
Device XC886CM-8FF
Marking/Step EES AA
Package PG-TQFP-48

V 1.0, 2006-02

Errata Sheet
This Errata Sheet describes the deviations from the current user documentation.
The module oriented classification and numbering system uses an ascending sequence
over several derivatives, including already solved deviations. So gaps inside this
enumeration can occur.

Current Documentation
• XC886/888CLM User’s Manual V0.1, Jan 2006
• XC886/888CLM Data Sheet V0.1, Feb 2006

Note: Devices marked with EES or ES are engineering samples which may not be
completely tested in all functional and electrical characteristics, therefore they
should be used for evaluation only.

The specific test conditions for EES and ES are documented in a separate Status Sheet.

Contents
Section . Page
History List/Change Summary...2
Functional Deviations...4
Deviations from Electrical- and Timing Specification..18
Application Hints...19
XC886CM-8FF, EES AA 1/25 V 1.0 , 2006-02

Errata Sheet

History List/Change Summary
1 History List/Change Summary

(no previous device step)

Table 1 Functional Deviations

Functional
Deviation

Short Description Fixed
in Step

Change

ADC_XC8.003 Limitation during power-down mode
BROM_XC8.006 IRAM data corrupted after hardware reset
BROM_XC8.008 MCAN Bootstrap Loader functionality not

available.
BROM_XC8.009 LIN BSL Mode 4 (Flash Mass Erase) does

not work correctly.
INT_XC8.004 Unable to Detect New Interrupt Request if

Any One of Timer 2/Timer 21/UART1
Interrupt Flags Is Not Cleared
(Unexpectedly)

INT_XC8.005 Write to IRCON0 Blocks Interrupt Request
of External Interrupt 0,1

MDU_XC8.001 Overflow during Left Shift may lead to a
wrong shift result

OCDS_XC8.008 Watchdog Timer behavior during Debug
with Suspend

OCDS_XC8.009 Break while CPU is in NMI service mode
PIN_XC8.004 Reset values of PUDSEL and PUDEN

registers in Port 4 and Port 5 are wrong.
WDT_XC8.001 WDT is not default suspended in Monitor

Mode
WDT_XC8.002 WDT should not be refreshed during

Prewarning period
OSC_XC8.002 OSC_CON register is not reset following a

wake-up reset

PLL_XC8.001 PLL N-Divider is reset to default value
after a WDT reset
XC886CM-8FF, EES AA 2/25 V 1.0 , 2006-02

Errata Sheet

History List/Change Summary

Table 2 Application Hints

Application
Hints

Short Description Fixed
in Step

Change

BROM_XC8.H00
1

SYSCON0.RMAP handling in ISR

FLASH_XC8.H0
01

Limitation to Flash operations under PLL
Loss-of-Lock condition

INT_XC8.H003 Interrupt Flags of External Interrupt 0 and 1
INT_XC8.H004 NMI Interrupt Request With No NMI Flag Set
INT_XC8.H005 Not all Flags are qualified for clearing

Pending Interrupt Request
OCDS_XC8.H00
1

Write to OCDS registers can disturb the
Debug Function

OCDS_XC8.H00
2

Any NMI request is lost on Debug entry and
during Debug

MultiCAN_XC8.001 RXUPD behavior
MultiCAN_XC8.002 MultiCAN Timestamp Function
MultiCAN_XC8.003 MultiCAN Tx Filter Data Remote
MultiCAN_XC8.004 SDT behavior
MultiCAN_XC8.005 Tx FIFO overflow interrupt not generated
MultiCAN_XC8.006 Wrong transmit order when CAN error at

start of CRC transmission
MultiCAN_XC8.007 List Object Error wrongly triggered
MultiCAN_XC8.008 MSGVAL wrongly cleared in SDT mode
MultiCAN_XC8.009 Different bit timing modes

Table 1 Functional Deviations

Functional
Deviation

Short Description Fixed
in Step

Change
XC886CM-8FF, EES AA 3/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
2 Functional Deviations

ADC_XC8.003 Limitation during power-down mode
When the device enters power-down mode, the ADC power-down control level shifter
will experience an overstress condition. This overstress condition may cause the ADC
power-down control level shifter to fail, resulting the ADC module in entering power-
down mode permanently. Therefore, it is advisable to avoid using power-down mode.

Workaround:
None.

BROM_XC8.006 IRAM data corrupted after hardware reset
After the hardware reset, boot up via User Mode (MBC=1) affects certain IRAM data.

The affected IRAM address range:
(1) 00H - 07H
(2) 61H - 64H
(3) 80H - BFH

Workaround:
None

BROM_XC8.008 MCAN Bootstrap Loader functionality not available.

The functionality of the MCAN Bootstrap loader is not implemented.

Workaround:
None
XC886CM-8FF, EES AA 4/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
BROM_XC8.009 LIN BSL Mode 4 (Flash Mass Erase) does not work correctly.
For full erase of the flash memories, user selects Mode 4 (Mass Erase). Completion of
this operation is indicated by an acknowledgement code of 0x55.
In the current implementation, though acknowledgement code is received, the Flash
memories are not erased.

Workaround:
To ensure a full erase of the Flash memories, users need to execute an erase of all the
P-Flash and D-Flash banks separately.

INT_XC8.004 Unable to Detect New Interrupt Request if Any One of Timer 2/
Timer 21/UART1 Interrupt Flags Is Not Cleared (Unexpectedly)
The situation leading to unable to detect new interrupt request is similar for
1. Timer 2 (TF2 and EXF2),
2. Timer 21 (TF2 and EXF2), and
3. UART1 (RI and TI)
independently, as described in the following for Timer 2.
As illustrated in the simplified figure, the Timer 2 interrupt flags TF2 and EXF2 are
combined as one interrupt request output. These flags are located within the Timer 2
kernel, with a single interrupt request line as output from the kernel.

TF2

EXF2

Timer 2
Overflow

EXEN2

T2EX

EDGES
EL

>=1 interrupt
detection

Being of interrupt structure 2, the interrupt request of Timer 2 is detected on the rising
edge of a positive pulse.
XC886CM-8FF, EES AA 5/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
The problem is that it may occur at some point in the application, that any new Timer 2
interrupt request can no longer be detected after a return-from-interrupt (reti) due to
service of earlier event(s). This happens when the following conditions are true:
1. Timer 2 events are serviced by interrupt (i.e. flags are checked and cleared only in the

interrupt routine ISR),
2. Either TF2 or EXF2 is set at any one time throughout the ISR (even while the other is

cleared) such that at least one of the flags is still set after reti, causing the Timer 2
request line, which is an OR-function of the two flags TF2 and EXF2, to remain set
throughout the ISR and after reti.

Two example scenerios are illustrated in the following figure:

TF2

EXF2

OR interrupt
detection

TF2

EXF2

request

ISR entered ISR exited

TF2

EXF2

request

E.g. 1

E.g. 2

This means, any future Timer 2 TF2 or EXF2 event is not able to cause a rising edge and
therefore not able to trigger an interrupt request to the core – as if the Timer 2 interrupts
had been disabled, until both EXF2 and TF2 flags are cleared at some time. The clearing
of flags would have to be done by user’s code additionally outside of the Timer 2 interrupt
routine, which is however normally not feasible with an interrupt service scheme.

Workaround:
Timer 2 and Timer 21
There is no problem if EXF2 is not enabled by setting bit EXEN2 = 0 i.e. external events
are disabled, or if bit DCEN = 1 in auto-reload mode.
Otherwise if EXF2 is enabled, while TF2 is always enabled when Timer 2 is running,
there are two suggested workaround:
XC886CM-8FF, EES AA 6/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
1. If other events of Timer 2 interrupt node (ET2) need not be enabled for interrupt,
disable this interrupt node and use software polling of the flags instead.

2. Before return from interrupt, check again if TF2 or EXF2 is (still) set (due to new
request since the last check). If so, jump and execute the ISR routine from start. Exit
only when all flags are checked to be cleared. However, dummy interrupt of the node
may occur after return from interrupt, and should be ignored. Another drawback is if
Timer 2 events are occurring at high rate, the CPU may be ’stuck’ in the service
routine of the Timer 2 interrupt for a long time.

<entry point of interrupt node service routine>
…..
Start:
check flag TF2
…..
clear flag TF2
…..
check flag EXF2
…..
clear flag EXF2
…..
Finish:
if TF2 or EXF2 is set, jump to Start
reti (return from interrupt)

UART1
The two suggested workaround for Timer 2 above applies. In this case, replace with
UART1 interrupt node and the UART1 flags: RI and TI.

INT_XC8.005 Write to IRCON0 Blocks Interrupt Request of External Interrupt 0,1
Any write (read-modify-write or direct MOV) to the SFR IRCON0 will block an incoming
interrupt request from external interrupt 0 or 1, even though the respective flag (EXINT0
or EXINT1) is set.

Workaround:
After any write to the IRCON0, check (read IRCON0) the flags EXINT0 and EXINT1. If
any flag is set, run the service routine; otherwise proceed.
XC886CM-8FF, EES AA 7/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
In case of enabled for interrupt, the service routine should be duplicated: one copy as
the interrupt service routine (with reti executed); another copy in main code memory for
software call (with ret executed).

MDU_XC8.001 Overflow during Left Shift may lead to a wrong shift result
There is no overflow or saturation defined for MDU shift operations. However, in the
implementation of left shift, when a ’1’ is shifted out of the 32-bit range for the first time,
the error flag MDUSTAT.IERR will be wrongly set to indicate an overflow situation.
Additionally, the shift operand becomes saturated, leading to a wrong shift result.
An example is shown in the following table where the value 40H is left shifted twice.

Operation Operand Result Status
First left shift 0100 0000B 1000 0000B Correct
Second left shift 1000 0000B 1111 1111B Wrong

Workaround:
The user should limit the shift count during left shift operations so that no ’1’ is shifted out
of the 32-bit range.

OCDS_XC8.008 Watchdog Timer behavior during Debug with Suspend
The WDT may be enabled for suspend (stops counting) in debug mode.
In this suspended state, when the WDT is refreshed by writing WDTCON.WDTRS, the
timer base counter which provide the clock to WDT is not refreshed to zero.
The effect is that on exiting Monitor Mode in user mode, the WDT may count a little
shorter to overflow. This shortened time is less than one WDT count.

Workaround:
None. This WDT behavior occurs only during debug where WDT is enabled for suspend.
XC886CM-8FF, EES AA 8/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
OCDS_XC8.009 Break while CPU is in NMI service mode
While the CPU is in NMI service mode, the debug function has the following limitations:
1. External break via JTAG or MBC pin occurring while in NMI service mode, results in

debug mode entry being postponed until NMI mode is ended.
2. Hardware or software breakpoints inside the NMI service routine will trigger the debug

function. However, it is not possible to return to and execute user code (run or step)
at the point of break as the debug cannot be exit.

Workaround:
The workaround for the respective scenerios are
1. None. In fact, since NMI is usually a critical situation, any asynchronous break event

postponed till after return from NMI mode has insignificant effects.
2. Do not set breakpoints or put the TRAP instruction inside the NMI service routine.

PIN_XC8.004 Reset values of PUDSEL and PUDEN registers in Port 4 and Port 5
are wrong.
The implemented reset values of PUDSEL and PUDEN registers in Port 4 and Port 5
differ from those that are defined in the specification. This leads to wrong pull-up/pull-
down status at some of the Port 4 and Port 5 pins after reset.

Register Name Reset Value
Implementation Specification

P4_PUDSEL BFH FFH

P4_PUDEN 40H 04H

P5_PUDSEL BFH FFH

P5_PUDEN 40H FFH

Note: Pins P4.2, P4.4-P4.7 and P5.0-P5.7 are not available in TQFP-48 package.

Workaround:
All four registers should be re-initialized to the reset value defined in the specification.
XC886CM-8FF, EES AA 9/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
WDT_XC8.001 WDT is not default suspended in Monitor Mode
The WDT is not default suspended when OCDS enters monitor mode. This requires the
WDT to be always refreshed to prevent a WDT reset from taking place.

Workaround:
The user have to disable the WDT first before entering monitor mode, and enable again
on exiting monitor mode.

WDT_XC8.002 WDT should not be refreshed during Prewarning period
If the WDT is not serviced before the timer overflows, a WDT NMI request is asserted
and Prewarning is entered. During the Prewarning period, which last for 30H counts,
refreshing of the Watchdog Timer should not be possible and the microcontroller is
expected to reset at the end of this period.
However in the current implementation, the WDT reset can be prevented by constantly
writing to WDTCON.WDTRS during Prewarning.

Workaround:
The user should not refresh the WDT upon entering the Prewarning period.

OSC_XC8.002 OSC_CON register is not reset following a wake-up reset
On a wake-up from power-down with reset, the register OSC_CON is not reset to its
default value as specified. If an external oscillator is used, it will remain as the selected
oscillator source on wake-up reset. On the other hand, the PLL settings including the
NDIV value will be reset to the default state.
Depending on the external oscillator’s frequency (fOSC), there are three possible
scenarios:
1. If fOSC > 10 MHz, the system might freeze due to a system frequency that is too high.
XC886CM-8FF, EES AA 10/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
2. If 7.5 MHz ≤ fOSC ≤ 10 MHz, the system starts executing the user code correctly, even
though it might run at a reduced frequency.

3. If fOSC < 7.5 MHz, the system might freeze due to the inability of the PLL to lock.

Workaround:
The wake-up from power-down with reset feature should not be used with an external
oscillator outside the range of 7.5 to 10MHz (scenarios 1 and 3). There is no impact on
the user if the system is using the on-chip oscillator.

PLL_XC8.001 PLL N-Divider is reset to default value after a WDT reset
The user configured PLL N-divider value should be retained following a WDT reset.
However in the current implementation, it is reset to its default value instead.
A problem arises when an external oscillator is used to generate the system clock.
Depending on the external oscillator’s frequency (fOSC), there are three possible
scenarios:
1. If fOSC > 10 MHz, the system might freeze due to a system frequency that is too high.
2. If 7.5 MHz ≤ fOSC ≤ 10 MHz, the system starts executing the user code correctly, even

though it might run at a reduced frequency.
3. If fOSC < 7.5 MHz, the system might freeze due to the inability of the PLL to lock.

Workaround:
The WDT should not be used with an external oscillator outside the range of 7.5 to
10MHz (scenarios 1 and 3). If the external oscillator falls within 7.5 to 10MHz (scenario
2), the PLL N-divider must always be re-initialized in the user code with the required
value after a WDT reset. There is no impact on the user if the system is using the on-
chip oscillator.
XC886CM-8FF, EES AA 11/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
MultiCAN_XC8.001 RXUPD behavior
When a CAN frame is stored in a message object, either directly from the CAN node or
indirectly via receive FIFO or from a gateway source object, then bit MOCTR.RXUPD is
set in the message object before the storage process and is automatically cleared after
the storage process.

Problem description
When a standard message object receives a CAN frame from a CAN node, then it
processes its own RXUPD as described above (correct).
In addition to that, it also sets and clears bit RXUPD in the message object referenced
by pointer MOFGPR.CUR (wrong behavior).

Workaround
The “foreign” RXUPD pulse can be avoided by initializing MOFGPR.CUR with the
message number of the object itself instead of another object (which would be message
object 0 by default, because MOFGPR.CUR points to message object 0 after reset
initialization of MultiCAN).

MultiCAN_XC8.002 MultiCAN Timestamp Function
The timestamp functionality does not work correctly.

Workaround:
Do not use timestamp.

MultiCAN_XC8.003 MultiCAN Tx Filter Data Remote
Message objects of priority class 2 (MOAR.PRI = 2) are transmitted in the order as given
by the CAN arbitration rules. This implies that for 2 message objects which have the
same CAN identifier, but different DIR bit, the one with DIR = 1 (send data frame) shall
be transmitted before the message object with DIR = 0, which sends a remote frame.
The transmit filtering logic of the MultiCAN leads to a reverse order, i.e the remote frame
is transmitted first. Message objects with different identifiers are handled correctly.

Workaround
None.
XC886CM-8FF, EES AA 12/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
MultiCAN_XC8.004 SDT behavior

Correct behavior
Standard message objects:
MultiCAN clears bit MOCTR.MSGVAL after the successful reception/transmission of a
CAN frame if bit MOFCR.SDT is set.
Transmit Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the successful reception/transmission of a
CAN frame if bit MOFCR.SDT is set. After a transmission, MultiCAN also looks at the
respective transmit FIFO base object and clears bit MSGVAL in the base object if bit SDT
is set in the base object and pointer MOFGPR.CUR points to MOFGPR.SEL (after the
pointer update).
Gateway Destination/Fifo slave object:
MultiCAN clears bit MOCTR.MSGVAL after the storage of a CAN frame into the object
(gateway/FIFO action) or after the successful transmission of a CAN frame if bit
MOFCR.SDT is set. After a reception, MultiCAN also looks at the respective FIFO base/
Gateway source object and clears bit MSGVAL in the base object if bit SDT is set in the
base object and pointer MOFGPR.CUR points to MOFGPR.SEL (after the pointer
update).

Problem description
Standard message objects:
After the successful transmission/reception of a CAN frame, MultiCAN also looks at
message object given by MOFGPR.CUR. If bit SDT is set in the referenced message
object, then bit MSGVAL is cleared in the message object CUR is pointing to.
Transmit FIFO slave object:
Same wrong behaviour as for standard message object. As for transmit FIFO slave
objects CUR always points to the base object, the whole transmit FIFO is set invalid after
the transmission of the first element instead after the base object CUR pointer reaches
the predefined SEL limit value.
Gateway Destination/Fifo slave object:
Correct operation of the SDT feature.

Workaround
Standard message object:
XC886CM-8FF, EES AA 13/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
Set pointer MOFGPR.CUR to the message number of the object itself.
Transmit FIFO:
Do not set bit MOFCR.SDT in the transmit FIFO base object. Then SDT works correctly
with the slaves, but the FIFO deactivation feature by CUR reaching a predefined limit
SEL is lost.

MultiCAN_XC8.005 Tx FIFO overflow interrupt not generated

Specified behaviour
After the successful transmission of a Tx FIFO element, a Tx overflow interrupt is
generated if the FIFO base object fulfils these conditions:
• Bit MOFCR.OVIE=1, AND
• MOFGPR.CUR becomes equal to MOFGPR.SEL

Real behaviour
A Tx FIFO overflow interrupt will not be generated after the transmission of the Tx FIFO
base object.

Workaround
If Tx FIFO overflow interrupt needed, take the FIFO base object out of the circular list of
the Tx message objects. That is to say, just use the FIFO base object for FIFO control,
but not to store a Tx message.
XC886CM-8FF, EES AA 14/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
base object:
MO s

List X

MO c

MO z

MO a

MO l

MO n

TxFiFo

TO
P

B
O

TTO
M

MultiCAN_XC8.006 Wrong transmit order when CAN error at start of CRC
transmission
The priority order defined by acceptance filtering, specified in the message objects,
define the sequential order in which these messages are sent on the CAN bus. If an error
occurs on the CAN bus, the transmissions are delayed due to the destruction of the
message on the bus, but the transmission order is kept. However, if a CAN error occurs
when starting to transmit the CRC field, the arbitration order for the corresponding CAN
node is disturbed, because the faulty message is not retransmitted directly, but after the
next transmission of the CAN node.

crc
field

error

CAN
bus

Workaround
None.
XC886CM-8FF, EES AA 15/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
MultiCAN_XC8.007 List Object Error wrongly triggered
If the first list object in a list belonging to an active CAN node is deallocated from that list
position during transmit/receive acceptance filtering (happening during message
transfer on the bus), then a "list object" error may occur (NSRx.LOE=1B), which will
cause that effectively no acceptance filtering is performed for this message by the
affected CAN node.
As a result:
• for the affected CAN node, the CAN message during which the error occurs will not

be stored in a message object. This means that although the message is
acknowledged on the CAN bus, its content will be ignored.

• the message handling of an ongoing transmission is not disturbed, but the
transmission of the subsequent message will be delayed, because transmit
acceptance filtering has to be started again.

• message objects with pending transmit request might not be transmitted at all due to
failed transmit acceptance filtering.

Workaround
Either
1. Avoid deallocation of the first element on active CAN nodes. Dynamic reallocations on

message objects behind the first element are allowed.
Or
2. Avoid list operations on a running node. Only perform list operations, if CAN node is

not in use (e.g. when NCRx.INIT=1B)

MultiCAN_XC8.008 MSGVAL wrongly cleared in SDT mode

When Single Data Transfer Mode is enabled (MOFCRn.SDT=1B), the bit MOC-
TRn.MSGVAL is cleared after the reception of a CAN frame, no matter if it is a data
frame or a remote frame.

In case of a remote frame reception and with MOFCR.FRREN = 0B, the answer to the
remote frame (data frame) is transmitted despite clearing of MOCTRn.MSGVAL (incor-
rect behaviour). If, however, the answer (data frame) does not win transmit acceptance
filtering or fails on the CAN bus, then no further transmission attempt is made due to
XC886CM-8FF, EES AA 16/25 V 1.0 , 2006-02

Errata Sheet

Functional Deviations
cleared MSGVAL (correct behaviour).

Workaround

To avoid a single trial of a remote answer in this case, set MOFCR.FRREN = 1B and
MOFGPR.CUR = this object.

MultiCAN_XC8.009 Different bit timing modes
Bit timing modes (NFCRx.CFMOD=10B) do not conform to the specification.
When the modes 001B-100B are set in register NFCRx.CFSEL, the actual configured
mode and behaviour is different than expected.

Bit timing mode
(NFCR.CFSEL)
according to spec

Value to be written to
NFCR.CFSEL instead

Measurement

001B Mode is missing (not
implemented) in
MultiCAN

Whenever a recessive edge (transition
from 0 to 1) is monitored on the receive
input the time (measured in clock
cycles) between this edge and the
most recent dominant edge is stored in
CFC.

010B 011B Whenever a dominant edge is
received as a result of a transmitted
dominant edge the time (clock cycles)
between both edges is stored in CFC.
XC886CM-8FF, EES AA 17/25 V 1.0 , 2006-02

Errata Sheet

Deviations from Electrical- and Timing Specification
Workaround
None.

3 Deviations from Electrical- and Timing Specification
No deviation from Electrical- and Timing Specification are known for this step.

011B 100B Whenever a recessive edge is
received as a result of a transmitted
recessive edge the time (clock cycles)
between both edges is stored in CFC.

100B 001B Whenever a dominant edge that
qualifies for synchronization is
monitored on the receive input the time
(measured in clock cycles) between
this edge and the most recent sample
point is stored in CFC.

Bit timing mode
(NFCR.CFSEL)
according to spec

Value to be written to
NFCR.CFSEL instead

Measurement
XC886CM-8FF, EES AA 18/25 V 1.0 , 2006-02

Errata Sheet

Application Hints
4 Application Hints

BROM_XC8.H001 SYSCON0.RMAP handling in ISR
The ISR has to handle SYSCON0.RMAP correctly when Flash user routines provided in
the Boot ROM are used together with the interrupt system. Any ISR with the possibility
of interrupting these user routines has to do the following in the interrupt routine:
• save the value of the RMAP bit at the beginning
• restore the value before the exit

This is to prevent access of the wrong address map upon return to the Flash user routine
since the RMAP bit may be changed within the interrupt routine. The critical point is when
XC886CM-8FF, EES AA 19/25 V 1.0 , 2006-02

Errata Sheet

Application Hints
Flash user routines sets RMAP to ‘1’ and the interrupt occurs that needs RMAP at ‘0’ in
the ISR.

Please note that NMI is an interrupt as well.

FLASH_XC8.H001 Limitation to Flash operations under PLL Loss-of-Lock
condition
When the PLL Loss-of-Lock occurs, the PLL will run at its VCO base frequency. Under
this condition, reading from Flash operation is possible. However, any ongoing Flash
program or erase operation may fail and therefore should be aborted.

Before the recovery of Loss-of-Lock, no program or erase operation shall be started on
the Flash.
XC886CM-8FF, EES AA 20/25 V 1.0 , 2006-02

Errata Sheet

Application Hints
INT_XC8.H003 Interrupt Flags of External Interrupt 0 and 1
External interrupt 0 and 1 may individually be selected via respective bits (EXINTx) in
EXICON0 register, to request interrupt on falling edge, rising edge, both edges or to
bypass the edge detection.

0003 HEX0

IEN0.0

IE0

TCON.1

0013 H

IT0

TCON.0EXINT0

EXICON0.0/1

EXINT0

IRCON0.0

EINT0

EX1

IEN0.2

IE1

TCON.3
IT1

TCON.2EXINT1

EXICON0.2/3

EXINT1

IRCON0.1

EINT1

IEN0.7
EA

to
CPU

Edge detection is done in the system unit. If enabled, an active event will set the EXINTx
flag and correspondingly set the IEx flag in TCON. It should be noted that after any
external interrupt x event, flag EXINTx must be cleared. In case of falling edge as active
event, this allows any future active event to be able to set the flag IEx as interrupt
request. In case of low level as active event, this prevents unintended recurring
triggering of interrupt request.
In case of bypass edge detection, the input is connected directly to the core (bypass the
system unit). The flag IEx in TCON will be set on the selected falling edge or low level
(at least 2 clock cycles) event. In case of falling edge selected as active event by
TCON.ITx, the flag EXINTx is set in addition to the flag IEx.

Besides the above notes, the following should be noted on the behavior regarding setting
and clearing of the external interrupt x (x = 0 or 1) flags, applicable to both edge and
bypass edge detection modes:
Setting of External Interrupt x Flags
1. The flag TCON.IEx will be set in all modes selectable via EXICON0 register.
2. Flag IRCON0.EXINTx will be set in all modes as long as an active edge is detected;

flag EXINTx will not be set for low level as active event.
Clearing of External Interrupt x Flags
1. Flag IEx is cleared automatically by hardware when the interrupt is being vectored to.
XC886CM-8FF, EES AA 21/25 V 1.0 , 2006-02

Errata Sheet

Application Hints
2. Flag EXINTx has to be cleared by software.
3. Clearing one external interrupt x flag will not clear the other. Especially, clearing flag

EXINTx will not clear the flag IEx. Being of interrupt structure 1, the flag IEx is the
request polled by the CPU for interrupt servicing. Therefore user has to take care to
clear the flag IEx before switching from SW polling method to enabling the external
interrupt x node, to prevent potential dummy interrupt request.

4. Always clear both EXINTx and IEx flags before (if) changing the trigger select in
EXICON0 register.

INT_XC8.H004 NMI Interrupt Request With No NMI Flag Set
It might occur in the application, that sometimes NMI interrupt requests are serviced, but
no active NMI interrupt flags are found.
Consider the following NMI interrupt service routine pseudo-code, and scenerio where a
NMI interrupt source A event leads to interrupt request of the NMI node and CPU vectors
to the NMI interrupt routine. Meanwhile, NMI interrupt source B and its flag becomes
active any time in the duration indicated by T:

<entry point of interrupt node service routine>
…..
check flag A
…..
clear flag A
…..
check flag B
…..
clear flag B
…..
reti (return from interrupt)

T

In this case, NMI flag B will be cleared as a standard procedure by the NMI interrupt
routine in the current service. However, the pending interrupt request for the NMI node
remains activated after RETI, as it is only cleared by hardware when CPU acknowledge
the NMI interrupt and vectors to the NMI service routine.
This leads to following servicing of the NMI interrupt node again, but potentially no active
NMI flag is found, i.e. dummy NMI interrupt service. The point to note is that the NMI
interrupt source B is not lost, as it was actually serviced in the current service of the NMI
interrupt node.
The recommendation is to ignore these dummy NMI interrupt vectoring.
XC886CM-8FF, EES AA 22/25 V 1.0 , 2006-02

Errata Sheet

Application Hints
INT_XC8.H005 Not all Flags are qualified for clearing Pending Interrupt Request
For interrupts of structure 2, qualified event (status) flags are used for clearing any
pending interrupt request to the core. An event flag is qualified as long as the event is
enabled for interrupt. By this means, as long as all qualified flags of the node are cleared,
any still active pending interrupt request to the core will be cleared by hardware.
However with existing implementation, not all event flags are qualified for clearing the
pending interrupt request to core. These flags are listed in the following table,
corresponding to the interrupt node the flag belongs to.

Interrupt
Node

Vector
Address

Assignment Unqualified Flags
Belonging to Node

NMI 0073H Watchdog Timer NMI NMIWDT
PLL NMI NMIPLL
Flash NMI NMIFLASH
OCDS NMI NMIOCDS
VDDC Prewarning NMI NMIVDD
VDDP Prewarning NMI NMIVDDP
Flash ECC NMI NMIECC

XINTR5 002BH LIN EOFSYN, ERRSYN
XINTR8 0043H External Interrupt 2 EXINT2

CORDIC EOC
MDU IRDY, IERR

XINTR9 004BH External Interrupt 3 EXINT3
External Interrupt 4 EXINT4
External Interrupt 5 EXINT5
External Interrupt 6 EXINT6

Note: Some events e.g. TF2, EXF2 of Timer 2, Timer21; NDOV of UART; NDOV, RI and
TI of UART1 do not have separate interrupt enable apart from its interrupt node
enable. These event flags are therefore always qualified, if the interrupt node is
enabled.
XC886CM-8FF, EES AA 23/25 V 1.0 , 2006-02

Errata Sheet

Application Hints
Consider the case where an enabled interrupt node is shared by more than 2 events,
and where at least two of the events (A and B) are enabled for interrupt while at least
one event (C) is not enabled for interrupt. In this case, flag C is one of the flags listed in
above table.
While the interrupt routine is already running due to event A having occurred, event B
and C occurs any time in the duration indicated by T:

<entry point of interrupt node service routine>
…..
check flag A
…..
clear flag A
…..
check flag B
…..
clear flag B
…..
reti (return from interrupt)

T

This sets the pending interrupt request while flag B is set.
Although event B is serviced and flag B is cleared in the following service routine, on
return from interrupt, the pending interrupt request remains activated. This is because
event C is not enabled for interrupt (and therefore flag C is neither checked nor cleared
in the interrupt routine) while flag C is not qualified.
This leads to following servicing of the interrupt node again, but potentially no active flag
is found, i.e. dummy interrupt service.

To prevent such dummy interrupt vectoring on the above listed interrupt nodes, do not
use mixed interrupt servicing and polling scheme, i.e, enable all events of the node for
interrupt if interrupt node is enabled.
Otherwise if mixed interrupt servicing and polling scheme is to be used, ignore these
dummy interrupt vectoring.

OCDS_XC8.H001 Write to OCDS registers can disturb the Debug Function
The User’s Manual states that the OCDS registers are in general, protected and cannot
be written by user software. However, unintentional access to OCDS registers by the
user software can disturb the normal debug function. Therefore, users should take care
that the application code does not write to the OCDS registers.
XC886CM-8FF, EES AA 24/25 V 1.0 , 2006-02

Errata Sheet

Application Hints
OCDS_XC8.H002 Any NMI request is lost on Debug entry and during Debug
All NMI events are disabled while in debug mode. This has two main effects:
1. On debug entry, any pending NMI request will be lost, although the status flag remains

set. The probability of losing an NMI request in this way is very low, since NMI always
has the highest priority to be serviced.

2. Any NMI event that occurs during debugging is not able to generate an NMI request
although the status flag will be set. It is normally not critical that on exit from debug
mode, the CPU must service NMI requests that had occurred while in debug mode.

The fact that the debug system is not specified to support NMI interrupt while in debug
mode makes the above trivial. As precaution, avoid starting any debug session while
expecting an NMI event.

Application Support Group, Singapore
XC886CM-8FF, EES AA 25/25 V 1.0 , 2006-02

	1 History List/Change Summary
	Table 1 Functional Deviations
	Table 2 Application Hints

	2 Functional Deviations
	Limitation during power-down mode
	IRAM data corrupted after hardware reset
	MCAN Bootstrap Loader functionality not available.
	LIN BSL Mode 4 (Flash Mass Erase) does not work correctly.
	Unable to Detect New Interrupt Request if Any One of Timer 2/ Timer 21/UART1 Interrupt Flags Is Not Cleared (Unexpectedly)
	Write to IRCON0 Blocks Interrupt Request of External Interrupt 0,1
	Overflow during Left Shift may lead to a wrong shift result
	Watchdog Timer behavior during Debug with Suspend
	Break while CPU is in NMI service mode
	Reset values of PUDSEL and PUDEN registers in Port 4 and Port 5 are wrong.
	WDT is not default suspended in Monitor Mode
	WDT should not be refreshed during Prewarning period
	OSC_CON register is not reset following a wake-up reset
	PLL N-Divider is reset to default value after a WDT reset
	RXUPD behavior
	MultiCAN Timestamp Function
	MultiCAN Tx Filter Data Remote
	SDT behavior
	Tx FIFO overflow interrupt not generated
	Wrong transmit order when CAN error at start of CRC transmission
	List Object Error wrongly triggered
	MSGVAL wrongly cleared in SDT mode
	Different bit timing modes

	3 Deviations from Electrical- and Timing Specification
	4 Application Hints
	SYSCON0.RMAP handling in ISR
	Limitation to Flash operations under PLL Loss-of-Lock condition
	Interrupt Flags of External Interrupt 0 and 1
	NMI Interrupt Request With No NMI Flag Set
	Not all Flags are qualified for clearing Pending Interrupt Request
	Write to OCDS registers can disturb the Debug Function
	Any NMI request is lost on Debug entry and during Debug

