
www.mellanox.com

Mellanox Messaging Accelerator
(VMA) Library for Linux

User Manual
Rev 6.9.1

2 Document Number: DOC-00393 C01

Mellanox Technologies

350 Oakmead Parkway Suite 100

Sunnyvale, CA 94085

U.S.A.

www.mellanox.com

Tel: (408) 970-3400

Fax: (408) 970-3403

© Copyright 2015. Mellanox Technologies. All Rights Reserved.

Mellanox®, Mellanox logo, BridgeX®, ConnectX®, Connect-IB®, CoolBox®, CORE-Direct®, GPUDirect®, InfiniBridge®,

InfiniHost®, InfiniScale®, Kotura®, Kotura logo, MetroX®, MLNX-OS®, PhyX®, ScalableHPC®, SwitchX®, TestX®,

UFM®, Virtual Protocol Interconnect®, Voltaire® and Voltaire logo are registered trademarks of Mellanox Technologies,

Ltd.

CyPU™, ExtendX™, FabricIT™, FPGADirect™, HPC-X™, Mellanox Care™, Mellanox CloudX™, Mellanox Open

Ethernet™, Mellanox PeerDirect™, Mellanox Virtual Modular Switch™, MetroDX™, NVMeDirect™, StPU™,

Switch-IB™, Unbreakable-Link™ are trademarks of Mellanox Technologies, Ltd.

All other trademarks are property of their respective owners.

NOTE:

THIS HARDWARE, SOFTWARE OR TEST SUITE PRODUCT (“PRODUCT(S)”) AND ITS RELATED

DOCUMENTATION ARE PROVIDED BY MELLANOX TECHNOLOGIES “AS-IS” WITH ALL FAULTS OF ANY

KIND AND SOLELY FOR THE PURPOSE OF AIDING THE CUSTOMER IN TESTING APPLICATIONS THAT USE

THE PRODUCTS IN DESIGNATED SOLUTIONS. THE CUSTOMER'S MANUFACTURING TEST ENVIRONMENT

HAS NOT MET THE STANDARDS SET BY MELLANOX TECHNOLOGIES TO FULLY QUALIFY THE PRODUCT(S)

AND/OR THE SYSTEM USING IT. THEREFORE, MELLANOX TECHNOLOGIES CANNOT AND DOES NOT

GUARANTEE OR WARRANT THAT THE PRODUCTS WILL OPERATE WITH THE HIGHEST QUALITY. ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT ARE DISCLAIMED.

IN NO EVENT SHALL MELLANOX BE LIABLE TO CUSTOMER OR ANY THIRD PARTIES FOR ANY DIRECT,

INDIRECT, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES OF ANY KIND (INCLUDING, BUT NOT

LIMITED TO, PAYMENT FOR PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY FROM THE USE OF THE PRODUCT(S) AND RELATED DOCUMENTATION EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents Rev 6.9.1

 3

Table of Contents

Document Revision History .. 6

About This Manual .. 8

1 Introduction to VMA .. 10

1.1 VMA Overview .. 10

1.2 Basic Features .. 10

1.3 Target Applications ... 10

1.4 Advanced VMA Features .. 11

2 VMA Library Architecture ... 12

2.1 Top-Level .. 12

2.2 Socket Types .. 12

3 Installing VMA ... 13

4 Configuring VMA ... 13

4.1 Configuring libvma.conf .. 13

4.1.1 Configuring Target Application or Process ... 13

4.1.2 Configuring Socket Transport Control .. 14

4.1.3 Example of VMA Configuration... 15

4.2 VMA Configuration Parameters .. 15

4.2.1 Configuration Parameter Values .. 17

4.2.2 Beta Level Features Configuration Parameters ... 28

5 Using sockperf with VMA ... 30

6 Example Running sockperf Ping-pong Test .. 31

7 VMA Extra API ... 31

7.1 Overview of the VMA Extra API .. 31

7.2 Using VMA Extra API ... 32

7.3 Control Off-load Capabilities During Run-Time .. 33

7.3.1 Adding libvma.conf Rules During Run-Time ... 33

7.3.2 Creating Sockets as Off-loaded or Not-Off-loaded ... 33

7.4 Packet Filtering ... 33

7.4.1 Zero Copy recvfrom() .. 34

7.4.2 Freeing Zero Copied Packet Buffers .. 35

8 Debugging, Troubleshooting, and Monitoring ... 37

8.1 Monitoring – the vma_stats Utility... 37

8.1.1 Examples .. 38

8.2 Debugging .. 42

8.2.1 VMA Logs ... 42

8.2.2 Ethernet Counters ... 42

Rev 6.9.1 Table of Contents

4

8.2.3 NIC Counters .. 42

8.3 Troubleshooting .. 42

Appendix A: Sockperf - UDP/TCP Latency and Throughput Benchmarking Tool 46

A.1 Overview ... 46

A.1.1 Advanced Statistics and Analysis ... 47

A.2 Configuring the Routing Table for Multicast Tests ... 47

A.3 Latency with Ping-pong Test .. 48

A.3.1 UDP MC Ping-pong Over 1 Gb... 48

A.3.2 UDP MC Ping-pong Over 10 Gb .. 48

A.3.3 UDP MC Ping-pong Over 10 Gb + VMA... 49

A.3.4 UDP MC Ping-pong Summary .. 50

A.4 Bandwidth and Packet Rate With Throughput Test ... 50

A.4.1 TCP Throughput Over 10 Gb.. 50

A.4.2 TCP Throughput Over 10 Gb+VMA .. 50

A.4.3 TCP Throughput Summary ... 51

A.5 sockperf Subcommands ... 51

A.5.1 Additional Options ... 51

A.5.2 Sending Bursts ... 54

A.6 Debugging sockperf .. 54

A.7 Troubleshooting sockperf ... 54

Appendix B: Multicast Routing .. 55

B.1 Multicast Interface Definitions ... 55

Appendix C: Acronyms .. 56

Table of Contents Rev 6.9.1

 5

List of Tables

Table 1: Document Revision History ... 6

Table 2: Target Process Statement Options ... 14

Table 3: Socket Transport Statement Options .. 14

Table 4: Configuration Parameter Values ... 17

Table 5: Beta Level Configuration Parameter Values ... 28

Table 6: add_conf_rule Parameters .. 33

Table 7: add_conf_rule Parameters .. 33

Table 8: Packet Filtering Callback Function Parameters .. 34

Table 9: Zero-copy revcfrom Parameters .. 34

Table 10: Freeing Zero-copy Datagram Parameters .. 35

Table 11: vma_stats Utility Options ... 37

Table 12: UDP MC Ping-pong Results .. 50

Table 13: TCP Throughput Results ... 51

Table 14: Available Subcommands ... 51

Table 15: General sockperf Options .. 52

Table 16: Client Options .. 53

Table 17: Server Options ... 53

Table 18: Acronym Table .. 56

Rev 6.9.1 Document Revision History

6

Document Revision History

Table 1: Document Revision History

Version Description

Rev 6.9.1  Updated the following sections:

 VMA Configuration Parameters

 Configuration Parameter Values

Rev 6.8.3  Updated the following sections:

 Overview of the VMA Extra API

 Zero Copy recvfrom()

 Freeing Zero Copied Packet Buffers

Rev 6.7  No changes

Rev 6.6.4  Updated the following sections:

 Configuring Socket Transport Control

 VMA Configuration Parameters

 Configuration Parameter Values

 Monitoring – the vma_stats Utility

 Example 3

Rev 6.5.9  Added the following sections:

 Adding libvma.conf Rules During Run-Time

 Creating Sockets as Off-loaded or Not-Off-loaded

Rev 6.4.11  Added the following sections:

 Using sockperf with VMA

 Example Running sockperf Ping-pong Test

 Beta Level Features Configuration Parameters

 Updated the following sections:

 VMA Configuration Parameters

 Configuration Parameter Values

 Removed the Installation and Initial Configuration chapter. Was

moved to the Installation Guide

Rev 6.3.28 Updated the following sections:

 Target Applications

 VMA Configuration Parameters

 Configuration Parameter Values

 Problem: Incorrect IGMP version

 Problem: Lack of huge page resources in the system

Rev 6.1  Updated sections in "Introduction to VMA" chapter and "VMA

Library Architecture" for offload over InfiniBand

 Updated "VMA System Requirements" section

 Updated "Configuring the ConnectX-3 HCA for VMA" section

 Removed deprecated parameters for NetEffect from "VMA

Configuration Parameter Values" section

 User Manual Rev 6.9.1

 7

Version Description

 Updated Appendix on sockperf.

Rev 6.0  Updated chapter on "VMA Library Architecture."

 Updated graphic to reflect support of ConnectX3.

 Removed outdated sections, "Unicast Support" and "Link and Port

Recovery."

 Updated sections in chapter on "Installation and Initial

Configuration."

 VMA System Requirements

 All sections on VMA Installation and Upgrade

 Updated chapter on "Configuring VMA."

 Removed information about configuring a virtual MAC interface for

unicast offload (deprecated feature).

 Updated information for VMA configuration parameters

VMA_THREAD_MODE, VMA_CLOSE_ON_DUP2,

VMA_CONFIG_FILE, VMA_APPLICATION_ID.

 Updated default values for VMA configuration parameters

VMA_RX_POLL and VMA_SELECT_POLL.

 Updated configuration parameter descriptions to include poll().

 Removed chapter "Tuning VMA". This information will be included

in a separate Performance Tuning Guide, which will be part of the

VMA 6.0 Documentation package.

 Updated information for "Zero-copy revcfrom."

 Added troubleshooting topic for "UMCAST enabled".

Rev 6.9.1 About This Manual

8

About This Manual

Audience

This manual is primarily intended for:

 Market data professionals

 Messaging specialists

 Software engineers and architects

 Systems administrators tasked with installing/uninstalling/maintaining VMA

 ISV partners who want to test/integrate their traffic-consuming/producing applications

with VMA.

Related Documentation

For additional relevant information, refer to the latest revision of the following documents:

 Mellanox Messaging Accelerator (VMA) Library for Linux Release Notes (DOC-

00329)

 Mellanox Messaging Accelerator (VMA) Installation Guide (DOC-10055)

 Performance Tuning Guidelines for Mellanox Network Adapters (DOC 3368)

Document Conventions

NOTE: Identifies important information that contains helpful suggestions.

CAUTION: Alerts you to risk of personal injury, system damage, or loss of data.

WARNING: Warns you that failure to take or avoid a specific action might result in

personal injury or a malfunction of the hardware or software. Be aware of the hazards

involved with electrical circuitry and be familiar with standard practices for preventing

accidents before you work on any equipment.

 User Manual Rev 6.9.1

 9

Typography

The following table describes typographical conventions in Mellanox documentation. All

terms refer to isolated terms within body text or regular table text unless otherwise

mentioned in the Notes column.

Term, Construct,

Text Block

Example Notes

File name, pathname /opt/ufm/conf/gv.cfg

Console session (code) -> flashClear <CR> Complete sample line or block.

Comprises both input and

output.

The code can also be shaded.

Linux shell prompt # The "#"character stands for the

Linux shell prompt.

Mellanox CLI Guest Mode Switch > Mellanox CLI Guest Mode.

Mellanox CLI admin mode Switch # Mellanox CLI admin mode

String < > or [] Strings in < > or [] are

descriptions of what will

actually be shown on the screen,

for example, the contents of

<your ip> could be 192.168.1.1

Management GUI label,

item name

New Network,

New Environment

Management GUI labels and

item names appear in bold,

whether or not the name is

explicitly displayed (for

example, buttons and icons).

User text entered into

Manager, e.g., to assign as

the name of a logical object

"Env1", "Network1" Note the quotes. The text

entered does not include the

quotes.

Rev 6.9.1 Introduction to VMA

10

1 Introduction to VMA

1.1 VMA Overview

The Mellanox Messaging Accelerator (VMA) library is a network-traffic offload,

dynamically-linked, user-space Linux library which serves to transparently enhance the

performance of socket-based networking-heavy applications over an InfiniBand or Ethernet

network. VMA has been designed for latency-sensitive and throughput-demanding, unicast

and multicast applications. VMA can be used to accelerate producer applications and

consumer applications, and enhances application performance by orders of magnitude

without requiring any modification to the application code.

The VMA library accelerates TCP and UDP socket applications, by offloading traffic from

the user-space directly to the network interface card (NIC) or Host Channel Adapter (HCA),

without going through the kernel and the standard IP stack (kernel-bypass). VMA increases

overall traffic packet rate, reduces latency, and improves CPU utilization.

1.2 Basic Features

The VMA library utilizes the direct hardware access and advanced polling techniques of

RDMA-capable network cards. Utilization of InfiniBand's and Ethernet’s direct hardware

access enables the VMA kernel bypass, which causes the VMA library to bypass the kernel’s

network stack for all IP network traffic transmit and receive socket API calls. Thus,

applications using the VMA library gain many benefits, including:

 Reduced context switches and interrupts, which result in:

 Lower latencies

 Higher throughput

 Improved CPU utilization

 Minimal buffer copies between user data and hardware – VMA needs only a single

copy to transfer a unicast or multicast offloaded packet between hardware and the

application’s data buffers.

1.3 Target Applications

Good application candidates for VMA include, but are not limited to:

 Fast transaction-based network applications, which require a high rate of request-

response type operations over TCP or UDP unicast. This also includes any

send/receive to/from an external network entity, such as a Market Data Order Gateway

application working with an exchange.

 Market-data feed-handler software which consumes multicast data feeds (and which

often use multicast as a distribution mechanism downstream), such as Wombat WDF

and Reuters RMDS, or any home-grown feed handlers.

 Messaging applications responsible for producing/consuming relatively large amounts

of multicast data including applications that use messaging middleware, such as Tibco

Rendezvous (RV).

 User Manual Rev 6.9.1

 11

 Caching/data distribution applications, which utilize quick network transactions for

cache creation/state maintenance, such as MemCacheD and Redis.

 Applications that handle distributed denial of service (DDoS) and web services

applications with a heavy load of DNS requests.

 Messaging applications, such as UMS Informatica, which VMA 6.4 was certified with

 Any other applications that make heavy use of multicast or unicast that require any

combination of the following:

 Higher Packets per Second (PPS) rates than with kernel.

 Lower data distribution latency.

 Lower CPU utilization by the multicast consuming/producing application in order to

support further application scalability.

1.4 Advanced VMA Features

The VMA library provides several significant advantages:

 The underlying wire protocol used for the unicast and multicast solution is standard

TCP and UDP IPv4, which is interoperable with any TCP/UDP/IP networking stack.

Thus, the opposite side of the communication can be any machine with any OS, and

can be located on an InfiniBand or an Ethernet network

NOTE: VMA uses a standard protocol that enables an application to use the VMA for

asymmetric acceleration purposes. A ‘TCP server side’ only application, a 'multicast

consuming' only or 'multicast publishing' only application can leverage this, while

remaining compatible with Ethernet or IPoIB peers.

 Kernel bypass for unicast and multicast transmit and receive operations. This delivers

much lower CPU overhead since TCP/IP stack overhead is not incurred

 Reduced number of context switches. All VMA software is implemented in user space

in the user application’s context. This allows the server to process a significantly

higher packet rate than would otherwise be possible

 Minimal buffer copies. Data is transferred from the hardware (NIC/HCA) straight to

the application buffer in user space, with only a single intermediate user space buffer

and zero kernel IO buffers

 Fewer hardware interrupts for received/transmitted packets

 Fewer queue congestion problems witnessed in standard TCP/IP applications

 Supports legacy socket applications – no need for application code rewrite

 Maximizes Messages per second (MPS) rates

 Minimizes message latency

 Reduces latency spikes (outliers)

 Lowers the CPU usage required to handle traffic

Rev 6.9.1 VMA Library Architecture

12

2 VMA Library Architecture

2.1 Top-Level

The VMA library is a dynamically linked user-space library. Use of the VMA library does

not require any code changes or recompiling of user applications. Instead, it is dynamically

loaded via the Linux OS environment variable, LD_PRELOAD.

When a user application transmits TCP and UDP, unicast and multicast IPv4 data, or listens

for such network traffic data, the VMA library:

 Intercepts the socket receive and send calls made to the stream socket or datagram

socket address families.

 Implements the underlying work in user space (instead of allowing the buffers to pass

on to the usual OS network kernel libraries).

VMA implements native RDMA verbs API. The native RDMA verbs have been

extended into the Ethernet RDMA-capable NICs, enabling the packets to pass directly

between the user application and the InfiniBand HCA or Ethernet NIC, bypassing the

kernel and its TCP/UDP handling network stack.

You can implement the code in native RDMA verbs API, without making any changes to

your applications. The VMA library does all the heavy lifting under the hood, while

transparently presenting the same standard socket API to the application, thus redirecting the

data flow.

The VMA library operates in a standard networking stack fashion to serve multiple network

interfaces.

The VMA library behaves according to the way the application calls the bind, connect, and

setsockopt directives and the administrator sets the route lookup to determine the interface to

be used for the socket traffic. The library knows whether data is passing to or from an

InfiniBand HCA or Ethernet NIC. If the data is passing to/from a supported HCA or Ethernet

NIC, the VMA library intercepts the call and does the bypass work. If the data is passing

to/from an unsupported HCA or Ethernet NIC, the VMA library passes the call to the usual

kernel libraries responsible for handling network traffic. Thus, the same application can

listen in on multiple HCAs or Ethernet NICs, without requiring any configuration changes

for the hybrid environment.

2.2 Socket Types

The following Internet socket types are supported:

 Datagram sockets, also known as connectionless sockets, which use User Datagram

Protocol (UDP).

 Stream sockets, also known as connection-oriented sockets, which use Transmission

Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP).

 User Manual Rev 6.9.1

 13

3 Installing VMA

For detailed information on how to install the VMA software, please refer to the VMA

Installation Guide.

4 Configuring VMA

You can control the behavior of VMA by configuring:

 The libvma.conf file.

 VMA configuration parameters, which are Linux OS environment variables.

 VMA extra API

4.1 Configuring libvma.conf

The installation process creates a default configuration file, /etc/libvma.conf, in which you

can define and change the following settings:

 The target applications or processes to which the configured control settings apply. By

default, VMA control settings are applied to all applications.

 The transport to be used for the created sockets.

 The IP addresses and ports in which you want offload.

By default, the configuration file allows VMA to offload everything.

In the libvma.conf file:

 You can define different VMA control statements for different processes in a single

configuration file. Control statements are always applied to the preceding target

process statement in the configuration file.

 Comments start with # and cause the entire line after it to be ignored.

 Any beginning whitespace is skipped.

 Any line that is empty is skipped.

 It is recommended to add comments when making configuration changes.

The following sections describe configuration options in libvma.conf. For a sample

libvma.conf file, see Example of VMA Configuration (on page 15).

4.1.1 Configuring Target Application or Process

The target process statement specifies the process to which all control statements that appear

between this statement and the next target process statement apply.

Each statement specifies a matching rule that all its subexpressions must evaluate as true

(logical and) to apply.

If not provided (default), the statement matches all programs.

The format of the target process statement is :

application-id <program-name|*> <user-defined-id| *>

http://www.mellanox.com/related-docs/prod_acceleration_software/VMA_6.4_Installation_Guide_DOC-10055.pdf
http://www.mellanox.com/related-docs/prod_acceleration_software/VMA_6.4_Installation_Guide_DOC-10055.pdf

Rev 6.9.1 Configuring VMA

14

Table 2: Target Process Statement Options

Option Description

<program-name|*> Define the program name (not including the path) to which

the control statements appearing below this statement

apply.

Wildcards with the same semantics as "ls" are supported (*

and ?).

For example:

 db2* matches any program with a name starting with

db2.

 t?cp matches ttcp, etc.

<user-defined-id|*> Specify the process ID to which the control statements

appearing below this statement apply.

Note: You must also set the VMA_APPLICATION_ID

environment variable to the same value as user-defined-id.

4.1.2 Configuring Socket Transport Control

Use socket control statements to specify when libvma will offload

AF_INET/SOCK_STREAM or AF_INET/SOCK_DATAGRAM sockets (currently

SOCK_RAW is not supported).

Each control statement specifies a matching rule that all its subexpressions must evaluate as

true (logical and) to apply. Statements are evaluated in order of definition according to "first-

match".

Socket control statements use the following format:

use <transport> <role> <address|*>:<port range|*>

Table 3: Socket Transport Statement Options

Option Description

transport Define the mode of transport:

 vma - VMA should be used.

 os - The socket should be handled by the OS network

stack. In this mode,the sockets are not offloaded.

The default is vma.

role Specify one of the following roles:

 tcp_server – for listen sockets. Accepted sockets

follow listen sockets. Defined by local_ip:local_port.

 tcp_client – for connected sockets. Defined by

remote_ip:remote_port:local_ip:local_port

 udp_sender – for TX flows. Defined by

remote_ip:remote_port

 udp_receiver – for RX flows. Defined by

local_ip:local_port

 udp_connect – for UDP connected sockets.

Defined by remote_ip:remote_port:local_ip:local_port

 User Manual Rev 6.9.1

 15

Option Description

address You can specify the local address the server is bind to or

the remote server address the client connects to.

The syntax for address matching is:

<IPv4 address>[/<prefix_length>]|*

 IPv4 address - [0-9]+\.[0-9]+\.[0-9]+\.[0-9]+ each sub

number < 255.

 prefix_length - [0-9]+ and with value <= 32. A

prefix_length of 24 # matches the subnet mask

255.255.255.0 . A prefix_length of 32 requires

matching of the exact IP.

port range Define the port range as:

start-port[-end-port]

where port numbers are > 0 and < 65536

4.1.3 Example of VMA Configuration

To set the following:

 Apply the rules to program tcp_lat with ID B1

 Use VMA by TCP clients connecting to machines that belong to subnet 192.168.1.*

 Use OS when TCP server listens to port 5001 of any machine

In libvma.conf, configure:

application-id tcp-lat B1

use vma tcp_client 192.168.1.0/24:*:*:*

use os tcp_server *:5001

Note: You must also set the VMA parameter:

VMA_APPLICATION_ID=B1

4.2 VMA Configuration Parameters

The VMA configuration parameters are Linux OS environment variables, and are controlled

with system environment variables.

It is recommended that you set these parameters prior to loading the application with VMA.

You can set the parameters in a system file, which can be run manually or automatically.

All the parameters have defaults that can be modified.

On default startup, the VMA library prints the VMA version information, as well as the

configuration parameters being used and their values to stderr.

VMA always logs the values of the following parameters, even when they are equal to the

default value:

 VMA_TRACELEVEL

 VMA_LOG_FILE

For all other parameters, VMA logs the parameter values only when they are not equal to the

default value.

Rev 6.9.1 Configuring VMA

16

NOTE: The VMA version information, parameters, and values are subject to change.

Example:

VMA INFO : ---

VMA INFO : VMA_VERSION: 6.9.1-0 Release built on 2015-05-10-16:20:19

VMA INFO : Cmd Line: sockperf sr

VMA DEBUG : Current Time: Sun May 10 17:35:35 2015

VMA DEBUG : Pid: 24714

VMA DEBUG : OFED Version: MLNX_OFED_LINUX-2.3-0.2.5:

VMA DEBUG : System: 2.6.32-220.el6.x86_64

VMA DEBUG : Architecture: x86_64

VMA DEBUG : Node: hail16

VMA DEBUG : --

Log Level 4 [VMA_TRACELEVEL]

Log Details 2 [VMA_LOG_DETAILS]

Log Colors Enabled [VMA_LOG_COLORS]

Log File [VMA_LOG_FILE]

Stats File [VMA_STATS_FILE]

Stats shared memory directory /tmp/ [VMA_STATS_SHMEM_DIR]

Stats FD Num (max) 100 [VMA_STATS_FD_NUM]

Conf File /etc/libvma.conf [VMA_CONFIG_FILE]

Application ID VMA_DEFAULT_APPLICATION_ID [VMA_APPLICATION_ID]

Polling CPU idle usage Disabled [VMA_CPU_USAGE_STATS]

SigIntr Ctrl-C Handle Disabled [VMA_HANDLE_SIGINTR]

SegFault Backtrace Disabled [VMA_HANDLE_SIGSEGV]

Ring allocation logic TX 0 (Ring per interface)

[VMA_RING_ALLOCATION_LOGIC_TX]

Ring allocation logic RX 0 (Ring per interface)

[VMA_RING_ALLOCATION_LOGIC_RX]

Ring migration ratio TX 100 [VMA_RING_MIGRATION_RATIO_TX]

Ring migration ratio RX 100 [VMA_RING_MIGRATION_RATIO_RX]

Ring limit per interface 0 (no limit) [VMA_RING_LIMIT_PER_INTERFACE]

TCP max syn-fin rate 0 (no limit) [VMA_TCP_MAX_SYN_FIN_RATE]

Tx Mem Bufs TCP 1000000 [VMA_TX_SEGS_TCP]

Tx Mem Bufs 200000 [VMA_TX_BUFS]

Tx QP WRE 16000 [VMA_TX_WRE]

Tx Max QP INLINE 220 [VMA_TX_MAX_INLINE]

Tx MC Loopback Enabled [VMA_TX_MC_LOOPBACK]

Tx non-blocked eagains Disabled [VMA_TX_NONBLOCKED_EAGAINS]

Tx Prefetch Bytes 256 [VMA_TX_PREFETCH_BYTES]

Tx backlog max 100 [VMA_TX_BACKLOG_MAX]

Rx Mem Bufs 200000 [VMA_RX_BUFS]

Rx QP WRE 16000 [VMA_RX_WRE]

Rx QP WRE BATCHING 64 [VMA_RX_WRE_BATCHING]

Rx Byte Min Limit 65536 [VMA_RX_BYTES_MIN]

Rx Poll Loops 100000 [VMA_RX_POLL]

Rx Poll Init Loops 0 [VMA_RX_POLL_INIT]

Rx UDP Poll OS Ratio 100 [VMA_RX_UDP_POLL_OS_RATIO]

Rx Poll Yield Disabled [VMA_RX_POLL_YIELD]

Rx Prefetch Bytes 256 [VMA_RX_PREFETCH_BYTES]

Rx Prefetch Bytes Before Poll 0 [VMA_RX_PREFETCH_BYTES_BEFORE_POLL]

Rx CQ Drain Rate Disabled [VMA_RX_CQ_DRAIN_RATE_NSEC]

GRO max streams 32 [VMA_GRO_STREAMS_MAX]

TCP 3T rules Disabled [VMA_TCP_3T_RULES]

ETH MC L2 only rules Disabled [VMA_ETH_MC_L2_ONLY_RULES]

Select Poll (usec) 100000 [VMA_SELECT_POLL]

Select Poll OS Force Disabled [VMA_SELECT_POLL_OS_FORCE]

Select Poll OS Ratio 10 [VMA_SELECT_POLL_OS_RATIO]

Select Poll Yield Disabled [VMA_SELECT_POLL_YIELD]

Select Skip OS 4 [VMA_SELECT_SKIP_OS]

 User Manual Rev 6.9.1

 17

Select CQ Interrupts Enabled [VMA_SELECT_CQ_IRQ]

CQ Drain Interval (msec) 10 [VMA_PROGRESS_ENGINE_INTERVAL]

CQ Drain WCE (max) 10000 [VMA_PROGRESS_ENGINE_WCE_MAX]

CQ Interrupts Moderation Enabled [VMA_CQ_MODERATION_ENABLE]

CQ Moderation Count 48 [VMA_CQ_MODERATION_COUNT]

CQ Moderation Period (usec) 50 [VMA_CQ_MODERATION_PERIOD_USEC]

CQ AIM Max Count 560 [VMA_CQ_AIM_MAX_COUNT]

CQ AIM Max Period (usec) 250 [VMA_CQ_AIM_MAX_PERIOD_USEC]

CQ AIM Interval (msec) 250 [VMA_CQ_AIM_INTERVAL_MSEC]

CQ AIM Interrupts Rate (per sec) 5000

[VMA_CQ_AIM_INTERRUPTS_RATE_PER_SEC]

CQ Poll Batch (max) 16 [VMA_CQ_POLL_BATCH_MAX]

CQ Keeps QP Full Enabled [VMA_CQ_KEEP_QP_FULL]

QP Compensation Level 256 [VMA_QP_COMPENSATION_LEVEL]

Offloaded Sockets Enabled [VMA_OFFLOADED_SOCKETS]

Timer Resolution (msec) 10 [VMA_TIMER_RESOLUTION_MSEC]

TCP Timer Resolution (msec) 100 [VMA_TCP_TIMER_RESOLUTION_MSEC]

Delay after join (msec) 0 [VMA_WAIT_AFTER_JOIN_MSEC]

Delay after rereg (msec) 500 [VMA_WAIT_AFTER_REREG_MSEC]

Internal Thread Affinity -1 [VMA_INTERNAL_THREAD_AFFINITY]

Internal Thread Cpuset [VMA_INTERNAL_THREAD_CPUSET]

Internal Thread Arm CQ Disabled [VMA_INTERNAL_THREAD_ARM_CQ]

Thread mode Multi spin lock [VMA_THREAD_MODE]

Mem Allocate type 1 (Contig Pages) [VMA_MEM_ALLOC_TYPE]

Num of UC ARPs 3 [VMA_NEIGH_UC_ARP_QUATA]

UC ARP delay (msec) 10000 [VMA_NEIGH_UC_ARP_DELAY_MSEC]

Num of neigh restart retries 1 [VMA_NEIGH_NUM_ERR_RETRIES]

IPOIB support Enabled [VMA_IPOIB]

BF (Blue Flame) Enabled [VMA_BF]

fork() support Enabled [VMA_FORK]

close on dup2() Enabled [VMA_CLOSE_ON_DUP2]

MTU 1500 [VMA_MTU]

MSS 0 (follow VMA_MTU) [VMA_MSS]

TCP CC Algorithm 0 (LWIP) [VMA_TCP_CC_ALGO]

TCP scaling window 3 [VMA_WINDOW_SCALING]Suppress

IGMP ver. warning Disabled [VMA_SUPPRESS_IGMP_WARNING]

4.2.1 Configuration Parameter Values

The following table lists the VMA configuration parameters and their possible values.

Table 4: Configuration Parameter Values

VMA Configuration Parameter Description and Examples

VMA_TRACELEVEL 0 = PANIC — Panic level logging.

This trace level causes fatal behavior and halts the

application, typically, caused by memory allocation problems.

PANIC level is rarely used.

1 = ERROR – Runtime errors in VMA.

Typically, this trace level assists you to identify internal logic

errors, such as errors from underlying OS or InfiniBand verb

calls, and internal double mapping/unmapping of objects.

2 = WARNING – Runtime warning that does not disrupt

the application workflow.

A warning may indicate problems in the setup or in the

overall setup configuration. For example, address resolution

failures (due to an incorrect routing setup configuration),

corrupted IP packets in the receive path, or unsupported

functions requested by the user application.

Rev 6.9.1 Configuring VMA

18

VMA Configuration Parameter Description and Examples

3 = INFO – General information passed to the user of the

application.

This trace level includes configuration logging or general

information to assist you with better use of the VMA library.

4 = DEBUG – High-level insight to the operations

performed in VMA.

In this logging level all socket API calls are logged, and

internal high-level control channels log their activity.

5 = FUNC – Low-level runtime logging of activity.

This logging level includes basic Tx and Rx logging in the

fast path. Note that using this setting lowers application

performance. We recommend that you use this level with the

VMA_LOG_FILE parameter.

6 = FUNC_ALL – Very low-level runtime logging of

activity.This logging level drastically lowers application

performance. We recommend that you use this level with the

VMA_LOG_FILE parameter.

VMA_LOG_DETAILS Provides additional logging details on each log line.

0 = Basic log line

1 = With ThreadId

2 = With ProcessId and ThreadId

3 = With Time, ProcessId, and ThreadId

(Time is the amount of milliseconds from the start of the

process)

Default: 0

For VMA_TRACELEVEL >= 4, this value defaults to 2.

VMA_LOG_FILE Redirects all VMA logging to a specific user-defined file.

This is very useful when raising the VMA_TRACELEVEL.

The VMA replaces a single '%d' appearing in the log file

name with the pid of the process loaded with VMA. This can

help when running multiple instances of VMA, each with its

own log file name.

Example: VMA_LOG_FILE=/tmp/vma_log.txt

VMA_CONFIG_FILE Sets the full path to the VMA configuration file.

Example: VMA_CONFIG_FILE=/tmp/libvma.conf

Default: /etc/libvma.conf

LOG_COLORS Uses a color scheme when logging; red for errors and

warnings, and dim for very low level debugs.

VMA_LOG_COLORS is automatically disabled when logging

is done directly to a non-terminal device (for example, when

VMA_LOG_FILE is configured).

Default: 1 (Enabled)

VMA_CPU_USAGE_STATS Calculates the VMA CPU usage during polling hardware

loops. This information is available through VMA stats

utility.

 User Manual Rev 6.9.1

 19

VMA Configuration Parameter Description and Examples

Default: 0 (Disabled)

VMA_APPLICATION_ID Specifies a group of rules from libvma.conf for VMA to

apply.

Example: VMA_APPLICATION_ID=iperf_server

Default: VMA_DEFAULT_APPLICATION_ID (match only

the '*' group rule)

VMA_HANDLE_SIGINTR When enabled, the VMA handler is called when an interrupt

signal is sent to the process.

VMA also calls the application's handler, if it exists.

Range: 0 to 1

Default: 0 (Disabled)

VMA_HANDLE_SIGSEGV When enabled, a print backtrace is performed, if a

segmentation fault occurs.

Range: 0 to 1

Default: 0 (Disabled)

VMA_STATS_FD_NUM Maximum number of sockets monitored by the VMA

statistics mechanism.

Range: 0 to 1024.

Default: 100

VMA_STATS_FILE Redirects socket statistics to a specific user-defined file.

VMA dumps each socket's statistics into a file when closing

the socket.

Example: VMA_STATS_FILE=/tmp/stats

VMA_STATS_SHMEM_DIR Sets the directory path for VMA to create the shared memory

files for vma_stats.

In case this value is set to an empty string: “ “, no shared

memory files are created.

Default: /tmp/

VMA_TCP_MAX_SYN_FIN_RAT

E

Limits the number of TCP control packets (TCP

SYN/FIN/RST packets) that VMA handles per second for

each thread.

Example: by setting this value to 10, the maximal number of

TCP control packets accepted by VMA per second for each

thread will be 10.

Set this value to 0 for VMA to handle an un-limited number

of TCP control packets per second for each thread.

Value range is 0 to 100000.

Default value is 0 (no limit)

VMA_TX_ SEGS_TCP Number of TCP LWIP segments allocation for each VMA

process.

Default: 1000000

VMA_TX_BUFS Number of global Tx data buffer elements allocation.

Default: 200000

Rev 6.9.1 Configuring VMA

20

VMA Configuration Parameter Description and Examples

VMA_TX_WRE Number of Work Request Elements allocated in all transmit

QP's. The number of QP's can change according to the

number of network offloaded interfaces.

Default: 16000

The size of the Tx buffers is determined by the VMA_MTU

parameter value (see below).

If this value is raised, the packet rate peaking can be better

sustained; however, this increases memory usage. A smaller

number of data buffers gives a smaller memory footprint, but

may not sustain peaks in the data rate.

VMA_TX_MAX_INLINE Max send inline data set for QP.

Data copied into the INLINE space is at least 32 bytes of

headers and the rest can be user datagram payload.

VMA_TX_MAX_INLINE=0 disables INLINEing on the TX

transmit path. In older releases this parameter was called

VMA_MAX_INLINE.

Default: 224

VMA_TX_MC_LOOPBACK Sets the initial value used internally by the VMA to control

multicast loopback packet behavior during transmission. An

application that calls setsockopt() with

IP_MULTICAST_LOOP overwrites the initial value set by

this parameter.

Range: 0 - Disabled, 1 - Enabled

Default: 1

VMA_TX_NONBLOCKED_EAGAI

NS

Returns value 'OK' on all send operations that are performed

on a non-blocked udp socket. This is the OS default behavior.

The datagram sent is silently dropped inside the VMA or the

network stack.

When set to Enabled (set to 1), VMA returns with error

EAGAIN if it was unable to accomplish the send operation,

and the datagram was dropped.

In both cases, a dropped Tx statistical counter is incremented.

Default: 0 (Disabled)

VMA_TX_PREFETCH_BYTES Accelerates an offloaded send operation by optimizing the

cache. Different values give an optimized send rate on

different machines. We recommend that you adjust this

parameter to your specific hardware.

Range: 0 to MTU size

Disable with a value of 0

Default: 256 bytes

VMA_RX_BUFS The number of Rx data buffer elements allocated for the

processes. These data buffers are used by all QPs on all

HCAs, as determined by the VMA_QP_LOGIC.

Default: 200000 bytes

VMA_RX_WRE The number of Work Request Elements allocated in all

received QPs.

Default: 16000

 User Manual Rev 6.9.1

 21

VMA Configuration Parameter Description and Examples

VMA_RX_BYTES_MIN The minimum value in bytes used per socket by the VMA

when applications call to setsockopt(SO_RCVBUF).

If the application tries to set a smaller value than configured

in VMA_RX_BYTES_MIN, VMA forces this minimum limit

value on the socket.

VMA offloaded sockets receive the maximum amount of

ready bytes. If the application does not drain sockets and the

byte limit is reached, newly received datagrams are dropped.

The application's socket usage of current, max,dropped bytes

and packet counters, can be monitored using vma_stats.

Default: 65536.

VMA_RX_POLL The number of times to unsuccessfully poll an Rx for VMA

packets before going to sleep.

Range: -1, 0 … 100,000,000

Default: 100,000

This value can be reduced to lower the load on the CPU.

However, the price paid for this is that the Rx latency is

expected to increase.

Recommended values:

 10000 – when CPU usage is not critical and Rx path

latency is critical.

 0 – when CPU usage is critical and Rx path latency is not

critical.

 -1 – causes infinite polling.

Once the VMA has gone to sleep, if it is in blocked mode, it

waits for an interrupt; if it is in non-blocked mode, it returns -

1.

This Rx polling is performed when the application is working

with direct blocked calls to read(), recv(),

recvfrom(), and recvmsg().

When the Rx path has successful poll hits, the latency

improves dramatically. However, this causes increased CPU

utilization. For more information, see Debugging,

Troubleshooting, and Monitoring (on page 37).

VMA_RX_POLL_INIT VMA maps all UDP sockets as potential Offloaded-capable.

Only after ADD_MEMBERSHIP is set, the offload starts

working and the CQ polling starts VMA.

This parameter controls the polling count during this

transition phase where the socket is a UDP unicast socket and

no multicast addresses were added to it.

Once the first ADD_MEMBERSHIP is called, the

VMA_RX_POLL (above) takes effect.

Value range is similar to the VMA_RX_POLL (above).

Default: 0

VMA_RX_UDP_POLL_OS_RATI

O

Defines the ratio between VMA CQ poll and OS FD poll.

This will result in a single poll of the not-offloaded sockets

every

Rev 6.9.1 Configuring VMA

22

VMA Configuration Parameter Description and Examples

VMA_RX_UDP_POLL_OS_RATIO offloaded socket (CQ)

polls. No matter if the CQ poll was a hit or miss. No matter if

the socket is blocking or non-blocking.

When disabled, only offloaded sockets are polled.

This parameter replaces the two old parameters:

 VMA_RX_POLL_OS_RATIO and

 VMA_RX_SKIP_OS

Disable with 0

Default: 10

VMA_RX_POLL_YIELD When an application is running with multiple threads on a

limited number of cores, there is a need for each thread

polling inside VMA (read, readv, recv, and recvfrom)

to yield the CPU to another polling thread so as not to starve

them from processing incoming packets.

Default: 0 (Disabled)

VMA_RX_PREFETCH_BYTES The size of the receive buffer to prefetch into the cache while

processing ingress packets.

The default is a single cache line of 64 bytes which should be

at least 32 bytes to cover the IPoIB+IP+UDP headers and a

small part of the user payload.

Increasing this size can help improve performance for larger

user payloads.

Range: 32 bytes to MTU size

Default: 256 bytes

VMA_RX_CQ_DRAIN_RATE_NS

EC

Socket's receive path CQ drain logic rate control.

When disabled (default), the socket's receive path attempts to

return a ready packet from the socket's receive ready packet

queue. If the ready receive packet queue is empty, the socket

checks the CQ for ready completions for processing.

When enabled, even if the socket's receive ready packet queue

is not empty, this parameter checks the CQ for ready

completions for processing. This CQ polling rate is controlled

in nanosecond resolution to prevent CPU consumption due to

over CQ polling. This enables improved 'real-time' monitoring

of the socket ready packet queue.

Recommended value is 100 - 5000 (nsec)

Default: 0 (Disabled)

VMA_GRO_STREAMS_MAX Controls the number of TCP streams to perform GRO

(generic receive offload) simultaneously.

Disable GRO with a value of 0.

Default: 32

VMA_TCP_3T_RULES

Uses only 3 tuple rules for TCP, instead of using 5 tuple rules.

This can improve performance for a server with a listen

socket which accepts many connections from the same source

IP.

Enable with a value of 1.

Default: 0 (Disabled)

 User Manual Rev 6.9.1

 23

VMA Configuration Parameter Description and Examples

VMA_ETH_MC_L2_ONLY_RULE

S

Uses only L2 rules for Ethernet Multicast.

All loopback traffic will be handled by VMA instead of OS.

Enable with a value of 1.

Default: 0 (Disabled)

VMA_SELECT_POLL The duration in micro-seconds (usec) in which to poll the

hardware on Rx path before blocking for an interrupt (when

waiting and also when calling select(), poll(), or

epoll_wait()).

Range: -1, 0 … 100,000,000

Default: 100,000

When the selected path has successfully received poll hits, the

latency improves dramatically. However, this comes at the

expense of CPU utilization. For more information, see

Debugging, Troubleshooting, and Monitoring (on page 37).

VMA_SELECT_POLL_OS_RATI

O

This enables polling the OS file descriptors while the user

thread calls select(), poll(), or epoll_wait(), and

VMA is busy in the offloaded socket polling loop. This results

in a single poll of the non-offloaded sockets every

VMA_SELECT_POLL_RATIO offloaded socket (CQ) polls.

When disabled, only offloaded sockets are polled.

(See VMA_SELECT_POLL for more information.)

Disable with 0

Default: 10

VMA_SELECT_POLL_YIELD When an application runs with multiple threads on a limited

number of cores, each thread polling inside VMA

(select(), poll(), or epoll_wait()) should yield the

CPU to other polling threads so as not to starve them from

processing incoming packets.

Default: 0 (Disabled)

VMA_SELECT_SKIP_OS In select(), poll(), or epoll_wait()forces the

VMA to check the non-offloaded sockets even though an

offloaded socket has a ready packet that was found while

polling.

Range: 0 … 10,000

Default: 4

VMA_SELECT_CQ_IRQ When disabled, no InfiniBand interrupts are used during

select(), poll(), or epoll_wait() socket calls. This

mode of work is not recommended.

This parameter is used by applications that use

VMA_SELECT_POLL for polling (with the default zero

millisecond timeout).

Range: 0 - Disabled, 1 - Enabled

Default: 1 (Enabled)

VMA_CQ_POLL_BATCH_MAX The maximum size of the array while polling the CQs in the

VMA.

Default: 8

Rev 6.9.1 Configuring VMA

24

VMA Configuration Parameter Description and Examples

VMA_PROGRESS_ENGINE_INT

ERVAL

Internal VMA thread safety which checks that the CQ is

drained at least once every N milliseconds. This mechanism

allows VMA to progress the TCP stack even when the

application does not access its socket (so it does not provide a

context to VMA). If the CQ was already drained by the

application receive socket API calls, this thread goes back to

sleep without any processing.

Disable with 0

Default: 10 milliseconds

VMA_PROGRESS_ENGINE_WCE

_MAX

Each time the VMA's internal thread starts its CQ draining, it

stops when it reaches this maximum value.

The application is not limited by this value in the number of

CQ elements that it can ProcessId from calling any of the

receive path socket APIs.

Default: 2048

VMA_CQ_MODERATION_ENABL

E

Enable CQ interrupt moderation.

Default: 1 (Enabled)

VMA_CQ_MODERATION_COUNT

Number of packets to hold before generating interrupt.

Default: 48

VMA_CQ_MODERATION_PERIO

D_USEC

Period in micro-seconds for holding the packet before

generating interrupt.

Default: 50

VMA_CQ_AIM_MAX_COUNT

Maximum count value to use in the adaptive interrupt

moderation algorithm.

Default: 560

VMA_CQ_AIM_MAX_PERIOD_U

SEC

Maximum period value to use in the adaptive interrupt

moderation algorithm.

Default: 250

VMA_CQ_AIM_INTERVAL_MSE

C

Frequency of interrupt moderation adaptation.

Interval in milliseconds between adaptation attempts.

Use value of 0 to disable adaptive interrupt moderation.

Default: 250

VMA_CQ_AIM_INTERRUPTS_R

ATE_PER_SEC

Desired interrupts rate per second for each ring (CQ).

The count and period parameters for CQ moderation will

change automatically to achieve the desired interrupt rate for

the current traffic rate.

Default: 5000

VMA_CQ_KEEP_QP_FULL If disabled (default), the CQ does not try to compensate for

each poll on the receive path. It uses a "debt" to remember

how many WRE are missing from each QP, so that it can fill

it when buffers become available.

If enabled, CQ tries to compensate QP for each polled receive

completion. If there is a shortage of buffers, it reposts a

 User Manual Rev 6.9.1

 25

VMA Configuration Parameter Description and Examples

recently completed buffer. This causes a packet drop, and is

monitored in vma_stats.

Default: 1 (Enabled)

VMA_QP_COMPENSATION_LEV

EL

The number of spare receive buffer CQ holds that can be

allowed for filling up QP while full receive buffers are being

processed inside VMA.

Default: 256 buffers

VMA_OFFLOADED_SOCKETS Creates all sockets as offloaded/not-offloaded by default.

 1 is used for offloaded

 0 is used for not-offloaded

Default: 1 (Enabled)

VMA_TIMER_RESOLUTION_MS

EC

Control VMA internal thread wakeup timer resolution (in

milliseconds).

Default: 10 (milliseconds)

VMA_TCP_TIMER_RESOLUTIO

N_MSEC

Controls VMA internal TCP timer resolution (fast timer) (in

milliseconds). Minimum value is the internal thread wakeup

timer resolution (VMA_TIMER_RESOLUTION_MSEC).

Default: 100 (milliseconds)

VMA_THREAD_MODE By default VMA is ready for multi-threaded applications,

meaning it is thread-safe.

If the user application is single threaded, use this

configuration parameter to help eliminate VMA locks and

improve performance.

Values:

 0 - Single threaded application

 1 - Multi threaded application with spin lock

 2 - Multi threaded application with mutex lock

 3 - Multi threaded application with more threads than

cores using spin lock

Default: 1 (Multi with spin lock)

VMA_MEM_ALLOC_TYPE This replaces the VMA_HUGETBL parameter logic.

VMA will try to allocate data buffers as configured:

 0 - "ANON" - using malloc

 1 - "CONTIG" - using contiguous pages

 2 - "HUGEPAGES" - using huge pages.

OFED will also try to allocate QP & CQ memory

accordingly:

 0 - "ANON" - default - use current pages ANON small

ones.

 "HUGE" - force huge pages

 "CONTIG" - force contig pages

 1 - "PREFER_CONTIG" - try contig fallback to ANON

small pages.

 "PREFER_HUGE" - try huge fallback to ANON

small pages.

Rev 6.9.1 Configuring VMA

26

VMA Configuration Parameter Description and Examples

 2 - "ALL" - try huge fallback to contig if failed fallback to

ANON small pages.

To override OFED use: (MLX_QP_ALLOC_TYPE,

MLX_CQ_ALLOC_TYPE)

Default: 1 (Contiguous pages)

VMA_FORK Controls VMA fork support. Setting this flag on will cause

VMA to call ibv_fork_init() function.

ibv_fork_init() initializes libibverbs's data structures

to handle fork() function calls correctly and avoid data

corruption.

If ibv_fork_init() is not called or returns a non-zero

status, then libibverbs data structures are not fork()-safe and

the effect of an application calling fork() is undefined.

ibv_fork_init() works on Linux kernels 2.6.17 and

later, which support the MADV_DONTFORK flag for

madvise().

You should use an OFED stack version that supports fork()

with huge pages (Mellanox OFED 1.5.3 and later). VMA

allocates huge pages (VMA_HUGETBL) by default.

Default: 1 (Enabled)

VMA_MTU Sets the fragmentation size of the packets sent by the VMA

library. This value determines the size of each Rx and Tx

buffer.

Default: 1500 bytes

Recommendations:

 Set to1500 for Ethernet networks or interoperability with

Ethernet networks.

VMA_MSS Defines the max TCP payload size that can be sent without IP

fragmentation.

Value of 0 will set VMA's TCP MSS to be aligned with

VMA_MTU configuration (leaving 40 bytes of room for IP +

TCP headers; "TCP MSS = VMA_MTU - 40").

Other VMA_MSS values will force VMA's TCP MSS to that

specific value.

Default: 0 (following VMA_MTU)

VMA_WINDOW_SCALING TCP scaling window.

This value (factor range from 0 to 14, -1 to disable, -2 to use

OS value) sets the factor in which the TCP window is scaled.

Factor of 0 allows using the TCP scaling window of the

remote host, while not changing the window of the local host.

Value of -1 disables both directions.

Value of -2 uses the OS maximums and receives buffer value

to calculate the factor.

Make sure that VMA buffers are big enough to support the

window.

Default: 3

 User Manual Rev 6.9.1

 27

VMA Configuration Parameter Description and Examples

VMA_CLOSE_ON_DUP2 When this parameter is enabled, VMA handles the duplicated

file descriptor (oldfd), as if it is closed (clear internal data

structures) and only then forwards the call to the OS.

This is, in effect, a very rudimentary dup2 support. It supports

only the case where dup2 is used to close file descriptors.

Default: 1 (Enabled)

VMA_INTERNAL_THREAD_AFF

INITY

Controls which CPU core(s) the VMA internal thread is

serviced on. The CPU set should be provided as either a

hexidecmal value that represents a bitmask or as a comma

delimited of values (ranges are ok). Both the bitmask and

comma delimited list methods are identical to what is

supported by the taskset command. See the man page on

taskset for additional information.

The -1 value disables the Internal Thread Affinity setting by

VMA

 Bitmask Examples:

0x00000001 - Run on processor 0

0x00000007 - Run on processors 1,2, and

3

 Comma Delimited Examples:

0,4,8 - Run on processors 0,4, and

8

0,1,7-10 - Run on processors

0,1,7,8,9 and 10

Default: -1.

VMA_INTERNAL_THREAD_CPU

SET

Selects a CPUSET for VMA internal thread (For further

information, see man page of cpuset).

The value is either the path to the CPUSET (for example:

/dev/cpuset/my_set), or an empty string to run it on the same

CPUSET the process runs on.

VMA_INTERNAL_THREAD_ARM

_CQ

Wakes up the internal thread for each packet that the CQ

receives.

Polls and processes the packet and brings it to the socket

layer.

This can minimize latency for a busy application that is not

available to receive the packet when it arrives.

However, this might decrease performance for high pps rate

applications.

Default: 0 (Disabled)

VMA_WAIT_AFTER_JOIN_MSE

C

This parameter indicates the time of delay the first packet is

send after receiving the multicast JOINED event from the SM

This is helpful to overcome loss of first few packets of an

outgoing stream due to SM lengthy handling of MFT

configuration on the switch chips

Default: 0 (milli-sec)

VMA_NEIGH_UC_ARP_QUATA VMA will send UC ARP in case neigh state is NUD_STALE.

In case that neigh state is still NUD_STALE VMA will try

Rev 6.9.1 Configuring VMA

28

VMA Configuration Parameter Description and Examples

VMA_NEIGH_UC_ARP_QUATA retries to send UC ARP

again and then will send BC ARP.

Default: 3

VMA_NEIGH_UC_ARP_DELAY_

MSEC

This parameter indicates number of msec to wait between

every UC ARP.

Default: 10000

VMA_NEIGH_NUM_ERR_RETRI

ES

Indicates number of retries to restart NEIGH state machine if

NEIGH receives ERROR event.

Default: 1

VMA_SUPPRESS_IGMP_WARNI

NG

Use VMA_SUPPRESS_IGMP_WARNING=1 to suppress the

warnings about igmp version not forced to be 2.

Default: 0 (Disabled)

VMA_BF Enables/disables BlueFlame usage of the card.

Default: 1 (Enabled)

4.2.2 Beta Level Features Configuration Parameters

The following table lists configuration parameters and their possible values for new VMA

Beta level features. The parameters below are disabled by default.

These VMA features are still experimental and subject to changes. They can help improve

performance of Multi-thread applications.

We recommend altering these parameters in a controlled environment until reaching the best

performance tuning.

Table 5: Beta Level Configuration Parameter Values

VMA Configuration Parameter Description and Examples

VMA_RING_ALLOCATION_L

OGIC_TX

VMA_RING_ALLOCATION_L

OGIC_RX

Ring allocation logic is used to separate the traffic into

different rings.

By default, all sockets use the same ring for both RX and TX

over the same interface. For different interfaces, different

rings are used, even when specifying the logic to be per

socket or thread.

The logic options are:

0 - Ring per interface

10 - Ring per socket (using socket ID as separator)

20 - Ring per thread (using the ID of the thread in which the

socket was created)

30 - Ring per core (using CPU ID)

31 - Ring per core - attach threads: attach each thread to a

CPU core

Default: 0

VMA_RING_MIGRATION_RA

TIO_TX

Ring migration ratio is used with the "ring per thread" logic in

order to decide when it is beneficial to replace the socket's

ring with the ring allocated for the current thread.

 User Manual Rev 6.9.1

 29

VMA Configuration Parameter Description and Examples

VMA_RING_MIGRATION_RA

TIO_RX

Each VMA_RING_MIGRATION_RATIO iteration (of

accessing the ring), the current thread ID is checked to see

whether the ring matches the current thread.

If not, ring migration is considered. If the ring continues to be

accessed from the same thread for a certain iteration, the

socket is migrated to this thread ring.

Use a value of -1 in order to disable migration.

Default: 100

VMA_RING_LIMIT_PER_INTE

RFACE

Limits the number of rings that can be allocated per interface.

For example, in ring allocation per socket logic, if the number

of sockets using the same interface is larger than the limit,

several sockets will share the same ring.

[Note: VMA_RX_BUFS might need to be adjusted in order to

have enough buffers for all rings in the system. Each ring

consumes VMA_RX_WRE buffers.]

Use a value of 0 for an unlimited number of rings.

Default: 0 (no limit)

VMA_TCP_CC_ALGO TCP congestion control algorithm.

The default algorithm coming with LWIP is a variation of

Reno/New-Reno.

The new Cubic algorithm was adapted from FreeBsd

implementation.

Use value of 0 for LWIP algorithm.

Use value of 1 for the Cubic algorithm.

Default: 0 (LWIP).

Rev 6.9.1 Using sockperf with VMA

30

5 Using sockperf with VMA

Sockperf is VMA's sample application for testing latency and throughput over a socket API.

The precompiled sockperf binary is located in /usr/bin/sockperf.

 To run a sockperf UDP test:

 To run the server, use:

LD_PRELOAD=libvma.so sockperf sr -i <server ip>

 To run the client, use:

LD_PRELOAD=libvma.so sockperf <sockperf test> –i <server ip>

where:

<server ip> is the IP address of the server

<sockperf test> is the test you want to run, for example, pp for the ping-pong test, tp for

the throughput test, and so on. (Use sockperf -h to display a list of all available

tests.)

 To run a sockperf TCP test:

 To run the server, use:

LD_PRELOAD=libvma.so sockperf sr -i <server ip> --tcp

 To run the client, use:

LD_PRELOAD=libvma.so sockperf <sockperf test> –i <server ip> --tcp

 User Manual Rev 6.9.1

 31

6 Example Running sockperf Ping-pong Test

1. Run sockperf server on Host A:

LD_PRELOAD=libvma.so sockperf sr

2. Run sockperf client on Host B:

LD_PRELOAD=libvma.so sockperf pp –i 1.1.1.12

Client expected output:

$LD_PRELOAD=libvma.so sockperf pp -i 1.1.1.12

VMA INFO : --

 VMA INFO : VMA_VERSION: 6.8.2-0 Release built on 2013-12-11-16:20:19

 VMA INFO : Cmd Line: sockperf pp -i 1.1.1.12

 VMA INFO : Log Level 3

[VMA_TRACELEVEL]

 VMA INFO : ---

mlx4: prefer_bf=1

mlx4: prefer_bf=1

sockperf: == version #2.5.231 ==

sockperf[CLIENT] send on:sockperf: using recvfrom() to block on socket(s)

[0] IP = 2.2.2.15 PORT = 11111 # UDP

sockperf: Warmup stage (sending a few dummy messages)...

sockperf: Starting test...

sockperf: Test end (interrupted by timer)

sockperf: Test ended

sockperf: [Total Run] RunTime=5.100 sec; SentMessages=2240397;

ReceivedMessages=2240396

sockperf: ========= Printing statistics for Server No: 0

sockperf: [Valid Duration] RunTime=4.988 sec; SentMessages=2218152;

ReceivedMessages=2218152

sockperf: ====> avg-lat= 1.108 (std-dev=0.244)

sockperf: # dropped messages = 0; # duplicated messages = 0; # out-of-

order messages = 0

sockperf: Summary: Latency is 1.108 usec

sockperf: Total 2218152 observations; each percentile contains 22181.52

observations

sockperf: ---> <MAX> observation = 19.023

sockperf: ---> percentile 99.99 = 6.347

sockperf: ---> percentile 99.90 = 3.559

sockperf: ---> percentile 99.50 = 2.302

sockperf: ---> percentile 99.00 = 2.071

sockperf: ---> percentile 95.00 = 1.539

sockperf: ---> percentile 90.00 = 1.150

sockperf: ---> percentile 75.00 = 1.085

sockperf: ---> percentile 50.00 = 1.050

sockperf: ---> percentile 25.00 = 1.022

sockperf: ---> <MIN> observation = 0.979

3. Analyze the client output:

Average latency: 1.108 usec

7 VMA Extra API

7.1 Overview of the VMA Extra API

The information in this chapter is intended for application developers who want to use

VMA’s Extra API to maximize performance with VMA:

Rev 6.9.1 VMA Extra API

32

 To further lower latencies

 To increase throughput

 To gain additional CPU cycles for the application logic

 To better control VMA offload capabilities

All socket applications are limited to the given Socket API interface functions. The VMA

Extra API enables VMA to open a new set of functions which allow the application

developer to add code which utilizes zero copy receive function calls and low-level packet

filtering by inspecting the incoming packet headers or packet payload at a very early stage in

the processing.

VMA is designed as a dynamically-linked user-space library. As such, the VMA Extra API

has been designed to allow the user to dynamically load VMA and to detect at runtime if the

additional functionality described here is available or not. The application is still able to run

over the general socket library without VMA loaded as it did previously, or can use an

application flag to decide which API to use: Socket API or VMA Extra API.

The VMA Extra APIs are provided as a header with the VMA binary rpm. The application

developer needs to include this header file in his application code.

After installing the VMA rpm on the target host, the VMA Extra APIs header file is located

in the following link:

#include "/usr/include/mellanox/vma_extra.h"

The vma_extra.h provides detailed information about the various functions and

structures, and instructions on how to use them.

An example using the VMA Extra API can be seen in the udp_lat source code:

 Follow the ‘--vmarxfiltercb’ flag for the packet filter logic.

 Follow the ‘--vmazcopyread’ flag for the zero copy recvfrom logic.

A specific example for using the TCP zero copy extra API can be seen under

extra_api_tests/tcp_zcopy_cb.

7.2 Using VMA Extra API

During runtime, use the vma_get_api() function to check if VMA is loaded in your

application, and if the VMA Extra API is accessible.

If the function returns with NULL, either VMA is not loaded with the application, or the

VMA Extra API is not compatible with the header function used for compiling your

application. NULL will be the typical return value when running the application on native

OS without VMA loaded.

Any non-NULL return value is a vma_api_t type structure pointer that holds pointers to

the specific VMA Extra API function calls which are needed for the application to use.

It is recommended to call vma_get_api()once on startup, and to use the returned pointer

throughout the life of the process.

There is no need to ‘release’ this pointer in any way.

 User Manual Rev 6.9.1

 33

7.3 Control Off-load Capabilities During Run-Time

7.3.1 Adding libvma.conf Rules During Run-Time

Adds a libvma.conf rule to the top of the list. This rule will not apply to existing sockets

which already considered the conf rules. (around connect/listen/send/recv ..)

Syntax: int (*add_conf_rule)(char *config_line);

Return value:

 0 on success

 error code on failure

Table 6: add_conf_rule Parameters

Parameter Name Description Values

Config_line New rule to add to the top of the

list (highest priority).

A char buffer with the exact

format as defined in

libvma.conf, and should end

with '\0'

7.3.2 Creating Sockets as Off-loaded or Not-Off-loaded

Creates sockets on pthread tid as off-loaded/not-off-loaded. This does not affect existing

sockets. Offloaded sockets are still subject to libvma.conf rules.

Usually combined with the VMA_OFFLOADED_SOCKETS parameter.

Syntax: int (*thread_offload)(int offload, pthread_t tid);

Return value:

 0 on success

 error code on failure

Table 7: add_conf_rule Parameters

Parameter Name Description Values

offload Offload property 1 for offloaded, 0 for not-

offloaded

tid Thread ID

7.4 Packet Filtering

The packet filter logic gives the application developer the capability to inspect a received

packet. You can then decide, on the fly, to keep or drop the received packet at this stage in

processing.

The user’s application packet filtering callback is defined by the prototype:

Rev 6.9.1 VMA Extra API

34

typedef vma_recv_callback_retval_t

 (*vma_recv_callback_t) (int fd, size_t sz_iov, struct iovec iov[],

 struct vma_info_t* vma_info, void *context);

This callback function should be registered with VMA by calling the VMA Extra API

function register_recv_callback(). It can be unregistered by setting a NULL

function pointer.

VMA calls the callback to notify of new incoming packets after the internal IP & UDP/TCP

header processing, and before they are queued in the socket's receive queue.

The context of the callback is always that of one of the user's application threads that called

one of the following socket APIs: select(), poll(), epoll_wait(), recv(),

recvfrom(), recvmsg(), read(), or readv().

Table 8: Packet Filtering Callback Function Parameters

Parameter Name Description Values

fd File descriptor of the socket to which this

packet refers.

iov iovector structure array pointer holding the

packet received, data buffer pointers, and

the size of each buffer.

iov_sz Size of the iov array.

vma_info Additional information on the packet and

socket.

context User-defined value provided during callback

registration for each socket.

NOTE:

The application can call all the Socket APIs from within the callback context.

Packet loss might occur depending on the application's behavior in the callback context.

A very quick non-blocked callback behavior is not expected to induce packet loss.

Parameters iov and vma_info are only valid until the callback context is returned to

VMA. You should copy these structures for later use, if working with zero copy logic.

7.4.1 Zero Copy recvfrom()

Description: Zero-copy revcfrom implementation. This function attempts to receive a

packet without doing data copy.

Syntax: int (*recvfrom_zcopy)(int s, void *buf, size_t len,

int *flags, struct sockaddr *from, socklen_t *fromlen);

Parameters:

Table 9: Zero-copy revcfrom Parameters

Parameter Name Description Values

s Socket file descriptor

 User Manual Rev 6.9.1

 35

Parameter Name Description Values

buf Buffer to fill with received data

or pointers to data (see below).

flags Pointer to flags (see below). Usual flags to recvmsg(), and

MSG_VMA_

ZCOPY_FORCE

from If not NULL, is set to the source

address (same as recvfrom)

fromlen If not NULL, is set to the source

address size (same as recvfrom).

The flags argument can contain the usual flags to recvmsg(), and also the

MSG_VMA_ZCOPY_FORCE flag. If the latter is not set, the function reverts to data copy

(i.e., zero-copy cannot be performed). If zero-copy is performed, the flag MSG_VMA_ZCOPY

is set upon exit.

If zero copy is performed (MSG_VMA_ZCOPY flag is returned), the buffer is filled with a

vma_packets_t structure holding as much fragments as `len' allows. The total size of all

fragments is returned. Otherwise, the buffer is filled with actual data, and its size is returned

(same as recvfrom()).

Return Values:

If the return value is positive, data copy has been performed.

If the return value is zero, no data has been received.

7.4.2 Freeing Zero Copied Packet Buffers

Description: Frees a packet received by recvfrom_zcopy() or held by receive

callback.

Syntax: int (*free_packets)(int s, struct vma_packet_t *pkts

, size_t count);

Parameters:

Table 10: Freeing Zero-copy Datagram Parameters

Parameter Name Description Values

s Socket from which the packet

was received.

pkts Array of packet identifiers.

count Number of packets in the array.

Return Values:

0 on success, -1 on failure

errno is set to:

EINVAL - not a VMA offloaded socket

ENOENT - the packet was not received from 's'.

Example:

Rev 6.9.1 VMA Extra API

36

entry Source Source-mask Dest Dest-mask Interface Service

Routing Status Log

|------|------------|---------------|-----|----------|-

1 any any any any if0 any

tunneling active 1

2 192.168.2.0 255.255..255.0 any any if1 any

tunneling active 1

Expected Result:

sRB-20210G-61f0(statistic)# log show

counter tx total pack tx total byte rx total pack rx total byte

|------|-------------|-------------|-------------|--------------

1 2733553 268066596 3698 362404

Parameter Description

tx total byte The number of transmit bytes (from InfiniBand-to-

Ethernet) associated with a TFM rule; has a log counter

n.

The above example shows the number of bytes sent

from Infiniband to Ethernet (one way) or sent between

InfiniBand and Ethernet and matching the two TFM

rules with log counter #1.

rx total pack The number of receive packets (from Ethernet to

InfiniBand) associated with a TFM rule; has a log

counter n.

rx total byte The number of receive bytes (from Ethernet to

InfiniBand) associated with a TFM rule; has a log

counter n.

 User Manual Rev 6.9.1

 37

8 Debugging, Troubleshooting, and Monitoring

8.1 Monitoring – the vma_stats Utility

Networking applications open various types of sockets.

The VMA library holds the following counters:

 Separate performance counters for each socket of the datagram (UDP) IP family type.

 Internal performance counters which accumulate information for select(),

poll() and epoll_wait() usage by the whole application. An additional

performance counter logs the CPU usage of VMA during select(), poll(), or

epoll_wait() calls. VMA calculates this counter only if VMA_CPU_USAGE_STATS

parameter is enabled, otherwise this counter is not in use and displays the default value

as zero.

 VMA internal CQ performance counters

 VMA internal RING performance counters

Use the included vma_stats utility to view the per-socket information and performance

counters during runtime.

Note: For TCP connections, vma_stats shows only offloaded traffic, and not "os traffic."

Usage:

#vma_stats [-p pid] [-v view] [-d details] [-i interval]

The following table lists the basic and additional vma_stats utility options.

Table 11: vma_stats Utility Options

Parameter Name Argument Parameter Description and Values

-p, --pid

<pid>

Shows VMA statistics for a process with

pid: <pid>.

-v, --view <1|2|3|4> Sets the view type:

1. Shows the runtime basic performance

counters (default).

2. Shows extra performance counters.

3. Shows additional application runtime

configuration information.

4. Shows multicast group membership

information.

-d, --details <1|2> Sets the details mode:

1. Show totals (default).

2. Show deltas.

i, --interval =<n> Prints a report every <n> seconds.

Default: 1 sec

c, --cycles =<n> Do <n> report print cycles

and exit, use 0 value for

infinite.

Default: 0

Rev 6.9.1 Debugging, Troubleshooting, and Monitoring

38

Parameter Name Argument Parameter Description and Values

--n, --name <application> Shows VMA statistics for application:

<application>.

-f, --find _pid Finds pid and shows statistics for the VMA

instance running (default).

-F, --forbid _clean When you set this flag to inactive, shared

objects (files) are not removed.

-z, --zero Zero counters.

-l, --log_level

=<level> Sets the VMA log level to <level> (1 <=

level <= 7).

-D, --

details_level

=<level> Sets the VMA log detail level to <level> (0

<= level <= 3).

-s, --sockets <list|range> Logs only sockets that match <list> or

<range> format: 4-16 or 1,9 (or

combination).

-V, --version Prints the version number.

-h, --help Prints a help message.

8.1.1 Examples

The following sections contain examples of the vma_stats utility.

8.1.1.1 Example 1

Description: The following example demonstrates basic use of the vma_stats utility.

Command Line:

#vma_stats –p <pid>

NOTE: If there is only a single process running over VMA, it is not necessary to use

the –p option, since vma_stats will automatically recognize the process.

Output:

If no process with a suitable pid is running over the VMA, the output is:

vmastat: Failed to identify process...

If an appropriate process was found, the output is:

fd ------------ total offloaded ------------- ----- total os ------

 pkt Kbyte eagain error poll% pkt Kbyte error

14 Rx: 140479898 274374 0 0 100.0 0 0 0

 Tx: 140479902 274502 0 0 0 0 0

--

Analysis of the Output:

 A single socket with user fd=14 was created.

 Received 140479898 packets, 274374 Kilobytes via the socket.

 User Manual Rev 6.9.1

 39

 Transmitted 140479898 packets, 274374 Kilobytes via the socket.

 All the traffic was offloaded. No packets were transmitted or received via the OS.

 There were no missed Rx polls (see VMA_RX_POLL). This implies that the receiving

thread did not enter a blocked state, and therefore there was no context switch to hurt

latency.

 There are no transmission or reception errors on this socket.

8.1.1.2 Example 2

Description: Vma_stats presents not only cumulative statistics, but also enables you to

view deltas of VMA counter updates. This example demonstrates the use of the "deltas"

mode.

Command Line:

#vma_stats –p <pid> -d 2

Output:

fd --------------- offloaded ---------------- ---------- os ---------

 pkt/s Kbyte/s eagain/s error/s poll% pkt/s Kbyte/s error/s

 15 Rx: 15186 29 0 0 0.0 0 0 0

 Tx: 15186 29 0 0 0 0 0

 19 Rx: 15186 29 0 0 0.0 0 0 0

 Tx: 15186 29 0 0 0 0 0

 23 Rx: 0 0 0 0 0.0 15185 22 0

 Tx: 0 0 0 0 15185 22 0

select() Rx Ready:15185/30372 [os/offload]

Timeouts:0 Errors:0 Poll:100.00% Polling CPU:70%

Analysis of the Output:

 Three sockets were created (fds: 15, 19, and 23).

 Received 11590 packets, 22 Kilobytes during the last second via fds: 15 and 19.

 Transmitted 11590 packets, 22 Kbytes during the last second via fds: 15 and 19.

 Not all the traffic was offloaded, as fd 23: 11590 packets, 22 KBytes were transmitted

and received via the OS.This means that fd 23 was used for unicast traffic.

 No transmission or reception errors were detected on any socket.

 The application used select for I/O multiplexing.

 45557 packets were placed in socket ready queues (over the course of the last second):

30372 of them offloaded (15186 via fd 15 and 15186 via fd 19), and 15185 were

received via the OS (through fd 23).

 There were no missed Select polls (see VMA_SELECT_POLL). This implies that the

receiving thread did not enter a blocked state. Thus, there was no context switch to hurt

latency.

 The CPU usage in the select call is 70%.

You can use this information to calculate the division of CPU usage between VMA and

the application. For example when the CPU usage is 100%, 70% is used by VMA for

polling the hardware, and the reamining 30% is used for processing the data by the

application.

Rev 6.9.1 Debugging, Troubleshooting, and Monitoring

40

8.1.1.3 Example 3

Description: This example presents the most detailed vma_stats output.

Command Line:

#vma_stats –p <pid> -v 3 –d 2

Output:

==

 Fd=[14]

- Blocked, MC Loop Enabled

- Bound IF = [0.0.0.0:11111]

- Member of = [224.7.7.7]

Rx Offload: 1128530 KB / 786133 / 0 / 0 [bytes/packets/eagains/errors]/s

Rx byte: cur 1470 / max 23520 / dropped/s 0 / limit 16777216

Rx pkt : cur 1 / max 16 / dropped/s 0

Rx poll: 10 / 276077 (100.00%) [miss/hit]

==

 CQ=[0]

Packets dropped: 0 /s

Packets queue len: 0

Drained max: 511

Buffer pool size: 500

Buffer disorder: 0.01%

==

==

 RING=[0]

Packets count: 786133 /s

Packets bytes: 1192953545 /s

Interrupt requests: 786137 /s

Interrupt received: 78613 /s

Moderation frame count: 10

Moderation usec period: 181

==

Analysis of the Output:

 A single socket with user fd=14 was created

 The socket is a member of multicast group: 224.7.7.7

 Received 786133 packets, 1128530 Kilobytes via the socket during the last second

 No transmitted data

 All the traffic was offloaded. No packets were transmitted or received via the OS

 There were almost no missed Rx polls (see VMA_RX_POLL)

 There were no transmission or reception errors on this socket

 The sockets receive buffer size is 16777216 Bytes

 There were no dropped packets caused by the socket receive buffer limit (see

VMA_RX_BYTES_MIN)

 Currently, one packet of 1470 Bytes is located in the socket receive queue

 The maximum number of packets ever located, simultaneously, in the sockets receive

queue is 16

 No packets were dropped by the CQ

 User Manual Rev 6.9.1

 41

 No packets in the CQ ready queue (packets which were drained by the CQ and are

waiting to be processed by the upper layers)

 The maximum number of packets drained by the CQ during a single drain cycle is 511

(see VMA_CQ_DRAIN_WCE_MAX)

 The RING received 786133 packets during this period

 The RING received 1192953545 bytes during this period. This includes headers bytes.

 786137 interrupts were requested by the ring during this period

 78613 interrupts were intercepted by the ring during this period

 The moderation engine was set to trigger an interrupt for every 10 packets and with

maximum time of 181 usecs

8.1.1.4 Example 4

Description: This example demonstrates how you can get multicast group membership

information via vma_stats.

Command Line:

#vma_stats –p <pid> -v 4

Output:

VMA Group Membership Information

Group fd number

[224.4.1.3] 15

[224.4.1.2] 19

If the user application performed transmit or receive activity on a socket, those values will be

logged when the sockets are closed. The VMA logs its internal performance counters if

VMA_TRACELEVEL=4 (see Example 5).

8.1.1.5 Example 5

Description: This is an example of a log of socket performance counters along with an

explanation of the results.

Output:

VMA: [fd=10] Tx Offload: 455 KB / 233020 / 0 [bytes/packets/errors]

VMA: [fd=10] Tx OS info: 0 KB / 0 / 0 [bytes/packets/errors]

VMA: [fd=10] Rx Offload: 455 KB / 233020 / 0 [bytes/packets/errors]

VMA: [fd=10] Rx OS info: 0 KB / 0 / 0 [bytes/packets/errors]

VMA: [fd=10] Rx byte: max 200 / dropped 0 (0.00%) / limit 2000000

VMA: [fd=10] Rx pkt : max 1 / dropped 0 (0.00%)

VMA: [fd=10] Rx poll: 0 / 233020 (100.00%) [miss/hit]

Analysis of the Output:

 No transmission or reception errors occurred on this socket (user fd=10).

 All the traffic was offloaded. No packets were transmitted or received via the OS.

 There were practically no missed Rx polls (see VMA_RX_POLL and

VMA_SELECT_POLL). This implies that the receiving thread did not enter a blocked

state. Thus, there was no context switch to hurt latency.

Rev 6.9.1 Debugging, Troubleshooting, and Monitoring

42

 There were no dropped packets caused by the socket receive buffer limit (see

VMA_RX_BYTES_MIN). A single socket with user fd=14 was created.

8.2 Debugging

8.2.1 VMA Logs

Use the VMA logs in order to trace VMA operations. VMA logs can be controlled by the

VMA_TRACELEVEL variable. This variable's default value is 3, meaning that the only logs

obtained are those with severity of PANIC, ERROR, and WARNING.

You can increase the VMA_TRACELEVEL variable value up to 6 (as described in VMA

Configuration Parameters (on page 15)) to see more information about each thread's

operation.

Use the VMA_LOG_DETAILS=3 to add a time stamp to each log line. This can help to

check the time difference between different events written to the log.

Use the VMA_LOG_FILE=/tmp/my_file.log to save the daily events. It is

recommended to check these logs for any VMA warnings and errors. Use the

Troubleshooting (on page 42) section to help resolve the different issues in the log.

VMA will replace a single '%d' appearing in the log file name with the pid of the process

loaded with VMA. This can help in running multiple instances of VMA each with its own

log file name.

When VMA_LOG_COLORS is enabled, VMA uses a color scheme when logging: Red for

errors and warnings, and dim for low level debugs.

Use the VMA_HANDLE_SIGSEGV to print a backtrace if a segmentation fault occurs.

8.2.2 Ethernet Counters

Look at the Ethernet counters (by using the ifconfig command) to understand whether

the traffic is passing through the kernel or through the VMA (Rx and Tx).

8.2.3 NIC Counters

Look at the NIC counters to monitor HW interface level packets received and sent, drops,

errors, and other useful information.

ls /sys/class/net/eth2/statistics/

8.3 Troubleshooting

This section lists problems that can occur when using VMA, and describes solutions for

these problems.

 Problem: High log level:

VMA: WARNING:

VMA: WARNING: * VMA is currently configured with high log level

*

VMA: WARNING: * Application performance will decrease in this log level!

*

VMA: WARNING: * This log level is recommended for debugging purposes only

*

 User Manual Rev 6.9.1

 43

VMA: WARNING:

This warning message indicates that you are using VMA with a high log level.

The VMA_TRACELEVEL variable value is set to 4 or more, which is good for

troubleshooting but not for live runs or performance measurements.

Solution: Set VMA_TRACELEVEL to its default value 3.

 Problem: On running an application with VMA, the following error is reported:

ERROR: ld.so: object 'libvma.so' from LD_PRELOAD cannot be preloaded:

ignored.

Solution: Check that libvma is properly installed, and that libvma.so is located in

/usr/lib (or in /usr/lib64, for 64-bit machines).

 Problem: On attempting to install vma rpm, the following error is reported:

#rpm –ivh libvma-w.x.y-z.rpm

error: can't create transaction lock

Solution: Install the rpm with privileged user (root).

 Problem: The following warning is reported:

VMA: WARNING: **

VMA: WARNING: Your current max locked memory is: 33554432. Please change

it to unlimited.

VMA: WARNING: Set this user's default to `ulimit -l unlimited`.

VMA: WARNING: Read more about this issue in the VMA's User Manual.

VMA: WARNING: **

Solution: When working with root, increase the maximum locked memory to 'unlimited'

by using the following command:

#ulimit -l unlimited

When working as a non-privileged user, ask your administrator to increase the maximum

locked memory to unlimited.

 Problem: Incorrect IGMP version

The following warning is reported:

VMA: WARNING: **

VMA: WARNING: IGMP Version flag is not forced to IGMPv2 for interface ib2

while

VMA: WARNING: VMA_IGMP is Enabled!

VMA: WARNING: Working in this mode can cause issues due to Eth-IB gateway

requirements

VMA: WARNING: Please "echo 2 >

/proc/sys/net/ipv4/conf/ib2/force_igmp_version"

VMA: WARNING: or "export VMA_IGMP=0"

VMA: WARNING: before loading your application with VMA library

VMA: WARNING: Read the IGMP section in the VMA's User Manual for more

information

VMA: WARNING: **

This warning message means that you are using IGMP version other than 2, which is the

version supported by VMA. (Version 2 is required for the Eth-IB gateway.)

Solution: Use VMA_SUPPRESS_IGMP_WARNING=1 if you are working in an

InfiniBand fabric and do not need to receive multicast packets from the Ethernet to the

InfiniBand fabric or you are working in an Ethernet fabric.

Rev 6.9.1 Debugging, Troubleshooting, and Monitoring

44

If you do expect to receive multicast packets from the Ethernet to the InfiniBand fabric

with VMA, force IGMP working mode to version 2 in all your hosts, as well as in your

routers:

echo 2 > /proc/sys/net/ipv4/conf/ib2/force_igmp_version

 Problem: UMCAST is enabled

The following warning is reported:

VMA WARNING: ***

VMA WARNING: UMCAST flag is Enabled for interface ib0!

VMA WARNING: Please disable it: "echo 0 > /sys/class/net/ib0/umcast"

VMA WARNING: This option in no longer needed in this version

VMA WARNING: Please refer to Release Notes for more information

VMA WARNING: ***

This warning message means that the UMCAST flag is on.

Solution: Turn off the UMCAST flag. This option is no longer needed in this version.

 Problem: Lack of huge page resources in the system.

The following warning is reported:

VMA: WARNING:

VMA: WARNING: * NO IMMEDIATE ACTION NEEDED! *

VMA: WARNING: * Not enough hugepage resources for VMA memory allocation.*

VMA: WARNING: * VMA will continue working with regular memory

allocation.*

VMA: INFO : * Optional: 1. Disable VMA's hugepage support

(VMA_HUGETLB=0)*

VMA: INFO : * 2. Restart process after increasing the number

of*

VMA: INFO : * hugepages resources in the system: *

VMA: INFO : * "cat /proc/meminfo | grep -i HugePage"

*

VMA: INFO : * "echo 1000000000 > /proc/sys/kernel/shmmax"

*

VMA: INFO : * "echo 400 > /proc/sys/vm/nr_hugepages"

*

VMA: WARNING: * Read more about the Huge Pages in the VMA User Manual

*

VMA: WARNING:

This warning message means that you are using VMA with huge page memory allocation

enabled (VMA_MEM_ALLOC_TYPE=2), but not enough huge page resources are

available in the system. VMA will use contiguous pages instead

Solution: Set VMA_MEM_ALLOC_TYPE= 1, in order to enable VMA's contig

pages allocation logic, this is the default setting;

If you want VMA to take full advantage of the performance benefits of huge pages,

restart the application after adding more huge page resources to your system similar to

the details in the warning message above, or try to free unused huge page shared memory

segments with the script below.

echo 1000000000 > /proc/sys/kernel/shmmax

echo 400 > /proc/sys/vm/nr_hugepages

If you are running multiple instances of your application loaded with VMA, you will

probably need to increase the values used in the above example.

 User Manual Rev 6.9.1

 45

CAUTION: Check that your host machine has enough free memory after allocating the

huge page resources for VMA. Low system memory resources may cause your system

to hang.

NOTE: Use ipcs -m and ipcrm -m shmid to check and clean unused shared

memory segments.

Use the following script to release VMA unused huge page resources:

for shmid in `ipcs -m | grep 0x00000000 | awk '{print $2}'`;

do echo 'Clearing' $shmid; ipcrm -m $shmid;

done;

Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking Tool

46

Chapter

Appendix A: Sockperf - UDP/TCP Latency and
Throughput Benchmarking Tool

This appendix presents sockperf, VMA's sample application for testing latency and

throughput over socket API.

Sockperf can be used natively, or with VMA acceleration.

A.1 Overview

Sockperf is an open source utility. For more general information, see

http://code.google.com/p/sockperf/.

Sockperf's advantage over other network benchmarking utilities is its focus on testing the

performance of high-performance systems (as well as testing the performance of regular

networking systems). In addition, sockperf covers most of the socket API call and options.

Specifically, in addition to the standard throughput tests, sockperf:

 Measures latency of each discrete packet at sub-nanosecond resolution (using TSC

register that counts CPU ticks with very low overhead).

 Measures latency for ping-pong mode and for latency under load mode. This means

that you can measure latency of single packets even under a load of millions of PPS

(without waiting for reply of packet before sending a subsequent packet on time).

 Enables spike analysis by providing in each run a histogram with various percentiles of

the packets’ latencies (for example: median, min, max, 99% percentile, and more) in

addition to average and standard deviation.

 Can provide full logs containing all a packet’s tx/rx times, without affecting the

benchmark itself. The logs can be further analyzed with external tools, such as MS-

Excel or matplotlib.

 Supports many optional settings for good coverage of socket API, while still keeping a

very low overhead in the fast path to allow cleanest results.

Sockperf operates by sending packets from the client (also known as the publisher) to the

server (also known as the consumer), which then sends all or some of the packets back to the

client. This measured roundtrip time is the route trip time (RTT) between the two machines

on a specific network path with packets of varying sizes.

 The latency for a given one-way path between the two machines is the RTT divided by

two.

 The average RTT is calculated by summing the route trip times for all the packets that

perform the round trip and then dividing the total by the number of packets.

Sockperf can test the improvement of UDP/TCP traffic latency when running applications

with and without VMA.

Sockperf can work as a server (consumer) or execute under-load, ping-pong, playback and

throughput tests as a client (publisher).

 User Manual Rev 6.9.1

 47

In addition, sockperf provides more detailed statistical information and analysis, as described

in the following section.

Sockperf is installed on the VMA server at /usr/bin/sockperf. For examples of running

sockperf over 1 Gb and 10Gb Ethernet, see:

 Latency with Ping-pong Test (on page 48)

 Bandwidth and Packet Rate With Throughput Test (on page 50)

Note: If you want to use multicast, you must first configure the routing table to map

multicast addresses to the Ethernet interface, on both client and server. (See Configuring the

Routing Table for Multicast Tests (on page 47)).

A.1.1 Advanced Statistics and Analysis

In each run, sockperf presents additional advanced statistics and analysis information:

 In addition to the average latency and standard deviation, sockperf presents a

histogram with various percentiles, including:

 50 percentile - The latency value for which 50 percent of the observations are smaller

than it. The 50 percentile is also known as the median, and is different from the

statistical average.

 99 percentile - The latency value for which 99 percent of the observations are smaller

than it (and 1 percent are higher).

These percentiles, and the other percentiles that the histogram provides, are very useful

for analyzing spikes in the network traffic.

 Sockperf can provide a full log of all packets’ tx and rx times by dumping all the data

that it uses for calculating percentiles and building the histogram to a comma separated

file. This file can be further analyzed using external tools such as Microsoft Excel or

matplotlib.

All these additional calculations and reports are executed after the fast path is completed.

This means that using these options has no effect on the benchmarking of the test itself.

During runtime of the fast path, sockperf records txTime and rxTime of packets using the

TSC CPU register, which has a negligible effect on the benchmark itself, as opposed to using

the computer’s clock, which can affect benchmarking results.

A.2 Configuring the Routing Table for Multicast Tests

If you want to use multicast, you must first configure the routing table to map multicast

addresses to the Ethernet interface, on both client and server.

Example

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

where eth0 is the 10 Gb Ethernet interface.

You can also set the interface on runtime in sockperf:

 Use --mc-rx-if -<ip> to set the address of the interface on which to receive

multicast packets (can be different from the route table).

Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking Tool

48

 Use --mc-tx-if -<ip> to set the address of the interface on which to transmit

multicast packets (can be different from the route table).

A.3 Latency with Ping-pong Test

To measure latency statistics, after the test completes, sockperf calculates the route trip times

(divided by two) between the client and the server for all messages, then it provides the

average statistics and histogram.

A.3.1 UDP MC Ping-pong Over 1 Gb

 To run UDP MC ping-pong over 1 Gb Ethernet

4. On both client and server, configure the routing table to map multicast addresses to the

Ethernet interface by using:

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth1

where eth1 is the 1 Gb Ethernet interface.

5. Run the server by using:

sockperf sr -i <server-1g-ip>

6. Run the client by using:

sockperf pp -i <server-1g-ip>

The following output is obtained:

sockperf: Warmup stage (sending a few dummy packets)...

sockperf: Starting test...

sockperf: Test end (interrupted by timer)

sockperf: [Total Run] RunTime=1.100 sec; SentMessages=36304;

ReceivedMessages=36303

sockperf: ========= Printing statistics for Server No: 0

sockperf: [Valid Duration] RunTime=1.000 sec; SentMessages=33026;

ReceivedMessages=33026

sockperf: ====> avg-lat= 15.096 (std-dev=0.300)

sockperf: # dropped packets = 0; # duplicated packets = 0; # out-of-order

packets = 0

sockperf: Summary: Latency is 15.096 usec

sockperf: Total 33026 observations; each percentile contains 330.26

observations

sockperf: ---> <MAX> observation = 36.855

sockperf: ---> percentile 99.99 = 25.553

sockperf: ---> percentile 99.00 = 15.803

sockperf: ---> percentile 50.00 = 15.080

sockperf: ---> <MIN> observation = 13.406

Interpretation of the results:

The example shows an average latency of 15.096 usec

A.3.2 UDP MC Ping-pong Over 10 Gb

 To run UDP MC ping-pong over 10 Gb Ethernet

7. After configuring the routing table as described in Configuring the Routing Table for

Multicast Tests (on page 47), run the server by using:

sockperf sr -i <server-10g-ip>

8. Run the client by using:

 User Manual Rev 6.9.1

 49

sockperf pp -i <server-10g-ip>

The following output is obtained:

sockperf: [Total Run] RunTime=1.100 sec; SentMessages=79960;

ReceivedMessages=79959

sockperf: [Valid Duration] RunTime=1.000 sec; SentMessages=72803;

ReceivedMessages=72803

sockperf: ====> avg-lat= 6.825 (std-dev=0.261)

sockperf: Summary: Latency is 6.825 usec

sockperf: Total 72803 observations; each percentile contains 728.03

observations

sockperf: ---> <MAX> observation = 19.057

sockperf: ---> percentile 99.99 = 9.159

sockperf: ---> percentile 99.00 = 7.382

sockperf: ---> percentile 50.00 = 6.830

sockperf: ---> <MIN> observation = 5.380

Interpretation of the results:

The example shows an average latency of 6.825 usec

A.3.3 UDP MC Ping-pong Over 10 Gb + VMA

 To run UDP MC ping-pong over 10 Gb Ethernet + VMA

9. After configuring the routing table as described in Configuring the Routing Table for

Multicast Tests (on page 47), run the server by using:

 # LD_PRELOAD=libvma.so sockperf sr -i <server-ip>

10. Run the client by using:

LD_PRELOAD=libvma.so sockperf pp -i <server-ip>

The following output is obtained:

VMA INFO : ---

 VMA INFO : Current Time: Sun Jan 29 13:32:40 2012

 VMA INFO : Cmd Line: sockperf pp -i 224.4.2.216

 VMA INFO : Pid: 4215

 VMA INFO : OFED Version: OFED-VMA-1.5.3-0006:

 VMA INFO : System: 2.6.32-71.el6.x86_64

 VMA INFO : Architecture: x86_64

 VMA INFO : Node: boo2

 VMA INFO : ---

 VMA INFO : Log Level 3 [VMA_TRACELEVEL]

 VMA INFO : Log File [VMA_LOG_FILE]

 VMA INFO : ---

 VMA INFO :

 VMA INFO :

sockperf[CLIENT] send on:sockperf: using recvfrom() to block on socket(s)

[0] IP = 224.4.2.216 PORT = 11111 # UDP

sockperf: Warmup stage (sending a few dummy messages)...

sockperf: Starting test...

sockperf: Test end (interrupted by timer)

sockperf: Test ended

sockperf: [Total Run] RunTime=1.100 sec; SentMessages=299903;

ReceivedMessages=299902

sockperf: ========= Printing statistics for Server No: 0

sockperf: [Valid Duration] RunTime=1.000 sec; SentMessages=272956;

ReceivedMessages=272956

sockperf: ====> avg-lat= 1.809 (std-dev=0.244)

sockperf: # dropped messages = 0; # duplicated messages = 0; # out-of-order

messages = 0

sockperf: Summary: Latency is 1.809 usec

Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking Tool

50

sockperf: Total 272956 observations; each percentile contains 2729.56

observations

sockperf: ---> <MAX> observation = 7.489

sockperf: ---> percentile 99.99 = 3.897

sockperf: ---> percentile 99.00 = 2.850

sockperf: ---> percentile 50.00 = 1.717

sockperf: ---> <MIN> observation = 1.579

Interpretation of the results:

The example shows an average latency of 1.809 usec

A.3.4 UDP MC Ping-pong Summary

Table 12: UDP MC Ping-pong Results

Test 1 Gb Ethernet 10 Gb Ethernet 10 Gb Ethernet +

VMA

Latency 15.096 usec 6.825 usec 1.809 usec

VMA Improvement 13.287 usec (89%) 5.016 usec (73%)

A.4 Bandwidth and Packet Rate With Throughput Test

To determine the maximum bandwidth and highest message rate for a single-process, single-

threaded network application, sockperf attempts to send the maximum amount of data in a

specific period of time.

A.4.1 TCP Throughput Over 10 Gb

 To run TCP throughput over 10 Gb

11. Run the server by using:

sockperf sr --tcp -i <server-ip>

12. Run the client by using:

sockperf tp --tcp -i <server-ip> -m 100

where -m/--msg-size is the minimum message size in bytes (minimum default 12).

The following output is obtained:

sockperf: Total of 1282013 messages sent in 1.100 sec

sockperf: Summary: Message Rate is 1165457 [msg/sec]

sockperf: Summary: BandWidth is 13.338 MBps (106.701 Mbps)

Notes:

 You can use --tcp-avoid-nodelay to deliver TCP messages immediately

(default ON).

 For more sockperf throughput options run:

sockperf tp –h

A.4.2 TCP Throughput Over 10 Gb+VMA

 To run TCP throughput over 10 Gb + VMA

13. Run the server by using:

 User Manual Rev 6.9.1

 51

 # LD_PRELOAD=libvma.so sockperf sr --tcp -i <server-ip>

14. Run the client by using:

LD_PRELOAD=libvma.so sockperf tp --tcp -i <server-ip> -m100

The following output is obtained:

sockperf: Total of 8413778 messages sent in 1.100 sec

sockperf: Summary: Message Rate is 7648873 [msg/sec]

sockperf: Summary: BandWidth is 87.534 MBps (700.275 Mbps)

A.4.3 TCP Throughput Summary

Table 13: TCP Throughput Results

Test 10 Gb Ethernet 10 Gb Ethernet + VMA

Message Rate 1165457 [msg/sec] 7648873 [msg/sec]

Bandwidth 13.338 MBps (106.701 Mbps) 87.534 MBps (700.275 Mbps)

VMA Improvement 74.196 (562%)

A.5 sockperf Subcommands

You can use additional sockperf subcommands

Usage: sockperf <subcommand> [options] [args]

 To display help for a specific subcommand, use:

sockperf <subcommand> --help

 To display the program version number, use:

sockperf --version

Table 14: Available Subcommands

Option Description For help, use

help (h ,?) Display a list of supported commands.

under-load (ul) Run sockperf client for latency under load test. # sockperf ul -

h

ping-pong (pp) Run sockperf client for latency test in ping pong

mode.

sockperf pp -

h

playback (pb) Run sockperf client for latency test using playback

of predefined traffic, based on timeline and

message size.

sockperf pb -

h

throughput (tp) Run sockperf client for one way throughput test. # sockperf tp -

h

server (sr) Run sockperf as a server. # sockperf sr -

h

For additional information, see http://code.google.com/p/sockperf/.

A.5.1 Additional Options

The following tables describe additional sockperf options, and their possible values.

Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking Tool

52

Table 15: General sockperf Options

Short

Command

Full Command Description

-h,-? --help,--usage Show the help message and exit.

N/A --tcp Use TCP protocol (default UDP).

 -i --ip Listen on/send to IP <ip>.

 -p --port Listen on/connect to port <port> (default 11111).

 -f --file Tread multiple ip+port combinations from file

<file> (server uses select).

 -F --iomux-type Type of multiple file descriptors handle

[s|select|p|poll|e|epoll|r|recvfrom] (default select).

N/A --timeout Set select/poll/epoll timeout to <msec> or -1 for

infinite (default is 10 msec).

 -a --activity Measure activity by printing a '.' for the last <N>

messages processed.

 -A --Activity Measure activity by printing the duration for last

<N> messages processed.

N/A --tcp-avoid-nodelay Stop delivering TCP Messages Immediately

(default ON).

N/A --mc-rx-if IP address of interface on which to receive

multicast packets (can be different from the route

table).

N/A --mc-tx-if IP address of interface on which to transmit

multicast packets (can be different from the route

table).

N/A --mc-loopback-enable Enable MC loopback (default disabled).

N/A --mc-ttl Limit the lifetime of the message (default 2).

N/A --buffer-size Set total socket receive/send buffer <size> in bytes

(system defined by default).

N/A --vmazcopyread If possible use VMA's zero copy reads API (see

the VMA readme).

N/A --daemonize Run as daemon.

N/A --nonblocked Open non-blocked sockets.

N/A --dontwarmup Do not send warm up packets on start.

N/A --pre-warmup-wait Time to wait before sending warm up packets

(seconds).

N/A --no-rdtsc Do not use the register when measuring time;

instead use the monotonic clock.

N/A --set-sock-accl Set socket acceleration before running (available

for some Mellanox systems).

N/A --load-vma Load VMA dynamically even when

LD_PRELOAD was not used.

 User Manual Rev 6.9.1

 53

Short

Command

Full Command Description

N/A --tcp-skip-blocking-send Enables non-blocking send operation (default

OFF).

N/A --recv_looping_num Set sockperf to loop over recvfrom() until

EAGAIN or <N> good received packets, -1 for

infinite, must be used with --nonblocked (default

1).

 -d --debug Print extra debug information.

Table 16: Client Options

Short

Command

Full Command Description

N/A --srv-num Set the number of servers the client works with.

N/A --sender-affinity Set sender thread affinity to the given core IDs in

the list format (see: cat /proc/cpuinfo).

N/A --receiver-affinity Set receiver thread affinity to the given core IDs in

the list format (see: cat /proc/cpuinfo).

N/A --full-log Dump full log of all message send/receive times to

the given file in CSV format.

 -t --time Set the number of seconds to run (default 1, max =

36000000).

 -b --burst Control the number of messages sent from the

client in every burst.

N/A --giga-size Print sizes in GigaBytes.

N/A --increase_output_precision Increase number of digits after the decimal point

of the throughput output (from 3 to 9).

N/A --mps Set number of messages-per-second (default =

10000 for under-load mode, or max for ping-pong

and throughput modes); for maximum use --

mps=max.

(Supports --pps for backward compatibility.)

 -m --msg-size Use messages of minimum size in bytes (minimum

default 12 bytes).

 -r --range Use with -m to randomly change the minimum

message size in range: <size> +- <N>.

Table 17: Server Options

Short

Command

Full Command Description

N/A --threads-num Run <N> threads on server side (requires '-f'

option).

N/A --cpu-affinity Set threads affinity to the given core IDs in the list

format (see: cat /proc/cpuinfo).

Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking Tool

54

Short

Command

Full Command Description

N/A --vmarxfiltercb If possible use VMA's receive path packet filter

callback API (See the VMA readme).

N/A --force-unicast-reply Force server to reply via unicast.

N/A --dont-reply Set server to not reply to the client messages.

 -m --msg-size Set maximum message size that the server can

receive <size> bytes (default 65506).

 -g --gap-detection Enable gap-detection.

A.5.2 Sending Bursts

Use the -b (--burst=<size>) option to control the number of messages sent by the

client in every burst.

A.6 Debugging sockperf

Use -d (--debug) to print extra debug information without affecting the results of the

test. The debug information is printed only before or after the fast path.

A.7 Troubleshooting sockperf

If the following error is received:

sockperf error:

sockperf: No messages were received from the server. Is the server down?

Perform troubleshooting as follows:

 Make sure that exactly one server is running.

 Check the connection between the client and server.

 Check the routing table entries for the multicast/unicast group.

 Extend test duration (use the --time command line switch).

 If you used extreme values for --mps and/or --reply-every switch , try other values or

try the default values.

 User Manual Rev 6.9.1

 55

Appendix B: Multicast Routing

B.1 Multicast Interface Definitions

All applications that receive and/or transmit multicast traffic on a multiple-interface host

should define the network interfaces through which they would prefer to receive or transmit

the various multicast groups.

If a networking application can use existing socket API semantics for multicast packet

receive and transmit, the network interface can be defined by mapping the multicast traffic.

In this case, the routing table does not have to be updated for multicast group mapping. The

socket API setsockopt handles these definitions.

When the application uses setsockopt with IP_ADD_MEMBERSHP for the receive path

multicast join request, it defines the interface through which it wants the VMA to join the

multicast group, and listens for incoming multicast packets for the specified multicast group

on the specified socket.

When the application uses setsockopt with IP_MULTICAST_IF on the transmit

path, it defines the interface through which the VMA will transmit outgoing multicast

packets on that specific socket.

If the user application does not use any of the above setsockopt socket lib API calls, the

VMA uses the network routing table mapping to find the appropriate interface to be used for

receiving or transmitting multicast packets.

Use the route command to verify that multicast addresses in the routing table are mapped

to the interface you are working on. If they are not mapped, you can map them as follows:

#route add -net 224.0.0.0 netmask 240.0.0.0 dev ib0

It is best to perform the mapping before running the user application with VMA, so that

multicast packets are routed via the InfiniBand/10 Gb Ethernet interface and not via the

default Ethernet interface eth0.

The general rule is that the VMA routing is the same as the OS routing.

Rev 6.9.1 Acronyms

56

Appendix C: Acronyms

Table 18: Acronym Table

Acronym Definition

API Application Programmer's Interface

CQ Completion Queue

FD File Descriptor

GEth Gigabit Ethernet Hardware Interface

HCA Host Channel Adapter

HIS Host Identification Service

IB InfiniBand

IGMP Internet Group Management Protocol

IP Internet Protocol

IPoIB IP over IB

IPR IP Router

NIC Network Interface Card

OFED OpenFabrics Enterprise Distribution

OS Operating System

pps Packets Per Second

QP Queue Pair

RMDS Reuters Market Data System

RTT Route Trip Time

SM Subnet Manager

UDP User Datagram Protocol

usec microseconds

UMCAST User Mode Multicast

VMA Mellanox Messaging Accelerator

VMS VMA Messaging Service

WCE Work Completion Elements

