
Noxim
the NoC Simulator

User Guide

http://www.noxim.org/

(C) 2005-2010 by the University of Catania

Maurizio Palesi, PhD

Email: mpalesi@diit.unict.it

Home: http://www.diit.unict.it/users/mpalesi/

Davide Patti, PhD

Email: dpatti@diit.unict.it

Home: http://www.diit.unict.it/users/dpatti/

Fabrizio Fazzino

Email: fabrizio@fazzino.it

Home: http://www.fazzino.it/

Introduction

Welcome to Noxim, the Network-on-Chip Simulator developed at the

University of Catania (Italy) by the team of Computer Architecture

shown on the cover of this manual.

The Noxim simulator is developed using SystemC, a system

description language based on C++, and it can be downloaded from

SourceForge under GPL license terms.

Noxim has a command line interface for defining several

parameters of a NoC. In particular the user can customize the network

size, buffer size, packet size distribution, routing algorithm,

selection strategy, packet injection rate, traffic time distribution,

traffic pattern, hot-spot traffic distribution.

The simulator allows NoC evaluation in terms of throughput,

delay and power consumption. This information is delivered to the

user both in terms of average and per-communication results.

In detail, the user is allowed to collect different evaluation

metrics including the total number of received packets/flits, global

average throughput, max/min global delay, total energy consumption,

per-communications delay/throughput/energy etc.

The Noxim simulator is shipped along with Noxim Explorer, a tool

useful during the design space exploration phase. Infact, Noxim

Explorer executes many simulations using Noxim in order to explore

the design space, and modifying the configuration parameters for each

simulation. Noxim Explorer will create new configuration parameters

for you, or complete the exploration according to the information

read from a script (known as exploration script or space file).

Installation

This chapter will show you how to install Noxim on your

computer.

Supported Platforms

Noxim is written using the C++ language and the SystemC library,

so it is easily portable to any platform for which SystemC is

supported: please refer to their (SystemC) documentation to know

which they are. Just to let you know, we usually work under GNU/Linux

(mainly Ubuntu) but SystemC is known to run under other platforms

including Apple Mac OS X and Sun Solaris with GCC and Microsoft

Windows with Visual C++ (but Cygwin with GCC is also known to work).

This document will then detail the steps required to build Noxim

from the sources, including the only prerequisite, i.e. the SystemC

installation.

Prerequisite: SystemC installation

- To compile SystemC you will obviously need a C++ compiler; if you

still don't have it, on Debian/Ubuntu platforms you may install all

the required tools with the following command:

 sudo apt-get install build-essential

- Download SystemC (currently at version 2.2.0) from

http://www.systemc.org/downloads/standards/ (a free registration is

required).

- Unpack it; please note that some versions have a wrong file

extension. For instance you may have to use the following commands to

untar it:

 mv systemc-2.2.0.tgz systemc-2.2.0.tar

 tar xvf systemc-2.2.0.tar

- Enter the newly created directory and refer to the file INSTALL

which details all the steps required for building. Basically they

are:

 mkdir objdir

 cd objdir

 export CXX=g++

 ../configure

 make

 make install

 cd ..

 rm -rf objdir

- With modern versions of GCC you may find the "make" command above

to fail with the following error message:

 ../../../../src/sysc/utils/sc_utils_ids.cpp: In function ‘int

sc_core::initialize()’:

 ../../../../src/sysc/utils/sc_utils_ids.cpp:110: error:

‘getenv’ is not a member of ‘std’

 ../../../../src/sysc/utils/sc_utils_ids.cpp:111: error:

‘strcmp’ was not declared in this scope

 make[3]: *** [sc_utils_ids.o] Error 1

 make[3]: Leaving directory `/opt/systemc-

2.2.0/objdir/src/sysc/utils'

 make[2]: *** [all-recursive] Error 1

 make[2]: Leaving directory `/opt/systemc-2.2.0/objdir/src/sysc'

 make[1]: *** [all-recursive] Error 1

 make[1]: Leaving directory `/opt/systemc-2.2.0/objdir/src'

 make: *** [all-recursive] Error 1

If this is your case (for instance it happens while compiling

SystemC 2.2.0 with GCC 4.4), then please note that this is not a bug

of the compiler but a bug in the SystemC sources, because they have

forgot a couple of include clauses.

To fix it, add the following includes at the top of file

../src/sysc/utils/sc_utils_ids.cpp :

 #include <cstdlib>

 #include <cstring>

You may even modify that file without using any text editor,

just use this shell command (yes, Fabrizio still loves UNIX

shell!!!):

sed -i '1 i #include <cstdlib>\n#include <cstring>' ../src/sysc/utils/sc_utils_ids.cpp

Then restart from the "make" step in the list above.

Once you have installed SystemC correctly, you may then jump to

the next step.

Build SystemC

If SystemC is installed correctly, then you just have to compile

Noxim.

1) Extract the source files and go to the "bin" directory.

2) In that directory edit the file Makefile.defs (NOT Makefile.deps!)

to modify the "SYSTEMC" environment variable according to your

SystemC installation path.

3) Just run "make". You may ignore warning messages (if any), so if

you don't get any error you are ready to run Noxim for the first time

using the command:

 ./noxim

If everything works fine, it is now safe for you to copy or move

this executable elsewhere; if you are a maniac of cleaning please

note that "make clean" will also delete the executable... so move it

before cleaning!

That's all, folks!

User Manual

This short guide will explain some of the most commonly used

parameters and options that can be passed to noxim on the command

line.

The synopsis of the command is:

 noxim [options]

where

 options Command-line options.

The Noxim simulator basically launches a NoC simulation.

You can execute the command to access to the list of options:

 ./noxim -help

The output provided by this command should look like this:

 SystemC 2.2.0 --- Mar 11 2010 11:07:33

 Copyright (c) 1996-2006 by all Contributors

 ALL RIGHTS RESERVED

Noxim - the NoC Simulator

 (C) University of Catania

Usage: ./noxim [options]

where [options] is one or more of the following ones:

 -help Show this help and exit

 -verbose N Verbosity level (1=low, 2=medium, 3=high,

default off)

 -trace FILENAME Trace signals to a VCD file named

'FILENAME.vcd' (default off)

 -dimx N Set the mesh X dimension to the

specified integer value (default 4)

 -dimy N Set the mesh Y dimension to the

specified integer value (default 4)

 -buffer N Set the buffer depth of each channel of the

router to the specified integer value [flits] (default 4)

 -size Nmin Nmax Set the minimum and maximum packet size to

the specified integer values [flits] (default min=2, max=10)

 -routing TYPE Set the routing algorithm to TYPE where

TYPE is one of the following (default 0):

 xy XY routing algorithm

 westfirst West-First routing algorithm

 northlast North-Last routing algorithm

 negativefirst Negative-First routing algorithm

 oddeven Odd-Even routing algorithm

 dyad T DyAD routing algorithm with threshold T

 fullyadaptive Fully-Adaptive routing algorithm

 table FILENAME Routing Table Based routing algorithm

with table in the specified file

 -sel TYPE Set the selection strategy to TYPE where TYPE is

one of the following (default 0):

 random Random selection strategy

 bufferlevel Buffer-Level Based selection strategy

 nop Neighbors-on-Path selection strategy

 -pir R TYPE Set the packet injection rate to the

specified real value [0..1] (default 0.01) and the time

distribution of traffic to TYPE where TYPE is one of the following:

 poisson Memory-less Poisson distribution

(default)

 burst R Burst distribution with given real

burstness

 pareto on off r Self-similar Pareto distribution with

given real parameters (alfa-on alfa-off r)

 custom R Custom distribution with given real

probability of retransmission

 -traffic TYPE Set the spatial distribution of traffic

to TYPE where TYPE is one of the following (default 0'):

 random Random traffic distribution

 transpose1 Transpose matrix 1 traffic distribution

 transpose2 Transpose matrix 2 traffic distribution

 bitreversal Bit-reversal traffic distribution

 butterfly Butterfly traffic distribution

 shuffle Shuffle traffic distribution

 table FILENAME Traffic Table Based traffic

distribution with table in the specified file

 -hs ID P Add node ID to hotspot nodes, with

percentage P (0..1) (Only for 'random' traffic)

 -warmup N Start to collect statistics after N cycles

(default 1000)

 -seed N Set the seed of the random generator

(default time())

 -detailed Show detailed statistics

 -volume N Stop the simulation when either the maximum

number of cycles has been reached or N flits have been delivered

 -sim N Run for the specified simulation time

[cycles] (default 10000)

If you find this program useful please don't forget to mention in

your paper Maurizio Palesi <mpalesi@diit.unict.it>

If you find this program useless please feel free to complain with

Davide Patti <dpatti@diit.unict.it>

And if you want to send money please feel free to PayPal to

Fabrizio Fazzino <fabrizio@fazzino.it>

Now we'll take a closer look at each option.

-help

The -help option allow you to know the possible options accepted

by Noxim (the same list that you can see above).

-verbose N

With the -verbose option you can monitor the verbosity level of

the output generated by Noxim. There are four levels. By default

verbosity output is off: in this case you'll get only the main

statistics produced by Noxim (total received packets, total received

flits, global average delay, global average throughput, throughput,

max delay, total energy).

When the verbosity level is set to low, in addition to the

output generated when verbosity is off, the configuration parameters

are reported and you can see the work done by each element of the NoC

system (i.e. processing elements and routers).

Currently the "medium" verbosity level has no difference with

the previous one.

When the verbosity level is set to high, in addition to the

output produced when the verbosity is low (medium), you can see a

detailed information about flit for each activity performed by each

NoC element.

-trace FILENAME

You use the -trace option to trace all the SystemC signals used

in the NoC simulator (clock, reset, req_to_east, etc.) to a VCD file

named ’FILENAME.vcd’. The default value is off.

A tool commonly used to visualize VCD trace files is GTKWave: if

you are using Linux you should find a package with this name

(lowercase) for your distro.

-dimx N / -dimy N

The options -dimx and -dimy are used to set topology

information, i.e. the width and height of the matrix representing the

mesh of the NoC.

-buffer N

The option -buffer is used to define the buffer size of each

channel of the router. This size is expressed in flits. Please read

the above instructions for more details.

-routing TYPE

The -routing option enable you to specify one of the routing

algorithms listed above.

-sel TYPE

With the -sel option you can choose the selection function. The

default is random. The selection function is used to choose the

output port to which every flit has to be sent. Rather than using a

pseudo-random algorithm, you may also opt for a buffer-level

strategy. Here the favourites output ports are those which are

connected to biggest number of free channels. A free channel is one

with the greater number of free slots in the destination FIFO buffer.

-pir R TYPE

With the -pir option you can set the Packet Injection Rate (PIR)

to the specified real value.

-traffic TYPE

The -traffic option is used to manage the time distribution of

the traffic. In particular you can decide if the traffic generation

is patterned as poisson, burst, pseudo-pareto or custom distribution.

For random traffic you can define some nodes as hot spot nodes. This

is accomplished with the following -hs option.

-hs ID P

The -hs option is used to specify the Hot-Spot nodes. Along with

the node identificator you must specify the hot spot percentage.

-warmup N

With the -warmup option you can set the start time after which

the simulator starts to collect statistics.

-seed N

The -seed option is used to set the seed of the random number

generator used by the simulator. By default it will use the standard

time() function.

-detailed

The -detailed option provide per-communications statistics. In

particular, for each destination node are collected the aggregated

average delay and throughput. Then the statistics for each

communication having that node as a destination node are reported

using a table.

-volume N

The -volume option is used to stop the simulation either when

the maximum number of cycles has been reached or when N flits have

been delivered.

-sim N

The -sim option is used to specify the number of clock cycles

that have to be simulated. The default value is 10000 (ten thousands)

cycles.

Examples

If you want to simulate a 8x8 NoC, you must execute this

command:

 ./noxim -dimx 8 -dimy 8

To make a more accurate simulation you must specify the

simulation time (in terms of clock cycles) and the warm-up session.

This is accomplished using the -sim and -warmup options.

Then to carry out a 8x8 NoC with a simulation time of 40000

cycles and warm-up session of 5000 cycles you have to run the

following command:

 ./noxim -sim 40000 -warmup 5000 -dimx 8 -dimy 8

If you want change the FIFO buffer size you can set the -buffer

option. For example, if you wish a buffer size of two flits you must

run this command:

 ./noxim -sim 40000 -warmup 5000 -dimx 8 -dimy 8 -buffer 2

These were the basic Noxim capabilities.

