Not eXactly C
(NXC)

Programmer's Guide

Version 1.0.1 b25

by John Hansen

Contents

1
2

L4 (00 0703 £ o o IR 1
THhe NXC LANQUAGEc.veeeeiiieitieie ettt sttt sttt sbe b sre e enes 2
2.1 LEXICAI RUIES ...ttt be e e 2
2.1.1 LO70] 1110 11T 1] £SO 2
2.1.2 WWHITESPACEc.veceieceeie ettt e e e teeneennees 2
2.1.3 NUMETICAl CONSTANTScvviiiiiiiiiie e 3
2.1.4 Identifiers and KEYWOIUS.........cccoveieeiiiiesie e 3
2.2 Program SEIUCKUIEooouiiiee et 3
2.2.1 LI 5 SRR 3
2.2.2 V1103 £ 0] 1R 4
2.2.3 AT o] L= RO URRTRRPR 6
2.2.4] 1 ([RO 7
2.2.5 AATTAYS .ttt 7
2.3] =] 0111 ST 8
2.3.1 Variable DecClarationocviiiiiiiiiii e 8
2.3.2 ASSIGNMENT ..ttt st et beebesneenreas 9
2.3.3 (00001110 IS] 1 (101 (1] (=1 9
2.34 The aSm StAtEMENT ... 12
2.3.5 Other STAtEMENTS......ccviiiciie et ebre e eaee e 13
A (o] (=115 0] USRS 13
2.4.1 (0010 [0] 43T 15
2.5 TNE PrePIOCESSONcovieeiiiieesteeiestee sttt tee sttt ettt steete st esbeebe s sreeneennes 15
25.1] 0Tl 1V [T 15
2.5.2 20 (o) 11 0 T 16
2.5.3 H# (CONCALENALION)veveeieeie et sre e e 16
254 Conditional Compilation............coiieiiiiiiiereie e 16
NDXC APttt e e e e et e e ebb e e e sba e e e ebt e e s ebaeeabeeesbeeeabeeeas 17
3.1 INPUE IMIOQUIE. ...t 17
3.1.1 TYPES @NA IMOUESc.vveveeeiiecieeie et 17
3.1.2 SeNSOr INFOIMALION.......vuiiii e 21
3.2 OULPUL MOUUIE ...t enes 23
3.2.1 ConVENIENCE CallSevviieiiciie e 27
3.2.2 Primitive CallSoooiieeeiie et 32
3.3 1O MaAP AQUIESSES.eeeieiieeiieeie ettt sttt st beesbe e neeas 34
3.4 SOUNT MOUUIB ...ttt s reas 35
3.5 (0101 I\ [0 (V1 =T 39
3.6 Display MOQUIEccveieciece et 39
3.6.1 High-level fUNCLIONS.........ccoii e 39
3.6.2 LOW-1EVEI FUNCLIONS ...ttt 41
3.7 (=10 (=T g AV, (oo [V [43
3.8 COMM MOUUIB ...t s aeas 46
3.9 GENETAI FRALUIES ..ottt e e s s a e e s baae e e 47

Page i

List of Tables

Table 1. NXC KEYWOIUS.ccveiieieiiieieeiesee et ee e ae e e ste e esteasaesraesseeneesnaeseeneenrens 3
Table 2. Variable TYPEScui ettt 6
TADIE 3. OPBIALOIS.vecveeieeieetie et e e e et e te et e st et e e e e s se e teeseesreesteeneesneeneaneenrens 9
Table 4. ASM KEYWOITSccviiiiiiieieiieite ettt sre et sneenne e 12
LI L0 Lo ST T o £ 1S1S] o] SRRSO 14
TabIe 6. CONAITIONSuviiiieiieie ettt sttt sbe et sreenne e 15
Table 7. Sensor TYPe CONSTANTS........ccuviueiieieiee e e e e e sreesne e 18
Table 8. Sensor Mode CONSTANTSocviiiiiiiie e e 18
Table 9. Sensor Configuration CONSTANESc.cocveieiiieriere e 18
Table 10. Sensor Field CONSLANTS.ccuiiiiieiie e 19
Table 11. Output Field CONSIANTScccveiiiieiiereeie e 26
Table 12. UpdateFlag CONSANTSoiiiiiiiiiieiieie e 27
Table 13. OUtPUIMOUE CONSLANTSveiveeiieiecee e ee e e e e nne e 27
Table 14. RUNSEAtE CONSTANTSeoviiiiiieitieie ettt nne e 27
Table 15. RegMO0de CONSANTS.........ecveiieiieie e see e se e sre e ste e sraenne e 27
Table 16. RESEt CONSTANTS.........eiiiiiiiesieeiieee ettt sre et sr b 28
Table 17. IOMA CONSEANTSccveiieieieesie et ee et e e e sraesreeneesreenneens 35
Table 18. Sound FIags CONSIANTS.........cccuiiiiiiiieiieie e 36
Table 19. SouNd State CONSTANTSc.ecveriieieieere e ne e 36
Table 20. SOUNd MOdE CONSEANTSoiiiiiiieeie et 36
Table 21. Miscellaneous SouNd CONSLANTScccveveiieerierie e 36
Table 22. Display FIags CONSIANTS.........ccoiiiiiiieiieie e 41
Table 23. Loader RESUIL COUES.........cuviieiieie et 43

Page ii

NXC Programmer's Guide

1 Introduction

NXC stands for Not eXactly C. It is a simple language for programming the LEGO
MINDSTORMS NXT product. The NXT has a bytecode interpreter (provided by
LEGO), which can be used to execute programs. The NXC compiler translates a source
program into NXT bytecodes, which can then be executed on the target itself. Although
the preprocessor and control structures of NXC are very similar to C, NXC is not a
general-purpose programming language - there are many restrictions that stem from
limitations of the NXT bytecode interpreter.

Logically, NXC is defined as two separate pieces. The NXC language describes the
syntax to be used in writing programs. The NXC Application Programming Interface
(API) describes the system functions, constants, and macros that can be used by
programs. This API is defined in a special file known as a "header file" which should be
included at the beginning of any NXC program. By default, this file is not automatically
included when compiling a program.

This document describes both the NXC language and the NXC API. In short, it provides
the information needed to write NXC programs. Since there are different interfaces for
NXC, this document does not describe how to use any specific NXC implementation
(such as the command-line compiler or Bricx Command Center). Refer to the
documentation provided with the NXC tool, such as the NXC User Manual, for
information specific to that implementation.

For up-to-date information and documentation for NXC, visit the NXC website at
http://bricxcc.sourceforge.net/nxc/.

Page 1

NXC Programmer's Guide

2 The NXC Language

This section describes the NXC language itself. This includes the lexical rules used by
the compiler, the structure programs, statements, and expressions, and the operation of
the preprocessor.

NXC is a case-sensitive language just like C and C++. That means that the identifier
"xYZz" is not the same identifier as "Xyz". Similarly, the "if" statement begins with the
keyword "if" but "iF", "If", or "IF" are all just valid identifiers — not keywords.

2.1 Lexical Rules

The lexical rules describe how NXC breaks a source file into individual tokens. This
includes the way comments are written, the handling of whitespace, and valid characters
for identifiers.

2.1.1 Comments

Two forms of comments are supported in NXC. The first form (traditional C comments)
begin with /* and end with */. They may span multiple lines, but do not nest:

/* this is a comment */

/* this is a two
line comment */

/* another comment. ..
/* trying to nest...
ending the inner comment...*/
this text is no longer a comment! */

The second form of comments begins with // and ends with a newline (sometimes
known as C++ style comments).

// a single line comment

The compiler ignores comments. Their only purpose is to allow the programmer to
document the source code.

2.1.2 Whitespace

Whitespace (spaces, tabs, and newlines) is used to separate tokens and to make programs
more readable. As long as the tokens are distinguishable, adding or subtracting
whitespace has no effect on the meaning of a program. For example, the following lines
of code both have the same meaning:

X=2;

X = 2 ;
Some of the C++ operators consist of multiple characters. In order to preserve these
tokens whitespace must not be inserted within them. In the example below, the first line

Page 2

NXC Programmer's Guide

uses a right shift operator (">>"), but in the second line the added space causes the '>'
symbols to be interpreted as two separate tokens and thus generate an error.

X =1>> 4; // set x to 1 right shifted by 4 bits

X =1>>4; // error

2.1.3 Numerical Constants
Numerical constants may be written in either decimal or hexadecimal form. Decimal
constants consist of one or more decimal digits. Hexadecimal constants start with Ox or
0X followed by one or more hexadecimal digits.

10; // set x to 10
0x10; // set x to 16 (10 hex)

X
X

2.1.4 ldentifiers and Keywords

Identifiers are used for variable, task, function, and subroutine names. The first character
of an identifier must be an upper or lower case letter or the underscore ('_"). Remaining
characters may be letters, numbers, and an underscore.

A number of potential identifiers are reserved for use in the NXC language itself. These
reserved words are call keywords and may not be used as identifiers. A complete list of
keywords appears below:

__ RETURN___ case inline sub

_ RETVAL___ char int switch
__ STRRETVAL_ const long task

__ _TMPBYTE___ continue mutex true
__TMPWORD___ default repeat typedef
__ _TMPLONG___ do return unsigned
abs else short until
asm false sign void
bool for start while
break goto string

byte if struct

Table 1. NXC Keywords

2.2 Program Structure

An NXC program is composed of code blocks and variables. There are two distinct types
of code blocks: tasks and functions. Each type of code block has its own unique features,
but they share a common structure.

2.2.1 Tasks

The NXT supports multi-threading, so a task in NXC directly corresponds to an NXT
thread. Tasks are defined using the task keyword using the following syntax:

Page 3

NXC Programmer's Guide

task name()

// the task"s code is placed here

}

The name of the task may be any legal identifier. A program must always have at least
one task - named "main" - which is started whenever the program is run. The maximum
number of tasks is 256.

The body of a task consists of a list of statements. Scheduling dependant tasks using the
Precedes or Follows API function is the primary mechanism supported by the NXT for
starting other tasks concurrently. Tasks may also be started using the start statement.
Tasks cannot be stopped by another task, however. The only way to stop a task is by
stopping all tasks using the Stop function or by a task stopping on its own via the ExitTo
function or by task execution simply reaching the end of the task.

2.2.2 Functions

It is often helpful to group a set of statements together into a single function, which can
then be called as needed. NXC supports functions with arguments and return values.
Functions are defined using the following syntax:

[inline] return_type name(argument_list)

// body of the function
}

The return type should be the type of data returned. In the C programming language,
functions are specified with the type of data they return. Functions that do not return data
are specified to return void.

The argument list may be empty, or may contain one or more argument definitions. An
argument is defined by its type followed by its name. Commas separate multiple
arguments. All values are represented as bool, char, byte, int, short, long, unsigned int,
unsigned long, strings, struct types, or arrays of any type. NXC also supports passing
argument types by value, by constant value, by reference, and by constant reference.

When arguments are passed by value from the calling function to the callee the compiler
must allocate a temporary variable to hold the argument. There are no restrictions on the
type of value that may be used. However, since the function is working with a copy of the
actual argument, the caller will not see any changes it makes to the value. In the example
below, the function foo attempts to set the value of its argument to 2. This is perfectly
legal, but since foo is working on a copy of the original argument, the variable y from
main task remains unchanged.

Page 4

NXC Programmer's Guide

void foo(int Xx)

{

X = 2;
¥
task main()
{

inty=1; // vy is now equal to 1
foo(y); // vy is still equal to 1!

The second type of argument, const arg_type, is also passed by value, but with the
restriction that only constant values (e.g. numbers) may be used. This is rather important
since there are a number of NXT functions that only work with constant arguments.

void foo(const int x)

{
PlaySound(X); // ok
X =1; // error - cannot modify argument
}
task main(Q)
{
foo(2); // ok
foo(4*5); // ok - expression is still constant
foo(X); // error - X Is not a constant
}

The third type, arg_type &, passes arguments by reference rather than by value. This
allows the callee to modify the value and have those changes visible in the caller.
However, only variables may be used when calling a function using arg_type &
arguments:

void foo(int &x)

{
X = 2;
}
task main(Q)
{
inty =1; // vy is equal to 1
foo(y); // y is now equal to 2
foo(2); // error - only variables allowed
}

The fourth type, const arg_type &, is rather unusual. It is also passed by reference,
but with the restriction that the callee is not allowed to modify the value. Because of this
restriction, the compiler is able to pass anything (not just variables) to functions using
this type of argument. In general this is the most efficient way to pass arguments in NXC.

Functions must be invoked with the correct number (and type) of arguments. The
example below shows several different legal and illegal calls to function foo:

Page 5

NXC Programmer's Guide

void foo(int bar, const int baz)

// do something here. ..

}
task main()
{
int x; // declare variable x
foo(l, 2); // ok
foo(x, 2); // ok
foo(2, x); // error - 2nd argument not constant!
foo(2); // error - wrong number of arguments!
}

NXC functions may optionally be marked as inline functions. This means that each call
to a function will result in another copy of the function's code being included in the
program. Unless used judiciously, inline functions can lead to excessive code size.

If a function is not marked as inline then an actual NXT subroutine is created and the call

to the function in NXC code will result in a subroutine call to the NXT subroutine. The
total number of non-inline functions (aka subroutines) and tasks must not exceed 256.

2.2.3 Variables
All variables in NXC are of the following types:

Type Name Information

bool 8 bit unsigned

byte, unsigned char | 8 bit unsigned

char 8 bit signed

unsigned int 16 bit unsigned

short, int 16 bit signed

unsigned long 32 bit unsigned

long 32 bit signed

mutex Special type used for exclusive code access
string Array of byte

struct User-defined structure types
arrays Arrays of any type

Table 2. Variable Types

Variables are declared using the keyword for the desired type followed by a comma-
separated list of variable names and terminated by a semicolon (*;"). Optionally, an initial

value for each variable may be specified using an equals sign ('=") after the variable

name. Several examples appear below:

int x;
bool y,z;

// declare x
// declare y and z

long a=1,b; // declare a and b, initialize a to 1

Page 6

NXC Programmer's Guide

Global variables are declared at the program scope (outside of any code block). Once
declared, they may be used within all tasks, functions, and subroutines. Their scope
begins at declaration and ends at the end of the program.

Local variables may be declared within tasks and functions. Such variables are only
accessible within the code block in which they are defined. Specifically, their scope
begins with their declaration and ends at the end of their code block. In the case of local
variables, a compound statement (a group of statements bracketed by '{' and '}") is
considered a block:

int x; // x is global

task main(Q)
{
inty; // vy is local to task main
X =vy; // ok
{ // begin compound statement
int z; // local z declared
y = z; // ok
}
y = z; // error - z no longer in scope
¥
task foo()
{
x =1; // ok
y = 2; // error - y is not global
}

2.2.4 Structs
NXC also support structs.

TBD.

2.2.5 Arrays

NXC also support arrays. Arrays are declared the same way as ordinary variables, but
with an open and close bracket following the variable name.

int my_array[]; // declare an array with O elements

To declare arrays with more than one dimension simply add more pairs of square
brackets. The maximum number of dimensions supported in NXC is 4.

bool my array[][]l; // declare a 2-dimensional array

Global arrays with one dimension can be initialized at the point of declaration using the
following syntax:
int X[] = {1, 2, 3, 4}, Y[]={10, 10}; // 2 arrays

The elements of an array are identified by their position within the array (called an
index). The first element has an index of 0, the second has index 1, etc. For example:

Page 7

NXC Programmer's Guide

123; // set first element to 123
my_array[2]; // copy third into second

my_array|[O]

my_array[1]

Currently there are some limitations on how arrays can be used. These limitations will
likely be removed in future versions of NXC.

To initialize local arrays or arrays with multiple dimensions it is necessary to use the
Arraylnit function. The following example shows how to initialize a two-dimensional
array using Arraylnit. It also demonstrates some of the supported array API functions
and expressions.

#include ""NXCDefs.h"
task main()

{
int myArray[1[1;
int myVector[];

byte fooArray[1[1l1;

Arraylnit(myVector, 0, 10); // 10 zeros in myVector
Arraylnit(myArray, myVector, 10); // 10 vectors myArray
Arraylnit(fooArray, myArray, 2); // 2 myArrays in TooArray

myVector = myArray[1l]; // okay as of b25
fooArray[1] = myArray; // okay as of b25
myVector[4] = 34;

myArray[1] = myVector; // okay as of b25

int ax[], ay[l:

ArrayBuild2(ax, 5, 6);

ArrayBuild4(ay, 2, 10, 6, 43);

int axlen = ArrayLen(ax);

ArraySubset(ax, ay, 1, 2); // ax = {10, 6}

if (ax == ay) { // array comparisons supported as of b25

}
}

2.3 Statements

The body of a code block (task or function) is composed of statements. Statements are
terminated with a semi-colon (';").

2.3.1 Variable Declaration

Variable declaration, as described in the previous section, is one type of statement. It
declares a local variable (with optional initialization) for use within the code block. The
syntax for a variable declaration is:

int variables;
where variables is a comma separated list of names with optional initial value:

name[=expression]

Page 8

NXC Programmer's Guide

Arrays of variables may also be declared:
int array[][=initializer for global one-dimension arrays];

2.3.2 Assignment
Once declared, variables may be assigned the value of an expression:
variable assign_operator expression;

There are nine different assignment operators. The most basic operator, '=', simply
assigns the value of the expression to the variable. The other operators modify the
variable's value in some other way as shown in the table below

Operator | Action

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression

/= Divide variable by expression

%= Set variable to remainder after dividing by expression
&= Bitwise AND expression into variable

|= Bitwise OR expression into variable

N= Bitwise exclusive OR into variable

[|= Set variable to absolute value of expression
+-= Set variable to sign (-1,+1,0) of expression
>>= Right shift variable by expression

<<= Left shift variable by expression

Table 3. Operators
Some examples:

X = 2; // set x to 2
y =17; // sety to 7
X += y; // X is 9, y is still 7

2.3.3 Control Structures

The simplest control structure is a compound statement. This is a list of statements
enclosed within curly braces ('{' and '}'):
{
X
y

1;
2;

}

Although this may not seem very significant, it plays a crucial role in building more
complicated control structures. Many control structures expect a single statement as their
body. By using a compound statement, the same control structure can be used to control
multiple statements.

The i statement evaluates a condition. If the condition is true it executes one statement
(the consequence). An optional second statement (the alternative) is executed if the
condition is false. The two syntaxes for an i f statement is shown below.

Page 9

NXC Programmer's Guide

it (condition) consequence
it (condition) consequence else alternative

Note that the condition is enclosed in parentheses. Examples are shown below. Note how
a compound statement is used in the last example to allow two statements to be executed
as the consequence of the condition.

if (x=1)vy=2;

if (x==1) y = 3; else y = 4;

it =) {y=1; z=2;5 3}
The whi le statement is used to construct a conditional loop. The condition is evaluated,
and if true the body of the loop is executed, then the condition is tested again. This
process continues until the condition becomes false (or a break statement is executed).
The syntax for a whi le loop appears below:

while (condition) body
It is very common to use a compound statement as the body of a loop:

while(x < 10)
{

X
y

X+1;

y*2;

}

A variant of the whi le loop is the do-whi le loop. Its syntax is:
do body while (condition)

The difference between a whi le loop and a do-whi le loop is that the do-whi le loop
always executes the body at least once, whereas the whi le loop may not execute it at all.

Another kind of loop is the for loop:
for(stmtl ; condition ; stmt2) body

A for loop always executes stmtl, then it repeatedly checks the condition and while it
remains true executes the body followed by stmt2. The for loop is equivalent to:

stmtl;
while(condition)

{
body

stmt2;
3

The repeat statement executes a loop a specified number of times:
repeat (expression) body

The expression determines how many times the body will be executed. Note: It is only
evaluated a single time and then the body is repeated that number of times. This is
different from both the whi le and do-whi Ie loops which evaluate their condition each
time through the loop.

Page 10

NXC Programmer's Guide

A switch statement can be used to execute one of several different blocks of code
depending on the value of an expression. One or more case labels precede each block of
code. Each case must be a constant and unique within the switch statement. The switch
statement evaluates the expression then looks for a matching case label. It will then
execute any statements following the matching case until either a break statement or the
end of the switch is reached. A single defaul t label may also be used - it will match any
value not already appearing in a case label. Technically, a switch statement has the
following syntax:

switch (expression) body

The case and default labels are not statements in themselves - they are labels that precede
statements. Multiple labels can precede the same statement. These labels have the
following syntax

case constant _expression :
default :

A typical switch statement might look like this:

switch(X)
{

case 1:
// do something when X is 1
break;

case 2:

case 3:
// do something else when x is 2 or 3
break;

default:
// do this when X is not 1, 2, or 3
break;

}

NXC also supports using string types in the switch expression and constant strings in case
labels.

The goto statement forces a program to jump to the specified location. Statements in a
program can be labeled by preceding them with an identifier and a colon. A goto
statement then specifies the label that the program should jump to. For example, this is
how an infinite loop that increments a variable could be implemented using goto:
my_loop:
X++;
goto my_loop;

The goto statement should be used sparingly and cautiously. In almost every case,
control structures such as if, while, and switch make a program much more readable
and maintainable than using goto.

NXC also defines the unti I macro which provides a convenient alternative to the
whi le loop. The actual definition of until is:

Page 11

NXC Programmer's Guide

#define until(c) while(1(c))

In other words, unti I will continue looping until the condition becomes true. It is most
often used in conjunction with an empty body statement:

untiI(SENSOR_1 == 1); // wait for sensor to be pressed

2.3.4 The asm Statement

The asm statement is used to define many of the NXC API calls. The syntax of the
statement is:

asm {
one or more lines of assembly language

}

The statement simply emits the body of the statement as NeXT Byte Codes (NBC) code
and passes it directly to the NBC compiler backend. The asm statement can often be used
to optimize code so that it executes as fast as possible on the NXT firmware. The
following example shows an asm block containing variable declarations, labels, and basic
NBC statements as well as comments.

asm {
// Jmp __ IbI0O0D5
dseg segment
s10000 slong
s10005 slong
bGTTrue byte
dseg ends
mov s10000, OxO
mov sl10005, s10000
mov sl10000, Ox1
cmp GT, bGTTrue, sl10005, s10000
set bGTTrue, FALSE
brtst EQ, _ IbI00D5, bGTTrue
__Ibl00D5:

}

A few NXC keywords have meaning only within an asm statement. These keywords
provide a means for returning string or scalar values from asm statements and for using
temporary integer variables of byte, word, and long sizes.

ASM Keyword Meaning

__RETURN___ Used to return a value other than _ RETVAL__ or
__STRRETVAL__

__ RETVAL___ Writing to this 4-byte value returns it to the calling program

_ STRRETVAL___ Writing to this string value returns it to the calling program

_ _TMPBYTE_ Use this temporary variable to write and return single byte values

__ _TMPWORD Use this temporary variable to write and return 2-byte values

__TMPLONG___ Use this temporary variable to write and return 4-byte values

Table 4. ASM Keywords

Page 12

NXC Programmer's Guide

The asm block statement and these special ASM keywords are used throughout the NXC
API. See the NXCDefs.h header file for several examples of how they can be put to use.
To keep the main NXC code as "C-like" as possible and for the sake of better readability
NXC asm block statements can be wrapped in preprocessor macros and placed in custom
header files which are included using #include. The following example demonstrates
using macro wrappers around asm block statements.

#define SetMotorSpeed(port, cc, thresh, fast, slow) \
asm { \
set theSpeed, fast \
brcmp cc, Endlfout 1, SV, thresh \
set theSpeed, slow \
EndlfOout _ 1 : \

OnFwd(port, theSpeed) \
__Incl_\
}

2.3.5 Other Statements
A function call is a statement of the form:
name(arguments);

The arguments list is a comma-separated list of expressions. The number and type of
arguments supplied must match the definition of the function itself.

Tasks may be started with the start statement.
start task name;

Within loops (such as a whi Ie loop) the break statement can be used to exit the loop
and the continue statement can be used to skip to the top of the next iteration of the
loop. The break statement can also be used to exit a switch statement.

break;

continue;

It is possible to cause a function to return before it reaches the end of its code using the
return statement with an optional return value.

return [value];

Most expressions are not legal statements. One notable exception is expressions
involving the increment (++) or decrement (--) operators.

X4+

The empty statement (just a bare semicolon) is also a legal statement.

2.4 Expressions

Values are the most primitive type of expressions. More complicated expressions are
formed from values using various operators. The NXC language only has two built in
kinds of values: numerical constants and variables.

Page 13

NXC Programmer's Guide

Numerical constants in the NXT are represented as integers. The type depends on the
value of the constant. NXC internally uses 32 bit signed math for constant expression
evaluation. Numeric constants can be written as either decimal (e.g. 123) or hexadecimal
(e.g. OXABC). Presently, there is very little range checking on constants, so using a value
larger than expected may have unusual effects.

Two special values are predefined: true and false. The value of false is zero (0),
while the value of true is one (1). The same values hold for relational operators (e.g. <):
when the relation is false the value is 0, otherwise the value is 1.

Values may be combined using operators. Several of the operators may only be used in
evaluating constant expressions, which means that their operands must either be
constants, or expressions involving nothing but constants. The operators are listed here in

order of precedence (highest to lowest).

Operator | Description Associativity Restriction Example

abs() Absolute value n/a abs(x)

sign() Sign of operand n/a sign(x)

++, -- Post increment, Post left variables only | x++
decrement

- Unary minus right -X

~ Bitwise negation (unary) right constant only ~123

! Logical negation right Ix

*1, % Multiplication, division, left X*y
modulo

+ - Addition, subtraction left X+y

<<, >> Left and right shift left X<< 4

<, >, relational operators left X<y

<=, >=

==, I= equal to, not equal to left X ==

& Bitwise AND left X&Y

A Bitwise XOR left XNy

| Bitwise OR left x|y

&& Logical AND left X &&Y

[| Logical OR left x|y

?: conditional value n/a x==1?y:z

Table 5. Expressions

Where needed, parentheses may be used to change the order of evaluation:

X =2+ 3 * 4;

// set x to 14

y=@+3)*4; // sety to 20

Page 14

NXC Programmer's Guide

2.4.1 Conditions

Comparing two expressions forms a condition. There are also two constant conditions -
true and false - that always evaluate to true or false respectively. A condition may be
negated with the negation operator, or two conditions combined with the AND and OR
operators. The table below summarizes the different types of conditions.

Condition Meaning

true always true

false always false

expr true if expr is not equal to 0

exprl == expr2 true if exprl equals expr2

exprl != expr2 true if exprl is not equal to expr2

exprl < expr2 true if one exprl is less than expr2

exprl <= expr2 true if exprl is less than or equal to expr2
exprl > expr2 true if exprl is greater than expr2

exprl >= expr2 true if exprl is greater than or equal to expr2

1 condition

logical negation of a condition - true if condition is false

condl && cond2

logical AND of two conditions (true if and only if both conditions are
true)

condl

|l cond2

logical OR of two conditions (true if and only if at least one of the
conditions are true)

Table 6. Conditions

2.5 The Preprocessor

The preprocessor implements the following directives: #include, #define, #ifdef,
#ifndef, #endif, #undef, ##, #line, #pragma. Its implementation is fairly close
to a standard C preprocessor, so most things that work in a generic C preprocessor should
have the expected effect in NXC. Significant deviations are listed below.

2.5.1 #include

The #include command works as expected, with the caveat that the filename must be
enclosed in double quotes. There is no notion of a system include path, so enclosing a
filename in angle brackets is forbidden.

#include "foo.h" // ok

#include <foo.h> // error!

NXC programs usually begin with #include ""NXCDefs.h". This standard header file
includes many important constants and macros which form the core NXC API.

Page 15

NXC Programmer's Guide

2.5.2 #define

The #define command is used for simple macro substitution. Redefinition of a macro is
an error. The end of the line normally terminates macros, but the newline may be escaped
with the backslash ("\") to allow multi-line macros:
#define foo(x) do { bar(x); \
baz(x); } while(false)

The #undeT directive may be used to remove a macro’s definition.

2.5.3 ## (Concatenation)

The ## directive works similar to the C preprocessor. It is replaced by nothing, which
causes tokens on either side to be concatenated together. Because it acts as a separator
initially, it can be used within macro functions to produce identifiers via combination
with parameter values.

2.5.4 Conditional Compilation

Conditional compilation works similar to the C preprocessor. The following preprocessor
directives may be used:

#ifdef symbol
#itndef symbol
#else

#endi T

Page 16

NXC Programmer's Guide

3 NXC API

The NXC API defines a set of constants, functions, values, and macros that provide
access to various capabilities of the NXT such as sensors, outputs, and communication.

The API consists of functions, values, and constants. A function is something that can be
called as a statement. Typically it takes some action or configures some parameter.
Values represent some parameter or quantity and can be used in expressions. Constants
are symbolic names for values that have special meanings for the target. Often, a set of
constants will be used in conjunction with a function.

3.1 Input Module

The NXT input module encompasses all sensor inputs. There are four sensors, which
internally are numbered 0, 1, 2, and 3. This is potentially confusing since they are
externally labeled on the NXT as sensors 1, 2, 3, and 4. To help mitigate this confusion,
the sensor port names S1, S2, S3, and S4 have been defined. These sensor names may be
used in any function that requires a sensor port as an argument. Alternatively, the NBC
port name constants IN_1, IN_2, IN_3, and IN_4 may also be used when a sensor port
IS required.

Sensor value names SENSOR_1, SENSOR_2, SENSOR_3, and SENSOR_4 have also been
defined. These names may also be used whenever a program wishes to read the current
value of the sensor:

X = SENSOR_1; // read sensor and store value in X

3.1.1 Types and Modes

The sensor ports on the NXT are capable of interfacing to a variety of different sensors. It
is up to the program to tell the NXT what kind of sensor is attached to each port. Calling
SetSensorType configures a sensor's type. There are 12 sensor types, each corresponding
to a specific LEGO RCX or NXT sensor. A thirteenth type (SENSOR_TYPE_NONE) is

used to indicate that no sensor has been configured.

In general, a program should configure the type to match the actual sensor. If a sensor
port is configured as the wrong type, the NXT may not be able to read it accurately. Use
either the Sensor Type constants or the NBC Sensor Type constants.

Sensor Type NBC Sensor Type Meaning
SENSOR_TYPE_NONE IN._ TYPE_NO_SENSOR no sensor configured
SENSOR_TYPE_TOUCH IN_ TYPE_SWITCH NXT or RCX touch sensor

SENSOR_TYPE_TEMPERATURE

IN_TYPE_TEMPERATURE

RCX temperature sensor

SENSOR_TYPE_LIGHT

IN_TYPE_REFLECTION

RCX light sensor

SENSOR_TYPE_ROTATION

IN_TYPE_ANGLE

RCX rotation sensor

SENSOR_TYPE_LIGHT ACTIVE

IN_TYPE_LIGHT ACTIVE

NXT light sensor with light

SENSOR_TYPE_LIGHT INACTIVE

IN_TYPE_LIGHT INACTIVE

NXT light sensor without light

SENSOR_TYPE_SOUND DB

IN_TYPE_SOUND DB

NXT sound sensor with dB scaling

SENSOR_TYPE_SOUND DBA

IN_TYPE_SOUND DBA

NXT sound sensor with dBA scaling

SENSOR_TYPE_CUSTOM

IN_TYPE_CUSTOM

Custom sensor (unused)

Page 17

NXC Programmer's Guide

SENSOR_TYPE_LOWSPEED

IN_TYPE_LOWSPEED

12C digital sensor

SENSOR_TYPE_LOWSPEED 9V

IN_TYPE_LOWSPEED 9V

12C digital sensor (9V power)

SENSOR_TYPE_HIGHSPEED

IN_TYPE_HISPEED

Highspeed sensor (unused)

Table 7. Sensor Type Constants

The NXT allows a sensor to be configured in different modes. The sensor mode
determines how a sensor's raw value is processed. Some modes only make sense for
certain types of sensors, for example SENSOR_MODE_ROTATION is useful only with
rotation sensors. Call SetSensorMode to set the sensor mode. The possible modes are
shown below. Use either the Sensor Mode constant or the NBC Sensor Mode constant.

Sensor Mode

NBC Sensor Mode

Meaning

SENSOR_MODE_RAW

IN_MODE_RAW

raw value from 0 to 1023

SENSOR_MODE_BOOL

IN_MODE_BOOLEAN

boolean value (0 or 1)

SENSOR_MODE_EDGE

IN_MODE_TRANSITIONCNT

counts number of boolean transitions

SENSOR_MODE_PULSE

IN_MODE_PERIODCOUNTER

counts number of boolean periods

SENSOR_MODE_PERCENT

IN_MODE_PCTFULLSCALE

value from 0 to 100

SENSOR_MODE_FAHRENHEIT

IN_MODE_FAHRENHEIT

degrees F

SENSOR_MODE_CELSIUS

IN_MODE_CELSIUS

degrees C

SENSOR_MODE_ROTATION

IN_MODE_ANGLESTEP

rotation (16 ticks per revolution)

Table 8. Sensor Mode Constants

When using the NXT, it is common to set both the type and mode at the same time. The
SetSensor function makes this process a little easier by providing a single function to call
and a set of standard type/mode combinations.

Sensor Configuration Type

Mode

SENSOR_TOUCH

SENSOR_TYPE_TOUCH

SENSOR_MODE_BOOL

SENSOR_LIGHT

SENSOR_TYPE_LIGHT

SENSOR_MODE_PERCENT

SENSOR_ROTATION

SENSOR_TYPE_ROTATION

SENSOR_MODE_ROTATION

SENSOR_CELSIUS

SENSOR_TYPE_TEMPERATURE

SENSOR_MODE_CELSIUS

SENSOR_FAHRENHEIT

SENSOR_TYPE_TEMPERATURE

SENSOR_MODE_FAHRENHEIT

SENSOR_PULSE

SENSOR_TYPE_TOUCH

SENSOR_MODE_PULSE

SENSOR_EDGE

SENSOR_TYPE_TOUCH

SENSOR_MODE_EDGE

Table 9. Sensor Configuration Constants

The NXT provides a boolean conversion for all sensors - not just touch sensors. This
boolean conversion is normally based on preset thresholds for the raw value. A "low"
value (less than 460) is a boolean value of 1. A high value (greater than 562) is a boolean
value of 0. This conversion can be modified: a slope value between 0 and 31 may be
added to a sensor's mode when calling SetSensorMode. If the sensor's value changes
more than the slope value during a certain time (3ms), then the sensor's boolean state will
change. This allows the boolean state to reflect rapid changes in the raw value. A rapid
increase will result in a boolean value of 0, a rapid decrease is a boolean value of 1.

Even when a sensor is configured for some other mode (i.e. SENSOR_MODE_PERCENT),
the boolean conversion will still be carried out.

Each sensor has six fields that are used to define its state. The field constants are
described in the following table.

Sensor Field Constant

Meaning

Type

The sensor type (see Table 7).

Page 18

NXC Programmer's Guide

InputMode The sensor mode (see Table 8).
RawValue
NormalizedValue
ScaledValue
InvalidData

Table 10. Sensor Field Constants

SetSensor(const port, const configuration) Function

Set the type and mode of the given sensor to the specified configuration, which must
be a special constant containing both type and mode information. The port must be
specified using a constant (e.g., S1, S2, S3, or S4).

SetSensor(S1, SENSOR _TOUCH);

SetSensorType(const port, const type) Function

Set a sensor's type, which must be one of the predefined sensor type constants. The
port must be specified using a constant (e.g., S1, S2, S3, or S4).

SetSensorType(S1, SENSOR_TYPE TOUCH);

SetSensorMode(const port, const mode) Function

Set a sensor's mode, which should be one of the predefined sensor mode constants. A
slope parameter for boolean conversion, if desired, may be added to the mode. The
port must be specified using a constant (e.g., S1, S2, S3, or S4).

SetSensorMode(S1, SENSOR_MODE_RAW); // raw mode
SetSensorMode(S1, SENSOR_MODE _RAW + 10); // slope 10

SetSensorL.ight(const port) Function

Configure the sensor on the specified port as a light sensor (active). The port must be
specified using a constant (e.g., S1, S2, S3, or S4).

SetSensorLight(S1);

SetSensorSound(const port) Function

Configure the sensor on the specified port as a sound sensor (dB scaling). The port
must be specified using a constant (e.g., S1, S2, S3, or S4).

SetSensorSound(S1);

SetSensorTouch(const port) Function

Configure the sensor on the specified port as a touch sensor. The port must be
specified using a constant (e.g., S1, S2, S3, or S4).

SetSensorSound(S1);

Page 19

NXC Programmer's Guide

SetSensorLowspeed(const port) Function

Configure the sensor on the specified port as an 12C digital sensor (9V powered). The
port must be specified using a constant (e.g., S1, S2, S3, or S4).

SetSensorLowspeed(S1);

Setlnput(port, const field, value) Function

Set the specified field of the sensor on the specified port to the value provided. The
port may be specified using a constant (e.g., S1, S2, S3, or S4) or a variable. The
field must be a sensor field constant. Valid field constants are listed in Table 10. The
value may be any valid expression.

SetInput(S1, Type, IN_TYPE_SOUND_DB);

ClearSensor(const port) Function

Clear the value of a sensor - only affects sensors that are configured to measure a
cumulative quantity such as rotation or a pulse count. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

ClearSensor(Sl);

ResetSensor(port) Function

Reset the value of a sensor. If the sensor type or mode has been modified then the
sensor should be reset in order to ensure that values read from the sensor are valid.
Use a port constant or a variable whose value is the desired sensor port.

ResetSensor(x); // x = S1

SetCustomSensorZeroOffset(const p, value) Function

Sets the custom sensor zero offset value of a sensor. The port must be specified using
a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorZeroOffset(S1, 12);

SetCustomSensorPercentFullScale(const p, value) Function

Sets the custom sensor percent full scale value of a sensor. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorPercentFul I1Scale(S1, 100);

SetCustomSensorActiveStatus(const p, value) Function

Sets the custom sensor active status value of a sensor. The port must be specified
using a constant (e.g., S1, S2, S3, or S4).

SetCustomSensorActiveStatus(S1l, true);

Page 20

NXC Programmer's Guide

SetSensorDigiPinsDirection(const p, value) Function

Sets the digital pins direction value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsDirection(S1, 1);

SetSensorDigiPinsStatus(const p, value) Function

Sets the digital pins status value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsStatus(S1, false);

SetSensorDigiPinsOutputlLevel(const p, value) Function

Sets the digital pins output level value of a sensor. The port must be specified using a
constant (e.g., S1, S2, S3, or S4).

SetSensorDigiPinsOutputLevel (S1, 100);

3.1.2 Sensor Information

There are a number of values that can be inspected for each sensor. For all of these values
the sensor must be specified by a constant port value (e.g., S1, S2, S3, or S4) unless
otherwise specified.

Sensor(n) Value

Return the processed sensor reading for a sensor on port n, where nis 0, 1, 2, or 3 (or
a sensor port name constant). This is the same value that is returned by the sensor
value names (e.g. SENSOR_1). A variable whose value is the desired sensor port may
also be used.

X = Sensor(Sl); // read sensor 1

SensoruUsS(n) Value

Return the processed sensor reading for an ultrasonic sensor on port n, where n is 0,
1, 2, or 3 (or a sensor port name constant). Since an ultrasonic sensor is an 12C digital
sensor its value cannot be read using the standard Sensor(n) value. A variable whose
value is the desired sensor port may also be used.

X = SensorUS(S4); // read sensor 4

SensorType(n) Value

Return the configured type of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). A variable whose value is the desired sensor port may
also be used.

X = SensorType(Sl);

Page 21

NXC Programmer's Guide

SensorMode(n) Value

Return the current sensor mode for a sensor on port n, which must be 0, 1, 2, or 3 (or
a sensor port name constant). A variable whose value is the desired sensor port may
also be used.

X = SensorMode(Sl);

SensorRaw(n) Value

Return the raw value of a sensor on port n, which must be 0, 1, 2, or 3 (or a sensor
port name constant). A variable whose value is the desired sensor port may also be
used.

X = SensorRaw(S1);

SensorNormalized(n) Value

Return the normalized value of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). A variable whose value is the desired sensor port may
also be used.

X = SensorNormalized(Sl);

SensorScaled(n) Value

Return the scaled value of a sensor on port n, which must be 0, 1, 2, or 3 (or a sensor
port name constant). A variable whose value is the desired sensor port may also be
used. This is the same as the standard Sensor(n) value.

X = SensorScaled(Sl);

Sensorlnvalid(n) Value

Return the value of the InvalidData flag of a sensor on port n, which must be 0, 1, 2,
or 3 (or a sensor port name constant). A variable whose value is the desired sensor
port may also be used.

x = Sensorlinvalid(S1);

SensorBoolean(const n) Value

Return the boolean value of a sensor on port n, which must be 0, 1, 2, or 3 (or a
sensor port name constant). Boolean conversion is either done based on preset
cutoffs, or a slope parameter specified by calling SetSensorMode.

X = SensorBoolean(S1);

Page 22

NXC Programmer's Guide

Getlnput(n, const field) Value

Return the value of the specified field of a sensor on port n, which must be 0, 1, 2, or
3 (or a sensor port name constant). A variable whose value is the desired sensor port
may also be used. The field must be a sensor field constant. Valid field constants are
listed in Table 10.

X = Getlnput(Sl, Type);

CustomSensorZeroOffset(const p) Value

Return the custom sensor zero offset value of a sensor on port p, which must be 0, 1,
2, or 3 (or a sensor port name constant).

X = CustomSensorZeroOffset(Sl);

CustomSensorPercentFullScale(const p) Value

Return the custom sensor percent full scale value of a sensor on port p, which must be
0, 1, 2, or 3 (or a sensor port name constant).

X = CustomSensorPercentFul IScale(S1);

CustomSensorActiveStatus(const p) Value

Return the custom sensor active status value of a sensor on port p, which must be 0, 1,
2, or 3 (or a sensor port name constant).

X = CustomSensorActiveStatus(Sl);

SensorDigiPinsDirection(const p) Value

Return the digital pins direction value of a sensor on port p, which must be 0, 1, 2, or
3 (or a sensor port name constant).

X = SensorDigiPinsDirection(Sl);

SensorDigiPinsStatus(const p) Value

Return the digital pins status value of a sensor on port p, which must be 0, 1, 2, or 3
(or a sensor port name constant).

X = SensorDigiPinsStatus(Sl1);

SensorDigiPinsOutputLevel(const p) Value

Return the digital pins output level value of a sensor on port p, which must be 0, 1, 2,
or 3 (or a sensor port name constant).

X = SensorDigiPinsOutputLevel (S1);

3.2 Output Module

The NXT output module encompasses all the motor outputs. Nearly all of the NXC API
functions dealing with outputs take either a single output or a set of outputs as their first

Page 23

NXC Programmer's Guide

argument. The output or set of outputs may be a constant or a variable containing an
appropriate output port value. The constants OUT_A, OUT_B, and OUT_C are used to
identify the three outputs. Unlike NQC, adding individual outputs together does not
combine multiple outputs. Instead, the NXC API provides predefined combinations of
outputs: OUT_AB, OUT_AC, OUT_BC, and OUT_ABC. Manually combining outputs
involves creating an array and adding two or more of the three individual output
constants to the array.

Power levels can range 0 (lowest) to 100 (highest). Negative power levels reverse the
direction of rotation (i.e., forward at a power level of -100 actually means reverse at a

power level of 100).

The outputs each have several fields that define the current state of the output port. These
fields are defined in the table below.

Field Constant

Type

Access

Range

Meaning

UpdateFlags

ubyte

Read/
Write

0, 255

This field can include any combination of the flag bits
described in Table 12.

Use UF_UPDATE_MODE, UF_UPDATE_SPEED,
UF_UPDATE_TACHO_LIMIT, and
UF_UPDATE_PID_VALUES along with other fields to
commit changes to the state of outputs. Set the appropriate
flags after setting one or more of the output fields in order for
the changes to actually go into affect.

OutputMode

ubyte

Read/
Write

0, 255

This is a bitfield that can include any of the values listed in
Table 13.

The OUT_MODE_MOTORON bit must be set in order for
power to be applied to the motors. Add OUT_MODE_BRAKE
to enable electronic braking. Braking means that the output
voltage is not allowed to float between active PWM pulses. It
improves the accuracy of motor output but uses more battery
power.

To use motor regulation include OUT_MODE_REGULATED
in the OutputMode value. Use UF_UPDATE_MODE with
UpdateFlags to commit changes to this field.

Power

shyte

Read/
Write

-100,
100

Specify the power level of the output. The absolute value of
Power is a percentage of the full power of the motor. The sign
of Power controls the rotation direction. Positive values tell the
firmware to turn the motor forward, while negative values turn
the motor backward. Use UF_UPDATE_POWER with
UpdateFlags to commit changes to this field.

ActualSpeed

sbyte

Read

-100,
100

Return the percent of full power the firmware is applying to the
output. This may vary from the Power value when auto-
regulation code in the firmware responds to a load on the
output.

TachoCount

slong

Read

full
range of
signed
long

Return the internal position counter value for the specified
output. The internal count is reset automatically when a new
goal is set using the TachoLimit and the
UF_UPDATE_TACHO_LIMIT flag.

Set the UF_UPDATE_RESET_COUNT flag in UpdateFlags to
reset TachoCount and cancel any TachoLimit.

The sign of TachoCount indicates the motor rotation direction.

Page 24

NXC Programmer's Guide

TachoLimit

ulong

Read/
Write

full
range of
unsigned
long

Specify the number of degrees the motor should rotate.
Use UF_UPDATE_TACHO_LIMIT with the UpdateFlags
field to commit changes to the TachoLimit.

The value of this field is a relative distance from the current
motor position at the moment when the
UF UPDATE_TACHO_LIMIT flag is processed.

RunState

ubyte

Read/
Write

0..255

Use this field to specify the running state of an output. Set the
RunState to OUT_RUNSTATE_RUNNING to enable power
to any output. Use OUT_RUNSTATE_RAMPUP to enable
automatic ramping to a new Power level greater than the
current Power level. Use OUT_RUNSTATE_RAMPDOWN to
enable automatic ramping to a new Power level less than the
current Power level.

Both the rampup and rampdown bits must be used in
conjunction with appropriate TachoLimit and Power values. In
this case the firmware smoothly increases or decreases the
actual power to the new Power level over the total number of
degrees of rotation specified in TachoLimit.

TurnRatio

sbyte

Read/
Write

-100,
100

Use this field to specify a proportional turning ratio. This field
must be used in conjunction with other field values:
OutputMode must include OUT_MODE_MOTORON and
OUT_MODE_REGULATED, RegMode must be set to
OUT_REGMODE_SYNC, RunState must not be
OUT_RUNSTATE_IDLE, and Speed must be non-zero.

There are only three valid combinations of left and right
motors for use with TurnRatio: OUT_AB, OUT_BC, and
OUT _AC. In each of these three options the first motor listed
is considered to be the left motor and the second motor is the
right motor, regardless of the physical configuration of the
robot.

Negative TurnRatio values shift power toward the left motor
while positive values shift power toward the right motor. An
absolute value of 50 usually results in one motor stopping. An
absolute value of 100 usually results in two motors turning in
opposite directions at equal power.

RegMode

ubyte

Read/
Write

0..255

This field specifies the regulation mode to use with the
specified port(s). It is ignored if the
OUT_MODE_REGULATED bit is not set in the OutputMode
field. Unlike the OutputMode field, RegMode is not a bitfield.
Only one RegMode value can be set at a time. Valid RegMode
values are listed in Table 15.

Speed regulation means that the firmware tries to maintain a
certain speed based on the Power setting. The firmware adjusts
the PWM duty cycle if the motor is affected by a physical load.
This adjustment is reflected by the value of the ActualSpeed
property. When using speed regulation, do not set Power to its
maximum value since the firmware cannot adjust to higher
power levels in that situation.

Synchronization means the firmware tries to keep two motors
in synch regardless of physical loads. Use this mode to
maintain a straight path for a mobile robot automatically. Also
use this mode with the TurnRatio property to provide

Page 25

NXC Programmer's Guide

proportional turning.

Set OUT_REGMODE_SYNC on at least two motor ports in
order for synchronization to function. Setting
OUT_REGMODE_SYNC on all three motor ports will result
in only the first two (OUT_A and OUT_B) being
synchronized.

Overload

ubyte

Read

0.1

This field will have a value of 1 (true) if the firmware speed
regulation cannot overcome a physical load on the motor. In
other words, the motor is turning more slowly than expected.
If the motor speed can be maintained in spite of loading then
this field value is zero (false).

In order to use this field the motor must have a non-idle
RunState, an OutputMode which includes
OUT_MODE_MOTORON and OUT_MODE_REGULATED,
and its RegMode must be set to OUT_REGMODE_SPEED.

RegPValue

ubyte

Read/
Write

0..255

This field specifies the proportional term used in the internal
proportional-integral-derivative (P1D) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, ReglValue, and RegDValue simultaneously.

ReglValue

ubyte

Read/
Write

0..255

This field specifies the integral term used in the internal
proportional-integral-derivative (P1D) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, ReglValue, and RegDValue simultaneously.

RegDValue

ubyte

Read/
Write

0..255

This field specifies the derivative term used in the internal
proportional-integral-derivative (P1D) control algorithm.

Set UF_UPDATE_PID_VALUES to commit changes to
RegPValue, ReglValue, and RegDValue simultaneously.

BlockTachoCount

slong

Read

full
range of
signed
long

Return the block-relative position counter value for the
specified port.

Refer to the UpdateFlags description for information about
how to use block-relative position counts.

Set the UF_UPDATE_RESET_BLOCK_COUNT flag in
UpdateFlags to request that the firmware reset the
BlockTachoCount.

The sign of BlockTachoCount indicates the direction of
rotation. Positive values indicate forward rotation and negative
values indicate reverse rotation. Forward and reverse depend
on the orientation of the motor.

RotationCount

slong

Read

full
range of
signed
long

Return the program-relative position counter value for the
specified port.

Refer to the UpdateFlags description for information about
how to use program-relative position counts.

Set the UF_UPDATE_RESET_ROTATION_COUNT flag in
UpdateFlags to request that the firmware reset the
RotationCount.

The sign of RotationCount indicates the direction of rotation.
Positive values indicate forward rotation and negative values
indicate reverse rotation. Forward and reverse depend on the
orientation of the motor.

Table 11. Output Field Constants

Page 26

NXC Programmer's Guide

Valid UpdateFlags values are described in the following table.

UpdateFlags Constants

Meaning

UF_UPDATE_MODE

Commits changes to the OutputMode output property

UF_UPDATE_SPEED

Commits changes to the Power output property

UF_UPDATE_TACHO _LIMIT

Commits changes to the TachoLimit output property

UF_UPDATE_RESET_COUNT

Resets all rotation counters, cancels the current goal, and resets the

rotation error-correction system

UF_UPDATE_PID_VALUES

Commits changes to the PID motor regulation properties

UF_UPDATE_RESET BLOCK_COUNT

Resets the block-relative rotation counter

UF_UPDATE_RESET ROTATION_COUNT

Resets the program-relative rotation counter

Table 12. UpdateFlag Constants

Valid OutputMode values are described in the following table.

OutputMode Constants | Value Meaning

OUT_MODE_COAST 0x00 No power and no braking so motors rotate freely
OUT_MODE_MOTORON 0x01 Enables PWM power to the outputs given the Power setting
OUT_MODE_BRAKE 0x02 Uses electronic braking to outputs
OUT_MODE_REGULATED | 0x04 Enables active power regulation using the RegMode value
OUT_MODE_REGMETHOD | 0xf0

Table 13. OutputMode Constants

Valid RunState values are described in the following table.

RunState Constants Value Meaning

OUT_RUNSTATE_IDLE 0x00 Disable all power to motors.

OUT_RUNSTATE_RAMPUP 0x10 Enable ramping up from a current Power to a new (higher)
Power over a specified TachoLimit goal.

OUT_RUNSTATE_RUNNING 0x20 Enable power to motors at the specified Power level.

OUT_RUNSTATE_RAMPDOWN | 0x40 Enable ramping down from a current Power to a new (lower)
Power over a specified TachoLimit goal.

Table 14. RunState Constants

Valid RegMode values are described in the following table.

RegMode Constants Value Meaning

OUT_REGMODE_IDLE 0x00 No regulation
OUT_REGMODE_SPEED 0x01 Regulate a motor's speed (Power)
OUT_REGMODE_SYNC 0x02 Synchronize the rotation of two motors

Table 15. RegMode Constants

3.2.1 Convenience Calls

Since control of outputs is such a common feature of programs, a number of convenience
functions are provided that make it easy to work with the outputs. It should be noted that
most of these commands do not provide any new functionality above lower level calls
described in the following section. They are merely convenient ways to make programs

more concise.

The Ex versions of the motor functions use special reset constants. They are defined in

the following table.

Page 27

NXC Programmer's Guide

Reset Constants Value
RESET_NONE 0x00
RESET_COUNT 0x08
RESET_BLOCK_COUNT 0x20

RESET_ROTATION_COUNT | 0x40
RESET_BLOCKANDTACHO | 0x28
RESET_ALL 0x68

Table 16. Reset Constants

Off(outputs) Function
Turn the specified outputs off (with braking). Outputs can be OUT_A, OUT_B, OUT_C,
OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of these values.

OfFf(OUT_A); // turn off output A

OffEx(outputs, const reset) Function

Turn the specified outputs off (with braking). Outputs can be OUT_A, OUT_B, OUT_C,
OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of these values.
The reset parameter controls whether any of the three position counters are reset. It
must be a constant. Valid reset values are listed in Table 16.

OFFEX(OUT_A, RESET NONE); // turn off output A

Coast(outputs) Function

Turn off the specified outputs, making them coast to a stop. Outputs can be OUT_A,
OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of
these values.

Coast(OUT_A); // coast output A

CoastEx(outputs, const reset) Function

Turn off the specified outputs, making them coast to a stop. Outputs can be OUT_A,
OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of
these values. The reset parameter controls whether any of the three position counters
are reset. It must be a constant. Valid reset values are listed in Table 16.

CoastEx(OUT_A, RESET NONE); // coast output A

Float(outputs) Function

Make outputs float. Outputs can be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC,
OUT_BC, OUT_ABC, or a variable containing one of these values. Float is an alias for
Coast.

Float(OUT_A); // float output A

Page 28

NXC Programmer's Guide

OnFwd(outputs, pwr) Function

Set outputs to forward direction and turn them on. Outputs can be OUT_A, OUT_B,
OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of these
values.

OnFwd(OUT_A, 75);

OnFwdEx(outputs, pwr, const reset) Function

Set outputs to forward direction and turn them on. Outputs can be OUT_A, OUT_B,
OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of these
values. The reset parameter controls whether any of the three position counters are
reset. It must be a constant. Valid reset values are listed in Table 16.

ONFWdEX(OUT_A, 75, RESET _NONE);

OnRev(outputs, pwr) Function

Set outputs to reverse direction and turn them on. Outputs can be OUT_A, OUT_B,
OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of these
values.

OnRev(OUT_A, 75);

OnRevEXx(outputs, pwr, const reset) Function

Set outputs to reverse direction and turn them on. Outputs can be OUT_A, OUT_B,
OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of these
values. The reset parameter controls whether any of the three position counters are
reset. It must be a constant. Valid reset values are listed in Table 16.

OnNReVEX(OUT_A, 75, RESET _NONE);

OnFwdReg(outputs, pwr, regmode) Function

Run the specified outputs forward using the specified regulation mode. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values. Valid regulation modes are listed in Table 15.

OnFwdReg(OUT_A, 75, OUT_REGMODE_SPEED); // regulate speed

OnFwdRegEXx(outputs, pwr, regmode, const reset) Function

Run the specified outputs forward using the specified regulation mode. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values. Valid regulation modes are listed in Table 15. The
reset parameter controls whether any of the three position counters are reset. It must
be a constant. Valid reset values are listed in Table 16.

OnFwdRegEX(OUT_A, 75, OUT_REGMODE_SPEED, RESET NONE);

Page 29

NXC Programmer's Guide

OnRevReg(outputs, pwr, regmode) Function

Run the specified outputs in reverse using the specified regulation mode. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values. Valid regulation modes are listed in Table 15.

OnRevReg(OUT_A, 75, OUT_REGMODE SPEED); // regulate speed

OnRevRegEXx(outputs, pwr, regmode, const reset) Function

Run the specified outputs in reverse using the specified regulation mode. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values. Valid regulation modes are listed in Table 15. The
reset parameter controls whether any of the three position counters are reset. It must
be a constant. Valid reset values are listed in Table 16.

OnRevRegEX(OUT_A, 75, OUT_REGMODE_SPEED, RESET_NONE);

OnFwdSync(outputs, pwr, turnpct) Function

Run the specified outputs forward with regulated synchronization using the specified
turn ratio. Outputs can be OUT_AB, OUT_AC, OUT_BC, or a variable containing one of
these values.

OnFwdSync(OUT_AB, 75, -100); // spin right

OnFwdSyncEx(outputs, pwr, turnpct, const reset) Function

Run the specified outputs forward with regulated synchronization using the specified
turn ratio. Outputs can be OUT_AB, OUT_AC, OUT_BC, or a variable containing one of
these values. The reset parameter controls whether any of the three position counters
are reset. It must be a constant. Valid reset values are listed in Table 16.

OnFwdSyncEx(OUT_AB, 75, O, RESET_NONE);

OnRevSync(outputs, pwr, turnpct) Function

Run the specified outputs in reverse with regulated synchronization using the
specified turn ratio. Outputs can be OUT_AB, OUT_AC, OUT_BC, or a variable
containing one of these values.

OnRevSync(OUT_AB, 75, -100); // spin left

OnRevSyncEx(outputs, pwr, turnpct, const reset) Function

Run the specified outputs in reverse with regulated synchronization using the
specified turn ratio. Outputs can be OUT_AB, OUT_AC, OUT_BC, or a variable
containing one of these values. The reset parameter controls whether any of the three
position counters are reset. It must be a constant. VValid reset values are listed in Table
16.

OnRevSyncEx(OUT_AB, 75, -100, RESET_NONE); // spin left

Page 30

NXC Programmer's Guide

RotateMotor(outputs, pwr, angle) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values.

RotateMotor(OUT_A, 75, 45); // forward 45 degrees
RotateMotor(OUT_A, -75, 45); // reverse 45 degrees

RotateMotorPID(outputs, pwr, angle, p, i, d) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values. Also specify the proportional, integral, and derivative
factors used by the firmware's PID motor control algorithm.

RotateMotorPID(OUT_A, 75, 45, 20, 40, 100);

RotateMotorEx(outputs, pwr, angle, turnpct, sync) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values. If a non-zero turn percent is specified then sync must
be set to true or no turning will occur.

RotateMotorEx(OUT_AB, 75, 360, 50, true);

RotateMotorExPID(outputs, pwr, angle, turnpct, sync, p, i, d) Function

Run the specified outputs forward for the specified number of degrees. Outputs can
be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values. If a non-zero turn percent is specified then sync must
be set to true or no turning will occur. Also specify the proportional, integral, and
derivative factors used by the firmware's PID motor control algorithm.

RotateMotorExPID(OUT_AB, 75, 360, 50, true, 30, 50, 90);

ResetTachoCount(outputs) Function

Reset the tachometer count and tachometer limit goal for the specified outputs.
Outputs can be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a
variable containing one of these values.

ResetTachoCount(OUT_AB);

ResetBlockTachoCount(outputs) Function

Reset the block-relative position counter for the specified outputs. Outputs can be
OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values.

ResetBlockTachoCount(OUT_AB);

Page 31

NXC Programmer's Guide

ResetRotationCount(outputs) Function

Reset the program-relative position counter for the specified outputs. Outputs can be
OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable
containing one of these values.

ResetRotationCount(OUT_AB);

ResetAllTachoCounts(outputs) Function

Reset all three position counters and reset the current tachometer limit goal for the
specified outputs. Outputs can be OUT_A, OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC,
OUT_ABC, or a variable containing one of these values.

ResetAl ITachoCounts(OUT_AB);

3.2.2 Primitive Calls

SetOutput(outputs, const fieldl, vall, ..., const fieldN, valN) Function

Set the specified field of the outputs to the value provided. Outputs can be OUT_A,
OUT_B, OUT_C, OUT_AB, OUT_AC, OUT_BC, OUT_ABC, or a variable containing one of
these values. The field must be a valid output field constant. This function takes a
variable number of field/value pairs.

SetOutput(OUT_AB, TachoLimit, 720); // set tacho limit
The output field constants are described in Table 11.

GetOutput(output, const field) Value

Get the value of the specified field for the specified output. Output can be OUT_A,
OUT_B, OUT_C, or a variable containing one of these values. The field must be a valid
output field constant.

X = GetOutput(OUT_A, TachoLimit);
The output field constants are described in Table 11.

MotorMode(output) Value

Get the mode of the specified output. Output can be OUT_A, OUT_B, OUT_C, or a
variable containing one of these values.

X = MotorMode(OUT_A);

MotorPower(output) Value

Get the power level of the specified output. Output can be OUT_A, OUT_B, OUT_C, or
a variable containing one of these values.

X = MotorPower (OUT_A);

Page 32

NXC Programmer's Guide

MotorActualSpeed(output) Value

Get the actual speed value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorActualSpeed(OUT_A);

MotorTachoCount(output) Value

Get the tachometer count value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorTachoCount(OUT_A);

MotorTachoLimit(output) Value

Get the tachometer limit value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorTachoLimit(OUT_A);

MotorRunState(output) Value

Get the RunState value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

X = MotorRunState(OUT_A);

MotorTurnRatio(output) Value

Get the turn ratio value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

X = MotorTurnRatio(OUT_A);

MotorRegulation(output) Value

Get the regulation value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorRegulation(OUT_A);

MotorOverload(output) Value

Get the overload value of the specified output. Output can be OUT_A, OUT_B, OUT_C,
or a variable containing one of these values.

X = MotorOverload(OUT_A);

MotorRegPValue(output) Value

Get the proportional PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorRegPValue(OUT_A);

Page 33

NXC Programmer's Guide

MotorReglValue(output) Value

Get the integral PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorReglValue(OUT_A);

MotorRegDValue(output) Value

Get the derivative PID value of the specified output. Output can be OUT_A, OUT_B,
OUT_C, or a variable containing one of these values.

X = MotorRegDValue(OUT_A);

MotorBlockTachoCount(output) Value

Get the block-relative position counter value of the specified output. Output can be
OUT_A, OUT_B, OUT_C, or a variable containing one of these values.

X = MotorBlockTachoCount(OUT_A);

MotorRotationCount(output) Value

Get the program-relative position counter value of the specified output. Output can be
OUT_A, OUT_B, OUT_C, or a variable containing one of these values.

X = MotorRotationCount(OUT_A);

MotorPwnFreq() Value
Get the current motor pulse width modulation frequency.
X = MotorPwnFreq();

SetMotorPwnFreq(val) Function

Set the current motor pulse width modulation frequency.
SetMotorPwnFreq(x);

3.3 10 Map Addresses

The NXT firmware provides a mechanism for reading and writing input (sensor) and
output (motor) field values using low-level constants known as 10 Map Addresses
(IOMA). Valid IOMA constants are listed in the following table.

IOMA Constant Parameter Meaning

InputlOType(p) S1.54 Input Type value
InputlOInputMode(p) S1.54 Input InputMode value
InputlORawValue(p) S1.54 Input RawValue value
InputlONormalizedValue(p) S1.54 Input NormalizedValue value
InputlOScaledValue(p) S1.54 Input ScaledValue value
InputlOlnvalidData(p) S1.54 Input InvalidData value
OutputlOUpdateFlags(p) OUT_A..OUT_C | Output UpdateFlags value

Page 34

NXC Programmer's Guide

OutputlOOutputMode(p) OUT_A..OUT_C | Output OutputMode value
OutputlOPower(p) OUT_A..OUT_C | Output Power value
OutputlOActualSpeed(p) OUT_A..OUT_C | Output ActualSpeed value
OutputlOTachoCount(p) OUT_A..OUT_C | Output TachoCount value
OutputlOTachoLimit(p) OUT_A..OUT_C | Output TachoLimit value
OutputlORunState(p) OUT_A..OUT_C | Output RunState value
OutputlOTurnRatio(p) OUT_A..OUT_C | Output TurnRatio value
OutputlORegMode(p) OUT_A..OUT_C | Output RegMode value
OutputlOOverload(p) OUT_A..OUT_C | Output Overload value
OutputlORegPValue(p) OUT_A..OUT_C | Output RegPValue value
OutputlOReglValue(p) OUT_A..OUT_C | Output ReglValue value
OutputlORegDValue(p) OUT_A..OUT_C | Output RegDValue value
OutputlOBlockTachoCount(p) | OUT_A..OUT_C | Output BlockTachoCount value
OutputlORotationCount(p) OUT_A..OUT_C | Output RotationCount value

Table 17. IOMA Constants

IOMA(const n) Value

Get the specified IO Map Address value. Valid IO Map Address constants are listed
in Table 17.

x = 1O0MA(InputlORawValue(S3));

SetlOMA(const n, val) Function

Set the specified 10 Map Address to the value provided. Valid IO Map Address
constants are listed in Table 17. The value must be a specified via a constant, a
constant expression, or a variable.

SetIOMA(OutputlOPower(OUT_A), X);

3.4 Sound Module

The NXT sound module encompasses all sound output features. The NXT provides
support for playing basic tones as well as two different types of files.

Sound files (.rso) are like .wav files. They contain thousands of sound samples that
digitally represent an analog waveform. With sounds files the NXT can speak or play
music or make just about any sound imaginable.

Melody files are like MIDI files. They contain multiple tones with each tone being
defined by a frequency and duration pair. When played on the NXT a melody file sounds
like a pure sine-wave tone generator playing back a series of notes. While not as fancy as
sound files, melody files are usually much smaller than sound files.

When a sound or a file is played on the NXT, execution of the program does not wait for
the previous playback to complete. To play multiple tones or files sequentially it is
necessary to wait for the previous tone or file playback to complete first. This can be
done via the wait API function or by using the sound state value within a while loop.

Page 35

NXC Programmer's Guide

The NXC API defines frequency and duration constants which may be used in calls to
PlayTone or PlayToneEx. Frequency constants start with TONE_A3 (the 'A’ pitch in
octave 3) and go to TONE_B7 (the 'B' pitch in octave 7). Duration constants start with
MS_1 (1 millisecond) and go up to MIN_1 (60000 milliseconds) with several constants in
between. See NBCCommon.h for the complete list.

Valid sound flags constants are listed in the following table.

Sound Flags Constants Read/Write | Meaning
SOUND_FLAGS IDLE Read Sound is idle
SOUND_FLAGS UPDATE Write Make changes take effect
SOUND_FLAGS RUNNING | Read Processing a tone or file

Table 18. Sound Flags Constants
Valid sound state constants are listed in the following table.

Sound State Constants | Read/Write | Meaning

SOUND_STATE_IDLE Read Idle, ready for start sound

SOUND_STATE FILE Read Processing file of sound/melody data
SOUND_STATE_TONE Read Processing play tone request
SOUND_STATE_STOP Write Stop sound immediately and close hardware

Table 19. Sound State Constants
Valid sound mode constants are listed in the following table.

Sound Mode Constants | Read/Write | Meaning

SOUND_MODE_ONCE Read Only play file once

SOUND_MODE_LOOP Read Play file until writing
SOUND_STATE_STOP into State.

SOUND_MODE_TONE Read Play tone specified in Frequency for
Duration milliseconds.

Table 20. Sound Mode Constants
Miscellaneous sound constants from NBCCommon.h are listed in the following table.

Misc. Sound Constants | Value Meaning

FREQUENCY_MIN 220 Minimum frequency in Hz.
FREQUENCY_MAX 14080 Maximum frequency in Hz.
SAMPLERATE_MIN 2000 Minimum sample rate supported by NXT
SAMPLERATE_DEFAULT | 8000 Default sample rate
SAMPLERATE_MAX 16000 Maximum sample rate supported by NXT

Table 21. Miscellaneous Sound Constants

PlayTone(frequency, duration) Function

Play a single tone of the specified frequency and duration. The frequency is in Hz.
The duration is in 1000ths of a second. All parameters may be any valid expression.

PlayTone(440, 500); // Play "A" for one half second

Page 36

NXC Programmer's Guide

PlayToneEx(frequency, duration, volume, bL.oop) Function

Play a single tone of the specified frequency, duration, and volume. The frequency is
in Hz. The duration is in 1000ths of a second. Volume should be a number from 0
(silent) to 4 (loudest). All parameters may be any valid expression.

PlayToneEx(440, 500, 2, false);

PlayFile(filename) Function

Play the specified sound file (.rso) or a melody file (.rmd). The filename may be any
valid string expression.

PlayFile(*'startup.rso'™);

PlayFileEx(filename, volume, bLoop) Function

Play the specified sound file (.rso) or a melody file (.rmd). The filename may be any
valid string expression. Volume should be a number from 0 (silent) to 4 (loudest).
bLoop is a boolean value indicating whether to repeatedly play the file.

PlayFileEx('startup.rso', 3, true);

SoundFlags() Value

Return the current sound flags. Valid sound flags values are listed in Table 18.
X = SoundFlagsQ);

SetSoundFlags(n) Function

Set the current sound flags. Valid sound flags values are listed in Table 18.
SetSoundFlags(SOUND_FLAGS UPDATE);

SoundState() Value

Return the current sound state. Valid sound state values are listed in Table 19.
X = SoundState();

SetSoundState(n) Function

Set the current sound state. VValid sound state values are listed in Table 19.
SetSoundState(SOUND_STATE_STOP);

SoundMode() Value

Return the current sound mode. Valid sound mode values are listed in Table 20.
X = SoundMode();

Page 37

NXC Programmer's Guide

SetSoundMode(n) Function
Set the current sound mode. Valid sound mode values are listed in Table 20.
SetSoundMode (SOUND_MODE_ONCE);

SoundFrequency() Value

Return the current sound frequency.
X = SoundFrequency();

SetSoundFrequency(n) Function
Set the current sound frequency.
SetSoundFrequency(440);

SoundDuration() Value
Return the current sound duration.
X = SoundDuration();

SetSoundDuration(n) Function
Set the current sound duration.
SetSoundDuration(500);

SoundSampleRate() Value

Return the current sound sample rate.
X = SoundSampleRate();

SetSoundSampleRate(n) Function
Set the current sound sample rate.
SetSoundSampleRate(4000);

SoundVolume() Value
Return the current sound volume.
x = SoundVolume();

SetSoundVolume(n) Function
Set the current sound volume.
SetSoundvVolume(3);

Page 38

NXC Programmer's Guide

StopSound() Function
Stop playback of the current tone or file.
StopSound();

3.5 10Ctrl Module

The NXT ioctrl module encompasses low-level communication between the two
processors that control the NXT. The NXC API exposes two functions that are part of
this module.

PowerDown() Function
Turn off the NXT immediately.
PowerDown() ;
RebootInFirmwareMode() Function

Reboot the NXT in SAMBA or firmware download mode. This function is not likely
to be used in a normal NXC program.

RebootInFirmwareMode();

3.6 Display module

The NXT display module encompasses support for drawing to the NXT LCD. The NXT
supports drawing points, lines, rectangles, and circles on the LCD. It supports drawing
graphic icon files on the screen as well as text and numbers.

The LCD screen has its origin (0, 0) at the bottom left-hand corner of the screen with the
positive Y-axis extending upward and the positive X-axis extending toward the right. The
NXC API provides constants for use in the NumOut and TextOut functions which makes
it possible to specify LCD line numbers between 1 and 8 with line 1 being at the top of
the screen and line 8 being at the bottom of the screen. These constants (LCD_LINE1,
LCD_LINEZ2, LCD_LINE3, LCD_LINE4, LCD_LINES5, LCD_LINE6, LCD_LINE7,
LCD_LINEB8) should be used as the Y coordinate in NumOQut and TextOut calls. Values of
Y other than these constants will be adjusted so that text and numbers are on one of 8
fixed line positions.

3.6.1 High-level functions

NumOut(x, y, clear, value) Function

Draw a numeric value on the screen at the specified x and y location. Optionally clear
the screen first depending on the boolean value of “clear".

NumOut(O, LCD_LINE1l, true, X);

Page 39

NXC Programmer's Guide

TextOut(x, y, clear, msg) Function

Draw a text value on the screen at the specified x and y location. Optionally clear the
screen first depending on the boolean value of “clear".

TextOut(0, LCD_LINE3, false, "Hello World!'");

GraphicOut(x, y, filename, clear) Function

Draw the specified graphic icon file on the screen at the specified x and y location.
Optionally clear the screen first depending on the boolean value of “clear". If the file
cannot be found then nothing will be drawn and no errors will be reported.

GraphicOut(40, 40, "image.ric', false);

CircleOut(x, y, radius, clear) Function

Draw a circle on the screen with its center at the specified x and y location, using the
specified radius. Optionally clear the screen first depending on the boolean value of
"clear".

CircleOut(40, 40, 10, false);

LineOut(x1, y1, x2, y2, clear) Function

Draw a line on the screen from x1, y1 to x2, y2. Optionally clear the screen first
depending on the boolean value of “clear".

LineOCut(40, 40, 10, 10, false);

PointOut(x, y, clear) Function

Draw a point on the screen at x, y. Optionally clear the screen first depending on the
boolean value of "clear".

PointOut(40, 40, false);

RectOut(x, y, width, height, clear) Function

Draw a rectangle on the screen at X, y with the specified width and height. Optionally
clear the screen first depending on the boolean value of “clear".

RectOut(40, 40, 30, 10, false);

ResetScreen() Function

Restore the standard NXT running program screen.
ResetScreen();

ClearScreen() Function
Clear the NXT LCD to a blank screen.
ClearScreen();

Page 40

NXC Programmer's Guide

3.6.2 Low-level functions

Valid display flag values are listed in the following table.

Display Flags Constant Read/Write | Meaning

DISPLAY ON Write Display is on

DISPLAY REFRESH Write Enable refresh

DISPLAY_ POPUP Write Use popup display memory
DISPLAY REFRESH DISABLED | Read Refresh is disabled
DISPLAY_BUSY Read Refresh is in progress

Table 22. Display Flags Constants

DisplayFlags()

Return the current display flags. Valid flag values are listed in Table 22.

x = DisplayFlags(Q);

SetDisplayFlags(n)

Set the current display flags. Valid flag values are listed in Table 22.

SetDisplayFlags(x);

DisplayEraseMask()

Return the current display erase mask.
x = DisplayEraseMask();

SetDisplayEraseMask(n)

Set the current display erase mask.
SetDisplayEraseMask(X);

DisplayUpdateMask()

Return the current display update mask.
x = DisplayUpdateMask();

SetDisplayUpdateMask(n)

Set the current display update mask.
SetDisplayUpdateMask(x) ;

DisplayDisplay()

Return the current display memory address.

x = DisplayDisplay(Q);

Value

Function

Value

Function

Value

Function

Value

Page 41

NXC Programmer's Guide

SetDisplayDisplay(n) Function
Set the current display memory address.
SetDisplayDisplay(X);

DisplayTextLinesCenterFlags() Value

Return the current display text lines center flags.
X = DisplayTextLinesCenterFlags();

SetDisplayTextLinesCenterFlags(n) Function
Set the current display text lines center flags.
SetDisplayTextLinesCenterFlags(X);

GetDisplayNormal(x, line, count, data) Function

Read "count™ bytes from the normal display memory into the data array. Start reading
from the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES for the "line" parameter.

GetDisplayNormal (O, TEXTLINE 1, 8, ScreenMem);

SetDisplayNormal(x, line, count, data) Function

Write "count" bytes to the normal display memory from the data array. Start writing
at the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES for the "line" parameter.

SetDisplayNormal (O, TEXTLINE 1, 8, ScreenMem);

GetDisplayPopup(x, line, count, data) Function

Read "count™ bytes from the popup display memory into the data array. Start reading
from the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES for the "line" parameter.

GetDisplayPopup(0, TEXTLINE 1, 8, PopupMem);

SetDisplayPopup(x, line, count, data) Function

Write "count" bytes to the popup display memory from the data array. Start writing at
the specified x, line coordinate. Each byte of data read from screen memory is a
vertical strip of 8 bits at the desired location. Each bit represents a single pixel on the
LCD screen. Use TEXT_LINE1 through TEXT_LINES for the "line" parameter.

SetDisplayPopup(0, TEXTLINE 1, 8, PopupMem);

Page 42

NXC Programmer's Guide

3.7 Loader Module

The NXT loader module encompasses support for the NXT file system. The NXT

supports creating files, opening existing files, reading, writing, renaming, and deleting

files.

Files in the NXT file system must adhere to the 15.3 naming convention for a maximum
filename length of 19 characters. While multiple files can be opened simultaneously, a
maximum of 4 files can be open for writing at any given time.

When accessing files on the NXT, errors can occur. The NXC API defines several
constants that define possible result codes. They are listed in the following table.

FreeMemory()

Get the number of bytes of flash memory that are available for use.

Loader Result Codes Value
LDR_SUCCESS 0x0000
LDR_INPROGRESS 0x0001
LDR_REQPIN 0x0002
LDR_NOMOREHANDLES 0x8100
LDR_NOSPACE 0x8200
LDR_NOMOREFILES 0x8300
LDR_EOFEXPECTED 0x8400
LDR_ENDOFFILE 0x8500
LDR_NOTLINEARFILE 0x8600
LDR_FILENOTFOUND 0x8700
LDR_HANDLEALREADYCLOSED | 0x8800
LDR_NOLINEARSPACE 0x8900
LDR_UNDEFINEDERROR 0x8A00
LDR_FILEISBUSY 0x8B00
LDR_NOWRITEBUFFERS 0x8C00
LDR_APPENDNOTPOSSIBLE 0x8D00
LDR_FILEISFULL 0X8E00
LDR_FILEEXISTS 0X8F00
LDR_MODULENOTFOUND 0x9000
LDR_OUTOFBOUNDARY 0x9100
LDR_ILLEGALFILENAME 0x9200
LDR_ILLEGALHANDLE 0x9300
LDR_BTBUSY 0x9400
LDR_BTCONNECTFAIL 0x9500
LDR_BTTIMEOUT 0x9600
LDR_FILETX_TIMEOUT 0x9700
LDR_FILETX_DSTEXISTS 0x9800
LDR_FILETX_SRCMISSING 0x9900
LDR_FILETX_STREAMERROR 0x9A00
LDR_FILETX_CLOSEERROR 0x9B00

Table 23. Loader Result Codes

X = FreeMemory();

Value

Page 43

NXC Programmer's Guide

CreateFile(filename, size, out handle) Value

Create a new file with the specified filename and size and open it for writing. The file
handle is returned in the last parameter, which must be a variable. The loader result
code is returned as the value of the function call. The filename and size parameters
must be constants, constant expressions, or variables.

result = CreateFile('data.txt', 1024, handle);

OpenFileAppend(filename, out size, out handle) Value

Open an existing file with the specified filename for writing. The file size is returned
in the second parameter, which must be a variable. The file handle is returned in the
last parameter, which must be a variable. The loader result code is returned as the
value of the function call. The filename parameter must be a constant or a variable.

result = OpenFileAppend('data.txt', fsize, handle);

OpenFileRead(filename, out size, out handle) Value

Open an existing file with the specified filename for reading. The file size is returned
in the second parameter, which must be a variable. The file handle is returned in the
last parameter, which must be a variable. The loader result code is returned as the
value of the function call. The filename parameter must be a constant or a variable.

result = OpenFileRead(*'data.txt', fsize, handle);

CloseFile(handle) Value

Close the file associated with the specified file handle. The loader result code is
returned as the value of the function call. The handle parameter must be a constant or
a variable.

result = CloseFile(handle);

ResolveHandle(filename, out handle, out bWriteable) Value

Resolve a file handle from the specified filename. The file handle is returned in the
second parameter, which must be a variable. A boolean value indicating whether the
handle can be used to write to the file or not is returned in the last parameter, which
must be a variable. The loader result code is returned as the value of the function call.
The filename parameter must be a constant or a variable.

result = ResolveHandle(*'data.txt', handle, bCanWrite);

RenameFile(oldfilename, newfilename) Value

Rename a file from the old filename to the new filename. The loader result code is
returned as the value of the function call. The filename parameters must be constants
or variables.

result = RenameFile('data.txt', "mydata.txt');

Page 44

NXC Programmer's Guide

DeleteFile(filename) Value

Delete the specified file. The loader result code is returned as the value of the
function call. The filename parameter must be a constant or a variable.

result = DeleteFile('data.txt');

Read(handle, out value) Value

Read a numeric value from the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a variable. The type of the value parameter
determines the number of bytes of data read.

result = Read(handle, value);

ReadLn(handle, out value) Value

Read a numeric value from the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a variable. The type of the value parameter
determines the number of bytes of data read. The ReadLn function reads two
additional bytes from the file which it assumes are a carriage return and line feed pair.

result = ReadLn(handle, value);

ReadBytes(handle, in/out length, out buf) Value

Read the specified number of bytes from the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The length parameter must be a variable. The buf
parameter must be an array or a string variable. The actual number of bytes read is
returned in the length parameter.

result = ReadBytes(handle, len, buffer);

Write(handle, value) Value

Write a numeric value to the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a constant, a constant expression, or a
variable. The type of the value parameter determines the number of bytes of data
written.

result = Write(handle, value);

WriteL.n(handle, value) Value

Write a numeric value to the file associated with the specified handle. The loader
result code is returned as the value of the function call. The handle parameter must be
a variable. The value parameter must be a constant, a constant expression, or a
variable. The type of the value parameter determines the number of bytes of data

Page 45

NXC Programmer's Guide

written. The WriteLn function also writes a carriage return and a line feed to the file
following the numeric data.

result = WriteLn(handle, value);

WriteString(handle, str, out count) Value

Write the string to the file associated with the specified handle. The loader result code
is returned as the value of the function call. The handle parameter must be a variable.
The count parameter must be a variable. The str parameter must be a string variable
or string constant. The actual number of bytes written is returned in the count
parameter.

result = WriteString(handle, 'testing', count);

WriteLnString(handle, str, out count) Value

Write the string to the file associated with the specified handle. The loader result code
is returned as the value of the function call. The handle parameter must be a variable.
The count parameter must be a variable. The str parameter must be a string variable
or string constant. This function also writes a carriage return and a line feed to the file
following the string data. The total number of bytes written is returned in the count
parameter.

result = WriteLnString(handle, 'testing', count);

WriteBytes(handle, data, out count) Value

Write the contents of the data array to the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The count parameter must be a variable. The data
parameter must be an array. The actual number of bytes written is returned in the
count parameter.

result = WriteBytes(handle, buffer, count);

WriteBytesEx(handle, in/out length, buf) Value

Write the specified number of bytes to the file associated with the specified handle.
The loader result code is returned as the value of the function call. The handle
parameter must be a variable. The length parameter must be a variable. The buf
parameter must be an array or a string variable or string constant. The actual number
of bytes written is returned in the length parameter.

result = WriteByteskEx(handle, len, buffer);

3.8 Comm Module
TBD

Page 46

NXC Programmer's Guide

3.9 General Features

Wait(time) Function

Make a task sleep for specified amount of time (in 1000ths of a second). The time
argument may be an expression or a constant:

Wait(1000); // wait 1 second
Wait(Random(1000)); // wait random time up to 1 second
Stop(bvalue) Function

Stop the running program if bvalue is true. This will halt the program completely, so
any code following this command will be ignored.

Stop(x == 24); // stop the program if x==24

Random(n) Value

Return an unsigned 16-bit random number between 0 and n (exclusive). N can be a
constant or a variable.

X = Random(10);

Random() Value

Return a signed 16-bit random number.
X = Random();

BatteryLevel() Value
Return the battery level in millivolts.
X = BatteryLevel();

Acquire(mutex);
Release(mutex);
Precedes(taskl, task2, ..., taskn);
Follows(taskl, task2, ..., taskn);

ExitTo(taskname);
val = ButtonCount(btn, reset);

val = ButtonPressed(btn, reset);
ReadButtonEx(btn, reset, pressed, count);

Page 47

NXC Programmer's Guide

val = ButtonPressCount(b);

val = ButtonLongPressCount(b);
val = ButtonShortReleaseCount(b);
val = ButtonLongReleaseCount(b);
val = ButtonReleaseCount(b);

val = ButtonState(b);
SetButtonPressCount(b, n);
SetButtonLongPressCount(b, n);
SetButtonShortReleaseCount(b, n);
SetButtonLongReleaseCount(b, n);
SetButtonReleaseCount(b, n);
SetButtonState(b, n);

val = FirstTick();
val = CurrentTick();
ResetSleepTimer();

val = Volume();
SetVolume(n);

val = CommandFlags();

val = UlState();

val = UlButton();

val = VMRunState();

val = BatteryState();

val = SleepTimeout();

val = SleepTimer();

val = RechargeableBattery();
val = OnBrickProgramPointer();
SetCommandFlags(n);
SetUlState(n);
SetUIButton(n);

Page 48

NXC Programmer's Guide

SetVMRunState(n);
SetBatteryState(n);
SetSleepTimeout(n);
SetSleepTimer(n);
SetOnBrickProgramPointer(n);
ForceOff(n);

val = StrToNum(str);

val = StrLen(str);

val = Strindex(str, idx);

str = NumToStr(num);

str = StrCat(strl, str2, ..., strN);

str = SubStr(string, idx, len);

str = StrReplace(string, idx, strnew);
str = Flatten(num);

ByteArrayToStr(a, s);
StrToByteArray(s, a);

num = ArrayLen(a);

Arraylnit(a, val, cnt);
ArraySubset(aout, asrc, idx, len)
ArrayBuild1(aout, srcl)
ArrayBuild2(aout, srcl, src2)
ArrayBuild3(aout, srcl, src2, src3)
ArrayBuild4(aout, srcl, src2, src3, src4)

Page 49

NXC Programmer's Guide

GetUSBInputBuffer(offset, cnt, data);
GetUSBOutputBuffer(offset, cnt, data);
GetUSBPollBuffer(offset, cnt, data);
val = UsbState();

SetUsbState(n);
SetUSBInputBuffer(offset, cnt, data);
SetUSBInputBufferInPtr(n);
SetUSBInputBufferOutPtr(n);
SetUSBOutputBuffer(offset, cnt, data);
SetUSBOutputBufferInPtr(n);
SetUSBOutputBufferOutPtr(n);
SetUSBPolIBuffer(offset, cnt, data);
SetUSBPolIBufferInPtr(n);
SetUSBPolIBufferOutPtr(n);
SetUSBState(n);

val = USBInputBufferInPtr();

val = USBInputBufferOutPtr();

val = USBOutputBufferinPtr();

val = USBOutputBufferOutPtr();

val = USBPollBufferinPtr();

val = USBPollBufferOutPtr();

val = USBState();

GetHSInputBuffer(offset, cnt, data);
GetHSOutputBuffer(offset, cnt, data);
val = HSInputBufferInPtr();

val = HSInputBufferOutPtr();

val = HSOutputBufferInPtr();

val = HSOutputBufferOutPtr();

val = HSFlags();

val = HSSpeed();

val = HSState();

Page 50

NXC Programmer's Guide

SetHSInputBuffer(offset, cnt, data);
SetHSInputBufferinPtr(n);
SetHSInputBufferOutPtr(n);
SetHSOutputBuffer(offset, cnt, data);
SetHSOutputBufferInPtr(n);
SetHSOutputBufferOutPtr(n);
SetHSFlags(n);

SetHSSpeed(n);

SetHSState(n);

val = SendMessage(queue, msg);
val = ReceiveMessage(queue, clear, msg);

val = LowspeedStatus(port, bready);

val = LowspeedWrite(port, retlen, buffer);
val = LowspeedRead(port, buflen, buffer);
GetLSInputBuffer(p, offset, cnt, data);
GetLSOutputBuffer(p, offset, cnt, data);
val = LSInputBufferinPtr(p);

val = LSInputBufferOutPtr(p);

val = LSInputBufferBytesToRx(p);

val = LSOutputBufferInPtr(p);

val = LSOutputBufferOutPtr(p);

val = LSOutputBufferBytesToRx(p);

val = LSMode(p);

val = LSChannelState(p);

val = LSErrorType(p);

val = LSState();

val = LSSpeed();

SetLSInputBuffer(p, offset, cnt, data);
SetLSInputBufferInPtr(p, n);
SetLSInputBufferOutPtr(p, n);

Page 51

NXC Programmer's Guide

SetLSInputBufferBytesToRx(p, n);
SetLSOutputBuffer(p, offset, cnt, data);
SetLSOutputBufferInPtr(p, n);
SetLSOutputBufferOutPtr(p, n);
SetLSOutputBufferBytesToRx(p, n);
SetLSMode(p, n);
SetLSChannelState(p, n);
SetLSErrorType(p, n);

SetL SState(n);

SetLSSpeed(n);

val = BluetoothStatus(conn);

val = BluetoothWrite(conn, buffer);
val = BTDeviceCount();
SetBTDeviceCount(n);

val = BTDeviceNameCount();
SetBTDeviceNameCount(n);
GetBTInputBuffer(offset, cnt, data);
GetBTOutputBuffer(offset, cnt, data);
str = BTDeviceName(p);

str = BTConnectionName(p);

str = BTConnectionPinCode(p);

str = BrickDataName();
GetBTDeviceAddress(p, data);
GetBTConnectionAddress(p, data);
GetBrickDataAddress(data);

val = BTDeviceClass(p);

val = BTDeviceStatus(p);

val = BTConnectionClass(p);

val = BTConnectionHandleNum(p);
val = BTConnectionStreamStatus(p);

Page 52

NXC Programmer's Guide

val = BTConnectionLinkQuality(p);
val = BrickDataBluecoreVersion();
val = BrickDataBtStateStatus();

val = BrickDataBtHardwareStatus();
val = BrickDataTimeoutValue();
val = BTInputBufferInPtr();

val = BTInputBufferOutPtr();

val = BTOutputBufferInPtr();

val = BTOutputBufferOutPtr();
SetBTDeviceName(p, str);
SetBTDeviceAddress(p, addr);
SetBTConnectionName(p, str);
SetBTConnectionPinCode(p, code);
SetBTConnectionAddress(p, addr);
SetBrickDataName(str);
SetBrickDataAddress(p, addr);
SetBTDeviceClass(p, n);
SetBTDeviceStatus(p, n);
SetBTConnectionClass(p, n);
SetBTConnectionHandleNum(p, n);
SetBTConnectionStreamStatus(p, n);
SetBTConnectionLinkQuality(p, n);
SetBrickDataBluecoreVersion(n);
SetBrickDataBtStateStatus(n);
SetBrickDataBtHardwareStatus(n);
SetBrickDataTimeoutValue(n);
SetBTInputBuffer(offset, cnt, data);
SetBTInputBufferInPtr(n);
SetBTInputBufferOutPtr(n);
SetBTOutputBuffer(offset, cnt, data);
SetBTOutputBufferInPtr(n);
SetBTOutputBufferOutPtr(n);
SetBluetoothState(n);

Page 53

NXC Programmer's Guide

val = BluetoothState();

result = SendRemoteBool(conn, queue, bval)

result = SendRemoteNumber(conn, queue, val)

result = SendRemoteString(conn, queue, str)

result = SendResponseBool(queue, bval)

result = SendResponseNumber(queue, val)

result = SendResponseString(queue, str)

result = ReceiveRemoteBool(queue, clear, bval)
result = ReceiveRemoteNumber(queue, clear, val)
result = ReceiveRemoteString(queue, clear, str)

result = ReceiveRemoteMessageEx(queue, clear, str, val, bval)
result = RemoteMessageRead(conn, queue)

result = RemoteMessageWrite(conn, queue, msg)
result = RemoteStartProgram(conn, filename)

result = RemoteStopProgram(conn)

result = RemotePlaySoundFile(conn, filename, bloop)
result = RemotePlayTone(conn, frequency, duration)
result = RemoteStopSound(conn)

result = RemoteKeepAlive(conn)

result = RemoteResetScaledValue(conn, port)

result = RemoteResetMotorPosition(conn, port, brelative)
result = RemoteSetInputMode(conn, port, type, mode)

result = RemoteSetOutputState(conn, port, speed, mode, regmode, turnpct, runstate,

tacholimit)

Page 54

