
From Manual Text to Instructional Dialogue: an Information State Approach

Staffan Larsson

Department of linguistics, Göteborg University
Box 200-295, Humanisten, SE-405 30 Göteborg, Sweden

sl@ling.gu.se

Abstract
We present preliminary research on the relation between written manuals and instructional dialogue, and outline how a manual can be
converted into a format which can be used as domain knowledgeby a dialogue system, capable of generating both instructional dialogue
and monologue. Starting from a short sample text from a manual, we use the TRINDI information state approach (Traum et al., 1999)
to build an experimental dialogue system capable of instructing a user to perform the task. IMDiS, a small experimental implementation
based on the GoDiS dialogue system (Bohlin et al., 1999), is presented.

1. Goal of the paper
In this paper, we will present preliminary research on

the relation between written manuals and instructional di-
alogue. We outline how a manual can be converted into a
format which can be used as domain knowledge by a dia-
logue system, capable of generating both instructional di-
alogue and monologue. Starting from a short sample text
from a manual, we use the TRINDI information state ap-
proach (Traum et al., 1999) to build an experimental dia-
logue system capable of instructing a user to perform the
task. IMDiS, a small experimental implementation based
on the GoDiS dialogue system (Bohlin et al., 1999), is pre-
sented. We look at sample monologue and dialogue output
and discuss the advantages provided by the dialogue mode
in IMDiS. One of the main advantages is that the user can
control the dialogue to make the system provide exactly the
information needed. Finally, we discuss possible research
issues.

We will make two basic assumptions: monologue is
a special case of dialogue, and discourse structure corre-
sponds to task structure. These assumptions are by no
means original (see e.g. (Grosz and Sidner, 1986)); how-
ever, the preliminary work here attempts to combine these
assumptions using the TRINDI information state approach
to investigate the possibility of generating dialogue (as in
built-in automatic assistant) or monologue (as in a tradi-
tional written manual) from a single database of domain
task plans.

2. IMDiS
IMDiS (Instructional Monologue and Dialogue System)

is an adaption of GoDiS to instructional dialogue, and like
GoDiS it provides a simple but efficient grounding strategy
and facilitates question and task accommodation (Bohlin et
al., 1999). In addition, IMDiS can give instructions and
the user can request more specific instructions by asking
the system how to perform a given instruction. IMDiS can
also be made to generate the original text by setting it in
“monologue” mode that uses a slightly altered set of dia-
logue moves and information state update rules, but which
still uses the same database and generation facilities as the
dialogue mode.

IMDiS is implemented using the TRINDIKIT (Lars-
son et al., 1999), a toolkit for experimenting with infor-

mation states and dialogue move engines and for build-
ing dialogue systems. We use the terminformation state
to mean, roughly, the information stored internally by an
agent, in this case a dialogue system. Adialogue move en-
gine updates the information state on the basis of observed
dialogue moves and selects appropriate moves to be per-
formed. In this paper we use a formal representation of
dialogue information states that has been developed in the
TRINDI1, SDS2 and INDI3 projects.

IMDiS has a type of information state similar to that of
GoDiS, with the addition of a subfieldSHARED.ACTIONS

whose value is a stack of actions which the system has in-
structed the user to perform, but whose performance has
not yet been confirmed by the user. The IMDiS informa-
tion state is shown in Figure 1.26666664 PRIVATE :

"
PLAN : StackSet(Action)
AGENDA : Stack(Action)
TMP : (same asSHARED)

#
SHARED :

264 BEL : Set(Prop)
QUD : StackSet(Question)
ACTIONS : Stack(Action)
LU : Utterance

375 37777775
Figure 1: IMDiS information state type

The main division in the information state is between
information which is private to the agent and that which
is shared between the dialogue participants. The private
part of the information state contains aPLAN field holding
a dialogue plan, i.e. is a list of dialogue actions that the
agent wishes to carry out. The plan can be changed dur-
ing the course of the conversation. TheAGENDA field, on
the other hand, contains the short term goals or obligations
that the agent has, i.e. what the agent is going to do next.
We have included a fieldTMP that mirrors the shared fields.

1TRINDI (Task Oriented Instructional Dialogue),EC Project LE4-8314,

www.ling.gu.se/research/projects/trindi/
2SDS (Swedish Dialogue Systems), NUTEK/HSFR

Language Technology Project F1472/1997,
http://www.ida.liu.se/ nlplab/sds/

3INDI (Information Exchange in Dialogue), Riksbankens Ju-
bileumsfond 1997-0134.

This field keeps track of shared information that has not yet
been grounded, i.e. confirmed as having been understood
by the other dialogue participant. TheSHARED field is di-
vided into four subfields. One subfield is a set of proposi-
tions which the agent assumes for the sake of the conver-
sation. The second subfield is for a stack of questions un-
der discussion (QUD). These are questions that have been
raised and are currently under discussion in the dialogue.
The ACTIONS field is a stack of (domain) actions which
the user has been instructed to perform but has not yet per-
formed.TheLU field contains information about the latest
utterance.

The dialogue version uses 9 move types, basically
the 6 used in GoDiS (Ask, Answer, Inform , Repeat,
ReqRep, Greet, Quit) plus instructions to check precondi-
tions (InstructCheck), plain instructions (InstructExec),
and confirmations (Confirm). Confirmations are inte-
grated by assuming that the current topmost action in
SHARED.ACTIONS has been performed, as seen in the
update rule below.

RULE: integrateUsrConfirm
CLASS: integrate

PRE:

(
val#rec(shared.lu.speaker, usr)
assoc#rec(shared.lu.moves, confirm, false)
fst#rec(shared.actions,A)

EFF:

(
set assoc#rec(shared.lu.moves, confirm, true)
pop#rec(shared.actions)
add#rec(shared.bel, done(A))

Elliptical “how”-questions from the user are inter-
preted as applying to the currently topmost action in the
SHARED.ACTIONS stack.

The monologue mode uses only 3 moves
(InstructExec, InstructCheck and Inform). Since
there is no user to confirm that actions have been per-
formed, all actions are automatically confirmed using the
update ruleautoConfirm.

RULE: autoConfirm
CLASS: integrate
PRE:

�
fst#rec(shared.actions,A)

EFF:

�
pop#rec(shared.actions)
add#rec(shared.bel, done(A))

3. Manuals and dialogues
The text below is taken from a user manual for the

Homecentre, a low end Xerox MultiFunctional Device.

Reinstalling the print head
Caution: Make sure that the green carriage lock lever is STILL
moved all the way forward before you reinstall the print head.
1. Line up the hole in the print head with the green post on the
printer carriage.
Lower the print head down gently into position.
2. Gently push the green cartridge lock lever up until it snaps into
place.
This secures the print head.
3. Close the top cover and reattach the scanner.
4. Press and release the yellowLED button.

The printer will prepare the cartridge for printing.
Note: If the carriage does not move from the center position after
you press the cartridge change button, remove and reinstallthe
print head.

From this text, one can (re)construct a domain plan for
reinstalling the print head. Such a plan may be represented
as in Figure 2. Note that this is a conditional plan, i.e. it
contains branching conditions.

From this plan, IMDiS generates two plans: a mono-
logue plan and a dialogue plan. This is done using the
“translation schema” in Figure 3.

The difference between the text plan and the dialogue
plan is in the way that conditionals in the domain plan are
interpreted. In the monologue plan, they correspond to sim-
ply informing the user of the conditional. In dialogue mode,
however, the system raises the question whether the con-
dition holds. When the system finds out if the condition
holds, it will instruct the user to execute the appropriate
guarded action.

In short, here’s how conditionals are treated by the sys-
tem in dialogue mode: When the system has found out what
the user’s task is, it will load the appropriate dialogue plan
into the PRIVATE.PLAN field of the information state. It
will then execute the actions in the appropriate order by
moving them to the agenda and generating appropriate ut-
terances. When a conditional statement is topmost on the
plan, IMDiS will check whether it has been established that
the condition holds (by checking theSHARED.BEL field).
Since the system has previously asked the user and the user
has answered, either the condition or its negation will be in
the set of established propositions. If the condition or its
negation holds, the conditional will be popped off the plan
and replaced by the first or second guarded action (respec-
tively).

4. Monologue and dialogue
In the monologue mode in IMDiS, the control module

does not call the input and interpretation modules. The text
is output “move by move” as a sequence of utterances from
the system4.

S: Reinstalling the print head.

S: Make sure that the green carriage lock

lever is STILL moved all the way forward

before you install the print head.

S: Line up the hole in the print head with

the green post on the printer carriage

Compared to the monologue mode, the dialogue mode
offers several advantages:

User attention and control The user can direct her atten-
tion to the machine and does not have to look at the manual.
This means that the user does not have to keep track of the

4While perhaps not practically useful, the implementation of
a monologue mode in IMDiS is primarilly intended to show how
one can construe the claim that monologue is a special case of
dialogue.

press_and_release(yellow_button)

reattach(scanner)

close(top_cover)

secure(print_head)

moved_from_center(print_head)

remove(print_head)

reinstall(print_head)

line_up(hole, post)

lower(print_head)

push(lever)

EFF secured(print_head)

complex action / plan

action

final state

moved_forward(carriage_lock)

reinstall(print_head)NAME

PRE

DEC

yes no

PRE

NAME

DEC

secure(print:head)

reinstalled(print_head)EFF

Figure 2: Domain plan

DOMAIN MONOLOGUE DIALOGUE

preconditionP InstructCheck(P) InstructCheck(P)
actionA InstructExec(A) InstructExec(A)
if then else(C,A,A0) Inform (if then else(C,A,A0)) findout(C);

if then else(C,
InstructExec(A),
InstructExec(A0))

effectE Inform(E) Inform(E)

Figure 3: Plan conversion table

current point in the manual. Also, the user decides when to
move on to the next action, by confirming that the previous
action is done.

Avoid irrelevant information When the action to be
taken depends on a condition, the system does not give
irrelevant information.

S: Has the carriage moved from the center

position?

U: yes

S: The print head is now installed

Control over level of detail If the user does not know
how to perform a substep, she can ask the system for more
detailed instructions.

S: secure the print head

U: how?

S: Line up the hole in the print head with

the green post on the printer carriage

U: right, ok

S: Lower the print head down gently into

position

U: ok

S: Gently push the green cartridge lock

lever up until it snaps into place

U: ok

S: The print head is now secured

On the other hand, if the user already knows how to
perform a substep, the system moves on to the next step.

S: secure the print head

U: ok, and now?

S: Close the top cover

If the user manages to complete the whole action
sequence without instructions, she can tell the system this
and the system proceeds to the next relevant action.

S: secure the print head

U: how?

S: Line up the hole in the print head with

the green post on the printer carriage

U: right, ok

S: Lower the print head down gently into

position

U: ok right, I remember now (pause) the

print head is secured

S: Ok. Close the top cover

Question accommodation The user can provide answers
to questions which the system has not yet asked, provided
the system is able to accommodate the question. For

$S> Press and release the yellow LED button

: private = agenda = < instruct_exec(press_and_release(yellow_LED_button)) >
: plan = [raise(move_from_center_position(carriage_head)),

if_then(not move_from_center_position(carriage_head),
instruct_exec(remove_and_reinstall(print_head))),

inform(reinstalled(print_head)),
inform(next(prepare_cartridge_for_printing))]

: tmp = (*surpressed*)
: shared = bel = { done(reattach(scanner)),

done(close(top_cover)),
done(secure(print_head)),
done(check(moved_forward(carriage_lock))),
task(instruct_exec(reinstall(print_head))) }

: qud = < >
: actions = < press_and_release(yellow_LED_button) >
: lu = (*surpressed*)

Figure 4: Sample IMDiS information state, after uttering “Press and release the yellow LED button”

example, the user does not have to wait for the system to
ask what task the user wants to perform.

S: Hello and welcome to the IMDiS homecen-

tre assistant

U: i want to reinstall the print head

S: Make sure that the green carriage lock

lever is still moved all the way forward

before you install the print head.

Grounding If the users does not hear or understand a
system utterance, she can ask the system to repeat it.

S: Has the carriage moved from the center

position?

U: what ?

S: Has the carriage moved from the center

position?

5. Research issues

In building the experimental IMDiS, we have made sev-
eral simplifications. For example, the problem of NL gen-
eration has been side-stepped by using canned text for out-
put. Around 90% of the lexicon is used in both dialogue and
monologue mode, while the rest is specific to one mode. It
is a research issue to what extent canned text can be used,
and how much “real” generation is necessary. Although this
is experimental work, it does not seem implausible that use-
ful systems could be constructed fairly easily to the extent
that system output can be provided as canned text and that
user input is limited in its lexical scope. On a domain level,
what needs to be done is to construct domain plans and con-
nect them to the corresponding text output. We make no
claims here that this process is easily automated; rather, the
idea is that instead of writing a manual (which will, in a
sense, encapsulate both domain knowledge and its linguis-
tic realisation), the author constructs the plans and output
manually (possibly using a specialised authoring tool).

Also, IMDiS is not capable of referent disambiguation
dialogue of the kind common in e.g. the MapTask corpus
(Anderson et al., 1991). This type of dialogue would be
needed for the system to be able to explain e.g. which com-
ponent is being referred to and where it is to be found.

So far, we have only explored the extremes of the
monologue-dialogue opposition. There are interesting in-
termediate levels of interactivity, such as dynamically gen-
erated text where the content depends on what has previ-
ously been related to the user. This is another area of pos-
sible future research, where it is likely that higher demands
will be put on dynamic language generation.

Although this is not strictly relevant to the monologue-
dialogue discussion, we would also like to compare IMDiS
to previous instructional dialogue systems such as that de-
scribed in (Smith and Hipp, 1994).

6. References
A. H. Anderson, M. Bader, E.G. Bard, E. Boyle, G. Do-

herty, S. Garrod, S. Isard, J. Kowtko, J. McAllister,
J. Miller, C. Sotillo, H. Thompson, and R. Weinert.
1991. The HCRC Map Task corpus.Language and
Speech, 34(4):351–366.

P. Bohlin, R. Cooper, E. Engdahl, and S. Larsson. 1999.
Information states and dialogue move engines. In
J. Alexandersson, editor,IJCAI-99 Workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems.

B. J. Grosz and C. L. Sidner. 1986. Attention, intention,
and the structure of discourse. 12(3):175–204.

S. Larsson, P. Bohlin, J. Bos, and D. Traum. 1999. Coding
instructional dialogue for information states. deliverable
D2.2, TRINDI.

R. W. Smith and D. R. Hipp. 1994.Spoken Natural Lan-
guage Dialog Systems. Oxford University Press.

D. Traum, J. Bos, R. Cooper, S. Larsson, I. Lewin, C. Math-
eson, and M. Poesio. 1999. Coding instructional dia-
logue for information states. deliverable D2.1, TRINDI.

