
 1

CPU Sim
USER'S MANUAL

Version 3.4

January, 2007

by
Dale Skrien

assisted by Raymond Mazza III, Joshua Ladieu, Jonathan Weinberg, Andreea Olea,

Thomas Cook, Patrick Rodjito, Tim Monahan, Mike Liedtke, Peter Landwehr, Taylor
Snook, Charlie White, Brian Putnam, Tom Goth, Mike Wolk and Cadran Cowansage

Preface

 This manual is describes how to use version 3.4 of the CPU Sim simulation
system. This simulator is based on the ideas in the STARTLE simulator developed by
J.M. Kerridge of the Department of Computer Science, University of Sheffield, Sheffield,
England. Report any problems or suggestions to Dale Skrien, Department of Computer
Science, 5851 Mayflower Hill, Colby College, Waterville, Maine 04901, phone 207-859-
5851. (Email: djskrien@colby.edu) (Web page:
www.cs.colby.edu/~djskrien/CPUSim/)

Acknowledgments

 The author and programmers would like to acknowledge the following people
whose code was used in this package:

• Mark Fisher for his JavaHelp demo code1,

1 “JavaHelp for the Java Programmer” by Mark Fisher, JavaReport, June, 1999.

 2

• David Flanagan for his PageableText class2,

• Mark Johnson for his HtmlEncoder and LAX classes3,

• Philip Milne for his TableSorter and TableMap classes4,

• Matthew Robinson and Pavel Vorobiev for their FindDialog, DialogLayout and
PrintPreview classes5,

• Robb Shecter for his OOTableModel class6,

• Klaus Berg for his EFileChooser package7,

• Tom Tessier for his JScrollableDesktopPane package8,

• Slava Pestov for his JEditTextArea package9,

• Benjamin Michotte for his Text utility class10

• The ACM Java Task Force group for the IOConsole class11.

INTRODUCTION

 CPU Sim is an interactive computer simulation package in which the user
specifies the details of the CPU to be simulated, including the register set, memory, the
microinstruction set, machine instruction set, and assembly language instructions.
Users can write machine or assembly language programs and run them on the CPU
they’ve created.

 CPU Sim simulates computer architectures at the register-transfer level. That is,
the basic hardware units from which a hypothetical CPU is constructed consist of
registers, condition bits, and memory (RAM). The user does not need to deal with
individual transistors or gates on the digital logic level of a machine. The basic units
used to define machine instructions consist of microinstructions of a variety of types.
The details of how the microinstructions get executed by the hardware are not
important at this level.
 A user of CPU Sim who wants to simulate a new hypothetical CPU must first
specify the hardware units and microinstructions for the CPU and then create the
machine instruction set. Each machine instruction is implemented via an associated
sequence of microinstructions specified by the user.
 Once the instruction set has been specified, the user can write programs for the

2 Java Foundation Classes in a Nutshell by David Flanagan, copyright (c) 1999 by O'Reilly & Associates.
3 “Programming XML in Java” by Mark Johnson, JavaWorld, April, 2000.
4 “The Java Tutorial” at http://java.sun.com/docs/books/tutorial.
5 Swing by Matthew Robinson and Pavel Vorobiev, Manning Publications Company, 1999.
6 “Object-Oriented Widgets” by Robb Shecter, JavaReport, December, 1999
7 http://www.javaworld.com/javaworld/javatips/jw-javatip100.html
8 http://www.javaworld.com/javaworld/jw-11-2001/jw-1130-jscroll_p.html
9 http://www.jedit.org/
10 http://www.usixml.org/javadocs/michotte/be/michotte/util/Text.html
11 http://jtf.acm.org/
13 www.cs.colby.edu/~djskrien/CPUSim

 3

new CPU, in either machine language or assembly language, which can be run in the
CPU Sim environment.
 CPU Sim executes a program through repeated execution of machine cycles.
One cycle has two parts: the fetch sequence, which is a sequence of microinstructions
that typically loads the next instruction to be executed into an instruction register and
decodes it, and the execute sequence, which is the sequence of microinstructions
associated with the newly-decoded instruction. The fetch sequence is the same for all
cycles, but the execute sequence can, and usually does, vary from cycle to cycle.
Execution of machine cycles halts when a “halt” bit is set to 1.
 CPU Sim has many useful features for running programs and debugging them.
For example, CPU Sim has a built-in text editor and assembler for creating and
assembling programs. The editor will highlight the offending section of the program
when the assembler finds an error. Assembled programs can be executed without
stopping or they can be executed in debugging mode, which allows the users to step
through the execution of a program, one machine instruction or microinstruction at a
time. After each step, users can edit the contents of any register or memory and then
continue stepping or even back up one microinstruction or machine instruction at a
time, all the way back to the initial state of the machine.
 The ideas for this simulator came from the “STARTLE” simulator developed by
J.M. Kerridge of the University of Sheffield.

STARTING CPU Sim

 CPU Sim is a Java application and so requires that you have a Java runtime
environment (JRE) installed on your computer. CPU Sim should run with JRE 1.5 or
later.

After having successfully downloaded and unzipped CPU Sim from the CPU
Sim web page13, you can start up the program using a command line or terminal
window, as described in the “InstallationInstructions.txt” file that is included in the
download:

• Open a command or terminal window and navigate to the "CPUSim3.4.X" folder.

• Type in one of the following commands (all on one line):
o (Windows users)

java -cp CPUSim3.4.jar;jhall.jar;CPUSimHelp3.4.jar
cpusim.Main

o (Mac or Linux users)
java -cp CPUSim3.4.jar:jhall.jar:CPUSimHelp3.4.jar

cpusim.Main

• You can also add four optional arguments at the end of the command line in any
order:

 -m <machine file name>
 -p <properties file name>
 -t <text (assembly program) file name>
 -c

 4

If you specify a machine file using the –m flag, then that machine is loaded into CPU
Sim during startup. If you specify a text file using the –t flag, then that file is
opened during startup. If you specify the -c flag, which can only be used together
with the –t and –m flags, then the corresponding text file and machine file will be
loaded and run from the command line. If you specify a properties file using the –p
flag, then the properties in that file are loaded into CPU Sim during startup. A
properties file contains information regarding the preferred fonts for text, register,
and RAM windows and a list of the recently opened machines and text files.

For example, to start up the Wombat1 machine and load the W1-0.a assembly
language program that appear in the SampleAssignments folder, you could type in
the following command (all on one line) on Windows:

java -cp CPUSim3.4.jar;jhall.jar;CPUSimHelp3.4.jar cpusim.Main -m
SampleAssignments/Wombat1.cpu -t SampleAssignments/ W1-0.a

Notes:
o If the user does not specify a machine file, a new empty machine is opened.
o CPU Sim searches its directory for any files you specify on the command line, so

you must include the directories relative to that location.
o If you use the –c flag, you must also specify a machine and text file using the –m

and –t flags. In that case, the CPU Sim GUI windows never appear. Any input
or output channels in the machine normally directed to a console window or to a
dialog are redirected to the command line. Input and output channels directed
to a file are not redirected to the command line.

As always, users can create short cuts to avoid typing such a long command. For
example, Linux users can put the above command in a script file. Windows users can
create a .bat file containing the command above that they can double-click to start up
CPU Sim. Such a file, named "CPUSim.bat", is including in the CPU Sim installation
package. Macintosh users can create AppleScript documents that do the same thing.

RUNNING PROGRAMS IN CPU SIM, A Tour using the Wombat1

 This section demonstrates how to use CPU Sim to run a program on a
hypothetical machine. In this tour, we will (a) load into CPU Sim the hypothetical
machine “Wombat1” that has already been defined and saved in a file, (b) open an
assembly language program for the Wombat1, (c) assemble the program, (d) load it into
the Wombat1’s memory, and (e) run it.

 To begin, start up CPU Sim without any of the four optional flags mentioned in
the preceding section. The window that will appear is the main “desktop” window for
CPU Sim. Except for some dialog boxes, all windows used by CPU Sim are windows
internal to the desktop window. Such windows include text windows for writing and
editing assembly programs and display windows for viewing and editing the contents
of registers and memory.
 If you do not specify a machine on the command line when starting CPU Sim,

 5

then the title of the main display window is “New” since, if no machine is specified, a
new virtual machine is created that has no registers and no memory.

Figure 1. The main display after the Wombat1 has been loaded.

 To load a previously saved machine, choose “Open machine…” from the File
menu. You will be presented with a dialog box in which you are supposed to select a
file. To continue with this tutorial, select and open the text file named “Wombat1.cpu”.
It should be found in the SampleAssignments folder included with CPU Sim. (Note:
The Wombat1.cpu file is a text file in XML format that contains the information for the
Wombat1 machine.) If the machine loads without error, then the title of the main
display should become “Wombat1” and two windows should appear inside the
desktop (see Figure 1).

The window labeled “Registers” displays all the registers of the Wombat1

 6

including their widths and current values. To see the values in every register displayed
in binary (base 2), signed 2's complement decimal (base 10), unsigned decimal (base 10),
hexadecimal (base 16), or as characters (ASCII or Unicode), select the appropriate item
from the popup menu at the top of the window. Values in binary and hexadecimal
format are displayed in four digit groups for readability. The values of the registers can
be edited in any of these display formats by clicking in the appropriate cell of the table,
typing in a new value, and then pressing the enter or return key. The edited values will
be automatically reformatted into groups of four characters if the user is working in
binary or hexadecimal.
 The window labeled “RAM Main” shows the contents of the RAM named
“Main”. As with the registers, you can display the values in base 2, 10 (signed or
unsigned), 16, or in ASCII or Unicode, and, as with the registers, values in binary and
hexadecimal format are grouped in four digit units. You can also view the addresses as
positive integers in base 2, 10, or 16. You can view the contents of RAM in units of 1-8
bytes instead of just 1 byte. Since the Wombat1 uses 16-bit instructions, it is helpful to
view RAM in 16-bit units, so we have selected a cell size of 2 in the popup menu in the
RAM window. The values of all cells are editable except the cells in the address column.
 Leave the registers and RAM windows open for the remainder of this tour.
 Note: The table columns in any of these windows can be reordered by dragging
the column headers left or right to a new position. The column widths can also be
adjusted by dragging the line dividing the columns. In all windows except the RAM
windows, the rows can be resorted by column by clicking in any column header.
 The bottom panel of the main display is labeled “Console” and is used for
console input and output. That is, the user can type data into the Console panel when
prompted for input and CPU Sim can type data in the panel for output.

 Now let's open a Wombat1 assembly language program. To do so, choose
“Open text…” from the File menu and choose the file “W1-0.a”. This file may be found
in the same folder as the Wombat1.cpu file. After you have selected it, a window will
appear containing the text of the file (see Figure 2). The first three lines are comments
(comments begin with a semicolon and are shown in italics font in Figure 2). The
remaining lines consist of instructions followed by comments. The instructions consist
of the name of a Wombat1 machine instruction (“load ”, “store ”, etc., written in a
bold blue font). Some of the instructions are followed by an argument and some of
them have a label in front (labels end with a colon and are shown in a bold burgundy
font). The “.data ” instruction is actually a pseudo-instruction used by the assembler
to allocate memory for the variable “sum”. The assembler syntax is described in more
detail below in the section entitled “SPECIFICATIONS OF ASSEMBLY LANGUAGE
FOR CPU SIM MACHINES.”

 7

Figure 2. A Wombat1 assembly language program.

 Before you can run this program, you must assemble it into machine language
instructions that the Wombat1 can understand and then load those instructions into the
Wombat1’s memory. To do so, choose “Assemble & Load” from the Execute menu.
(Note: If this menu item is disabled, the assembly language text window W1-0.a is not
the currently-selected, i.e., highlighted, window. In that case, click on the text window
before choosing “Assembly & Load”.) You should see numbers and comments appear
in the first few rows of the table in the RAM window. The numbers in the data column
of the RAM window are the machine language instructions generated by the assembler
from the assembly language program. The comments column of the RAM window
displays the lines of assembly code from which the corresponding machine instruction
was generated.
 Now the program in the main memory is ready to be run. Make sure all the
registers have been cleared (set to 0). If some of them are not 0, then either edit the
values to make them 0 or choose “Clear all registers & arrays” from the Execute menu.
Then choose “Run” from the Execute menu. The program will begin execution with the
instruction whose address (namely, 0) is stored in the program counter pc. The machine
runs by repeatedly executing machine cycles consisting of the fetch sequence, which
loads into the ir the instruction whose address is in the pc and then decodes the
instruction, followed by the execute sequence, which executes the machine instruction

 8

that was just decoded. At this point, the console panel should ask you for input. Type a
positive integer into the console panel and press the return key or enter key. Notice that
the program will halt execution until an input value has been typed into the console.
Repeat this process several times and then type in a negative number. The program
will display an output message in the console panel giving the sum of all the positive
numbers you typed in. This will be followed by a second output message in a new
dialog box indicating that the program has ceased execution because a condition bit was
set to 1. When execution is complete, you can see the final state of the registers and
RAM in the registers and RAM windows.

 If you wish to rerun the program with different input, you can proceed in two
ways. You can either perform a two step process of selecting “Clear everything” from
the Execute menu, and then choose “Assemble, load, & run” from the Execute menu, or
you can select “Clear, assemble, load & run” from the Execute menu. While both of
these methods perform the same function, “Clear everything” and “Assemble, load, &
run” are divided into two separate operations in case you want to debug your program,
as explained below.

When you are debugging assembly code, it is useful to be able to step through
the execution, one instruction or microinstruction at a time, and to set break points in
the code. To practice debugging using the Wombat1 and the program W1-0.a, first
select “Clear everything” from the Execute menu, and then choose “Assemble & load”
from the Execute menu. Then select "Debug Mode" from the Execute menu. You will
see a toolbar appear at the top of the display (see Figure 3). You will also see check
boxes appear in a new column on the left side in the Main RAM window. When you
are in debug mode, you cannot edit the machine’s parameters and so the Modify menu
is disabled. However, you can still edit the contents of registers or RAMs.

Figure 3. The debugging toolbar

Let us now use debugging mode to step through the execution of the W1-0.a

program. Notice that, on its right end, the debugging toolbar says that the next
instruction is the fetch sequence. If you click “Step by Instr” from the toolbar, then a
complete machine cycle will be executed. Do so now. The fetch sequence will be
executed, which will fetch and decode the “read” instruction, and then the "read"
instruction's execute sequence will be executed, causing the machine to ask you for
input in the console panel at the bottom of the desktop window. After typing the input
in the console and pressing return, you will see that the value that you typed is now in
the acc register. You can also see that the next instruction is again the fetch sequence. In

 9

summary, each click of “Step by Instr” causes a full machine cycle to be executed,
consisting of the fetch sequence followed by the execute sequence of the instruction that
was fetched. As you step through the execution, note that the next machine instruction
to be executed is highlighted in the RAM window. If you wish, you can edit the
contents of any of the registers or RAM between steps.

Both the fetch sequence and the execute sequence of the instructions that are
fetched are comprised of a series of smaller, more basic steps called “microinstructions”.
The list on right side of the debug toolbar displays the microinstructions making up the
current fetch sequence or instruction.

If you click “Step by Micro” from the toolbar, then only one microinstruction will
execute, namely the microinstruction highlighted in the scrolling list on the right end of
the debug toolbar. If the microinstruction that is executed changes a value in the RAM
or Registers, then the data in the RAM or Registers that is changed during execution is
outlined in green. When this microinstruction finishes execution, you will see that the
next microinstruction that is to be executed becomes highlighted in the scrolling list on
the right end of the debug toolbar, while the current machine instruction remains
highlighted in the RAM window.

If the microinstruction that you execute is the final “end” microinstruction of a
particular machine instruction, then the current machine cycle is ended. A new
machine cycle will begin execution next with the fetch sequence and the scrolling list of
microinstructions will be updated to display the microinstructions in the fetch
sequence. The first microinstruction in the fetch sequence will be highlighted and the
next machine instruction will be highlighted in the RAM window.

You can also return to any previous state by backing up one machine or
microinstruction at a time. To do so, repeatedly choose “Backup one Instr” or “back up
one Micro” from the toolbar. No matter what microinstruction you are currently
executing, if you click “Backup one Instr”, the state of the CPU will revert back to the
state at the beginning of the machine cycle. If you click “Back up one Micro”, the cells
outlined in green in the Registers and RAM windows are updated to reflect those
values that were changed in the previous microinstruction. To set break points in your
code, check the box on the left of any line of code in the Main RAM window. When the
CPU accesses that line of code (for example, when that line is loaded into the CPU for
execution), the program will halt. At that point you can inspect or change any of the
values in the register or RAM windows and resume execution or step forward or
backward.

To learn more about debug mode, see the section of this manual entitled
“EXECUTE MENU - RUNNING A PROGRAM ON THE SIMULATED MACHINE”.

 At this point, you have many options. You can continue stepping through the
program one instruction or one microinstruction at a time by clicking the appropriate
button or you can continue execution without stopping by clicking the "Go" button.
Alternatively, you can (a) backup up all the way and run the same program again with
different input, (b) create or load a new assembly language program in a text window,

 10

assemble it, and then run it, (c) create or load a new machine instead of the Wombat1,
or (d) quit.
 To quit CPU Sim, just choose “Quit” from the File menu. You may be asked
whether you want to save the changes to the Wombat1 or an assembly language
program. Click “No” for each of these and then CPU Sim will quit running.

CREATING NEW MACHINES IN CPU SIM, A Tour using the Wombat1

 To demonstrate how to use CPU Sim to create a new hypothetical machine or
CPU, we will outline the construction of the “Wombat1” machine used in the first tour.
We will only demonstrate some of the principles of constructing a new machine since
completing the whole machine here, especially all the microinstruction and machine
instruction specifications, would be somewhat time consuming.

 Start up CPU Sim or, if you left it running after the previous tour, choose “New
machine” from the File menu. The default new machine has no registers, no memory,
and no machine instructions.

 The machine we will now construct, the Wombat1, is a single-accumulator
machine using six registers: acc (the accumulator), pc (the program counter), ir (the
instruction register), the mar (memory address register), mdr (the memory data register),
and the status (the status register). The basic structure of the Wombat1 is shown in
Figure 4. The status register is 3 bits wide, the pc and mar are 12 bits wide and the other
three registers are 16 bits wide. The Wombat1 also has a main memory (RAM)
consisting of 128 bytes. The arrows in the figure indicate the movement of data by the
microinstructions.
 The pc contains the address of the main memory location that contains the next
instruction to be executed. In the fetch sequence (the first part of every machine cycle),
the next instruction to be executed is copied into the ir, where the instruction is
decoded. Then the instruction is executed, which completes the machine cycle. This is
followed repeatedly by more machine cycles, each consisting again of the execution of
the fetch sequence followed by the execution of a machine instruction.
 All computations are done in the acc. The mar and mdr are the registers through
which data is transferred to and from the main memory.
 There are 12 machine instructions for the Wombat1, each associated with a 4-bit
opcode. These instructions are: HALT (stop), READ (get input from the user), WRITE
(send output to the user), LOAD (transfer data from the main memory to the acc),
STORE (transfer data from the acc to the main memory), ADD (add a value from the
main memory to the value in the acc, putting the result in the acc), SUBTRACT,
MULTIPLY, DIVIDE (all similar to ADD), JMPZ (if the value in the acc is 0, jump to a
new location to obtain the next instruction to be executed), JMPN (if the value in the acc
is less than 0, jump to a new location to obtain the next instruction to be executed),
JUMP (jump to a new location unconditionally).

 11

Figure 4. Diagram of data movement in the Wombat1.

 We will now outline how one can create the Wombat1 machine by adding
components and instructions to the default empty machine. To begin this process, it is
always best to start at the lowest level, namely the basic hardware components. So
choose “Hardware Modules...” from the Modify menu. The dialog box that appears
allows you to edit the registers, register arrays, condition bits, and memory of a
machine. You can add new components and modify or delete existing components. To
modify a component, first select the type of the component in the popup menu at the
top of the dialog. This causes the parameters associated with all existing components of
that type to be displayed in the table in the center of the dialog box where they can be
edited. The Wombat1 computer needs the six registers mentioned above, so select
"Register" as the type of module and then click the “New” button six times. Finally edit
the name and width of each of the six registers so that they match the description of the
Wombat1 given above (see Figure 5).
 The next piece of hardware to edit is the machine’s main memory. To do so,
select “RAM” from the popup menu at the top of the Edit Modules dialog, click “New”
and set the name to “Main” and length to 128 for the new memory component.
 Finally, the Wombat1 needs to specify a halting condition bit and so select
“ConditionBit” from the popup menu at the top of the dialog. Click “New” and then
set the name of the condition bit to “halt-bit”, the register to the status register, the bit to
0, and check the “halt” box.

acc pc ir

mdr

mar

status

main memory

input/output

 12

Figure 5. The dialog for editing the hardware modules.

 The meanings of all the parameters of the hardware components are described in
more detail at the end of this manual in the section entitled “SPECIFICATION OF THE
SIMULATED HARDWARE UNITS”. You can also find out more information from the
online help that appears when you click the “Help” button in this dialog box (and most
other dialog boxes).

Close the Edit Modules dialog box by clicking the “OK” button.
 Now we need to construct the necessary microinstructions that will be used to
implement the machine instructions. There are 7 transfer, 4 arithmetic, 2 test, 1
increment, 1 decode, 2 io, 2 memory access, and 1 set condition-bit microinstructions
that need to be created. The 7 transfer microinstructions are displayed by arrows
between the registers in Figure 4 above.
 To see how to create the transfer microinstructions, choose the menu item
“Microinstructions…” from the Modify menu and then choose “TransferRtoR” in the
popup menu at the top of the dialog that appears (see Figure 6). “TransferRtoR” type

 13

microinstructions are for transferring a contiguous set of bits from one register to
another register. To create the first transfer microinstruction, click the “New” button.
We will edit this first microinstruction so that it transfers the contents of the pc to the
mar. Click in the table cell with the “?” in it (in the column headed "name") and type in
“pc->mar” (you can give the microinstructions any name you want, but it helps to
choose something descriptive). Select the “pc” as the “source” register and the “mar” as
the “destination” register, with bit 0 as the start bit for both registers and give numBits
the value 12. This means that we want to transfer all 12 bits between the registers. Now
this microinstruction is complete. If you want to create the remaining 6 transfer
microinstructions in the Wombat1, continue adding new microinstructions in the same
manner (see Figure 6). The microinstructions of the other types needed for the
Wombat1 can be created similarly by first selecting the appropriate type of
microinstruction in the popup menu at the top of the dialog and then creating the
microinstructions of that type. We will not go through the details in this tutorial. When
you are finished, close the Edit Microinstructions dialog box by clicking “OK”.

Figure 6. The dialog for editing microinstructions.

 14

 The detailed descriptions of all the parameters displayed in the microinstruction
dialog boxes can be found in the section of this manual entitled “SPECIFICATION OF
THE MICROINSTRUCTIONS”.

 Once all the microinstructions have been created, the fetch sequence can be
constructed. To do so, choose “Fetch Sequence” from the Modify menu. The fetch
sequence is specified by a list of microinstructions. The default sequence is empty. The
current fetch sequence list is displayed in the left scroll box entitled “Implementation”.
To add microinstructions to it, first display the microinstructions of the type you want
in the tree of microinstructions in the right side of the dialog by clicking on the dial to
the right of the folder corresponding to the desired type. Then highlight the
microinstruction you want by clicking on it. (Note: If you realize you need to create or
modify a microinstruction before inserting it in the fetch sequence, you don’t need to
close this dialog. Instead you can just double-click on the tree of microinstructions on
the right and the dialog for editing and creating microinstructions will appear.) Next,
to specify where the new microinstruction is to be inserted into the fetch sequence, click
on the microinstruction in the left scroll box before which you want to insert the new
microinstruction. Finally, click “<<insert<<” (see Figure 7).

 15

Figure 7. The dialog for editing the fetch sequence.

To remove a microinstruction from the fetch sequence, click on it in the left scroll

box to highlight it, and then click “>>delete”. You can reorder the microinstructions in
the list on the left by dragging them up or down to a new position. When you are done,
click “OK”.
 Now the 12 machine instructions of the Wombat1 need to be created. Choose
“Machine Instructions...” from the Modify menu. The dialog box that appears allows
you to edit machine instructions, including the name, opcode, field lengths, and the list
of microinstructions that form the execution sequence of each instruction. The name
you specify for a machine instruction is used in assembly language programs to execute
that instruction. The opcode is specified in hexadecimal notation. The field lengths
give the number of bits in each field of the instruction, including the opcode field (the
first field) and all operand fields. For example, if an instruction has field lengths of 4
and 12, then the opcode occupies the leftmost 4 bits and the remaining 12 bits of the
instruction form the only operand. All Wombat1 machine instructions have 4-bit and
12-bit fields, but for some of the instructions, the 12-bit field is ignored (such fields are
denoted by putting parentheses around them in the fieldLengths column). As in other
such dialog boxes, if you wish to create a new machine instruction, click “New” and
then edit the parameters of that instruction (see Figure 8). Once all machine instructions
have been created, click “OK”.
 The detailed descriptions of all the parameters displayed in the machine
instruction dialog box can be found in the section of this manual entitled
“SPECIFICATION OF MACHINE INSTRUCTIONS”.

 16

Figure 8. The dialog for editing machine instructions.

 At this point, if you had created all the microinstructions, machine instructions
and fetch sequence, the machine would be complete. You can at any time go back and
change any part of the machine. To save the machine to a file, choose “Save machine”
or “Save machine as…” from the File menu. CPU Sim saves the details of the machine
as text in an XML file.
 To see all the details of the machine in a more user-friendly format than XML,
choose “Save machine in HTML…” from the File menu. You will be asked to type in
the name of the HTML file into which the data will be saved. This file can be opened
and viewed with any web browser. An HTML file displaying the details of the
Wombat1 machine is included with CPU Sim in a file named “Wombat1.html”.

 17

CREATING NEW MACHINES FROM EXISTING ONES

If you want to create a machine that is a modification of an existing machine, it is
recommended that you create a copy of the existing machine by choosing “Save
machine as…” from the File menu and typing in a new name for the file, and then
modify the copy that is stored in the new file. CPU Sim does not allow you to create a
new machine by cutting and pasting components from an existing machine.
 While you are in the process of creating a new machine from an existing
machine, you may find it frustrating in that you will not be allowed to change some
parameters because of the uses to which they are currently being put. For example, you
are not allowed to delete a register if one of its bits is being used as a condition bit. For
another example, you cannot reduce the width of a register to less than 12 if that
register is the source of a transfer microinstruction that transfers 12 of the register’s bits
to another register.
 To get around these problems, start by adding any new components (registers,
register arrays, condition bits, and RAMs) you want. That is, first create new registers
and other components without deleting any of the old ones. After this is done, adjust
the microinstructions to use these new components instead of the old ones. Only after
all this has been done should you delete any of the old components.
 Once this task has been completed, you can change the names of the new
components or instructions back to the names used by the old components if you wish.
This will create no problems because CPU Sim uses the names of hardware items and
microinstructions only for display purposes.

 The remaining sections of this manual include descriptions of the main desktop
window’s menu items, as well as a complete specification of the hardware,
microinstructions, and machine instructions that can be created using CPU Sim.

FILE MENU - OPENING AND SAVING YOUR SIMULATED MACHINE AND
PROGRAMS

The File menu (see Figure 9) provides the usual items for loading new or existing
machines, opening or closing text windows containing assembly language programs,
printing and displaying information about the machine or programs, and exiting CPU
Sim.

 18

Figure 9. The File menu.

Note:

1. When a CPU Sim machine is saved to a file, all the parts are saved, including the
hardware components (registers, register arrays, condition bits, RAMs), the
microinstructions, the fetch sequence, and the machine instructions. The file also
saves the global EQUs, the position and size of the register and RAM display
windows, the highlighting, loading, and IO connection options chosen by the
user (from the Options submenu under the Execute menu). However, the state of
the machine is not saved; in particular, the current contents of the registers and
RAMs are not saved.

2. CPU Sim machines are saved in a text file in XML format, which means that you
can edit the saved machine from any text editor (including CPU Sim's built-in
text editor). But you must be careful that the edited file still fulfills the data type
definition (DTD) of a CPU Sim machine file or CPU Sim will not be able to load
your edited machine. (Note: the DTD is included as part of the XML file.)

The "New text" menu item causes CPU Sim to create and open an empty text

window in which the user can type a new assembly language program. The text
window is like any basic text editor window, including the usual cutting and pasting
and an arbitrary number of undo's and redo's.

 19

The "Open text…" menu item displays a dialog box asking you to choose a file.
You normally select a text file in which you had previously saved an assembly language
program.

The “Reopen text” menu contains a list of the 10 most recently opened text files.
This list is saved between sessions in the properties file specified on the command line
when CPU Sim is started, so that when you quit CPU Sim and restart it later, the
“Reopen text” menu will be populated with the same list as it had when you quit CPU
Sim. If no properties file is specified when CPU Sim is started, then the “Reopen text”
menu items will not be saved between sessions.

The "Close text" menu item closes the selected (topmost) text window. If the
contents of the window have been changed since the window was last saved, the user is
presented with a dialog box asking whether you wish to save the contents first.

The "Save text" menu item saves the contents of the selected (topmost) text
window to a text file. If the user has not already saved the contents to a file, a dialog box
is displayed asking the user to select a name and location for the file.

The "Save text as…" menu item displays a dialog box asking you to choose a file
into which the contents of the selected (topmost) text window will be saved.

The "Load RAM..." menu item displays a dialog box asking you to choose a file.
You should select a text file in which you had previously saved the contents of a RAM
window using the “Store RAM…” menu item. The contents of the file will be loaded
into the currently-selected RAM window.

The "Store RAM..." menu item displays a dialog box asking you to choose a text
file into which the contents of the selected (topmost) RAM window will be saved. The
data will be saved as text in binary format (that is, the data will be saved as strings of 0's
and 1's) and the comments will be saved on the same line as the corresponding data.

The "New machine" menu item causes CPU Sim to create a new machine with no
hardware (registers, condition bits, or RAMs), no machine instructions, and only one
microinstruction ("End").

The "Open machine…" menu item displays a dialog box asking you to choose a
file. You should select a file in which you had previously saved a machine through the
use of the "Save machine" or "Save machine as…" menu items.

The “Reopen machine” menu contains a list of the 10 most recently opened
machine files. This list is saved between sessions in the properties file specified on the
command line when CPU Sim is started, so that when you quit CPU Sim and restart it
later, the “Reopen machine” menu will be populated with the same list as it had when
you quit CPU Sim. If no properties file is specified when CPU Sim is started, then the
“Reopen machine” menu items will not be saved between sessions.

The "Save machine" menu item saves the current machine in a text file in XML
format. If the current machine has never been saved to a file before, a dialog box
appears asking you to type in the name of the file into which the machine will be saved.

The "Save machine as…" menu item presents you with a dialog box asking you
to type in the name of the file into which the machine will be saved.

 20

The "Save machine in HTML…" menu item creates a new HTML document
containing a user-friendly description of the current machine, including all its details.
The HTML document can be opened and viewed using any web browser.

The "Print preview…" menu item displays a thumbnail sketch of the pages as
they would be printed for the currently selected text window.

The "Page Setup…" menu item brings up the usual page setup dialog, from
which you can set the page size, reduction or enlargement, and other printing options.

The "Print…" menu item brings up a dialog for printing the contents of the
selected window.

The "Exit CPU Sim" menu item causes CPU Sim to quit. If changes have been
made to the currently loaded machine since the last time you saved it, CPU Sim asks
you whether you want to save the current machine before quitting. Similarly, if changes
have been made to any text window since the last time you saved it, CPU Sim asks you
whether you want to save the contents before quitting.

EDIT MENU

 The Edit menu items (see Figure 10) work with any text window. The user must
first select (bring to the front) the text window to be edited.

 Figure 10. The Edit menu.

 “Undo” can undo the last change made in the selected text window. “Redo” will
redo the last change that was undone. An arbitrary number of undo's and redo's can be
done to the changes in any of the text windows.
 “Cut”, “Copy”, “Paste”, “Delete”, “Select All”, "Find, and "Replace" work in the
usual fashion.
 The “Preferences…” menu item brings up a dialog box in which you can change
the font, font size, and font style for the text windows containing assembly code and for
the display of the contents of Register and RAM windows. You can also change the

 21

default syntax coloring used in text windows for the labels, keywords, and comments.
The preferences you choose are saved between sessions in the properties file specified
on the command line when CPU Sim is started, and so, for example, when you quit
CPU Sim and restart it later, the Register and RAM windows will use the same font as
when you quit CPU Sim. If no properties file is specified when CPU Sim is started, then
the user’s font choices will not be saved between sessions and the default font, size, and
style will be used.

MODIFY MENU- CHANGING THE COMPONENTS

There are several dialog boxes that can be called up for the purpose of changing
the components of the current machine. To call up these dialog boxes, just select the
appropriate item from the Modify menu (see Figure 11).

Figure 11. The Modify menu.

 Note that such modifications are not allowed when CPU Sim is in debug mode
(that is, when the “Debug Mode” menu item is checked in the Execute menu).
 Almost all of the dialog boxes display a table in which you can inspect and edit
the parameters of existing components and in which you can add new components or
delete components, as demonstrated in the tutorial in an earlier section of this manual.
To delete a component displayed in the dialog box, select it in the table and then click
the “Delete” button. To create a new component, click in the “New” button, at which
point a new component will be added to the end of the table. To edit a cell, just click or
double-click on it. Some cells are edited by typing new text in them, some cells are
edited by selecting items from popup menus, and some cells are edited just by clicking
in the check box in the cell. If you try to enter an illegal value in a cell, either the cell will
become outlined in red (for example, if you type non-numeric values in a cell expecting
a numeric value) or an error message will appear when you try to save the changes you
made (for example, if you type in a numeric value that is out of range for that particular
cell).

The columns in any of these tables can be reordered by dragging the column
headers left or right to a new position. The column widths can also be adjusted by
dragging the line dividing the columns. The rows can be resorted by column by
clicking in any column header.

 22

Names of Components, Microinstructions, and Machine Instructions
All hardware components, microinstructions, and machine instructions must be

given names. You can name them anything you wish with the following conditions:

• You must use at least one non-space character in each name and you must have
different names for each unit of the same type. It is strongly recommended that all
components, microinstructions and machine instructions have unique names
regardless of the type.

• Machine instruction names must be valid symbols in the assembly language syntax,
which means they must consist of one or more letters, digits, underscores (_), plus
signs (+), and minus signs (-), and they must start with a letter. Only ASCII
characters are allowed.

Note that if you give a register array of length 4 the name "A", then the 4 registers in the
array will automatically be given the names "A[0]", "A[1]", "A[2]", "A[3]".

Help buttons
 Almost every dialog box in which parts of the machine can be modified contain a
button labeled “Help”. Clicking in the “Help” button causes the appropriate window
from the online help to appear giving you some extra (hopefully helpful) information
about the current dialog box.

Modifying registers, register arrays, condition bits, and RAMs
 To change the registers, register arrays, condition bits or RAMs of the current
machine, choose “Hardware modules…” from the Modify menu. You will see a dialog
box with a popup menu at the top with “Register” currently selected. See Figure 5
above for an example. In the table in the dialog box, you will see a list of all existing
registers. You can edit the parameters associated with any register or create new or
delete old registers. The width of a register refers to the number of bits in the register.
You cannot edit the contents of the registers (that is, the value stored in the registers)
using this dialog box. To edit a register’s contents, use the window that appears when
you choose “Registers” from the View menu.
 You can create, edit, and delete register arrays by selecting “Register Array”
from the popup menu at the top of the dialog box. A register arrayis an indexed list of
any number of registers. If the array has name “A” and if the array contains 4 registers,
then those registers are denoted by “A[0]”, “A[1]”, “A[2]”, and “A[3]”.
 By choosing “RAM” from the popup menu at the top of the dialog box, you can
create, edit, or delete any number of RAMs of any length. The length refers to the
number of bytes of data in the RAM. If you increase the length of a RAM, new memory
locations containing the value 0 will be added at the end of the RAM. If you decrease
the length of a RAM, some of the bytes at the end will be deleted and their contents will
be lost. Note that all RAMs are byte-addressable.
 By choosing “Condition Bit” from the popup menu at the top of the dialog box,
you can edit the condition bits of the current machine. A condition bit is a specific bit of
a register. The bit can be set to 0 or 1 by a SetCondBit microinstruction or it can be set

 23

to 1 if an overflow or carry out occurs in an Arithmetic or Increment microinstruction.
Also, you can specify whether you want the machine to halt execution when the bit gets
set to 1.
 The meanings of all the parameters of the hardware components are described in
more detail in the section entitled “SPECIFICATION OF THE SIMULATED
HARDWARE UNITS”.

Modifying the microinstructions
 If you choose “Microinstructions…” in the Modify menu, a dialog box will
appear displaying a table containing the parameters associated with the Set
microinstructions. Edit their values in ways similar to the ways you edit the parameters
of the registers, register arrays, RAMs, and condition bits as described above. To edit
the parameters of other types of microinstructions, select the desired type from the
popup menu at the top of the dialog box. See Figure 6 above for a picture of this dialog
when TransferRtoR microinstructions are displayed for the Wombat1 machine. For
more details on the meanings of the various parameters of each type of
microinstruction, see the section entitled “SPECIFICATION OF THE
MICROINSTRUCTIONS” below.
 Note that CPU Sim creates only one copy of each microinstruction, regardless of
how many places it is used in the fetch sequence and execute sequences of machine
instructions. Therefore any changes you make to a microinstruction will affect all
current uses of that microinstruction. As a result, it is usually a good idea to create a
new microinstruction using the New or Duplicate buttons and edit that
microinstruction rather than editing an existing microinstruction.

Modifying the fetch sequence
 When you choose “Fetch Sequence…” from the Modify menu, you will be
presented with a dialog box in which, on the left side, is listed the current sequence of
microinstructions forming the fetch sequence. See Figure 7 above for a picture of this
dialog when the Wombat1 machine has been loaded. If you wish to delete one of the
microinstructions from the sequence displayed on the left in the dialog, select it by
clicking on it. Then click the “>>delete” button. If you wish to insert a new
microinstruction in the sequence, first click on the dial to the left of the type of
microinstruction you want from the list in the right part of the dialog box. All existing
microinstructions of that type will then be displayed. Select the one you want by
clicking on it and then select in the list on the left of the dialog box the microinstruction
before which you wish to insert the new microinstruction. Now click on the “Insert”
button. If you want to add the new microinstruction to the end of the fetch sequence
then don’t select any microinstruction in the list on the left before clicking the
“<<insert<<” button. To reorder the microinstructions in the fetch sequence, just drag
them up or down in the list on the left side of the dialog box.
 A typical fetch sequence loads into an instruction register the contents of the
memory location whose address is in a program counter register. Then it increments

 24

the program counter and decodes the instruction in the instruction register. (An
instruction register is specified as a parameter of each Decode microinstruction, as
described below.) It is typically the case that the last microinstruction in the fetch
sequence is a Decode microinstruction because the execution of a Decode
microinstruction causes CPU Sim to (a) cease executing the fetch sequence, (b) decode
the contents of the instruction register, and (c) begin executing the execute sequence of
the machine instruction that was just decoded.
 It is often the case that, when you are modifying the fetch sequence, you need to
modify or create a new microinstruction and so you need to bring up the dialog box for
modifying microinstructions. To do so, you can double-click on the list of current
microinstructions on the right side of the dialog box, which will bring up the dialog for
editing microinstructions. When you are finished editing the microinstructions, you
can close that dialog box and can resume editing the fetch sequence. Important note:
Any changes that you make to microinstructions are applied to the current machine,
even if you cancel any changes to the fetch sequence.

Modifying the machine instructions
 To modify machine instructions, choose “Machine Instructions…” from the
Modify menu. The dialog box that appears (see Figure 8 above for a picture of this
dialog box when the Wombat1 is loaded) is similar to the fetch sequence dialog box
described above, except for the table on the left that displays all existing machine
instructions’ names, their opcodes, and their field lengths.

To edit an instruction’s name, opcode, or field lengths, double-click on the entry
in the table on the left and then type in the new value. For a discussion of what names
are legal, see the section above regarding naming components, microinstructions, and
machine instructions.

The opcode value is displayed in hexadecimal notation and a new value for the
opcode must be entered as a non-negative hexadecimal value. If you type in characters
that are not hex characters (the hex characters are 0-9 and a-f and A-F), the opcode box
you are editing will become highlighted in red and a bell will sound when you attempt
to save your changes.

The field lengths are entered as one or more positive (decimal) integers separated
by one or more spaces. The sum of all field lengths must be a multiple of 8.

You may optionally surround some of the field lengths by parentheses. In doing
so, you are telling CPU Sim that those fields are “don’t care” fields and are to be
ignored. In this case, no operand needs to be specified in assembly language for that
field when the instruction is executed. Instead, the assembler just fills that field with
0’s.

To modify the execute sequence of an instruction, first select the instruction you
wish to edit by clicking on it in the table on the left. Its execute sequence or
implementation (that is, the list of microinstructions that are executed when the
machine instruction is executed), will appear in the center of the dialog box. Modify
them as described above for the fetch sequence. To delete a machine instruction, first

 25

select it in the table on the left. Then click the “Delete” button. To create a new
machine instruction, click the “New” or “Duplicate” buttons.
 The “Duplicate” button allows you to create easily new machine instructions that
are variations of other machine instructions. To use this feature, select in the table on
the left the machine instruction you wish to duplicate before you click the “Duplicate”
button. A new machine instruction will be created with the same opcode, field lengths,
and microinstructions as the instruction you had selected. You can then edit the name
of the new instruction, its opcode, field lengths, and microinstructions as you would
any other machine instruction.
 Note that one microinstruction may appear in several machine instruction's
execute sequences. As mentioned above, CPU Sim creates only one copy of that
microinstruction, and so if you edit and change its parameters, then the changed
microinstruction will be used in the fetch sequence and in all the machine instructions'
execute sequences in which it appears.

Editing Microinstructions from the Fetch Sequence or Machine Instruction Dialogs
 It is often the case that, when you are modifying the fetch sequence or the
machine instructions, you will find that you need to modify or create a new
microinstruction. The easiest way to do so is to double-click on the list of current
microinstructions on the right side of the dialog box, which will bring up the dialog for
editing microinstructions. When you are finished editing the microinstructions, you
can close that dialog box and can resume editing the fetch sequence or the machine
instructions. Important note: Any changes that you make to microinstructions are
applied to the current machine, even if you cancel any changes to the fetch sequence or
machine instructions.

Modifying the EQUs
 Each machine can have some equates (EQUs) associated with them. These EQUs
are global constants available for use in any assembly language program written for
that machine. For example, if an EQU named “A0” with value 0 is available, then the
user can type in “A0” wherever a numerical value is expected in assembly language
programs and, during assembly, the symbol A0 will be replaced with the numeric value
of 0. To create or edit the global EQUs, select “EQU’s” from the Modify menu, and
then edit the cells of the table as you would any of the other tables described above.
The values of EQUs must be specified as decimal integers.

Note that you can also type EQU declarations directly in your assembly
language code. However, these EQU’s are local rather than global, in that they apply
only to the program in which they appear. Therefore, they will not be saved with the
current machine and will not appear in the global EQU table.
 Note that the names of all EQUs must be valid symbols in the assembly language
syntax described in the section “SPECIFICATION OF ASSEMBLY LANGUAGE FOR
CPU SIM MACHINES” below. That is, they must consist of one or more letters or digits
or '+' or '-' or '_' characters, and they must start with a letter. Only ASCII characters are

 26

allowed.

EXECUTE MENU - RUNNING A PROGRAM ON THE SIMULATED MACHINE

 Execution of an assembly language program in CPU Sim involves the following
steps:
1. load into CPU Sim the virtual machine on which your program is to be run,
2. initialize the contents of the registers to the values you desire,
3. create or open a text file that contains the assembly code to be run,
4. assemble and load the program into the main memory (RAM) of your simulated

machine,
5. run the program.
You have the choice of running the program without interruptions (other than those
caused by errors in your code) by choosing either “Assemble, load & run” or “Run”
from the Execute menu (see Figure 12), or you can step through the program one fetch
sequence and execute sequence or one microinstruction at a time by using debug mode.

Figure 12. The Execute menu.

 The "Debug mode" menu item causes the debug toolbar to be displayed (see
Figure 3 above). The use of the debug toolbar is described below.
 The “Assemble” menu item checks your code for legality. If the code is legal,
nothing happens. If the code is illegal, an error message will appear and the offending
line of assembly code will be highlighted for you to edit. Note that the code in any text
window must be saved to a file before it can be assembled. If you try to assemble it
before saving it, a dialog box will ask you to save it first. Note also that CPU Sim does
not create executable files or object files. Every time you want to run a program, that
program must be reassembled.
 The “Assemble & load” menu item assembles your code and, if it is legal, loads

 27

the assembled (machine) code into the simulated machine’s memory. The RAM into
which the code is loaded is not first cleared (set to 0), and so the only memory locations
that are changed are those into which the new code is loaded. If you want to clear the
rest of RAM, you need to do so first by choosing the appropriate menu item from the
Execute menu. Note: You can use the Options submenu of the Execute menu
(discussed below) to specify which RAM is to be loaded with the machine code and
what starting address is to be used.
 The “Assemble, load, & run” menu item is a convenience item that is equivalent
to choosing the “Assemble & load” menu item followed by the “Run” menu item.
Similarly, the “Clear, assemble, load & run” menu item is a convenience item that is
equivalent to choosing the “Clear everything” menu item followed by “Assemble, load
& run”.
 The “Run” menu item causes the machine to begin execution. The program will
always begin execution with the first microinstruction of the fetch sequence. The
program will stop when one of the following events occurs: (a) one or more condition
bits that are designated as halt bits have their values sets to 1, (b) an error occurs, (c) the
user chooses "Stop" from the Execute menu, (d) the user selects "Cancel" when an input
dialog is displayed, (e) the user presses enter or return instead of a value when input is
requested in the console panel.
 The "Stop" menu item causes the currently executing program to halt. This menu
item is particularly useful if the program gets into an infinite loop.
 The “Clear <X>" menu items are convenience items for initializing registers or
other components to 0 before beginning execution of a program. The "Clear everything"
menu item causes all registers, register arrays, and RAMs to be cleared. You can also
clear any individual register or cell of RAM by editing its contents in the register or
RAM windows.

The "Options|Highlighting..." menu item brings up a dialog box in which the
user can choose which lines of code are to be highlighted when the code is being
executed. Note that this highlighting occurs only when in debug mode. The
highlighting is specified via pairs consisting of a register and an RAM. The row of the
RAM whose address corresponds to the value of the register is highlighted. For
example, the user may wish to highlight the row of the stack corresponding to the
address in a stack top pointer register. The rows of RAM are highlighted after each
execution step. If the user wishes the highlighting to be updated after each
microinstruction step, then the "dynamic" checkbox should be checked. Otherwise, the
highlighting is updated only at the beginning of each machine cycle.

The "Options|Loading..." menu item brings up a dialog box in which the user
can specify which RAM is the code store, i.e., the RAM in which assembled code is to be
loaded. The user can also specify which address of the code store is to be the starting
address for loading.

The "Options|IO connections..." menu item is discussed in the next section.

IO Options

 28

The "Options|IO connections..." menu item brings up a dialog box in which the
user can specify where each IO microinstruction will get or put data. The dialog box has
a table with one row for each IO microinstruction in the current machine. The "name"
column gives the name of the IO microinstruction. The "connection" column gives the
current source or destination for the data when the microinstruction is executed. If the
connection is "[User]" then the data is sent to or read from the user via a dialog box, one
data value at a time. If the connection is "[Console]" then the data is sent to or read from
the user via the console, one data value at a time. If the connection is a file name, then
the data is sent to or read from that file. The file must be a text file. To change the
connection for an IO microinstruction, click on the connection entry for that
microinstruction to bring up a popup menu and select "[User]", “[Console]”, or "File...".
If you select “File...”, a dialog box will appear in which you can choose a new text file to
be the source or destination of the data. If two IO microinstructions both read from the
same file or both write to the same file, they do so using the same data stream. That is, if
one IO microinstruction reads a value from the file, then the other IO microinstruction
cannot read that value from the file and instead will read the next value.

When CPU Sim attempts to read an integer from a text file, it reads past any
white space (space, new line, carriage return, and tab characters), reads an optional '+'
or '-' character, and then reads and appends digits (0-9) until a non-digit character is
encountered. When CPU Sim attempts to read a character (ASCII or Unicode) from a
file, it just reads the next character of the file. . If you want to store binary data in a text
file to be read by an IO microinstruction, precede the binary value with a “0b”. For
example, if you want to store the binary value of “1101” then the text file should have
the value “0b1101”. If you want to store hexademical data in a file for later reading by
an IO microinstruction, precede the hexadecimal value with the prefix “0x”.

When CPU Sim attempts to write an integer to a text file, it first writes a space
character so that successively written integers can be distinguished from each other. It
then writes the integer in decimal format. When CPU Sim attempts to write a character
(ASCII or Unicode) to a file, it writes the character immediately with no additional
spacing.

When a program is run using the "Assemble, load, & run", "Run", or “Clear,
assemble, load & run” menu items in the Execute menu, the data files are opened just
before running and are closed when execution is halted (for whatever reason). If the
user enters debug mode, the files are opened when execution begins for the first time
(by clicking the "Go", "Step by Instr", or "Step by Micro" buttons). When in debug mode,
the files are not closed until the user clicks the "Reset All" or "Flush & Reset IO" buttons
in the debug toolbar, the user exits from debug mode, or the user selects a new
connection (using the "Options|IO connections..." menu item) for the IO
microinstruction connected to the file.

NOTE: Clicking the "Backup one Instr" or “Backup one Micro” buttons in the
debug toolbar does not back up the reading or writing of text files. That is, the current
position of reading from or writing to text files does not change when you click the
"Backup one Instr" or “Backup one Micro” button.

 29

Debug mode
 Debug mode provides you with several tools for finding bugs in your code,
including the following:

• You can step through the code one machine instruction or one microinstruction at a
time, and, as you do so, the name of the current machine instruction being executed
is displayed on the right end of the debug toolbar, along with the microinstructions
composing it, which are displayed in a scroll box. The specific microinstruction
being executed is highlighted in the scroll box. If you step by microinstruction,
then any register and RAM cells that are updated during execution are outlined in
green.After each step you can inspect and change the values stored in any register or
RAM.

• You can back up one machine instruction at a time, which resets the values of the
registers and RAMs to their state at the start of the last machine cycle.

• You can also back up one microinstruction at a time, which resets the values of the
registers and RAMs to their state at the start of the last microinstruction.

• You can specify cells of RAMs to be highlighted based on the address stored in
specified registers as you step through the code (using the "Options|Highlighting..."
menu item, as discussed above). For example, you can cause the top cell of the stack
to be highlighted after each step.

• You can specify break points at any cell in any RAM by checking the box on the left
side of that cell in the RAM window. When such a cell is accessed (via a
MemoryAccess microinstruction) for either reading or writing, the MemoryAccess
microinstruction is executed and then execution halts. When the program halts, the
address in RAM that caused the break is highlighted in red. Additionally, if the
RAM window is not open at the time that the break is reached, it will be opened
and, if the address in the RAM window where the break is located is outside of the
view window, CPU Sim will scroll to the specified location. At that point, you can
inspect and/or edit the contents of all registers and RAMs and back up or resume
execution. Once execution is resumed, the RAM address where the break occurred
will no longer be highlighted.

To enter debug mode, select the “Debug mode” menu item in the Execute menu.

This action will cause (a) a debug toolbar to appear below the main menu (see Figure 3)
and (b) a new column of checkboxes to appear on the left side of all RAM windows.

The debug toolbar contains 8 buttons and a text component and a scroll box. The
text component near the right end of the toolbar always displays the machine
instruction that is about to be or is currently being executed. At the start of a machine
cycle, it displays the fetch sequence first. There is also a scroll box to the right of the
text component that lists the microinstructions comprising the current machine
instruction or fetch sequence.
 The “Go” button causes execution to continue without interruption until one of

 30

the following happens:

• a condition bit that is designated as halt bit has its value set to 1,

• a break point is reached,

• the user stops the current execution by choosing "Stop" from the Execute menu

• the user chooses Cancel when an input dialog appears

• the user presses enter or return before entering a value when the Console panel asks
for input,

• an error occurs.
 The "Step by Instr" button causes the execution of one full machine cycle (a fetch
sequence followed by the execute sequence of the instruction decoded by the fetch
sequence). If part of a machine cycle has already been executed (by means of the "Step
by Micro" button or if the execution of a whole cycle was halted because of an error),
then clicking this button causes the rest of that machine cycle to be executed. The name
of the machine instruction currently being executed is displayed in the debug toolbar
near the right end.
 The “Step by Micro” button causes execution of one microinstruction in the
current fetch or execute sequence. The name of the microinstruction to be executed is
highlighted in the scroll box on the right end of the debug toolbar.
 The “Backup one Instr” button causes the machine to back up to the state it was
in at the beginning of the last machine cycle. You can continue backing up one machine
instruction at a time all the way to the initial state of the machine when you began
execution of the current program using the current machine in debug mode.
 The “Backup one Micro” button causes the machine to back up to the state it was
in at the beginning of the previous microinstruction. You can continue backing up one
microinstruction at a time all the way to the initial state of the machine. If you have
been backing up by microinstruction and then use the “Backup one Instr” button, the
machine will back up to the state it was in at the beginning of the last machine cycle.
From there you can back up by machine instruction or microinstruction, or you can step
forward by machine instruction or microinstruction.
 The “Reset All” button causes the machine to back up all at once to the initial
state it was in when the user starting executing the current program in debug mode
using the current machine. This action also causes the IO to be flushed and reset and the
control unit to be reset. This buttons functions similarly to “Clear everything” in the
Execute menu.

 The column of checkboxes in the RAM windows that appears when CPU Sim is
in debug mode is used for setting break points. CPU Sim will halt execution whenever
a MemoryAccess microinstruction attempts to read or write to a cell of memory with a
checked box. More precisely, the MemoryAccess microinstruction will be executed, the
row of the RAM window with the checked box will be highlighted in red (if the RAM
window is closed, it is opened automatically) and then execution will halt. At that
point, you can inspect and/or change the contents of any register or RAM and continue
execution or back up.

 31

 By checking the box in front of a memory cell containing a machine instruction,
you can halt execution when that instruction is reached (since that instruction needs to
be loaded into a register via a MemoryAccess microinstruction before it can be
executed).
 By checking the box in front of a memory cell containing data—for example, data
on the system stack—you can halt execution when that data is read or written.

Note:

• Between every step forward or backward, you can inspect and edit any values in the
registers or RAMs.

• One way to find errors in your programs is to step by machine instruction until you
reach a point where an error has already occurred. Then back up to the instruction
just before the error occurred. Finally step forward one microinstruction at a time
until you reach the precise microinstruction in which the problem occurred.

• If your program seems to be in an infinite loop, you can to choose "Stop" from the
Execute menu to halt the execution.

VIEW MENU – DISPLAYING COMPONENTS OF THE CURRENT MACHINE

 The View menu provides a way for the user to open and/or bring to the front
the windows displaying the components (registers or RAMs) of the current machine
(see Figure 13).

Figure 13. The View menu.

The “Registers” menu item will open a window displaying all the registers of the

current machine, including their widths and values. You can display the registers’
values in either binary, hexadecimal, decimal using 2’s complement notation, unsigned
decimal, ASCII, or Unicode.

Below the Registers menu item is a list of all the register arrays in the current
machine. By selecting one of these menu items, you can display the registers of the
selected register array and their values.

Below the register arrays are listed all the RAMs of the current machine. When
you select one of these menu items, a window opens displaying the contents of the
RAM. You can view the contents in binary, hexadecimal, decimal using 2’s complement
notation, unsigned decimal, ASCII, or Unicode and you can independently view the

 32

addresses in binary, hexadecimal or unsigned decimal. You can also adjust the cell size
and so view the contents of the RAM by individual bytes or by groups of bytes. For
example, if you choose a cell size of 2, the RAM window will treat each pair of bytes as
a 16-bit value and display it as such.

The "Comments" column of a RAM window can be used to store comments
regarding the use of each memory cell. When an assembly program is assembled and
loaded into the RAM, the rows in the “Comments” column next to each machine
instruction contain the corresponding assembly language instruction from which that
machine instruction was generated.

Note that every cell in the RAM window’s table is editable except for the cells in
the address column.

TEXT MENU – DISPLAYING TEXT EDITING WINDOWS

 The Text menu provides a way for the user to open and/or bring to the front
windows for displaying and editing text, usually consisting of assembly language
programs (see Figure 14).

Figure 14. The Text menu.

The "Tile" menu item causes all text windows to expand to fill the desktop, with
the space divided as evenly as possible among the windows.

The "Cascade" menu item causes all the text windows to overlap in a cascading
manner from the upper left corner of the desktop.

The bottom part of the menu lists all currently opened text windows with the
topmost one indicated by the radio button. You can select any of these items to bring
that window up front.

THE HELP MENU - GETTING ON-LINE HELP

The "General CPU Sim Help" menu item brings up the online help window,
which contains virtually the same material as this manual.

The "About CPU Sim..." menu item brings up a dialog box describing the CPU
Sim application, including the current version and contact information.

 33

KEYBOARD SHORTCUTS IN CPU SIM

There are many keyboard shortcuts for general actions—such as menu item
actions—and many shortcuts specifically for editing assembly language programs in
text windows. Here is a list of those shortcuts. Note that the Apple key is used instead
of the Ctrl key on Macintosh computers.

General Keyboard Shortcuts

Shortcut Action
Ctrl-N New text editor
Ctrl-O Open text editor
Ctrl-W Close text editor
Ctrl-S Save text editor
Ctrl-P Print
Ctrl-Z Undo
Ctrl-Y Redo
Ctrl-X Cut
Ctrl-C Copy
Ctrl-V Paste
Ctrl-A Select all
Ctrl-F Find
Ctrl-H Replace
Ctrl-G Assemble, load, & run
Ctrl-. Stop
Ctrl-R Clear everything
Alt-F Open File menu
Alt-E Open Edit menu
Alt-M Open Modify menu
Alt-X Open Execute menu
Alt-V Open View menu
Alt-T Open Text menu
Alt-H Open Help menu

Text Editor Keyboard Shortcuts

Shortcut Action
Ctrl-Backspace Backspace a word
Ctrl-Delete Delete a word
Ctrl-\ Toggle selection rect
Shift-Home Select Home
Shift-End Select End
Ctrl-Home Document Home
Ctrl-End Document End

 34

Ctrl-Shift-Home Select Document Home
Ctrl-Shift-End Select Document End
Shift-Left Select previous char
Shift-Right Select next char
Ctrl-Left Previous word
Ctrl-Right Next word
Ctrl-Shift-Left Select previous word
Ctrl-Shift-Right Select next word
Shift-Up Previous line
Shift-Down Next line
Ctrl-Enter Repeat

SPECIFICATION OF ASSEMBLY LANGUAGE FOR CPU SIM MACHINES

Syntax
The following context free grammar (CFG) gives the syntax of legal assembly language
programs. The start symbol for the CFG is Program . EOL is an end-of-line token and
EOF indicates the end of the file. Square brackets indicates an optional item. Items in
parentheses followed by “*” indicate 0 or more copies of those items. Items in
parentheses followed by “+” indicate 1 or more copies of those items. To separate
tokens that the assembler would otherwise treat as one token, use one or more spaces or
tab characters. Terminal symbols are displayed in bold and are surrounded by quotes.
Terminal symbols are case sensitive. A range of characters, such as all small case letters
of the alphabet, are indicated by the first character of the range and the last character
separated by a dash, as in “a-z”. All characters in an assembly language program must
be ASCII characters.

Program � [CommentsAndEOLs] EquMacroIncludePart InstructionP art EOF
CommentsAndEOLs � ([Comment] EOL)+
Comment � “ ;” <any-sequence-of-characters-not-including-EOF-or- EOL>
EquMacroIncludePart � ((EquDeclaration | MacroDeclaration |

Include) CommentsAndEOLs)*
Include � “ .include” <quoted-sequence-of-characters-not-including-

EOL-or-EOF-surrounded >
EquDeclaration � Symbol " EQU” Operand
MacroDeclaration � “ MACRO” Symbol [Symbol ([“ ,"] Symbol)*]

CommentsAndEOLs InstructionPart “ ENDM”
InstructionPart � ((RegularInstructionCall |

DataPseudoinstructionCall | AsciiPseudoinstructionC all)
CommentsAndEOLs)*

RegularInstructionCall � (Label CommentsAndEOLs)* [Label] Symbol
[Operand ([" ,"] Operand)*]

DataPseudoinstructionCall � (Label CommentsAndEOLs)* [Label]
“ .data” Operand [“ ,”] (Operand | [Operand [“ ,”]] “ [” [Operand
([“ ,”] Operand)*] “]”)

AsciiPseudoinstructionCall � (Label CommentsAndEOLs)* [Label]

 35

“ .ascii” String
Label � Symbol “ :”
Operand � Symbol | Literal
Literal � [" -" | " +"] ((0- 9)+ | " 0x"(0- 9a- fA- F)+ | " 0b"(0 |

1)+ | <single-quoted-character>)
Symbol � (<letter>) (<letter or digit or – or + or _>)*

Here is a summary of the parts of an assembly language program. The basic building
blocks consist of the following items.

A literal is one of the following:
(a) a decimal integer,
(b) a hexadecimal integer (denoted by the prefix "0x" or “-0x” followed by one or
more of the characters 0-9, a-f, A-F),
(c) a binary integer (denoted by the prefix "0b" or “-0b” followed by one or more
0’s or 1’s),
(d) a single character surrounded by single quotes.
Literals other than single-quoted characters can have an optional plus or minus
sign in front. No commas or decimal points are allowed in literals. In the case of
the single-quoted character, the value of the literal is the ASCII value of the
character.

A string is any sequence of characters surrounded by double quotes, such as
"abcde". Note that the sequence of characters inside the quotes cannot include the
double-quote character and that the characters must all be on the same line.

A symbol consists of a sequence of characters, the first character of which must be an
upper or lower case letter. The remaining characters must be letters or digits or
+ or – or _. CPU Sim distinguishes between upper and lower case letters; hence,
“Data” and “data” are considered different symbols.

A label is a symbol followed immediately by a colon. The colon is just a separator
and is not considered part of the label. The label and colon pair is an optional
feature on every line of assembly language programs including those lines that
are otherwise blank or contain only comments. In the latter two cases, the
assembler will treat the label as if it referred to the next regular instruction or
data pseudoinstruction. Labels can be used as operands in statements.

A comment is any sequence of characters preceded by a semicolon “;” and ending at
the end of the line. Any line of a program can contain a comment. Blank lines
and lines containing only comments are also allowed in assembly language
programs, and are ignored by the assembler. When the program is assembled,
regular instructions and data pseudoinstructions, including the comments on the
ends of the lines, are saved and appear after each line of the assembled program
in the Comments column of the RAM window into which the assembled
program is loaded. However, remember that blank lines or lines with only
comments are discarded when the program gets assembled.

A program consists of two parts. The first part contains any number of EQU
declarations, include directives, and macro definitions in any order. The second part

 36

contains any number of regular instructions and data pseudoinstructions, one per line.

Include directives
 An Include directive is a pseudoinstruction used for temporarily inserting the text
from one file into the text of another file just before assembly. The pseudoinstruction
has the following parts:
 label: .include text-file-name comment
The word “.include” and the text file name must be included, but the comment and the
label are optional. The text file name must be a string of 1 or more characters
surrounded by double quotes or chevron quotes. The string cannot include the end-of-
line or return or double-quote characters. For example, suppose a file F contains the
include directive
 .include “W1-0.h”
Then, at the point in F at which the include directive appears, the contents of file “W1-
0.h” are temporarily inserted for the purpose of assembly. The quoted part of the
Include statement must be the pathname of the file to be inserted. This pathname is
relative to the file F. For example, the Include directive above assumes that the file
“W1-0.h” is in the same directory as F. If the file “W1-0.h” is an a subdirectory called
“defs”, for example, then the include directive should say:
 .include “defs/W1-0.h”
If the file “W1-0.h” is in the parent directory of F, then the include directive should say:
 .include “../W1-0.h”
If the file F contains the include directive
 .include <W1-0.h>
then CPU Sim will search for the file W1-0.h relative to the directory containing the
current machine (that is, the .cpu file containing the current machine) instead of relative
to the directory containing F.

Macro declarations and calls
 Macro declarations give a name to a block of code. This block is called the macro
body. A macro call is the use of a macro name as an instruction. The assembler textually
inserts the macro body wherever a macro call occurs in an assembly language program.
For example, consider the following macro declaration
 MACRO foo
 add x, y
 load z
 ENDM
Assume that the declaration appears in a file that includes the following 3 instruction
statements:
 add a, b
 foo ; macro call
 store b
In this case, the text that is assembled is the following:
 add a, b
 add x, y
 load z

 37

 store b
Macros can also have parameters, which get textually replaced by the arguments in the
macro call. For example, consider the following variation, which has one parameter n:
 MACRO foo n
 add x, n
 load z
 ENDM
Assume that this declaration appears in a file that includes the following 3 instruction
statements:
 add a, b
 foo a ; macro call with argument a
 store b
In this case, the text that is assembled is the following:
 add a, b
 add x, a
 load z
 store b
You can include arbitrary instructions inside a macro body, including labeled
statements, data pseudoinstructions, and calls to other macros.
 Note that macro declarations are always local, which means that these macros
can only be called in the file in which they are defined. Therefore, it is often useful to
put the macro definitions in files that are then included (using the .include statements)
in all files in which you wish to make macro calls.
 It is worth noting that, because of the textual substitution, labels in macro bodies
must be treated specially. To understand the problem, consider a macro body in which
one line has a label L, and suppose the macro is called twice in one file. If straight text
substitution were performed, the label L would appear on two lines of that file,
violating the necessary uniqueness of all labels in a program. Therefore, before the
textual substitution of every macro call, the label and all references to the label in the
macro body are replaced with a unique label. For this reason, labels in macro bodies
cannot be referenced outside the macro body.

EQU declarations
 EQU declarations in programs define names for integer constants. Those names
can be used anywhere in the program where a number is expected. It is legal to declare
an EQU name whose value is a previously-defined EQU name. For example, it is legal
to make the following declarations:
 A EQU 4
 B EQU A
In this example, both A and B are now names for the constant 4.

Note that the names of all EQUs must be valid symbols and the values of all
EQUs must be previously-defined EQU names or valid literals in the assembly
language syntax. The literal value must be in the range –263 to 263–1 (–
9223372036854775808 to 9223372036854775807).

Note that EQU declarations are always local, which means that the declared
names can only be used in the file in which they are declared. Therefore, it is often

 38

useful to put the EQU declarations in files that are then included (using the .include
statements) in all files in which you wish to use the declared names.

You can also make global EQU declarations as described above in the section
detailing the Modify menu. If a global EQU declaration and a local EQU declaration
both use the same symbol (which is legal), the local EQU declaration has precedence
and so hides the global EQU declaration.

Regular Instructions
 Regular instructions have the following form (some of the parts are optional):
 label: operator operands comments
Space and tab characters are only required between two parts if the assembler might
otherwise treat the parts as one unit. Statements are terminated by the newline
character. The label and comments are optional.
 An operator is a symbol consisting of the name of a machine instruction of the
current machine or the name of a macro. Every regular instruction must have an
operator.
 An operand is a symbol or literal. If it is a symbol, the same symbol must appear
somewhere in the program as a label or it must be an EQU constant. For each
instruction, there must be one operand for each field specified for that instruction, not
counting the first field, which corresponds to the opcode, and not counting the "don't
care" fields. That is, if a machine instruction has fields consisting of 4 2 10, then the
opcode for the instruction must be 4 bits long and the instruction must have 2 operands,
the first one having a 2-bit value and the second having a 10-bit value. If a machine
instruction has fields consisting of 4 2 (10), where the "(10)" indicates a "don't care"
field, then the opcode must be 4 bits long and the instruction must have one 2-bit
operand. Operands must be separated from each other by a comma and/or one or more
spaces and tabs.
 Note that there are three types of sources of values for operands that are
symbols: local EQUs (defined in the file), global EQUs (defined in the machine), and
labels (defined in the file). A symbol might appear in all three types of sources. In that
case, local EQUs have priority, followed by global EQUs, and finally labels.

Data pseudoinstruction
 The word “.data” signifies a pseudo-instruction in assembly language. It
provides a way for the user to insert specific numerical values in specific locations in the
assembled code. The pseudoinstruction has the following parts:
 label: .data operands comment
The word “.data” and the operands must be included, but the comment and the label
are optional. The label can be used as an operand in assembly language statements to
refer to the first address of the data that is being specified. The pseudoinstruction is
terminated by the end-of-line character.

The first operand must have a positive numerical value n that indicates the
number of bytes of data that are being given specific values.

 39

This operand is followed by one of the following:
• one long value that will be stored using the given number of bytes.
• an integer between 1 and 8 indicating the cell size in bytes followed by a

bracketed list of values to be put in successive cells of the given size. Therefore
the number of values in the bracketed list must equal the total number of bytes
(specified in the first operand) divided by the cell size (specified in the second
operand). The list items are optionally separated by commas.

• a bracketed list of values whose length is equal to the number of bytes specified
in the first operand. These values are optionally separated by commas. Note that
this case is just a special case of the preceding case in which the cell size is
omitted and is implicitly assumed to be 1 byte.

If any of the numbers are negative integers, they will be treated by CPU Sim in 2's
complement form. Note that the values can be either integer literals, EQU names, or
variables corresponding to labels. In the last case, the value of the variable is the
address of the label.
For examples, consider the following pseudoinstructions:
 .data 5 0 ;fills 5 bytes with 0's
 .data 5 [0,0,0,0,0] ;fills 5 bytes with 0's
 .data 5 1 [0,0,0,0,0] ;fills 5 bytes with 0's
 .data 5 5 [0] ;fills 5 bytes with 0's
 .data 5 -1 ;fills 5 bytes with all 1 bits
 ;(the 2's complement form for -1)
 .data 5 3 ;fills the first 4 bytes with 0's and
 ;the 5th byte with the bits 00000011.
 .data 5 [1,2,3,4,5] ;fills 5 bytes with the five 1-byte
 ;values 1, 2, 3, 4, 5
 .data 6 2 [4 2 7] ;fills 6 bytes with the three 2- byte
 ;values 4, 2, 7

Ascii pseudoinstruction
 The word “.ascii” signifies another pseudo-instruction in assembly language. It
provides a way for the user to insert specific ascii values in specific locations in the
assembled code. The pseudoinstruction has the following parts:
 label: .ascii operand comment
The word “.ascii” and the operand must be included, but the comment and the label are
optional. The label can be used as an operand in assembly language statements to refer
to the first address of the data that is being specified. The pseudoinstruction is
terminated by the end-of-line character.

The operand must be a string of 0 or more characters surrounded by double
quotes. The string cannot include the end-of-line or return or double-quote characters:

.ascii "abcde" ; legal

.ascii "abc"de" ; illegal--contains a double quot e character.
The effect of including an Ascii pseudoinstruction in your program is that the

assembler inserts the ASCII numeric value of each of the characters in the string into the
program at the point where the Ascii pseudoinstruction appears. So the first example
pseudoinstruction above will be assembled into 5 bytes containing the 5 ASCII numeric

 40

values for the characters 'a', 'b', 'c', 'd', and 'e'.

NAMES OF HARDWARE COMPONENTS, MICROINSTRUCTIONS AND
MACHINE INSTRUCTIONS

 All hardware components, microinstructions, and machine instructions must be
given names. You can name them anything you wish under the following conditions.
You must use at least one non-space character and you have different names for each
unit of the same type. Machine instruction names must be valid symbols in the
assembly language syntax, which means they must consist of one or more letters or
digits or '+' or '-' or '_' characters and they must start with a letter. Only ASCII
characters are allowed in Machine instruction names.

It is strongly recommended, but not required, that all units of all types have
unique names.

Note that if you give a register array of length 4 the name “A”, then the 4
registers will automatically be given the names “A[0]”, “A[1]”, “A[2]”, “A[3]”.

SPECIFICATION OF THE SIMULATED HARDWARE UNITS

 There are four different types of hardware units that can be specified by the user:
1. Registers are storage locations for one value or bit string. They can hold one bit or

many bits. Numbers are stored using 2’s complement notation.
2. Register arrays are indexed lists of registers.
3. Condition bits are specific bits of registers.
4. RAMs are indexed lists of bytes. The index of a byte is referred to as the address of

the data in that location. Data is accessed in the RAM through MemoryAccess
microinstructions.

 The parameters associated with each of these hardware components are
discussed in each section below. Note that every components must also have a name as
described above.

Register

width: a positive integer that specifies the number of bits in the register.

Register Array
width: a positive integer that specifies the number of bits in each register in the array.

All registers in an array must have the same width.
length: a positive integer specifying the number of registers in the register array.

Condition Bit
register: the register that contains the bit
bit: the bit of the register that is the condition bit. This is a number from 0 to one

 41

less than the width of the specified register. Bit 0 is on the left-most bit of the
register.

halt: a boolean value. If this value is true, then the machine will halt and display a
message after the execution of any microinstruction that causes the bit’s value to
be set to 1.

RAM

length: a positive integer that specifies the number of bytes in the RAM. The first
byte has index (address) 0.

SPECIFICATION OF THE FETCH SEQUENCE

 The fetch sequence is a sequence of microinstructions that begins the execution of
every machine cycle. A typical fetch sequence loads into an “instruction” register the
contents of the memory location whose address is in a “program counter” register.
Then it increments the program counter and decodes the instruction in the instruction
register. It is typically the case that the last microinstruction in the fetch sequence is a
Decode microinstruction, because the execution of a Decode microinstruction causes the
machine to (a) cease executing the fetch sequence, (b) decode the instruction register,
and (c) begin executing the execute sequence of the machine instruction that was just
decoded. In other words, no microinstructions of the fetch sequence get executed after
a Decode microinstruction has been executed.

SPECIFICATION OF MACHINE INSTRUCTIONS

 A machine instruction consists of one or more bytes. The user specifies how the
bits are to be divided into one or more fields. The first field stores the opcode of the
instruction. The remaining fields form the operands of the instruction. For example,
consider a 2-byte instruction named “load” with fields of length 4, 2, and 10. This
instruction has a 4-bit opcode field, a 2-bit operand field, and a 10-bit operand field.
When the user wants to execute this instruction in an assembly language program, the
user must give the name of the instruction and 2 operands, each consisting of a symbol
or number. The operands can optionally be separated by a comma. For the load
instruction mentioned above, a legal assembly language instruction is “load 1, 96”.
 You may optionally designate some of the fields as “don’t care” fields. To do so,
you surround the field lengths by parentheses in the Machine Instruction dialog. By
doing so, you are telling CPU Sim’s assembler that those fields are to be ignored. In this
case, no operand needs to be specified in assembly language for that field when the
instruction is called and instead the assembler just fills the field with 0’s.

For example, if the 2-bit field of the load instruction mentioned above is a "don't
care" field, then, in an assembly language program, the programmer would type in the
name of the instruction and one operand, such as "load 96". In that case, the assembler
will put the opcode in the 4-bit first field, the operand 96 in the 10-bit field and will fill

 42

the 2-bit field with 0's.
Note that the operands can have any value that fits in the field in either 2’s

complement or unsigned integer format. Therefore, the legal values for a 2-bit field are
–2 to 3, and the legal values for a 4-bit field are –8 to 15.
 Each machine instruction also specifies a list of microinstructions that form the
implementation of the machine instruction and that are executed when the machine
instruction is to be executed. This microinstruction list is called the execute sequence of
the instruction. Every execute sequence should contain an End microinstruction, which
causes the machine to stop executing the current execution sequence and start executing
the fetch sequence, and so causes the start of a new machine cycle.

Parameters
Opcode: a non-negative integer that fits in the first field of the instruction
Field Lengths: a list of 1 or more positive integers whose sum is a multiple of 8.

The integers corresponding to lengths of “don’t care” fields are surrounded by
parentheses.

Implementation: a list of microinstructions that form the execute sequence of the
instruction

SPECIFICATION OF THE MICROINSTRUCTIONS

 CPU Sim provides a variety of types of microinstructions that can be used in
fetch sequences or execute sequences. All these types are described in this section of the
manual.

General Information

Sign Convention
 The sign convention used in CPU Sim is 2’s complement. All arithmetic
calculations and tests are done using this convention. Therefore, whenever a sequence
of bits is displayed in decimal, that decimal value corresponds to the two’s complement
value of the bits. However, when the sequence of bits is displayed in binary or
hexadecimal, the bits are treated as an unsigned integer value and so negative signs
don’t appear in the display.

Floating point operations are not supported by CPU Sim.

Overflow and Carry
 If an arithmetic operation results in a value that it too large (positive or negative)
as a two’s complement number to fit in the destination register, then the machine is in a
state of signed overflow. When this occurs, a condition bit can optionally be set to 1.
The choice of which condition bit (if any) to set for signed overflow can be specified in
the Arithmetic and Increment microinstructions.

 43

 Similarly, if an arithmetic addition or subtraction microinstruction yields a value
that results in a carry in or out of the destination register, then the machine is in a state
of unsigned overflow. When this occurs, a condition bit can optionally be set to 1. The
choice of which condition bit (if any) to set for unsigned overflow can be specified in the
Arithmetic and Increment microinstructions.

Register Parts
 Several microinstructions allow the user to specify parts of registers. In CPU
Sim, the bits of a register are indexed from left (the most significant bit) to right (the
least significant bit), starting with 0 and ending with one less than the width of the
register. For example, if a register has 8 bits, the leftmost bit has index 0 and the
rightmost bit has index 7.

The Microinstruction set

Transfer

There are three types of transfers of data allowed between registers and register
arrays:

(a) A register to a register, denoted by “TransferRtoR”,
(b) A register to a register array, denoted by “TransferRtoA”,
(c) A register array to a register, denoted by “TransferAtoR”.

In all cases, the user is able to transfer data to or from any set of consecutive bits of
a register. The old data in the part of the register receiving the data is lost and is
replaced with the new data. The rest of the receiving register is unchanged. That
is, if you transfer 4 bits into the first 4 bits of a 16-bit register, then the last 12 bits of
the register are unchanged by the transfer.

In cases (b) and (c), the user must specify an index register and a sequence of
consecutive bits of that register whose value will form the index of the source or
destination register in the array to or from which the data is to be transferred. For
example, a TransferRtoA microinstruction might be created to transfer bits from a
register r to a register array A using bits 3-5 of an index register to specify which
register in the array is to receive the data. If bits 3-5 of the index register contain
the value 0, then the data in register r will be transferred to the first register in
array A.

Parameters
source: a register or register array from which data is to be transferred
source start bit: this number designates the leftmost bit that is to be transferred. It

must be a number from 0 to one less than the width of the source register or
register array.

destination: a register or register array to which data is to be transferred

 44

destination start bit: this number designates where the leftmost transferred bit is to
be placed in the destination register.

number of bits: this specifies how many bits are to be transferred. The source start
bit added to the number of bits must yield a sum that is at most the width of
the source register or register array. Similarly for the destination register or
register array.

index: a register which contains the index of the source or destination register in
the array to or from which data is to be transferred. This parameter is only used
in transfers of type TransferRtoA or TransferAtoR. The value of the bits in the
index register that are used to compute the index are treated as an unsigned
integer (that is, they are not treated as a two's complement representation of an
integer).

index start bit: this number designates which bit is the leftmost bit of the index
register used to compute the index into the array.

index number of bits: this specifies how many consecutive bits of the index register
are to be used to compute the index into the array.

For example, if you specify 16-bit registers r1 and r2 as the source and destination

registers, and if you specify a source start bit of 0, a destination start bit of 12, and the
number of bits as 4, then the left-most 4 bits of r1 will be transferred (more precisely,
copied) into the right-most 4 bits of r2.

For another example, suppose you specify a TransferRtoA microinstruction with
source register r and destination register array A containing 8 registers. If you specify
an index register i and index start bit = 0 and index number of bits = 3, then the leftmost
3 bits of i are treated as an integer from 0 to 7 that is used to specify which of the 8
registers in array A is to receive the data.

Arithmetic

The arithmetic microinstructions use three registers and optionally two condition
bits. The contents of the first two registers (the source registers) are added,
subtracted, multiplied or divided and the result is placed in the third register (the
destination register). If signed overflow occurs, that is, if the result is too big or
too small to fit in the destination register using two's complement notation, then
the overflow condition bit will be set to 1, if a condition bit is used. Otherwise the
value of the overflow condition bit is left unchanged. In the case of overflow, the
destination register will contain the rightmost n bits of the result in two's
complement notation, where n is the width of the destination register. If there is a
carry in/out, i.e., an unsigned integer overflow, in an addition or subtraction
microinstruction, then the carry condition bit is set, if a condition bit is used.

Parameters:
Type: the type of operation, namely addition, subtraction, multiplication, or

 45

division. Note that division is integer division, which truncates the result (i.e.,
it produces the floor of the result). That is, dividing 7 by 2 yields 3, whereas
dividing -7 by 2 yields -4.

Source1, Source2, Destination: the three registers. The operation consists of
combining Source1 and Source2 by the desired method (Source1+Source2,
Source1-Source2, Source1*Source2, or Source1/Source2) and then placing the
result in Destination. The three registers need not all be distinct. For example,
the Destination could be the same register as Source1 and/or Source2. Parts of
registers may not be specified. The three registers need not have the same
width.

Overflow: an overflow condition bit. If not needed then "(none)" should be
specified.

Carry: a carry condition bit. Used only in addition and subtraction
microinstructions and ignored by the others. If not needed then "(none)"
should be specified.

Shift

The shift microinstruction performs a bit-wise shift of the contents of the specified
source register to either the left or the right and places the result in the destination
register. The user specifies one of the following modes:

Logical shift - The newly emptied bits are given the value 0.
Arithmetic shift - If shifting right, then the leftmost bit is copied into the newly-

emptied bits. If shifting left, then the emptied bits on the right are given
the value 0.

Cyclic shift - The bits dropped off one end are placed in the emptied bits on the
other end.

Parameters:
Type: either LOGICAL, ARITHMETIC, or CYCLIC.
Direction: either LEFT or RIGHT.
Distance: a non-negative integer indicating the number of bit locations to the left

or right the values are to be shifted.
Source and Destination: the register whose contents are to be shifted and the

register into which the shifted bits are placed. These two registers must have
the same width and could be the same register.

Logical

The logical microinstructions perform the bit operations of AND, OR (inclusive
or), NOT, NAND (negated AND), NOR (negated OR), or XOR (exclusive or) on
the specified registers. In all operations but NOT, three registers are specified, two
of which are source registers and the third of which is the destination register.
NOT is monadic and so only the first source register is used and the second is
ignored

 46

Parameters:
Type: which logical function (AND, OR, NAND, NOR, XOR, NOT) is to be carried

out.
Source1, Source2, and Destination: the three registers to be used. Source1 and

Source2 contain the values used in the specified operation and the result is
placed in Destination. All registers must have the same width and all bits in
the registers are affected by the operation. The three registers need not be
distinct, i.e., the two source registers can be the same and a source register can
be the same as the destination register. Source2 is ignored if the type of
operation is NOT.

Test

The test microinstruction allows jumping to other microinstructions within the
current fetch or execute sequence. The test microinstruction compares the value in
a part of a register with a specific value. If the comparison succeeds, then a
specified number of successive microinstructions in the current fetch or execute
sequence are skipped over.

Parameters:
Comparison: the type of comparison be done:

LT means “less than”
LE means “less than or equal to”
EQ means “equal to”
NE means “not equal to”
GE means “greater than or equal to”
GT means “greater than”

Comparison value: the integer to be compared with the part of the register. The
Comparison value must be given in decimal notation.

Omission: an integer (positive, negative or zero) indicating the size of the relative
jump. For example, if omission = 0, then no jump is performed. That is, the
microinstruction following the test microinstruction is the next
microinstruction to be executed. If omission = -1 and the comparison succeeds,
then the test microinstruction is repeatedly executed in an infinite loop.

Register: the register whose value is to be tested.
Start: an integer indicating the leftmost bit to be tested in the register. The value

must be an integer between 0 and one less than the width of the register.
Number of bits: a non-negative integer indicating the number of bits to be tested.

The sum of the start and the number of bits must be at most the width of the
register.

N.B. When you test a register or part of a register against a value, you can consider

the part of the register to designate a two’s-complement integer value or an

 47

unsigned integer value. For example, if you are testing to see whether two
bits are “11”, you can either test whether the value stored in the two bits is –1
or test whether the value is 3. Similarly, to test whether one bit of a register is
a “1”, you can test to see whether that part of the register contains the value 1
or –1.

Increment

The Increment microinstruction adds an integer constant to the contents of a
register. The constant can be positive or negative. The constant is specified in the
microinstruction, so if the user needs to increment by different values, then
different increment microinstructions need to be used. If signed overflow occurs,
that is, if the result is too big or too small to fit in the register using two's
complement notation, then the overflow condition bit will be set to 1, if a condition
bit is used. Otherwise the value of the overflow condition bit is left unchanged. In
the case of overflow, the register will contain the rightmost n bits of the result in
two's complement notation, where n is the width of the register.

Typical uses of the increment microinstruction include incrementing the program
counter during the fetch sequence or incrementing or decrementing the stack top
pointer during pushes and pops.

Parameters:
Register: the register whose contents are to be incremented.
Value: the integer value that will be added to the register contents.
Overflow: an overflow condition bit. If not needed then "(none)" should be

specified.

IO

An IO microinstruction simulates an IO port on a CPU. The microinstruction either
(a) inputs into a buffer register a value from the user or from a text file or (b)
outputs the value of a register to a text file or to the user. An IO microinstruction
that outputs a value to the user causes a dialog box to appear with the value
displayed. An IO microinstruction that inputs a value from the user causes a
dialog box to appear in which the user is asked to type in the value.

To specify the source or destination of the data (either to/from the user or to/from
a text file), use the Options|IO connections... menu item from the Execute menu.

Parameters:
direction: either “input” or “output” indicating whether to get data from the user or

from a file (input) or send data to the user or to a file (output).
type: either "integer", "ascii", or "Unicode", indicating the type of data that is to be

input or output.
buffer: the register to or from which data is to be input or output.

 48

MemoryAccess

The MemoryAccess microinstruction transfers (copies) data between a register and
a RAM. The number of bits transferred is equal to the width of the register.

Parameters:
direction: either “read” or “write” indicating whether data is to go from RAM to a

register (read) or from a register to RAM (write).
memory: the RAM to or from which data is to be transferred.
data: the register to or from which data is to be transferred. The width of this

register must be divisible by 8.
address: the register that contains the address indicating where in the RAM the

data is to be read or written. If multiple bytes are to be read or written, the
address is the first (smallest) address of the bytes.

Set

The Set microinstruction sets a sequence of consecutive bits of a register to a
specified value.

Parameters:
register: the register whose bits are to be set.
start: the leftmost bit of the register that is to be set. This must be an integer from 0

to one less than the width of the register.
numBits: the number of consecutive bits in the register to be set
value: the value to which the bits are to be set. This value must fit in the

designated bits as either an unsigned or signed (two’s complement) decimal.
Therefore the value must be from –2w-1 to 2 w-1, where w is the width of the
register.

SetCondBit

The SetCondBit microinstruction sets the contents of a specified condition bit to 0
or 1. Note that this is just a convenience method since you can also set any bit of
any register using the Set microinstruction.

Parameters:
bit: the condition bit to be set.
value: the value (0 or 1) to which the condition bit is to be set.

Branch

The branch microinstruction is identical to the Test microinstruction except that it
is an unconditional jump. The microinstruction specifies how far to jump relative
to the current (branch) microinstruction.

Parameter:

 49

Distance: an integer (positive, negative or zero) indicating the size of the relative
jump. For example, if distance = 0, then no jump is performed. That is, the
microinstruction following the branch microinstruction is the next
microinstruction to be executed, as normally happens with other
microinstructions. If distance = –1, then the branch microinstruction is
repeatedly executed in an infinite loop.

Decode

The decode microinstruction is usually the last microinstruction in the fetch
sequence. It is used to simulate a decoder. An instruction register (ir) must be
specified. CPU Sim will decode the instruction in the ir, i.e., determine which
machine instruction is to be executed, using the following algorithm. CPU Sim
initially inspects the leftmost bit of the ir. If there is a machine instruction with an
opcode of one bit that matches the leftmost bit of the ir, then that machine
instruction is chosen as the decoded instruction and the rest of the bits in the ir
form its operands. If there is no such machine instruction, then the leftmost two
bits of the ir are inspected and CPU Sim looks for a machine instruction with a 2-
bit opcode that matches those two bits. CPU Sim continues inspecting more and
more bits of the ir until it finds a machine instruction whose opcode matches those
bits. Therefore, if you have one instruction with a one-bit opcode of 0 and another
instruction with a two-bit opcode of 01, then the second instruction will never be
decoded and executed. Once a machine instruction has been decoded, execution
of that instruction begins, starting with the first microinstruction in its execute
sequence.

Parameters:
ir: the register that contains the current instruction to be executed.

End

The end microinstruction is used to designate the end of an execute sequence and
therefore the end of a machine cycle. It causes the current execute sequence to
cease executing and the fetch sequence to begin executing, starting with the first
microinstruction in that sequence.

