.

Updating the Software

- 1. Copy the file Installer.exe onto a USB thumbdrive. This file will be emailed or an ftp address will be provided for download.
- 2. Turn the Plasma Console off.
- 3. Insert the USB thumbdrive into either port on the back of the Plasma Console.
- 4. Turn the Plasma Console on.
- 5. Allow the system to boot to the normal main screen and select "Config" from the Navigation Menu.
- 6. Select the "Software Updates" tab.
- 7. Using the arrows, navigate to the software package to be installed. Note that the system will overwrite the file without warning if steps aren't taken to rename the default Installer.exe file. If you wish to maintain older software updates, you may wish to rename the file to something like Installer mm/dd/yy_Installer.exe
- 8. Select the Install button.
- 9. At this point the Plasma Console will shut itself down and run the installer package.
- 10. To complete the install follow the onscreen instructions.
- 11. Follow the on-screen instructions.

Upda	te Pack:	I Re NET merce	
Comp	onents To Be Updated		
	Installation Component		
	GasConsole PowerSupply HeightControl PlasmaConsole None		
		Cancel	Install

System Info Tab

Press the Config navigation button followed by the System Info tab to access the screen described below.

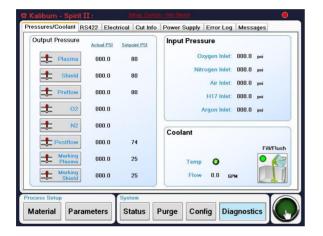
This screen displays the hardware, software and serial number for each of the components in the Spirit system.

aliburn - Spirit Il	l:	Setup: Optimum			
nfiguration Advance	ced Config Net	work Settings So	ftware Updates	System Info	Tools
	Plasma Console	Power Supply	Gas Console	Cut Chart	
Hardware	Α	Α	A		
Software	Α	Α	A	Α	
Serial Number	xxxxxx	xxxxxx	*****		
	100000	- ADDODA			
cess Setup aterial Paran	Syste Neters Sta	atus Purge	Config Di	agnostics	

Tools Tab (Restart Plasma Console)

Press the Config navigation button followed by the Tools tab to access the screen described below.

This screen provides an on-screen calculator and buttons to restart the plasma console (Restart Computer) and to Close Program.


🛱 Kaliburn -	Spirit II :	Setup: Optimu	m	•
Configuration	Advanced Config	Network Settings	Software Updates	System Info Tools
			0	Restart Computer
O Hex 💿	Dec O Oct O Bin	Degrees ORa	idians 🔿 Grads	
🗌 Inv 🛛	Нур	Backspace	CE C	Close Program
Sta F		7 8 9	/ Mod And	
Ave	s Exp In MF	4 5 6	• Or Xor	
Sum		1 2 3	Lsh Not	
	s x ² 3 nl M+	0 */	+ • Int	
Dat	n x2 1/2 pi	A B C	D E F	
Process Setup Material	Parameters	Status Purg	e Config Di	agnostics

Pressures/Coolant Tab

Press the Diagnostics navigation button followed by the Pressures/Coolant tab to access the screen described below.

Pressing any of the Output Pressure buttons will cause the corresponding valve to open or close. Note that the preflow valve and the plasma valve cannot be on at the same time. During a cutting or marking sequence, the status of all valves will display N/A.

See the Installation Section to initially fill the system with coolant. See the Maintenance Section for the procedure to refill or flush coolant.

RS422 Tab

Press the Diagnostics navigation button followed by the RS422 tab to access the screen described below.

Note that incoming data is appended to show an "R" before the data and outgoing transmissions are appended to show a "T" before the data.

Kaliburn	- Spir	it II :		1	Setup: O	ptimum				•
Pressures/C	coolant	RS422	Electric	al Cu	it Info	Power Su	pply En	ror Log	Messages	
Messages	Sent/R	eceived			Mee Fo	mat: Descrip	#		Data Format: Hex	Dec
Protocol	Туре	Time	C	lueue	Messa	ge [MSG:N	letID]	Data [L	SBMSB]	
Enable	(lear	Supre	ss Tele	emetry					
Process Setu	q		S	ystem						
Material	Pa	ramete	rs	Statu	s F	Purge	Config	Diag	gnostics	\bigcirc

Electrical Tab

Press the Diagnostics navigation button followed by the Electrical tab to access the screen described below.

This diagnostic screen displays important parameters for the Power Supply and Gas Console that may be useful during troubleshooting.

🕼 Kaliburn - Spirit II :	Setup: Optimum
Pressures/Coolant RS422 Electrical	Cut Info Power Supply Error Log Messages
Power Supply Parameters	Gas Console Parameters
Output Voltage: -1 Volts	Plasma Valve:1 % Open
	Oxygen Valve: -1 % Open
Output Current: -1 Amps	Nitrogen Valve: -1 % Open
Phase 1: -1 Volts	Preflow Valve:1 % Open
Phase 2: -1 Volts	Shield Valve: -1 % Open
	Marking Shield Valve: -1 % Open
Phase 3: -1 Volts	Marking Plasma Valve: -1 % Open
Process Setup Syst Material Parameters St	atus Purge Config Diagnostics

Cut Info Tab

Press the Diagnostics navigation button followed by the Cut Info tab to access the screen described below.

Press the Save to History button to add the Present Cut Errors to the History list for future reference. This should be done each time consumables are changed.

Press any of the History buttons (1 through 5) to display the saved details.

n – Spirit II :	Setup: Optimum	1	
ors			
Detailed Cut En	or Information		
Current Statist	ics		-
Pierces:	0 Errors: 0	% Error: 0	
Details			-
	No Transfer Arc Detected:	0	
Transf	er Arc Lost Before Upslope:	0	
Transf	er Arc Lost During Upslope:	0	
т	ransfer Arc Lost During Cut:	0	
Transfer	Arc Lost During Downslope:	0	
			Do

When any of the following errors occur, measures should be taken to avoid further errors. The following is a description of the errors and possible causes:

Transferred arc not established

This error occurs when the arc fails to transfer to the workpiece. It primarily causes nozzle damage and is typically due to a pierce height that is too high.

• Transferred arc lost before upslope

This error occurs when the arc transfers to the workpiece but is lost immediately. It primarily causes nozzle damage and is typically due to a pierce height that is too high.

• Transferred arc lost during upslope

This error occurs when the arc transfers to the workpiece but is lost before steady state operation. It primarily causes electrode damage and is typically due to a pierce time that is too long or when cutting a given thickness with excessive current.

• Transferred arc lost during cut

This error occurs when the arc is lost during steady state operation. It substantially shortens the electrode life and is typically due to a torch standoff distance that is too high or a travel speed that is to slow.

• Transferred arc lost during downslope

This error occurs when the arc is lost after a stop signal is received but before the current downslope completes. It substantially shortens the electrode life and is typically due to an incorrect lead-out or when cutting a given material thickness with excessive current. When cutting small pieces that tend to drop into the table after being cut, there should be a very short lead out or none at all. On thicker materials, the arc is sometimes lost when crossing the kerf during the lead out. It is critical that the lead-outs be fine-tuned so the arc is not lost before downslope is complete.

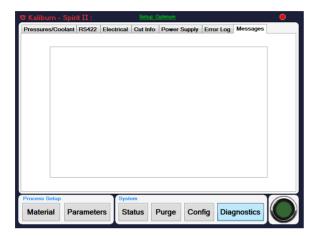
Power Supply Tab

Press the Diagnostics navigation button followed by the Power Supply tab to access the screen described below.

🕲 Kaliburn - Spirit	II :	Setup: C	ptimum			•
Pressures/Coolant R	S422 Electr	ical Cut Info	Power Supply	Error Log	Messages]
	Chopper 1 -1 Chopper 2 -1 Chopper 3 -1		Sur S	n -1		
Process Setup Material Para	ameters	Status F	Purge Con	fig Diag	gnostics	

Error Log Tab

Press the Diagnostics navigation button followed by the Error Log tab to access the screen described below.


Filters along the right side of the screen can be used to limit the data displayed based upon Error #, Date, or Severity. Press the Clear button to remove all filters.

1 Kaliburn -	Spirit II :		Setup:	<u>Optimum</u>			•
Pressures/Co	plant RS42	22 Electric	al Cut Info	Power Supp	ly Error L	og Messages	5
Date/Time	Severity	Error #	D	escription	(Error # Filter:	
						0	
						Date/Time Filte	<u>97:</u>
						2/7/2012 9:14:28	M 📃
						End:	
						2/7/2012 9:22:45 / Severity Filter:	
						Prev Next	Clear
						← → ₀	
Process Setup Material	Parame		Status	Purge	onfig	Diagnostics	

Messages Tab

Press the Diagnostics navigation button followed by the Messages tab to access the screen described below.

This screen displays all power supply and gas console messages, sequencing, and errors. The message screen should be the initial starting point when troubleshooting the system.

Section 5: Torch Consumables and Cutting Charts

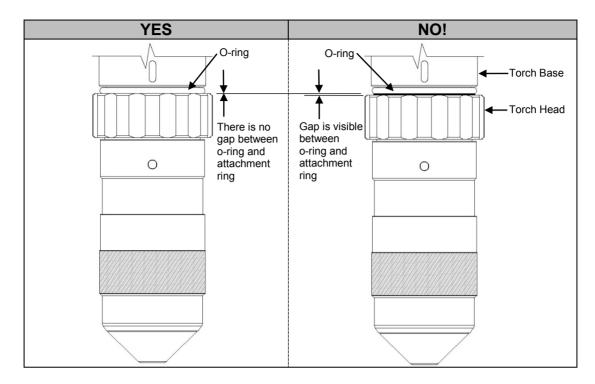
Installing / Removing the Torch Head

DANGER!

Electric Shock Can Kill.

• Remove primary power from the Spirit system before installing or removing the torch head.

WARNING!


Hot Parts Can Burn Skin.

- Do not touch hot parts bare handed.
- Always use gloves when handling the torch as it can be hot after cutting, especially with high amperages and long cut times.
- Allow cooling period before working on the torch.

Each time the torch head is connected to the torch base, use a cotton swab to apply a small amount of o-ring lubricant on each of the seven o-rings on the top of the torch head. **Reminder: do not use an excessive amount of o-ring lubricant.**

- 1. Align the indicator on the torch head (circle) with the one on the torch base (slot).
- 2. Apply enough upward force to engage the threads while tightening the attachment ring. Turn the attachment ring to the RIGHT to tighten.
- 3. Keep tightening the attachment ring until it stops. There should be no gap between the attachment ring and the o-ring on the torch base.

During this process, a small amount of coolant will collect in the torch head. It is normal for this coolant to discharge between the o-ring on the torch base and the attachment ring while the system is being pressurized. If coolant continues to discharge after the system is pressurized, turn off the plasma power supply, remove the torch head and inspect the o-rings for damage.

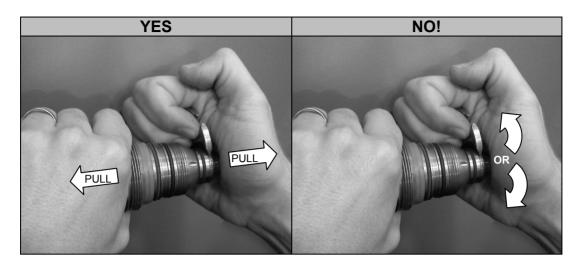
To remove the torch head, turn the attachment ring to the LEFT.

Installing / Replacing Consumables

DANGER!

Electric Shock Can Kill.

• Remove primary power from the Spirit system before installing or removing the torch head.


WARNING!

Hot Parts Can Burn Skin.

- Do not touch hot parts bare handed.
- Always use gloves when handling the torch as it can be hot after cutting, especially with high amperages and long cut times.
- Allow cooling period before working on the torch.

Note: When installing the consumables, do not use an excessive amount of o-ring lubricant. Also ensure that the lubricant is placed only on the o-rings. Excess lubricant can interfere with gas flow, which can cause starting problems, poor cut quality, and short consumable life.

- 1. Unthread the torch head from the torch base by turning the attachment ring to the LEFT. Verify the torch base doesn't unthread from the torch handle.
- 2. Remove the outer retaining cap from the torch head.
- 3. Remove the inner retaining cap from the torch head.
- 4. Separate the shield cap from either the inner retaining cap or the outer retaining cap.
- 5. Use the nozzle removal tool (P/N BK277056) to remove the nozzle from the torch head. To do this, insert the tool into the groove on the nozzle and hold the tool/nozzle in the palm of your hand. Pull both hands apart using a linear motion as shown in the left image below. Do not use a prying or bending motion as shown in the right image below.

- 6. Use the swirl ring removal tool (P/N BK260105) to remove the swirl ring from the nozzle.
- 7. Remove the electrode from the torch head using the appropriate tool:
 - 400A copper electrodes use socket P/N BK284052 & driver P/N BK277086.
 - All other copper electrodes use socket P/N BK277087 & driver P/N BK277086.
 - All silver electrodes use P/N BK279061.
- 8. Inspect all consumables and o-rings for damage and excess wear. Replace with new consumables as necessary.
- 9. Inspect the cooling tube in the torch head for damage. See Section 6 Maintenance and Troubleshooting if replacement is necessary.

Maximizing Consumable Life

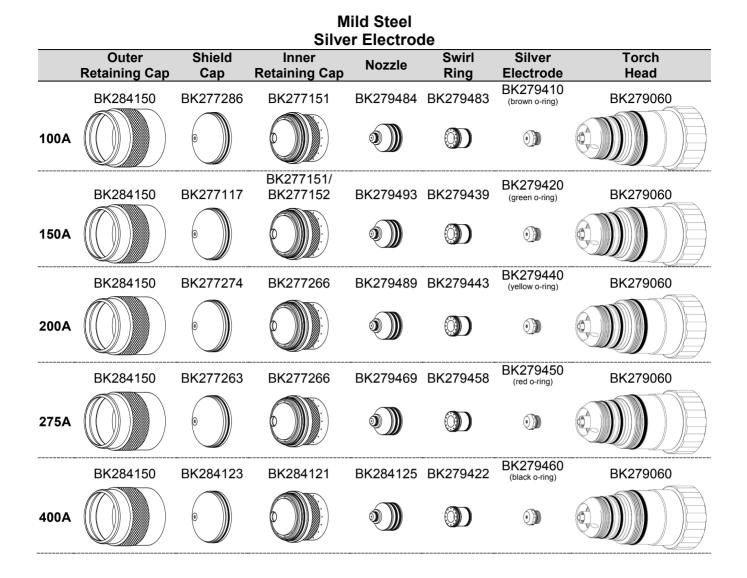
Use the following guidelines to maximize consumable parts life:

1. The Spirit system utilizes the latest advancement in technology for extending the life of the torch consumable parts. To maximize the life of the consumable parts, it is imperative that the shutdown procedure of the arc is carried out properly. The arc must be extinguished while it is still attached to the workpiece. A popping noise may be heard if the arc extinguishes abnormally. Note that holes are usually programmed without lead-outs to prevent loss of the arc during shutdown. There is a time delay between the reception of a stop signal and when the arc is extinguished. During this time, the gases and cutting current are changed to optimum values for extinguishing the arc. Ideally, the x/y machine controller should provide a plasma stop signal prior to the end of the cut path so the gases and current reach the shut off values at the same time that the part has been completely cut. The shut down times are different for each current and are given below.

Arc shutdown rimes Current (A) Time (ms) 30 490 50 390 70 300 100 300 150 175 200 195				
Current (A)	Time (ms)			
30	490			
50	390			
70	300			
100	300			
150	175			
200	195			
260	175			
275	175			
400	375			

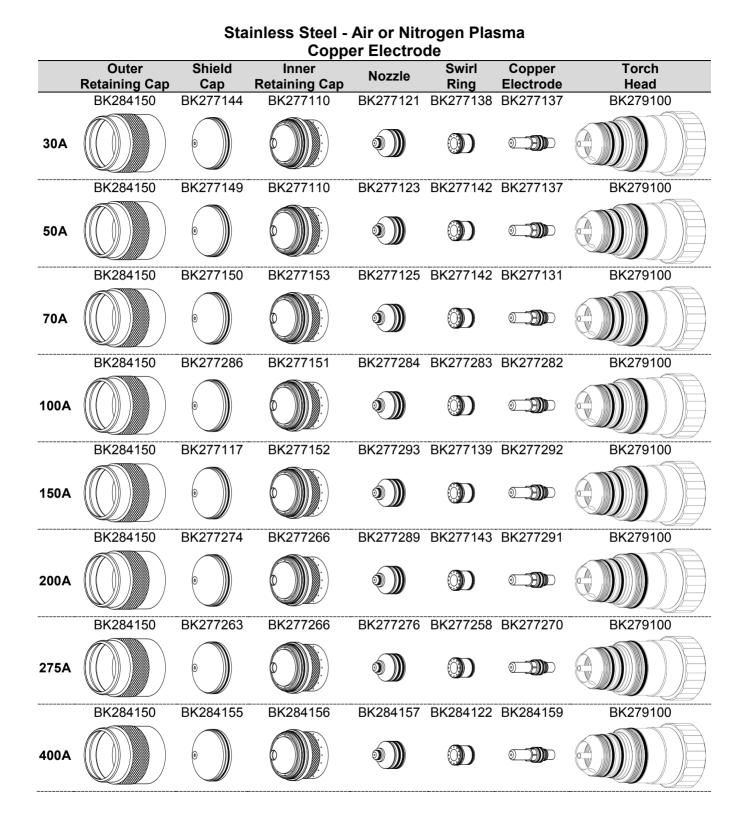
Arc 🕄	Shutd	own	Times

- 2. Use the recommended pierce height given in the cutting charts. A pierce height that is too low will allow molten metal that is ejected during the piercing process to damage the shield cap and nozzle. A pierce height that is too high will cause the pilot arc time to be excessively long and will cause nozzle damage. See "Piercing Thick Materials" in Section 4.
- 3. Never fire the torch in the air. Nozzle damage will occur.
- 4. Make sure the torch does not touch the plate while cutting. Shield cap and nozzle damage will result.
- 5. Use a chain cut when possible. Starting and stopping the torch is more detrimental to the consumables than making a continuous cut.
- 6. Always use error tracking on the plasma console to keep track of cut errors. See Section 4 for information on error tracking.

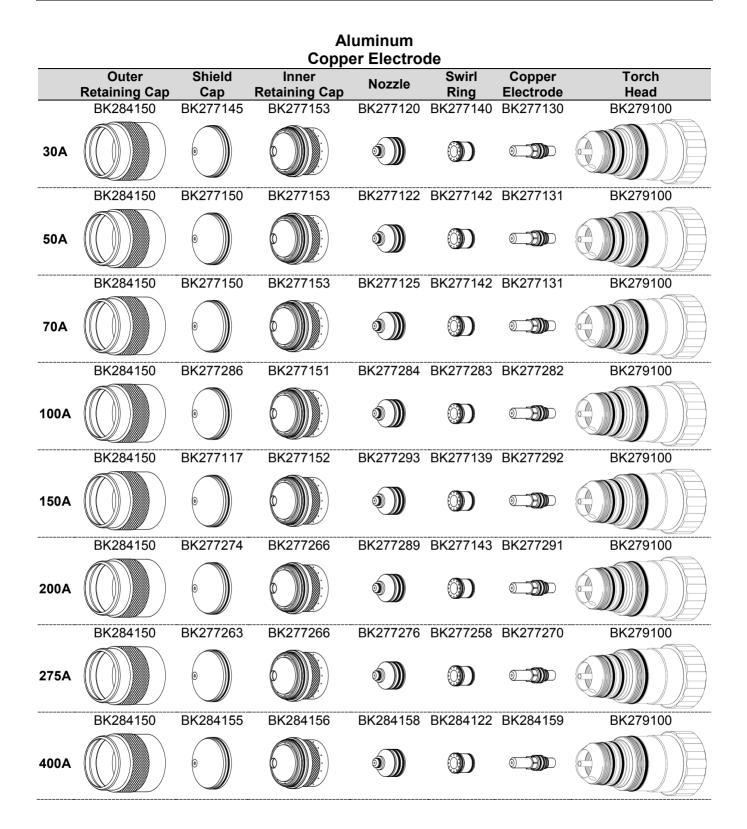

Inspecting for Damage

When the cut quality is not satisfactory, use the following guidelines for determining which consumable parts need to be changed. Inspect all parts for dirt, debris, and excess o-ring lubricant and clean as necessary.

Part	Inspect For	Corrective Action			
Outer Cap	Dents, cracks	Replace outer cap			
	Center hole out of round	Replace shield cap			
Shield Cap	Dents, Scratches	Replace shield cap			
	Dry o-ring	Apply a thin film of o-ring lubricant			
	Damaged o-ring	Replace shield cap			
	Center hole out of round	Replace retaining cap			
Retaining Cap	Dents, cracks	Replace retaining cap			
	Dry o-ring	Apply a thin film of o-ring lubricant			
	Damage o-ring	Replace retaining cap			
	Center hole out of round	Replace nozzle			
Nozzle	Erosion or arcing	Replace nozzle			
)	Dry o-rings	Apply a thin film of o-ring lubricant			
	Damaged o-rings	Replace nozzle			
	Damage	Replace swirl ring			
Swirl Ring	Clogged holes	Blow out with compressed air. Replace swirl ring if clogs can't be removed.			
	Dry o-rings	Apply a thin film of o-ring lubricant			
	Damaged o-rings	Replace swirl ring			
Electrode	Pit depth	Replace electrode if center pit depth is greater than 0.040" (1 mm) for copper electrode or 0.098" (2.5mm) for silver.			
or	Erosion or arcing	Replace electrode			
	Dry o-rings	Apply a thin film of o-ring lubricant			
	Damaged o-rings	Replace electrode			


261	ecting Co	onsum	ables				
				lild Steel er Electro	de		
	Outer Retaining Cap	Shield Cap	Inner Retaining Cap	Nozzle	Swirl Ring	Copper Electrode	Torch Head
	BK284150	BK277145	BK277153	BK277120	BK277140	BK277130	BK279100
30A		0		۵)			
	BK284150	BK277115	BK277153	BK277122	BK277140/ BK277142	BK277131	BK279100
50A		0		٩			
	BK284150	BK277150	BK277153	BK277125	BK277142	BK277131	BK279100
70A		0		٩			
	BK284150	BK277286	BK277151	BK277284	BK277283	BK277282	BK279100
100A		0		٩			
	BK284150	BK277117	BK277151/ BK277152	BK277293	BK277139	BK277292	BK279100
150A		0		٩			
	BK284150	BK277274	BK277266	BK277289	BK277143	BK277291	BK279100
200A		0		۵))			
	BK284150	BK277263	BK277266	BK277269	BK277258	BK277270	BK279100
275A		0		٩			
	BK284150	BK284123	BK284121	BK284125	BK284122	BK284124	BK279100
400A		0		۵)			

Selecting Consumables


	Copper Electrode										
	Outer Retaining Cap	Shield Cap	Inner Retaining Cap	Nozzle	Swirl Ring	Copper Electrode	Torch Head				
	BK284150	BK277150	BK277113	BK277124	BK277140	BK277132	BK279100				
70A				٩							
	BK284150	BK277146	BK277113	BK277126	BK277141	BK277133	BK279100				
100A				۲							
	BK284150	BK277298	BK277266	BK277297	BK277139	BK277135	BK279100				
150A				٩							
	BK284150	BK277274	BK277266	BK277287	BK277259	BK277135	BK279100				
200A		0		٩							
	BK284150	BK277211	BK277280	BK277118	BK277139	BK277135	BK279100				
260A				٩							
	BK284150	BK284155	BK284156	BK284158	BK284122	BK284159	BK279100				
400A		•		٩							

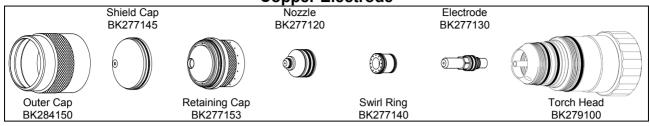
Stainless Steel - H17 Plasma Copper Electrode

		014	Silve	r Electrod	•		
	Outer Retaining Cap	Shield Cap	Inner Retaining Cap	Nozzle	Swirl Ring	Silver Electrode	Torch Head
	BK284150	BK277286	BK277151	BK279484	BK279483	BK279410 (brown o-ring)	BK279060
100A		0		۲			
	BK284150	BK277117	BK277152	BK279493	BK279439	BK279420 (green o-ring)	BK279060
150A		0		۲			
	BK284150	BK277274	BK277266	BK279489	BK279443	BK279440 (yellow o-ring)	BK279060
200A		0		٩			

Stainless Steel - Air or Nitrogen Plasma Silver Electrode

				uminum r Electrod	e		
	Outer Retaining Cap	Shield Cap	Inner Retaining Cap	Swirl Ring	Silver Electrode	Torch Head	
	BK284150	BK277286	BK277151	BK279484	BK279483	BK279410 (brown o-ring)	BK279060
100A		0		۵)			
	BK284150	BK277117	BK277152	BK279493	BK279439	BK279420 (green o-ring)	BK279060
150A		0		۲			
	BK284150	BK277274	BK277266	BK279489	BK279443	BK279440 (yellow o-ring)	BK279060
200A				٩			
	BK284150	BK277263	BK277266	BK279469	BK279458	BK279450 (red o-ring)	BK279060
275A		0		٩))))	

Δluminum


Cutting Charts

The cutting charts shown on the following pages are intended to give the operator the best starting point to use when making a cut on a particular material type and thickness. Small adjustments may have to be made to achieve the best cut. Also, remember that the arc voltage must be increased as the electrode wears in order to maintain the correct cutting height.

			1	Common	r Silver						
Material	Current	Plasma Gas	Shield Gas	Copper Electrode	Electrode						
Mild Steel	30 Amps	Oxygen	Oxygen	Page 5-15							
Mild Steel	50 Amps	Oxygen	Oxygen or Air	Page 5-16							
Mild Steel	70 Amps	Oxygen	Air	Page 5-17							
Mild Steel	100 Amps	Oxygen	Air	Page 5-18	Page 5-45						
Mild Steel	150 Amps	Oxygen	Air	Page 5-19	Page 5-46						
Mild Steel	200 Amps	Oxygen	Air	Page 5-20	Page 5-47						
Mild Steel	275 Amps	Oxygen	Air	Page 5-21	Page 5-48						
Mild Steel	400 Amps	Oxygen	Air	Page 5-22	Page 5-49						
Stainless Steel	30 Amps	Air	Air	Page 5-23							
Stainless Steel	50 Amps	Air	Nitrogen	Page 5-24							
Stainless Steel	70 Amps	H17	Nitrogen	Page 5-25							
Stainless Steel	70 Amps	Air	Nitrogen	Page 5-26							
Stainless Steel	100 Amps	H17	Nitrogen	Page 5-27							
Stainless Steel	100 Amps	Air	Nitrogen	Page 5-28	Page 5-50						
Stainless Steel	150 Amps	H17	Nitrogen	Page 5-29							
Stainless Steel	150 Amps	Air	Nitrogen	Page 5-30	Page 5-51						
Stainless Steel	200 Amps	H17	Nitrogen	Page 5-31							
Stainless Steel	200 Amps	Air	Nitrogen	Page 5-32	Page 5-52						
Stainless Steel	260 Amps	H17	Nitrogen	Page 5-33							
Stainless Steel	275 Amps	Air	Nitrogen	Page 5-34							
Stainless Steel	400 Amps	H17	Nitrogen	Page 5-35							
Stainless Steel	400 Amps	Nitrogen	Air	Page 5-36							
Aluminum	30 Amps	Air	Nitrogen	Page 5-37							
Aluminum	50 Amps	Air	Nitrogen	Page 5-38							
Aluminum	70 Amps	Air	Nitrogen	Page 5-39							
Aluminum	100 Amps	Air	Nitrogen	Page 5-40	Page 5-53						
Aluminum	150 Amps	Air	Nitrogen	Page 5-41	Page 5-54						
Aluminum	200 Amps	Air	Nitrogen	Page 5-42	Page 5-55						
Aluminum	275 Amps	Air	Nitrogen	Page 5-43	Page 5-56						
Aluminum	400 Amps	Nitrogen	Air	Page 5-44							

Cutting Chart Index

Mild Steel - 30 Amps - Oxygen Plasma / Oxygen Shield Copper Electrode

Imperial*

ipenai											
	erial kness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(ga)	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
20	.036					120	105	.080		100 200	.062
18	.048					121	97	.090			
16	.060					125	78		.110		.065
14	.075	35	77	6	75	126	65	.105			
12	.105					127	55				
11	.120					129	50	.120	.125	200	.070
10	.135					131	40	.120	.125	300	

Metric*

ſ	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
	(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)	
	1					120	2615	2.0		100	1.6	
	1.5						124	2020	2.6	2.8		1.7
	2	35	77	6	75	126	1615	2.7	2.0	200	1.7	
	2.5 3					120	1455	2.1			1.8	
						128	1285	2.9	3.1	300	1.0	

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel peed		rking eight	Ini [.] Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	145	250	6350	.177	4.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	66	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .100" (2.5 mm) for cutting and marking.

** Only available on systems with the Automatic Gas Console.

Mild Steel - 50 amps - Oxygen Plasma / Oxygen or Air Shield Copper Electrode

						-
	Shield Cap BK277115		Nozzle BK277122		Electrode BK277131	
			۵))			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277153		BK277140/BK277142		BK279100

Imperial*

	erial kness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(ga)	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)	
		Co	old-Rolled	l Steel – (Oxygen S	hield – S	wirl Ring	g BK277 [,]	140			
12	.105					123	70	.120		100	.075	
11	.120	25	74	12	72	126	60	.125	.135	200	.078	
10	.135					128	50	.135		200	.078	
			Hot-Roll	ed Steel -	- Air Shie	ld – Swii	'l Ring B	K277142	1			
14	.075						200			100	.075	
12	.105						106	190	.100	.135	100	.075
	.125	25 74	74	10	72		180		.155	200	.080	
10	.135	25	25 74	19	12	110	170	.110		200	.000	
	3/16					113	105	.140	.200	300	.085	
	1/4					117	75	. 140	.225	400	.087	

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
	Co	old-Rolled	l Steel – C	Oxygen S	hield – S	wirl Ring	g BK277 [.]	140		
2.5	25	25 74	10	72	121	1895	2.9	2.4	100	1.9
3	25	74	12	12	125	1555	3.1	3.4	200	2.0
		Hot-Roll	ed Steel -	- Air Shie	ld – Swii	rl Ring B	K277142	1		
2.5					106	4885	2.5	2.4	100	1.9
3	25 74	74	10	72	106	4660	2.5	3.4	200	2.0
5		25 74	19	12	113	2555	3.6	5.1	400	2.2
6					116	2075	5.0	5.5	400	2.2

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	145	250	6350	.147	3.7	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	71	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .135" (3.4 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

(Revised 04/26/2013)

Mild Steel - 70 Amps - Oxygen Plasma / Air Shield Copper Electrode

			ооррсі шіс	, cu ouc		
	Shield Cap BK277150		Nozzle BK277125		Electrode BK277131	
			۲			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277153		BK277142		BK279100

Imperial*

•••	portai												
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width		
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)		
ſ	1/8			35		110	190	.100	.150	100	.080		
F	3/16	25	76	76	76		74	113	130	.100	.200	200	.000
ĺ	1/4	25		40	74	116	120	.110	.225	300	.085		
	3/8				122	75	.140	.250	400	.005			

Metric*

••••										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
3			35		109	4995	2.5	3.6	100	2.0
5	25	76	40	74	113	3265	2.5	5.1	300	2.0
6			40		115	3105	2.7	5.5	300	2.2

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed			rking eight	Ini Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.096	2.4	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	62	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .150" (3.8 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

Mild Steel - 100 Amps - Oxygen Plasma / Air Shield Copper Electrode

	Shield Cap BK277286		Nozzle BK277284		Electrode BK277282	
			۵))			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277151		BK277283		BK279100

Imperial*

	portai										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
Ī	1/4					125	150	.090	.200	300	
F	3/8					130	100	.130	.250	400	.090
ſ	1/2	25	83	26	81	130	65	.155	.300	500	
F	5/8					143	47	.185	.325	800	.095
	3/4					145	35	. 165	.350	1000	.095

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)	
6					124	3950	2.1	4.9	300		
10					130	2405	3.3	6.5	500	2.3	
12	25	83	26	81	81	130	1850	3.7	7.3	500	
16					143	1180	47	8.3	1000	2.4	
20					145	800	4.7	9.0	1000	2.4	

Marking* – For All Material Thicknesses

Туре с	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		⊺ravel Speed		rking eight		tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	130	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	60	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

			phei cier	lioue		
	Shield Cap		Nozzle		Electrode	
	BK277117		BK277293		BK277292	
			٩			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277151/BK277152		BK277139		BK279100

Mild Steel - 150 Amps - Oxygen Plasma / Air Shield Copper Electrode

Imperial*

CIIAI										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	·		Reta	aining Ca	p BK277	151				
1/4					118	165	.105	.200	300	405
3/8	20	71	30	69	123	125	.135	.250	400	.125
1/2					125	90	.140	.300	500	.130
			Reta	aining Ca	p BK277	152				
5/8					127	70	.140	.325	600	.130
3/4					130	55	. 140	.350	1000	.135
1	20	71	45	69	134	40	.150	.400	1500	
1.25					145	25	.200	.700	3000	.140
1.50 ***					155	15	.225	.350	1500	

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
			Reta	aining Ca	p BK277	151				
6					117	4305	2.6	4.9	300	3.2
10	20	71	30	69	123	3040	3.4	6.5	500	3.2
12					124	2485	3.5	7.3	500	3.3
			Reta	aining Ca	p BK277	152				
16					127	1760	3.6	8.3	1000	3.3
20					130	1340	3.0	9.0	1500	3.4
25	20	71	45	69	133	1040	3.7	10.1	1500	
32					145	625	5.1	17.8	3000	3.6
38 ***					154	385	5.6	8.9	1500	

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	61	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 09/01/2015)

		(Copper Ele	ctroae		
	Shield Cap BK277274		Nozzle BK277289		Electrode BK277291	
	0		۵))			
Outer Cap BK284150		Retaining Cap BK277266		Swirl Ring BK277143		Torch Head BK279100
Dr.204150		DN2//200		DNZ//143		DR2/9100

Mild Steel - 200 Amps - Oxygen Plasma / Air Shield Copper Electrode

Imperial*

ութ	liai										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	1/4					125	230	.040	.200	300	
	3/8					130	140	.090	.250	400	.150
	1/2					133	120	.115	.300	500	
	5/8					137	100	.130	.350	600	.152
	3/4	20	74	58	72	140	75	.150	.400	800	.153
	1	20	74	56	12	147	50	.175	.450	1000	.155
	1.25					155	25	.240	.500		.155
	1.50 ***					165	17	.300	.350	1500	158
	1.75 ***					175	12	.350	.550	1500	150
Γ	2.00 ***					185	7	.500	.500		.160

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					124	6100	.8	4.9	300	
10					130	3480	2.3	6.5	500	3.8
12					132	3160	2.7	7.3	500	
16					137	2515	3.3	8.9	800	
20	20	74	58	72	141	1810	3.8	10.3	1000	3.9
25	20	74	50	12	146	1310	4.3	11.3	1000	3.9
32					155	610	6.1	12.7		
38 ***					164	435	7.5	8.9	1500	4.0
45 ***					175	295	9.2	9.2	1500	4.0
50 ***					183	195	12.2	12.2		4.1

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel peed		rking eight	Ini [.] Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	120	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	62	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 04/26/2013)

			Copper Ele	ctrode		
	Shield Cap		Nozzle		Electrode	
	BK277263		BK277269		BK277270	
			۵)			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277266		BK277258		BK279100

Mild Steel - 275 Amps - Oxygen Plasma / Air Shield Copper Electrode

Imperial*

ш	Jerial										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	1/2					139	125	.140	.300	500	.165
	5/8					139	105	.135	.325	600	.105
	3/4					138	90	.120	.350	800	.170
	1					144	65	.160	.400	1000	.185
	1.25	20	81	70	79	150	45	.175	.500	1500	. 100
	1.50	20	01	70	19	163	25	.235	.750	2500	
	1.75 ***					170	20	.290	.350		.190
	2.00 ***					180	15	.350	.550	1500	
	2.25 ***					185	13	.375	.375	1500	.260
	2.50 ***					190	9	.385	.385		.275

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
12					139	3290	3.6	7.4	500	4.2
16					138	2650	3.3	8.3	800	4.2
20					130	2190	3.1	9.0	1000	4.3
25					143	1690	4.0	10.1	1000	4.7
32	20	81	70	79	150	1120	4.4	12.8	1500	4.7
38	20	01	70	79	162	645	5.9	19.1	2500	
45 ***					170	495	7.5	8.9		4.8
50 ***					178	395	8.7	0.9	1500	
55 ***					183	345	9.2	9.2	1500	6.6
60 ***					187	285	9.6	9.6		6.9

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel peed		rking ight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	108	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	54	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .300" (7.6 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 09/01/2015)

			Copper Ele	ectrode		
	Shield Cap BK284123		Nozzle BK284125		Electrode BK284124	
	•		۵)			
Outer Cap BK284150		Retaining Cap BK284121		Swirl Ring BK284122		Torch Head BK279100

Mild Steel - 400 Amps - Oxygen Plasma / Air Shield

Imperial*

iperiai																
Material	Preflow	Plasma	Shield	Postflow	Arc	Travel	Cutting	Pierce	Pierce	Kerf						
Thickness					Voltage	Speed	Height	Height	Time	Width						
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)						
1/2					140	160	.140	.300	500	.150						
5/8					4.45	135	400	.350	600	.155						
3/4					145	110	.130	.400	800	.160						
1					150	85	.160	.500	1000	.180						
1.25				155 60 .	.175	.600	1500	.190								
1.5	30	30	79	70	76	160	50	.225	.700	2000	.190					
1.75	- 30	79	70	76	162	40	.260	.800	3000	.200						
2.00					165	33	.270	1.00	4500	.210						
2.25 ***												170	20	.280	.350	1000
2.50 ***					182	15	.300	.350	1300	.245						
2.75 ***					185	12	.325	.350	1500	.245						
3.00 ***	1				195	8	.350	.350	2000	.250						

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc	Travel	Cutting	Pierce	Pierce	Kerf Width
Thickness					Voltage	Speed	Height	Height	Time	vviatn
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
12					138	4205	3.6	7.3	500	3.8
16	1				4.45	3405	3.3	8.9	800	3.9
20					145	2700	3.4	10.5	1000	4.1
25					149	2200	4.0	12.5	1000	4.6
32					155	1500	4.4	15.3	1500	10
38					159	1275	5.6	17.7	2000	4.8
45	30	79	70	76	162	995	6.6	20.5	3000	5.1
50					164	860	6.8	25.4	4500	5.3
55 ***					168	620	6.9	11.9	1000	6.0
60 ***					175	450	7.2		1300	6.0
65 ***					182	365	7.7	8.9	1500	6.2
70 ***					185	300	8.3	0.9	2000	6.4
75 ***	1				193	220	8.7		2000	0.4

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini [.] Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	112	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	53	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .300" (7.6 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console. *** Edge start recommended.

(Revised 04/26/2013)

Stainless Steel - 30 Amps - Air Plasma / Air Shield Copper Electrode

Shield BK27		ozzle 77121	Electrode BK277137	
Outer Cap	Retaining Cap	Swirl Ring		Torch Head
BK284150	BK277110	BK277138		BK279100

Imperial*

iperiai												
Mate Thick	erial mess	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(ga)	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)	ĺ
20	.036					71	200	.020		100	.065	ĺ
18	.048	35	81	30	85	71	165	.035	.050	100	.005	
16	.060		01	30	65	74	125	.035	.050	200	.068	
14	.075					75	90	.025		200	.070	

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
1	35	81	30	85	71	4855	0.6	1.3	100	17
1.5	35	01	30	60	73	3260	0.9	1.3	200	1.7

Marking* - For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		⊺ravel Speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	145	250	6350	.177	4.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	55	100	2540	.140	3.6	.100	2.5	0

* Use an arc transfer height (ignition height) of .050" (1.3 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

Stainless Steel - 50 Amps - Air Plasma / Nitrogen Shield Copper Electrode

	Shield Cap BK277149		Nozzle BK277123		Electrode BK277137	
	0		۵)			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277110		BK277142		BK279100

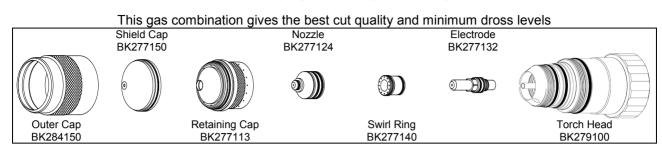
Imperial*

 penai											
	erial mess	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(ga)	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
14	.075					87	105			100	
12	.105					88	75	.035	.070	100	.105
11	.120	25	66	40	67	89	65	.035	.070	200	
10	.135	25	00	40	07	90	55			200	.110
	3/16					94	50	.040	.080	300	.110
	1/4					100	40	.060	.125	400	.115

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
2					87	2565			100	
2.5					07	2080	.9	1.8	100	2.7
3	25	66	40	67	88	1685			200	
5					94	1235	1.0	2.1	400	2.8
6					98	1075	1.3	2.9	400	2.9

Marking* – For All Material Thicknesses


Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	145	250	6350	.147	3.7	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	65	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .070" (1.8 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Stainless Steel - 70 Amps - H17 Plasma / Nitrogen Shield Copper Electrode

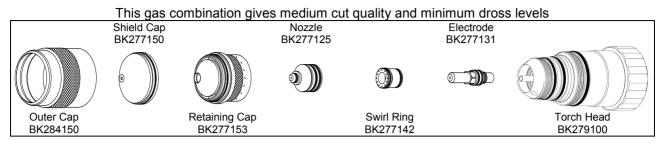
(H17 = 17.5% Hydrogen / 32.5% Argon / 50% Nitrogen)

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
3/16	35	65	30	60	135	80	.100	.200	300	.090

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
5	35	65	30	60	135	2030	2.5	5.1	300	2.3


Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.096	2.4	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	80	100	2540	.130	3.3	.100	2.5	0

* Use an arc transfer height (ignition height) of .150" (3.8 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Stainless Steel - 70 Amps - Air Plasma / Nitrogen Shield Copper Electrode

Imperial*

	Mate Thick		Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(ga)	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	10	.135					132	120	.060	.150	200	.085
		3/16	25	76	25	76	134	100	.070	.200	300	.005
		1/4	25	70	25	70	140	75	.090	.225	400	.090
Γ		3/8	8				148	50	.120	.250	500	.090

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
3	25				131	3210	1.4	3.3	200	2.2
5		76	25	76	134	2445	1.8	5.1	400	2.2
6					138	2050	2.1	5.5	400	2.3

Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.096	2.4	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	65	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .150" (3.8 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Stainless Steel - 100 Amps - H17 Plasma / Nitrogen Shield Copper Electrode

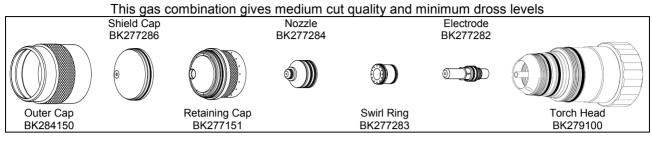
(H17 = 17.5% Hydrogen / 32.5% Argon / 50% Nitrogen)

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
3/16					138	115	.105	.200	300	.100
1/4	28	72	40	67	140	100	.125	.225	400	.105
3/8					152	65	.180	.250	500	.105

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
5	- 28	72	40	67	138	2865	2.7	5.1	400	2.5
6		12	40	07	139	2625	3.0	5.5	400	2.7


Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	130	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	80	100	2540	.110	2.8	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Stainless Steel - 100 Amps - Air Plasma / Nitrogen Shield Copper Electrode

Imperial*

	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	1/4					141	100	.135	.225	400	.092
	3/8	25	80	35	80	147	80	.170	.250	500	.095
ſ	1/2					154	55	.210	.300	600	.095

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					140	2595	3.2	5.6	400	2.3
10	25	80	35	80	148	1935	4.4	6.5	600	2.4
12					152	1540	5.0	7.3	000	2.4

Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	130	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	68	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

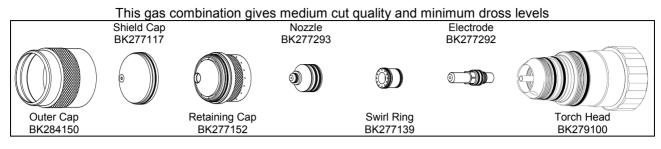
Stainless Steel - 150 Amps - H17 Plasma / Nitrogen Shield **Copper Electrode**

(H17 = 17.5% Hydrogen / 32.5% Argon / 50% Nitrogen)

Imperial*

 iponai										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/4						95	.250	.250	400	.135
3/8						75	.150	.275	500	. 155
1/2	25	77	75	81	165	60	.165	.300	600	.140
5/8						50	.185	.325	800	. 140
3/4						40	.250	.350	1200	.145

Metric*


Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
10						1845	3.8	7.0	600	3.4
12	25	77	75	81	155	1610	4.1	7.4	600	3.6
16	25	11	75	01		1260	4.7	8.3	800	3.0
20					167	940	6.9	9.0	1200	3.7

Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel peed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	81	100	2540	.140	3.6	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

Stainless Steel - 150 Amps - Air Plasma / Nitrogen Shield Copper Electrode

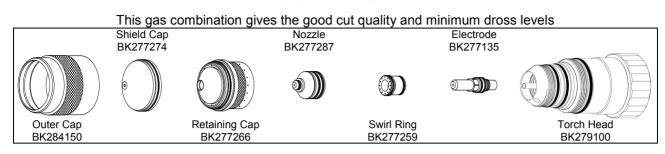
Imperial*

	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
ſ	1/4					145	150	.160	.250	400	.125
ſ	3/8					150	115	.180	.275	500	.125
ſ	1/2	20	71	70	69	155	85	.210	.300	600	.130
ſ	5/8					160	60	.220	.325	800	.130
ſ	3/4					168	45	.240	.350	1200	.135

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					144	3910	4.0	6.3	400	2.2
10	20				150	2805	4.7	7.0	600	3.2
12		71	70	69	153	2330	5.1	7.4	600	3.3
16					160	1510	5.6	8.3	800	3.3
20					170	1030	6.2	9.0	1200	3.4

Marking* – For All Material Thicknesses


Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	65	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Stainless Steel - 200 Amps - H17 Plasma / Nitrogen Shield Copper Electrode

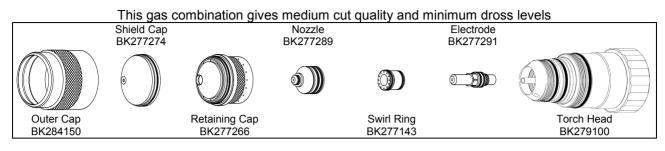
(H17 = 17.5% Hydrogen / 32.5% Argon / 50% Nitrogen)

Imperial*

••	portai										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	3/8					156	80	.195	.250	500	.150
	1/2					148	75	.130	.300	600	.150
	5/8	37	72	79	68	155	60	.190	.350	800	.155
	3/4					160	50	.200	.400	1200	.155
	1.0					170	35	.240	.450	1500	.160

Metric*

	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
	10					154	2010	4.7	6.5	600	3.8
Γ	12	37				149	1935	3.6	7.3	000	3.0
Γ	16		72	79	68	155	1515	4.8	8.9	800	3.9
	20					161	1215	5.2	10.3	1500	3.9
	25					169	915	6.0	11.3	1500	4.1


Marking* - For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	120	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	72	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Stainless Steel - 200 Amps - Air Plasma / Nitrogen Shield Copper Electrode

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/4					130	200	.070	.200	400	.150
3/8					133	150	.070	.250	500	.150
1/2					140	110	.115	.300	600	.152
5/8	20	74	58	72	146	75	.150	.350	800	.155
3/4	20	74	50	12	153	60	.190	.400	1200	.155
1.0					158	40	.210	.450		.160
1.25 ***					170	20	.250	.350	1500	.165
1.50 ***					180	10	.275	.350		.175

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					129	5220	1.8	4.9	400	2.0
10					134	3655	1.9	6.5	600	3.8
12					138	3020	2.6	7.3	600	
16	20	74	58	72	146	1890	3.8	8.9	800	3.9
20	20	74	00	12	153	1450	4.8	10.3		
25					157	1050	5.2	11.3	1500	4.1
32 ***					170	495	6.4	8.9	1500	4.2
38 ***					179	260	6.9	8.9		4.4

Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed		Marking Height		Initial Height		Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	120	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	70	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.


** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 04/26/2013)

Stainless Steel - 260 Amps - H17 Plasma / Nitrogen Shield Copper Electrode

(H17 = 17.5% Hydrogen / 32.5% Argon / 50% Nitrogen)

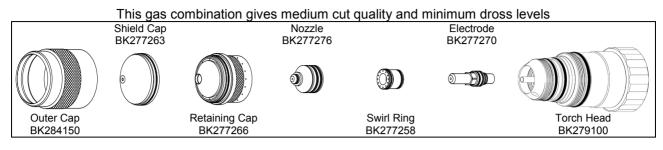
Imperial*

	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width		
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)		
ſ	3/8		63	64	63	145	85	.160	.250	500	.190		
	1/2					142	80	.140	.300	600	.190		
	5/8	40				145	65	.185	.350	800	.195		
	3/4	40				150	55	.225	.400	1200	.195		
	1.0					160	33	.250	.450	1500	.200		
	1.25 ***					170	26	.280	.350	1500	.205		

Metric*

-											
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
Ī	10					144	2140	4.0	6.5	600	4.8
ſ	12		63	64	63	142	2060	3.7	7.3	000	4.0
	16	40				145	1640	4.7	8.9	800	5.0
	20	40	03			151	1315	5.8	10.3		5.0
	25					159	875	6.3	11.3	1500	5.1
	32 ***					170	650	7.1	8.7		5.2

Marking* – For All Material Thicknesses


Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed		Marking Height		Initial Height		Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	108	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	75	100	2540	.160	4.1	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

Stainless Steel - 275 Amps - Air Plasma / Nitrogen Shield Copper Electrode

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width			
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)			
1/2		73	70	75	143	120	.125	.300	600	.165			
5/8					148	90	.140	.350	800	.105			
3/4	20				152	80	.180	.400	1200	.170			
1.0	20	75			165	55	.210	.450		.170			
1.25 ***					175	35	.250	.350	1500	.180			
1.50 ***					185	25	.300	.350		. 100			

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)	
12	20	73	70	75	141	3220	3.1	7.3	600	4.0	
16					148	2275	3.6	8.9	800	4.2	
20					153	1940	4.7	10.3		4.3	
25	20	73			164	1435	5.2	11.3	1500	4.5	
32 ***					175	880	6.4	8.9	1500	4.6	
38 ***					184	640	7.5	8.9		4.0	

Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed		Marking Height		Initial Height		Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	108	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	55	100	2540	.130	3.3	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

Stainless Steel - 400 Amps - H17 Plasma / Nitrogen Shield Copper Electrode

(H17 = 17.5% Hydrogen / 32.5% Argon / 50% Nitrogen)

Imperial*

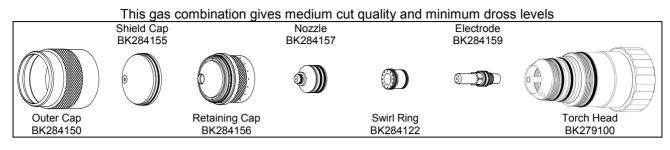
mperiai											
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)	
1/2						105	.190	.300	600	.165	
5/8					165	90	.180	.350	800	.175	
3/4			82	96			75	.170	.400	1200	
1	30	80			170	50	.185	.500	1500	.200	
1.25	30	00			175	40	.210	.700	2000		
1.5					185	30	.270	.800	2500	.225	
1.75 ***					193	23	.300	.350	1500	.235	
2.00 ***					200	18	.350	.550	1500	.250	

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)	
12						2750	4.8	7.3	600	4.2	
16					165	2270	4.5	8.9	800	4.4	
20						1810	4.3	10.5	1500		
25	30	80	82	96	96	169	1310	4.6	12.5	1500	5.1
32	30	80				175	1005	5.3	18.0	2000	
38								184	765	6.8	20.2
45 ***					193	570	7.6	7.8	1500	6.0	
50 ***					199	470	8.7	8.9	1500	6.4	

Marking* – For All Material Thicknesses

	Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini [.] Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
٢	litrogen	Nitrogen	N/A	25	25	N/A	100	250	6350	.100	2.5	.100	2.5	0
/	Argon**	Nitrogen**	N/A	50	25	N/A	68	100	2540	.160	4.1	.100	2.5	0


* Use an arc transfer height (ignition height) of .300" (7.6 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 04/26/2013)

Stainless Steel - 400 Amps - Nitrogen Plasma / Air Shield Copper Electrode

Imperial*

 Jonan										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/2					175	130	.210	.300	600	.165
5/8					170	110	.170	.350	800	. 105
3/4					165	90	.150	.400	1200	
1	20	30 85	5 63	06	170	65	.150	.500	1500	.200
1.25				96	175	45	.160	.700	2000	
1.5					180	35	.170	.800	2500	
1.75 ***					190	25	.190	.350	1500	.205
2.00 ***					205	15	.210	.350	1500	

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
12					176	3415	5.5	7.3	600	4.0
16					169	2775	4.2	8.9	800	4.2
20					165	2190	3.8	10.5	1500	
25	30	85	62	06	169	1690	3.0	12.5	1500	5.1
32		60	63	96	175	1120	4.1	18.0	2000	
38						179	895	4.2	20.2	2500
45 ***]				190	610	4.8	7.8	1500	5.2
50 ***					203	410	5.2	8.9	1500	

Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel peed		rking ight	Ini He	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	107	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	71	100	2540	.160	4.1	.100	2.5	0

* Use an arc transfer height (ignition height) of .300" (7.6 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 04/26/2013)

Aluminum - 30 Amps - Air Plasma / Nitrogen Shield Copper Electrode

	Shield Cap BK277145		Nozzle BK277120		Electrode BK277130	
			۵))			
Outer Cap BK284150		Retaining Cap BK277153		Swirl Ring BK277140		Torch Head BK279100

Imperial*

••											
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	.040						150		.100	100	.065
	.050	35	81	20	85	135	120	.030	.100	100	.005
	.063						90		.150	200	.070

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
1	25	01	20	05	105	3885	0.0	2.5	100	1.7
1.5	35	81	20	85	135	2520	0.8	3.4	200	1.8

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	145	250	6350	.177	4.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	75	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .100" (2.5 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

Aluminum - 50 Amps - Air Plasma / Nitrogen Shield Copper Electrode

Shield (BK277		Nozzle BK277122		Electrode BK277131	
		٩			
Outer Cap BK284150	Retaining Cap BK277153		Swirl Ring BK277142		Torch Head BK279100

Imperial*

•••	ipon ai										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	.050					135	180	.050	.100	100	.080
	.063	25	66	19	67	138	140	.065	.100	150	.082
	.080					143	90	.075	.150	200	.085

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
1.5	25	66	19	67	137	3870	1.5	2.5	150	2.1
2.0	20	00	19	07	142	2360	1.8	3.7	200	2.2

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight	Ini [.] Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	145	250	6350	.147	3.7	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	77	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .100" (2.5 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

Aluminum - 70 Amps - Air Plasma / Nitrogen Shield Copper Electrode

E	Shield Cap 3K277150	Nozzle BK277125		Electrode BK277131	
)			
Outer Cap	Retaining Cap)	Swirl Ring		Torch Head
BK284150	BK277153		BK277142		BK279100

Imperial*

••	iperial										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	.080					130	250	.050	.150	100	.080
	1/8					135	160	.070	.175	100	.000
	3/16	25	76	25	76	145	80	.100	.200	200	.085
	1/4	25		25		150	50	.060	.250	300	.005
	3/8					155	40	.075	.275	400	.090
	1/2					162	30	.115	.300	500	.090

Metric*

_											
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
	2					129	6400	1.2	3.7	100	2.0
	3					134	4420	1.7	4.3	100	2.0
	5	25	76	25	76	145	1920	2.3	5.2	300	2.2
	6	25	70	25	70	148	1440	1.7	6.1	300	2.2
	10					156	975	2.0	7.0	500	
	12					160	820	2.6	7.4	500	2.3

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.096	2.4	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	69	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .150" (3.8 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Aluminum - 100 Amps - Air Plasma / Nitrogen Shield Copper Electrode

	Shield Cap BK277286		Nozzle BK277284		Electrode BK277282	
))			
Outer Cap BK284150		Retaining Cap BK277151		Swirl Ring BK277283		Torch Head BK279100

Imperial*

	portai										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
ſ	1/4					158	105	.155	.250	300	.095
	3/8	25	80	26	80	162	90	.180	.275	400	.098
	1/2					165	70	.195	.300	500	.100

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					158	2710	3.8	6.3	300	2.4
10	25	80	26	80	162	2210	4.6	7.0	500	2.5
12					165	1890	4.9	7.4	500	2.5

Marking* - For All Material Thicknesses

Туре с	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	130	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	71	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

Shield Cap Nozzle Electrode BK277117 BK277293 BK277292 6) AND Outer Cap Retaining Cap Swirl Ring Torch Head BK277152 BK277139 BK279100 BK284150

Aluminum - 150 Amps - Air Plasma / Nitrogen Shield Copper Electrode

Imperial*

	iperial										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
ĺ	1/4					145	145	.130	.250	400	.125
l	3/8					155	115	.185	.275	500	.125
F	1/2	20	71	50	69	165	90	.230	.300	600	.130
ſ	5/8					170	65	.250	.325	800	.135
	3/4					170	45	.250	.350	1200	.140

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					143	3770	3.1	6.3	400	3.2
10					156	2825	4.8	7.0	600	3.2
12	20	71	50	69	162	2430	5.5	7.4	000	3.3
16					170	1630	6.4	8.3	1200	3.4
20					170	990	0.4	9.0	1200	3.6

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	69	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Aluminum - 200 Amps - Air Plasma / Nitrogen Shield Copper Electrode

	Shield Cap BK277274		Nozzle BK277289		Electrode BK277291	
	0		۵))			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277266		BK277143		BK279100

Imperial*

 iperial										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/4					150	190	.135	.250	300	.150
3/8					155	145	.140	.275	400	.150
1/2	20	74	58	72	155	110	.135	.300	500	.155
5/8	20	74	58		160	95	.155	.350	600	. 155
3/4						160	65	.150	.400	800
1.0 ***					175	35	.200	.400	1000	.170

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					149	4955	3.3	6.3	300	0
10					455	3545	3.5	7.0	500	- 3.8
12		74	58	72	155	2995	2.4	7.4	500	2.0
16	- 20	74			160	2380	3.4	8.9	800	3.9
20					162	1575	3.9	10.2	1000	4.1
25 ***					174	940	5.0	10.2	1000	4.3

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel peed		rking eight	Ini [.] Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	120	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	71	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

Shield Cap Nozzle Electrode BK277276 BK277263 BK277270 (()) 6) A Outer Cap Retaining Cap Swirl Ring Torch Head BK277266 BK277258 BK279100 BK284150

Aluminum - 275 Amps - Air Plasma / Nitrogen Shield Copper Electrode

Imperial*

mμ	ellai										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	3/8					160	160	.160	.275	400	.160
	1/2				75	165	125	.180	.300	500	.100
	5/8					168	105	.190	.350	600	.165
	3/4	20	73	65		172	85	.200		800	.105
	1.00 ***					180	60	.240	.400		.170
	1.25 ***					185	45	.260	.400	1000	.170
	1.50 ***					190	25	.270			.180

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
10					160	3930	4.1	7.1	500	4.1
12					163	3375	4.4	7.4	500	4.1
16					168	2645	4.8	8.9	800	4.2
20	20	73	65	75	173	2055	5.3		800	4.2
25 ***					179	1565	6.0	10.2		4.3
32 ***					185	1120	6.6	10.2	1000	4.5
38 ***					189	645	6.8			4.6

Marking* – For All Material Thicknesses

Туре с	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	108	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	56	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .275" (7.0 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

Aluminum - 400 Amps - Nitrogen Plasma / Air Shield Copper Electrode

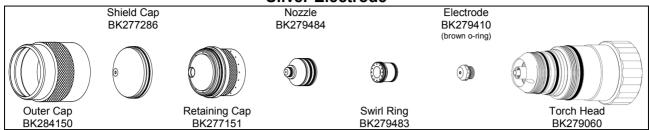
	Shield Cap 3K284155	Nozzle BK284157		Electrode BK284159	
	5K204155	DN204137		BK204159	
Outer Cap	Retaining (Сар	Swirl Ring		Torch Head
BK284150	BK28415	6	BK284122		BK279100

Imperial*

 iperial											
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)	
1/2					175	150	.170	.300	600	.200	
5/8					180	125	.190	.400	700	.205	I
3/4	30	85	63	96	185	100	.205	.500	800	.210	I
1					190	75	.215	.600	1200	.210	l
1.25					200	55	.220	.700	1500	.225	I
1.5					205	35	.225	.800	2000	.240	J

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
12					173	3950	4.1	7.0	600	5.1
16	30		63		180	3150	4.8	10.3	800	5.2
20		95		96	185	2445	5.2	13.0	1200	5.3
25		85		90	189	1945	5.4	15.0	1200	5.5
32					200	1375	5.6	17.9	1500	5.7
38					204	895	5.6	20.2	2000	6.1


Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		⊺ravel Speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	106	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	75	100	2540	.140	3.6	.100	2.5	0

* Use an arc transfer height (ignition height) of .300" (7.6 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

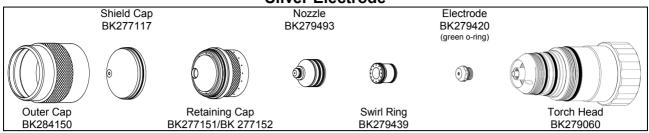
Mild Steel - 100 Amps - Oxygen Plasma / Air Shield Silver Electrode

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/4					125	150	.090	.200	300	
3/8					130	100	.130	.250	400	.090
1/2	25	83	26	81	130	65	.155	.300	500	
5/8]				143	47	.185	.325	800	.095
3/4					145	35	. 165	.350	1000	.095

Metric*

	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
	6					124	3950	2.1	4.9	300	
Ī	10					130	2405	3.3	6.5	500	2.3
Ī	12	25	83	26	81	130	1850	3.7	7.3	500	
	16					143	1180	47	8.3	1000	2.4
Ī	20					145	800	4.7	9.0	1000	2.4


Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage				rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	130	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	60	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Mild Steel - 150 Amps - Oxygen Plasma / Air Shield Silver Electrode

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
			Reta	aining Ca	p BK277	151				
1/4					118	165	.105	.200	300	.125
3/8	20	71	30	69	123	125	.135	.250	400	.120
1/2					125	90	.140	.300	500	.130
			Reta	aining Ca	p BK277	152				
5/8					127	70	.140	.325	600	.130
3/4		20 71			130	55	. 140	.350	1000	.135
1	20		45	69	134	40	.150	.400	1500	
1.25					145	25	.200	.700	3000	.140
1.50 ***					155	15	.225	.350	1500	

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
			Reta	aining Ca	p BK277	151				
6					117	4305	2.6	4.9	300	3.2
10	20	71	30	69	123	3040	3.4	6.5	500	3.2
12	20				124	2485	3.5	7.3	500	3.3
			Reta	aining Ca	p BK277	152				
16					127	1760	3.6	8.3	1000	3.3
20					130	1340	3.0	9.0	1500	3.4
25	20	71	45	69	133	1040	3.7	10.1	1500	
32]				145	625	5.1	17.8	3000	3.6
38 ***					154	385	5.6	8.9	1500	

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel e Speed			rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	61	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 09/01/2015)

Shield Cap Nozzle Electrode BK277274 BK279489 BK279440 (yellow o-ring) \odot Swirl Ring Outer Cap Retaining Cap Torch Head BK284150 BK277266 BK279443 BK279060

Mild Steel - 200 Amps - Oxygen Plasma / Air Shield Silver Electrode

Imperial*

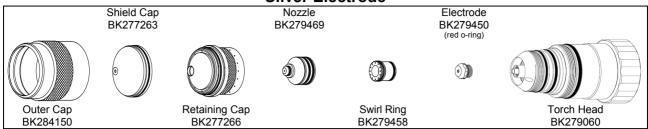
lipenai										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/4					125	230	.040	.200	300	
3/8					130	140	.090	.250	400	.150
1/2					133	120	.115	.300	500	
5/8					137	100	.130	.350	600	.152
3/4	20	74	58	72	140	75	.150	.400	800	.153
1	20	74	56	12	147	50	.175	.450	1000	.155
1.25					155	25	.240	.500		.155
1.50 ***					165	17	.300	.350	1500	158
1.75 ***					175	12	.350	.550	1500	130
2.00 ***					185	7	.500	.500		.160

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					124	6100	.8	4.9	300	
10					130	3480	2.3	6.5	500	3.8
12					132	3160	2.7	7.3	500	
16					137	2515	3.3	8.9	800	
20	20	74	58	72	141	1810	3.8	10.3	1000	3.9
25	20	74	56	12	146	1310	4.3	11.3	1000	3.9
32					155	610	6.1	12.7		
38 ***					164	435	7.5	8.9	1500	4.0
45 ***					175	295	9.2	9.2	1500	4.0
50 ***					183	195	12.2	12.2		4.1

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed					rking eight	Ini [.] Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)		
Nitrogen	Nitrogen	N/A	25	25	N/A	120	250	6350	.100	2.5	.100	2.5	0		
Argon**	Air**	N/A	50	25	N/A	62	100	2540	.100	2.5	.100	2.5	0		


* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 04/26/2013)

Mild Steel - 275 Amps - Oxygen Plasma / Air Shield Silver Electrode

Imperial*

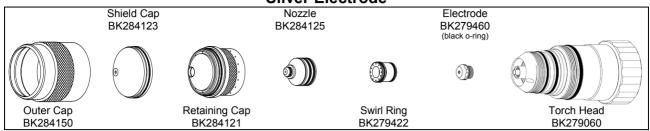
пропаг										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/2					139	125	.140	.300	500	.165
5/8					129	105	.135	.325	600	.105
3/4					138	90	.120	.350	800	.170
1					144	65	.160	.400	1000	.185
1.25	20	81	70	79	150	45	.175	.500	1500	.100
1.50	20	01	70	19	163	25	.235	.750	2500	
1.75 ***					170	20	.290	.350		.190
2.00 ***					180	15	.350	.550	1500	
2.25 ***					185	13	.375	.375	1500	.260
2.50 ***					190	9	.385	.385		.275

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
12					139	3290	3.6	7.4	500	4.2
16					138	2650	3.3	8.3	800	4.2
20					130	2190	3.1	9.0	1000	4.3
25	20	81			143	1690	4.0	10.1	1000	4.7
32			70	79	150	1120	4.4	12.8	1500	4.7
38	20	01	70	79	162	645	5.9	19.1	2500	
45 ***					170	495	7.5	8.9		4.8
50 ***					178	395	8.7	0.9	1500	
55 ***					183	345	9.2	9.2	1500	6.6
60 ***					187	285	9.6	9.6		6.9

Marking* - For All Material Thicknesses

Туре с	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage				rking eight	Ini He	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	108	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	54	100	2540	.120	3.0	.100	2.5	0


* Use an arc transfer height (ignition height) of .300" (7.6 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 09/01/2015)

Mild Steel - 400 Amps - Oxygen Plasma / Air Shield Silver Electrode

Imperial*

periai										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/2					140	160	.140	.300	500	.150
5/8					145	135	.130	.350	600	.155
3/4					145	110	.130	.400	800	.160
1					150	85	.160	.500	1000	.180
1.25					155	60	.175	.600	1500	.190
1.5	30	79	70	76	160	50	.225	.700	2000	.190
1.75		79	70	70	162	40	.260	.800	3000	.200
2.00					165	33	.270	1.00	4500	.210
2.25 ***					170	20	.280	.350	1000	.235
2.50 ***					182		.350	1300	.245	
2.75 ***					185	12	.325	.350	1500	.245
3.00 ***					195	8	.350	.350	2000	.250

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
12					138	4205	3.6	7.3	500	3.8
16					145	3405	3.3	8.9	800	3.9
20					140	2700	3.4	10.5	1000	4.1
25					149	2200	4.0	12.5	1000	4.6
32					155	1500	4.4	15.3	1500	4.8
38					159	1275	5.6	17.7	2000	4.0
45	30	79	70	76	162	995	6.6	20.5	3000	5.1
50					164	860	6.8	25.4	4500	5.3
55 ***					168	620	6.9	11.9	1000	6.0
60 ***					175	450	7.2		1300	6.2
65 ***]				182	365	7.7	8.9	1500	0.2
70 ***]				185	300	8.3	0.9	2000	6.4
75 ***					193	220	8.7		2000	0.4

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		⊺ravel Speed		rking eight		tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	112	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	53	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .300" (7.6 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console. *** Edge start recommended.

(Revised 04/26/2013)

Stainless Steel - 100 Amps - Air Plasma / Nitrogen Shield Silver Flectrode

				Subac		
	Shield Cap BK277286		Nozzle BK279484		Electrode BK279410 (brown o-ring)	
	0		۵))			
Outer Cap BK284150		Retaining Cap BK277151		Swirl Ring BK279483		Torch Head BK279060

Imperial*

	P • · · • • ·										
ſ	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	1/4					141	100	.135	.225	400	.092
	3/8	25	80	35	80	147	80	.170	.250	500	.095
	1/2					154	55	.210	.300	600	.095

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					140	2595	3.2	5.6	400	2.3
10	25	80	35	80	148	1935	4.4	6.5	600	2.4
12					152	1540	5.0	7.3	000	2.4

Marking* - For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini [.] Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	130	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	68	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

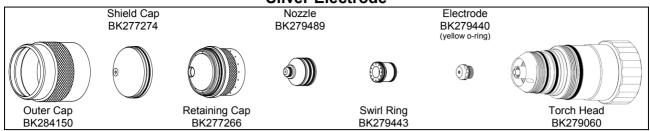
Stainless Steel - 150 Amps - Air Plasma / Nitrogen Shield Silver Electrode

Imperial*

••	iponai										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	1/4					145	150	.160	.250	400	.125
	3/8					150	115	.180	.275	500	.120
	1/2	20	71	70	69	155	85	.210	.300	600	.130
	5/8					160	60	.220	.325	800	.130
	3/4					168	45	.240	.350	1200	.135

Metric*

Ī	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
	6					144	3910	4.0	6.3	400	3.2
	10					150	2805	4.7	7.0	600	3.2
	12	20	71	70	69	153	2330	5.1	7.4	000	3.3
	16					160	1510 5.6	8.3	800	3.3	
	20					170	1030		9.0	1200	3.4


Marking* – For All Material Thicknesses

Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		Marking Height		tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	65	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

Stainless Steel - 200 Amps - Air Plasma / Nitrogen Shield **Silver Electrode**

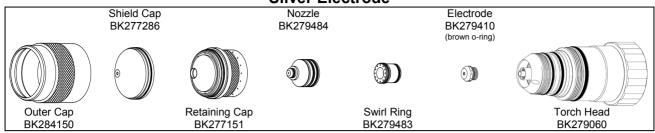
Imperial*

 Jilai										
Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/4					130	200	.070	.200	400	150
3/8					133	150	.070	.250	500	.150
1/2					140	110	.115	.300	600	.152
5/8	20	74	58	72	146	75	.150	.350	800	.155
3/4	20	74	50	12	153	60	.190	.400	1200	.155
1.0					158	40	.210	.450		.160
1.25 ***					170	20	.250	.350	1500	.165
1.50 ***					180	10	.275	.350		.175

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					129	5220	1.8	4.9	400	3.8
10					134	3655	1.9	6.5	600	3.0
12					138	3020	2.6	7.3	600	
16	20	74	58	72	146	1890	3.8	8.9	800	3.9
20	20	74	50		153	1450	4.8	10.3		
25					157	1050	5.2	11.3	1500	4.1
32 ***					170	495		8.9	1500	4.2
38 ***					179	260	6.9	8.9		4.4

Marking* - For All Material Thicknesses


Туре	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel peed		rking ight	Ini Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	120	250	6350	.100	2.5	.100	2.5	0
Argon**	Nitrogen**	N/A	50	25	N/A	70	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .200" (5.1 mm) for cutting and .100" (2.5 mm) for marking.

*** Only available on systems with the Automatic Gas Console. *** Edge start recommended.

(Revised 04/26/2013)

Aluminum - 100 Amps - Air Plasma / Nitrogen Shield **Silver Electrode**

Imperial*

	P • · · • • ·										
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
Ī	1/4					158	105	.155	.250	300	.095
Ī	3/8	25	80	26	80	162	90	.180	.275	400	.098
Ī	1/2					165	70	.195	.300	500	.100

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					158	2710	3.8	6.3	300	2.4
10	25	80	26	80	162	2210	4.6	7.0	500	2.5
12					165	1890	4.9	7.4	500	2.5

Marking* - For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini [.] Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	130	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	71	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console.

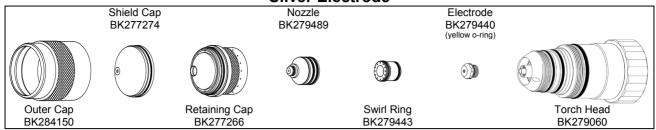
Aluminum - 150 Amps - Air Plasma / Nitrogen Shield Silver Electrode

	Shield Cap BK277117		Nozzle BK279493		Electrode BK279420 (green o-ring)	
			۵))			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277152		BK279439		BK279060

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
1/4					145	145	.130	.250	400	.125
3/8					155	115	.185	.275	500	.125
1/2	20	71	50	69	165	90	.230	.300	600	.130
5/8					170	65	.250	.325	800	.135
3/4					170	45	.230	.350	1200	.140

Metric*


Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					143	3770	3.1	6.3	400	3.2
10					156	2825	4.8	7.0	600	3.2
12	20	71	50	69	162	2430	5.5	7.4	600	3.3
16					170	1630	6.4	8.3	1200	3.4
20					170	990	0.4	9.0	1200	3.6

Marking* - For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking eight	Ini Hei	tial ght	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	135	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	69	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking. ** Only available on systems with the Automatic Gas Console. (Revised 04/26/2013)

Aluminum - 200 Amps - Air Plasma / Nitrogen Shield Silver Electrode

Imperial*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width	
(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)	
1/4					150	190	.135	.250	300	.150	
3/8					155	145	.140	.275	400	.150	
1/2	20	74	50	72	70	155	110	.135	.300	500	.155
5/8	20	74	58		160	95	. 155	.350	600	.155	
3/4]				100	65	.150	.400	800	.160	
1.0 ***					175	35	.200	.400	1000	.170	

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
6					149	4955	3.3	6.3	300	2.0
10					155	3545	3.5	7.0	500	3.8
12	20	74	58	72	155	2995	3.4	7.4	500	3.9
16	20	74	00	12	160	2380	3.4	8.9	800	3.9
20					162	1575	3.9	10.2	1000	4.1
25 ***					174	940	5.0	10.2	1000	4.3

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel speed		rking eight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	120	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	71	100	2540	.100	2.5	.100	2.5	0

* Use an arc transfer height (ignition height) of .250" (6.4 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

Aluminum - 275 Amps - Air Plasma / Nitrogen Shield Silver Electrode

	Shield Cap BK277263		Nozzle BK279469		Electrode BK279450 (red o-ring)	
	0		۵))			
Outer Cap		Retaining Cap		Swirl Ring		Torch Head
BK284150		BK277266		BK279458		BK279060

Imperial*

••••											
	Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
	(in)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(in)	(in)	(msec)	(in)
	3/8					160	160	.160	.275	400	100
	1/2					165	125	.180	.300	500	.160
	5/8					168	105	.190	.350	600	.165
	3/4	20	20 73	65	75	172	85	.200		800	. 100
	1.00 ***						180	60	.240 .400		.170
	1.25 ***				185	45	.260	.400	1000	.170	
	1.50 ***					190	25	.270			.180

Metric*

Material Thickness	Preflow	Plasma	Shield	Postflow	Arc Voltage	Travel Speed	Cutting Height	Pierce Height	Pierce Time	Kerf Width
(mm)	(psi)	(psi)	(psi)	(psi)	(volts)	(mm/m)	(mm)	(mm)	(msec)	(mm)
10					160	3930	4.1	7.1	500	4.1 4.2
12			65		163	3375	4.4	7.4	500	
16					168	2645	4.8 8.9	8.9	800	
20	20	73		75	173	2055	5.3		800	
25 ***					179	1565	6.0	10.2		4.3
32 ***					185	1120	6.6	10.2	1000	4.3
38 ***					189	645	6.8			4.6

Marking* – For All Material Thicknesses

Туре о	of Gas	Preflow	Plasma	Shield	Postflow	Arc Voltage		ravel Speed		rking ight	Ini Hei	tial ight	Pierce Time
(Plasma)	(Shield)	(psi)	(psi)	(psi)	(psi)	(volts)	(ipm)	(mm/min)	(in)	(mm)	(in)	(mm)	(msec)
Nitrogen	Nitrogen	N/A	25	25	N/A	108	250	6350	.100	2.5	.100	2.5	0
Argon**	Air**	N/A	50	25	N/A	56	100	2540	.120	3.0	.100	2.5	0

* Use an arc transfer height (ignition height) of .275" (7.0 mm) for cutting and .100" (2.5 mm) for marking.

** Only available on systems with the Automatic Gas Console.

*** Edge start recommended.

(Revised 04/26/2013)

Section 6: Maintenance & Troubleshooting

WARNING: Only qualified maintenance personnel should perform maintenance on the Spirit system.

The system utilizes potentially fatal A.C. and D.C. voltages. All maintenance should be performed with safety in mind.

Use extreme caution when working near the power conversion module (i.e., chopper). The large electrolytic capacitors store large amounts of energy even after power has been removed from the system. Wait at least five minutes after turning off power, and then use a voltmeter to verify that the capacitors are fully discharged before touching the power conversion module.

Capacitor failure can injure and/or cause property damage.

If troubleshooting requires the system to be powered with the enclosure panels removed, remain clear of the capacitors. Failure of a capacitor can result in a sudden release of stored energy causing rupture of the capacitor case.

Routine Maintenance

Note: At minimum, these checks should be performed on a monthly basis. In excessively dirty environments or in heavy usage situations, the checks should be performed more frequently.

Power Supply

- 1. Remove the left, right, and top covers on the power supply.
- Using clean, dry, compressed air, blow out all accumulated dust, including dust on PC boards and fans. In an excessively dirty environment, blow out the unit on a weekly basis.
- 3. Verify the ground and primary three phase A.C. voltage connections are tight.
- 4. Verify all PC board connectors are installed securely.
- 5. Verify all rear cable connectors are installed securely.
- 6. Verify the electrode lead and work ground lead are secure and free from corrosion.

Cooling System

- 1. Remove the cover on the cooling system. Check the torch coolant filter / deionization cartridge and replace if dirty.
- 2. Flush the cooling system every six months and replace the coolant and coolant filter / deionization cartridge.

Automatic Gas Console (AGC)

- 1. Remove the cover of the automatic gas console. Using clean, dry, compressed air, blow out all accumulated dust inside the unit. In an excessively dirty environment, blow out the unit on a weekly basis.
- 2. Verify that all PC board connectors are installed securely.
- 3. Verify that all gas hose connectors are tight and that there are no leaks. Only tighten the gas fittings enough to make a gas seal. The fittings are subject to damage if over tightened.
- 4. Inspect all gas hoses to ensure no damage exists. Immediately replace any damaged gas hoses.

Plasma Console

- 1. No maintenance is required on the inside of the plasma console.
- 2. With primary power removed from the Spirit system, clean the touch screen as necessary with a soft clean cloth and a cleaner approved for television or computer screens.

Torch, Torch Leads, and Gas Hoses

- 1. Verify that all torch lead and gas hose connections are tight and that there are no gas or water leaks. Only tighten the fittings enough to make a water or gas seal. The fittings are subject to damage if over tightened.
- 2. Verify that the braided shield of the torch leads is fastened securely to the brass shield adapter that connects to the arc starting console. Also, make sure the shield adapter is secured tightly to the arc starting console enclosure.
- 3. Inspect the braided shield for nicks or cuts and replace if necessary.
- 4. Remove the torch handle and verify that the connections at the torch base are tightened securely. Only tighten the fittings enough to make a water or gas seal. The fittings are subject to damage if over tightened. Coolant leaking from the drain hole in the torch handle indicates damaged or loose torch leads.
- 5. Make sure the torch lead insulating sleeves are positioned to properly cover the brass torch fittings at the torch base.
- 6. Inspect the outer sleeve on the torch base's electrode/coolant supply lead. If nicks, cuts or holes are found, replace the torch base.
- 7. Remove the torch consumables from the torch head and inspect all o-rings. Replace any o-rings with cuts, nicks, abrasions, or any other signs of wear. Faulty o-rings may cause gas or water leaks, which will affect cut quality.

8. With the electrode removed, inspect the cooling tube in the torch head for damage.

If using the copper electrode, the torch head uses cooling tube P/N BK277007. If replacement is required, use tool P/N BK200109.

If using the silver electrode, the torch head uses cooling tube holder assembly P/N BK279216. Remove this using the tool (socket P/N BK277087 & driver P/N BK277086) and inspect the o-rings for damage. Apply a small amount of o-ring lubricant before re-installing in the torch head.

9. Wipe any excess o-ring lubricant off of the torch base and head.

Arc Starting Console (ASC)

- 1. Open the cover (door) of the arc starting console and verify that all leads and hoses are tightened securely. Only tighten the fittings enough to make a water or gas seal. The fittings are subject to damage if over tightened.
- For systems that include ASC with RHF, check the spark gap electrodes for signs of wear. Replace electrodes that have rounded faces. Use a clean feeler gauge and set the spark gap to .015" (.38 mm).

Work Ground

1. Verify that the work ground lead is securely fastened to the star ground on the cutting table, and that the connection point is free from corrosion. Use a wire brush to clean the connection point if necessary.

Replacing the Torch Coolant and Filter

M WARNING: Do not touch the fans inside the cooling system.

Important: Never turn on the system when the coolant reservoir is empty. Important: When handling coolant, wear nitrile gloves and safety glasses. Important: Only use approved coolant. Commercially available antifreeze contains corrosion inhibitors that will damage the cooling system. See Section 2 for more information.

The torch coolant should be flushed out of the system every six months and replaced with new coolant. Replace the coolant filter / deionization cartridge at the same time.

- 1. Remove primary power from the Spirit system.
- 2. Ensure the torch base and torch head (with consumables) are properly installed.
- 3. Ensure the coolant supply (in and out) hoses are properly installed.
- 4. Remove the coolant reservoir cap/level gauge.
- 5. Remove the cover from the cooling system.
- Connect a 3/8" ID hose and bucket to the drain petcock on the bottom of the reservoir. Unscrew the petcock to drain the reservoir. Leave the hose and bucket in place after the coolant drains out.
- 7. Remove the coolant supply hose (coolant out) from the rear of the cooling system. Note that the coolant supply hose has right hand threads. Be prepared for some coolant to escape from the fitting on the cooling system and from the supply hose.
- 8. Blow compressed air (100 psi maximum) into the coolant supply hose. This will force the remaining coolant from the torch, torch leads, and supply hose into the reservoir and out of the drain petcock. Continue until coolant stops flowing into the bucket.
- 9. Tighten the drain petcock and remove the hose and bucket.
- 10. Unscrew the coolant filter housing and remove the coolant filter / deionization cartridge. Install a new coolant filter / deionization cartridge and replace the coolant filter housing. Dry any leaked coolant.
- 11. Reconnect the coolant supply hose on the rear of the cooling system.
- 12. Follow all of the steps in "Filling the Cooling System" in Section 3 of this manual to complete this procedure.

Power Supply Microprocessor (DSP) Status Indicators

The microprocessor DSP board controls all of the functions of the Spirit power supply. It contains diagnostic LEDs and OPTO LEDs which aid in troubleshooting the system. These indicators illuminate when a particular event occurs. Illuminated LEDs indicate the following:

<u>LED</u>

Indication

D7 – RS232 OUT Isolated	Serial transmission
D10 – RS232 T1 OUT	Serial transmission
D11 – CAN RXD	CAN transmission
D12 – CAN TXD	CAN transmission
D24 – PWM	Chopper(s) energized
D33 – COOLANT LEVEL	Coolant reservoir level is sufficient
D36 – PLASMA START	Plasma start signal applied to Spirit
D37 – ARC HOLD	Arc hold input enabled
D38 – MARKING	Marking input enabled
D39 – CORNER	Corner current input enabled
D40 – EOFF	Off button disengaged
D41 – MOTION	Motion output signal activated
D42 – PLASMA READY	Power supply ready output signal activated
D43 – PAT	Pilot arc transistor energized
D48 – RMT ON/OFF	Remote On/Off input enabled
D50 – ASC DOOR	ASC door is closed
D77 – 3.3V uP PWR	3.3V Microprocessor power
D78 – 1.8V uP PWR	1.8V Microprocessor power
OPTO U21 – MTR/SOL	Coolant pump relay CR5 energized (Pump On)
OPTO U22 – PAR	Pilot arc relay energized
OPTO U23 – CON	DC power output (main contactor energized)
OPTO U24 – SURGE	CR3 and K1 (I/O PCB) relays energized
OPTO U26 – FAN	Fans energized
OPTO U27 – PREFLOW	Preflow gas valve 1 energized
OPTO U28 – PLASMA	Plasma gas valve 2 energized
OPTO U29 – SHIELD	Shield gas valve 3 energized
OPTO U30 – VENT	Vent gas valve 4 energized
OPTO U31 – POSTFLOW	Postflow gas valve 5 energized
OPTO U32 – MARKING	Marking gas valves 6 and 7 energized
OPTO U32 – IMPULSE	Impulse circuit energized
OPTO U37 – RHF	HF transformer energized

Power Supply Microprocessor (DSP) Sequence of Operation

The following DSP Indicators should illuminate after primary power is applied:

- > D77 3.3V Supply
- D78 1.8V Supply
- D50 ASC (Door)
- > D33 Coolant Level
- D37 Arc Hold (if INOVA is being used)
- D10 RS232 T1 Out (Blinking)
- > D11 CAN RXD (Dim Flashing)
- D12 CAN TXD (Dim Flashing)

The following DSP Indicators should illuminate when the OFF Button is released:

> D40 OFF Button

The following DSP Indicators should illuminate when the ON Button is activated:

- Opto U21 Motor / Solenoid
- Opto U19 Solenoid (not used)
- > Opto U26 Fan
- D42 Plasma Ready

The following DSP Indicators should illuminate when a START signal is applied (begin cut cycle):

- D36 Start
- > Opto U27 Preflow
- > Opto U29 Shield
- Opto U24 Surge (only over 100 amps)
- > Opto U23 Contactor
- D24 PWM (Chopper ON)
- > Opto U22 Pilot Arc Relay ON
- > D43 PAT ON (Blinks during a START)
- > Opto U36/U37..... Impulse/RHF (Blinks during a START)

The following DSP Indicators should illuminate with an arc transfer:

- > Opto U31 Postflow
- > Opto U28 Plasma
- ➢ D41 Motion

The following LEDs should turn OFF after the Motion Indicator turns ON:

- Opto U36/U37 Impulse/RHF
- > Opto U27 Preflow
- ▶ D43.....PAT

When the START signal is removed, OPTO U30 (Vent) will illuminate. It will then go out with the rest of the cut cycle indicators.

Error Codes

The following is a comprehensive list of error codes for the Spirit system. When the system uses a Manual Gas Console, only the numeric error code is displayed. When an Automatic Gas Console is used, the text description is also displayed.

	Power Supply							
Code	Short Description	Long Description						
10121	ASC Door	ASC Door is open						
10138	Stop Pressed (Off Button)	OFF Button on Plasma Console or Manual Gas						
		Console is pressed.						
10140	Phase R	Transformer Secondary phase voltage is low						
10150	Phase Y	Transformer Secondary phase voltage is low						
10160	Phase B	Transformer Secondary phase voltage is low						
10161	CON1	Main Contactor failed to open						
10170	Coolant Level	Coolant Level is low						
10180	Coolant Flow Low	Coolant flow is low						
10190	Coolant Flow High	Coolant flow is high						
10220	Coolant Temperature High	The coolant temperature is high						
10290	GC Quiet	Lost CAN communication with Gas Console						
10300	PC Quiet	Lost CAN communication with Plasma Console						
10320	FCC Invalid	Using default current, remove start						
10330	PAC Invalid	Pilot Arc Current invalid						
10340	AH IHS Timeout	Arc Hold for Initial Height Sense has timed out						
10350	PAT Not Established	Pilot Arc Current not established within 2 seconds						
10360	TAC Not Established	Transferred Arc Current not established within 2						
		seconds						
10370	Current Unbalanced	Current is not balanced between chopper						
		assemblies (275A and 400A systems)						
10380	TAC Lost 1	Transferred Arc lost during TAC hold time						
10390	TAC Lost 2	Transferred Arc lost during Upslope						
10400	TAC Lost 3	Transferred Arc lost during Cutting						
10410	TAC Lost 4	Transferred Arc lost during Downslope						
10420	FCC Unreached	Did not achieve final cut current						
10430	Output Over Current	Chopper has exceeded its maximum rated current						
10432	Output Over Current TZ	Instantaneous Over Current detected						
10440	Output Over Voltage	Maximum Cutting Voltage has been exceeded.						
10450	Start Premature Removal	Start Signal removed prior to completion of upslope						
10461	Chopper1 Temp	Chopper 1 maximum operating temperature						
		exceeded						
10462	Chopper2 Temp	Chopper 2 maximum operating temperature						
		exceeded						
10463	Chopper3 Temp	Chopper 3 maximum operating temperature						
		exceeded						

	Gas Console					
Code	Short Description	Long Description				
20100	Plasma Adjust	Could not adjust Plasma Gas				
20110	Shield Adjust	Could not adjust Shield Gas				
20120	Preflow Adjust	Could not adjust Preflow Gas				
20130	Postflow Adjust	Could not adjust Postflow Gas				
20140	Marking Adjust	Could not adjust Marking Gas (Automatic Gas Console)				
20160	N2 Mix Adjust	Could not adjust N2 Mix Gas				
20170	O2 Mix Adjust	Could not adjust O2 Mix Gas				
20200	O2 Low	O2 Input Pressure is low				
20210	N2 Low	N2 Input Pressure is low				
20220	Argon Low	Argon Input Pressure is low				
20230	O2N2 Low	Air Input Pressure is low				
20240	H17 Low	H17 Input Pressure is low				
20250	O2 High	O2 Input Pressure is high				
20260	N2 High	N2 Input Pressure is high				
20270	Argon High	Argon Input Pressure is high				
20280	O2N2 High	Air Input Pressure is high				
20290	H17 High	H17 Input Pressure is high				
20300	PS Quiet	Lost CAN communication with Power Supply				
20310	PC Quiet	Lost CAN communication with Plasma Controller				

General Troubleshooting

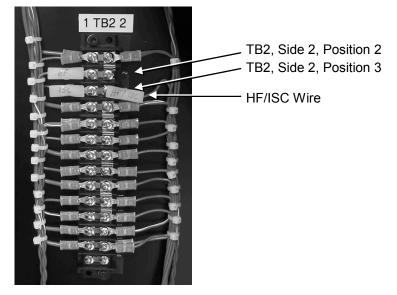
The following contains general troubleshooting guidelines for the Spirit system. Please contact technical support for any issues not covered in this section. Before any tests are performed, make sure that all system fuses are good; remove top cover of power supply to check these fuses.

Problem **Possible Cause** Power supply indicator 1. Primary disconnect fuse blown. (white light) will not 2. Internal power supply fuse is blown (F1A, F1B). illuminate 3. Power supply indicator light is burned out or the associated wiring is bad. 4. Control Transformer or associated wiring bad. Power Supply will not 1. ASC door open. energize when ON Button is 2. Low coolant level. pressed 3. Fuse is blown (F1-F6). 4. Faulty OFF Button or associated wiring. 5. Off Relay faulty. Power supply will not stay on 1. Faulty DSP board. when the ON Button is 2. Off Relay faulty. pressed No arc at the torch 1. Incorrect torch consumables installed. 2. Incorrect gas pressure settings. 3. Pilot arc transistor (PAT) is not operating properly. Check the PAT LED (D43) on the DSP microprocessor board. 4. Damaged or loose torch lead connections. 5. Shorted torch or torch leads. Check the continuity between the Electrode lead and the Nozzle lead to make sure they are not shorted. 6. Open torch or torch leads. Check the continuity from the Electrode lead to the torch electrode and the Nozzle lead to the large brass body of the torch. The arc will not transfer to 1. Loose work ground connection. the workpiece 2. Pierce height too high.

3. Incorrect, damaged, or worn consumables.

<u>Problem</u> Primary power has been applied to the system, but the plasma console screen is blank	 <u>Possible Cause</u> 1. Check power/communications CAN cable connection on back of plasma console. 2. Check for blown DIN rail fuse. 3. Check for 120v on pins of power/communications CAN cable at back of the plasma console.
The plasma console screen is on, but the touch screen doesn't work	1. Cycle primary power to the Spirit system.
Gas pressures will not adjust properly	 Wrong consumables installed in torch. Loose pressure transducer cable on PC board in the AGC. Check connectors on the AGC valve associated with the malfunction.
Low pressure error	1. Supply gas pressure(s) less than 120 psi.
Pressure error during cut	1. Supply gas pressure(s) fluctuating during cut.
Liquid or torch coolant leaking from drain hole in torch handle.	Infrequent dripping from the drain hole may be condensation; no action is required. Noticeable flow from the drain hole indicates a problem with the torch leads and/or connections.
Consistently receiving error code 10320.	 Check for damaged or loose torch lead connections within the torch handle. Ensure start signal is removed from CNC. Cycle power to the Spirit II system.

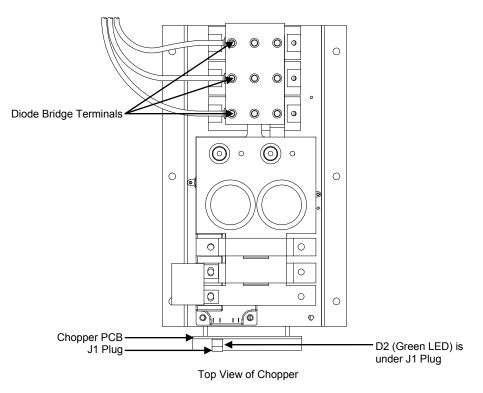
Chopper Test Procedure


WARNING: Only qualified maintenance personnel should perform the chopper test procedure. The system utilizes potentially fatal A.C. and D.C. voltages. All maintenance should be performed with safety in mind.

Use extreme caution when working near the power conversion module (i.e., chopper). The large electrolytic capacitors store large amounts of energy even after power has been removed from the system. Wait at least five minutes after turning off power, and then use a voltmeter to verify that the capacitors are fully discharged before touching the power conversion module.

Capacitor failure can injure and/or cause property damage. If troubleshooting requires the system to be powered with the enclosure panels removed, remain clear of the capacitors. Failure of a capacitor can result in a sudden release of stored energy causing rupture of the capacitor case.

IMPORTANT: Depending upon the system, there are one, two or three chopper assemblies in the power supply. The following steps must be performed on each chopper with the other chopper(s) disabled. To disable a chopper, remove the plug from J1 on the chopper PCB (see drawing on next page).


- 1. Remove primary power from the Spirit system.
- 2. Remove the top, left, right and front covers from the power supply to expose the DSP PCB, input and output terminal blocks and chopper(s).
- 3. Remove the HF/ISC wire connected to TB2 side 2 (right side) from position 2 or 3. Make sure to isolate the connector so that it doesn't come in contact with anything metal during this test. Return the jumper wire to the original position at the end of this test.

- 4. Remove the Electrode, Work and Nozzle leads from the output terminal block, which is located on the left side of the unit.
- 5. Ensure the torch head (with a full set of consumables) is properly installed onto the torch base.
- 6. Apply primary power to the Spirit system.
- 7. Release the OFF Button on the Plasma Controller or Manual Gas Console to enable the system. Press or <u>SELECT</u> the ON Button to energize the system. After the gases set, prepare to apply a start signal to the unit.
- 8. With a start sinal applied, check the three phase voltage input to each chopper at the diode bridge terminals (three screws on the left side of each chopper). Refer to TABLE 1 for the proper three phase AC voltage.

Note that the system will only energize for approximately two seconds each time a start signal is applied.

If the voltage is not present, check for primary voltage on the main contactor (CON 1) and on the primary side of the power transformer.

With a start signal applied, check for the proper DC voltage (refer to TABLE 1) at the output terminal block between Electrode and Work, which is located on the left side of the unit.

TABLE 1							
	Chop	per 1	Chop	per 2	Chopper 3		
	3 Phase	OCV	3 Phase	OCV	3 Phase	OCV	
	AC	(DC)	AC	(DC)	AC	(DC)	
Spirit II 400 Amp	255	370	255	370	255	370	
Spirit II 275 Amp	225	325	225	325	N/A	N/A	
Spirit II 150 Amp	208	300	N/A	N/A	N/A	N/A	

If the proper DC voltage is present, the chopper is working properly.

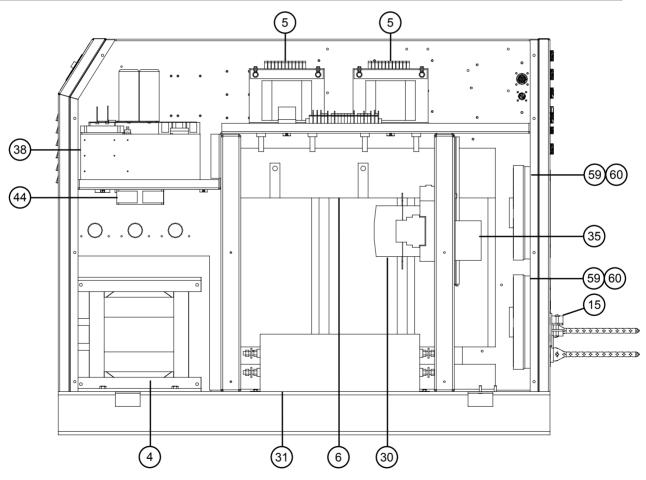
10. If the proper DC voltage is not present at the output terminal block, check the 200 amp fuse F9 (chopper 1), fuse F10 (chopper 2) or fuse F11 (chopper 3) located on the bottom right of the output bus bars.

If the fuse is open, replace chopper and fuse.

- 11. If the fuse(s) is good, check if the chopper PWM LED illuminates when a start signal is applied:
 - a) check D24 on the DSP PCB If D24 doesn't illuminate, replace DSP PCB.
 - b) check D2 on the chopper PCB If D2 doesn't illuminate green, go to step 12.
- 12. Check PCB power to the chopper from the DSP:
 - a) Push the OFF Button.
 - b) Disconnect the J1 plug from the chopper PCB.
 - c) Leave the OFF Button pushed in.
 - d) With a digital voltmeter, measure the following voltages on the J1 plug:

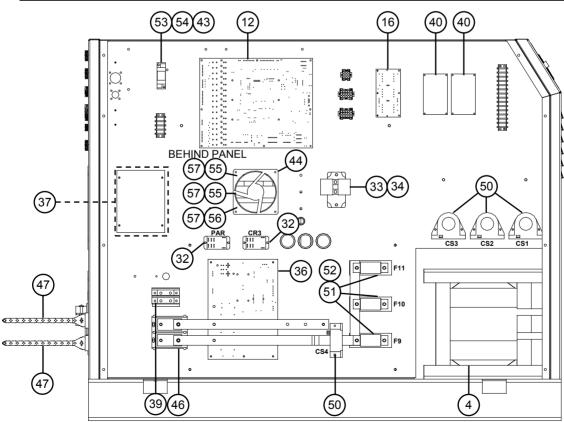
J1-5 (ground) to J1-1	+15vdc Supply
J1-5 (ground) to J1-2	+5vdc Supply
J1-5 (ground) to J1-3	+5vdc (PWM Signal)

If ALL of the voltages are present, replace chopper. If any of the voltages are not present, go to step 13:

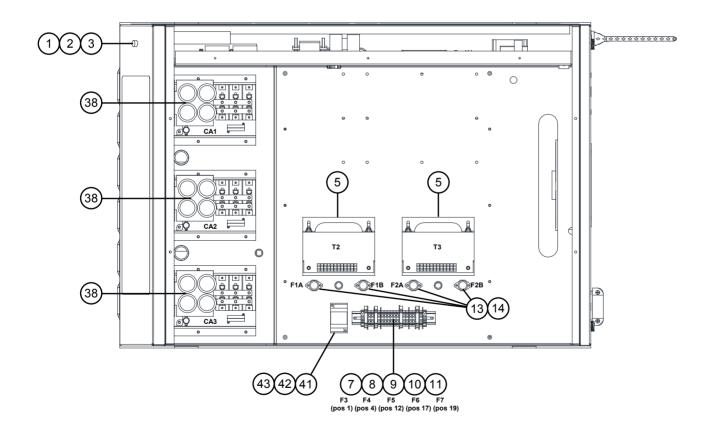

13. Remove primary power from the Spirit system. Check cable continuity between the chopper PCB and DSP PCB. Use a digital voltmeter set up to read resistance (ohms) and make the following measurements:

Chopper (1) J1-1 to DSP J7-1 Chopper (1) J1-2 to DSP J7-2 Chopper (1) J1-3 to DSP J7-3 Chopper (1) J1-5 to DSP J7-4 Chopper (2) J1-1 to DSP J8-1 Chopper (2) J1-2 to DSP J8-2 Chopper (2) J1-3 to DSP J8-3 Chopper (2) J1-5 to DSP J8-4 Chopper (3) J1-1 to DSP J9-1 Chopper (3) J1-2 to DSP J9-2 Chopper (3) J1-3 to DSP J9-3 Chopper (3) J1-5 to DSP J9-4

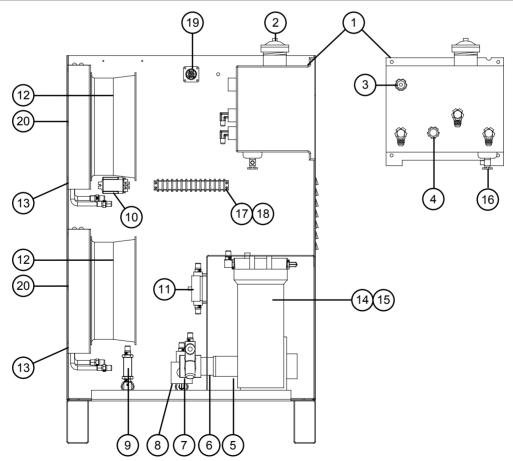
If ALL of the continuity readings are good, replace DSP PCB.


Section 7: Parts List Power Supply (BK300234 - BK300239) Right Side View

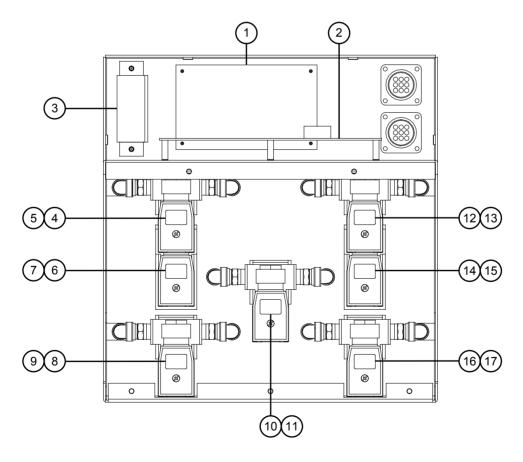
ltem	Part Number	Quantity	Description
4	BK707155	3	L1/L2/L3 Inductor
5	BK500557	2	T2/T3 Control Transformer, 208/220/240/460 V / 60 Hz
	BK706410		T2/T3 Control Transformer, 600 V / 60 Hz
6	BK706406	1	T1 Main Transformer, 208/220/240/460 V / 60 Hz / 3Ø
	BK706503		T1 Main Transformer, 600 V / 60 Hz / 3Ø
15	BK709296	1	Strain Relief
30	BK708120	1	CON 1 Main Contactor
31	BK702076	1	EMI Filter, 380/415 V units only
35	BK709251	2	TB5 3 Phase Input Power Terminal Block
38	BK300250	3	Chopper Assembly
44	BK200204	3	Fan (4.7")
59	BK284031	2	Fan (10")
60	BK500526	2	Fan Guard (Mounted Outside)


Power Supply (BK300234 - BK300239) Left Side View

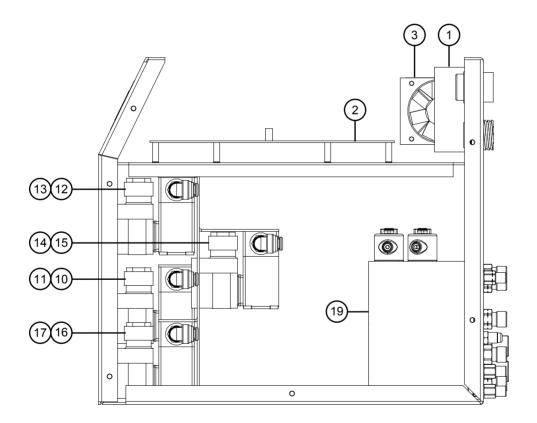
Item	Part Number	Quantity	Description
4	BK707150	3	L1/L2/L3 Inductor
12	BK300101	1	Printed Circuit Board (PCB), Microprocessor (DSP)
16	BK300112	1	Printed Circuit Board (PCB), A.C. Detect
32	BK708118	2	CR3/PAR Relay
33	BK705011	1	PAT IGBT
34	BK702075	2	PAT IGBT Filter Capacitor
36	BK300108	1	Printed Circuit Board (PCB), I/O
37	BK301200	1	(Optional) Printed Circuit Board (PCB), Voltage Divider
39	BK709378	1	I/O Terminal Block (small)
40	BK280003	2	Power Supply, 24VDC
43	BK708105	2	Relay Hold Down Clip
44	BK200204	1	Fan (4.7")
46	BK709379	1	I/O Terminal Block (large)
47	BK709253	2	Strain Relief
50	BK284029	4	Current Sensor
51	BK300130	3	F9/F10/F11 Fuse, 200A
52	BK300129	3	F9/F10/F11 Fuse Holder
53	BK300153	1	Off Relay
54	BK300156	1	Off Relay Socket
55	BK701165	2	R1/R2 Resistor, 300W, 3 Ohm
56	BK701141	1	R3 Resistor, 300W, 2 Ohm
57	BK701083	3	Resistor Mounting Hardware


Power Supply (BK300234 - BK300239) Top View

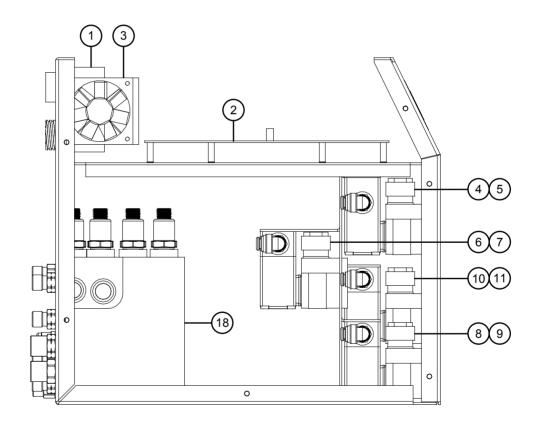
ltem	Part Number	Quantity	Description
1	BK501163	1	Light Housing
2	BK501164	1	Bulb
3	BK501162	1	White Lens
5	BK500557	2	T2/T3 Control Transformer, 208/220/240/460 V / 60 Hz
	BK706410		T2/T3 Control Transformer, 600 V / 60 Hz
7	BK709359	1	F3 Fuse, 5A, Slow Blow
8	BK709358	1	F4 Fuse, 5A, Medium Blow
9	BK709358	1	F5 Fuse, 5A, Medium Blow
10	BK709360	1	F6 Fuse, 6.3A
11	BK709360	1	F7 Fuse, 6.3A
13	BK709061	4	F1A/F1B and F2A/F2B Fuse Holder
14	BK709128	4	F1A/F1B and F2A/F2B Fuse, FNM 6.25A
38	BK300250	3	CA1/CA2/CA3 Chopper Assembly
41	BK708103	1	Fan Relay
42	BK708104	1	Relay Socket
43	BK708105	2	Relay Hold Down Clip


Cooling System (BK300275)

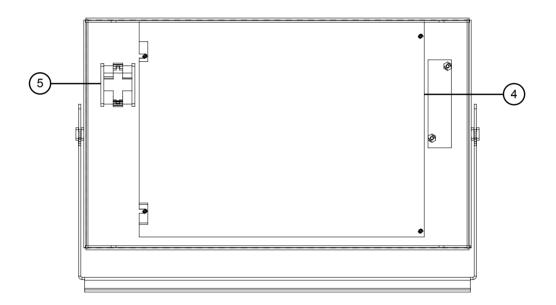
Item	Part Number	Quantity	Description
1	BK200092	1	Coolant Reservoir, without Fittings or Cap
2	BK500518	1	Coolant Reservoir Cap/Level Gauge
3	BK300135	1	Coolant Level Switch
4	BK505024	1	Coolant Temperature Switch
5	BK284033	1	Pump Motor, 1/2hp-230V-50/60 Hz
6	BK500513	1	V-band Clamp
7	BK300193	1	Coolant Pump, 125 gph
8	BK708061	1	Solenoid Valve, 220/240VAC
9	BK715118	1	Check Valve, Coolant Return
10	BK708068	1	CR5 Relay
11	BK300134	1	Coolant Flow Sensor
12	BK284031	2	Fan (10"), Aluminum
13	BK500514	2	Heat Exchanger
14	BK500509	1	Coolant Filter Housing
15	BK500510	1	Coolant Filter / Deionization Cartridge
16	BK715052	1	Drain Petcock
17	BK709086	1	TB3, Terminal Block Marker, 14 Position
18	BK709007	1	TB3, Terminal Block, 14 position
19	BK709262	1	P1, 16 Pin Receptacle
20	BK500526	2	Fan Guard (10")

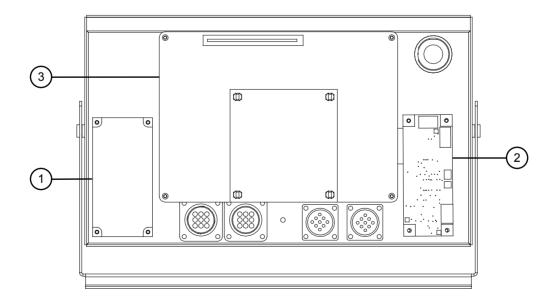

Automatic Gas Console (BK300418) Front View

Item	Part Number	Quantity	Description
1	BK300412	1	Power Supply, 24VDC, 8.3A
2	BK300301-AGC	1	Printed Circuit Board (PCB), Gas Console DSP
3	BK280030	1	Fan, 24VDC
4	BK260109	1	Nitrogen, Regulator Valve
5	BK300415	1	Nitrogen, Regulator Valve Amplifier (Programmed)
6	BK260109	1	Oxygen, Regulator Valve
7	BK300415	1	Oxygen, Regulator Valve Amplifier (Programmed)
8	BK260109	1	Marking Plasma, Regulator Valve
9	BK300415	1	Marking Plasma, Regulator Valve Amplifier (Programmed)
10	BK260109	1	Shield, Regulator Valve
11	BK300415	1	Shield, Regulator Valve Amplifier (Programmed)
12	BK260109	1	Preflow, Regulator Valve
13	BK300415	1	Preflow, Regulator Valve Amplifier (Programmed)
14	BK260109	1	Plasma, Regulator Valve
15	BK300415	1	Plasma, Regulator Valve Amplifier (Programmed)
16	BK260109	1	Marking Shield, Regulator Valve
17	BK300415	1	Marking Shield, Regulator Valve Amplifier (Programmed)


Automatic Gas Console (BK300418) Right Side View

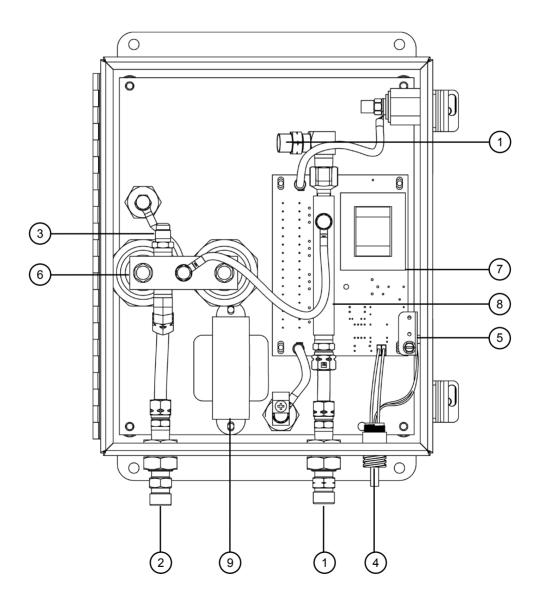
ltem	Part Number	Quantity	Description
1	BK300412	1	Power Supply, 24VDC, 8.3A
2	BK300301-AGC	1	Printed Circuit Board (PCB), Gas Console DSP
3	BK280030	1	Fan, 24VDC
10	BK260109	1	Shield, Regulator Valve
11	BK300415	1	Shield, Regulator Valve Amplifier (Programmed)
12	BK260109	1	Preflow, Regulator Valve
13	BK300415	1	Preflow, Regulator Valve Amplifier (Programmed)
14	BK260109	1	Plasma, Regulator Valve
15	BK300415	1	Plasma, Regulator Valve Amplifier (Programmed)
16	BK260109	1	Marking Shield, Regulator Valve
17	BK300415	1	Marking Shield, Regulator Valve Amplifier (Programmed)
19	BK300420	1	Manifold Block, Gas Outputs


Automatic Gas Console (BK300418) Left Side View

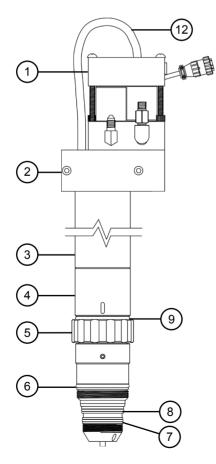

ltem	Part Number	Quantity	Description
1	BK300412	1	Power Supply, 24VDC, 8.3A
2	BK300301-AGC	1	Printed Circuit Board (PCB), Gas Console DSP
3	BK280030	1	Fan, 24VDC
4	BK260109	1	Nitrogen, Regulator Valve
5	BK300415	1	Nitrogen, Regulator Valve Amplifier (Programmed)
6	BK260109	1	Oxygen, Regulator Valve
7	BK300415	1	Oxygen, Regulator Valve Amplifier (Programmed)
8	BK260109	1	Marking Plasma, Regulator Valve
9	BK300415	1	Marking Plasma, Regulator Valve Amplifier (Programmed)
10	BK260109	1	Shield, Regulator Valve
11	BK300415	1	Shield, Regulator Valve Amplifier (Programmed)
18	BK300419	1	Manifold Block, Gas Inputs

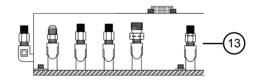
Plasma Console (BK300800)

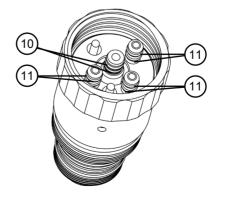
Item	Part Number	Quantity	Description
1	BK300712	1	Power Supply, 12VDC
2	BK300701	1	Printed Circuit Board (PCB), RS422 Isolation
3	BK300706	1	PCB Assembly, Computer
4	BK300707	1	10.4" LCD Touchscreen
5	BK708111	1	Switch, Pushbutton (OFF Button)


Arc Starting Console (BK284500) with Remote High Frequency (RHF)

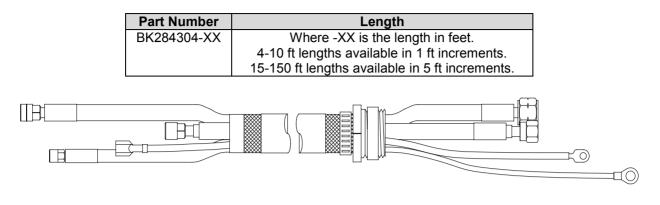
ltem	Part Number	Quantity	Description
1	BK715051	2	Coolant return fitting (left hand)
2	BK715050	1	Coolant supply fitting (right hand)
3	BK709253	1	Strain relief
5	BK709001	1	4 pin receptacle
6	BK707001	1	Line filter
7	BK706109	1	Transformer – 5000V, 20 mA
8	BK702069	1	Capacitor – 15 kV
9	BK708057	1	Door interlock switch
10	BK500014	1	Spark gap assembly
11	BK740039	3	Spark gap electrode
12	BK505043	1	High frequency inductor
13	BK740072	2	Standoff
14	BK800041	1	Busbar
15	BK500505	1	Printed Circuit Board (PCB), ASC
16	BK715021	1	Coolant supply fitting (right hand)
17	BK500503	1	Cathode manifold
18	BK205010	1	CTP sensor lead filter assembly
19	BK200287	1	Transformer insulating plate
22	BK500098	1	Ground cable


Arc Starting Console (BK300505) with CleanStrike[™] Technology

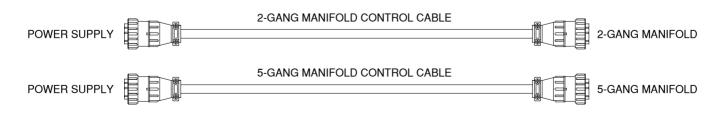

Item	Part Number	Quantity	Description
1	BK715051	2	Coolant Return Fitting (left hand)
2	BK715050	1	Coolant Supply Fitting (right hand)
3	BK715021	1	Coolant Supply Fitting (right hand)
4	BK709001	1	4 Pin Receptacle
5	BK708057	1	Door Interlock Switch
6	BK500503	1	Cathode Manifold
7	BK300506	1	Printed Circuit Board (PCB), ASC
8	BK980201	1	ASC Manifold
9	BK707300	1	Inductor



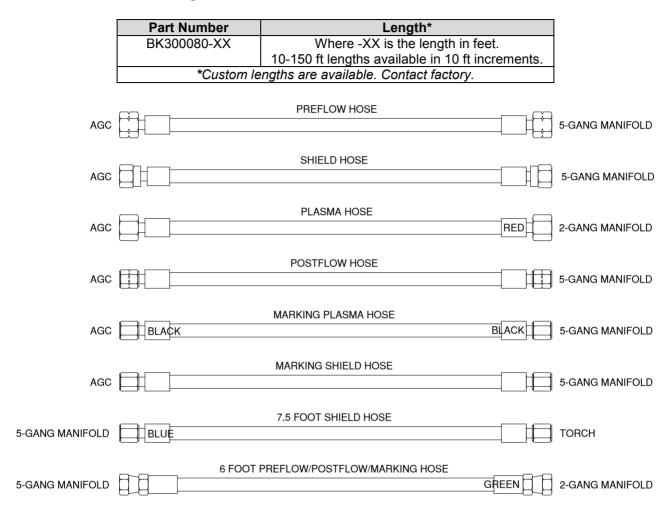
Torch and Manifold Assemblies


ltem	Part Number	Quantity	Description
1	BK284214	1	2-Gang Manifold (includes Bracket)
2	BK277195	1	2-Gang Manifold Bracket
3	BK278001	1	Torch Handle – Standard
	BK278018		Torch Handle – Short
4	BK279000	1	Torch Base
5	BK279100	1	Torch Head (Copper Electrode)
	BK279060		Torch Head (Silver Electrode)
6	BK820209	1	O-ring (red)
7	BK500024	1	O-ring (blue)
8	BK500018	1	O-ring (red)
9	BK279013	1	O-ring (red) - indicator only, not a seal
10	BK279112	2	O-ring (red)
11	BK279113	6	O-ring (red)
12	BK284039	1	(17") Torch Solenoid Plasma Hose
13	BK300075	1	5-Gang Manifold for Automatic Gas Console
Not shown	BK716012	1	O-ring Lubricant
Not shown	BK277056	1	Nozzle Removal Tool
Not shown	BK260105	1	Swirl Ring Removal Tool
Not shown	BK277086	1	Copper Electrode Installation/Removal Driver
Not shown	BK284052	1	Copper Electrode Inst/Removal Socket (400 Amp)
	BK277087		Copper Electrode Inst/Removal Socket (All others)
Not shown	BK279061	1	Silver Electrode Installation/Removal Tool

Shielded Torch Leads


CAN Communication Cable and Termination Plug

ltem	Part Number	Length
CAN Termination Plug	BK300408	N/A
CAN Cable	BK300177-XX	Where -XX is the length in feet. 10-150 ft lengths available in 10 ft increments.



Manifold Control Cables

ltem	Part Number	Length
2-Gang Manifold	BK280312-XX	Where -XX is the length in feet.
5-Gang Manifold	BK280321-XX	10-150 ft lengths available in 10 ft increments

Gas Hose Package with AGC

Cooling System Control Cable

	Part Number	Length	
	BK300276-10	10 ft. (3.0m)	
POWER SUPPLY			COOLING SYSTEM

Coolant and Power Leads

Part Number (Non-CSA Systems)	Part Number (CSA Systems)	Length
BK284306-XX	BK288406-XX	Where -XX is the length in feet. 10-150 ft lengths available in 10 ft increments.
POWER SUPPLY	ASC CONS	SOLE CONTROL CABLE
POWER SUPPLY	POWER SUF	ASC CONSOLE
	POWER S	UPPLY NOZZLE LEAD
	POWER SUF	PPLY CTP SENSOR LEAD
	POWER SUPPL	Y COOLANT RETURN HOSE
	POWER SUPPL	Y COOLANT SUPPLY HOSE

Work Ground Lead

Part Number (Non-CSA Systems)	Part Number (CSA Systems)	Length
BK284318-XX	BK288418-XX	Where -XX is the length in feet.
		10-100 ft lengths available in 5 ft increments.
		100-150 ft lengths available in 10 ft increments.

POWER SUPPLY	$\bigcirc \square$			\bigcirc	STAR GROUND
		<u></u>		\bigcirc	

Oxygen Supply Gas Hose (Optional)

	Part Number	Length	
	BK200362-XX	Where -XX is the length in feet.	
		25-100 ft lengths available in 25 ft increments.	
В	BLUE	() () BLU	E

Nitrogen Supply Gas Hose (Optional)

Part Number	Length
BK200365-XX	Where -XX is the length in feet.
	25-100 ft lengths available in 25 ft increments.

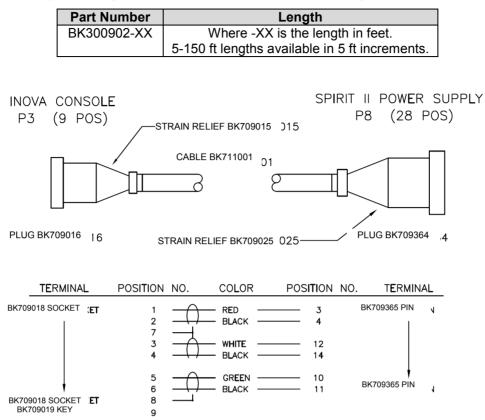
BLACK	55	BLACK	

Air Supply Gas Hose (Optional)

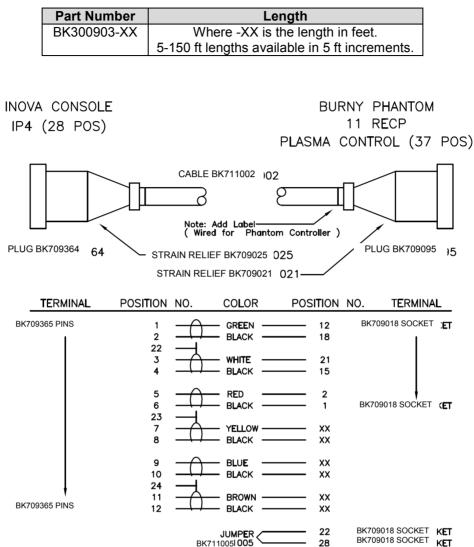
Part Number	Length
BK200364-XX	Where -XX is the length in feet.
	25-100 ft lengths available in 25 ft increments.

$\langle \rangle$	BLACK	

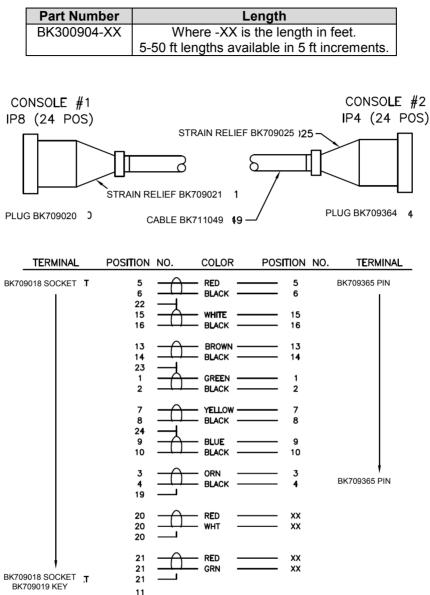
H17 Supply Gas Hose (Optional)


Part Number	Length
BK200363-XX	Where -XX is the length in feet.
	25-100 ft lengths available in 25 ft increments.

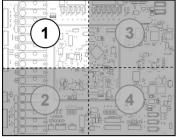
RED	\sum	RED	


Argon Supply Gas Hose (Optional)

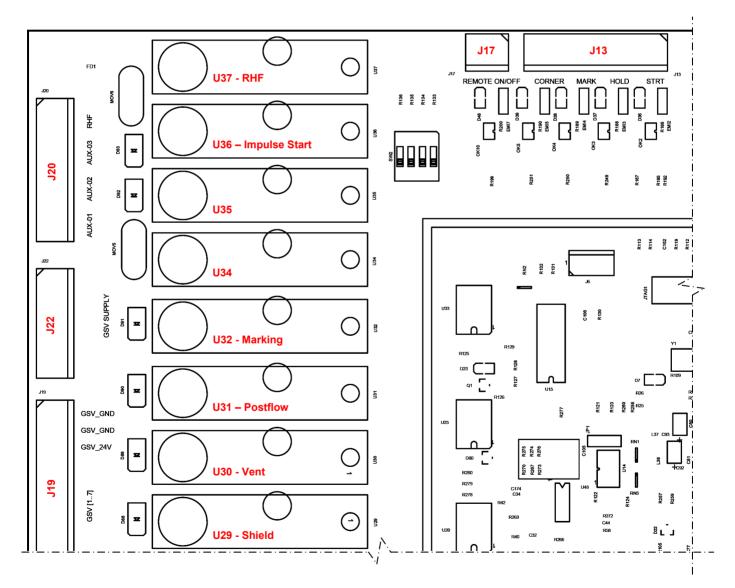
Part Number	Length]
BK200365-XX	Where -XX is the length in feet.	
	25-100 ft lengths available in 25 ft increments.	
BLACK	S BLACK	


"CII" Cable (for Optional External Inova)

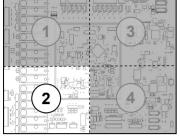
"FII" Cable (for Optional Internal Inova)

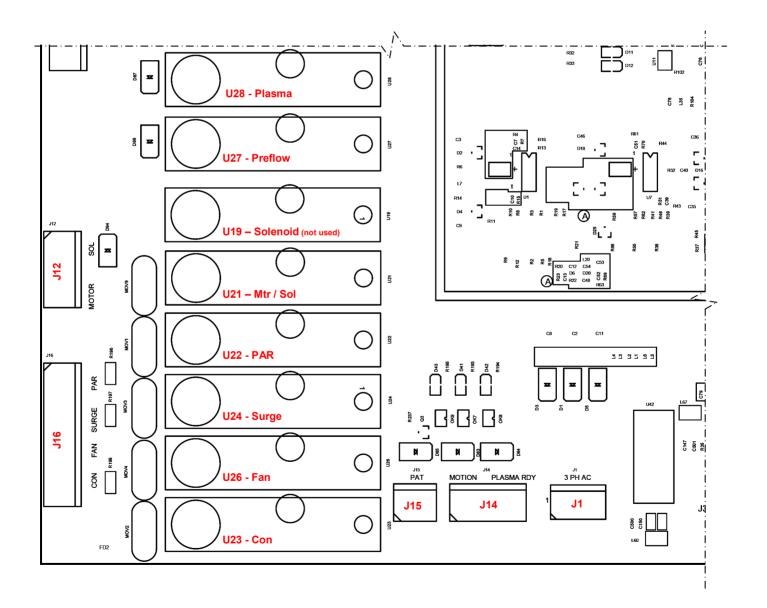


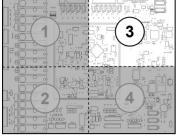
"JII" Cable (for Optional Internal Inova)

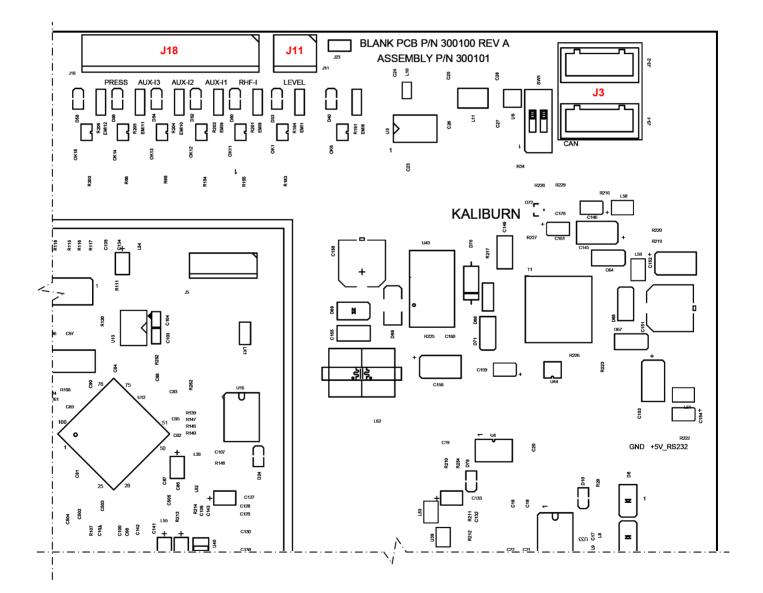


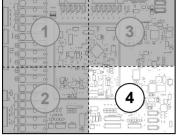
PCB Assemblies – Component Reference Locations

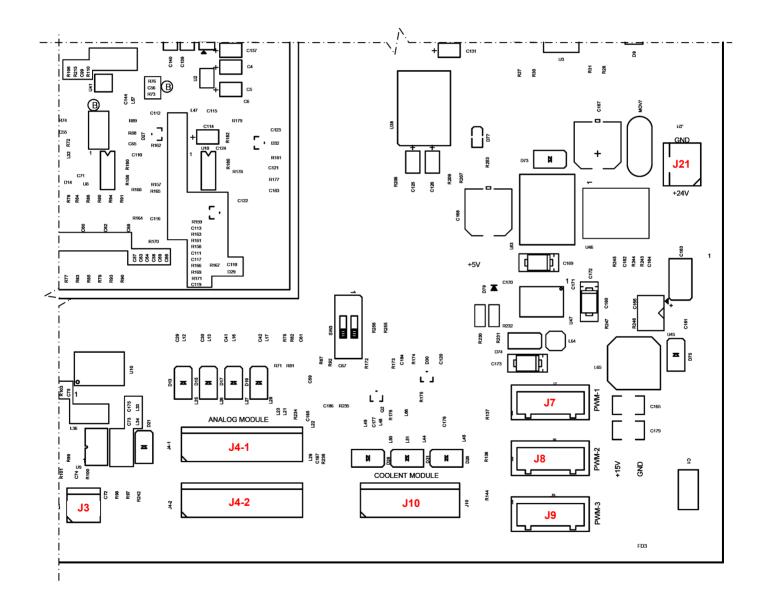

Power Supply, Microprocessor DSP (BK300101) – Quadrant 1

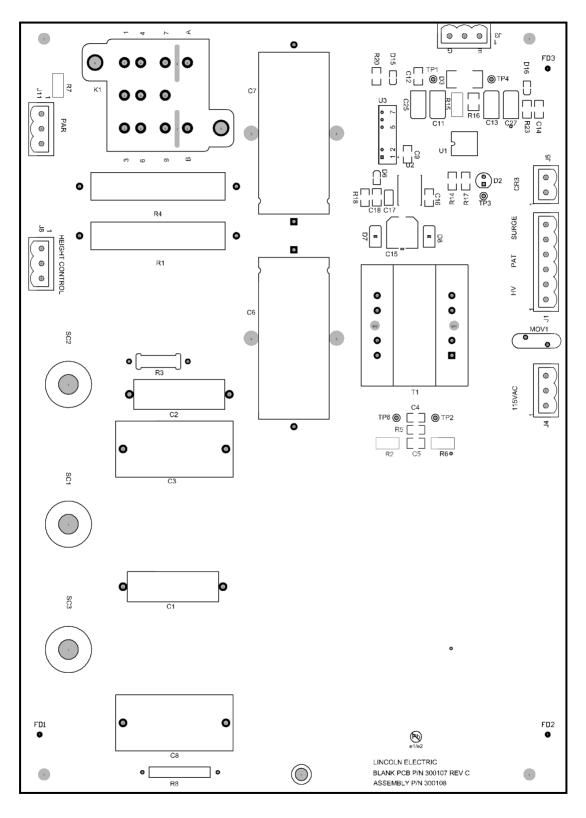

PCB Quadrant Map

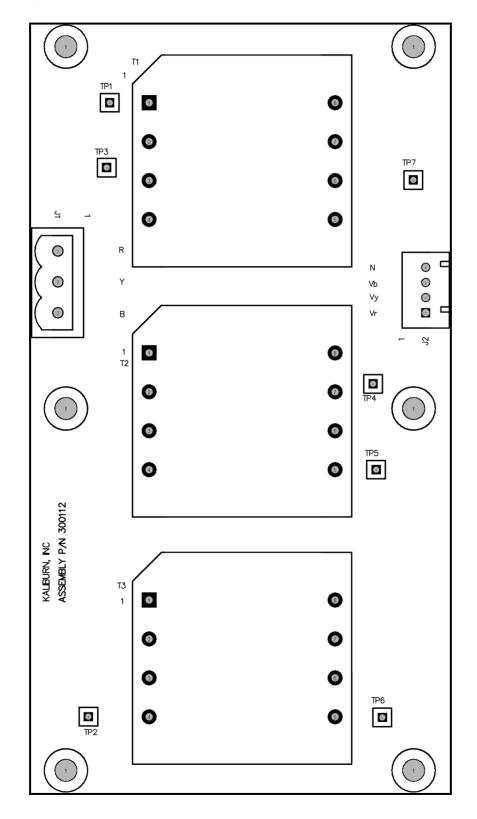

Power Supply, Microprocessor DSP (BK300101) – Quadrant 2


PCB Quadrant Map


Power Supply, Microprocessor DSP (BK300101) – Quadrant 3


PCB Quadrant Map

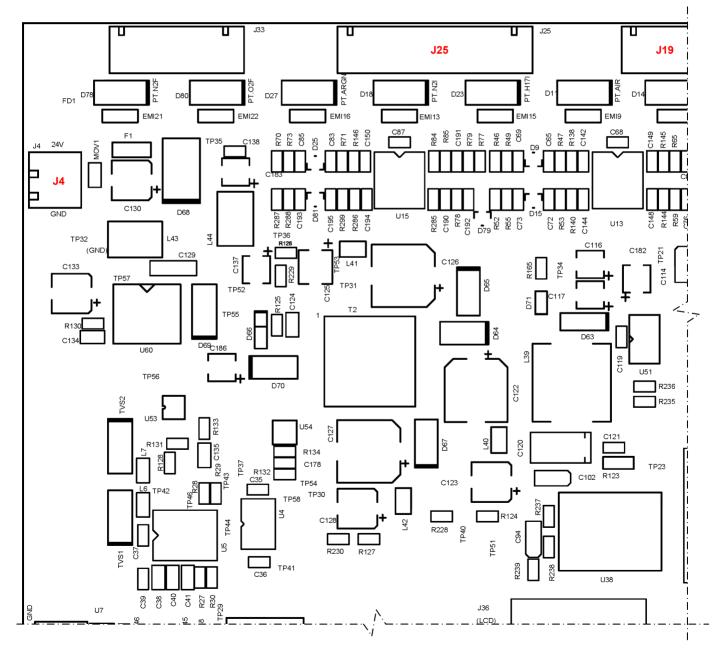

Power Supply, Microprocessor DSP (BK300101) – Quadrant 4

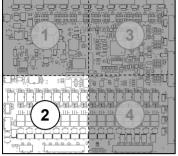


PCB Quadrant Map

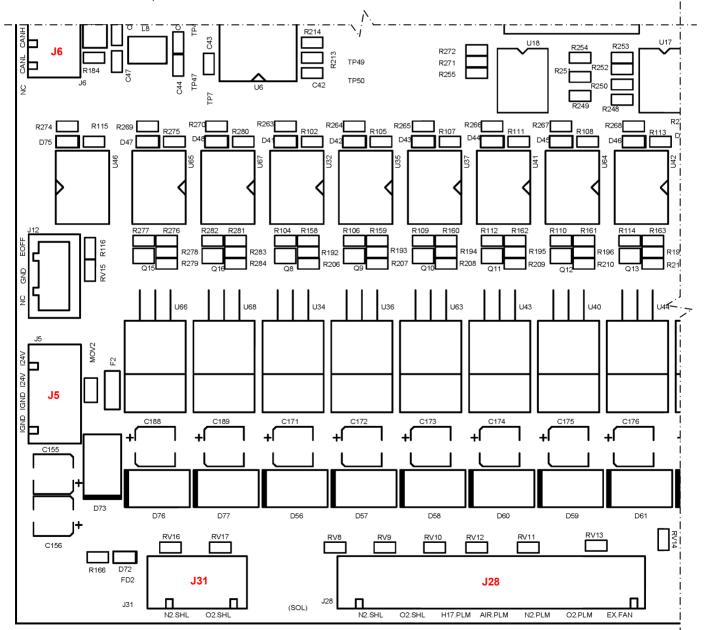


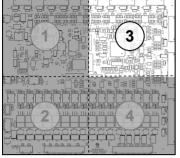
Power Supply, Output (BK300108)

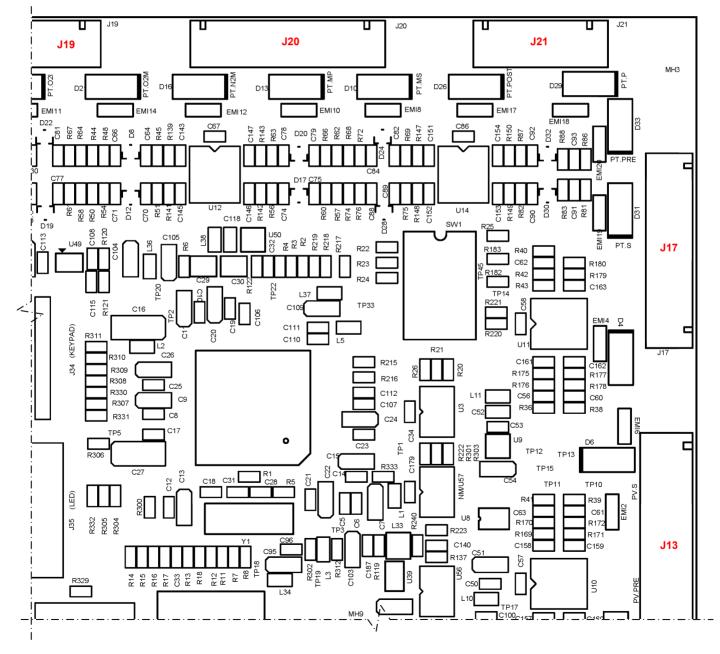


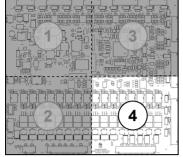


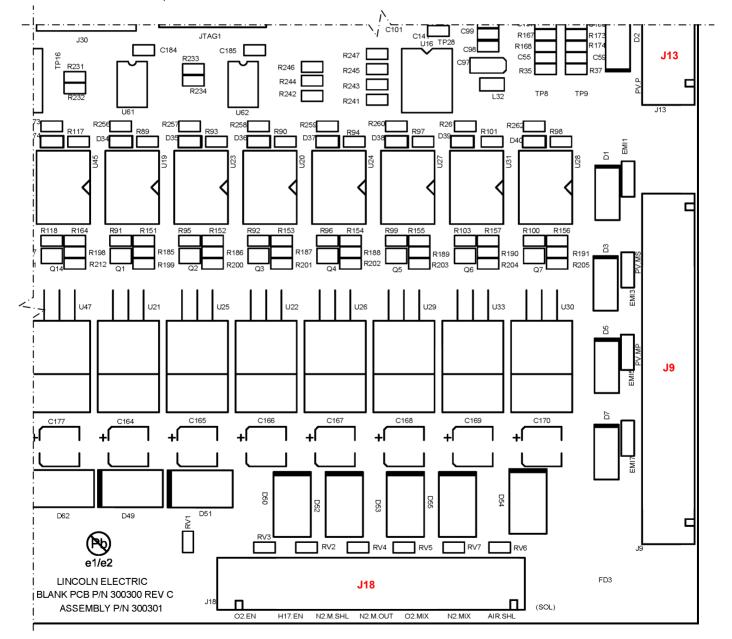
Power Supply, A.C. Detect (BK300112)



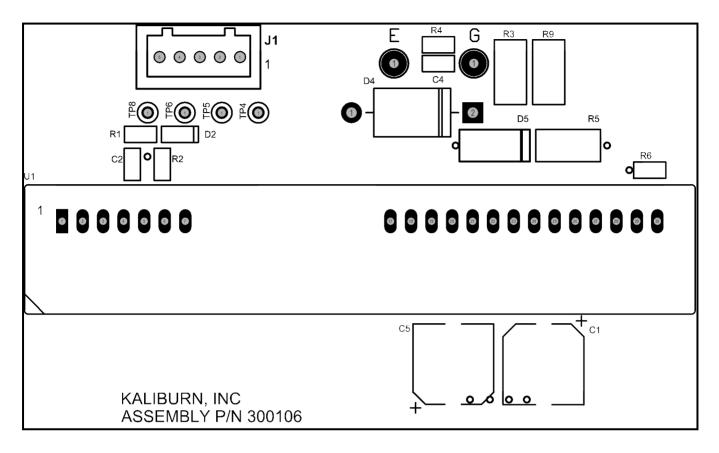

PCB Quadrant Map

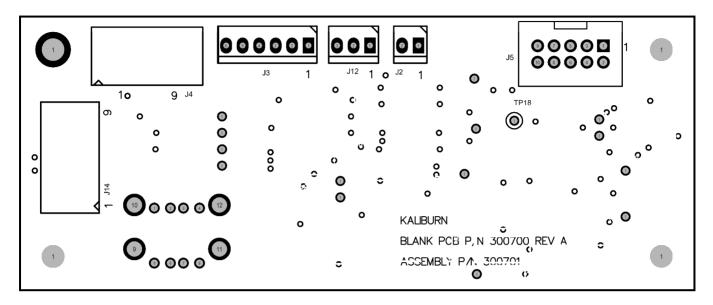



PCB Quadrant Map



PCB Quadrant Map



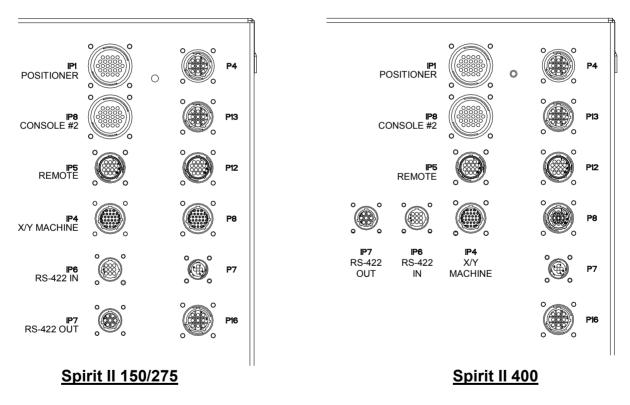


PCB Quadrant Map

Chopper, Gate Driver (BK300106)

Plasma Console, RS422 Isolation (BK300701)

Section 8: Internal Inova Console Option

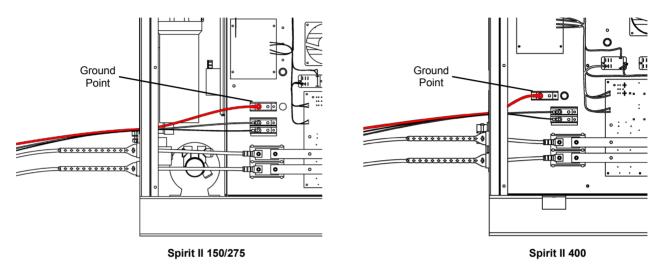

Overview

This optional Inova system is designed to provide arc voltage control to **any** plasma cutting system, however, combining it with the Spirit II provides the added convenience of having Inova console built directly into the plasma power supply.

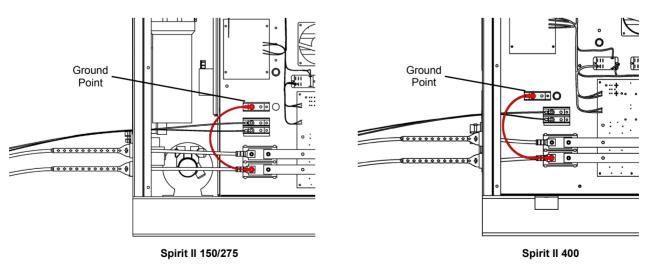
This section only covers topics unique to the Spirit II system with the internally installed Inova console. See the standard Inova manual for all other Inova information.

Plug Identification

Connections for the internal Inova console option are distinguished from other connections on the back of the power supply by the addition of the letter "I" before the plug number. The function of each plug (e.g., IP1) is the same as the corresponding plug found on the external Inova console (e.g., P1).


Unique Interconnect Cables

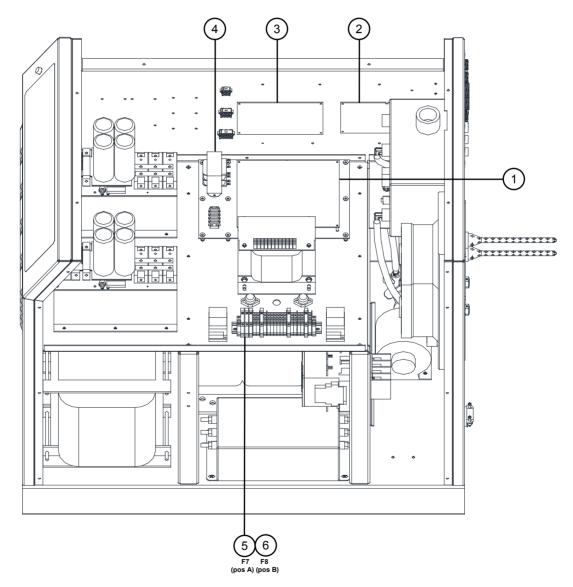
Two unique interconnect cables are required for this option with the Spirit II system. The FII cable is used to connect the Spirit II internal Inova console (IP4) to the X/Y Machine (CNC controller). The JII cable is used to connect multiple Spirit II internal Inova consoles (IP8). See the parts list in Section 7 for more details on these cables.


Grounding

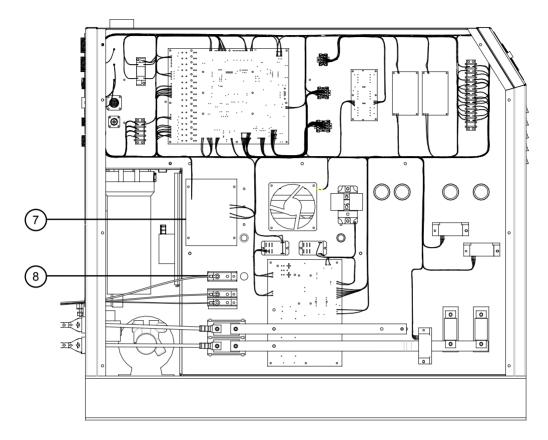
The internal Inova console must be connected to the same protective earth ground as the plasma power supply and in accordance with national or local codes. The figures below describe two methods. Use a minimum of #8AWG (10 mm²) wire.

Note: the customer must supply the ground cable.

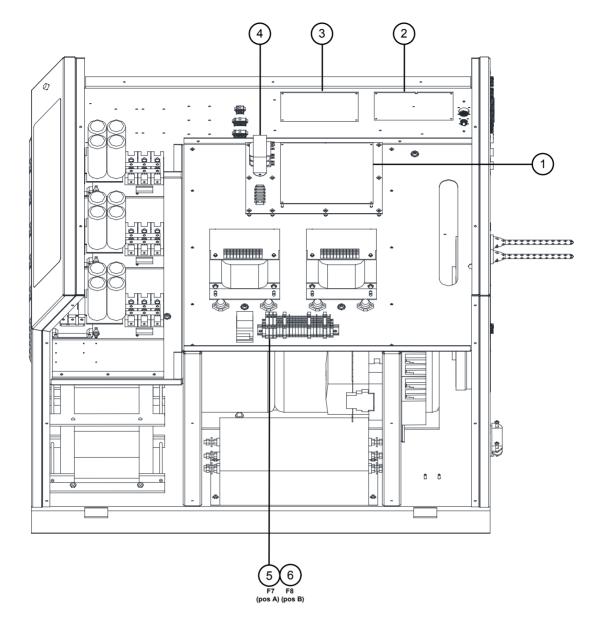
Direct to star ground:

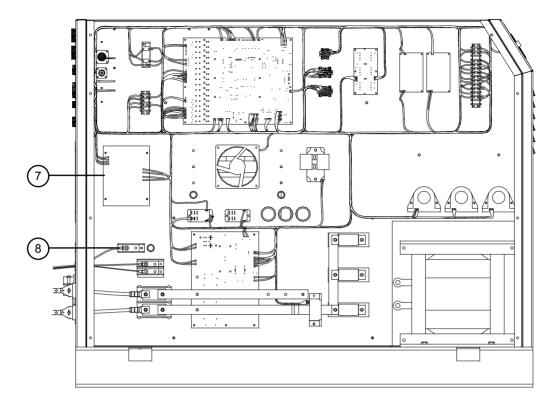


Jumper to the work ground lead:


Parts List

ltem	Part Number	Quantity	Description
1	BK110200	1	Printed Circuit Board (PCB), Microprocessor
2	BK110705	1	Printed Circuit Board (PCB), Power Distribution
3	BK110900	1	Printed Circuit Board (PCB), H-Bridge
4	BK706003	1	Transformer
5	BK709360	1	F7 Fuse, 6.3A
6	BK709370	1	F8 Fuse, 3A
7	BK301200	1	Printed Circuit Board (PCB), Voltage Divider
8	BK709276	1	Power Distribution Block,1 Pole


Location in Spirit II 150 & 275


Location in Spirit II 150 & 275 - Continued

Location in Spirit II 400

Location in Spirit II 400 - Continued

Appendix A: Electromagnetic Compatibility (EMC)

Background

The 380V 50/60Hz and 415V 50/60Hz CE marked Spirit plasma cutting systems are manufactured to comply with the European standard EN 60974-10 (Electromagnetic compatibility (EMC) – Product standard for arc welding equipment). The system has been tested in accordance with CISPR 11, EMC classification – Group 2 ISM (Class A). The limits used in this standard are based on practical experience. However, the ability of plasma cutting equipment to work in a compatible manner with other radio and electronic systems is greatly influenced by the manner in which it is installed and used. For this reason, it is important that the plasma cutting equipment be installed and used in accordance with the information below if electromagnetic compatibility is to be achieved.

Plasma cutting equipment is primarily intended for use in an industrial environment. There may be potential difficulties in ensuring electromagnetic compatibility in other environments.

Installation and Use

The user is responsible for installing and using the plasma cutting equipment according to the manufacturer's instructions. If electromagnetic disturbances are detected then it shall be the responsibility of the user of the plasma cutting equipment to resolve the situation with the technical assistance of the manufacturer. In some cases this remedial action may be as simple as earthing the plasma cutting circuit, see Note. In other cases it could involve constructing an electromagnetic screen enclosing the plasma power source and the work, complete with associated input filters. In all cases, electromagnetic disturbances shall be reduced to the point where they are no longer troublesome.

Note: The plasma cutting circuit may or may not be earthed for safety reasons. Changing the earthing arrangements should only be authorized by a person who is competent to assess whether the changes will increase the risk of injury, e.g. by allowing parallel plasma cutting current return paths which may damage the earth circuits of other equipment. Further guidance is given in IEC 974-13 *Arc welding equipment – Installation and use.*

Assessment of Area

Before installing plasma cutting equipment, the user shall make an assessment of potential electromagnetic problems in the surrounding area. The following shall be taken into account:

- a) other supply cables, control cables, signaling and telephone cables; above, below and adjacent to the plasma cutting equipment;
- b) radio and television transmitters and receivers;
- c) computer and other control equipment;
- d) safety critical equipment, e.g. guarding of industrial equipment;
- e) the health of the people around, e.g. the use of pacemakers and hearing aids;
- f) equipment used for calibration or measurement;
- g) the immunity of other equipment in the environment; the user shall ensure that other equipment being used in the environment is compatible; this may require additional protection measures;
- h) the time of day that plasma cutting or other activities are to be carried out.

The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises.

Methods of Reducing Emissions

Mains Supply

Plasma cutting equipment should be connected to the mains supply according to the manufacturer's recommendations. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed plasma cutting equipment in metallic conduit or equivalent. Shielding should be electrically continuous throughout its length. The shielding should be connected to the plasma power source so that good electrical contact is maintained between the conduit and the plasma power source enclosure.

Maintenance of the Plasma Cutting Equipment

The plasma cutting equipment should be routinely maintained according to the manufacturer's recommendations. All access and service doors and covers should be closed and properly fastened when the plasma cutting equipment is in operation. The plasma cutting equipment should not be modified in any way except for those changes and adjustments covered in the manufacturer's instructions. In particular, the spark gaps (if the system includes ACS with RHF) and stabilizing devices should be adjusted and maintained according to the manufacturer's recommendations.

Plasma Cutting Cables

The plasma cutting cables should be kept as short as possible and should be positioned close together, running at or close to the floor level.

Equipotential Bonding

Bonding of all metallic components in the plasma cutting installation and adjacent to it should be considered. However, metallic components bonded to the workpiece will increase the risk that the operator could receive a shock by touching these metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components.

Earthing of the Workpiece

Where the workpiece is not bonded to earth for electrical safety, nor connected to earth because of its size and position, e.g. ship's hull or building steelwork, a connection bonding the workpiece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the workpiece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the connection of the workpiece to earth should be made by a direct connection to the workpiece, but in some countries where direct connection is not permitted, the bonding should be achieved by suitable capacitance, selected according to national regulations.

Screening and Shielding

Selective screening and shielding of other cables and equipment in the surrounding area may alleviate problems of interference. Screening of the entire welding installation may be considered for special applications.

BLANK

Appendix B: Serial Communication

Initializing the Spirit System

The Spirit system uses an RS-422 serial communication port located on the rear of the plasma console to receive and respond to commands that are transmitted from an x/y controller. The communications ground is isolated to prevent ground loops. System initialization is simple. Apply power, wait until the plasma console has finished booting, then transmit the desired material type, material thickness, and optionally the process (cutting or marking) and the system will be ready for operation. All other parameters will be set to their default values and may be changed at any time.

Transmitting Parameters to the Spirit System

To transmit parameters to the Spirit, convert the following hex strings to 8 bit binary arrays (AA = 10101010) and transmit them using a 9600 baud RS-422 serial communication port. The port settings should have a start bit, one stop bit, and no parity. A table can be found in this section that lists the RS-422 commands and their descriptions. This table contains the necessary hex strings for sending different commands and parameters to the system. For example, to switch the material type from mild steel to stainless steel, look up the command for setting material type in the table. You will see the following table entry:

Command	<u>#</u>	Hex String	Additional Information
Set Material Type	1	AA nn FA 01 00 0D	00 = Mild Steel – Hot Rolled
			01 = Stainless Steel
			02 = Aluminum
			03 = Other
			04 = Mild Steel – Cold Rolled

Note that spaces in the command string are shown for clarity only and should not be sent as part of the command. A command string always begins with the value AA hex. The "nn" is the net node (communication node) of the Spirit system that is to receive the command. The net node value of a system is set via the Set Communication Node selection on the maintenance screen. See Section 4 for detailed information on setting the net node. The value FA hex is the Spirit identifier. The value 01 hex is the value that signifies the Set Material Type command. The value 0D hex is the end of command character. In the above example, the following hex string would need to be transmitted to switch the material type to stainless steel for a Spirit system on node 1:

AA 01 FA 01 00 01 0D

To send a parameter, the parameter value needs to be sent as part of the command. For example, to send a desired cutting pierce time of 1000 milliseconds to the system, look up the Set Cutting Pierce Time command in the command table. You will see the following table entry:

Command	#	Hex String	Additional Information
Set Pierce Time	4	AA nn FA 04 0D	Time in mS (seconds / 1000) Valid range: 0 to 5000

Once again, AA hex signifies the start of the command, "nn" is the net node of the power supply, and FA hex is the Spirit identifier. The value 04 hex signifies the Set Pierce Time command, and 0D hex signifies the end of the command. The "-- --" in the hex string is the MSB followed by the LSB of a type **int**. The integer is the value used in the additional information column. Thus, the "-- --" is sometimes referred to as the additional information value. In the example, we wanted to transmit a pierce time of 1000 mS (1 second). This value in hexadecimal would be 03E8 (msb=03, lsb=E8). In this example, the following string would be transmitted in order to set the pierce time to 1000mS for a power supply on net node 1:

AA 01 FA 04 03 E8 0D

For multiple power supply installations, commands can be sent to all power supplies at the same time. This is referred to as a global command. To send a global command, set the net node value to C8 hex (200 decimal). In the example above, the following string would be transmitted to set the pierce time to 1000mS for all power supplies connected on the network:

AA C8 FA 04 03 E8 0D

Communication Error Checking

With a single torch system, all commands and parameters transmitted to the Spirit will be back transmitted in exactly the same form for error checking. With a multiple torch system, only the system with node focus will back transmit the commands. The purpose of the node focus command (#254) is to allow one Spirit system to use the transmission lines at a time. If no node focus is set on initialization, the first system to receive a command will receive node focus automatically. Commands may be transmitted to systems without node focus, but there will be no back transmission from those systems. Also, all parameters can be read at any time by transmitting a Send Parameter command (#30) to the Spirit, followed by the appropriate parameter to be read.

Default Cutting Parameters

In order to initialize parameters on a Spirit system an external device must communicate, in sequence, the material type, material thickness, process (cutting or marking) and the cutting current. Once the Spirit system receives the cutting current, all other parameters will be set to their default values. Whenever the material type, material thickness, process or cutting current is changed, new default values will be retrieved for all other parameters. If a changed is desired, cutting current must be sent last for the updated to occur. To use non-standard parameters, first set the material type, material thickness, process and cutting current (in sequence), and then set the remaining parameters (i.e. Pierce time) to the desired values.

Troubleshooting Serial Communication

When troubleshooting serial communication with the Spirit system, switch to the View Serial Communication Screen to view incoming and outgoing data. See Section 4 for information on the RS-422 Tab.

RS-422 Serial Commands

Note: In the following commands, "nn" represents the net node of the power supply that is to receive the command. To send a global command to all power supplies in a network configuration, "nn" should be set to C8 hex (200 decimal). The "-- --" in the hex string is the MSB followed by the LSB of a type int. The integer is the value found in the additional information column.

Command Set Material Type	<u>#</u> 1	<u>Hex String</u> AA nn FA 01 00 0D	Additional Information 00 = Mild Steel – Hot Rolled 01 = Stainless Steel 02 = Aluminum 03 = Other 04 = Mild Steel – Cold Rolled
Set Thickness	2	AA nn FA 02 0D	Thickness in mils (inches x 1000) Valid Range: 0 to 2000
Set Operating Current	3	AA nn FA 03 00 0D	01 = 30A 02 = 50A 03 = 70A 04 = 100A 05 = 150A 06 = 200A 0A = 260A 0B = 275A 0C = 400A
Set Cutting Pierce Time	4	AA nn FA 04 0D	Cutting pierce time in ms Valid Range: 0 to 9999
Set Preflow Pressure	6	AA nn FA 06 0D	Preflow psi x 10 Valid Range: 0 to 1200
Set Plasma Gas Type	7	AA nn FA 07 00 0D	00 = Oxygen 02 = Air 04 = H17
Set Plasma Pressure	8	AA nn FA 08 0D	Plasma psi x 10 Valid Range: 0 to 1200
Set Shield Gas Type	9	AA nn FA 09 00 0D	00 = Oxygen 01 = Nitrogen 02 = Air
Set Shield Pressure	10	AA nn FA 0A 0D	Shield psi x 10 Valid Range: 0 to 1200
Cutting Travel Speed	15	AA nn FA 0F 0D	If requested in command #30, the system will transmit the cutting travel speed in inches per minute. Range: 0 to 999

Command Torch Body Part Number (msw)	# 16	<u>Hex String</u> AA nn FA 10 0D	Additional Information If requested in command #30, the system will transmit the most significant word of the torch body part number.
Torch Body Part Number (Isw)	17	AA nn FA 11 0D	If requested in command #30, the system will transmit the least significant word of the torch body part number.
Torch Electrode Part Number (msw)	18	AA nn FA 12 0D	If requested in command #30, the system will transmit the most significant word of the electrode part number.
Torch Electrode Part Number (Isw)	19	AA nn FA 13 0D	If requested in command #30, the system will transmit the least significant word of the electrode part number.
Torch Swirl Ring Part Number (msw)	20	AA nn FA 14 0D	If requested in command #30, the system will transmit the most significant word of the swirl ring part number.
Torch Swirl Ring Part Number (Isw)	21	AA nn FA 15 0D	If requested in command #30, the system will transmit the least significant word of the swirl ring part number.
Torch Nozzle Part Number (msw)	22	AA nn FA 16 0D	If requested in command #30, the system will transmit the most significant word of the nozzle part number.
Torch Nozzle Part Number (Isw)	23	AA nn FA 17 0D	If requested in command #30, the system will transmit the least significant word of the nozzle part number.
Torch Retaining Cap Part Number (msw)	24	AA nn FA 18 0D	If requested in command #30, the system will transmit the most significant word of the retaining cap part number.
Torch Retaining Cap Part Number (Isw)	25	AA nn FA 19 0D	If requested in command #30, the system will transmit the least significant word of the retaining cap part number.
Torch Shield Cap Part Number (msw)	26	AA nn FA 1A 0D	If requested in command #30, the system will transmit the most significant word of the shield cap part number.
Torch Shield Cap Part Number (Isw)	27	AA nn FA 1B 0D	If requested in command #30, the system will transmit the least significant word of the shield cap part number.
Torch Outer Cap Part Number (msw)	28	AA nn FA 1C 0D	If requested in command #30, the system will transmit the most significant word of the outer cap part number.

Command Torch Outer Cap Part Number (Isw)	<u>#</u> 29	<u>Hex String</u> AA nn FA 1D 0D	Additional Information If requested in command #30, the system will transmit the least significant word of the outer cap part number.
Send Parameter	30	AA nn FA 1E 0D	 01 = Send material type 02 = Send material thickness 03 = Send current set point 04 = Send cutting pierce time 05 = Send preflow gas type 06 = Send preflow pressure 07 = Send plasma gas type 08 = Send plasma gas pressure 09 = Send shield gas type 10 = Send shield gas pressure 11 = Send cutting travel speed 16 = Send torch body part number msw 17 = Send torch body part number msw 18 = Send electrode part number msw 19 = Send electrode part number msw 20 = Send swirl ring part number msw 21 = Send swirl ring part number lsw 22 = Send nozzle part number msw 23 = Send outer cap part number lsw 24 = Send retaining cap part number msw 25 = Send retaining cap part number msw 26 = Send shield cap part number msw 27 = Send shield cap part number msw 28 = Send outer cap part number msw 29 = Send outer cap part number msw 29 = Send outer cap part number msw 21 = Send software version 34 = Send cutting chart version 35 = Send number of pierces 36 = Send number of pierce errors 42 = Send cutting arc voltage 43 = Send cutting pierce height 44 = Send cutting pierce height 44 = Send cutting pierce height 45 = Send marking start height 55 = Send marking start height 56 = Send marking travel speed 57 = Send marking travel speed 57 = Send marking travel speed
Set Process	32	AA nn FA 20 00 0D	00 = Cutting 01 = Marking
Software Version	33	AA nn FA 21 00 0D	If requested in command #30, the system will transmit the software version x 10.

Command Cutting Chart Version	<u>#</u> 34	<u>Hex String</u> AA nn FA 22 00 0D	Additional Information If requested in command #30, the system will transmit the cutting chart version x 10.
Number of Pierces	35	AA nn FA 23 00 0D	If requested in command #30, the system will transmit the number of pierces. Range: 0 to 9999
Number of Pierce Errors	36	AA nn FA 24 00 0D	If requested in command #30, the system will transmit the number of pierce errors. Range: 0 to 9999
Reset Pierce Counter	37	AA nn FA 25 00 01 0D	Resets number of pierces and errors to 0
Power On	38	AA nn FA 26 00 01 0D	Energizes power supply, torch coolant pump and cooling fans. If torch coolant flow switch not satisfied within 8 seconds, unit will power down.
Power Off	39	AA nn FA 27 00 01 0D	Deenergizes power supply, torch coolant pump and cooling fans
Request System Status	40	AA nn FA 28 00 01 0D	System status can only be requested after a Power On command (#38) is transmitted. The status is returned in the following form: (All bits: 0=fault; 1=ok) LSB Bit 0 = ASC Door LSB Bit 1 = AC Power LSB Bit 2 = Coolant Flow LSB Bit 2 = Coolant Flow LSB Bit 3 = Coolant Level LSB Bit 3 = Coolant Temp LSB Bit 4 = Coolant Temp LSB Bit 5 = AGC status LSB Bit 6 = Inlet Gas Pressures LSB Bit 7 = Not used MSB Bit 0 = Not used
Purge Gases	41	AA nn FA 29 00 01 0D	MSB Bit 1 = Hydrogen Cutting Enabled Purges gas lines
Set Cutting Arc Voltage	42	AA nn FA 2A 0D	Sets cutting arc voltage in Volts x 100 Valid Range: 5000 to 20000
Set Cutting Height	43	AA nn FA 2B 0D	Sets cutting height in mils (inches / 1000) Valid Range: 0 to 999
Set Cutting Pierce Height	44	AA nn FA 2C 0D	Sets cutting pierce height in mils (inches / 1000) Valid Range: 0 to 999
Set Cutting Travel Speed	45	AA nn FA 2D 0D	Sets cutting travel speed (inches / min) displayed on the voltage screen Valid Range: 0 to 999
Save as User File	46	AA nn FA 2E 00 01 0D	Saves the present cutting conditions as a user file.

Command Restore Factory Condition	<u>#</u> 47	<u>Hex String</u> AA nn FA 2F 00 01 0D	Additional Information Restores the factory cutting condition for the present material type and thickness.
Cutting Condition Type	48	AA nn FA 30 00 0D	If requested in command #30, the system will transmit whether the present cutting condition is a factory default setting or a custom user setting. Note: This is only valid when initially loading material type, thickness, and process. 0 = factory / 1 = custom
Configure H17 Cutting	49	AA nn FA 31 00 0D	0 = Disable H17 cutting 1 = Enable H17 cutting
Reload Cutting Condition	50	AA nn FA 32 00 01 0D	Reloads the cutting conditions for the present material type and thickness
Set Arc Off Delay Time	51	AA nn FA 33 0D	Sets the delay time in mS between the reception of a stop signal and the extinction of the arc. Valid Range: 0 to 2000 mS
Machine Type	52	AA nn FA 34 0D	If requested in command #30, the system will transmit the machine type. 153 = Spirit150a 203 = Spirit200a 273 = Spirit275a 403 = Spirit400a
Set Marking Arc Voltage	53	AA nn FA 35 0D	Sets marking arc voltage in Volts x 100 Valid Range: 5000 to 20000
Set Marking Height	54	AA nn FA 36 0D	Sets marking height in mils (inches / 1000) Valid Range: 0 to 999
Set Marking Start Height	55	AA nn FA 37 0D	Sets marking start height in mils (inches / 1000) Valid Range: 0 to 999
Set Marking Travel Speed	56	AA nn FA 38 0D	Sets marking travel speed (inches / min) Valid Range: 0 to 999
Set Marking Pierce Time	57	AA nn FA 39 0D	Sets marking pierce time in ms Valid Range: 0 to 9999
Configure Cut/Mark/Cut	59	AA nn FA 3B 00 0D	0 = Local at power supply 1 = Hard signal via interface plug 2 = RS-422
Node Focus	254	AA C8 FA FE 00 nn 0D	Sends a global command to all systems and sets the node focus to system nn