Mellanox

TECHNOLOGIES

Connect. Accelerate. Qutperform.

Mellanox Messaging Accelerator
(VMA) Library for Linux

User Manual

Rev 6.9.1

www.mellanox.com

NOTE:

THIS HARDWARE, SOFTWARE OR TEST SUITE PRODUCT (“PRODUCT(S)””) AND ITS RELATED
DOCUMENTATION ARE PROVIDED BY MELLANOX TECHNOLOGIES “AS-IS” WITH ALL FAULTS OF ANY
KIND AND SOLELY FOR THE PURPOSE OF AIDING THE CUSTOMER IN TESTING APPLICATIONS THAT USE
THE PRODUCTS IN DESIGNATED SOLUTIONS. THE CUSTOMER'S MANUFACTURING TEST ENVIRONMENT
HAS NOT MET THE STANDARDS SET BY MELLANOX TECHNOLOGIES TO FULLY QUALIFY THE PRODUCT(S)
AND/OR THE SYSTEM USING IT. THEREFORE, MELLANOX TECHNOLOGIES CANNOT AND DOES NOT
GUARANTEE OR WARRANT THAT THE PRODUCTS WILL OPERATE WITH THE HIGHEST QUALITY. ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT ARE DISCLAIMED.
IN NO EVENT SHALL MELLANOX BE LIABLE TO CUSTOMER OR ANY THIRD PARTIES FOR ANY DIRECT,
INDIRECT, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES OF ANY KIND (INCLUDING, BUT NOT
LIMITED TO, PAYMENT FOR PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY FROM THE USE OF THE PRODUCT(S) AND RELATED DOCUMENTATION EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Mellanox

TECHNOLOGIES

Mellanox Technologies

350 Oakmead Parkway Suite 100
Sunnyvale, CA 94085

US.A.

www.mellanox.com

Tel: (408) 970-3400

Fax: (408) 970-3403

© Copyright 2015. Mellanox Technologies. All Rights Reserved.

Mellanox®, Mellanox logo, BridgeX®, ConnectX®, Connect-IB®, CoolBox®, CORE-Direct®, GPUDirect®, InfiniBridge®,
InfiniHost®, InfiniScale®, Kotura®, Kotura logo, MetroX®, MLNX-OS®, PhyX®, ScalableHPC®, SwitchX®, TestX®,
UFM®, Virtual Protocol Interconnect®, Voltaire® and Voltaire logo are registered trademarks of Mellanox Technologies,
Ltd.

CyPU™, ExtendX™, FabricIT™, FPGADirect™, HPC-X™, Mellanox Care™, Mellanox CloudX™, Mellanox Open
Ethernet™, Mellanox PeerDirect™, Mellanox Virtual Modular Switch™, MetroDX™, NVMeDirect™, StPU™,
Switch-IB™, Unbreakable-Link™ are trademarks of Mellanox Technologies, Ltd.

All other trademarks are property of their respective owners.

2 Document Number: DOC-00393 Cy

ﬂable of Contents

Table of Contents

DOCUMENT REVISION HIiSTOIY ...uuiiiiiiie ettt e s e e e e s e s e e e e e e s s sta b e e e e e e e s ssnnnreneeaaeeesanns 6
ADOUL THIS MANUAN ...t e e e re e sr e e e nnneennreas 8
1 INtrodUCTION T0 VIMA ...ttt r e s e nmn e e s e nn e e snre e enne e 10
1.1 VIMA OVEIVIEW ...ttt ettt ettt a et e e ekt e e e ekt e e e ea bt e e e a b et e e e e sbe e e e e anbe e e e e anbreeeennee 10

1.2 BASIC FRALUIESceiiiiiiii ettt ettt et e et e e e a bt e e e s abe e e e e et e e et e e e e 10

1.3 Target APPIICALIONSeeiiiiiiiei ittt e et e et e e e anb e e e anbr e e neee 10

1.4 AdVANCED VIMA FEALUIES.....cciiiiiiie ittt ettt ettt e et e et e e et e e et e e e e e 11

2 VMA LIbrary ArChit@CtUIE.....cocoiiii i 12
2.1 TOP-LEVEI et e e e e e abreeaean 12

P S 1o ot =1 B Y o= O PP PO P PP TPPPPPOTPRPN 12
INSTAllING VM A e 13

O 70T o} 110 LU 1o Y N 13
4.1 Configuring lIOVME.CONTcooiiiiii et 13
4.1.1 Configuring Target Application OF PrOCESSciiiiiiiiiiiiiiie e 13

4.1.2 Configuring Socket Transport CONtrolcceeieiiiiiiiiiiieiee e 14

4.1.3 Example of VMA CONfiQUIratioN...........cooiiueriieiiieiieiiiiiee it 15

4.2 VMA Configuration ParaMEterS........cooiuiiiiiiiiiie ittt e e eneeees 15
4.2.1 Configuration Parameter VAIUEScooouiiiiiiiiiieiiiiie e 17

4.2.2 Beta Level Features Configuration Parameterscccocvveiiiiieieiniiene e 28

5 Using sockperf With VMA ... 30
6 Example Running sockperf PiNg-pong TeStccovviiiiiiiiiiiii e 31
T VMA EXIEA APl oottt sttt b bbbt n et be e b nae e e b ennas 31
7.1 Overview of the VIMA EXIra APL......oo et 31

7.2 USING VIMA EXIA AP ..ottt ettt e et e e et e e e e e s bneeeean 32

7.3 Control Off-load Capabilities DUring RUN-TIMEooouiiiiiiiiieiiiiiee e 33
7.3.1 Adding libvma.conf Rules During RUN-TIME.........ccccceiiiiiiiiiiiiee e 33

7.3.2 Creating Sockets as Off-loaded or Not-Off-loaded............ccccceveeiiiiiiiiiieiee e 33

A - Yot =1 11 1= 1 o PP OURPRTRRRN 33
7.4.1 Zero COPY rECVITOM()...uveieeiiiiiee ettt et e et e e e stneeeeans 34

7.4.2 Freeing Zero Copied Packet BUfEISccooiuiiiiiiiiii e 35

8 Debugging, Troubleshooting, and MONITOFINGeeiiiiiiiiiiiii e 37
8.1 Monitoring — the vMa_sStatS ULIItY..........cooiiiiiiiiiiiee e 37
8.1L.1 EXAMPIES .ottt et e et e e abb e e e e rreeeean 38

S A B 1= o 18 T o |1 oo PP ORI 42

S 0t R /1N o o L 42

8.2.2 EIhErNet COUNTEIS.....ciiiiiiirie ittt 42

Rev 6.9}

gev 6.9.1 Table of Conterg

8.2.3 NIC COUNLEIS ...ttt e 42

SR S I (0101 o] [== o oo} {1 Vo PSR PE 42
Appendix A: Sockperf - UDP/TCP Latency and Throughput Benchmarking Tool 46
N A @ 11 =T o PSP P TP PP SR PRR 46
A.1.1 Advanced Statistics and ANAlYSIS..........ccccuiiiiiiiee i 47

A.2 Configuring the Routing Table for Multicast TESScccuveveieeiiiiier e 47
A.3 Latency With PiNG-PONG TEStc.iiiiiiiiii et e e s s r e e e e e s st e e e e e e e s e nnnreees 48
A.3.1 UDP MC Ping-pong OVEr L GD.....uuviiiiiiiiiiiiieec e 48

A.3.2 UDP MC Ping-pong OVEr 10 GDccoceiiiiiiiiiiiiie e 48

A.3.3 UDP MC Ping-pong Over 10 Gb + VMA ..., 49

A.3.4 UDP MC PiNG-PONG SUMIMAIYccciiieieieie e ie e ee et e e e e e e seaen e a e aaaaae s 50

A.4 Bandwidth and Packet Rate With Throughput TeStcooovviiiiiiiii, 50
A4 1 TCP Throughput Over 10 GD......ccoooiiiiii e, 50

A.4.2 TCP Throughput Over 10 GhH+VMAo 50

A.4.3 TCP Throughput SUMMAIYcccoie i 51

A.5 sockperf SUDCOMMANTScooviiiiiiii 51
A5 1 AddItIoNal OPLONS....cccc i ——————— 51

A5.2 SENING BUISES ... —————— 54

A6 Debugging SOCKPEIT........cooiiieeeeeee e 54
A.7 Troubleshooting SOCKPEIToooiiiii 54
Appendix B: MUIEICAST ROULING .ceiiiiiieei e 55
B.1 Multicast Interface DefiNItIONS.c..cviiiiiiiiiei e 55
Appendix C: ACTONYIMIS Lottt ettt et e e e e e et e e e e e s et e e e e e e s b et et e e e s e e annrr e e eeeeas 56

ﬂable of Contents

List of Tables

Table 1: DocumMeNt REVISION HISTOIYciiiiiiiiiiiiiiie et s s s e e e e s s e e e e e e e e s rnnnb e e e e e e e e s annnneees 6
Table 2: Target Process Statement OPLIONSeeiiiiiiiiiiiiiiee ittt e e e sbreee e 14
Table 3: Socket Transport Statement OPLIONScceciiiiiiiiiiiiee e e e 14
Table 4: Configuration Parameter VAIUESooiiiiiiiiiiiiiiei et 17
Table 5: Beta Level Configuration Parameter ValUESccveeeiiiiiiiiieiie et e e e sesiinnee e e 28
Table 6: add_CoNf_rule PAramMEtersooo ittt e e e e e s e e e e e e e e eneneeees 33
Table 7: add_conf_rUl@ PArameEterSc.ieii i e e e e e e e s e e e e e s e s e e e e e e e s s annenraees 33
Table 8: Packet Filtering Callback FUNCtion Parameterscoooiiiiiiiieeiiiiiieee e 34
Table 9: Zero-Copy reVCIrOM ParamEterS. i uuureieieirieiereieieieieeeearererererererer—————————————————. 34
Table 10: Freeing Zero-copy Datagram Parametersccueeeiiiiieiiiiiiee et e s e s sireee e 35
Table 11: vma_statS ULiIlity OPtiONSuuuueieieiiiiiiieieieieieieieeeieiereiereeerererere e 37
Table 12: UDP MC PiNgG-PONG RESUILScoiuiiiiiiiiiiie ittt ettt e e sbe e e sbeeeeean 50
Table 13: TCP ThroUugNPUL RESUILSuuuiieiiieiiiiiiieieieieieieieieierereeeeersreeersrereesrseerererersrsrsrsrsrsrnrsrsrnrnnnnnnns 51
Table 14: Available SUDCOMMEANUSooiiiiiiiiiiii e e s e e e e e e s s s er e e e e e s ennnneeees 51
Table 15: General SOCKPEI OPLIONSuuuuuuiuieuuieieieieieeerererererererereee——.—————.———————————r—..———————————. 52
Table 16: ClENT OPLIONS ...ciiveieeiieie ettt e et e e e st b et e e st bt e e e st bt e e e anbbeeeeabbeeeeanbreeeeans 53
QIE= o] ST S Y= V=T @ o)1) 1 T 53
Table 18: ACTONYM TaADIEot e et e e et e e e s bbeeeeans 56

Rev 6.9}

@ev 6.9.1

Document Revision History

Table 1: Document Revision History

Document Revision Hist@

Version Description

Rev 6.9.1 e Updated the following sections:
¢ VMA Configuration Parameters
e Configuration Parameter VValues

Rev 6.8.3 e Updated the following sections:

e Overview of the VMA Extra API

e Zero Copy recvfrom()

e Freeing Zero Copied Packet Buffers

Rev 6.7 e No changes

Rev 6.6.4 e Updated the following sections:

e Configuring Socket Transport Control

¢ VMA Configuration Parameters
e Configuration Parameter VValues
¢ Monitoring — the vma_stats Utility

o Example 3
Rev 6.5.9 o Added the following sections:

¢ Adding libvma.conf Rules During Run-Time

e Creating Sockets as Off-loaded or Not-Off-loaded

Rev 6.4.11 e Added the following sections:
e Using sockperf with VMA

e Example Running sockperf Ping-pong Test

e Updated the following sections:
¢ VMA Configuration Parameters
e Configuration Parameter Values

moved to the Installation Guide

o Beta Level Features Configuration Parameters

e Removed the Installation and Initial Configuration chapter. Was

Rev 6.3.28 Updated the following sections:
e Target Applications

e VMA Configuration Parameters

e Configuration Parameter VValues

e Problem: Incorrect IGMP version

e Problem: Lack of huge page resources in the system

Configuration Parameter Values" section

Rev 6.1 e Updated sections in "Introduction to VMA" chapter and "VMA
Library Architecture” for offload over InfiniBand

e Updated "VMA System Requirements" section
e Updated "Configuring the ConnectX-3 HCA for VMA" section
o Removed deprecated parameters for NetEffect from "VMA

r User Manual

Version Description
e Updated Appendix on sockperf.
Rev 6.0 e Updated chapter on "VMA Library Architecture."

Updated graphic to reflect support of ConnectX3.

Removed outdated sections, "Unicast Support™ and "Link and Port
Recovery."

Updated sections in chapter on "Installation and Initial
Configuration."

VMA System Requirements
All sections on VMA Installation and Upgrade
Updated chapter on "Configuring VMA."

Removed information about configuring a virtual MAC interface for
unicast offload (deprecated feature).

Updated information for VMA configuration parameters
VMA_THREAD_MODE, VMA_CLOSE_ON_DUP2,
VMA_CONFIG_FILE, VMA_APPLICATION_ID.

Updated default values for VMA configuration parameters
VMA RX POLL and VMA_SELECT_POLL.

Updated configuration parameter descriptions to include poll().

Removed chapter "Tuning VMA". This information will be included
in a separate Performance Tuning Guide, which will be part of the
VMA 6.0 Documentation package.

Updated information for ""Zero-copy revcfrom."
Added troubleshooting topic for "UMCAST enabled".

Rev 6.9}

gev 6.9.1 About This Man@

About This Manual

Audience

This manual is primarily intended for:
o Market data professionals
e Messaging specialists
o Software engineers and architects
o Systems administrators tasked with installing/uninstalling/maintaining VMA

e ISV partners who want to test/integrate their traffic-consuming/producing applications
with VMA.

Related Documentation

For additional relevant information, refer to the latest revision of the following documents:

o Mellanox Messaging Accelerator (VMA) Library for Linux Release Notes (DOC-
00329)

e Mellanox Messaging Accelerator (VMA) Installation Guide (DOC-10055)
e Performance Tuning Guidelines for Mellanox Network Adapters (DOC 3368)

Document Conventions

— / NOTE: Identifies important information that contains helpful suggestions.

-

CAUTION: Alerts you to risk of personal injury, system damage, or loss of data.

WARNING: Warns you that failure to take or avoid a specific action might result in
personal injury or a malfunction of the hardware or software. Be aware of the hazards
involved with electrical circuitry and be familiar with standard practices for preventing
accidents before you work on any equipment.

-

r User Manual

Typography

The following table describes typographical conventions in Mellanox documentation. All
terms refer to isolated terms within body text or regular table text unless otherwise
mentioned in the Notes column.

Rev 6.9}

Term, Construct, Example Notes
Text Block
File name, pathname lopt/ufm/conf/gv.cfg

Console session (code)

-> flashClear <CR>

Complete sample line or block.
Comprises both input and
output.

The code can also be shaded.

Linux shell prompt # The "#"character stands for the
Linux shell prompt.

Mellanox CLI Guest Mode Switch > Mellanox CLI Guest Mode.

Mellanox CLI admin mode Switch # Mellanox CLI admin mode

String

< > or []

Stringsin<>or[]are
descriptions of what will
actually be shown on the screen,
for example, the contents of
<your ip> could be 192.168.1.1

Management GUI label,
item name

New Network,
New Environment

Management GUI labels and
item names appear in bold,
whether or not the name is
explicitly displayed (for
example, buttons and icons).

User text entered into
Manager, e.g., to assign as
the name of a logical object

"Env1", "Networkl"

Note the quotes. The text
entered does not include the
quotes.

gev 6.9.1

1.1

1.2

1.3

| Introduction to Vl\m

Introduction to VMA

VMA Overview

The Mellanox Messaging Accelerator (VMA) library is a network-traffic offload,
dynamically-linked, user-space Linux library which serves to transparently enhance the
performance of socket-based networking-heavy applications over an InfiniBand or Ethernet
network. VMA has been designed for latency-sensitive and throughput-demanding, unicast
and multicast applications. VMA can be used to accelerate producer applications and
consumer applications, and enhances application performance by orders of magnitude
without requiring any modification to the application code.

The VMA library accelerates TCP and UDP socket applications, by offloading traffic from
the user-space directly to the network interface card (NIC) or Host Channel Adapter (HCA),
without going through the kernel and the standard IP stack (kernel-bypass). VMA increases
overall traffic packet rate, reduces latency, and improves CPU utilization.

Basic Features

The VMA library utilizes the direct hardware access and advanced polling techniques of
RDMA-capable network cards. Utilization of InfiniBand's and Ethernet’s direct hardware
access enables the VMA kernel bypass, which causes the VMA library to bypass the kernel’s
network stack for all IP network traffic transmit and receive socket API calls. Thus,
applications using the VMA library gain many benefits, including:

o Reduced context switches and interrupts, which result in:
o Lower latencies
o Higher throughput
o Improved CPU utilization

e Minimal buffer copies between user data and hardware — VMA needs only a single
copy to transfer a unicast or multicast offloaded packet between hardware and the
application’s data buffers.

Target Applications
Good application candidates for VMA include, but are not limited to:

o Fast transaction-based network applications, which require a high rate of request-
response type operations over TCP or UDP unicast. This also includes any
send/receive to/from an external network entity, such as a Market Data Order Gateway
application working with an exchange.

e Market-data feed-handler software which consumes multicast data feeds (and which
often use multicast as a distribution mechanism downstream), such as Wombat WDF
and Reuters RMDS, or any home-grown feed handlers.

e Messaging applications responsible for producing/consuming relatively large amounts
of multicast data including applications that use messaging middleware, such as Tibco
Rendezvous (RV).

r User Manual

Caching/data distribution applications, which utilize quick network transactions for
cache creation/state maintenance, such as MemCacheD and Redis.

Applications that handle distributed denial of service (DDoS) and web services
applications with a heavy load of DNS requests.

Messaging applications, such as UMS Informatica, which VMA 6.4 was certified with

Any other applications that make heavy use of multicast or unicast that require any
combination of the following:

Higher Packets per Second (PPS) rates than with kernel.
Lower data distribution latency.

Lower CPU utilization by the multicast consuming/producing application in order to
support further application scalability.

1.4 Advanced VMA Features

The VMA library provides several significant advantages:

The underlying wire protocol used for the unicast and multicast solution is standard

TCP and UDP IPv4, which is interoperable with any TCP/UDP/IP networking stack.
Thus, the opposite side of the communication can be any machine with any OS, and
can be located on an InfiniBand or an Ethernet network

asymmetric acceleration purposes. A ‘TCP server side’ only application, a 'multicast
consuming' only or ‘multicast publishing' only application can leverage this, while
remaining compatible with Ethernet or IPoIB peers.

— /, NOTE: VMA uses a standard protocol that enables an application to use the VMA for
=

Kernel bypass for unicast and multicast transmit and receive operations. This delivers
much lower CPU overhead since TCP/IP stack overhead is not incurred

Reduced number of context switches. All VMA software is implemented in user space
in the user application’s context. This allows the server to process a significantly
higher packet rate than would otherwise be possible

Minimal buffer copies. Data is transferred from the hardware (NIC/HCA) straight to
the application buffer in user space, with only a single intermediate user space buffer
and zero kernel 10 buffers

Fewer hardware interrupts for received/transmitted packets

Fewer queue congestion problems witnessed in standard TCP/IP applications
Supports legacy socket applications — no need for application code rewrite
Maximizes Messages per second (MPS) rates

Minimizes message latency

Reduces latency spikes (outliers)

Lowers the CPU usage required to handle traffic

Rev 6.9}

gev 6.9.1 | VMA Library Architect@

2 VMA Library Architecture

2.1 Top-Level

The VMA library is a dynamically linked user-space library. Use of the VMA library does
not require any code changes or recompiling of user applications. Instead, it is dynamically
loaded via the Linux OS environment variable, LD_PRELOAD.

When a user application transmits TCP and UDP, unicast and multicast IPv4 data, or listens
for such network traffic data, the VMA library:

o Intercepts the socket receive and send calls made to the stream socket or datagram
socket address families.

o Implements the underlying work in user space (instead of allowing the buffers to pass
on to the usual OS network kernel libraries).

VMA implements native RDMA verbs API. The native RDMA verbs have been
extended into the Ethernet RDMA-capable NICs, enabling the packets to pass directly
between the user application and the InfiniBand HCA or Ethernet NIC, bypassing the
kernel and its TCP/UDP handling network stack.

You can implement the code in native RDMA verbs API, without making any changes to
your applications. The VMA library does all the heavy lifting under the hood, while
transparently presenting the same standard socket API to the application, thus redirecting the
data flow.

The VMA library operates in a standard networking stack fashion to serve multiple network
interfaces.

The VMA library behaves according to the way the application calls the bind, connect, and
setsockopt directives and the administrator sets the route lookup to determine the interface to
be used for the socket traffic. The library knows whether data is passing to or from an
InfiniBand HCA or Ethernet NIC. If the data is passing to/from a supported HCA or Ethernet
NIC, the VMA library intercepts the call and does the bypass work. If the data is passing
to/from an unsupported HCA or Ethernet NIC, the VMA library passes the call to the usual
kernel libraries responsible for handling network traffic. Thus, the same application can
listen in on multiple HCAs or Ethernet NICs, without requiring any configuration changes
for the hybrid environment.

2.2 Socket Types
The following Internet socket types are supported:

o Datagram sockets, also known as connectionless sockets, which use User Datagram
Protocol (UDP).

e Stream sockets, also known as connection-oriented sockets, which use Transmission
Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP).

r User Manual

4.1

41.1

Installing VMA

For detailed information on how to install the VMA software, please refer to the VMA
Installation Guide.

Configuring VMA

You can control the behavior of VMA by configuring:
e The libvma.conf file.
o VMA configuration parameters, which are Linux OS environment variables.

e VMA extra API

Configuring libvma.conf

The installation process creates a default configuration file, /etc/libvma.conf, in which you
can define and change the following settings:

e The target applications or processes to which the configured control settings apply. By
default, VMA control settings are applied to all applications.

e The transport to be used for the created sockets.

e The IP addresses and ports in which you want offload.
By default, the configuration file allows VMA to offload everything.
In the libvma.conf file:

e You can define different VMA control statements for different processes in a single
configuration file. Control statements are always applied to the preceding target
process statement in the configuration file.

o Comments start with # and cause the entire line after it to be ignored.

e Any beginning whitespace is skipped.

e Any line that is empty is skipped.

e Itis recommended to add comments when making configuration changes.

The following sections describe configuration options in libvma.conf. For a sample
libvma.conf file, see Example of VMA Configuration (on page 15).

Configuring Target Application or Process

The target process statement specifies the process to which all control statements that appear
between this statement and the next target process statement apply.

Each statement specifies a matching rule that all its subexpressions must evaluate as true
(logical and) to apply.

If not provided (default), the statement matches all programs.

The format of the target process statement is :

application-id <program-name|*> <user-defined-id| *>

Rev 6.9}

http://www.mellanox.com/related-docs/prod_acceleration_software/VMA_6.4_Installation_Guide_DOC-10055.pdf
http://www.mellanox.com/related-docs/prod_acceleration_software/VMA_6.4_Installation_Guide_DOC-10055.pdf

gev 6.9.1 Configuring Vl\m

Table 2: Target Process Statement Options

Option Description

<program-name|*> Define the program name (not including the path) to which
the control statements appearing below this statement

apply.

Wildcards with the same semantics as "Is" are supported (*
and ?).

For example:

e db2* matches any program with a name starting with
db2.

e t?cp matches ttcp, etc.

<user-defined-id[*> Specify the process ID to which the control statements
appearing below this statement apply.

Note: You must also set the VMA_APPLICATION_ID
environment variable to the same value as user-defined-id.

41.2 Configuring Socket Transport Control

Use socket control statements to specify when libvma will offload
AF_INET/SOCK_STREAM or AF_INET/SOCK_DATAGRAM sockets (currently
SOCK_RAW is not supported).

Each control statement specifies a matching rule that all its subexpressions must evaluate as
true (logical and) to apply. Statements are evaluated in order of definition according to "first-
match".

Socket control statements use the following format:

use <transport> <role> <address|*>:<port range|*>

Table 3: Socket Transport Statement Options

Option Description

transport Define the mode of transport:
e vma - VMA should be used.

e os - The socket should be handled by the OS network
stack. In this mode,the sockets are not offloaded.

The default is vma.

role Specify one of the following roles:

e tcp server —for listen sockets. Accepted sockets
follow listen sockets. Defined by local_ip:local_port.

e tcp client —for connected sockets. Defined by
remote_ip:remote_port:local_ip:local_port

e udp sender —for TX flows. Defined by
remote_ip:remote_port

e udp receiver —for RX flows. Defined by
local_ip:local_port

e udp connect - for UDP connected sockets.
Defined by remote_ip:remote_port:local_ip:local_port

(,EUserManum

4.1.3

4.2

Rev6§]N

Option Description

address You can specify the local address the server is bind to or

the remote server address the client connects to.

The syntax for address matching is:

<IPv4 address>[/<prefix length>]|*

e |Pv4 address - [0-9]+\.[0-9]+\.[0-9]+\.[0-9]+ each sub
number < 255,

e prefix_length - [0-9]+ and with value <= 32. A
prefix_length of 24 # matches the subnet mask

255.255.255.0 . A prefix_length of 32 requires
matching of the exact IP.

port range Define the port range as:
start-port[-end-port]

where port numbers are > 0 and < 65536

Example of VMA Configuration

To set the following:
o Apply the rules to program tcp_lat with ID B1
o Use VMA by TCP clients connecting to machines that belong to subnet 192.168.1.*
e Use OS when TCP server listens to port 5001 of any machine

In libvma.conf, configure:

application-id tcp-lat Bl
use vma tcp _client 192.168.1.0/24:*:*:*
use os tcp server *:5001

Note: You must also set the VMA parameter:

VMA APPLICATION ID=B1

VMA Configuration Parameters

The VMA configuration parameters are Linux OS environment variables, and are controlled
with system environment variables.

It is recommended that you set these parameters prior to loading the application with VMA.
You can set the parameters in a system file, which can be run manually or automatically.

All the parameters have defaults that can be modified.

On default startup, the VMA library prints the VMA version information, as well as the
configuration parameters being used and their values to stderr.

VMA always logs the values of the following parameters, even when they are equal to the
default value:

« VMA_TRACELEVEL
« VMA_LOG_FILE

For all other parameters, VMA logs the parameter values only when they are not equal to the
default value.

gev 6.9.1 Configuring Vl\m

_/;' NOTE: The VMA version information, parameters, and values are subject to change.

VMA INFO : VMA VERSION: 6.9.1-0 Release built on 2015-05-10-16:20:19
VMA INFO : Cmd Line: sockperf sr

VMA DEBUG : Current Time: Sun May 10 17:35:35 2015

VMA DEBUG : Pid: 24714

VMA DEBUG : OFED Version: MLNX OFED LINUX-2.3-0.2.5:

VMA DEBUG : System: 2.6.32-220.el16.x86 64

VMA DEBUG : Architecture: x86 64

VMA DEBUG : Node: hailléb

VMA DEBUG : —————————————— -~~~ ——— e ———————
Log Level 4 [VMA TRACELEVEL]

Log Details 2 [VMA LOG DETAILS]

Log Colors Enabled [VMA LOG COLORS]

Log File [VMA LOG FILE]

Stats File [VMA STATS FILE]

Stats shared memory directory /tmp/ [VMA STATS SHMEM DIR]

Stats FD Num (max) 100 [VMA STATS FD NUM]

Conf File /etc/libvma.conf [VMA CONFIG FILE]
Application ID VMA DEFAULT APPLICATION ID [VMA APPLICATION ID]

Polling CPU idle usage Disabled [VMA CPU USAGE STATS]

SigIntr Ctrl-C Handle Disabled [VMA HANDLE SIGINTR]

SegFault Backtrace Disabled [VMA HANDLE SIGSEGV]

Ring allocation logic TX 0 (Ring per interface)

[VMA RING ALLOCATION LOGIC TX]

Ring allocation logic RX 0 (Ring per interface)

[VMA RING ALLOCATION LOGIC RX]

Ring migration ratio TX 100 [VMA RING MIGRATION RATIO TX]
Ring migration ratio RX 100 [VMA RING MIGRATION RATIO RX]
Ring limit per interface 0 (no limit) [VMA RING LIMIT PER INTERFACE]
TCP max syn-fin rate 0 (no limit) [VMA TCP MAX SYN FIN RATE]

Tx Mem Bufs TCP 1000000 [VMA TX SEGS TCP]

Tx Mem Bufs 200000 ~ [VMA_TX_ BUFS]

Tx QP WRE 16000 [VMA TX WRE]

Tx Max QP INLINE 220 [VMA TX MAX INLINE]

Tx MC Loopback Enabled [VMA TX MC LOOPBACK]

Tx non-blocked eagains Disabled [VMA TX NONBLOCKED EAGAINS]
Tx Prefetch Bytes 256 [VMA TX PREFETCH BYTES]

Tx backlog max 100 [VMA TX BACKLOG MAX]

Rx Mem Bufs 200000 [VMA RX BUFS]

Rx QP WRE 16000 [VMA RX WRE]

Rx QP WRE BATCHING 64 [VMA RX WRE BATCHING]

Rx Byte Min Limit 65536 [VMA RX BYTES MIN]

Rx Poll Loops 100000 [VMA RX POLL]

Rx Poll Init Loops 0 [VMA RX POLL INIT]

Rx UDP Poll OS Ratio 100 [VMA RX UDP POLL OS RATIO]

Rx Poll vield Disabled [VMA RX POLL YIELD]

Rx Prefetch Bytes 256 [VMA RX PREFETCH BYTES]

Rx Prefetch Bytes Before Poll 0 [VMA RX PREFETCH BYTES BEFORE POLL]
Rx CQ Drain Rate Disabled [VMA RX CQ DRAIN RATE NSEC]
GRO max streams 32 [VMA GRO STREAMS MAX]

TCP 3T rules Disabled [VMA TCP 3T RULES]

ETH MC L2 only rules Disabled [VMA ETH MC L2 ONLY RULES]
Select Poll (usec) 100000 [VMA SELECT POLL]

Select Poll OS Force Disabled [VMA SELECT POLL OS FORCE]
Select Poll OS Ratio 10 [VMA SELECT POLL OS RATIO]
Select Poll Yield Disabled [VMA SELECT POLL YIELD]
Select Skip 0OS 4 [VMA SELECT SKIP OS]

f User Manual

42.1

Select CQ Interrupts Enabled [VMA SELECT CQ IRQ]

CQ Drain Interval (msec) 10 [VMA_PROGRESS_ENGINE_INTERVAL]
CQ Drain WCE (max) 10000 [VMA_PROGRESS_ENGINE_WCE_MAX]
CQ Interrupts Moderation Enabled [VMA CQ MODERATION ENABLE]

CQ Moderation Count 48 [VMA CQ MODERATION COUNT]

CQ Moderation Period (usec) 50 [VMA CQ MODERATION PERIOD USEC]
CQ AIM Max Count 560 [VMA CQ AIM MAX COUNT]

CQ AIM Max Period (usec) 250 [VMA CQ AIM MAX PERIOD USEC]
CQ AIM Interval (msec) 250 [VMA_CQ_AIM_INTERVAL_MSEC]

CQ AIM Interrupts Rate (per sec) 5000
[VMA CQ AIM INTERRUPTS RATE PER SEC]

CQ Poll Batch (max) 16 [VMA CQ POLL BATCH MAX]

CQ Keeps QP Full Enabled [VMA CQ KEEP QP FULL]

QP Compensation Level 256 [VMA QP COMPENSATION LEVEL]
Offloaded Sockets Enabled [VMA OFFLOADED SOCKETS]

Timer Resolution (msec) 10 [VMA TIMER RESOLUTION MSEC]
TCP Timer Resolution (msec) 100 [VMA TCP TIMER RESOLUTION MSEC]
Delay after join (msec) 0 [VMA WAIT AFTER JOIN MSEC]
Delay after rereg (msec) 500 VMA WAIT AFTER REREG MSEC]
Internal Thread Affinity =1 VMA_INTERNAL_THREAD_AFFINITY]

Internal Thread Arm CQ Disabled VMA_INTERNAL_THREAD_ARM_CQ]

[
[
Internal Thread Cpuset [VMA INTERNAL THREAD CPUSET]
[
Thread mode Multi spin lock [VMA THREAD MODE]

Mem Allocate type 1 (Contig Pages) [VMA MEM ALLOC TYPE]

Num of UC ARPs 3 [VMA NEIGH UC_ARP QUATA]

UC ARP delay (msec) 10000 [VMA NEIGH UC ARP DELAY MSEC]
Num of neigh restart retries 1 [VMA NEIGH NUM ERR RETRIES]
IPOIB support Enabled [VMA TPOIB]

BF (Blue Flame) Enabled [VMA BF]

fork () support Enabled [VMA FORK]

close on dup2 () Enabled [VMA CLOSE ON DUP2]

MTU 1500 [VMA_MTU]

MSS 0 (follow VMA MTU) [VMA MSS]

TCP CC Algorithm 0 (LWIP) [VMA TCP CC ALGO]

TCP scaling window 3 [VMA WINDOW SCALING]Suppress
IGMP ver. warning Disabled [VMA SUPPRESS IGMP WARNING]

Configuration Parameter Values
The following table lists the VMA configuration parameters and their possible values.

Table 4: Configuration Parameter Values

Rev 6.9}

VMA Configuration Parameter Description and Examples

VMA TRACELEVEL 0 = PANIC — Panic level logging.
This trace level causes fatal behavior and halts the

PANIC level is rarely used.

application, typically, caused by memory allocation problems.

1 = ERROR — Runtime errors in VMA.

Typically, this trace level assists you to identify internal logic
errors, such as errors from underlying OS or InfiniBand verb
calls, and internal double mapping/unmapping of objects.

2 = WARNING - Runtime warning that does not disrupt
the application workflow.

A warning may indicate problems in the setup or in the
overall setup configuration. For example, address resolution
failures (due to an incorrect routing setup configuration),
corrupted IP packets in the receive path, or unsupported
functions requested by the user application.

gev 6.9.1 Configuring Vl\m

VMA Configuration Parameter Description and Examples

3 = INFO - General information passed to the user of the
application.

This trace level includes configuration logging or general
information to assist you with better use of the VMA library.

4 = DEBUG - High-level insight to the operations
performed in VMA.

In this logging level all socket API calls are logged, and
internal high-level control channels log their activity.

5 = FUNC - Lowe-level runtime logging of activity.

This logging level includes basic Tx and Rx logging in the
fast path. Note that using this setting lowers application
performance. We recommend that you use this level with the
VMA LOG_FILE parameter.

6 = FUNC _ALL - Very low-level runtime logging of
activity.This logging level drastically lowers application
performance. We recommend that you use this level with the
VMA LOG_FILE parameter.

VMA LOG DETAILS Provides additional logging details on each log line.
0 = Basic log line
1 = With ThreadId

2 = With ProcessId and ThreadId

3 = With Time, ProcessId, and ThreadId
(Time is the amount of milliseconds from the start of the
process)

Default: 0
For vMA TRACELEVEL >= 4, this value defaultsto 2.

VMA LOG FILE Redirects all VMA logging to a specific user-defined file.
This is very useful when raising the vYMA TRACELEVEL.

The VMA replaces a single '%d' appearing in the log file
name with the pid of the process loaded with VMA. This can
help when running multiple instances of VMA, each with its
own log file name.

Example: VMA LOG FILE=/tmp/vma_log.txt

VMA CONFIG _FILE Sets the full path to the VMA configuration file.
Example: VMA CONFIG FILE=/tmp/libvma.conf
Default: /etc/libvma.conf

LOG_COLORS Uses a color scheme when logging; red for errors and
warnings, and dim for very low level debugs.

VMA LOG_COLORS is automatically disabled when logging
is done directly to a non-terminal device (for example, when
VMA LOG_FILE is configured).

Default: 1 (Enabled)

VMA CPU USAGE_STATS Calculates the VMA CPU usage during polling hardware
loops. This information is available through VMA stats
utility.

f User Manual

Rev 6.9}

VMA Configuration Parameter

Description and Examples

Default; 0 (Disabled)

VMA APPLICATION ID

Specifies a group of rules from libvma.conf for VMA to
apply.
Example: VMA APPLICATION ID=iperf server

Default: VMA DEFAULT APPLICATION ID (match only
the "*' group rule)

VMA HANDLE STIGINTR

When enabled, the VMA handler is called when an interrupt
signal is sent to the process.

VMA also calls the application's handler, if it exists.
Range:0to 1l
Default: 0 (Disabled)

VMA_ HANDLE_SIGSEGV

When enabled, a print backtrace is performed, if a
segmentation fault occurs.

Range:0to 1
Default: 0 (Disabled)

VMA_STATS FD NUM

Maximum number of sockets monitored by the VMA
statistics mechanism.

Range: 0 to 1024.
Default: 100

VMA_STATS FILE

Redirects socket statistics to a specific user-defined file.

VMA dumps each socket's statistics into a file when closing
the socket.

Example: VMA_STATS_FILE=/tmp/stats

VMA STATS SHMEM DIR

Sets the directory path for VMA to create the shared memory
files for vma_stats.

X

In case this value is set to an empty string: “ “, no shared

memory files are created.
Default: /tmp/

VMA TCP_MAX SYN FIN RAT
E

Limits the number of TCP control packets (TCP
SYN/FIN/RST packets) that VMA handles per second for
each thread.

Example: by setting this value to 10, the maximal number of
TCP control packets accepted by VMA per second for each
thread will be 10.

Set this value to 0 for VMA to handle an un-limited number
of TCP control packets per second for each thread.

Value range is 0 to 100000.
Default value is 0 (no limit)

VMA TX SEGS_TCP

Number of TCP LWIP segments allocation for each VMA
process.

Default: 1000000

VMA_TX_ BUFS

Number of global Tx data buffer elements allocation.
Default: 200000

gev 6.9.1 Configuring Vl\m

VMA Configuration Parameter Description and Examples

VMA TX WRE Number of Work Request Elements allocated in all transmit
QP's. The number of QP's can change according to the
number of network offloaded interfaces.

Default: 16000

The size of the Tx buffers is determined by the vMA MTU
parameter value (see below).

If this value is raised, the packet rate peaking can be better
sustained; however, this increases memory usage. A smaller
number of data buffers gives a smaller memory footprint, but
may not sustain peaks in the data rate.

VMA TX MAX INLINE Max send inline data set for QP.

Data copied into the INLINE space is at least 32 bytes of
headers and the rest can be user datagram payload.

VMA_TX_MAX_INLINE=0 disables INLINEing on the TX
transmit path. In older releases this parameter was called
VMA_MAX_INLINE.

Default: 224

VMA TX MC_LOOPBACK Sets the initial value used internally by the VMA to control
multicast loopback packet behavior during transmission. An
application that calls setsockopt () with

IP MULTICAST LOOP overwrites the initial value set by
this parameter.

Range: 0 - Disabled, 1 - Enabled
Default: 1

VMA TX NONBLOCKED EAGAI | Returns value 'OK'on all send operations that are performed
NS on a non-blocked udp socket. This is the OS default behavior.
The datagram sent is silently dropped inside the VMA or the
network stack.

When set to Enabled (set to 1), VMA returns with error
EAGAIN if it was unable to accomplish the send operation,
and the datagram was dropped.

In both cases, a dropped Tx statistical counter is incremented.
Default: 0 (Disabled)

VMA TX PREFETCH BYTES Accelerates an offloaded send operation by optimizing the
cache. Different values give an optimized send rate on
different machines. We recommend that you adjust this
parameter to your specific hardware.

Range: 0 to MTU size

Disable with a value of 0

Default: 256 bytes

VMA RX BUFS The number of Rx data buffer elements allocated for the
processes. These data buffers are used by all QPs on all
HCAs, as determined by the VMA QP LOGIC.

Default: 200000 bytes

VMA RX WRE The number of Work Request Elements allocated in all
received QPs.

Default: 16000

f User Manual

Rev 6.9}

VMA Configuration Parameter

Description and Examples

VMA RX_BYTES MIN

The minimum value in bytes used per socket by the VMA
when applications call to setsockopt(SO_RCVBUF).

If the application tries to set a smaller value than configured
inVMA RX BYTES MIN, VMA forces this minimum limit
value on the socket.

VMA offloaded sockets receive the maximum amount of
ready bytes. If the application does not drain sockets and the
byte limit is reached, newly received datagrams are dropped.

The application's socket usage of current, max,dropped bytes
and packet counters, can be monitored using vma_stats.

Default: 65536.

VMA RX_POLL

The number of times to unsuccessfully poll an Rx for VMA
packets before going to sleep.

Range: -1,0...100,000,000
Default: 100,000
This value can be reduced to lower the load on the CPU.

However, the price paid for this is that the Rx latency is
expected to increase.

Recommended values:

e 10000 — when CPU usage is not critical and Rx path
latency is critical.

e 0 —when CPU usage is critical and Rx path latency is not
critical.

e -1 - causes infinite polling.
Once the VMA has gone to sleep, if it is in blocked mode, it

waits for an interrupt; if it is in non-blocked mode, it returns -
1.

This Rx polling is performed when the application is working
with direct blocked callsto read (), recv (),
recvfrom(), and recvmsg ().

When the Rx path has successful poll hits, the latency
improves dramatically. However, this causes increased CPU
utilization. For more information, see Debugging,
Troubleshooting, and Monitoring (on page 37).

VMA RX_POLL_INIT

VMA maps all UDP sockets as potential Offloaded-capable.
Only after ADD_MEMBERSHIP is set, the offload starts
working and the CQ polling starts VMA.

This parameter controls the polling count during this
transition phase where the socket is a UDP unicast socket and
no multicast addresses were added to it.

Once the first ADD_MEMBERSHIP is called, the
VMA_RX_POLL (above) takes effect.

Value range is similar to the VMA_RX_POLL (above).
Default: 0

VMA RX_UDP_POLL_OS_RATI
0

Defines the ratio between VMA CQ poll and OS FD poll.

This will result in a single poll of the not-offloaded sockets
every

gev 6.9.1 Configuring Vl\m

VMA Configuration Parameter Description and Examples

VMA_RX_UDP_POLL_OS_RATIO offloaded socket (CQ)
polls. No matter if the CQ poll was a hit or miss. No matter if
the socket is blocking or non-blocking.

When disabled, only offloaded sockets are polled.
This parameter replaces the two old parameters:

¢ VMA_RX_POLL_OS RATIO and

¢ VMA RX_ SKIP_0OS

Disable with 0

Default: 10

VMA RX POLL YIELD When an application is running with multiple threads on a
limited number of cores, there is a need for each thread
polling inside VMA (read, readv, recv, and recvfrom)
to yield the CPU to another polling thread so as not to starve
them from processing incoming packets.

Default: 0 (Disabled)

VMA RX PREFETCH BYTES The size of the receive buffer to prefetch into the cache while
processing ingress packets.

The default is a single cache line of 64 bytes which should be
at least 32 bytes to cover the IPolB+IP+UDP headers and a
small part of the user payload.

Increasing this size can help improve performance for larger
user payloads.

Range: 32 bytes to MTU size
Default: 256 bytes

VMA RX CQ DRAIN RATE NS | Socket's receive path CQ drain logic rate control.

EC When disabled (default), the socket's receive path attempts to
return a ready packet from the socket's receive ready packet
queue. If the ready receive packet queue is empty, the socket
checks the CQ for ready completions for processing.

When enabled, even if the socket's receive ready packet queue
is not empty, this parameter checks the CQ for ready
completions for processing. This CQ polling rate is controlled
in nanosecond resolution to prevent CPU consumption due to
over CQ polling. This enables improved 'real-time' monitoring
of the socket ready packet queue.

Recommended value is 100 - 5000 (nsec)

Default: 0 (Disabled)

VMA GRO_STREAMS MAX Controls the number of TCP streams to perform GRO
(generic receive offload) simultaneously.

Disable GRO with a value of 0.

Default: 32

VMA TCP_ 3T RULES Uses only 3 tuple rules for TCP, instead of using 5 tuple rules.

This can improve performance for a server with a listen
socket which accepts many connections from the same source
IP.

Enable with a value of 1.
Default; 0 (Disabled)

f User Manual

Rev 6.9}

VMA Configuration Parameter

Description and Examples

VMA _ETH MC_ L2 ONLY RULE
S

Uses only L2 rules for Ethernet Multicast.

All loopback traffic will be handled by VMA instead of OS.
Enable with a value of 1.

Default; 0 (Disabled)

VMA SELECT POLL

The duration in micro-seconds (usec) in which to poll the
hardware on Rx path before blocking for an interrupt (when
waiting and also when calling select (), poll (), or
epoll wait()).

Range: -1,0... 100,000,000
Default: 100,000

When the selected path has successfully received poll hits, the
latency improves dramatically. However, this comes at the
expense of CPU utilization. For more information, see
Debugging, Troubleshooting, and Monitoring (on page 37).

VMA_ SELECT POLL_OS_RATI
0

This enables polling the OS file descriptors while the user
thread calls select (), poll (), 0repoll wait (), and
VMA is busy in the offloaded socket polling loop. This results
in a single poll of the non-offloaded sockets every

VMA SELECT POLL RATIO offloaded socket (CQ) polls.

When disabled, only offloaded sockets are polled.
(See vMA SELECT_ POLL for more information.)
Disable with 0

Default: 10

VMA SELECT POLL YIELD

When an application runs with multiple threads on a limited
number of cores, each thread polling inside VMA
(select(),poll(),orepoll wait ())should yield the
CPU to other polling threads so as not to starve them from
processing incoming packets.

Default: 0 (Disabled)

VMA SELECT SKIP OS

In select (), poll(),0repoll wait () forcesthe
VMA to check the non-offloaded sockets even though an
offloaded socket has a ready packet that was found while
polling.

Range: 0 ... 10,000

Default: 4

VMA_ SELECT CQ IRQ

When disabled, no InfiniBand interrupts are used during
select (), poll(),0repoll wait () socket calls. This
mode of work is not recommended.

This parameter is used by applications that use

VMA SELECT POLL for polling (with the default zero
millisecond timeout).

Range: 0 - Disabled, 1 - Enabled
Default: 1 (Enabled)

VMA CQ POLL_BATCH MAX

The maximum size of the array while polling the CQs in the
VMA.

Default: 8

gev 6.9.1

Configuring Vl\m

VMA Configuration Parameter

Description and Examples

VMA PROGRESS ENGINE_ INT
ERVAL

Internal VMA thread safety which checks that the CQ is
drained at least once every N milliseconds. This mechanism
allows VMA to progress the TCP stack even when the
application does not access its socket (so it does not provide a
context to VMA). If the CQ was already drained by the
application receive socket API calls, this thread goes back to
sleep without any processing.

Disable with 0
Default: 10 milliseconds

VMA PROGRESS_ENGINE_WCE
_MAX

Each time the VMA's internal thread starts its CQ draining, it
stops when it reaches this maximum value.

The application is not limited by this value in the number of
CQ elements that it can Processld from calling any of the
receive path socket APlIs.

Default; 2048

VMA_CQ MODERATION ENABL
E

Enable CQ interrupt moderation.
Default: 1 (Enabled)

VMA_CQ MODERATION COUNT

Number of packets to hold before generating interrupt.
Default: 48

VMA_CQ MODERATION PERIO
D USEC

Period in micro-seconds for holding the packet before
generating interrupt.

Default: 50

VMA_CQ AIM MAX COUNT

Maximum count value to use in the adaptive interrupt
moderation algorithm.

Default: 560

VMA CQ AIM MAX PERIOD U
SEC

Maximum period value to use in the adaptive interrupt
moderation algorithm.

Default: 250

VMA CQ AIM INTERVAL MSE
C

Frequency of interrupt moderation adaptation.

Interval in milliseconds between adaptation attempts.
Use value of 0 to disable adaptive interrupt moderation.
Default: 250

VMA CQ AIM INTERRUPTS R
ATE PER SEC

Desired interrupts rate per second for each ring (CQ).

The count and period parameters for CQ moderation will
change automatically to achieve the desired interrupt rate for
the current traffic rate.

Default: 5000

VMA CQ KEEP QP FULL

If disabled (default), the CQ does not try to compensate for
each poll on the receive path. It uses a "debt" to remember
how many WRE are missing from each QP, so that it can fill
it when buffers become available.

If enabled, CQ tries to compensate QP for each polled receive
completion. If there is a shortage of buffers, it reposts a

f User Manual

Rev 6.9}

VMA Configuration Parameter

Description and Examples

recently completed buffer. This causes a packet drop, and is
monitored in vma_stats.

Default; 1 (Enabled)

VMA QP COMPENSATION LEV
EL

The number of spare receive buffer CQ holds that can be
allowed for filling up QP while full receive buffers are being
processed inside VMA.

Default: 256 buffers

VMA OFFLOADED SOCKETS

Creates all sockets as offloaded/not-offloaded by default.
e 1isused for offloaded

e 0 is used for not-offloaded

Default: 1 (Enabled)

VMA TIMER RESOLUTION MS
EC

Control VMA internal thread wakeup timer resolution (in
milliseconds).

Default: 10 (milliseconds)

VMA_TCP_TIMER RESOLUTIO
N_MSEC

Controls VMA internal TCP timer resolution (fast timer) (in
milliseconds). Minimum value is the internal thread wakeup
timer resolution (VMA_TIMER_RESOLUTION_MSEC).

Default: 100 (milliseconds)

VMA THREAD MODE

By default VMA is ready for multi-threaded applications,
meaning it is thread-safe.

If the user application is single threaded, use this
configuration parameter to help eliminate VMA locks and
improve performance.

Values:

e 0 - Single threaded application

e 1 - Multi threaded application with spin lock

e 2 - Multi threaded application with mutex lock

e 3 - Multi threaded application with more threads than
cores using spin lock

Default: 1 (Multi with spin lock)

VMA MEM ALLOC_ TYPE

This replaces the VMA_HUGETBL parameter logic.

VMA will try to allocate data buffers as configured:

e 0-"ANON" - using malloc

e 1-"CONTIG" - using contiguous pages

e 2-"HUGEPAGES" - using huge pages.

OFED will also try to allocate QP & CQ memory

accordingly:

e 0-"ANON" - default - use current pages ANON small
ones.

e "HUGE" - force huge pages
e "CONTIG" - force contig pages

e 1-"PREFER_CONTIG" - try contig fallback to ANON
small pages.

e "PREFER_HUGE" - try huge fallback to ANON
small pages.

gev 6.9.1 Configuring Vl\m

VMA Configuration Parameter Description and Examples

e 2-"ALL" -try huge fallback to contig if failed fallback to
ANON small pages.

To override OFED use: (MLX_QP_ALLOC_TYPE,

MLX _CQ_ALLOC TYPE)

Default; 1 (Contiguous pages)

VMA_FORK Controls VMA fork support. Setting this flag on will cause
VMAto call ibv_fork init () function.

ibv_fork init () initializes libibverbs's data structures
to handle fork() function calls correctly and avoid data
corruption.

If ibv_fork init () isnotcalled or returns a non-zero
status, then libibverbs data structures are not fork()-safe and
the effect of an application calling fork() is undefined.
ibv_fork init () works on Linux kernels 2.6.17 and
later, which support the MADV_DONTFORK flag for
madvise().

You should use an OFED stack version that supports fork()
with huge pages (Mellanox OFED 1.5.3 and later). VMA
allocates huge pages (VMA_HUGETBL) by default.

Default: 1 (Enabled)

VMA MTU Sets the fragmentation size of the packets sent by the VMA
library. This value determines the size of each Rx and Tx
buffer.

Default: 1500 bytes
Recommendations:

e Set to1500 for Ethernet networks or interoperability with
Ethernet networks.

VMA MSS Defines the max TCP payload size that can be sent without IP
fragmentation.

Value of 0 will set VMA's TCP MSS to be aligned with
VMA_MTU configuration (leaving 40 bytes of room for IP +
TCP headers; "TCP MSS = VMA_MTU - 40").

Other VMA_MSS values will force VMA's TCP MSS to that
specific value.

Default: 0 (following VMA_MTU)

VMA WINDOW SCALING TCP scaling window.

This value (factor range from 0 to 14, -1 to disable, -2 to use
OS value) sets the factor in which the TCP window is scaled.

Factor of 0 allows using the TCP scaling window of the
remote host, while not changing the window of the local host.

Value of -1 disables both directions.

Value of -2 uses the OS maximums and receives buffer value
to calculate the factor.

Make sure that VMA buffers are big enough to support the
window.

Default: 3

(rEUserManum

Rev6§]N

VMA Configuration Parameter

Description and Examples

VMA CLOSE_ON_DUP2

When this parameter is enabled, VMA handles the duplicated
file descriptor (oldfd), as if it is closed (clear internal data
structures) and only then forwards the call to the OS.

This is, in effect, a very rudimentary dup2 support. It supports
only the case where dup2 is used to close file descriptors.

Default: 1 (Enabled)

VMA INTERNAL THREAD AFF
INITY

Controls which CPU core(s) the VMA internal thread is
serviced on. The CPU set should be provided as either a
hexidecmal value that represents a bitmask or as a comma
delimited of values (ranges are ok). Both the bitmask and
comma delimited list methods are identical to what is
supported by the taskset command. See the man page on
taskset for additional information.

The -1 value disables the Internal Thread Affinity setting by
VMA

e Bitmask Examples:
0x00000001 - Run on processor O

0x00000007 - Run on processors 1,2, and
3

e Comma Delimited Examples:
0,4,8 - Run on processors 0,4, and
8
0,1,7-10 - Run on processors
0,1,7,8,9 and 10

Default: -1.

VMA INTERNAL THREAD CPU
SET

Selects a CPUSET for VMA internal thread (For further
information, see man page of cpuset).

The value is either the path to the CPUSET (for example:
/dev/cpuset/my_set), or an empty string to run it on the same
CPUSET the process runs on.

VMA INTERNAL THREAD ARM
CQ

Wakes up the internal thread for each packet that the CQ
receives.

Polls and processes the packet and brings it to the socket
layer.

This can minimize latency for a busy application that is not
available to receive the packet when it arrives.

However, this might decrease performance for high pps rate
applications.

Default: 0 (Disabled)

VMA WAIT AFTER JOIN MSE
C

This parameter indicates the time of delay the first packet is
send after receiving the multicast JOINED event from the SM
This is helpful to overcome loss of first few packets of an
outgoing stream due to SM lengthy handling of MFT
configuration on the switch chips

Default: 0 (milli-sec)

VMA NEIGH UC_ARP QUATA

VMA will send UC ARP in case neigh state is NUD_STALE.
In case that neigh state is still NUD_STALE VMA will try

gev 6.9.1

4.2.2

Configuring Vl\m

VMA Configuration Parameter

Description and Examples

VMA_NEIGH_UC_ARP_QUATA retries to send UC ARP
again and then will send BC ARP.

Default: 3

MSEC

VMA NEIGH UC_ARP DELAY

This parameter indicates number of msec to wait between
every UC ARP.

Default: 10000

VMA NEIGH NUM ERR RETRI
ES

Indicates number of retries to restart NEIGH state machine if
NEIGH receives ERROR event.

Default: 1

VMA SUPPRESS TIGMP WARNT
NG

Use VMA_SUPPRESS_IGMP_WARNING=1 to suppress the
warnings about igmp version not forced to be 2.

Default: 0 (Disabled)

VMA_BF

Enables/disables BlueFlame usage of the card.
Default: 1 (Enabled)

Beta Level Features Configuration Parameters

The following table lists configuration parameters and their possible values for new VMA
Beta level features. The parameters below are disabled by default.

These VMA features are still experimental and subject to changes. They can help improve
performance of Multi-thread applications.

We recommend altering these parameters in a controlled environment until reaching the best

performance tuning.

Table 5: Beta Level Configuration Parameter Values

VMA Configuration Parameter

Description and Examples

VMA_RING_ALLOCATION_L
OGIC_TX

VMA_RING_ALLOCATION_L
OGIC_RX

Ring allocation logic is used to separate the traffic into
different rings.

By default, all sockets use the same ring for both RX and TX
over the same interface. For different interfaces, different
rings are used, even when specifying the logic to be per
socket or thread.

The logic options are:
0 - Ring per interface
10 - Ring per socket (using socket ID as separator)

20 - Ring per thread (using the ID of the thread in which the
socket was created)

30 - Ring per core (using CPU ID)

31 - Ring per core - attach threads: attach each thread to a
CPU core

Default: 0

VMA_RING_MIGRATION_RA
TIO_TX

Ring migration ratio is used with the "ring per thread" logic in
order to decide when it is beneficial to replace the socket's
ring with the ring allocated for the current thread.

f User Manual

Rev 6.9}

VMA Configuration Parameter

Description and Examples

VMA_RING_MIGRATION_RA
TIO_RX

Each VMA_RING_MIGRATION_RATIO iteration (of
accessing the ring), the current thread ID is checked to see
whether the ring matches the current thread.

If not, ring migration is considered. If the ring continues to be
accessed from the same thread for a certain iteration, the
socket is migrated to this thread ring.

Use a value of -1 in order to disable migration.
Default: 100

VMA_RING_LIMIT_PER_INTE
RFACE

Limits the number of rings that can be allocated per interface.

For example, in ring allocation per socket logic, if the number
of sockets using the same interface is larger than the limit,
several sockets will share the same ring.

[Note: VMA_RX_BUFS might need to be adjusted in order to
have enough buffers for all rings in the system. Each ring
consumes VMA_RX_WRE buffers.]

Use a value of 0 for an unlimited number of rings.
Default: 0 (no limit)

VMA_TCP_CC_ALGO

TCP congestion control algorithm.

The default algorithm coming with LWIP is a variation of
Reno/New-Reno.

The new Cubic algorithm was adapted from FreeBsd
implementation.

Use value of 0 for LWIP algorithm.
Use value of 1 for the Cubic algorithm.
Default: 0 (LWIP).

gev 6.9.1 | Using sockperf with Vl\m

5 Using sockperf with VMA

Sockperf is VMA's sample application for testing latency and throughput over a socket API.
The precompiled sockperf binary is located in /usr/bin/sockperf.

> To run a sockperf UDP test:

e Torun the server, use:

LD PRELOAD=libvma.so sockperf sr -i <server ip>

e Torun the client, use:
LD PRELOAD=libvma.so sockperf <sockperf test> -i <server ip>
where:
<server ip> is the IP address of the server

<sockperf test> is the test you want to run, for example, pp for the ping-pong test, tp for
the throughput test, and so on. (Use sockperf -h to display a list of all available

tests.)
> To run a sockperf TCP test:

e Torun the server, use:

LD PRELOAD=libvma.so sockperf sr -i <server ip> --tcp

e Torun the client, use:

LD PRELOAD=libvma.so sockperf <sockperf test> -i <server ip> --tcp

r User Manual

6

7.1

Example Running sockperf Ping-pong Test

1. Run sockperf server on Host A:

LD PRELOAD=libvma.so sockperf sr

2. Run sockperf client on Host B:

LD PRELOAD=libvma.so sockperf pp -i 1.1.1.12

Client expected output:

SLD_PRELOAD=libvma.so sockperf pp -i 1.1.1.12

VMA INFO

VMA VERSION:
Cmd Line:
Log Level

VMA INFO
VMA INFO
VMA INFO

[VMA TRACELEVEL]

VMA INFO

mlx4: prefer bf=1
mlx4: prefer bf=1
== version #2.5.231

sockperf:

sockperf [CLIENT]

[0] IP =
sockperf:
sockperf:
sockperf:
sockperf:
sockperf:

2.2.2.15

Warmup stage
Starting test...

Test
Test

[Total Run]

6.8.2-0 Release built on 2013-12-11-16:20:19
sockperf pp -1 1.1.1.12

PORT

send on:sockperf:

using recvfrom/()

11111 # UDP

(sending a few dummy messages) ...

end (interrupted by timer)

ended

ReceivedMessages=2240396
==== Printing statistics for Server No: 0

sockperf:
sockperf:

[Valid Duration] RunTime=4.988 sec;

ReceivedMessages=2218152
===> avg=lat=

sockperf:
sockperf:

dropped messages = 0;

order messages

Summary: Latency is 1.108 usec
Total 2218152 observations;

sockperf:
sockperf:
observations
sockperf:s ===>
sockperf: --->
sockperf:s ===>
sockperf: --->
sockperf:s ===>
sockperf: --->
sockperf: --->
sockperf: --->
sockperf: --->
sockperf: --->
sockperf: --->

=0

<MAX> observation =

percentile
percentile
percentile
percentile
percentile
percentile
percentile
percentile
percentile

1.10

99,
99.
99,
99.
95
90.
75
50.
25

8

99
90
50

00 =
00 =
00 =

00
00
00

<MIN> observation

3. Analyze the client output:

Average latency:

VMA Extra API

1.108 usec

RunTime=5.100 sec;

ORRFPFREFRLPEDNDNDWO WO

Overview of the VMA Extra API

The information in this chapter is intended for application developers who want to use

SentMessages=2240397;

(std-dev=0.244)
duplicated messages = 0; # out-of-

each percentile contains 22181.52

.023
.347
.559
.302
.071
-53Y
.150
.085
.050
.022
- 979

VMA'’s Extra API to maximize performance with VMA:

to block on socket (s)

SentMessages=2218152;

Rev 6.9}

gev 6.9.1 VMA Extra Am

o To further lower latencies

e Toincrease throughput

o To gain additional CPU cycles for the application logic
e To better control VMA offload capabilities

All socket applications are limited to the given Socket API interface functions. The VMA
Extra APl enables VMA to open a new set of functions which allow the application
developer to add code which utilizes zero copy receive function calls and low-level packet
filtering by inspecting the incoming packet headers or packet payload at a very early stage in
the processing.

VMA is designed as a dynamically-linked user-space library. As such, the VMA Extra API
has been designed to allow the user to dynamically load VMA and to detect at runtime if the
additional functionality described here is available or not. The application is still able to run
over the general socket library without VMA loaded as it did previously, or can use an
application flag to decide which API to use: Socket API or VMA Extra API.

The VMA Extra APIs are provided as a header with the VMA binary rpm. The application
developer needs to include this header file in his application code.

After installing the VMA rpm on the target host, the VMA Extra APIs header file is located
in the following link:

#include "/usr/include/mellanox/vma extra.h"

The vma_extra.h provides detailed information about the various functions and
structures, and instructions on how to use them.

An example using the VMA Extra API can be seen in the udp_lat source code:
e Follow the ‘--vmarxfiltercb’ flag for the packet filter logic.
e Follow the ‘--vmazcopyread’ flag for the zero copy recvfrom logic.

A specific example for using the TCP zero copy extra API can be seen under
extra api tests/tcp zcopy cb.

7.2 Using VMA Extra API

During runtime, use the vma_get api () function to check if VMA is loaded in your
application, and if the VMA Extra API is accessible.

If the function returns with NULL, either VMA is not loaded with the application, or the
VMA Extra API is not compatible with the header function used for compiling your
application. NULL will be the typical return value when running the application on native
OS without VMA loaded.

Any non-NULL return value isa vma_api t type structure pointer that holds pointers to
the specific VMA Extra API function calls which are needed for the application to use.

It is recommended to call vma get api () once on startup, and to use the returned pointer
throughout the life of the process.

There is no need to ‘release’ this pointer in any way.

r User Manual Rev 6.9}

7.3 Control Off-load Capabilities During Run-Time

7.3.1 Adding libvma.conf Rules During Run-Time

Adds a libvma.conf rule to the top of the list. This rule will not apply to existing sockets
which already considered the conf rules. (around connect/listen/send/recv ..)

Syntax: int (*add _conf rule) (char *config line);
Return value:

e 0 onsuccess

e error code on failure

Table 6: add_conf_rule Parameters

Parameter Name Description Values
Config_line New rule to add to the top of the | A char buffer with the exact
list (highest priority). format as defined in
libvma.conf, and should end
with "\0'

7.3.2 Creating Sockets as Off-loaded or Not-Off-loaded

Creates sockets on pthread tid as off-loaded/not-off-loaded. This does not affect existing
sockets. Offloaded sockets are still subject to libvma.conf rules.

Usually combined with the VMA_OFFLOADED_SOCKETS parameter.
Syntax: int (*thread offload) (int offload, pthread t tid);
Return value:

e 0onsuccess

e error code on failure

Table 7: add_conf_rule Parameters

Parameter Name Description Values
offload Offload property 1 for offloaded, 0 for not-
offloaded
tid Thread ID
7.4 Packet Filtering

The packet filter logic gives the application developer the capability to inspect a received
packet. You can then decide, on the fly, to keep or drop the received packet at this stage in
processing.

The user’s application packet filtering callback is defined by the prototype:

gev 6.9.1 VMA Extra Am

typedef vma recv callback retval t
(*vma recv callback t) (int fd, size t sz iov, struct iovec iov[],
struct vma info t* vma info, void *context);

This callback function should be registered with VMA by calling the VMA Extra API

function register recv callback (). It can be unregistered by setting a NULL
function pointer.

VMA calls the callback to notify of new incoming packets after the internal IP & UDP/TCP
header processing, and before they are queued in the socket's receive queue.

The context of the callback is always that of one of the user's application threads that called
one of the following socket APIs: select (), poll (), epoll wait(), recv(),
recvfrom(), recvmsg(), read(), Or readv().

Table 8: Packet Filtering Callback Function Parameters

Parameter Name Description Values

fd File descriptor of the socket to which this
packet refers.

iov iovector structure array pointer holding the
packet received, data buffer pointers, and
the size of each buffer.

iov_sz Size of the iov array.

vma_info Additional information on the packet and
socket.

context User-defined value provided during callback

registration for each socket.

——r NOTE:
~

e The application can call all the Socket APIs from within the callback context.

Packet loss might occur depending on the application's behavior in the callback context.
A very quick non-blocked callback behavior is not expected to induce packet loss.

Parameters iov and vma_info are only valid until the callback context is returned to
VMA. You should copy these structures for later use, if working with zero copy logic.

7.4.1 Zero Copy recvfrom()

Description: Zero-copy revcfrom implementation. This function attempts to receive a
packet without doing data copy.

Syntax: int (*recvfrom zcopy) (int s, void *buf, size t len,
int *flags, struct sockaddr *from, socklen t *fromlen);

Parameters:

Table 9: Zero-copy revcfrom Parameters

Parameter Name Description Values

S Socket file descriptor

f User Manual

71.4.2

Rev 6.9}

Parameter Name Description Values
buf Buffer to fill with received data
or pointers to data (see below).
flags Pointer to flags (see below). Usual flags to recvmsg(), and
MSG_VMA _

ZCOPY_FORCE

from If not NULL, is set to the source
address (same as recvfrom)

fromlen If not NULL, is set to the source
address size (same as recvfrom).

The flags argument can contain the usual flags to recvmsg (), and also the

MSG VMA ZzCOPY FORCE flag. If the latter is not set, the function reverts to data copy
(i.e., zero-copy cannot be performed). If zero-copy is performed, the flag MSG VMA ZCOPY
is set upon exit.

If zero copy is performed (MSG VMA zCOPY flag is returned), the buffer is filled with a
vma_packets_t structure holding as much fragments as “len' allows. The total size of all
fragments is returned. Otherwise, the buffer is filled with actual data, and its size is returned
(same as recvfrom()).

Return Values:
If the return value is positive, data copy has been performed.

If the return value is zero, no data has been received.

Freeing Zero Copied Packet Buffers

Description: Frees a packet received by recvfrom zcopy () or held by receive
callback.

Syntax: int (*free packets) (int s, struct vma packet t *pkts
, Size t count);

Parameters:

Table 10: Freeing Zero-copy Datagram Parameters

Parameter Name Description Values
S Socket from which the packet
was received.
pkts Array of packet identifiers.
count Number of packets in the array.

Return Values:

0 on success, -1 on failure

errno is set to:

EINVAL - not a VMA offloaded socket
ENOENT - the packet was not received from 's".

Example:

gev 6.9.1 VMA Extra Am

entry Source Source-mask Dest Dest-mask Interface Service
Routing Status Log
e |o===ememamas e |===== |sm===mmmas |-

1 any any any any if0 any
tunneling active 1
2 192.168.2.0 255.255..255.0 any any ifl any

tunneling active 1

Expected Result:

sRB-20210G-61f0 (statistic)# log show
counter tx total pack tx total byte rx total pack rx total byte
[== [=mmmm |-——— e

1 2733553 268066596 3698 362404
Parameter Description
tx total byte The number of transmit bytes (from InfiniBand-to-
Ethernet) associated with a TFM rule; has a log counter
n.

The above example shows the number of bytes sent
from Infiniband to Ethernet (one way) or sent between
InfiniBand and Ethernet and matching the two TFM
rules with log counter #1.

rx total pack The number of receive packets (from Ethernet to
InfiniBand) associated with a TFM rule; has a log
counter n.

rx total byte The number of receive bytes (from Ethernet to
InfiniBand) associated with a TFM rule; has a log
counter n.

e J

(,EUserManuaI |

8.1

Debugging, Troubleshooting, and Monitoring

Monitoring —the vma_stats Utility
Networking applications open various types of sockets.
The VMA library holds the following counters:
o Separate performance counters for each socket of the datagram (UDP) IP family type.

o Internal performance counters which accumulate information for select (),
poll () and epoll wait () usage by the whole application. An additional
performance counter logs the CPU usage of VMA during select(), poll(), or
epoll_wait() calls. VMA calculates this counter only if VMA_CPU_USAGE_STATS
parameter is enabled, otherwise this counter is not in use and displays the default value
as zero.

e VMA internal CQ performance counters
e VMA internal RING performance counters

Use the included vma stats utility to view the per-socket information and performance
counters during runtime.

Note: For TCP connections, vma_stats shows only offloaded traffic, and not "os traffic."

Usage:

#vma_ stats [-p pid] [-v view] [-d details] [-i interval]

The following table lists the basic and additional vma_stats utility options.

Table 11: vma_stats Utility Options

Rev6§]N

Parameter Name Argument Parameter Description and Values

-p, --pid <pid> Shows VMA statistics for a process with
pid: <pid>.

-v, --view <1121314> Sets the view type:

1. Shows the runtime basic performance
counters (default).

2. Shows extra performance counters.

3. Shows additional application runtime
configuration information.

4. Shows multicast group membership
information.

-d, --details <l|2> Sets the details mode:
1. Show totals (default).
2. Show deltas.

i, --interval =<n> Prints a report every <n> seconds.
Default: 1 sec

c, —-cycles =<n> Do <n> report print cycles
and exit, use 0 value for
infinite.

Default: 0

gev 6.9.1

8.1.1

8.1.1.1

Debugging, Troubleshooting, and Monitorin\g

Parameter Name Argument Parameter Description and Values

--n, --name <application> Shows VMA statistics for application:
<application>.

-f, --find _pid Finds pid and shows statistics for the VMA
instance running (default).

-F, --forbid _clean When you set this flag to inactive, shared
objects (files) are not removed.

-z, —--zero Zero counters.

-1, --log level =<level> Sets the VMA log level to <level> (1 <=
level <=7).

-D, -—- =<level> Sets the VMA log detail level to <level> (0

details level <= level <= 3).

-s, —-—-sockets <list|range> Logs only sockets that match <list> or
<range> format: 4-16 or 1,9 (or
combination).

-V, --version Prints the version number.

-h, --help Prints a help message.

Examples

The following sections contain examples of the vma_stats utility.

Example 1
Description: The following example demonstrates basic use of the vma_stats utility.

Command Line:

#vma stats -p <pid>

4 NOTE: If there is only a single process running over VMA, it is not necessary to use
/ the —p option, since vma_stats will automatically recognize the process.

Output:

If no process with a suitable pid is running over the VMA, the output is:

vmastat: Failed to identify process...

If an appropriate process was found, the output is:

itel eeeessssoses total offloaded -~ ——————-—--—-—-—~- —-————- total os —————-
pkt Kbyte eagain error poll% pkt Kbyte error
14 Rx: 140479898 274374 0 0 100.0 0 0 0
Tx: 140479902 274502 0 0 0 0 0
Analysis of the Output:

e Asingle socket with user fd=14 was created.

o Received 140479898 packets, 274374 Kilobytes via the socket.

r User Manual

8.1.1.2

e Transmitted 140479898 packets, 274374 Kilobytes via the socket.
o All the traffic was offloaded. No packets were transmitted or received via the OS.

o There were no missed Rx polls (see VMA RX POLL). This implies that the receiving
thread did not enter a blocked state, and therefore there was no context switch to hurt
latency.

e There are no transmission or reception errors on this socket.

Example 2

Description: Vma_stats presents not only cumulative statistics, but also enables you to
view deltas of VMA counter updates. This example demonstrates the use of the "deltas"
mode.

Command Line:

#vma stats -p <pid> -d 2

Output:
igel | ooeroooooooooos OELLEaEEEl ===mmcmm=c=sssss ossssoo=a= Of ———======
pkt/s Kbyte/s eagain/s error/s poll% pkt/s Kbyte/s error/s
15 Rx: 15186 29 0 0 0.0 0 0 0
Tx: 15186 29 0 0 0 0 0
19 Rx: 15186 29 0 0 0.0 0 0 0
Tx: 15186 29 0 0 0 0 0
23 Rx: 0 0 0 0 0.0 15185 22 0
Tx: 0 0 0 0 15185 22 0

select () Rx Ready:15185/30372 [os/offload]
Timeouts:0 Errors:0 Poll:100.00% Polling CPU:70%

Analysis of the Output:
e Three sockets were created (fds: 15, 19, and 23).
e Received 11590 packets, 22 Kilobytes during the last second via fds: 15 and 19.
e Transmitted 11590 packets, 22 Kbytes during the last second via fds: 15 and 19.

o Not all the traffic was offloaded, as fd 23: 11590 packets, 22 KBytes were transmitted
and received via the OS.This means that fd 23 was used for unicast traffic.

o No transmission or reception errors were detected on any socket.
e The application used select for I/O multiplexing.

e 45557 packets were placed in socket ready queues (over the course of the last second):
30372 of them offloaded (15186 via fd 15 and 15186 via fd 19), and 15185 were
received via the OS (through fd 23).

o There were no missed Select polls (see VMA SELECT POLL). This implies that the
receiving thread did not enter a blocked state. Thus, there was no context switch to hurt
latency.

e The CPU usage in the select call is 70%.

You can use this information to calculate the division of CPU usage between VMA and
the application. For example when the CPU usage is 100%, 70% is used by VMA for
polling the hardware, and the reamining 30% is used for processing the data by the
application.

Rev 6.9}

gev 6.9.1 Debugging, Troubleshooting, and Monitorin\g

8.1.1.3 Example 3

Description: This example presents the most detailed vma stats output.

Command Line;:

#vma stats -p <pid> -v 3 -d 2

Output:
Fd=[14]
- Blocked, MC Loop Enabled
- Bound IF = [0.0.0.0:11111]
- Member of = [224.7.7.7]

Rx Offload: 1128530 KB / 786133 / 0 / 0 [bytes/packets/eagains/errors]/s
Rx byte: cur 1470 / max 23520 / dropped/s 0 / limit 16777216

Rx pkt : cur 1 / max 16 / dropped/s 0

Rx poll: 10 / 276077 (100.00%) [miss/hit]

CQo=1[0]
Packets dropped: 0 /s
Packets queue len: 0
Drained max: 511
Buffer pool size: 500
Buffer disorder: 0.01%

RING=[0]
Packets count: 786133 /s
Packets bytes: 1192953545 /s
Interrupt requests: 786137 /s
Interrupt received: 78613 /s
Moderation frame count: 10
Moderation usec period: 181
Analysis of the Output:

e Asingle socket with user £d=14 was created

e The socket is a member of multicast group: 224.7.7.7

o Received 786133 packets, 1128530 Kilobytes via the socket during the last second
e No transmitted data

o All the traffic was offloaded. No packets were transmitted or received via the OS
e There were almost no missed Rx polls (see VMA RX POLL)

e There were no transmission or reception errors on this socket

e The sockets receive buffer size is 16777216 Bytes

e There were no dropped packets caused by the socket receive buffer limit (see
VMA RX BYTES MIN)

e Currently, one packet of 1470 Bytes is located in the socket receive queue

e The maximum number of packets ever located, simultaneously, in the sockets receive
gueue is 16

e No packets were dropped by the CQ

r User Manual |

8.1.1.4

8.1.1.5

o No packets in the CQ ready queue (packets which were drained by the CQ and are
waiting to be processed by the upper layers)

e The maximum number of packets drained by the CQ during a single drain cycle is 511
(see VMA CQ DRAIN WCE MAX)

e The RING received 786133 packets during this period
e The RING received 1192953545 bytes during this period. This includes headers bytes.
e 786137 interrupts were requested by the ring during this period
e 78613 interrupts were intercepted by the ring during this period
o The moderation engine was set to trigger an interrupt for every 10 packets and with
maximum time of 181 usecs
Example 4

Description: This example demonstrates how you can get multicast group membership
information via vma_stats.

Command Line:

#vma stats -p <pid> -v 4

Output:

VMA Group Membership Information

Group fd number
224.4.1.3 15
224.4.1. 19

If the user application performed transmit or receive activity on a socket, those values will be
logged when the sockets are closed. The VMA logs its internal performance counters if
VMA TRACELEVEL=4 (see Example 5).

Example 5

Description: This is an example of a log of socket performance counters along with an
explanation of the results.

Output:

VMA: [fd=10] Tx Offload: 455 KB / 233020 / 0 [bytes/packets/errors]

]
VMA: [fd=10] Tx OS info: 0 KB / 0 / 0 [bytes/packets/errors]
VMA: [fd=10] Rx Offload: 455 KB / 233020 / 0 [bytes/packets/errors]
VMA: [fd=10] Rx OS info: 0 KB / 0 / 0 [bytes/packets/errors]
VMA: [fd=10] Rx byte: max 200 / dropped 0 (0.00%) / limit 2000000
VMA: [fd=10] Rx pkt : max 1 / dropped 0 (0.00%)
VMA: [fd=10] Rx poll: 0 / 233020 (100.00%) [miss/hit]

Analysis of the Output:
» No transmission or reception errors occurred on this socket (user £d=10).
e All the traffic was offloaded. No packets were transmitted or received via the OS.

o There were practically no missed Rx polls (see VMA RX POLL and
VMA SELECT_POLL). This implies that the receiving thread did not enter a blocked
state. Thus, there was no context switch to hurt latency.

Rev 6.9}

gev 6.9.1 Debugging, Troubleshooting, and Monitorin\g

o There were no dropped packets caused by the socket receive buffer limit (see
VMA RX BYTES MIN). Asingle socket with user £d=14 was created.

8.2 Debugging

8.2.1 VMA Logs

Use the VMA logs in order to trace VMA operations. VMA logs can be controlled by the
VMA TRACELEVEL variable. This variable's default value is 3, meaning that the only logs
obtained are those with severity of PANIC, ERROR, and WARNING.

You can increase the VMA TRACELEVEL variable value up to 6 (as described in VMA
Configuration Parameters (on page 15)) to see more information about each thread's
operation.

Use the VMA LOG DETAILS=3 to add a time stamp to each log line. This can help to
check the time difference between different events written to the log.

Use the VMA LOG FILE=/tmp/my file.log to save the daily events. It is
recommended to check these logs for any VMA warnings and errors. Use the
Troubleshooting (on page 42) section to help resolve the different issues in the log.

VMA will replace a single '%d' appearing in the log file name with the pid of the process
loaded with VMA. This can help in running multiple instances of VMA each with its own
log file name.

When VMA LOG COLORS is enabled, VMA uses a color scheme when logging: Red for
errors and warnings, and dim for low level debugs.

Use the VMA HANDLE SIGSEGV to print a backtrace if a segmentation fault occurs.

8.2.2 Ethernet Counters

Look at the Ethernet counters (by using the i fconfig command) to understand whether
the traffic is passing through the kernel or through the VMA (Rx and Tx).

8.2.3 NIC Counters

Look at the NIC counters to monitor HW interface level packets received and sent, drops,
errors, and other useful information.

1ls /sys/class/net/eth2/statistics/

8.3 Troubleshooting

This section lists problems that can occur when using VMA, and describes solutions for
these problems.

e Problem: High log level:
VMA: WARNING:

ok rxhkhkhk kA hkhkhkhhkhhhkrhkhkhhhkhhkhhhkrkhhkrhkhkhhhkhkrhhkrkhhkrhkhkhkhhkrhkhkhkrhkhkxkhkkxk

VMA: WARNING: * VMA is currently configured with high log level
*

VMA: WARNING: * Application performance will decrease in this log level!
*

VMA: WARNING: * This log level is recommended for debugging purposes only
*

r User Manual

VMA: WARNING:

KA A A AR A A A A AR AR A A AR A A AR AR A IR A A A AR AR A A A A AR A A AR A A A Ak Ak Ak Ak Ak k kKK

This warning message indicates that you are using VMA with a high log level.

The VMA TRACELEVEL variable value is set to 4 or more, which is good for
troubleshooting but not for live runs or performance measurements.

Solution: Set VMA TRACELEVEL to its default value 3.

e Problem: On running an application with VMA, the following error is reported:

ERROR:

ld.so: object 'libvma.so' from LD PRELOAD cannot be preloaded:

ignored.

Solution: Check that 1 ibvma is properly installed, and that 1ibvma . so is located in
Jusr/lib (or in /usr/lib64, for 64-bit machines).

e Problem: On attempting to install vma rpm, the following error is reported:

#rpm —-ivh libvma-w.x.y-z.rpm

@ICILQIT §

can't create transaction lock

Solution: Install the rpm with privileged user (root).

e Problem: The following warning is reported:

VMA :
VMA:
it to
VMA:
VMA :
VMA:

WARNING: Ak hkhkkhkhkhkhkhkhhkhhkhhkhhkkhkhkhkhh kb hkhhhhrhkhhkhhkdhhkhkhk ok hkrkkhhkhkhkrhkhhhhkkxkx
WARNING: Your current max locked memory is: 33554432. Please change
unlimited.

WARNING: Set this user's default to ‘ulimit -1 unlimited'.

WARNING: Read more about this issue in the VMA's User Manual.
WARNING: PR e I I I S i e I b b I b b b b b b I b I I b b b b b b b I b b b b b b I b b b b I b b b b b b b i 4

Solution: When working with root, increase the maximum locked memory to ‘unlimited’
by using the following command:

#ulimit -1 unlimited

When working as a non-privileged user, ask your administrator to increase the maximum
locked memory to unlimited.

e Problem: Incorrect IGMP version

The following warning is reported:

VMA- WARNING- KA A K AR KA AR A AR AR A AR A AR AR AR A A AR AR AR A AR A A A A Ak A kA A A Ak kA Ak k k%

VMA: WARNING: IGMP Version flag is not forced to IGMPv2 for interface ib2

while

VMA: WARNING: VMA IGMP is Enabled!

VMA: WARNING: Working in this mode can cause issues due to Eth-IB gateway
requirements

VMA: WARNING: Please "echo 2 >
/proc/sys/net/ipv4/conf/ib2/force igmp version"

VMA: WARNING: or "export VMA IGMP=0"

VMA: WARNING: before loading your application with VMA library

VMA: WARNING: Read the IGMP section in the VMA's User Manual for more

information
VMA: WARNING: Ak hh kA Ak hkhk kA hkhkhkhkrAhkhkhk kA hhkhkhkrhkhkhk kA rhkhkhkrhkhkhkkhkdkrhkhkhkhhhkkkx*x*k

This warning message means that you are using IGMP version other than 2, which is the
version supported by VMA. (Version 2 is required for the Eth-1B gateway.)

Solution: Use VMA SUPPRESS IGMP WARNING=1 if you are working in an
InfiniBand fabric and do not need to receive multicast packets from the Ethernet to the
InfiniBand fabric or you are working in an Ethernet fabric.

Rev 6.9}

gev 6.9.1 Debugging, Troubleshooting, and Monitorin\g

If you do expect to receive multicast packets from the Ethernet to the InfiniBand fabric
with VMA, force IGMP working mode to version 2 in all your hosts, as well as in your
routers:

echo 2 > /proc/sys/net/ipv4/conf/ib2/force igmp version
e Problem: UMCAST is enabled

The following warning is reported:

VMA WARNING: R R S i S e S I S b I b I R I I S b I R I S b S b b S b i b b b b S b b b S 3
VMA WARNING: UMCAST flag is Enabled for interface ibO0!

VMA WARNING: Please disable it: "echo 0 > /sys/class/net/ib0/umcast"
VMA WARNING: This option in no longer needed in this version

VMA WARNING: Please refer to Release Notes for more information
VMA WARNING: P S e I I i b i b b I i I b I e I b I b b I b b b I b b b I b b b I b b b b b b b b b b b e b b g

This warning message means that the UMCAST flag is on.
Solution: Turn off the UMCAST flag. This option is no longer needed in this version.
e Problem: Lack of huge page resources in the system.

The following warning is reported:

VMA: WARNING:
khkhkhkkhkhkhkhkkhkhkhkhkhhkhhkhhkhkhhkhhhkhkhhrhkhhkhhhkhkhhhrhkhhkhohhkhdhhrhkkhkhkhrhkhkkhkhkhrrkkhkhxxkx

VMA: WARNING: * NO IMMEDIATE ACTION NEEDED! &3

VMA: WARNING: * Not enough hugepage resources for VMA memory allocation.*
VMA: WARNING: * VMA will continue working with regular memory
allocation.*

VMA: INFO : * Optional: 1. Disable VMA's hugepage support

(VMA HUGETLB=0) *

VMA: INFO 3 w 2. Restart process after increasing the number
of*

VMA: INFO 3 w hugepages resources in the system: *

VMA: INFO : * "cat /proc/meminfo | grep -i HugePage"

*

VMA: INFO : * "echo 1000000000 > /proc/sys/kernel/shmmax"

*

VMA: INFO : * "echo 400 > /proc/sys/vm/nr_ hugepages"

*

VMA: WARNING: * Read more about the Huge Pages in the VMA User Manual
*

VMA: WARNING:

hhkrkhkhkhk kA hkhkhhkhhhkrhhkhhhkhhkrhhkhhhkrhkhkhkhhkhkhkrhkhkrkhhkrhkhkhkhhkhkhkrhkkrhkhkxkkxk

This warning message means that you are using VMA with huge page memory allocation
enabled (VMA_MEM_ALLOC_TYPE=2), but not enough huge page resources are
available in the system. VMA will use contiguous pages instead

Solution: Set VMA_MEM_ALLOC_TYPE= 1, in ordertoenable VMA's contig
pages allocation logic, this is the default setting;

If you want VMA to take full advantage of the performance benefits of huge pages,
restart the application after adding more huge page resources to your system similar to
the details in the warning message above, or try to free unused huge page shared memory
segments with the script below.

echo 1000000000 > /proc/sys/kernel/shmmax
echo 400 > /proc/sys/vm/nr_hugepages

If you are running multiple instances of your application loaded with VMA, you will
probably need to increase the values used in the above example.

- J

Rev 6.9}

r User Manual

CAUTION: Check that your host machine has enough free memory after allocating the
huge page resources for VMA. Low system memory resources may cause your system

to hang.

- NOTE: Use ipcs -mand ipcrm -m shmid to check and clean unused shared
— / memory segments.

Use the following script to release VMA unused huge page resources:

grep 0x00000000 | awk '{print $2}'";
ipcrm -m $shmid;

for shmid in “ipcs -m |
do echo 'Clearing' $shmid;

done;

(Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking TooI\

Appendix A: Sockperf - UDP/TCP Latency and
Throughput Benchmarking Tool

This appendix presents sockperf, VMA's sample application for testing latency and
throughput over socket API.

Sockperf can be used natively, or with VMA acceleration.

A.l Overview

Sockperf is an open source utility. For more general information, see
http://code.google.com/p/sockperf/.

Sockperf's advantage over other network benchmarking utilities is its focus on testing the
performance of high-performance systems (as well as testing the performance of regular
networking systems). In addition, sockperf covers most of the socket API call and options.

Specifically, in addition to the standard throughput tests, sockperf:

o Measures latency of each discrete packet at sub-nanosecond resolution (using TSC
register that counts CPU ticks with very low overhead).

e Measures latency for ping-pong mode and for latency under load mode. This means
that you can measure latency of single packets even under a load of millions of PPS
(without waiting for reply of packet before sending a subsequent packet on time).

o Enables spike analysis by providing in each run a histogram with various percentiles of
the packets’ latencies (for example: median, min, max, 99% percentile, and more) in
addition to average and standard deviation.

e Can provide full logs containing all a packet’s tx/rx times, without affecting the
benchmark itself. The logs can be further analyzed with external tools, such as MS-
Excel or matplotlib.

e Supports many optional settings for good coverage of socket API, while still keeping a
very low overhead in the fast path to allow cleanest results.

Sockperf operates by sending packets from the client (also known as the publisher) to the
server (also known as the consumer), which then sends all or some of the packets back to the
client. This measured roundtrip time is the route trip time (RTT) between the two machines
on a specific network path with packets of varying sizes.

e The latency for a given one-way path between the two machines is the RTT divided by
two.

e The average RTT is calculated by summing the route trip times for all the packets that
perform the round trip and then dividing the total by the number of packets.

Sockperf can test the improvement of UDP/TCP traffic latency when running applications
with and without VMA.

Sockperf can work as a server (consumer) or execute under-load, ping-pong, playback and
throughput tests as a client (publisher).

r User Manual

All

A.2

In addition, sockperf provides more detailed statistical information and analysis, as described
in the following section.

Sockperf is installed on the VMA server at /usr/bin/sockperf. For examples of running
sockperf over 1 Gb and 10Gb Ethernet, see:

o Latency with Ping-pong Test (on page 48)

o Bandwidth and Packet Rate With Throughput Test (on page 50)

Note: If you want to use multicast, you must first configure the routing table to map
multicast addresses to the Ethernet interface, on both client and server. (See Configuring the
Routing Table for Multicast Tests (on page 47)).

Advanced Statistics and Analysis
In each run, sockperf presents additional advanced statistics and analysis information:

e In addition to the average latency and standard deviation, sockperf presents a
histogram with various percentiles, including:

« 50 percentile - The latency value for which 50 percent of the observations are smaller
than it. The 50 percentile is also known as the median, and is different from the
statistical average.

« 99 percentile - The latency value for which 99 percent of the observations are smaller
than it (and 1 percent are higher).

These percentiles, and the other percentiles that the histogram provides, are very useful
for analyzing spikes in the network traffic.

e Sockperf can provide a full log of all packets’ tx and rx times by dumping all the data
that it uses for calculating percentiles and building the histogram to a comma separated
file. This file can be further analyzed using external tools such as Microsoft Excel or
matplotlib.

All these additional calculations and reports are executed after the fast path is completed.
This means that using these options has no effect on the benchmarking of the test itself.
During runtime of the fast path, sockperf records txTime and rxTime of packets using the
TSC CPU register, which has a negligible effect on the benchmark itself, as opposed to using
the computer’s clock, which can affect benchmarking results.

Configuring the Routing Table for Multicast Tests

If you want to use multicast, you must first configure the routing table to map multicast
addresses to the Ethernet interface, on both client and server.

Example
route add -net 224.0.0.0 netmask 240.0.0.0 dev ethO

where eth0 is the 10 Gb Ethernet interface.
You can also set the interface on runtime in sockperf:

e Use --mc-rx—-if -<ip> to setthe address of the interface on which to receive
multicast packets (can be different from the route table).

Rev 6.9}

(Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking TooI\

e Use --mc-tx-if -<ip> to setthe address of the interface on which to transmit
multicast packets (can be different from the route table).

A.3 Latency with Ping-pong Test

To measure latency statistics, after the test completes, sockperf calculates the route trip times
(divided by two) between the client and the server for all messages, then it provides the
average statistics and histogram.

A.3.1 UDP MC Ping-pong Over 1 Gb
» Torun UDP MC ping-pong over 1 Gb Ethernet

4. On both client and server, configure the routing table to map multicast addresses to the
Ethernet interface by using:

route add -net 224.0.0.0 netmask 240.0.0.0 dev ethl
where ethl is the 1 Gb Ethernet interface.

5. Run the server by using:
sockperf sr -i <server-lg-ip>

6. Run the client by using:

sockperf pp -i <server-1lg-ip>

The following output is obtained:

sockperf: Warmup stage (sending a few dummy packets)...

sockperf: Starting test...

sockperf: Test end (interrupted by timer)

sockperf: [Total Run] RunTime=1.100 sec; SentMessages=36304;
ReceivedMessages=36303

sockperf: ========= Printing statistics for Server No: 0

sockperf: [Valid Duration] RunTime=1.000 sec; SentMessages=33026;
ReceivedMessages=33026

sockperf: ====> avg-lat= 15.096 (std-dev=0.300)

sockperf: # dropped packets = 0; # duplicated packets = 0; # out-of-order
packets = 0

sockperf: Summary: Latency is 15.096 usec

sockperf: Total 33026 observations; each percentile contains 330.26

observations

sockperf: ---> <MAX> observation = 36.855
sockperf: ---> percentile 99.99 = 25.553

sockperf: ---> percentile 99.00 = 15.803

sockperf: ---> percentile 50.00 = 15.080

sockperf: ---> <MIN> observation = 13.406

Interpretation of the results:

The example shows an average latency of 15.096 usec

A.3.2 UDP MC Ping-pong Over 10 Gb
» Torun UDP MC ping-pong over 10 Gb Ethernet

7. After configuring the routing table as described in Configuring the Routing Table for
Multicast Tests (on page 47), run the server by using:

sockperf sr -i <server-10g-ip>

8. Run the client by using:

r User Manual Rev 6.9}

sockperf pp -i <server-10g-ip>

The following output is obtained:

sockperf: [Total Run] RunTime=1.100 sec; SentMessages=79960;
ReceivedMessages=79959

sockperf: [Valid Duration] RunTime=1.000 sec; SentMessages=72803;
ReceivedMessages=72803

sockperf: ====> avg-lat= 6.825 (std-dev=0.261)

sockperf: Summary: Latency is 6.825 usec

sockperf: Total 72803 observations; each percentile contains 728.03

observations

sockperf: ---> <MAX> observation = 19.057
sockperf: ---> percentile 99.99 = 9.159
sockperf: ---> percentile 99.00 = 7.382
sockperf: ---> percentile 50.00 = 6.830
sockperf: ---> <MIN> observation = 5.380

Interpretation of the results:

The example shows an average latency of 6.825 usec

A.3.3 UDP MC Ping-pong Over 10 Gb + VMA
» Torun UDP MC ping-pong over 10 Gb Ethernet + VMA

9. After configuring the routing table as described in Configuring the Routing Table for
Multicast Tests (on page 47), run the server by using:

LD PRELOAD=libvma.so sockperf sr -i <server-ip>
10.Run the client by using:

LD PRELOAD=libvma.so sockperf pp -i <server-ip>

The following output is obtained:

VMA INFO I e e i e e i

VMA INFO : Current Time: Sun Jan 29 13:32:40 2012

VMA INFO : Cmd Line: sockperf pp -i 224.4.2.216

VMA INFO : Pid: 4215

VMA INFO : OFED Version: OFED-VMA-1.5.3-0006:

VMA INFO : System: 2.6.32-71.e16.x86_64

VMA INFO : Architecture: x86 64

VMA INFO : Node: boo2

VMA INFO I e e e e e e S e ey
VMA INFO : Log Level 3 [VMA TRACELEVEL]
VMA INFO 8 Log File [VMA_LOG_FILE]
VMA INFO R R e e e e e e e S e e e e e e
VMA INFO 8
AkhhkkhkhkhkhkhkkhkhkhkhhkhhAhrhkkhhkhkhkhkhdhhhrhkkhhkhhhkkhkdhkhrhkhhkhrhhkkhkhkhrrhkkhhkrhkhkkhkkhhrhkhkhhxxkx*k

VMA INFO

sockperf [CLIENT] send on:sockperf: using recvfrom() to block on socket (s)

[0] IP = 224.4.2.216 PORT = 11111 # UDP

sockperf: Warmup stage (sending a few dummy messages) ...

sockperf: Starting test...

sockperf: Test end (interrupted by timer)

sockperf: Test ended

sockperf: [Total Run] RunTime=1.100 sec; SentMessages=299903;
ReceivedMessages=299902

sockperf: ========= Printing statistics for Server No: 0

sockperf: [Valid Duration] RunTime=1.000 sec; SentMessages=272956;
ReceivedMessages=272956

sockperf: ====> avg-lat= 1.809 (std-dev=0.244)
sockperf: # dropped messages = 0; # duplicated messages = 0; # out-of-order
messages = 0

sockperf: Summary: Latency is 1.809 usec

(Rev 6.9.1

A3.4

A4

A4l

A.4.2

Sockperf - UDP/TCP Latency and Throughput Benchmarking TooI\

sockperf: Total 272956 observations; each percentile contains 2729.56

observations

sockperf: ---> <MAX> observation = 7.489
sockperf: ---> percentile 99.99 = 3.897
sockperf: ---> percentile 99.00 = 2.850
sockperf: ---> percentile 50.00 = 1.717
sockperf: ---> <MIN> observation = 1.579

Interpretation of the results:

The example shows an average latency of 1.809 usec

UDP MC Ping-pong Summary

Table 12: UDP MC Ping-pong Results

Test 1 Gb Ethernet 10 Gb Ethernet 10 Gb Ethernet +
VMA

Latency 15.096 usec 6.825 usec 1.809 usec

VMA Improvement 13.287 usec (89%) 5.016 usec (73%)

Bandwidth and Packet Rate With Throughput Test

To determine the maximum bandwidth and highest message rate for a single-process, single-
threaded network application, sockperf attempts to send the maximum amount of data in a
specific period of time.

TCP Throughput Over 10 Gb
> To run TCP throughput over 10 Gb
11.Run the server by using:

sockperf sr --tcp -i <server-ip>

12.Run the client by using:

sockperf tp --tcp -i <server-ip> -m 100
where -m/--msg-size is the minimum message size in bytes (minimum default 12).

The following output is obtained:

sockperf: Total of 1282013 messages sent in 1.100 sec
sockperf: Summary: Message Rate is 1165457 [msg/sec]
sockperf: Summary: BandWidth is 13.338 MBps (106.701 Mbps)
Notes:

e Youcan use -—-tcp-avoid-nodelay to deliver TCP messages immediately
(default ON).

e For more sockperf throughput options run:
sockperf tp -h

TCP Throughput Over 10 Gb+VMA
» To run TCP throughput over 10 Gb + VMA

13.Run the server by using:

f User Manual

A.4.3

A5

A5.1

LD PRELOAD=libvma.so sockperf sr --tcp -i <server-ip>

14.Run the client by using:

LD PRELOAD=libvma.so sockperf tp --tcp -i <server-ip> -ml100

The following output is obtained:

sockperf: Total of 8413778 messages sent in 1.100 sec
sockperf: Summary: Message Rate is 7648873 [msg/sec]
sockperf: Summary: BandWidth is 87.534 MBps (700.275 Mbps)

TCP Throughput Summary
Table 13: TCP Throughput Results

Rev 6.9}

Test 10 Gb Ethernet 10 Gb Ethernet + VMA
Message Rate 1165457 [msg/sec] 7648873 [msg/sec]
Bandwidth 13.338 MBps (106.701 Mbps) | 87.534 MBps (700.275 Mbps)
VMA Improvement 74.196 (562%)

sockperf Subcommands
You can use additional sockperf subcommands
Usage: sockperf <subcommand> [options] [args]

e Todisplay help for a specific subcommand, use:
sockperf <subcommand> --help
e To display the program version number, use:

sockperf --version

Table 14: Available Subcommands

Option Description For help, use
help (h,?) Display a list of supported commands.
under-load (ul) Run sockperf client for latency under load test. # sockperf ul
h
ping-pong (pp) Run sockperf client for latency test in ping pong # sockperf pp
mode. h
playback (pb) Run sockperf client for latency test using playback # sockperf pb
of predefined traffic, based on timeline and h
message size.
throughput (tp) Run sockperf client for one way throughput test. # sockperf tp
h
server (sr) Run sockperf as a server. # sockperf sr
h

For additional information, see http://code.google.com/p/sockperf/.

Additional Options

The following tables describe additional sockperf options, and their possible values.

(Rev 6.9.1

Table 15: General sockperf Options

Sockperf - UDP/TCP Latency and Throughput Benchmarking TooI\

Short Full Command Description

Command

-h,-? --help,--usage Show the help message and exit.

N/A --tcp Use TCP protocol (default UDP).

-i --ip Listen on/send to IP <ip>.

-p --port Listen on/connect to port <port> (default 11111).

-f --file Tread multiple ip+port combinations from file
<file> (server uses select).

-F --iomux-type Type of multiple file descriptors handle
[s|select|p|poll|e|epoll|r[recvfrom] (default select).

N/A --timeout Set select/poll/epoll timeout to <msec> or -1 for
infinite (default is 10 msec).

-a --activity Measure activity by printing a "." for the last <N>
messages processed.

-A --Activity Measure activity by printing the duration for last
<N> messages processed.

N/A --tcp-avoid-nodelay Stop delivering TCP Messages Immediately
(default ON).

N/A --mc-rx-if IP address of interface on which to receive
multicast packets (can be different from the route
table).

N/A --mc-tx-if IP address of interface on which to transmit
multicast packets (can be different from the route
table).

N/A --mc-loopback-enable Enable MC loopback (default disabled).

N/A --mc-ttl Limit the lifetime of the message (default 2).

N/A --buffer-size Set total socket receive/send buffer <size> in bytes
(system defined by default).

N/A --vmazcopyread If possible use VMA's zero copy reads API (see
the VMA readme).

N/A --daemonize Run as daemon.

N/A --nonblocked Open non-blocked sockets.

N/A --dontwarmup Do not send warm up packets on start.

N/A --pre-warmup-wait Time to wait before sending warm up packets
(seconds).

N/A --no-rdtsc Do not use the register when measuring time;
instead use the monotonic clock.

N/A --set-sock-accl Set socket acceleration before running (available
for some Mellanox systems).

N/A --load-vma Load VMA dynamically even when
LD_PRELOAD was not used.

r User Manual

Rev 6.9}

Short Full Command Description

Command

N/A --tcp-skip-blocking-send Enables non-blocking send operation (default
OFF).

N/A --recv_looping_num Set sockperf to loop over recvfrom() until
EAGAIN or <N> good received packets, -1 for
infinite, must be used with --nonblocked (default
1).

-d --debug Print extra debug information.

Table 16: Client Options

Short Full Command Description

Command

N/A --Srv-num Set the number of servers the client works with.

N/A --sender-affinity Set sender thread affinity to the given core IDs in
the list format (see: cat /proc/cpuinfo).

N/A --receiver-affinity Set receiver thread affinity to the given core IDs in
the list format (see: cat /proc/cpuinfo).

N/A --full-log Dump full log of all message send/receive times to
the given file in CSV format.

-t --time Set the number of seconds to run (default 1, max =
36000000).

-b --burst Control the number of messages sent from the
client in every burst.

N/A --giga-size Print sizes in GigaBytes.

N/A --increase_output_precision | Increase number of digits after the decimal point
of the throughput output (from 3 to 9).

N/A --mps Set number of messages-per-second (default =
10000 for under-load mode, or max for ping-pong
and throughput modes); for maximum use --
mps=max.

(Supports --pps for backward compatibility.)
-m --msg-size Use messages of minimum size in bytes (minimum
default 12 bytes).
-r --range Use with -m to randomly change the minimum
message size in range: <size> +- <N>.
Table 17: Server Options

Short Full Command Description

Command

N/A --threads-num Run <N> threads on server side (requires '-f'
option).

N/A --cpu-affinity Set threads affinity to the given core I1Ds in the list

format (see: cat /proc/cpuinfo).

(Rev 6.9.1 Sockperf - UDP/TCP Latency and Throughput Benchmarking TooI\

Short Full Command Description
Command
N/A --vmarxfilterch If possible use VMA's receive path packet filter
callback API (See the VMA readme).
N/A --force-unicast-reply Force server to reply via unicast.
N/A --dont-reply Set server to not reply to the client messages.
-m --msg-size Set maximum message size that the server can

receive <size> bytes (default 65506).

-0 --gap-detection Enable gap-detection.

A.5.2 Sending Bursts

Use the -b (--burst=<s1ize>) option to control the number of messages sent by the
client in every burst.

A.6 Debugging sockperf

Use —-d (--debug) to print extra debug information without affecting the results of the
test. The debug information is printed only before or after the fast path.

A.7 Troubleshooting sockperf

If the following error is received:

sockperf error:
sockperf: No messages were received from the server. Is the server down?

Perform troubleshooting as follows:
o Make sure that exactly one server is running.
o Check the connection between the client and server.
e Check the routing table entries for the multicast/unicast group.
e Extend test duration (use the --time command line switch).

o If you used extreme values for --mps and/or --reply-every switch , try other values or
try the default values.

r User Manual Rev 6.9}

Appendix B: Multicast Routing

B.1

Multicast Interface Definitions

All applications that receive and/or transmit multicast traffic on a multiple-interface host
should define the network interfaces through which they would prefer to receive or transmit
the various multicast groups.

If a networking application can use existing socket APl semantics for multicast packet
receive and transmit, the network interface can be defined by mapping the multicast traffic.
In this case, the routing table does not have to be updated for multicast group mapping. The
socket APl setsockopt handles these definitions.

When the application uses setsockopt with IP_ADD MEMBERSHP for the receive path
multicast join request, it defines the interface through which it wants the VMA to join the
multicast group, and listens for incoming multicast packets for the specified multicast group
on the specified socket.

When the application uses setsockopt with IP MULTICAST IF on the transmit
path, it defines the interface through which the VMA will transmit outgoing multicast
packets on that specific socket.

If the user application does not use any of the above setsockopt socket lib API calls, the
VMA uses the network routing table mapping to find the appropriate interface to be used for
receiving or transmitting multicast packets.

Use the route command to verify that multicast addresses in the routing table are mapped
to the interface you are working on. If they are not mapped, you can map them as follows:
#route add -net 224.0.0.0 netmask 240.0.0.0 dev ib0

It is best to perform the mapping before running the user application with VMA, so that

multicast packets are routed via the InfiniBand/10 Gb Ethernet interface and not via the
default Ethernet interface ethO.

The general rule is that the VMA routing is the same as the OS routing.

(Rev 6.9.1

Appendix C: Acronyms

Table 18: Acronym Table

Acronyms\

Acronym Definition
API Application Programmer's Interface
CQ Completion Queue

FD File Descriptor

GEth Gigabit Ethernet Hardware Interface
HCA Host Channel Adapter

HIS Host Identification Service

IB InfiniBand

IGMP Internet Group Management Protocol
IP Internet Protocol

IPoIB IP over IB

IPR IP Router

NIC Network Interface Card

OFED OpenFabrics Enterprise Distribution
0S Operating System

pps Packets Per Second

QP Queue Pair

RMDS Reuters Market Data System

RTT Route Trip Time

SM Subnet Manager

UDP User Datagram Protocol

usec microseconds

UMCAST User Mode Multicast

VMA Mellanox Messaging Accelerator
VMS VMA Messaging Service

WCE Work Completion Elements

