Applying Broadcasting/M ulticasting/Secured Communication to agentMom in
Multi-Agent Systems

User Manual

Version 1.0

This document is submitted in partid fulfillment of the requirements for the degree MSE.
This document is an updated of the previous agentMom’ s user manudl.

Chairoj Mekprasertvit
CIS 895 — MSE Project
Kansas State University
Spring 2004

Using agentM om

1. Introduction — What is agentM om

agentMom is a framework upon which distributed multiagent systems can be
developed. It isimplemented in Java and provides the basic building blocks for building
agents, conversations between agents, and the message that are passed in the
conversations. agentMom is capable of using five different type of conversations.
1. Unicast conversation usng TCP/IP. Thisis basicdly a one-to-one
communication.
2. Secured unicast conversation using Secure Socket Layers (SSL) over TCP/IP.
3. Multicast conversation using multicast socket and datagram packet. With
multicast conversation, an agent is capable of sending a message to a group of
agents that subscribes to the same multicast group.
4. Secured multicast conversation using multicast socket and datagram packet with
symmetric key agorithm.
5. Broadcast conversation using datagram socket and datagram packet. With
broadcast conversation, an agent is capable of sending a message to al agents
within the same locd network.

An overview of how conversationsin agentMom work is shown below. An agent
dlowsitsdf to gpesk with other agents by starting a conversation handler that monitors a
loca port for messages. All agent communiceation is performed via conversation classes,
which define valid sequences of messages that agents can use to communicate. When one
agent wants to communicate with other agents, it starts one of its conversationsasa
separate Java thread. The conversation then establishes a socket connection with the other
agent’s message handler and sends the initid message in the conversation. When the
message handler receives amessage, it passes the message to the agent’ s recelve message
method that compares the message againgt its known list of dlowable message typesto
seeif it isthe dart of avdid conversation. If the conversation isvaid, the agent sartsits
sde of the appropriate conversation, also as a separate Java thread. From that point on, all
communication is controlled by the conversation threads at of each agent. The
conversations send/read messages to/from others using built in readM essage and
sendM essage methods.

conversation conversation
handler handler [W~__
//" \\\
s recei receive)
,// message message //
\ //
“se agentl agent2 -
et method method \
7 cdls make cdls S
\ connec_tipn & 7
Y conversation send initial conversation |k’
“A type type
send/read message ----> Thread/Sub-Object creation

2. How to use agentM om

The ksu.cismom package, which makes up the basics of agentMom, is shown
below. It congists of nine abstract classes, MomObject, Agent, Component,
AgentConversation, Conversation, SecureUnicastConversation, MulticastConversation,
SecureM ulticastConversation and BroadcastConversation, and seven concrete classes
MessageHandler, SecureUnicastHandler, MulticastHandler, SecureMulticastHandler,
BroadcastHandler, Message and Sorry. The actua source codes associated with these
classesarein Appendix A.

& MomOhject | @ SecureUnicastHandler I
7\ 0.2
1
0.
- -
@ Agent—|17 ©® MulticastHandler |
iy 1
0.x 0. 0.
@ MessageHandler | @ BroadcastHandler I | @ SecureMulticastHandler

| & AgentConversation I

@ @ Conversation I @ MulticastConversation I
0.1 & .
| & SecureUnicastConversation l | & BroadcastConversation I
0.1 0.1
0.1 |04 0.1)04
@ Message = = & SecureMulticastConversation

| Owerall Architecture Design Iﬁ

Note that the name Conversation and MessageHandler are not consistent with the
other conversations because we want to the agentMom to be compatible to the older
verson. The previous verson of agentMom only has unicast conversation type
(Conversation class), the multicast, broadcast and secured conversations were added
later. Thus, the Conversation class can be thought of as the UnicastConversation class
and MessageHandler as the UnicastHandler.

agent agent
conver sation conver sation component component
conver sation conver sation
a Agent directly controls conversations b. Component controls conversations

Furthermore, there are two architectures that can be gpplied to agentMom. The
firgt architecture is shown in Figure a In the first architecture, agent directly controls the
conversations. This architecture is very sraightforward since conversations belong to
agent. Basically, the conversations are originated from the run method in agent class. In
the second architecture as shown in Figure b, an agent congsts of one or more
components, and the conversations belong to components, not directly to agents. Also, an
agent can have multiple components and components can have multiple conversation.

The difference from the first architecture is that component is responsible for making
conversation with other agents. In the first architecture, agents are directly responsible for
controlling the conversation. Having components separately from agent dlows

developers to map the agent rol€' s tasks to the component. From now, we will refer to the
first architecture as agent-based architecture and the second architecture as component-
based architecture.

3. agentM om Package

3.1 MomObject Class

MomObject is an abstract class that both Agents and Components inherit from. It
alows conversations to work with either agents or components as their parents. Class that
inherits from this class must implement the sendinterna method. The MomObject
consists of 9 attributes as shown below:

MomObject parent — reference to other MomObject type. It is used by the Component class so that
conversation classes can work with either agents or components as their parents.

String hame — agent name

int port— unicast port number

int multicast_port [] — array of multicast port number

int broadcast_port — broadcast port number

int secure_unicast_port — secured unicast port number

int secure_multicast_port [] — array of secured multicast port number

InetAddressgroup [] — array of multicast address
InetAddress broadcast_address— broadcast address

The user does not need to know the details of this class snce this class does not
provide any service, and it is used within only within the agentMom package. Please refer
to the Component Design document for more detail on this class.

3.2 Agent Class

The Agent dlassis an abstract class that defines the minimum requirements for an
agent to use agentMom package. This class inherits the MomObject class. It dso
implements Runnable interface to be runnable as a separate thread, which requiresarun
method. Notice that run method is an absiract method, so the sub class of this class must
implement this method. If the agent-based architecture is used, the run method iswhere
the agent normdly initiates any conversations.

The agent class provides two main congructors. Oneisfor using only unicast
conversation. This constructor require two parameters, name of the agent and the port
number for unicast communication on which its unicast message handler
(MessageHandler class) will listen for incoming messages. The congtructor is shown
below.

public Agent(String name, int port)

Another congtructor isfor usng any or dl type of conversations. The congtructor is
shown below.

public Agent(String name,
int unicast_port,
int[] multicast_port,
int broadcast_port,
int secure_unicast_port,
int[] secure_multicast_port)

It takes Six parameters, String of agent name, integer of port used in each
conversation. If any port isassigned to be less than one, then it indicates that the
conversation is not going to be used.

Note that the arguments multicast_port and secure_multicast_port are an array of
integer type. It is because we dlows agent to subscribe to multiple groups. Thus, one port
isused for one group. Assigning the first dement less than one indicates thet the
multicast will not be used.

For dl receive methods (recelveM essage, receiveM ulticastConversation, etc),
they are used when the handlers (MessageHandler, MulticastHandler, etc) receive a Sart
of anew conversaion from other agents. The handler will cdl the receive method
corresponding to itsdf. For example, the MessageHandler will call the recelveMessage
method, and MulticastHandler will call recaeiveMulticastConversation method, when it
receives astart of anew conversation from other agents.

Because the origind source of agentMom defines receiveM essage method to be
an abgtract method, al sub class of the Agent class must implement this method.
However, the other types of conversation are optional. Users only need to override the

receive methods that they want to use. These receive methods are an empty method in
Agent class. However, the parameters passing to the methods must be the same as
defined in the Agent class.

Basicdly, users can implement by either reading the message from the connection
stream (unicast) or reading the message directly (multicast and broadcast), and then
determining if it isavaid conversation.

For example, the receiveM essage method for unicast conversation can be
implement as shown below:

public voidreceiveM essage(
Socket server,
Obj ectlnputStreaminput,
Obj ectOutputStream output)
{. .
inti;
Message m;
Server_Registers;
Thread t;

try
{
m = (Message) input.readObject();
write("Received message " + m.performative + " from " + m.sender);

if (m.performative.equals("'register™))

t = newThread(new Server_Register(server, input, output, this, m));
t.start(); // start new thread

elseif (m.performative.equal s("unregister"))

t = newThread(new Server_Unregister(server, input, output, this, m));
t.start(); // start new thread
}

else
{
System.out.printIn(
" ** |nvalid Attempt to start new conversation with performative "
+ m.performative
+" from"
+ m.sender);
t = new Thread(new Sorry(server, input, output, this, m));
t.start(); // start new thread

}
}
catch (ClassNotFoundException cnfex)

{
System.out.println(" ** ClassNotFoundException ");

}
catch (IOException cnfex)
{
System.out.printin(" ** |OException on port (ServerAgent.receiveMessage)");
}
}

In this case, after the receiveM essage method reads the message using the “m =
(Message) input.readObject();” method call, the performative of the message is checked
to seeif itisether “register” or “unregister”. In this case, these are the only two
performatives the agent can recognize that start conversations in which it can participate.
If it is either of these performatives, its creates a new conversation object as a new thread,
sendsit theinitid message, and gartsit running using the conversation’s run method. If
the message received does not Sart with a recognizable performative, the agent sartsthe
default Sorry conversation, which smply sends a sorry message in reply to the
performative.

Another example, the receiveM ulticastConversation method for multicast
conversation can be overridden as shown below:

public void receiveMulticastConversation(
M ulti castSocket mSocket,

Message m,
Vector multicast_queue)

{
inti;
Server_Register s;
Thread t;
write("Recelved message " + m.performative + " from " + m.sender);
if (m.performative.equals("calculate"))

{
t = new Thread(new MulticastServer(mSocket, multicast_queue, this,

m_port[0], m));
t.start();

}
}
In the case of multicast, the message is directly passed to the recelve method. The

MulticastSocket mSocket is used to send out multicast messages and multicast_queueisa
message queue for the conversation to receive multicast message. Then, the performative
of the message is checked to seeif it is“caculate’. In this case, thisisthe only one
performative that agent can participate. The other performatives are ignored. If the agent
recogni zes the performative, it creates anew multicast conversation threed
(MulticastServer) and starts the thread.

Furthermore, agent may start a new component class instead of conversation class
if component-based architecture is used, and the component class will be responsible for
garting the conversation.

3.3 AgentConversation Class

Thisclassis an abdract class that dl types of conversation inherit from. Itisa
generdization of dl conversationsin agentMom package. It defines the minimum
requirements for a conversation to be in agentMom package. It dso dlows user to eadly
implement a new type of conversation for agentMom package. Sub class of thisclass
should override the sendM essage(), readM essage() and nonbl ockedReadM essage()
method and provides at least two type of congtructors, conversation initiator and
conversation respondent. Users of agentMom do not need to know any thing about this
class since it does not provide any service.

3.4 Component Class

The Component class is an dodtract class that defines the minimum requirements
for acomponent. This classinherits from MomObject dass. It implements the Runnable
interface to be able to run as athread. It requires only one parameter, MomObject.
MomObject is used to be able to refer to the agent that uses this component.

The idea of Component classis to support agent architecture that component
performs different tasks. Each component is responsible for particular tasks. Thus, the
agents’ rol€e' s tasks can be mapped to component. Also, components are responsible for
garting the conversation with other agents, instead of agent itself. Therefore, agent Sarts
the components, and component starts the conversations.

There are two important attributes in this class, internal Message and external M essage.
Both attributes are a message queue of type Vector used for internal and external communication.
As the name imply, the internal M essage queue is used for communication between components
of agent. The externalMessage is used for passing message between component class and
conversation, so the message can be deliver to other agents by conversation class. Methods
involve with these attributes are checkExternal, checkinternal, enqueueExternal, enqueuel nternal
and sendinternal. These methods are very straightforward. For example, checkinternal is a
method for fetching a message from the internal M essage queue. The sendinternal method allows
the component to communicate with other components within an agent. This method simply
broadcast message to al active components within the agent.

3.5 MessageHandler Class

The MessageHandler class used to handle unicast connection from other agents.
When an agent is created, it needs to create a new message handler thread as shown
below:

MessageHandler h = new M essageHandler(this.port, this);
h.start();

Two parameters are required to create this class. The two required parameters are
the port number and a pointer to the parent agent object. When started, the message
handler starts a socket server on the indicated port and waits for a connection from
another agent. When a connection is received, the message handler calls the parent
agent’ s receiveM essage method with the connection and the input and output streams.
Thus, agent needs to implement the receiveM essage method and starts an appropriate
conversation as described in the Agent class.

3.6 SecureUnicastHandler Class

The SecureUnicastHandler is used to handle secured unicast connection from
other agents. Basicdlly, it performs the same functiondlity as the MessageHandler class
with security service. The differenceisthat this class use Secure Socket Layersto handle
secured communication over the TCP/IP connection. An agent can create thisclass as
shown below:

SecureUnicastHandler suh = new SecureUnicastHandl er(this.port, this);
suh.start();

To create the SecureUnicastHandler, it requires two parameters, port number and
areference to parent agent object. When started, the message handler starts a SSL. socket
server on the indicated port and waits for a connection from another agent. When a
connection is recelved, the message handler calls the parent agent’s
receiveSecurelUni castConversation method with the connection and the input and output
streams. Thus, agent needs to implement the receiveSecureUnicastConversation method
and gtarts an appropriate conversation as described in the Agent class. The agent then
verifies the received message and starts an gppropriate conversation.

SSL uses many cryptography technologies together such as public key, private
key, sesson key, authentication, digital signature, etc. These are trangparent to the user of
SSL technology. Basically, SSL Socket and SSL ServerSocket can be used amost the
same way as Socket and ServerSocket class. However, the “keystore”, “trustore’ and
“certificate’ must be generated on both sdes of communications. Also, each sde of
communication must have “certificate’ of the other Sde ingtalled. Please note thet to be
ableto usethisclass, javaverson 1.4 isrequired. For example, the tool “keytool”,
provided in javaversion 1.4 packages, can be used to generate these requirements. An
example on how to create is shown at the end of this section.

Certificates must be created for clients and servers that need to communicate
securely using SSL. Java 1.4 uses certificates crested using the Java “keytool” shipped
with J2SE. | used the following command to create an RSA certificate for the server

D:\>keytool -genkey -v -keyalg RSA
Enter keystore password: XXXXXX
What isyour first and last name?
[Unknown]: chairoj mekprasertvit
What is the name of your organizational unit?
[Unknown]: ksu
What is the name of your organization?
[Unknown]: cis
What is the name of your City or Locality?
[Unknown]: manhattan
What is the name of your State or Province?
[Unknown]: ks
What is the two-letter country code for this unit?
[Unknown]: us
Is CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us correct?
[no]: y
Generating 1,024 bit RSA key pair and self-signed certificate (MD5WithRSA)
for: CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us
Enter key password for <mykey>
(RETURN if same as keystore password):
[Saving C:\j2sdk-1.4.2\.keystore]
D:\>

Then, we need to export the self-signed certificate.

C)\j2sdk-1.4.2>keytool -export -keystore .keystore -file certificate
Enter keystore password: XXXXXX
Certificate stored in file <certificate>

Note that thisis a sef-signed certificate. Alternatively, we can generate Certificate
Signing Request (CSR) with -certreq and send that to a Certificate Authority (CA) for signing,
but thisis only experimenting software.

Finally, we import the certificate into a new truststore.

C)\j2sdk-1.4.2>keytool -import -file certificate -keystore truststore
Enter keystore password: XXXXXX
Owner: CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us
Issuer: CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us
Serial number: 402ch4ae
Valid from: Fri Feb 03 05:27:42 CST 2004 until: Thu May 03 06:27:42 CDT 2004
Certificate fingerprints:

MD5: E7:87:63:4E:2F.04:FA:3A:15:92:31:70:4F.B0:1F.C4

SHA1: 94:17:E2:0D:00:DE:09:A7:DA:6A:3E:68:83:FC:39:68:D 7:02:25:6E
Trust this certificate?[no]: yes
Certificate was added to keystore

Notice that the certificate is vaid only aperiod of time (3 months). Now, we can
then run the class using SSL as shown below:

java-Djavax.net.ssl.keyStore=.keystore -Djavax.net.ss.key StorePassword=xxxxxx -
Djavax.net.ssl.trustStore=truststore -Djavax.net.ssl.trustStorePassword=xxxxxx agentTest

3.7 MulticastHandler Class

MulticastHandler is respongble for initidizing and starting multicast socke,
including joining/leaving multicast group. In generdly, it handles multicast connection
with other agents. It uses the MulticastSocket class to subscribe to multicast group. When
an agent is created, it needs to create a new multicast handler thread as shown below:

MessageHandler mh = new MulticastHandler(this, port, time-to-live, group);
mh.start();
or

M essageHandler mh = new MulticastHandler(this, port, time-to-live, group, packetSize);
mh.start();

There are two congructors for this class. The differenceis that the second
congructor alows specifying the buffer size of received multicast message. Thefirg
congtructor has a default of 1024 bytes of buffer Sze. Be aware that the buffer size of
recalved message must be equa or grester to the sent message. Both congtructors have
the same firgt four parameters. The four parameters are a pointer to the parent agent
object, port number, time-to-live of the multicast message and the multicast group
address.

Note that the multicast addressis actudly aclass D IP addressesthat isin the
range 224.0.0.0 to 239.255.255.255. And the time-to-live of the message isin the range
of 0-255. The table below roughly shows the scope for agiven range of time-to-live

| TTL | Scope
0-32 |Indtitution

33-64 |Region

65-128 | Continert

1129-255 |Unrestricted (global)

However, this is not dways true because the network may refuse to forward the
message, and message may be dropped by the network router because the multicast
socket use an unrdliable protocol.

Basicdly, we use the multicast handler the same way as we use the
MessageHandler class. When MulticastHandler classis created, it Sarts the multicast
socket on the indicated port and joins to specified multicast group. Then, it automatically
sends a multicast message to the group indicating thet this agent has join the group. When
aMulticastHandler receives the message indicating thejoin, it cdlsthe
receiveM ulticastJoin method in agent class. Agent has to override this method to make
use of it. For example, agent can keep track of the other agents who join the group after
itsdlf. The same thing applies to the receiveM ulticastL eave method in the Agent class.
When the sendL eave method in the MulticastHandler classis executed. It automeaticaly
sends message leave to the group and then unsubscribes from multicast group.

After thisdassisinitidized, it waits for a message from other agents. When
multicast handler receives amessage, it will check whether the message is a gart of new
conversation/join/leave/conversation message. If it isagtart of conversation, the
MulticastHandler smply calls the parent agent's recelveM ulticastcastConversation
method with the multicast socket, received message and multicast message queue. The
agent then verifies the received message and starts an gppropriate conversation. If the
recelved message is for any multicast conversation class, it adds the message to the
multicast message queue. Then the multicast conversation class can get the message from
this queue later. If thejoin or leave message is received, it calls the parent agent’s
receiveM ulticastJoin or receiveM ulticastL eave as described above. Moreover, the agent
may leave the group by caling the method sendL eave in the MulticastHandler class.

Note that to properly usng multicast protocol the network router does need to
support it; otherwise, the message may be ddlivered as broadcast message or not
delivered at al. Also, the operating systems must be configured to accept multicast

message.

3.8 SecureM ulticastHandler Class

The SecureMulticastHandler is used to handle secured multicast connection from
other agents. Basicdly, it performs the same functiondity as the MulticastHandler class
with security service. The difference isthat this class use symmetric key dgorithm to
perform message encryption and decryption. An agent can creste this class as shown
below:

SecureM ulticastHandler smh = new SecureM essageHandler(this, port, time-to-live, group, key, agorithm);

smh.start();
or

SecureMulticastHandler smh = new SecureM essageHandler(this, port, time-to-live, group, packetSize, key,
algorithm);
smh.start();

Detall of this classis amost the same as the MulticastHandler. However, there are
two more parameters required in the congtructors, key and agorithm. The key parameter
isthe Key classin the java.Security package. It stores the private key used for encrypting
and decrypting message. Notice that we use the same key to encryption and encryption.
The dgorithm parameter is the name of agorithm used to generate the key and how to
perform encryption and decryption. Thus, al agentsin this multicast group need to have
the same key and dgorithm. There are many ways to distribute the key. For example,
agents can request the private key from atrust server using secured unicast conversation.
An agent can generate a key as shown below:

algorithm = "DES";
key = KeyGenerator.getlnstance(algorithm).generateK ey();

In this case, we use the “DES’ dgorithm, and then use the KeyGenerator classto
generate arandom key based on the dgorithm used. Thereis no restriction on how an
agent obtains the key and agorithm aslong asit is the symmetric key agorithm. Message
encryption and decryption are automatically performed by agentMom package; message
is encrypted before sending and decrypted after recaiving, so agent only provides the key
and dgorithm, and make sure thet al agents in the group have the same key and
agorithm.

3.9 BroadcastHandler

BroadcastHandler is respongble for initidizing and starting datagram socket for
broadcast conversation. It uses the DatagramSocket class to send and receive broadcast
conversation in form of datagram packet.

When an agent is created, it needs to creste a new broadcast handler thread to be
ableto recelve adtart of broadcast conversation from the other agents. When
BroadcastHandler is created, it starts the DatagramSocket class for broadcast
conversation. Below is how an agent can start the BroadcastHandler class.

BroadcastHandler bh = new BroadcastHandler(this, port, address);
bh.start();

or

BroadcastHandler bh = new BroadcastHandler(this, port, address, packetSize);
bh.start();

There are two condructors for this class. The difference is that the second
condructor alows specifying the buffer sze of receved multicast message. The fird
condructor has a default of 1024 bytes of buffer sze. Be aware tha the buffer sze of
received message must be equal or greater to the sent message. Both congructors have

the same firg three parameters. The three parameters are a pointer to the parent agent
object, port number and the broadcast address.

In generd, broadcast address is in the form "xxx.xxx.xxx.255" for loca broadcast.
However, many networks do not alow the use of broadcast, and they may have a specific
address for broadcasting. Users have to check to the availability of this address.

After thisdassisinitidized, it waits for a message from other agents. When
broadcast handler receives amessage, it will check whether the message isa start of new
conversation. If itisastart of conversation, the BroadcastHandler smply cdls the parent
agent's receiveBroadcastConversation method with the datagram socket, received
message and broadcast message queue. The agent then verifies the received message and
starts an appropriate conversation. If the received messageis for any broadcast
conversation class, it adds the message to the broadcast message queue. Then the
broadcast conversation class can get the message from this queue later.

3.10 Conver sation

The Conversation class is an abgtract class that actualy carries out the message
passing between agents using unicast communication. There are three methods in the
Conversation class, readM essage, nonbl ockedReadM essage and sendM essage that
actualy pass the messages back and forth over the socket connection. There are redlly
two types of conversation classes that can be derived from the Conversation class, one for
the conversation initiator and one for the conversation respondent. The basic difference
liesin which congructor is used and the details in the abstract run method, which must be
implemented in the concrete class derived from the Conversation class.

An example of an initiator conversation classis the Client_Regigter dassin
Appendix B. To initiate this conversation, the ClientAgent creates anew Client_Register
object (as a separate thread) using the Client_Register congtructor. This constructor does
not need to send a socket, input stream, or output stream (see second Conversation
congructor in Appendix B) since, as an initiator, the conversation creates a new socket
and opens an input and output stream with a second agent’ s message handler. When the
ClientAgent sarts the Client_Register conversation class, the Client Regigter’srun
method is started. This method controls the conversation. It crestes anew connection
using the fallowing commands.

connection = new Socket(connectionHost, connectionPort);
output = new ObjectOutputStream(connection.getOutputStream());
output.flush();

input = new Obj ectl nputStream(connection.getlnputStream());

After the connection is made, the method enters awhile loop that iterates until the
conversation is completed. Insde the while loop is a ssimple switch statement that has a
case for each possible state of the conversation. Actualy the state in the run method may
or may not correspond one-to-one with the states of the conversation as defined in a
MaSE conversation diagram. Actudly, it is possible to have one state for each state in the
diagram plus a state for each trangtion out of a sate. In a smple conversation such as the
Client_Regigter conversation, this could be modeled as a smple sequence of statements;,
however, in the generd case, conversations may have loops and many branches out of a

sngle gate, thus the switch within aloop provides the most generd mechanism for
modeling conversation states. The loop and switch statement are shown below.

while (notDone)

switch (state)
{
case0:
m.performative = "register";
m.content = service;
sendM essage(m, output);
state = 1;
break;
casel:
m = readM essage(input);
if (m.performative.equals("reply™))
notDone = falseg;
else
parent.write("** ERROR - did not get reply back **");
break;

In the code above, the Sate variable starts at Sate zero. In state 0, the message
performativeis set to register and the message content is set to a string sent to the
conversation by the ClientAgent when it was initidized. Actudly the content of a
message can take any Java object type, but it must implement the interface Seridizable.
After sending the message, the state variable is set to 1 and the break statement takes us
out of the switch statement. Since notDone is il true, we stay in the loop, thistime
entering the case 1 option of the switch statement. At this point, we wait a the
readM essage call until a message comesin from the other agent. In this case, we use the
readM essage method that is a blocking read (wait until message arrives). Thereisdso a
nonblockedReadM essage that alows the read message to timeout thus alowing the
conversation to check to seeif it has amessage without waiting forever. The default
vaue of timeout is 100 milliseconds.

Then, if the message is what we expect (areply performative), we processit;
otherwise we print an error message. In this case, we do nothing with the reply and
amply set the notDone varigble to fase so that we will exit the while loop.

After exiting the conversation, we close the connection with the other agent using
the sequence of close statements shown below.

input.close();
output.clos();
connection.close();

3.11 MulticastConver sation

The MulticastConversation class is an abstract class that actudly carries out the
message passing between agentsin the group using multicast communication. There are
two methods in the MulticastConversation class, readM essage, nonblockedReadM essage
and sendMessage that actualy pass the messages back and forth over the socket

connection. There are redly two types of conversation classes that can be derived from
the MulticastConversation class, one for the conversation initiator and one for the
conversation respondent. The basic difference liesin which constructor is used and the
detailsin the abstract run method, which must be implemented in the concrete class
derived from the MulticastConversation class.

Detail on how to create amulticast conversation initiator and respondent is the
same as unicast conversation such as using the while loop and switch statement in the run
method. However, the connection of multicast conversation is performed differently.
There is no need to create a connection socket for sending a message since the
MulticastConversation takes care of this. MulticastSocket uses connectionless protocoal,
S0 thereis no input and out stream as in the unicast conversation.

In order to initiate multicast conversation, an agent need to Sart the multicast
handler first because the handler is responsible for joining the multicast group, and it is
aso respongble for receiving dl multicast messages and place in the message queue. The
conversation can fetch the message through the message queue by using its conversation
name as explained in the next paragraph. When the multicast conversation is created, the
constructor needs to cal the super class congtructor of the initiator side as shown below:

super (agent, group, port, messageQueue);

The agent parameter is a pointer to the parent agent. The group, port and
messageQuele parameter are the multicast address, port for multicast and multicast
message queue, respectively. Note that the multicast message queue must be a pointer to
the same queue as the one the agent passes to the MulticastHandler’ s constructor. An
example of multicast conversation initiator’ s run method can be created as shown below:

public void run()

{
Message m = new M essage();
int state =0;
boolean notDone = true;
try
{

while (notDone)

switch (state)
{
caseO0:
m.performative = "calculate”;
m.content = commandl,
startConversation(m, conversation_name, "MulticastServer");
state = 1;
break;
casel:
m=readM essage(" multicast");
if (m.performative.equals('reply"))
{
parent.write((String) m.content + " from "+ m.sender +"\n");
m.performative = "good bye";
m.content = command2;
sendM essage(m);

notDone =falsg
}

else
parent.write("** ERROR - did not get reply back **");
}

catch (IOException €)
{

parent.write("** 10 Exception in multicast conversation.");

}
}

Notice that the startConversation method is used on case 0. Thisis how multicast
conversation can be started. Any subsequence will use sendMessage instead as shown in
case 1. Also, there are three required parameters for sending amessage. Thefirst oneis
the Message object. The second one is the name of this conversation (the name of the
conversation must be unique from the other multicast conversation because the
degtination conversation can reply to the correct conversation. The last parameter isthe
name of the destination conversation. The reason for using the name of conversation is
that an agent may have multiple concurrent threads of multicast conversation that use the
same multicast group. The originating and destinating conversation are needed.

Moreover, multicast conversation must also pass the name to the readM essage method to
fetch the message destined for this conversation. In this case, the multicast is the name of
this conversation and MulticastServer is the name of the destination conversation.

As same as any conversation class in agentMom, there' re two methods for
fetching message from the queue. One is a blocked read (readMessage), and another one
is nonblocked read (nonblockedReadM essage). However, the nonblocked read alows
specifying the timeout in milliseconds.

Be aware that the conversation needs to know how many timesit has to perform
read message because this is one-to-many conversation. The conversation may receive
more than one message, so the read message aso need to perform more than one times.
Thus, it may get an unexpected message if the read message does not perform properly.

3.12 Secur eM ulticastConver sation

The SecureMulticastConversation class is an abstract class that actudly carries
out the message passing between agents in the group using secured multicast
communication. SecureM ulticastConversation has the same detall asthe
MulticastConversation class. The agent has to start the SecureMulticastHandler first
before starting a secured multicast conversation. Also, the private key and the name of
the must be the same as the SecureM ulticastHandler class uses. Below is how the
conversation can cal the super class congructor of theinitiator Sde:

super (agent, group, port, messageQueue, key, algorithm);

The details on how to send and receive message can be performed the same way
asin the multicast conversation. Message encryption and decryption is done
autometicaly.

3.13 Secur eUnicastConver sation

The SecureUnicastConversation classis an abdtract classthat actualy carries out
the message passing to agentsin the same group using secured multicast communication.
Because this class relies on the SSL technology as same as the SecureUnicastHandler
class, it has the same requirements as the SecureUnicastHandler class. Thereis only one
different between using this class and the Conversation class, the socket. In the
Conversation class, the Socket classis used to make connection to the other agents. In
this class, the SSL Socket is used instead. The code below shows how to create the

SSL Socket class to make a connection with other agents:
SSL SocketFactory sslFact =
(SSL SocketFactory) SSL SocketFactory.getDefault();
connection = (SSL Socket) sslFact.createSocket(connectionHost, connectionPort);
output = new ObjectOutputStream(connection.getOutputStream());
input = new Objectl nputStream(connection.getl nputStream());

After we initidize the connection, output, input, we can then use these variables
as same as we do in the Conversation class. To exit the conversation, we aso do the same
way asin the Conversation class as shown below.

input.close();
output.close();
connection.close();

3.14 BroadcastConver sation

The BroadcastConversation classis an abdtract classthat actudly carries out the
message passing to al agents under the same locd network. The BroadcastConversation
class uses the DatagramSocket to send and receive message. In fact, the DatagramSocket
classis asuper class of the MulticastSocket class. Detail on using broadcast conversation
isthe same asin multicast conversation. As same as multicast conversation, the
BroadcastHandler is needed to Sart first. Below is how the conversation can cal the
super class condructor of the initiator Sde:

super (agent, broadcastAddress, port, messageQueue);

An example of the while loop in broadcast conversation initiator’ s run method can
be created as shown below:

while (notDone)

switch (state)
{
case0:

m.performative = "calculate";
m.content = commandl,;
startConversation(m, conversation_name, "BroadcastServer");
state = 1;
break;

casel:
m=readM essage(" multicast");
if (m.performative.equals("reply"))
{

parent.write((String) m.content + " from "+ m.sender +'\n");
m.performative = "good bye";
m.content = command2;

sendM essage(m);
notDone =falseg

}

else
parent.write("** ERROR - did not get reply back **");

}
}

Please be aware that sending many broadcast messages can easily flood the
network. Also, message can be lost or unddivered easily using this type of conversation.
Below are some of the possible causes:

1) The network do not alow broadcast message.

2) The broadcast addressis incorrect.

3) The router drops message, especidly during busy traffic.
4) The packet

3.15 M essage Class

Message class defines the fiedd used in the message passed back and forth
between agents. Note that these fields are derived from the fields in a KQML message,
and some of them are automaticdly filled by the sendMessage method in each type of
conversation classes. In agentMom, there is no resdtriction in using these fidds. For more

information about KQML please refer to http://www.fipaorg It is farly straightforward
and consists of the following attributes.

Object content = null

Support for complex object that encapsulates a number of attribute types. These complex objects can be
used to pass multiple parametersin a single message. Note that in order to pass an object across a socket
connection, it must implement the interface Serializable.

String force= null

Specify whether the sender will never deny the meaning of the performative.

String host = null

Host name that this messageis sent to.

String inreplyto = null

The expected label in areply.

String language = null

Name of representation language of the content.

String ontology = null

Name of the ontoloty used in the content

String performative = null

Describe the action that the message intends. The user can define any performative they feel are necessary.
int port=0

Port number used for the message.

String receiver = null

Name of the receiver

String replywith = null

Whether the sender expects areply, and if so, alabel for thereply.

String sender = null

Name of the sender (agent's name).

When a conversation calls the sendMessage method, it automaticaly fill the sender, host,
and port fields using the parent agent’s name and port attributes and automatically gets the host
name from the system. The replywith and inreplyto fields are dso automaticaly fill if the
sendMessage is cdled from MulticastConversation, SecureMulticastConversation and
BroadcastConversation. The other fields of interest in an agentM om message are the performative
and contert fields. The performative field describes the action that the message intends and is
used in the agent and conversation classes to

(1) Determine the type of conversation being requested and
(2) To control the execution of a conversation in the run method.

Because agentMom does not have any specific performative types, users can
define any performative they fed are necessary. The content of an agentMom messageis
a0 very generd. Basicdly, the message passes any vaid Java object type. This can be
asample asastring, or amore complex object that encapsulates a number of attribute
types. These complex objects can be used to pass multiple parameters in asingle message
as shown in the class below.

public class ComplexObject implements Serializable

{
String agent;
String host;
int port;
String service;
public ComplexObject(String a, String h, int p, String ser)
{
agent = &;
host = h;
port = p;
service = ser;

}

This class encapsulates four parameters (three strings and an integer) that can be
assigned to message content field. Note that in order to pass an object across a socket
connection, it must implement the interface Seridizable.

Note that in order to pass an object across a socket connection, it must implement
the interface Seridizable.

3.16 Sorry Class

The Sorry class defines a general-purpose conversation to reply "Sorry" to any
unknown/unexpected type of unicast conversation. It isa simply concrete class of Conversation
class, so thereis no implementation required in this class. Automaticaly, performative field is set
to "sorry" and content field is set to "unknown conversation request” when using this class. The
example on how to use this class is shown above when we described the Agent class.

4. Step By Step Construction

To build an gpplication usng the agentMom framework, you need to perform the
fallowing:
1) Get acopy of agentMom classes as shown in Appendix A.

2)

3)

4)

5)

Define your agent classes and conversations according the MaSE (Multiagent
Systems Engineering) methodology. An environment, agentTool, is available to help
you with this. Please note that the current agentTool only supports code generation
for unicast conversation.

For each agent class in your system, extend the agentMom Agent class.

a) Defineany necessary receive message methods for each type of conversation to
handle dl conversations for which the agent is a respondent.

b) For each action defined in the set of conversations in which this agent may
participate, define amethod in the agent class. Thiswill be your interface to the
conversation.

c) Implement the run method as the main procedure of the method. If your agent
initiates any conversations, this could be where they will originate.

d) If you want to run your agent as a stand-aone application, create a main method
to initidize the agent running.

For each conversation in your system design, create two conversation classes, in

initiator and a respondent class.

a) For eachinitiator class, define a congtructor that includes, as parameters, the first
message sent.

b) For each respondent class, define a constructor that includes, as a parameter, the
message read by the parent receive conversation method before the conversation
thread was started.

¢) Implement the run method
i) Deiineastate variableinitidized to state 0.

i) If itisaninitiator conversation, creete a connection with the agent of interest.

iif) Create a switch statement within awhile loop where each case in the switch
statement corresponds to a state or atrangtion. Ensure at least one of the
states exits the while loop.

iv) Close the connection.

Creste any supporting classes for things such as

a) Objectsthat combine multiple parameters into a single object.

b) System setup/testing routines.

¢) Components of intelligent agents.

Appendix A
agentMom Sour ce Code
pleaserefer to
(Wwww.cis.ksu.edu/~cme6556/sr ¢)
the sour ce code will includein the final document.

Appendix B
Register-Deregister example

Appendix C
Key Distribution example

