
PC214E

P C 2 1 4 E

PROGRAMMABLE
DIGITAL

INPUT/OUTPUT
AND COUNTER/TIMER

BOARD

This Instruction Manual is supplied with the PC214E to provide the user with sufficient information to utilise the
purchased product in a proper and efficient manner. The information contained has been reviewed and is believed to be
accurate and reliable, however Amplicon Liveline Limited accepts no responsibility for any problems caused by errors

or omissions. Specifications and instructions are subject to change without notice.

PC214E Instruction Manual Part Nº 85 956 204 Issue B3

© Amplicon Liveline Limited

Prepared by Jonathan East

Approved for issue by A.S. Gorbold, Operations Director

PC214E

DECLARATION OF CONFORMITY

AMPLICON LIVELINE LIMITED
CENTENARY INDUSTRIAL ESTATE

HOLLINGDEAN ROAD
BRIGHTON BN2 4AW UK

We declare that the product(s) described in this Instruction Manual
perform in conformity with the following standards or standardisation
documents:

Electro Magnetic Compatibility (EMC):

EMC Directive 89/336/EEC
LVD Directive 73/23/EEC
CE Directive 93/68/EEC

Jim Hicks, I.Eng, FIEIE
Managing Director

Amplicon Liveline Limited

PC214E

TABLE OF CONTENTS

1. INTRODUCTION ..1

1.1 The Amplicon 200 Series 1
1.2 The 200 Series Digital I/O Counter/Timer Family 1
1.2.1 Typical Applications 1
1.2.2 Product List 2
1.3 Product Configurator 2
1.4 Features of the PC214E 4
1.5 PC214E General Description 4
1.5.1 The Software 4
1.6 What the PC214E Package Contains 6
1.7 The Amplicon Warranty Covering the PC214E 6
1.8 Contacting Amplicon Liveline Limited for Support or Service 7
1.8.1 Technical Support 7
1.8.2 Repairs 7

2. GETTING STARTED..8

2.1 General Information 8
2.2 Installing the Board 8
2.3 System Requirements 8
2.4 Backing up the Software Diskettes 8
2.5 Software Installation 9
2.6 Configuration Switch and Jumper Settings 9
2.6.1 Base Address Selection 9
2.6.2 PC I/O Map 10
2.6.3 Selection of Interrupt Request (IRQ) Level 10
2.6.4 Interrupt Source Selection 11
2.6.5 Counter/Timer Clock Source Selection 12
2.6.6 Counter/Timer Gate Source Selection 14
2.7 Test Points 14

3. MAKING THE CONNECTIONS ...15

3.1 The Input/Output Connector 15
3.2 Cable Connections 16
3.2.1 Features Summary of the Expansion Panels 16
3.3 Use of Shielded Cables 17
3.4 Digital Input/Output Conditions 17
3.5 Counter/Timer Input/Output Conditions 17
3.6 PC Back-plane Bus Connections 17

4. USING THE PC214E..19

4.1 Multiple PC214E Boards in a Single Application 19
4.2 User Applications 19
4.2.1 Differential Counter 20
4.2.2 Monostable Multivibrator 20
4.2.3 Astable Multivibrator 20
4.2.4 Stopwatch 22
4.2.5 Event Recorder 22
4.2.6 Frequency/Period Measurement 22
4.2.7 Frequency Generation 23
4.2.8 Frequency Multiplication 23
4.2.9 Digitally Controlled Oscillator 23
4.2.10 Voltage Controlled Oscillator 24
4.2.11 Switch Matrix 25
4.2.12 8-Bit Bi-Directional Bus 26

PROGRAMMABLE DIGITAL I/O AND COUNTER/TIMER BOARD

PC214E

5. STRUCTURE AND ASSIGNMENTS OF THE REGISTERS27

5.1 Register Assignments 27
5.2 Register Groups 27
5.2.1 Cluster X, Y and Z Groups 27
5.2.2 Counter Connection Register Group 27
5.2.3 Interrupts Group 27
5.3 The Register Details 28
5.3.1 Programmable Peripheral Interface PPI-X Data Register Port A 29
5.3.2 Programmable Peripheral Interface PPI-X Data Register Port B 30
5.3.3 Programmable Peripheral Interface PPI-X Data Register Port C 31
5.3.4 Programmable Peripheral Interface PPI-X Command Register 32
5.3.5 Programmable Peripheral Interface PPI-Y Data Register Port A 34
5.3.6 Programmable Peripheral Interface PPI-Y Data Register Port B 35
5.3.7 Programmable Peripheral Interface PPI-Y Data Register Port C 36
5.3.8 Programmable Peripheral Interface PPI-Y Command Register 37
5.3.9 Z1 Counter 0 Data Register 39
5.3.10 Z1 Counter 1 Data Register 41
5.3.11 Z1 Counter 2 Data Register 42
5.3.12 Counter/Timer Z1 Control Register 43
5.3.13 Z1 Counter/Timer Status Register 44

6. PROGRAMMING THE PC214E ...46

6.1 Copyright 46
6.2 Files installed from the Distribution Diskette 46
6.3 Windows DLL and Examples 47
6.4 DOS 'C' Library and Examples 47
6.4.1 Borland C++ User Information 48
6.4.2 Microsoft C/C++ User Information 48
6.5 Using the Dynamic Link Library 48
6.5.1 Visual Basic 48
6.6 Windows and DOS Library Functions 50
6.6.1 Initialisation Functions 50
6.6.2 Interrupt Control Functions 52
6.6.3 Data Buffer Functions 54
6.6.4 Timer/Counter Functions 61
6.6.5 Differential Counter Functions 70
6.6.6 Frequency Generation Functions 74
6.6.7 Millisecond Stopwatch Functions 76
6.6.8 Frequency Input and Output Functions 81
6.6.9 Digitally- and Voltage-Controlled Oscillator Functions 87
6.6.10 Digital Input/Output Functions 91
6.6.11 Switch Scanner Matrix Functions 96
6.6.12 Bi-Directional Data Bus Functions 98
6.7 PC214E Library Error Codes 99
6.8 PC214E Interface Guide For LABTECH NOTEBOOK 100
6.8.1 Channel Assignments: 101
6.8.2 Configuring the Board 101
6.9 Guide to User Programming 102
6.10 Signal Centre 102

PC214E Page 1

1. INTRODUCTION

1.1 The Amplicon 200 Series

The Amplicon 200 Series of Personal Computer based data acquisition products provides very
high performance, affordable hardware with comprehensive software support. The 200 Series is
designed for users requiring fast or complex data input/output to the host PC and comprises a
range of boards and software to handle most analog and digital signal types.

When a large scale system is required, multiple boards can be added from the 200 Series
without conflict. The capacity of the PC mounted hardware can be extended by external
expansion panels to provide a comprehensive system with low cost per channel and maintained
high performance.

1.2 The 200 Series Digital I/O Counter/Timer Family

The family of 200 Series digital input/output products may be configured in a variety of ways to
provide flexible, expansible systems.

Five digital input/output boards with timer/counter facilities are offered. These five boards are
complemented by four external panels for signal conditioning and user connection through
individual terminals. Support and demonstration software for all variants is offered.

A full, itemised list of hardware products is shown below, and a configurator diagram showing
how these products interact is also given. To complete the family, a common software package
supports all digital I/O boards and the expansion panels.

1.2.1 Typical Applications

• TTL compatible digital input/output
• Relay output with isolated contacts, high level ground referenced source drivers (any

combination)
• Isolated high or low level digital input, ground referenced high or low level digital input (any

combination)
• Interrogation of contact closure matrix - up to 1296 points per PC272E
• Elapsed time, period, frequency measurement
• Differential, ratiometric count
• Monostable and astable generation
• Frequency division, frequency multiplication, digitally controlled oscillator
• Voltage controlled oscillator (in conjunction with PC226E, PC30AT, PC26AT or PC27E)

Page 2 PC214E

1.2.2 Product List

Product Number Product Type Brief Description

PC212E Counter/timer, Digital I/O board 12 counters, clock/gate source, 24 line digital I/O

PC214E Counter/timer, Digital I/O board 3 counters, 48 line digital I/O

PC215E Counter/timer, Digital I/O board 6 counters, clock/gate source, 48 line digital I/O

PC218E Counter/timer board 18 counters, clock/gate source

PC272E Digital I/O board 72 line digital I/O

EX233 Termination/distribution panel 78 Terminals, 3 x 37 way distribution connectors

EX213 Output panel 24 relay or high level logic source drivers

EX230 Input panel 24 isolated or non-isolated, high or low level inputs

EX221 Input/output panel 16 inputs, 8 outputs

90 966 349 78 way Screened Cable 1m I/O board to EX233 Termination/distribution panel

90 956 109 37 way Screened Cable 1m PC36AT or EX233 to I/O panel

91 945 753 37 way Screened Connector Kit

PC36AT 24 Line Digital I/O Board

908 919 50 37 way screw terminal assy

919 459 53 78 way Screened Connector Kit

1.3 Product Configurator

Figure 1 - Product Configurator Block Diagram - shows how the six digital I/O boards (including
the PC36AT) may be connected, using the supplied cables, to form a variety of systems. The
simplest usable system configuration comprises one board from the PC212E, PC214E,
PC215E, PC218E or PC272E range, a 78 way cable and an EX233. This system provides user
terminals to all I/O functions of the board. More complex, configurable systems include isolated
or common ground input and output at low or high level.

All five boards employ the concept of I/O Groups, where a group can be six 16 bit counter
timers with interconnects, or 24 lines of digital input/output. These groups are integrated as
necessary to provide the specified functionality. The PC214E board, being the entry level
product in this range, has two digital input/output groups and three timer counters with
interconnects.

A clock source group provides five precise frequencies for counter/timer input. The PC214E
board, being the entry level product in this range, has jumper configurable clock source groups
only. The PC212E, PC215E and PC218E boards have software configurable clock and gate
source groups.

The user I/O connector map recognises this grouping and allows any combination of expansion
panels to be directly added to any of the boards, with each panel mapped onto a counter/timer
group or digital I/O group.

PC214E Page 3

 PC272E

 72 Lines Digital I/O

Figure 1 - Product Configurator Block Diagram

PC212E

12 Counters
24 Lines Digital I/O

PC214E

3 Counters
48 Lines Digital I/O

PC215E

6 Counters
48 Lines Digital I/O

PC218E

18 Counters

PC36AT

Existing
24 Lines Digital I/O

OROR

OR

OR

OR

AND
/OR

AND
/OR

AND
/OR

AND
/OROR

78 way
Connector

Kit EX
213

24
O/P

EX233
78 way termination
and/or 3x37 way

distribution

EX
230

24
I/P

78-78 way
Cable

37-37 way
Cable

37-37 way
Cable

Existing 37 way
termination assy

EX
221

16
I/P

8
O/P

37 way
Connector

Kit

OR

OR

Page 4 PC214E

1.4 Features of the PC214E

• Three 16-bit, 10MHz counter/timers, each with six programmable counter modes
• Crystal clock/divider with 5 rates, independently selectable for each counter/timer clock input
• 48 programmable digital I/O lines, with three operating modes
• Five selectable interrupt sources - one timer output and four digital I/O

1.5 PC214E General Description

The PC214E is a half-size ISA bus plug-in board which provides 48 programmable digital
input/output lines, and three independent programmable 16 bit counter/timers. The board can
be installed in IBM© or fully compatible PC/AT computers.

The flexible addressing system provided on the board allows the base address to be set within
the range 000 to FF016. The board interrupt level can be jumper selected to IRQ3, IRQ5, IRQ7,
IRQ9, IRQ10, IRQ11, IRQ12 or IRQ15, and any one of five possible interrupt sources can be
selected by jumper.

A 10MHz on-board crystal oscillator provides an accurate, stable clock source for the
counter/timers, independent of the system clock frequency. A divider circuit provides five
selectable frequencies (10MHz, 1MHz, 100kHz, 10kHz and 1kHz) derived from the oscillator,
and each of the counter/timers can be jumper connected to any of these clock sources, or to its
own individual external clock source.

A block diagram of the PC214E is given in Figure 2.

1.5.1 The Software

The PC214E is supplied with a 3½” diskette containing the software, which supports all
five of the boards in the 200 Series Digital I/O Counter/Timer Family. This software is
described fully in section 6 of this manual.

1.5.1.1 Windows Installation Program

The software is installed onto the user's hard disk by a Windows installation program.
See section 2 of this manual for information on getting started.

1.5.1.2 Windows DLL

A Windows Dynamic Link Library (DLL) containing over 50 functions provides an
Applications Program Interface (API) to the PC214E, and the other boards in the family.
The library functions allow the boards to be easily applied to many different applications,
and also provide an easy way of accessing the board's features. The 16-bit DLL can be
called by any language which uses Windows calling conventions, and example programs
written in Microsoft Visual Basic are also provided.

PC214E Page 5

Figure 2 - PC214E Block Diagram

Port C

Port B

Port A 82C55
PPI - Y

CTR 2

CTR 1

CTR 0

Address Offset
Decoder

Interrupt Source
Selector

W/R
5 bit Address

Offset

Event
Interrupt

8 bit
Data
I/O
Bus

82C54
Ctr/Tmr

 Z1

AddressControls DataIRQ

ISA Bus

A0
A1
A2
A3
A4
A5
A6
A7

C0
C1
C2
C3
C4
C5
C6
C7

B0
B1
B2
B3
B4
B5
B6
B7

A0
A1
A2
A3
A4
A5
A6
A7

C0
C1
C2
C3
C4
C5
C6
C7

B0
B1
B2
B3

OUT0
GAT0

Z1 I/P

CLK0

B4
B5
B6
B7

OUT1
GAT1
CLK1

/OUT0
OUT2
GAT2
CLK2

Counter
Connection

Selector

Board Crystal Clock Generator
(5 source frequencies)

PC INTERFACE

Port C

Port B

Port A 82C55
PPI - X

Page 6 PC214E

1.5.1.3 DOS Library

A DOS library for Microsoft and Borland C/C++ is supplied, which has exactly the
same functionality as the Windows DLL. Four example 'C' programs are also
provided, and these can be recompiled with either Microsoft C/C++ or Borland
C++.

1.5.1.4 LABTECH NOTEBOOK Drivers

A LABTECH NOTEBOOKpro driver is provided with template files for each of the boards
in the family.

1.6 What the PC214E Package Contains

 ! CAUTION

Some of the components on the board are susceptible to electrostatic discharge, and
proper handling precautions should be observed. As a minimum, an earthed wrist strap
must be worn when handling the PC214E outside its protective bag. Full static handling
procedures are defined in British Standards Publication BSEN100015/BSEN100015-
1:1992.

When removed from the bag, inspect the board for any obvious signs of damage and
notify Amplicon if such damage is apparent. Do not plug a damaged board into the host
computer. Keep the protective bag for possible future use in transporting the board.

The package as delivered from Amplicon Liveline Ltd. contains:-

Item 1 PC214E board is supplied in a protective bag. When removing the board,
observe the precautions outlined in paragraph 1.6

Item 2 200 Series Digital I/O Counter/Timer Software Diskette (Part Nº 90 956 209),
supplied on 3 1/2" diskette(s).

Item 3 This PC214E Instruction Manual (Part Nº 85 956 204)

Any additional accessories (termination boards, cables, optional software etc.) may be packed
separately.

1.7 The Amplicon Warranty Covering the PC214E

This product is covered by the warranty as detailed in the Terms and Conditions stated in the
current domestic or international Amplicon Liveline catalogue.

PC214E Page 7

1.8 Contacting Amplicon Liveline Limited for Support or Service

The PC214E board is produced by Amplicon Liveline Limited and maintenance is available
throughout the supported life of the product.

1.8.1 Technical Support

Should this product appear defective, please check the information in this manual and any 'Help'
or 'READ.ME' files appropriate to the program in use to ensure that the product is being
correctly applied.

If a problem persists, please request Technical Support on one of the following numbers:

Telephone: UK 01273 608 331
International +44 1273 608 331

Fax: UK 01273 570 215
International +44 1273 570 215

Internet support@amplicon.co.uk
www.amplicon.co.uk

1.8.2 Repairs

If the PC214E requires repair then please return the goods enclosing a repair order detailing the
nature of the fault. If the PC214E is still under warranty, there will be no repair charge unless
any damage as a consequence of improper use.

For traceability when processing returned goods, a Returned Materials Authorisation (RMA)
procedure is in operation. Before returning the goods, please request an individual RMA
number by contacting Amplicon Customer Services by telephone or fax on the above numbers.
Give the reason for the return and, if the goods are still under warranty, the original invoice
number and date. Repair turnaround time is normally five working days but the Service
Engineers will always try to co-operate if there is a particular problem of time pressure.

Please mark the RMA number on the outside of the packaging to ensure that the package is
accepted by the Goods Inwards Department.

Address repairs to: Customer Services Department
AMPLICON LIVELINE LIMITED
Centenary Industrial Estate
Hollingdean Road
BRIGHTON UK BN2 4AW

Page 8 PC214E

2. GETTING STARTED

2.1 General Information

The PC214E software diskette contains six ready-to-run executable programs, three for DOS
and three for Windows. These programs allow the user to perform I/O operations on the
PC214E immediately after installing the board and software onto a PC.

2.2 Installing the Board

ENSURE THAT THE POWER TO THE COMPUTER IS SWITCHED OFF
BEFORE INSTALLING OR REMOVING ANY EXPANSION BOARD. OBSERVE
HANDLING PRECAUTIONS NOTED IN SECTION 1.6.

REPAIR OF DAMAGE CAUSED BY MIS-HANDLING IS NOT COVERED UNDER
THE AMPLICON WARRANTY.

DO NOT MAKE ANY MODIFICATIONS OTHER THAN SWITCH CHANGES TO A
BOARD THAT IS ON EVALUATION

Please refer to the manufacturer's hardware manual supplied with the PC for instructions on
how to remove the cover and install devices into an ISA bus slot. The PC214E may be installed
in any available position in the machine provided that there is no restriction specified for that
location by the computer manufacturer. If available, the end slot furthest from any other I/O
card should be chosen to minimise the risk of the switched signals inducing interference in the
PC circuits.

2.3 System Requirements

When installing one or more PC214E boards, ensure that the host computer has sufficient
capacity. Take into account other boards or adapters that may be installed in the computer
when assessing physical space, address space in the I/O map, interrupt levels and the power
requirements. A minimum host computer configuration is:

• IBM© or fully compatible PC/AT with 286 or higher processor, 31/2" high density floppy disk
drive, hard disk drive and monitor.

• One free, ISA bus to accommodate a 1/2 length I/O card slot.

• Sufficient power available. +5 VDC at 100 mA is required for each PC214E.

• DOS 6.0 or higher to run the DOS demonstration programs.

• Microsoft Windows 3.1 or higher to use the DLL and run the Windows demonstration
programs.

2.4 Backing up the Software Diskettes

It is important that a backup copy of the software diskette(s) is made and the original stored in a
cool, dry, safe place. The diskette(s) can be copied onto a blank diskette and/or the software
copied onto the hard disk. A supplied Windows setup program installs the software on the hard
disk. Refer to the DOS or Windows manual for information on disk copying. Always use the
working copy.

PC214E Page 9

2.5 Software Installation

To install the PC214E software onto your hard disk, insert disk 1 into drive A: and select
‘File|Run...’ from the Windows Program Manager, or, if you are using Windows 95, select
’Run...’ from the Start menu. In the dialogue box that follows, type

A:\SETUP <RETURN>

The PC214E software installation program will now run. Follow the instructions on the screen to
complete the installation. See section 6 ‘Programming The PC214E’ for information on running
the software.

2.6 Configuration Switch and Jumper Settings

Before installing this board in the host computer, the configuration needs to be set to the user's
requirements. Setting is by means of an on-board in-line switch and pluggable jumpers whose
functions are described below. For the interrupt source and clock source jumpers, position 1 is
indicated on the board by a small dot below the jumper pins.

2.6.1 Base Address Selection

The base address of the PC214E can be selected in the range 000 to FF016. If more than one
PC214E is installed in a single PC, each board must have a different base address and these
will be separated by at least 32 bytes. It is normally convenient to have the base addresses at
contiguous even locations. The factory default base address is 30016.

Conflict of I/O addresses with other devices in the host PC or fitted adaptors is a common cause
of operational problems and care should be taken to ensure that the PC214E base address is
chosen where no port assignment is in contention.

The board’s base address is set by switch SW1. This switch bank comprises a row of eight
single-pole, single-throw switches with each 'up' or 'ON' position selecting a logic 1, and each
'down' or 'OFF' position selecting a logic 0. The most significant hex digit of the base address is
coded by the four most left switches, and the middle hex digit is coded by the four most right
switches of SW1. The least significant hex digit is always 0.

Figure 3 below shows the factory default setting of 30016

Most significant digit 0011 = 316
Middle digit 000 = 016
Least significant Default = 016

Page 10 PC214E

'1'

'0'

ON

OFF

ON

OFF

'1'

'0'

SW1

800 400 200 100 80 40 20 10

Most Significant Middle
DigitDigit

21 3 4 5 6 7 8

Figure 3 - DIL Switch Selection for Base Address

2.6.2 PC I/O Map

The standard PC/AT I/O map assignments are listed below.

I/O addresses 00016 to 0FF16 are reserved for the PC system board use and I/O
addresses 10016 to 3FF16 are available on the I/O channel. The installation of the
PC214E at a base address that uses unlisted ports may result in conflicting assignments
with third party adapters.

Hex Range Usage Hex Range Usage

1F0-1FF Hard Disc (AT) 360-36F Network
200-20F Game/Control 378-37F Parallel Printer
210-21F Reserved 380-38F SDLC
238-23B Bus Mouse 3A0-3AF SDLC
23C-23F Alt. Bus Mouse 3B0-3BB MDA
270-27F Parallel Printer 3BC-3BF Parallel Printer
2B0-2DF EGA 3C0-3CF EGA
2E0-2E7 GPIB (AT) 3D0-3DF CGA
2E8-2EF Serial Port COM4 3E8-3EF Serial Port COM3
2F8-2FF Serial Port COM2 3F0-3F7 Floppy Disc
300-31F Prototype Card 3F8-3FF Serial Port COM1

2.6.3 Selection of Interrupt Request (IRQ) Level

Selection of the required Interrupt Request Level is by means of a jumper in a single position on
header J1. Eight levels are available, but only one of these may be selected, and a level should
be chosen that does not conflict with any other assignments within the host computer.

The factory default setting is IRQ level 5.

The following table shows the available levels on the PC214E and normal usage of all hardware
interrupts. The one of eight position jumper is illustrated in Figure 4.

!
Least
Significant
Default

PC214E Page 11

PC214E IRQ Interrupt Usage
Jumper 1 Name Number Description

— 0 8 Timer) Not available on the
— 1 9 Keyboard) Bus Connectors
— IRQ2 A Int 8 - 15

 3 IRQ3 B COM or SDLC
 — IRQ4 C COM or SDLC
 5 IRQ5 D LPT
 — IRQ6 E Floppy Disk
 7 IRQ7 F LPT
 — IRQ8 70 Real Time Clock
 9 IRQ9 71 Re-directed to IRQ2
 10 IRQ10 72 Unassigned
 11 IRQ11 73 Unassigned
 12 IRQ12 74 Unassigned
 — IRQ13 75 Co-processor
 — IRQ14 76 Hard Disk
 15 IRQ15 77 Unassigned

Figure 4 - Jumper for IRQ Level Selection

2.6.4 Interrupt Source Selection

The PC214E board has five possible sources for the board's hardware interrupt: four digital I/O
sources and one counter/timer output source. Selection of the required interrupt source is by
means of a jumper in a single position on header J5, and the default factory setting is for PPI X
Port C bit 3.

J1

975

IRQ

3 15121110

Page 12 PC214E

Jumper
Position

Interrupt Source

1 PPI X Port C bit 0
2 PPI X Port C bit 3
3 PPI Y Port C bit 0
4 PPI Y Port C bit 3
5 Counter/timer Z1 OUT1
6 Reserved

Figure 5 - Jumper for Interrupt Source Selection

2.6.5 Counter/Timer Clock Source Selection

The PC214E contains two 82C54 devices, each of which provides three independent, 16-bit
Timer/Counters. Each timer/counter has a clock input, a gate input and an output, and can be
loaded with any 16-bit number, from which counting decrements toward zero according to the
programmed operating mode. Further details may be found by reference to the device
manufacturer's 82C54 data sheets in the appendices.

Selection of the required clock input source for each of the PC214E's three counter/timers is by
means of a jumper in a single position on headers J2, J3 and J4 for timer/counters Z1 Counter
0, Z1 Counter 1, and Z1 Counter 2, respectively. Eight sources are available for Z1 Counter 0
and Z1 Counter 1 and four are available for Z1 Counter 2. Only one of these may be selected
for each counter.

The factory default selection for each counter/timer is the internal 1MHz clock frequency, and
Figure 6, Figure 7 and Figure 8 show the other configuration options for the three
counter/timers.

Please note if you wish to use the dedicated clock input to any given counter/timer, the
corresponding clock source jumper must be removed before connecting the external signal to
the PC214E.

Similarly, if you select one of the five internal sources or the Ext Clock Z1 input as the clock
source to a counter/timer, you must ensure that no external signal is connected to the
counter/timer's CLOCK I/O pin on SK1. In this case, the internal signal selected will be
available as an output signal on the CLOCK I/O pin.

J5

!denotes position 1

PC214E Page 13

Jumper
Position

Clock Source

1 Internal 10 MHz clock
2 Internal 1 MHz clock
3 Internal 100 kHz clock
4 Internal 10 kHz clock
5 Internal 1 kHz clock
6 Ext Clock i/p Z1 (SK1-53)
7 Z1 OUT 2

Not Fitted Z1 CLK 0 i/p (SK1-34)

Figure 6 - Jumper for Z1 Counter 0 Clock Selection

Jumper
Position

Clock Source

1 Internal 10 MHz clock
2 Internal 1 MHz clock
3 Internal 100 kHz clock
4 Internal 10 kHz clock
5 Internal 1 kHz clock
6 Ext Clock i/p Z1 (SK1-53)
7 Z1 OUT 0

Not Fitted Z1 CLK 1 i/p (SK1-74)

Figure 7 - Jumper for Z1 Counter 1 Clock Selection

J2

!

J3

!

Page 14 PC214E

Jumper
Position

Z1 Counter 2 Clock
Source

1 Internal 1 MHz clock
2 Internal 1 kHz clock
3 Z1 OUT 1

Not Fitted Z1 CLK 2 i/p (SK1-36)

Figure 8 - Jumper for Z1 Counter 2 Clock Selection

2.6.6 Counter/Timer Gate Source Selection

The gate inputs to the PC214E's three timer/counters are available on the user connector SK1
(see section for more details). Each of these gate inputs has a pull-up resistor so that, if no
connection is made to a gate input on SK1, that gate input takes on the default +5V (i.e. gate
enabled).

2.7 Test Points

Test point TP1 on the PC214E is not fitted as standard, and is for factory test and programming
purposes only. Do not make connections to this point.

!

J4

PC214E Page 15

3. MAKING THE CONNECTIONS

3.1 The Input/Output Connector

These input/output connections are made through the connector protruding from the PC adaptor
slot corresponding to the chosen board position. For completeness of connection information,
the standard PC back-plane bus connections are also shown in paragraph 3.6.

Figure 9 - PC214E Input/Output Connector Pin Designations

All connections of external devices to the PC214E digital I/O and counter/timer channels are
made via a 78-way 'D' connector, SK1. The pin designations for SK1 are shown in Figure 9.

PPI X Port B1

PPI X Port C4

PPI X Port A6

+5 VDC O/P

PPI X Port A2

PPI X Port A4

PPI X Port A0

PPI X Port C6

PPI X Port C3

PPI X Port C1

PPI X Port B7

PPI X Port B3

PPI X Port B5

PPI X Port A3

PPI X Port A5

PPI X Port A7

PPI X Port C7

PPI X Port A1

PPI X Port C5

PPI X Port C2

GND

PPI X Port B6

PPI X Port C0

PPI X Port B2

PPI X Port B4

PPI Y Port C5

PPI Y Port A7

PPI X Port B0

PPI Y Port A3

PPI Y Port A5

PPI Y Port A1

PPI Y Port C7

GND

PPI Y Port C2

PPI Y Port C0

PPI Y Port B2

PPI Y Port B4

PPI Y Port B6

PPI Y Port A4

PPI Y Port A6

GND

PPI Y Port A0

PPI Y Port A2

PPI Y Port C6

PPI Y Port C3

PPI Y Port C4

PPI Y Port B7

PPI Y Port C1

PPI Y Port B3

PPI Y Port B5

CtrZ1 GAT2 I/P

NC

CtrZ1 CLK1 I/O
GND

PPI Y Port B0
PPI Y Port B1

CtrZ1 OUT2 O/P

GND

GND

CtrZ1 GAT1 I/P

Ext Clock I/P Z1

NC

CtrZ1 OUT1 O/P

CtrZ1 CLK0 I/O

NC

NC

CtrZ1GAT0 I/P
CtrZ1 OUT0 O/P

NC

NC

CtrZ1 /OUT0 O/P

NC

NC

CtlZ1 CLK2 I/O

NC

NC
GND

NC

7132

5213

7031

5112

6930

5011

6829

4910

6728

489

6627

478

6526

467

6425

456

6324

445

6223

434

6122

423

6021

412

401

7738

5819

7637

5718

7536

5617

7435

5516

7334

5415

7233

5314

7839

5920

Page 16 PC214E

Please note that the counter/timer clock input sources are selected by jumpers J2, J3 and J4 for
counter/timers Z1 Counter 0, Z1 Counter 1 and Z1 Counter 2, respectively. If you wish to
provide a clock signal from an external source for a particular counter/timer, the jumper header
corresponding to that counter/timer must be removed before connecting the external signal to
the counter/timer's CLOCK I/O pin on SK1.

Similarly, if you select one of the five internal frequencies or the Z1EXTCLK input as the clock
source to a counter/timer, you must ensure that no external signal is connected to the
counter/timer's CLOCK I/O pin on SK1. In this case, the internal signal selected will be
available as an output signal on the CLOCK I/O pin.

3.2 Cable Connections

A screened 78 way cable with metal shielded 'D' connectors (Part Nº 90 966 349) is available
to provide cable connections to the PC214E. Alternatively, a mating 78 way 'D' pin connector kit
is available (Part Nº 91 945 953) should the user wish to construct custom cables.

A range of external expansion panels is also available to offer a variety of digital I/O operations
to the range of PC212E, PC214E, PC215E, PC218E and PC272E digital I/O and counter/timer
boards. These expansion panels are also compatible with the existing PC36AT Programmable
Digital I/O board (Part Nº 90 893 163).

3.2.1 Features Summary of the Expansion Panels

As with the digital I/O boards, the expansion panels are of modular design employing common
circuit groups and constructional techniques.

Expansion Panels Common Features

• 200 Series compatible
• DIN rail mounting
• Cage clamp terminals
• Common circuit groups
• 78 way shielded connector for user I/O
• 37 way shielded interconnect cables
• Connection groups compatible with I/O boards
• Multiple ground I/O connections
• User manual

Expansion Panels Individual Features

• EX233 - Termination and Distribution Panel (TTL level termination and/or distribution)
• EX213 - 24 Line Digital Output Panel (24 Isolated relay outputs; 24 high level source

drivers)
• EX230 - 24 Line Digital Input Panel (24 isolated high or low level inputs; 24 common high

or low level inputs)
• EX221 - 16 Line Input, Eight Line Output Panel (16 isolated or common hi/lo level inputs;

eight relay and driver outputs)

PC214E Page 17

3.3 Use of Shielded Cables

In order to maintain compliance with the EMC directive, 89/336/EEC, it is mandatory that the
final system integrator uses good quality screened cables for external connections. It is up to
the final system integrator to ensure that compliance with the Directive is maintained. Amplicon
Liveline offers a series of good quality screened cables for this purpose. Please contact our
sales staff.

3.4 Digital Input/Output Conditions

Specifications of the digital input/output lines on PPI X and PPI Y Ports A, B and C are:-

Inputs -
'Low' input voltage –0.5 V to +0.8 V
'High' input voltage +2.2 V to +5.3 V

When an input line is left open circuit, the state is indeterminate. Ensure that signals to any
inputs are within the above limits, and that any unused input lines are grounded or masked out
in software. The output currents shown below must not be exceeded.

Outputs -
'Low' output voltage +0.4v max at +2.5mA
'High' output voltage +3.5v min at –400µA

3.5 Counter/Timer Input/Output Conditions

Specifications of the counter/timer input/output lines of Z1 Counter 0, Z1 Counter 1 and Z1
Counter 2 are:-

Clock and Gate Inputs -
'Low' input voltage 0 V to 0.5 V
'High' input voltage +2.1 V to +10 V

See section 2.6 for more details on the clock and gate input selection. The output currents
shown below must not be exceeded.

Outputs - 'Low' output voltage +0.3 V max at +5.0 mA
'High' output voltage +3.8 V min at –5.0 mA

3.6 PC Back-plane Bus Connections

Connections between the host PC/AT and the PC214E are through a 62 way and a 36 way
edge connector on the PC/AT ISA bus. The user will not normally require access to this I/O
connector information, but for troubleshooting and diagnostic purposes, Figure 10 lists these
standard back-plane connections. The PC214E does not use all of the signals. *Note: Pin B4
is IRQ9 which is re-directed as IRQ2. (Via the computer's second Programmable Interrupt
Controller)

Page 18 PC214E

62 Pin Connector

Ground < B1 A1 < -I/O CHCK (bracket end of board)
+ Reset < B2 A2 < > SD7
+5 Volts < B3 A3 < > SD6

+IRQ2/9* > B4 A4 < SD5
-5 Volts < B5 A5 < > SD4
+DRQ2 > B6 A6 < > SD3

-12 Volts < B7 A7 < > SD2
-0WS < > B8 A8 < > SD1 C

+12 Volts < B9 A9 < > SD0 O
Ground < B10 A10 < I/O CHRDY M

S -SMEMW < B11 A11 < > AEN P
O -SMEMR < B12 A12 < > SA19 O
L -IOW < > B13 A13 < > SA18 N
D -IOR < > B14 A14 < > SA17 E
E -DACK3 < > B15 A15 < > SA16 N
R +DRQ3 < > B16 A16 < > SA15 T

-DACK1 < > B17 A17 < > SA14
S +DRQ1 < > B18 A18 < > SA13 S
 I -DACK0 < > B19 A19 < > SA12 I
D CLK < > B20 A20 < > SA11 D
E +IRQ7 < > B21 A21 < > SA10 E

+IRQ6 < > B22 A22 < > SA9
+IRQ5 < > B23 A23 < > SA8
+IRQ4 < > B24 A24 < > SA7
+IRQ3 < > B25 A25 < > SA6

-DACK2 < > B26 A26 < > SA5
+T/C < B27 A27 < > SA4

+BALE < B28 A28 < > SA3
+5 Volts < B29 A29 < > SA2

OSC < B30 A30 < > SA1
Ground < B31 A31 < > SA0

36 Pin Connector

–MEMCS16 > D1 C1 > SBHE
–I/OCS16 > D2 C2 < > LA23
+IRQ10 > D3 C2 < > LA22
+IRQ11 > D4 C4 < > LA21
+IRQ12 > D5 C5 < > LA20
+IRQ15 > D6 C6 < > LA19
+IRQ14 > D7 C7 < > LA18
–DAC0 < D8 C8 < > LA17
+DRQ0 > D9 C9 > –MEMR
–DACK5 < D10 C10 > –MEMW
+DRQ5 > D11 C11 < > SD08
–DACK6 < D12 C12 < > SD09
+DRQ6 > D13 C13 < > SD10
–DACK7 < D14 C14 < > SD11
+DRQ7 > D15 C15 < > SD12
+5 VoltS < D16 C16 < > SD13
–MASTER > D17 C17 < > SD14
Ground < D18 C18 < > SD15

Figure 10 - PC Backplane - ISA Bus Connections

PC214E Page 19

4. USING THE PC214E

This chapter describes the various operations associated with implementing the user’s application.
Programming and usage operations are discussed and include references to the various register
operations and software library functions required for each operation. Details of the registers and
software are given in chapters 5 and 6 respectively.

Reference should also be made to chapter 2 ‘Getting Started’ and chapter 3 ‘Making the Connections’
before implementing any of the described operations.

4.1 Multiple PC214E Boards in a Single Application

More than one PC214E board may be installed in a single host PC. Furthermore, up to eight of
any combination of boards in the PC214E, PC215E, PC212E, PC218E and PC272E range may
be installed in a single host PC.

To install more than one board in the host PC, the following points should be checked:

1. Sufficient space is available to mount the required number of boards.

2. Sufficient power is available for all the plug in boards and adapters. Each PC214E
requires +5V at up to 100 mA.

3. The base address of each board is set by switch SW1 to a different value, preferably at
contiguous even addresses, and with no conflict with other installed devices. Suitable
base addresses for four boards could be 30016, 32016, 34016 and 36016.

4. The interrupt level (IRQ) of each board is set by jumper J1 to a different value, and with
no conflict with other installed devices.

4.2 User Applications

The PC214E board features two uncommitted 82C55 CMOS Programmable Peripheral
Interface devices, PPIX and PPIY, and an uncommitted 82C54 CMOS Counter/Timer device,
Z1, all of which can each be configured in a variety of operating modes. The operational mode
for each device is established by writing to its control register.

The Windows DLL and the DOS 'C' library contain functions that implement twelve typical
applications for these devices. These functions can be used with any board in the PC214E,
PC215E, PC212E, PC218E and PC272E range, but, since the PC214E does not support
software-programmable counter/timer clock and gate connections, special care must be taken
to configure the PC214E's jumpers and external connections before using these functions. The
following paragraphs describe the twelve applications, outlining the configuration of the board.

For PC214E users please take into consideration the limits on the input and output frequencies
when using the timer/counter functions. These limits arise because the software was written to
support the whole range of Digital I/O and Timer/Counter boards, all (except for the PC214E) of
which feature software selectable clock sources. The functions dynamically select an
appropriate clock source for these boards, and, as this is not possible on the PC214E, a fixed
clock source is required.

Page 20 PC214E

4.2.1 Differential Counter

Two timer/counters can be used to form a Differential Counter pair from which the ratio of, or the
difference between, the two count values is derived. See section 6.6.5 "Differential Counter
Functions".

The function TCsetDiffCounters allows you to specify the two timer/counters to be used as a
differential pair. The function registers the timer/counter pair as being 'in use' and unavailable
for any other application. Provision is also made by TCsetDiffCounters to specify the clock and
gate connections for both timer/counters. However, in the case of the PC214E, these function
arguments do nothing and the clock and gate, connections are selected by using jumpers J2 to
J4 and/or the user socket SK1.

The functions TCgetDiffCount and TCgetRatio can be called at any time after
TCsetDiffCounters, and these two functions latch and read the current count values of the
timer/counters, using the read-back command, and return the difference and ratio of the two
count values respectively. Function TCfreeDiffCounters can be called when finished with the
differential counter, and releases the timer/counter pair so they become available for use by
another application.

4.2.2 Monostable Multivibrator

Mode 1 of the 82C54 timer/counter provides a digital one-shot output. This can be used to
implement a monostable multivibrator pulse. In this mode, the output of the timer goes low at
the falling edge of the first clock succeeding the gate trigger, and is kept low until the counter
value becomes 0. Once the output is set high, it remains high until the clock pulse succeeding
the next gate trigger.

Function TCsetMonoshot allows you to specify a timer/counter and a monostable pulse duration
(in seconds). See section 6.6.6.1 "Send Monostable Pulse - TCsetMonoShot". The function
calculates the initial count value required to generate the specified pulse length, and programs
the timer/counter accordingly. Normally the counter/timer's internal clock source is selected
automatically by the function but, in the case of the PC214E, the user must ensure the relevant
jumper (J2, J3 or J4) is selected correctly for one of the following ranges of possible pulse
duration times:

Output pulse duration range Input clock frequency
Min Max

200 ns 6.5 ms 10 MHz
0.2 µs 65 ms 1 MHz
2.0 µs 650 ms 100 kHz
20 µs 6.5 s 10 kHz
0.2 ms 65 s 1 kHz

It is the responsibility of the user to provide the external gate signal to trigger the monostable
output.

4.2.3 Astable Multivibrator

An extension of the monostable multivibrator is to have two such timer/counters each
generating an output pulse of specified duration, but each being triggered by the end of the
other timer/counter's pulse. By adjusting the two pulse duration times, an astable multivibrator
waveform with a given frequency and mark-to-space ratio can be attained.

PC214E Page 21

This application is implemented in function TCsetAstable - see section 6.6.6.2. The msratio
argument to the function specifies the mark-to-space ratio, and this is defined as follows:

mark-to-space ratio = mark time / overall period

The function registers the timer/counters as being 'in use' and unavailable for any other
application. Function TCfreeAstable can be called when finished with the astable multivibrator,
and releases the timer/counters so they become available for use by another application.

The output of each timer/counter must be connected externally via the user connector, SK1, to
the gate input of the other timer/counter.

The TCsetAstable function calculates the input clock frequencies and counter divide ratios
(CDRs) for the two timers and normally makes the selections automatically. However, for the
PC214E the clock selections must be made by hand, and therefore a discussion of the
calculations involved are necessary to obtain the correct input clock source jumper selections.

MARK SPACE

tM tS

1 / freq

tM = msratio / freq where msratio = mark to space ratio
freq = output frequency (Hz)
tM = mark time (seconds).

The CDR for the 'mark' timer/counter, cdrM, is defined as

cdrM = tM * fClkM where fClkM = 'mark' timer's input clock frequency.

The equation for cdrM should be iterated for various values of fClkM, starting at 10 MHz and
working down, until the result gives a value for cdrM that is less than FFFF16 (the maximum
value for a CDR). When this is attained, a suitable input clock frequency has now been found.
A similar calculation can now take place for tS, with

tS = (1 / freq) - tM

cdrS = tS * fClkS where tS = space time (seconds)
fClkS = 'space' timer's input clock frequency
cdrS = CDR for 'space' timer/counter.

Note: the 82C54 timer/counters outputs are switched to the low level by the next clock after the
gate trigger, possibly causing the mark-to-space ratio to become distorted by one or two clock
pulses. This will become more apparent at higher frequencies.

Page 22 PC214E

4.2.4 Stopwatch

In mode 2, the output of the 82C54 timer/counter starts high; goes low for one clock pulse when
the count value decrements to 1, and then is set to high again. The initial count value is then
automatically re-loaded; counting continues and the sequence repeats. The output can be used
as a clock signal for another timer/counter, and any number of timer/counters can be cascaded
in this way.

Section 6.6.7 "Millisecond Stopwatch Functions" contains function TCsetStopwatch which sets
up two timer/counters in this way with a clock input frequency of 1 kHz. Function
TCstartStopwatch sets the counters counting, and function TCgetElapsedTime latches and
reads the two count values to calculate the elapsed time, in milliseconds, since the counters
were first set off by TCstartStopwatch. This stopwatch can count milliseconds for nearly 50
days. Function TCfreeStopwatch releases the timer/counters so they can become available for
use by another application when the stopwatch is no longer required.
When using these functions with the PC214E, the input clock to the timer/counter specified in
TCsetStopwatch must be set to the internal 1 kHz source, and the next timer/counter along
should have its clock input set to OUT N-1. For example, if Z1 timer/counter 0 was chosen as
the stopwatch counter, its clock should be set by J2 to 1 kHz, and Z1 timer/counter 1 should
have its clock source set to OUT 0 on jumper J3.

4.2.5 Event Recorder

An extension of the stopwatch described above is to record the elapsed times when an external
event occurs. This is possible by connecting an event's status output to an 82C55 digital input
channel on SK1, and causing this digital input to generate an interrupt to the computer's CPU.
The interrupt service routine would then read the elapsed time from the stopwatch
timer/counters and store the time into memory.

The function described in section 6.6.7.4 "Prepare an Event Time Recorder -
TCsetEventRecorder" allows you to specify a digital input chip (PPIX or PPIY) from which Port
C bit 0 will be used as the event input, and interrupt source. Once the board's interrupt has
been enabled (see function enableInterrupts - section 6.6.2.1) and a stopwatch timer has been
started, a positive going signal on the PPI Port C bit 0 pin on SK1 will cause the elapsed time to
be recorded into memory. The PC214E connections required are as follows:

1. Configure a stopwatch as per section 4.2.4 above.
2. Select PPIX Port C 0 or PPIY Port C 0 as the digital input, and connect the

external event's status signal to the relevant pin on SK1.
3. Select the interrupt source as per the choice in 2 above - see section 2.6.4 for

details on interrupt source selection.

4.2.6 Frequency/Period Measurement

Another use for the pulse generation capabilities of the 82C54 is for one counter/timer to
provide a precise GATE signal during which a second timer/counter counts an external event.
In mode 0, a high level on the gate input validates counting, and a low level invalidates it (i.e.
counting stops). Also a low-to-high transition on the gate input causes the initial count value to
be re-latched into the counting element.

Section 6.6.8 contains two functions TCgetExtFreq and TCgetExtPeriod both of which program
a timer/counter to provide a one-shot gate pulse of precise duration 6.5535 ms to a second
timer/counter. The second timer/counter has an external signal as its clock input. When the
gate pulse is over, the second timer/counter's counting stops, and its value is then read. A
simple calculation can then be made to determine the number of external clock cycles received
during the 6.5535 ms, and from this the external frequency and period can be estimated.

PC214E Page 23

The timer/counter you specify in calls to TCgetExtFreq and TCgetExtPeriod is the second
timer/counter described above, and this MUST BE Z1 Counter 2 on the PC214E. The following
connections must be made:

1. Connect the external TTL signal to SK1 pin 36 with reference to GND on, say
SK1 pin 56.

2. Remove jumper J4
3. Place jumper J2 in position 1 (10 MHz)
4. Link SK1 pin 54 (Z1 /OUT0 O/P) to SK1 pin 75 (Z1 GAT2 I/P)

For the PC214E, the input frequency range supported by TCgetExtFreq is 152.5 kHz to 10
MHz, and the input period range supported by TCgetPeriod is 0.1 ns to 6.5 µs.

4.2.7 Frequency Generation

In mode 3 the output of the timer/counter is a periodic square wave, whose frequency is the
input clock frequency divided by the programmed counter divide ratio (CDR). The function
TCgenerateFreq described in section 6.6.8.3 calculates the CDR required to generate a specific
frequency on a given timer/counter. Normally the function selects an appropriate input clock
frequency but, since the PC214E does not support software-programmable clock connections,
the clock input must be set as 1 MHz on the appropriate jumper. This imposes a restriction on
the available output frequency range for the PC214E to 15.2 Hz to 500 kHz.

The function TCgenerateAccFreq described in section 6.6.8.4 uses two cascaded
timer/counters, both in mode 3. The flexibility of having two CDRs adds another degree of
freedom into the calculation of the CDR values, and a more accurate output frequency can be
attained. To use this function with the PC214E, connect the clock jumper of the specified
timer/counter to OUT N-1, and the clock jumper of the next timer/counter down to 1 MHz. For
example, if the specified timer/counter is Z1 counter 1, place jumper J3 in position 7 (Z1 OUT0)
and jumper J2 in position 2 (1 MHz).

4.2.8 Frequency Multiplication

An extension of the frequency measurement and frequency generation capabilities described in
sections 4.2.6 and 4.2.7 above is to combine the two into a process that measures an external
frequency on one timer/counter; multiplies the frequency value by a given factor and generates
this new frequency on a second timer/counter. Function TCmultiplyFreq described in section
6.6.8.5 performs this operation. See sections 4.2.6 and 4.2.7 above for connection details.

4.2.9 Digitally Controlled Oscillator

The combination of the 82C55 PPI and 82C54 counter/timer devices on the PC214E board
make it possible to implement a digitally controlled oscillator, whereby the value of a binary
number read into a PPI input channel is used to calculate the frequency of a square wave
generated on a timer/counter output. To turn this process into a continuous background task, a
second timer/counter can be deployed to generate an 'update' signal by generating a periodic
interrupt. The interrupt service routine then performs the DCO operation in the background.

Function TCsetDCO (section 6.6.9.1) sets up such an arrangement - allowing you to specify the
digital input channel, the output timer/counter and the second timer/counter used to generate
the 'update' interrupts. The function also allows for a flexible update rate and output frequency
range. The digital input channel width (i.e. the number of bits in the digital input word) can be
selected to either 1, 4, 8, 12, 16 or 24 bits by calling function DIOsetChanWidth (see section
6.6.10.3 for more details). The PPI Port(s) used by the digital input channel must be

Page 24 PC214E

programmed as input by calling function DIOsetMode for each port (see section 6.6.10.2
"Configure a Digital I/O Port for Input or Output - DIOsetMode").

The enableInterrupts and disableInterrupts functions must then be called to enable and disable
the 'update' interrupts, and, when finished, function TCfreeDCO frees up the resources used so
they can be used again by another program.

When using the DCO function with the PC214E, please ensure the following connections are
made:

1. The digital input bit(s) must be connected to the digital input channel specified
2. The output timer/counter clock source must be 1 MHz
3. The 'update' timer/counter MUST BE Z1 Counter 1 on the PC214E. The clock

source must be 1 MHz (i.e. jumper J3 in position 2), and the frequency
specified must be within the range 15 Hz to 500 kHz.

4. The interrupt source must be Z1 Timer/Counter OUT1 (i.e. jumper 5 in
position 5).

4.2.10 Voltage Controlled Oscillator

In combination with one of Amplicon's data acquisition boards, providing an analog (voltage)
input channel, a Voltage Controlled Oscillator can be implemented. The operation would be
identical to the DCO described above, except that, rather than reading a digital input channel,
an analog input channel voltage can be measured to provide the frequency control.

Function TCsetVCO (section 6.6.9.2) implements such an arrangement using the PC214E
combined with one of the following data acquisition boards also available from Amplicon:

• PC226E (order code 909 561 63)
• PC30AT (order code 908 931 53)
• PC26AT (order code 908 931 73)
• PC27E (order code 909 561 13)

The output and 'update' timer/counters should be configured in the same way as described for
the DCO above, and the data acquisition board must be configured with the following jumper
selections to give a +10V unipolar analog input range:

1. PC226E not applicable - analog input range is software-programmable.

2. PC30AT J8 = UNI
 J7 = 1
 J3 = C
 J10 = /D11

3. PC26AT J7 = UNI
 J1 = 1
 J2 - C
 J8 = /D11

4. PC27E J1 = UP (+4V unipolar)

Care must also be taken to ensure that the base address and interrupt levels of the PC214E
and data acquisition card do not clash.

PC214E Page 25

4.2.11 Switch Matrix

The high number of digital I/O channels available on the PC214E board lends itself to a switch
matrix scanner implementation. The status of a matrix of switches can be obtained by sending
test patterns into the matrix, and then reading status patterns back from the matrix.

Section 6.6.11 describes functions which allows either PPIX, or both PPIX and PPIY to be used
as such a device. Using only PPIX up to 144 switches can be scanned, and using both PPIX
and PPIY up to 576 switches can be scanned. Group A ports of the 82C55 device(s) - Port A
and Port C-upper - are set for output to send test patterns to the matrix, and group B ports - Port
B and Port C-lower - are set for input to read the switch status information. The user must
ensure that the switch matrix is wired as detailed below.

GND GND

1N4448

1N4448

SPST SPST

10kΩ 10kΩ

SPST SPST

PPI X A0

PPI X A1

PPI X B0 PPI X B1

etc., up to PPI X A7,
then C4 to C7, then
onto PPI Y, and PPI Z.

etc., up to PPI X B7,
then C0 to C3, then
onto PPI Y, and PPI Z.

Figure 11 - Switch Matrix Configuration

Function DIOsetSwitchMatrix allows you to setup the matrix, specifying the matrix order. For
the PC214E, this can be 12 X 12 or 24 X 24 switches. The function also registers the PPIs
used as being 'in use' and unavailable for use by other programs. Function DIOgetSwitchStatus
returns the status of a given switch in the matrix, and function DIOfreeSwitchMatrix frees the
PPIs so they can be used by other programs when the switch matrix is no longer required.

Page 26 PC214E

4.2.12 8-Bit Bi-Directional Bus

In mode 2 it is possible for an 82C55 PPI device to transfer data in two directions through a
single 8-bit port. In this mode, Port C handles the necessary control signals, Port A becomes
the 8-bit bi-directional port, and Port B is free to be programmed (with Group B) for basic input
or basic output operation. Please refer to the manufacturer's 82C55 data sheet included in the
appendices of this manual for a full description of the bi-directional bus operation mode of the
82C55 device.

Section 6.6.12 describes function DIOsetBiDirectionalBus which programs a given PPI chip for
this mode of operation. The PPI's Port C bit 3 interrupt source is used to generate PC214E
interrupts, which will occur when either

a) the device's Output Buffer is empty and ready for another data byte to write to
the Port A bus, or

b) the device's Input Buffer contains a data byte received from the Port A bus.

Two data buffers are required by the function: one which contains output data to be sent to Port
A (byte by byte) whenever a 'write' interrupt occurs, and another empty buffer into which in-
coming data will be stored (byte by byte) whenever a 'read' interrupt occurs. Please note that
functions enableInterrupts and disableInterrupts must be called to enable and disable these
interrupts.

When configuring the PC214E board for this operation, the Port C bit 3 interrupt source of the
given PPI must be selected on jumper J5 - see section 2.6.4 for more details. Care must also
be taken when connecting the Port C control signals to other devices on the bi-directional bus.

PC214E Page 27

5. STRUCTURE AND ASSIGNMENTS OF THE REGISTERS

The set of demonstration programs and routines provided with the PC214E allows the user access to
all the operational functions of the board. However, in some circumstances, the user may wish to
program the application at the lowest level using input/output instructions. This section provides the
necessary information on the accessible registers.

5.1 Register Assignments

The PC214E registers occupy 32 consecutive address locations in the I/O space. A table
summarising the register assignments is shown in Figure 12. Please note that the actual
register address is the base address configured on the board plus the register offset
given in the table. See section 2.6.1 for information on setting the base address.

5.2 Register Groups

All five boards in the PC214E, PC215E, PC212E, PC218E and PC272E series have the same
register map, which is split up into five groups

5.2.1 Cluster X, Y and Z Groups

Each of the Cluster X, Y and Z groups is populated with either an 82C55 Programmable
Peripheral Interface (PPI) device to provide digital input/output, or two 82C54 Counter/Timer
devices, and each of the boards in the range deploy various combinations of these devices.
The PC214E board has only one counter/timer device in its cluster Z group.

5.2.2 Counter Connection Register Group

The Counter Connection Register group is supported by the PC215E, PC212E and PC218E
boards, and these registers provide software-programmable clock and gate connections for the
on-board counter/timer groups. The PC214E allows selection of the timer/counter clock source
by means of jumpers, and does not provide gate source selection.

5.2.3 Interrupts Group

The Interrupt group is supported by all boards in the range other than the PC214E. These
registers provide programmable interrupt source selection, and interrupt source status
information. The PC214E allows selection of the interrupt source by means of a jumper, and
does not provide an interrupt source status register.

The consistency of register definitions across the range does mean that some boards, like the
PC214E, have unused address spaces. It is advised that such addresses are treated as
reserved, and not used for other purposes. A summary of PC214E register definitions is given
in Figure 12 - PC214E Register Assignments.

Page 28 PC214E

ADDRESS Description Write/Read Bits Group

BA + 00 PPI X Port A Write/Read 8
BA + 01 PPI X Port B Write/Read 8
BA + 02 PPI X Port C Write/Read 8
BA + 03 PPI X Control Write/Read 8 Cluster
BA + 04 X
BA + 05
BA + 06
BA + 07
BA + 08 PPI Y Port A Write/Read 8
BA + 09 PPI Y Port B Write/Read 8
BA + 0A PPI Y Port C Write/Read 8
BA + 0B PPI Y Control Write/Read 8 Cluster
BA + 0C Y
BA + 0D
BA + 0E
BA + 0F
BA + 10 Ctr Z1 - 0 Write/Read 8
BA + 11 Ctr Z1 - 1 Write/Read 8
BA + 12 Ctr Z1 - 2 Write/Read 8
BA + 13 Ctr Z1 - Control Write/Read 8 Cluster
BA + 14 Z
BA + 15
BA + 16
BA + 17
BA + 18
BA + 19 Counter
BA + 1A Connections
BA + 1B Registers
BA + 1C
BA + 1D
BA + 1E Interrupts
BA + 1F

Figure 12 - PC214E Register Assignments

5.3 The Register Details

The following paragraphs describe the operations of each of the accessible registers.
Additional information on register usage can be found in section 4 “USING THE PC214E”.

PC214E Page 29

5.3.1 Programmable Peripheral Interface PPI-X Data Register Port A

This eight bit register writes to and reads from port A of the 82C55 Programmable Peripheral
Interface PPI-X. All input/output lines PA0 to PA7 of this device are available to the user on
connector SK1 as digital I/O.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0016 Write and Read 8 bits 82C55 Programmable Peripheral
Interface X Port A Data Register

PPI-X A

FUNCTION

The PPI-X Port A Data Register is used to write or read 8 bit data to port A of the 82C55
Programmable Peripheral Interface device PPI-X.

The PPI can be configured to operate in several modes. Further details may be found by
reference to the device manufacturers’ 82C55 data sheets in the appendices.

The eight data bits of port A are data input, data output or bi-directional data I/O according to
the PPI mode:

Mode 0 Input or Output
Mode 1 Input or Output
Mode 2 Bi-Directional Input/output

The modes and programming of PPI operations are outlined in chapters 4 and 6 with the Digital
I/O connections shown in chapter 3.

BIT ASSIGNMENTS

The bit layout of the PPI-X port A data register is shown below.

01234567

PPI-X Port A Digital
I/O Data Bits

Digital I/O SK1
Pin Connections

SK1 3
SK1 61
SK1 22
SK1 41
SK1 2
SK1 60
SK1 21
SK1 40

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

Page 30 PC214E

5.3.2 Programmable Peripheral Interface PPI-X Data Register Port B

This eight bit register writes to and reads from port B of the 82C55 Programmable Peripheral
Interface PPI-X. All input/output lines PB0 to PB7 of this device are available to the user on
connector SK1 as digital I/O.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0116 Write and Read 8 bits 82C55 Programmable Peripheral
Interface X Port B Data Register

PPI-X B

FUNCTION

The PPI-X Port B Data Register is used to write or read 8 bit data to a port of the 82C55
Programmable Peripheral Interface device.

The PPI can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C55 data sheets in the appendices.

The eight data bits of port B are data input or data output in all modes

The modes and programming of PPI operations are outlined in chapters 4 and 6 with the Digital
I/O connections shown in chapter 3.

BIT ASSIGNMENTS

The bit layout of the PPI-X port B data register is shown below.

01234567

PPI-X Port B Digital
I/O Data Bits

Digital I/O SK1
Pin Connections

SK1 46
SK1 7
SK1 65
SK1 26
SK1 45
SK1 6
SK1 64
SK1 25

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC214E Page 31

5.3.3 Programmable Peripheral Interface PPI-X Data Register Port C

This eight bit register writes to and reads from port C of the 82C55 Programmable Peripheral
Interface PPI-X. All input/output lines PC0 to PC7 of this device are available to the user on
connector SK1 as digital I/O.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0216 Write and Read 8 bits 82C55 Programmable Peripheral
Interface X Port C Data Register

PPI-X C

FUNCTION

The PPI-X Port C Data Register is used to write or read 8 bit data to a port of the 82C55
Programmable Peripheral Interface device

The PPI can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C55 data sheets in the appendices.

The eight data bits of port C are split into two groups, the upper port C bits 4 to 7 and the lower
port C bits 0 to 3. These bits can be data input, data output or control/handshake lines
according to the PPI mode:

Mode Port C Upper Port C Lower

Mode 0 Input or Output Input or Output
Mode 1 Control/Data Control/Data
Mode 2 5 bit Control (PC3 to PC7) 3 bit Control/Data (PC0 to PC2)

With bit 7 'Command Select' set to '0', any of the eight bits of port C can be set or reset using a
single output instruction. When port C is being used as status/control for port A or port B, these
bits can be set or reset using the Bit Set/Reset operation just as if they were data output ports.

The modes and programming of PPI operations are outlined in chapters 4 and 6 with the Digital
I/O connections shown in chapter 3.

BIT ASSIGNMENTS

The bit layout of the PPI-X port C data register is shown below.

01234567

PPI-X Port C Upper
Byte Data Bits

PPI-X Port C Lower
Byte Data Bits

SK1 Pin
Connections

SK1 44
SK1 5
SK1 63
SK1 24
SK1 4
SK1 62
SK1 23
SK1 42

PC0
PC1
PC2
PC3

PC4
PC5
PC6
PC7

Page 32 PC214E

5.3.4 Programmable Peripheral Interface PPI-X Command Register

This is the command register for the PPI and can be used to set the operational mode of the
three digital I/O ports or to manipulate the bits of port C.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0316 Write 8 bits 82C55 Programmable Peripheral
Interface PPI-X Command

Register

PPI-X CMD

FUNCTION

Provides a command word to define the operation of the PPI-X ports A, B and C. Any port
programmed as output is initialised to all zeroes when a command word is written. A separate
feature allows any bit of port C to be set or reset using a single instruction.

The programming procedure for the 82C55 is flexible, but the command word must be written
before data bytes are loaded. As the command register and each port have separate addresses
(offsets 0 to 3) and each command word specifies the mode of each port, no other special
instruction sequence is required.

The Three Modes

The register function depends on the setting of bit 7 'Command Select' and the three mode
selections assume that bit 7 is set to '1'. which allows mode configuration.

Mode 0 provides basic input and output operations through each of the ports A, B and C. Output
data bits are latched and input data follows the signals applied to the I/O lines. No handshaking
is needed.

• 16 different configurations in mode 0
• Two 8 bit ports and two 4 bit ports
• Inputs are not latched
• Outputs are latched

Mode 1 provides strobed input and output operations with data transferred through port A or B
and handshaking through port C.

• Two I/O groups (Group A - also known as Group 0 or Group I)
 (Group B - also known as Group 1 or Group II)

• Both groups contain an 8 bit port and a 4 bit control/data port
• Both 8 bit data ports can be latched input or latched output

PC214E Page 33

Mode 2 provides strobed bi-directional operation using port A as the bi-directional data bus. Port
C3 to C7 bits are used for interrupts and handshaking bus flow control similar to mode 1.
NOTE: Port B and port C0 to C2 bits may be defined as mode 0 or 1, input or output in
conjunction with port A in mode 2.

• An 8 bit latched bi-directional bus port and 5 bit control port
• Both input and outputs are latched
• An additional 8 bit input or output port with a 3 bit control port

Single Bit Set/Reset Feature

With bit 7 'Command Select' set to '0', any of the eight bits of port C can be set or reset using a
single output instruction. This feature reduces the software overhead in control based
applications.

When port C is being used as status/control for port A or port B, these bits can be set or reset
using the Bit Set/Reset operation just as if they were data output ports.

BIT ASSIGNMENTS

Bit layouts of the PPI-X command word register is shown below.

Further information on programming the 82C55 PPI is given in chapters 4 and 6. A full
description of the operating modes and all other features of the 82C55 are available in the
82C55 device manufacturer's data sheet in the appendices.

Command Word for Mode Definition Format

01234567

 Port C (Lower) 0 = Output
1 = Input

 Port B 0 = Output
 1 = Input

 Mode Selection 0 = Mode 0
 1 = Mode 1

GROUP B

 Port C (Upper) 0 = Output
 1 = Input

 Port A 0 = Output
 1 = Input

 Mode Selection 00 = Mode 0
 01 = Mode 1
 1X = Mode 2

GROUP A

e Set Flag 1 = Active

COMMAND
SELECT

Page 34 PC214E

Command Word for Bit Set/Reset Format

5.3.5 Programmable Peripheral Interface PPI-Y Data Register Port A

This eight bit register writes to and reads from port A of the 82C55 Programmable Peripheral
Interface PPI-Y. All input/output lines PA0 to PA7 of this device are available to the user on
connector SK1 as digital I/O.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0816 Write and Read 8 bits 82C55 Programmable Peripheral
Interface Y Port A Data Register

PPI-Y A

FUNCTION

The PPI-X Port A Data Register is used to write or read 8 bit data to port A of the 82C55
Programmable Peripheral Interface device PPI-Y.

The PPI can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C55 data sheets in the appendices.

The eight data bits of port A are data input, data output or bi-directional data I/O according to
the PPI mode:

Mode 0 Input or Output
Mode 1 Input or Output
Mode 2 Bi-Directional Input/output

The modes and programming of PPI operations are outlined in chapters 4 and 6 with the Digital
I/O connections shown in chapter 3.

01234567
 Bit Set/Reset 0 = Reset

1 = Set

Port C Bit Select
 Bit Set/Reset Flag
 0 = Active

COMMAND
SELECT

6 74 52 30 1

0 B010 10 10 1

1 B110 01 10 0

1 B211 10 00 0

X X X
Don't Care

PC214E Page 35

BIT ASSIGNMENTS

The bit layout of the PPI-Y port A data register is shown below.

5.3.6 Programmable Peripheral Interface PPI-Y Data Register Port B

This eight bit register writes to and reads from port B of the 82C55 Programmable Peripheral
Interface PPI-Y. All input/output lines PB0 to PB7 of this device are available to the user on
connector SK1 as digital I/O.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0916 Write and Read 8 bits 82C55 Programmable Peripheral
Interface Y Port B Data Register

PPI-Y B

FUNCTION

The PPI-Y Port B Data Register is used to write or read 8 bit data to a port of the 82C55
Programmable Peripheral Interface device.

The PPI can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C55 data sheets in the appendices.

The eight data bits of port B are data input or data output in all modes

The modes and programming of PPI operations are outlined in chapters 4 and 6 with the Digital
I/O connections shown in chapter 3.

01234567

PPI-Y Port A Digital
I/O Data Bits

Digital I/O SK1
Pin Connections

SK1 29
SK1 48
SK1 9
SK1 67
SK1 28
SK1 47
SK1 8
SK1 66

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

Page 36 PC214E

BIT ASSIGNMENTS

The bit layout of the PPI-Y port B data register is shown below.

5.3.7 Programmable Peripheral Interface PPI-Y Data Register Port C

This eight bit register writes to and reads from port C of the 82C55 Programmable Peripheral
Interface PPI-Y. All input/output lines PC0 to PC7 of this device are available to the user on
connector SK1 as digital I/O.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0A16 Write and Read 8 bits 82C55 Programmable Peripheral
Interface Y Port C Data Register

PPI-Y C

FUNCTION

The PPI-Y Port C Data Register is used to write or read 8 bit data to a port of the 82C55
Programmable Peripheral Interface device

The PPI can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C55 data sheets in the appendices.

The eight data bits of port C are split into two groups, the upper port C bits 4 to 7 and the lower
port C bits 0 to 3. These bits can be data input, data output or control/handshake lines
according to the PPI mode:

Mode Port C Upper Port C Lower

Mode 0 Input or Output Input or Output
Mode 1 Control/Data Control/Data
Mode 2 5 bit Control (PC3 to PC7) 3 bit Control/Data (PC0 to PC2)

With bit 7 'Command Select' set to '0', any of the eight bits of port C can be set or reset using a
single output instruction. When port C is being used as status/control for port A or port B, these
bits can be set or reset using the Bit Set/Reset operation just as if they were data output ports.

The modes and programming of PPI operations are outlined in chapters 4 and 6 with the Digital
I/O connections shown in chapter 3.

01234567

PPI-Y Port B Digital
I/O Data Bits

Digital I/O SK1
Pin Connections

SK1 72
SK1 33
SK1 52
SK1 13
SK1 71
SK1 32
SK1 51
SK1 12

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC214E Page 37

BIT ASSIGNMENTS

The bit layout of the PPI-Y port C data register is shown below.

5.3.8 Programmable Peripheral Interface PPI-Y Command Register

This is the command register for the PPI and can be used to set the operational mode of the
three digital I/O ports or to manipulate the bits of port C.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

0B16 Write 8 bits 82C55 Programmable Peripheral
Interface PPI-Y Command

Register

PPI-Y CMD

FUNCTION

Provides a command word to define the operation of the PPI-Y ports A, B and C. Any port
programmed as output is initialised to all zeroes when a command word is written. A separate
feature allows any bit of port C to be set or reset using a single instruction.

The programming procedure for the 82C55 is flexible, but the command word must be written
before data bytes are loaded. As the command register and each port have separate addresses
(offsets 0 to 3) and each command word specifies the mode of each port, no other special
instruction sequence is required.

The Three Modes

The register function depends on the setting of bit 7 'Command Select' and the three mode
selections assume that bit 7 is set to '1'. which allows mode configuration.

Mode 0 provides basic input and output operations through each of the ports A, B and C. Output
data bits are latched and input data follows the signals applied to the I/O lines. No handshaking
is needed.

01234567

PPI-Y Port C Upper
Byte Data Bits

PPI-Y Port C Lower
Byte Data Bits

SK1 Pin
Connections

SK1 70
SK1 31
SK1 50
SK1 11
SK1 30
SK1 49
SK1 10
SK1 68

PC0
PC1
PC2
PC3

PC4
PC5
PC6
PC7

Page 38 PC214E

• 16 different configurations in mode 0
• Two 8 bit ports and two 4 bit ports
• Inputs are not latched
• Outputs are latched

Mode 1 provides strobed input and output operations with data transferred through port A or B
and handshaking through port C.

• Two I/O groups (Group A - also known as Group 0 or Group I)
• (Group B - also known as Group 1 or Group II)
• Both groups contain an 8 bit port and a 4 bit control/data port
• Both 8 bit data ports can be latched input or latched output

Mode 2 provides strobed bi-directional operation using port A as the bi-directional data bus. Port
C3 to C7 bits are used for interrupts and handshaking bus flow control similar to mode 1.
NOTE: Port B and port C0 to C2 bits may be defined as mode 0 or 1, input or output in
conjunction with port A in mode 2.

• An 8 bit latched bi-directional bus port and 5 bit control port
• Both input and outputs are latched
• An additional 8 bit input or output port with a 3 bit control port

Single Bit Set/Reset Feature

With bit 7 'Command Select' set to '0', any of the eight bits of port C can be set or reset using a
single output instruction. This feature reduces the software overhead in control based
applications.

When port C is being used as status/control for port A or port B, these bits can be set or reset
using the Bit Set/Reset operation just as if they were data output ports.

BIT ASSIGNMENTS

Bit layouts of the PPI-Y command word register is shown below.

Further information on programming the 82C55 PPI is given in chapters 4 and 6. A full
description of the operating modes and all other features of the 82C55 are available in the
82C55 device manufacturer's data sheet in the appendices.

PC214E Page 39

Command Word for Mode Definition Format

Command Word for Bit Set/Reset Format

5.3.9 Z1 Counter 0 Data Register

The 82C54 Programmable Timer Counter Z1 provides three 16 bit counter/timers which can be
independently programmed to operate in any one of six modes with BCD or Binary count
functions. The register definition for Z1 Counter 0 Data is as follows.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

1016 Write and Read 8 bits 82C54 Counter/Timer Z1
Counter 0 Data Register

Z1 CT0

01234567

 Port C (Lower) 0 = Output
1 = Input

 Port B 0 = Output
 1 = Input

 Mode Selection 0 = Mode 0
 1 = Mode 1

GROUP B

 Port C (Upper) 0 = Output
 1 = Input

 Port A 0 = Output
 1 = Input

 Mode Selection 00 = Mode 0
 01 = Mode 1
 1X = Mode 2

GROUP A

e Set Flag 1 = Active

COMMAND
SELECT

01234567
 Bit Set/Reset 0 = Reset

1 = Set

Port C Bit Select
 Bit Set/Reset Flag
 0 = Active

COMMAND
SELECT

6 74 52 30 1

0 B010 10 10 1

1 B110 01 10 0

1 B211 10 00 0

X X X
Don't Care

Page 40 PC214E

FUNCTION

The Z1 Counter 0 Data Register is used to write and read 8 bit data to the 82C54 Z1
counter/timer 0. The counter is normally configured for 16 bit operation and to ensure validity of
the data it is important to always write/read two bytes to the register, least significant byte first.
Please note that the 16-bit count values written to this register are not latched into the counting
element until the next clock pulse (assuming the gate input is high). Subsequent read
operations from this register will therefore not reflect the new count value until this clock pulse
has latched the data.

The counter can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C54 data sheets in the appendices.

The input to counter 0 can be any of the five internal master clock frequencies (10MHz, 1MHz,
100kHz, 10kHz or 1kHz), an external clock, the Z1 External Clock signal or the output of Z1
counter 2. This source selection is made by jumper J2 which is described in Section 2.6.5.

The output of counter 0 is available on the user socket, SK1 pin 15, and also as a possible clock
source for counter 1. The inverted output of Z1 counter 0 is also available on SK1 pin 54.

Counter gate 0 is permanently enabled, by means of a pull-up resistor to VCC, but can be
controlled externally by connecting a signal to SK1 pin 73.

Further information on programming the 82C54 Programmable Counter/Timer is given in
chapters 4 and 6.

BIT ASSIGNMENTS

The bit layout of the Z1 counter 0 data register is shown below.

01234567

Second Byte
(Most Significant)

8
9
10
11
12
13
14
15

First Byte
(Least Significant)

0
1
2
3
4
5
6
7

Z1 16 BIT COUNTER 0 DATA BIT

PC214E Page 41

5.3.10 Z1 Counter 1 Data Register

The 82C54 Programmable Timer Counter Z1 provides three 16 bit counter/timers which can be
independently programmed to operate in any one of six modes with BCD or Binary count
functions. The register definition for Z1 Counter 1 Data is as follows.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

1116 Write and Read 8 bits 82C54 Z1 Counter/Timer
Counter 1 Data Register

Z1 CT1

FUNCTION

The Z1 Counter 1 Data Register is used to write and read 8 bit data to the 82C54 Z1
counter/timer 1. The counter is normally configured for 16 bit operation and to ensure validity of
the data it is important to always write/read two bytes to the register, least significant byte first.
Please note that the 16-bit count values written to this register are not latched into the counting
element until the next clock pulse (assuming the gate input is high). Subsequent read
operations from this register will therefore not reflect the new count value until this clock pulse
has latched the data.

The counter can be configured to operate in several modes. Further details may be found by
reference to the device manufacturer's 82C54 data sheets in the appendices.

The input to counter 1 can be any of the five internal master clock frequencies (10MHz, 1MHz,
100kHz, 10kHz or 1kHz), an external clock, the Z1 External Clock signal or the output of Z1
counter 0. This source selection is made by jumper J3 which is described in Section 2.6.5.

The output of counter 1 is available on the user socket, SK1 pin 55, and also as a possible clock
source for counter 2. Counter gate 1 is permanently enabled, by means of a pull-up resistor to
VCC, but can be controlled externally by connecting a signal to SK1 pin 16.

Further information on programming the 82C54 Programmable Counter/Timer is given in
chapters 4 and 6.

BIT ASSIGNMENTS

The bit layout of the Z1 counter 1 data register is shown below.

01234567

Second Byte
(Most Significant)

8
9
10
11
12
13
14
15

First Byte
(Least Significant)

0
1
2
3
4
5
6
7

Z1 16 BIT COUNTER 1 DATA BIT

Page 42 PC214E

5.3.11 Z1 Counter 2 Data Register

The 82C54 Programmable Timer Counter Z1 provides three 16 bit counter/timers which can be
independently programmed to operate in any one of six modes with BCD or Binary count
functions. The register definition for Z1 Counter 2 Data is as follows.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

1216 Write and Read 8 bits 82C54 Z1 Counter/Timer
Counter 2 Data Register

Z1 CT2

FUNCTION

The Z1 Counter 2 Data Register is used to write and read 8 bit data to the 82C54 Z1
counter/timer 2. The counter is normally configured for 16 bit operation and to ensure validity of
the data. It is important to always write/read two bytes to the register, least significant byte first.
Please note that the 16-bit count values written to this register are not latched into the counting
element until the next clock pulse (assuming the gate input is high). Subsequent read
operations from this register will therefore not reflect the new count value until this clock pulse
has latched the data.

The input to counter 2 can be one of the internal master clock frequencies 1MHz or 1kHz, an
external clock, the Z1 External Clock signal or the output of Z1 counter 1. This source selection
is made by jumper J4 which is described in Section 2.6.5.

The output of counter 2 is available on the user socket, SK1 pin 17, and also as a possible clock
source for counter 0.

Counter gate 2 is permanently enabled, by means of a pull-up resistor to VCC, but can be
controlled externally by connecting a signal to SK1 pin 75.

Further information on programming the 82C54 Programmable Counter/Timer is given in
chapters 4 and 6.

BIT ASSIGNMENTS

The bit layout of the Z1 counter 2 data register is shown below.

01234567

Second Byte
(Most Significant)

8
9
10
11
12
13
14
15

First Byte
(Least Significant)

0
1
2
3
4
5
6
7

Z1 16 BIT COUNTER 2 DATA BIT

PC214E Page 43

5.3.12 Counter/Timer Z1 Control Register

The Z1 control register provides the means to configure the three sixteen bit counter/timers of
the 82C54 Z1. An outline of its operation is given here, but reference should be made to the
82C54 device manufacturers’ data sheets in the appendices before programming of the counter
is attempted.

The Counter Timer Control register is a WRITE register. The READ register at the same
location BA + 1316 returns the status of the 82C54 Z1 Counter/Timer when used with the Read-
Back command.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

1316 Write 8 bits 82C54 Z1 Counter/Timer
Control Register

Z1 CTC

FUNCTION

Provides a control word to define the operation of the Z1 counters 0, 1 and 2.

The programming procedure for the 82C54 is flexible, but the following two conventions must be
followed:

• For each counter, the control word must be written before the initial count is loaded.

• The initial count must follow the count format specified in the control word. This format is

normally least significant byte followed by most significant byte (control word bits 5, 4 = 1 1)
but can be L.S. byte only or M.S. byte only.

As the control register and each counter have separate addresses (offsets 0, 1, 2 and 3) and
each control word specifies the counter it applies to (bits 6 and 7) no special instruction
sequence is required.

When a control word is written to a counter, all control logic is reset and OUT goes to a known
initial state depending on the mode selected.

The six counter modes are:

Mode 0 Interrupt on Terminal Count
Mode 1 Hardware Re-triggerable One-shot
Mode 2 Rate Generator
Mode 3 Square Wave
Mode 4 Software Triggered Mode
Mode 5 Hardware Triggered Strobe (Re-triggerable)

Page 44 PC214E

BIT ASSIGNMENTS

Bit layout of the Z1 counter control word register is shown below.

Two other commands that can be written to the Control Register are the Counter Latch
Command and the Read-Back Command. The formats for these two commands are also shown
below.

Further information on programming the 82C54 Programmable Counter/Timer is given in
chapters 4 and 6. A full description of the six operating modes and all other features of the
82C54 are available in the 82C54 device manufacturer's data sheet in the appendices.

5.3.13 Z1 Counter/Timer Status Register

This status register provides the means to interrogate the three sixteen bit counter/timers of the
82C54 Z1. An outline of its operation is given here, but reference should be made to the 82C54
device manufacturers’ data sheets in the appendix before programming of the counter is
attempted.

The Z1 counter Status Register is a READ register. The WRITE register at the same location
BA + 1316 controls the operation of the 82C54 Counter/Timer Z1 and issues a Read-Back
command before the status is interrogated.

Register
Offset

Write and/or
Read

Register
Width

Register
Title

Mnemonic

1316 Read 8 bits 82C54 Z1 Counter/Timer
Status Register

Z1 CTS

01234567

Binary or BCD

Binary Count (16 Bits)
BCD Count (4 Digits)

BCD

0
1

Count Mode

Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

CM0

0
1
0
1
0
1

CM1

0
0
1
1
0
0

CM2

0
0
X
X
1
1

Read/Write Mode

Count Latch Command
Low Byte Only
High Byte Only

Low Byte then High Byte

RWM0

0
1
0
1

RWM1

0
0
1
1

Select Counter or MLC

Counter 0
Counter 1
Counter 2

Multiple Latch Command

SC0

0
1
0
1

SC1

0
0
1
1

PC214E Page 45

FUNCTION

When the Read-Back Command requests the status of the counters, the status register
provides the count value, programmed mode, the current state of the OUT pin and Null Count
Flag of the selected counter(s).

BIT ASSIGNMENTS

Bit layout of the counter/timer status word register is shown below.

Bits 5…0 Counter's programmed Mode exactly as written in the last Mode Control Word

Bit 6 State of the addressed counter element

0 Count available for reading
1 Null Count

Bit 7 State of the addressed counter OUT pin

0 OUT pin is '0'
1 OUT pin is '1'

01234567

Counter Latch Command

Bits 3 to 0 = Don’t care
Bits 5 and 4 = 0

Designates Counter Latch Command
Bits 7 and 6

00 = Counter 0
01 = Counter 1
10 = Counter 2
11 = Read-back Command

01234567

Read-back Command

Bit 0 = 0
Bit 1 = Select Counter 0
Bit 2 = Select Counter 1
Bit 3 = Select Counter 2
Bit 4 = /Latch Status of Selected Counter(s)
Bit 5 = /Latch Count of Selected Counter(s)
Bits 6 and 7 = 1

Designates Read-back Command

01234567

Counter Programmed
Mode

OUT Pin Status

Null Count

Page 46 PC214E

6. PROGRAMMING THE PC214E

The distribution diskette supplied with the PC214E contains a Windows setup program, which installs
the software onto the user's hard disk drive, and creates a new Windows program group containing
shortcuts to the executable programs and help files. This software includes:

Executable programs for immediate use

Three Windows and three DOS programs ready to run from an icon or the DOS prompt,
providing examples of programming the PC214E, using the Windows/DOS library functions.

Dynamic Link Library (DLL) for programming Windows 3.11 applications

A library of over 40 functions providing easy access to all the features of the PC214E board,
and also providing implementations of common applications for the PC214E board. The
functions in the DLL can be accessed by any programming language which supports Windows
and uses the defined Windows calling conventions. The DLL supports all of the boards in the
PC214E, PC215E, PC212E, PC218E and PC272E series of digital I/O boards.

'C' Library for programming DOS applications

A DOS library providing identical functionality to the Windows DLL is provided, which supports
the Microsoft C/C++ and Borland C++ compilers. Again, this library supports all of the boards in
the PC214E, PC215E, PC212E, PC218E and PC272E series.

Interface software for other languages

Generic LABTECH NOTEBOOK drivers for the Digital I/O and Timer Counter devices provided
on the PC214E, PC215E, PC212E, PC218E and PC272E boards are also provided.

6.1 Copyright

Software supplied on the PC214E diskette is Amplicon copyright. Permission is granted for the
purchaser of the PC214E to incorporate any part of the Amplicon copyright software into
related application programs, and to use, resell or otherwise distribute such application
programs for operation with PC214E hardware purchased from Amplicon Liveline Limited.

6.2 Files installed from the Distribution Diskette

The files installed from the 3.5 inch high density diskette are listed in the ReadMe file,
README.TXT. Please refer to this file for the latest information.

Any last minute information will be described in the README.TXT file which should
be examined before proceeding.

PC214E Page 47

6.3 Windows DLL and Examples

The PC214E DLL is a 16-bit Windows programmer's interface to the PC214E board. Provided
that the compiler/interpreter supports Windows, i.e. uses the Windows calling conventions, all
the functions can be called by software written in any language.

For C/C++ language applications, the software includes a ready prepared header file,
DIO_TC.H which covers all function definitions and declared constants. Similarly for Visual
Basic there is a module DIO_TC.BAS for inclusion in a project make file for DLL declarations
and constant definitions. For other languages the user will need to compile a suitable header in
which the DLL functions and constants are declared, and these files can be used as an
example.

The software includes Visual Basic examples as both runtime and source code. The runtime
examples can be used to exercise and become familiar with the hardware. The source code
serves two purposes. Firstly it can be used as a source of reference to see how the DLL
functions are used. Also it provides a starting point for anyone who wishes to write software
with similar functionality.

6.4 DOS 'C' Library and Examples

The 'C' library is a DOS programmer's interface to the PC214E board. The software includes
'C' examples as both runtime and source code. The source code can be compiled using the
Microsoft C/C++ or Borland C++ compilers - conditional compilation based on a #define at the
top of the program file allows the source code to be compatible with both languages.

To define the 'C' compiler in use, a single line in file DIO_TC.H must be changed for Microsoft or
Borland C/C++ users. The line that is not required must be removed (or made inoperative by
commenting out)

The following example extracted from the 'C' source shows the program set up for Borland C++

#define __BORLAND_C__ // Borland C++ users use this
//#define __MICROSOFT_C__ // Microsoft C/C++ users use this

Section 6.6 describes the library functions available. Please note that in C/C++, the function
syntax lines given should always end with a semi-colon. Where arguments to functions are
described as pointers, the address of a user-declared variable is required. This is easily done
by using the '&' reference operator. For example, function TCgetCount requires a pointer to a
variable declared as long, into which the count value result will be placed. A typical 'C' code
example for displaying the Z1 Counter 0 count value would be

long count; // declare count as long

TCgetCount(h, Z1, 0, &count); // pass count by reference
printf("count = %ld", count); // count now contains new value

where h is a handle to a registered board. N.B. The large memory model should be used
when compiling the library and example programs.

Page 48 PC214E

6.4.1 Borland C++ User Information

1) Ensure that the library DIO_TC.C and the header file DIO_TC.H are in a directory where the
compiler can locate them. Failure to find these files may cause ‘unresolved external’
compilation errors.

2) At the beginning of the application program, add the following line:

 #include "DIO_TC.H"

3) Add the file DIO_TC.C to the project list in the environment and use the MAKE command to

compile and link.

6.4.2 Microsoft C/C++ User Information

1) Ensure that the library DIO_TC.LIB and the header file DIO_TC.H are in a directory where
the compiler can locate them. Failure to find these files may cause ‘unresolved external’
compilation errors.

2) At the beginning of the application program, add the following line:

 #include "DIO_TC.H"

3) Compile the Microsoft C/C++ DIO_TC library with the following command-lines:

 cl -Ml -c DIO_TC.C
 lib DIO_TC.LIB +DIO_TC.OBJ

4) Compile the application program using the large model and linking with the DIO_TC library
by typing the following command line:

 cl -Ml myprog.c -link DIO_TC.LIB

6.5 Using the Dynamic Link Library

6.5.1 Visual Basic

To open one of the Visual Basic example projects provided with the DLL, from within Microsoft
Visual Basic select 'File|Open Project...' and select one of the .MAK project files provided in the
WINDOWS\VB subdirectory of the PC214E software directory. The project window will now
appear on the desktop. Double-click on any file in the project to view the source code, or select
Run to run the program.

To create your own PC214E Visual Basic program from scratch, perform the following steps:

• From within Microsoft Visual Basic, select 'File|New Project'. A new project window
will appear, into which the standard Visual Basic Control (VBX) files are automatically
loaded. Also an empty Form1 design window will appear.

• Select 'File|Add file...' and select the following files from the WINDOWS\VB

subdirectory of the PC214E software directory:

DIO_TC.BAS - PC214E DLL declarations and global constants
REGISTER.FRM - Board registration form
CONSTANT.TXT - Visual Basic global constants

PC214E Page 49

• Double-click on the empty Form1 design window to bring up the code window for the
Form_Load() subroutine. At runtime, this routine will get called when the program first
starts up.

• Type the following lines into the Form_Load() subroutine:

hBoard = ERRSUPPORT
Load REGISTER
REGISTER.Show modal
Unload REGISTER

These lines of code will cause the Board Registration dialog box to pop up so that the
PC214E board can be registered with the DLL.

• Put away the code window, and select the Form1 design window

• Select 'Window|Menu Design...' to bring up the dialog box from which you design the

form's menubar. Type 'Exit' as the caption and 'mnuExit' as the name for the first
menu bar item, then click on OK to put the dialog box away.

• The menubar will now appear in the Form1 design window. Click on the 'Exit' item to

bring up the code window for the mnuExit_Click() subroutine. At runtime, this routine
will get called whenever the 'Exit' menu is selected.

• Type the following lines into the mnuExit_Click() subroutine:

Dim e As Integer
e = freeBoard(hBoard)
if e <> OK then
Call ReportError(e)
End If
End

These lines of code un-registers the board from the DLL as the program closes.

These eight steps will create the shell of a VB application that can now be run. The program at
this stage does nothing more than register a PC214E board (or any other board in the PC214E,
PC215E, PC212E, PC218E and PC272E series) with the DLL on start-up, and free that board
on exit.

Section 6.6 describes the library functions available. Where arguments to functions are
described as pointers, the address of a user-declared variable is required. This is taken care of
automatically by Visual Basic because all arguments to the DLL functions are passed by
reference, unless the 'ByVal' prefix is used on an argument in the function declaration in the
DLL's Visual Basic include file, DIO_TC.BAS. For example, function TCgetCount requires a
pointer to a variable declared as long, into which the count value result will be placed. A typical
VB code example for displaying the Z1 Counter 0 count value would be

Dim count As Long ' declare count as long

i = TCgetCount(h, Z1, 0, count)
Text1.Text = Str$(count) ' count now contains new value

Page 50 PC214E

6.6 Windows and DOS Library Functions

Details are given of each of the functions provided in the supplied Windows Dynamic Link
Library (DLL) and DOS 'C' Library.

6.6.1 Initialisation Functions

6.6.1.1 Register a Board with the Library - registerBoard

Registers a board with the library. This function returns a Board Handle (positive integer)
which must be used in all subsequent calls to library functions for this board. No more than
eight boards can be registered at any one time.

i = registerBoard (model, ba, irq)

where model Integer: Board’s model number. The following
pre-defined constants may be used for the
boards supported:-
 PC214E = 214
 PC215E = 215
 PC272E = 272
 PC212E = 212
 PC218E = 218

ba Integer: Board’s base address. Factory default
is 300 hex. See section 2.6.1 for details on
selecting the board's base address.

irq Integer: Board’s Interrupt level. Factory default
is 5. See section 2.6.3 for details on selecting
the board's interrupt level.

Returns Integer: Board handle to be used in all subsequent function calls for that
board.

or ERRSUPPORT
ERRBASE
ERRIRQ

Prior Calls none

See Also freeBoard

PC214E Page 51

6.6.1.2 Get the Name of a Board - getBoardModel

Returns the model name of a registered board.

i = getBoardModel (h)

where h Integer: Board's handle as issued by the
registerBoard function.

Returns Integer: Board’s model number. Possible values are:-
 214: Amplicon PC214E
 215: Amplicon PC215E
 272: Amplicon PC272E
 212: Amplicon PC212E
 218: Amplicon PC218E

or ERRHANDLE

Prior Calls registerBoard

See Also

6.6.1.3 Un-register a Board with the DLL - freeBoard

Frees a previously registered board from the library's register. This board can be re-registered
by another program.

i = freeBoard (h)

where h Integer: Board handle as issued by the
registerBoard function.

Returns Integer: OK

or ERRHANDLE

Prior Calls registerBoard

See Also

Page 52 PC214E

6.6.2 Interrupt Control Functions

6.6.2.1 Enable a Board's Interrupt Source(s) - setIntMask

Enables or disables one or more of a board’s interrupt sources, by writing a mask byte to the
board's Interrupt Mask register. For the PC215E, PC212E, PC218E and PC272E boards, any
number of the interrupt sources can be enabled (a single interrupt is generated, but the
interrupt service routine interrogates each source in turn and, if asserted, services that
interrupt). For the PC214E, this function is not supported and returns an error if called.

i = setIntMask (h, mask)

where h Integer: Board handle as issued by the
registerBoard function.

mask Integer: Mask byte. The bit designations for
the board’s Interrupt Mask Register will vary
from board to board. Refer to section 2.6.4 for a
description of the interrupt sources, and their
functionality.

Returns Integer: OK

or ERRHANDLE
ERRSUPPORT

Prior Calls registerBoard

See Also enableInterrupts
disableInterrupts

6.6.2.2 Read a Board's Interrupt Source Status - getIntStat

Returns a board’s interrupt source status byte, by reading from the board's Interrupt Status
register. The status of each bit is returned, irrespective of whether it has been enabled using
the setIntMask function. See section 2.6.4 for a description of the interrupt sources. This
function is not supported by the PC214E, as this board does not have an Interrupt Status
register.

i = getIntStat (h)

where h Integer: Board handle as issued by the
registerBoard function.

Returns Integer: Interrupt status byte. See section 2.6.4 for a description of the
interrupt sources.

or ERRHANDLE
ERRSUPPORT

Prior Calls registerBoard

See Also

PC214E Page 53

6.6.2.3 Enable a Board's Interrupts- enableInterrupts

Enables the interrupt level registered for a board, by unmasking the corresponding bit in the
Interrupt Mask register (IMR) of the 82C59 Programmable Interrupt Controller (PIC) on the host
computer. The interrupt sources un-masked by a previous call to the setIntMask function or,
for the PC214E, the interrupt source selected by jumper J5 is now enabled. See section 2.6.4
for details of the interrupt sources.

i = enableInterrupts (h)

where h Integer: Board handle as issued by the
registerBoard function.

Returns Integer: OK

or ERRHANDLE

Prior Calls registerBoard

See Also disableInterrupts
setIntMask
TCsetEventRecorder
DIOsetBiDirectionalBus
TCsetDCO
TCsetVCO

6.6.2.4 Disable a Board's Interrupts - disableInterrupts

Disables the interrupt level registered for a board, by masking the corresponding bit in the IMR
of the PIC on the host computer.

i = disableInterrupts (h)

where h Integer: Board handle as issued by the
registerBoard function

Returns Integer: OK

or ERRHANDLE

Prior Calls registerBoard
enableInterrupts
setIntMask

See Also

Page 54 PC214E

6.6.3 Data Buffer Functions

6.6.3.1 Allocate an Integer Data Buffer - allocateIntegerBuf

Creates a data buffer, by allocating a block of memory of integer data. The function
returns a Buffer Handle (positive integer). Up to four integer data buffers can be created.
The Buffer Handle must be used in any subsequent function calls to identify that
particular data buffer. Two integer data buffers are required by the function
DIOsetBiDirectionalBus

b = allocateIntegerBuf (nItems)

where nItems Long: Number of data items to be allocated. If
there is insufficient memory available for the
size of the buffer, an error is returned.

Returns Integer: Buffer Handle (positive integer). This handle must be used in all
subsequent function calls to identify the buffer.

or ERRSUPPORT
ERRMEMORY

Prior Calls registerBoard

See Also freeIntegerBuf

6.6.3.2 Allocate a Long Integer Data Buffer - allocateLongBuf

Creates a data buffer, by allocating a block of memory of long integer data. The function
returns a Buffer Handle (positive integer). Up to four long data buffers can be created.
The Buffer Handle must be used in any subsequent function calls to identify that
particular data buffer. A long integer data buffer is required by the function
TCsetEventRecorder

b = allocateLongBuf (nItems)

where nItems Long: Number of data items to be allocated. If
there is insufficient memory available for the
size of the buffer, an error is returned.

Returns Integer: Buffer Handle (positive integer). This handle must be used in all
subsequent function calls to identify the buffer.

or ERRSUPPORT
ERRMEMORY

Prior Calls registerBoard

See Also freeLongBuf

PC214E Page 55

6.6.3.3 Free up an Integer Data Buffer - freeIntegerBuf

Frees a block of memory previously allocated for the given data buffer by the
allocateIntegerBuf function.

i = freeIntegerBuf (b)

where b Integer: buffer handle as issued by the
allocateIntegerBuf function.

Returns Integer: OK

or ERRBUFFER

Prior Calls registerBoard
allocateIntegerBuf

See Also

6.6.3.4 Free up a Long Integer Data Buffer - freeLongBuf

Frees a block of memory previously allocated for the given data buffer by the allocateLongBuf
function.

i = freeLongBuf (b)

where b Integer: buffer handle as issued by the
allocateLongBuf function.

Returns Integer: OK

or ERRBUFFER

Prior Calls registerBoard
allocateLongBuf

See Also

Page 56 PC214E

6.6.3.5 Read Data from an Integer Buffer - readIntegerBuf

Reads a data item from an integer buffer, which is returned via a user-supplied pointer. The
pointer must reference an integer variable.

i = readIntegerBuf (b, item, p)

where b Integer: buffer handle, as issued by the
allocateIntegerBuf function

item Long: index of the data item in the buffer.

p Pointer: points to an integer variable to be
used for the result

Returns Integer: OK

or ERRBUFFER
ERRRANGE

Prior Calls registerBoard
allocateIntegerBuf

See Also

6.6.3.6 Read Data from Long Buffer - readLongBuf

Reads a data item from long integer buffer, which is returned via a user-supplied pointer. The
pointer must reference a long integer variable.

i = readLongBuf (b, item, p)

where b Integer: buffer handle, as issued by the
allocateLongBuf function

item Long: index of the data item in the buffer.

p Pointer: points to a long integer variable to be
used for the result

Returns Integer: OK

or ERRBUFFER
ERRRANGE

Prior Calls registerBoard
allocateLongBuf

See Also

PC214E Page 57

6.6.3.7 Write Data to an Integer Buffer - writeIntegerBuf

Writes a single integer data item to an integer data buffer.

i = writeIntegerBuf (b, item, data)

where b Integer: buffer handle

item Long: index of item in buffer

data Integer: data value

Returns Integer: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls registerBoard
allocateIntegerBuf

See Also

6.6.3.8 Write Data to a Long Integer Buffer - writeLongBuf

Writes a single long integer data item to a long data buffer.

i = writeLongBuf (b, item, data)

where b Integer: buffer handle

item Long: index of item in buffer

data Long: data value

Returns Integer: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls registerBoard
allocateLongBuf

See Also

Page 58 PC214E

6.6.3.9 Copy a block of Data to an Integer Buffer - copyToIntegerBuf

Copies a block of integer data to an integer buffer.

i = copyToIntegerBuf (b, start, nItems, p)

where b Integer: buffer handle as issued by the
allocateBuf function.

start Long: index of the starting item in the buffer.

nItems Long: number of items to copy.

p Pointer: pointer to the beginning of the memory
block to copy.

Returns Integer: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateIntegerBuf

See Also freeIntegerBuf

6.6.3.10 Copy a block of Data to a Long Integer Buffer - copyToLongBuf

Copies a block of long integer data to a long integer buffer.

i = copyToLongBuf (b, start, nItems, p)

where b Integer: buffer handle as issued by the
allocateBuf function.

start Long: index of the starting item in the buffer.

nItems Long: number of items to copy.

p Pointer: pointer to the beginning of the memory
block to copy.

Returns Integer: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateLongrBuf

See Also freeLongBuf

PC214E Page 59

6.6.3.11 Copy a Block of Integer Data from an Integer Buffer - copyFromIntegerBuf

Copies a segment of an integer data buffer to a block of memory.

i = copyFromIntegerBuf (b, start, nIems, p)

where b Integer: buffer handle as issued by the
allocateBuf function.

start Long: index of the starting item in the buffer.

nItems Long: number of items to copy.

p Pointer: pointer to the beginning of the integer
memory block to which data is to be copied.

Returns Integer: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateIntegerBuf

See Also freeIntegerBuf

6.6.3.12 Copy a Block of Long Integer Data from a Long Buffer - copyFromLongBuf

Copies a segment of a Long Integer data buffer to a block of memory.

i = copyFromLongBuf (b, start, nIems, p)

where b Integer: buffer handle as issued by the
allocatBuf function.

start Long: index of the starting item in the buffer.

nItems Long: number of items to copy.

p Pointer: pointer to the beginning of the long
integer memory block to which data is to be
copied.

Returns Integer: OK

or ERRBUFFER
ERRRANGE
ERRDATA

Prior Calls allocateLongBuf

See Also freeLongBuf

Page 60 PC214E

6.6.3.13 Query Number of Interrupt Operations to date on a Buffer - getIntItem

This function can be called for any data buffer currently being used for Event Recorder or Bi-
Directional Bus data. In these two cases, data is read from or written to the buffer when the
relevant interrupt occurs. This function returns the index within the specified buffer of the data
item to be read or written to on the next relevant interrupt, giving an indication of how much of
the buffer contains valid data.

i = getIntItem(hB, item)

where hB Integer: buffer handle as issued by the
allocateBuf functions.

item Pointer to Long: pointer to a variable (declared
as a long integer), into which the result (the
index of the buffer item to be used on the next
relevant interrupt) will be stored.

Returns Integer: OK

or ERRHANDLE

Prior Calls registerBoard
allocateIntegerBuf
allocateLongBuf
enableInterrupts

See Also disableInterrupts

PC214E Page 61

6.6.4 Timer/Counter Functions

Please note that, if using a PC214E board, where timer/counter clock and gate connection
details are required as function arguments, please enter a valid number (even though the
clock/gate selection will not be performed by the software). See section 4 "USING THE
PC214E" for details on configuring the PC214E for these functions.

6.6.4.1 Test if Timer/Counter is free - TCisAvailable

Checks if a particular timer/counter channel is currently available on a board. A counter/timer
may not be available for one of two reasons:

1. the counter/timer is not provided by the board specified, or
2. the counter/timer is being used by some other function.

i = TCisAvailable(h, chip, chan)

where h Integer. Board handle as previously issued by
the registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip, i.e. 0, 1, or 2.

Returns Integer: 0 = Timer/counter NOT available, 1 = Available

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard

See Also TCfreeResource

Page 62 PC214E

6.6.4.2 Free-up Timer/Counter - TCfreeResource

Frees a timer/counter channel previously reserved for use by one of the following functions:

TCsetMonoShot
TCgenerateFreq
TCmultiplyFreq
TCdivideFreq

N.B.: TCmultiplyFreq and TCdivideFreq use 2 timer/counters, so TCfreeResource should be
called twice when you’ve finished this these two functions.

i = TCfreeResource(h, chip, chan)

where h Integer. Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard

See Also

PC214E Page 63

6.6.4.3 Connect Timer/Counter Clock Source - TCsetClock

Configures a timer/counter clock input source. This function is not supported by the PC214E
board - clock sources on this board are selected by jumpers J2, J3 and J4. See section 2.6.5
for more details of the clock sources.

i = TCsetClock(h, chip, chan, clk)

where h Integer. Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

clk Integer. Clock source. Use one of the following
pre-defines constants representing the valid
clock sources:

CLK_CLK = 0: external CLK(chan) i/p
CLK_10MHZ = 1: internal 10 MHz
CLK_1MHZ = 2: internal 1 MHz
CLK_100KHZ = 3: internal 100 kHz
CLK_10KHZ = 4: internal 10 kHz
CLK_1KHZ = 5: internal 1 kHz
CLK_OUTN_1 = 6: OUT (chan-1)
CLK_EXT = 7: external EXTCLK (chip) i/p

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard

See Also TCsetGate

Page 64 PC214E

6.6.4.4 Connect Timer/Counter Gate Source - TCsetGate

Configures a timer/counter gate input source. This function is not supported by the
PC214E - gate connections on this board can only be made via the user connector SK1. See
section 3.1 for details of the gate connections on SK1.

i = TCsetGate(h, chip, chan, gat)

where h Integer. Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

gat Integer. Gate source. Use one of the following
pre-defined constants:-

GAT_VCC = 0: Enabled
GAT_GND = 1: Disabled
GAT_EXT = 2: GAT(chan) - external i/p
GAT_OUTN_2 = 3: /OUT(chan-2)

Returns Integer: OK

or ERRSUPPORT
ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard

See Also TCsetClock

PC214E Page 65

6.6.4.5 Configure Timer/Counter Mode - TCsetMode

Sets a timer counter to one of its five available modes of operation. Reading and loading of
count values by LSB followed by MSB is selected, as is a 16-bit binary count.

i = TCsetMode (h, chip, chan, mde)

where h Integer: Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

mde Integer. Counter mode (0 to 5). See the
appendix for the 82C54 data sheet.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard
TCsetClock
TCsetGate

See Also TCsetCount

Page 66 PC214E

6.6.4.6 Read Timer/Counter Status - TCgetStatus

Returns the mode and status of a timer/counter by performing a read-back operation on the
channel.

i = TCgetStatus (h, chip, chan)

where h Integer. Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

Returns Integer: Timer counter status byte. See 82C54 data sheet in the appendix
for details.

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetMode
TCsetCount

See Also TCgetCount

PC214E Page 67

6.6.4.7 Set Timer Count Value - TCsetCount

Sends a 16-bit count value to a timer/counter.

i = TCsetCount (h, chip, chan, count)

where h Integer. Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

count Long Integer. 16-bit Count value.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard
TCsetClock
TCsetGate
TCsetMode

See Also TCgetCount

Page 68 PC214E

6.6.4.8 Read Timer's current Count Value - TCgetCount

Latches and reads a timer/counter's 16-bit count value, using the read-back command.

i = TCgetCount (h, chip, chan, count)

where h Integer. Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

count Pointer to Long. Pointer to a variable, declared
as a long integer, into which the count value
result will be placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetClock
TCsetGate
TCsetMode
TCsetCount

See Also TCgetUpCount

PC214E Page 69

6.6.4.9 Read Timer's current Up-Count - TCgetUpCount

Latches and reads a timer counter value, in the same way as TCgetCount, but returns the
actual number of clock pulses received, rather than the count value. Note that the 82C54
timers count down to zero from the initial count value, so this function returns ((initial count) -
(current count)). Only counter modes 2 or 3 should be used with this function.

i = TCgetUpCount (h, chip, chan, count)

where h Integer. Board handle as issued by the
registerBoard function.

chip Integer. Address offset of the timer/counter
chip. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

count Pointer to Long. Pointer to a variable declared
as a long integer, into which the up-count value
will be placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetGate
TCsetClock
TCsetMode
TCsetCount

See Also TCgetCount

Page 70 PC214E

6.6.5 Differential Counter Functions

6.6.5.1 Setup Differential Counter Pair - TCsetDiffCounters

Sets up two counter/timers for a differential count operation. If the gate sources specified are
both GAT_VCC, counting will start immediately. Otherwise the user must provide the gate
signals or set the gates high by a call to TCsetGate. Note that the PC214E does not support
software-configurable clock and gate settings, and the clk1, clk2, gat1, and gat2 arguments will
have no effect. See section 2.6.5 for details on the clock and gate sources available. See
section 4.2.1 for more details on the Differential Counter application.

i = TCsetDiffCounters (h, chip1, chan1, clk1, gat1, chip2, chan2,
clk2, gat2)

where h Integer. Board handle as issued by the
registerBoard function.

chip1 Integer. Address offset of timer/counter chip
#1. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan1 Integer. Timer/counter #1 channel number
within the chip (0, 1 or 2).

clk1 Integer. Timer #1 clock source. Use one of the
following pre-defined constants:-

CLK_CLK = 0: CLK(chan#1) - external i/p
CLK_10MHZ = 1: 10 MHz
CLK_1MHZ = 2: 1 MHz
CLK_100KHZ = 3: 100 kHz
CLK_10KHZ = 4: 10 kHz
CLK_1KHZ = 5: 1 kHz
CLK_OUTN_1 = 6: OUT(chan#1-1)
CLK_EXT = 7: EXTCLK(chip) - external
i/p

gat1 Integer. Timer #1 gate source. Use one of the
following pre-defined constants:-

GAT_VCC = 0: Enabled
GAT_GND = 1: Disabled
GAT_EXT = 2: GAT(chan) - external i/p
GAT_OUTN_2 = 3: /OUT(chan-2)

chip2 Integer. Address offset of timer/counter chip
#2. One of the following pre-defined constants
may be used:

PC214E Page 71

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan2 Integer. Timer/counter #2 channel number
within the chip (0, 1 or 2).

clk2 Integer. Timer #2 clock source. Use one of the
following pre-defined constants:-

CLK_CLK = 0: CLK(chan#1) - external i/p
CLK_10MHZ = 1: 10 MHz
CLK_1MHZ = 2: 1 MHz
CLK_100KHZ = 3: 100 kHz
CLK_10KHZ = 4: 10 kHz
CLK_1KHZ = 5: 1 kHz
CLK_OUTN_1 = 6: OUT(chan#1-1)
CLK_EXT = 7: EXTCLK(chip) - external
i/p

gat2 Integer. Timer #2 gate source. Use one of the
following pre-defined constants:-

GAT_VCC = 0: Enabled
GAT_GND = 1: Disabled
GAT_EXT = 2: GAT(chan) - external i/p
GAT_OUTN_2 = 3: /OUT(chan-2)

Returns Integer: Differential counter handle (positive integer). Use this handle as the
hD parameter in calls to TCgetDiffCount, TCgetRatio and
TCfreeDiffCounters when referring to this particular differential
counter pair.

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard

See Also TCsetGate
TCfreeDiffCounters

Page 72 PC214E

6.6.5.2 Read Differential Count - TCgetDiffCount

Returns the difference between the count values of the two counters specified in the
TCsetDiffCounters function.

i = TCgetDiffCount (h, hD, diff)

where h Integer. Board handle as issued by the
registerBoard function.

hD Integer. Differential counter handle as issued
by the TCsetDiffCounters function.

diff Pointer to Long. pointer to a variable, declared
as a long integer, into which the 16-bit count
value representing (Count#2 - Count#1) will be
placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetDiffCounters

See Also TCgetRatio
TCfreeDiffCounters

6.6.5.3 Read Differential Ratio - TCgetRatio

Returns the ratio of the count values of the two counter/timers specified in function
TCsetDiffCounters.

i = TCgetRatio (h, hD, ratio)

where h Integer. Board handle as issued by function
registerBoard.

hD Integer. Differential counter handle as issued by
the TCsetDiffCounters function.

ratio Pointer to Float. pointer to a variable declared
as a single floating-point into which the value
representing the ratio of counts
(Counter#2/Counter#1) will be placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetDiffCounters

See Also TCsetGate
TCfreeDiffCounters

PC214E Page 73

6.6.5.4 Free Differential Counter Pair - TCfreeDiffCounters

Frees the counter/timers associated with a differential pair, as setup by function
TCsetDifferentialCounters. Call this function when finished with the differential counter.

i = TCfreeDiffCounters (h, hD)

where h Integer. Board handle as issued by function
registerBoard.

hD Integer. Differential counter handle as issued by
the TCsetDiffCounters function.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetDiffCounters

See Also TCgetDiffCount
TCgetRatio

Page 74 PC214E

6.6.6 Frequency Generation Functions

6.6.6.1 Send Monostable Pulse - TCsetMonoShot

Creates a single pulse of specified duration on the output of a timer/counter, using the timer’s
‘Hardware Retriggerable One-Shot’ mode. In this mode, the timer output will go low for the
duration specified on the clock pulse following a gate trigger. Subsequent gate triggers will
retrigger the pulse. See section 4.2.2 for more details on the Monostable application.

i = TCsetMonoShot (h, chip, chan, duration)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

duration Float. Pulse duration time, in seconds.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard

See Also TCsetGate

PC214E Page 75

6.6.6.2 Generate Astable Multivibrator Waveform - TCsetAstable

Generates a clock signal of specified frequency and mark-to-space ratio. This is implemented
on two counters, both in mode 1 (digital one-shot). One counter counts the mark time and the
other counts the space time. The outputs of each counter/timer control the gate of the other,
so that when the mark times-out, the space counter is triggerred and vice versa. N.B. the user
must connect each counter’s gate to the other’s output on the user connector SK1. See section
4.2.3 for more details on the Astable application.

i = TCsetAstable (h, chip, chan, chipS, chanS, freq, msratio)

where h Integer. Board handle as issued by function
registered board.

chip Integer. Address offset of timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

chipS Integer. Address offset of secondary
timer/counter chip. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chanS Integer. Secondary timer/counter channel
number within the chip (0, 1 or 2).

freq Float. Desired frequency, in Hertz.

msratio Float. Desired mark to space ratio, defined as
(mark time/period), i.e. 0 is D.C. 0V, 1 is D.C.
5V, 0.5 is symmetrical square wave, i.e. high for
1 and low for 1.

Returns Integer: Handle to the astable multi-vibrator (positive integer). Use this
handle to call the TCfreeAstable function when finished, in order to
free up the counter/timers for re-use.

or ERRHANDLE
ERRDATA

Prior Calls registerBoard

See Also TCfreeAstable

Page 76 PC214E

6.6.6.3 Free-up Astable Multi-vibrator Counter/Timers - TCfreeAstable

Frees the two timer counters used for an astable multi-vibrator, as setup by the TCsetAstable
function.

i = TCfreeAstable (h, hA)

where h Integer. Board handle as issued by the
registerBoard function.

hA Integer. Astable multi-vibrator handle as issued
by function TCsetAstable.

Returns Integer: OK

or ERRHANDLE
ERRDATA

Prior Calls registerBoard
TCsetAstable

See Also

6.6.7 Millisecond Stopwatch Functions

6.6.7.1 Prepare a Millisecond Stopwatch - TCsetStopwatch

Sets up a stopwatch, which uses two timer/counters to count in milliseconds for just under 50
days. See section 4.2.4 for more details on the Stopwatch application.

i = TCsetStopwatch (h, chip, chan)

where h Integer. Handle to previously registered board
chip Integer. Address offset of timer/counter chip.

One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2). This channel and the next
channel (chan + 1) are used. The second
channel may be on the next timer/counter chip.

Returns Integer: Positive handle to the stopwatch. Use this in calls to the other
stopwatch functions to refer to this stopwatch.

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard

See Also TCsetEventRecorder
TCstartStopwatch
TCfreeStopwatch

PC214E Page 77

6.6.7.2 Start a Millisecond Stopwatch - TCstartStopwatch

Starts a stopwatch which has been previously setup by the TCsetStopwatch function.

i = TCstartStopwatch (h, hS)

where h Integer. Board handle as issued by the
registerBoard function.

hS Integer. Handle to stopwatch as issued by the
TCsetStopwatch function.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetStopwatch

See Also TCgetElapsedTime
TCfreeStopwatch

6.6.7.3 Get Stopwatch Elapsed Time - TCgetElapsedTime

Gets the elapsed time, in milliseconds, since a given stopwatch was started.

i = TCgetElapsedTime (h, hS, lPtr)

where h Integer. Board handle as issued by the
registerBoard function.

hS Integer. Stopwatch handle as issued by the
TCsetStopwatch function.

lPtr Pointer to Long. Pointer to a variable defined
as a long integer into which the elapsed time
result will be placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetStopwatch
TCstartStopwatch

See Also TCgetTimeString
TCsetEventRecorder

Page 78 PC214E

6.6.7.4 Prepare an Event Time Recorder - TCsetEventRecorder

Sets up an event recorder which records the times of positive edges on a PPI Port C bit 0
digital input (DI) line. The times recorded are the elapsed time since the given stopwatch was
started). This is performed by using a stopwatch, previously setup by a call to
TCsetStopwatch, and enabling the DI line to generate an interrupt. An interrupt service routine
(ISR) stores the elapsed time from the stopwatch into a previously allocated data buffer for
each event. See section 4.2.5 for more details on the Event Recorder application.

i = TCsetEventRecorder (h, hS, chip, hB)

where h Integer. Board handle as issued by function
registerBoard.

hS Integer. Stopwatch handle as issued by the
TCsetStopwatch function.

chip Integer. Address offset of the digital input chip
from which Port C bit 0 will be used as the event
input. Use one of the following pre-defined
constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

hB Integer. Buffer handle as issued by the
allocateBuf function. This function must have
been called with the type argument set to 4,
since the time reading is a 4-byte long integer.

Returns Integer: Positive handle to the event recorder. Use this handle to call the
TCfreeEventRecorder function when finished.

or ERRHANDLE
ERRCHAN
ERRBUFFER

Prior Calls registerBoard
TCsetStopwatch
allocateBuf

See Also TCfreeEventRecorder
enableInterrupts

PC214E Page 79

6.6.7.5 Free-up Event Recorder Timer and Digital Input Channels - TCfreeEventRecorder

Frees up the event recorder handle. This function is necessary so that the interrupt service
routine can decide whether a PPI Port C0 interrupt is an event recorder, or some other user-
defined task.

i = TCfreeEventRecorder (h, hE)

where h Integer. Board handle as issued by function
registerBoard.

hE Integer. Event recorder handle as issue by
function TCsetEventRecorder.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetStopwatch
allocateLongBuff
TCsetEventRecorder

See Also disableInterrupts
TCfreeStopwatch
copyFromLongBuf
freeLongBuf

6.6.7.6 Convert Milliseconds into Time String - TCgetTimeStr

Converts a 32-bit word representing an elapsed time in milliseconds to a time string in the
format “DD HH:MM:SS.TTT”. Such 32-bit elapsed times are produced by the stopwatch
functions.

i = TCgetTimeStr (ms, strPtr)

where ms Long. Elapsed time in milliseconds.

strPtr Pointer to string. Pointer to target string for
result.

Returns Integer: OK

or ERRDATA

Prior Calls registerBoard
TCsetStopwatch
TCgetElapsedTime

See Also

Page 80 PC214E

6.6.7.7 Free-up Stopwatch Counter/Timers - TCfreeStopwatch

Frees the timer/counters used by a stopwatch, as previously setup by TCsetStopwatch. Call
this function when the stopwatch is no longer required.

i = TCfreeStopwatch (h, hS)

where h Integer. Board handle as issued by the
registerBoard function.

hS Integer. Stopwatch handle as issued by function
TCsetStopwatch.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetStopwatch

See Also

PC214E Page 81

6.6.8 Frequency Input and Output Functions

6.6.8.1 Measure Period of an External Signal - TCgetExtPeriod

Returns the period of an external signal, measured in microseconds. The external signal must
be connected to the clock input of the timer channel specified in the chan argument. See
section 4.2.6 for more details on the Frequency/Period Measurement application.

i = TCgetExtPeriod (h, chip, chan, fPtr)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of timer/counter chip
#2. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2). Another timer/counter
(chan-2) will also be used to provide the gate
signal. This second timer/counter may be on
the previous chip.

fPtr Pointer to Float. Pointer to a variable declared
as a single floating-point into which the period
will be placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoard

See Also TCgetExtFreq

Page 82 PC214E

6.6.8.2 Measure Frequency of an External Signal - TCgetExtFreq

Returns the frequency of an external signal, in Hertz. The external signal must be connected
to the clock input of the timer specified in the chan argument. See section 4.2.6 for more details
on the Frequency/Period Measurement application.

i = TCgetExtFreq (h, chip, chan, fPtr)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2). Another timer/counter (chan
- 2) will be used to provide the gate pulse. This
counter/timer may be on the previous chip.

fPtr Pointer to Float. Pointer to a variable declared
as a single floating-point, into which the
frequency result will be placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoard

See Also TCgetExtPeriod

PC214E Page 83

6.6.8.3 Generate a Frequency - TCgenerateFreq

Generates a square wave of specified frequency on a single timer/counter. See section 4.2.7
for more details on the Frequency Generation application.

i = TCgenerateFreq (h, chip, chan, freq)

where h Integer. Board handle as issued by the function
registerBoard.

chip Integer. Address offset of timer/counter chip.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2).

freq Float. Desired frequency in Hertz.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoard

See Also TCgenerateAccFreq

Page 84 PC214E

6.6.8.4 Generate an Accurate Frequency - TCgenerateAccFreq

Generates a square wave frequency accurate to 0.1% using two cascaded timer/counters.
See section 4.2.7 for more details on the Frequency Generation application.

i = TCgenerateAccFreq (h, chip, chan, freq)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of timer/counter chip
#2. One of the following pre-defined constants
may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

chan Integer. Timer/counter channel number within
the chip (0, 1 or 2). Another timer/counter (chan
- 1) will be used by this function. This
timer/counter may be on the previous chip.

freq Float. Desired frequency, in Hertz.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoard

See Also TCgenerateFreq

PC214E Page 85

6.6.8.5 Multiply an External Frequency - TCmultiplyFreq

Measures an external signal’s frequency, then generates another signal whose frequency is
the external frequency multiplied by a specified number. N.B. this function is not on-going, and
must be called at a regular interval to keep the generated frequency tracking the external
signal. Note that the output signal will be a square wave. See section 4.2.8 for more details on
the Frequency Multiplication application.

i = TCmultiplyFreq (h, ipChip, ipChan, opChip, opChan, factor)

where h Integer. Board handle as issued by function
registerBoard.

ipChip Integer. Address offset of the timer/counter
chip on which the input frequency will be
measured.

ipChan Integer. Input timer/counter channel on which
to perform the frequency measurement. The
external signal must be connected to the clock
input of this channel. Another timer channel
(chan-2) will also be used to provide the gate
signal. This may be on the previous chip.

opChip Integer. Address offset of the timer/counter
chip on which to generate the output frequency.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

opChan Integer. Output timer/counter channel number
within the chip (0, 1 or 2).

factor Float. Divisor value.

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRRANGE

Prior Calls registerBoard

See Also TCdivideFreq
TCfreeResource

Page 86 PC214E

6.6.8.6 Divide an External Frequency - TCdivideFreq

Measures an external signal’s frequency, then generates another signal whose frequency is
the external frequency divided by a specified number. N.B. this function is not on-going, and
must be called at a regular interval to keep the generated frequency tracking the external
signal. Note the output signal will be a square wave.

i = TCdivideFreq (h, ipChip, ipChan, opChip, opChan, divisor)

where h Integer. Board handle as issued by function
registerBoard.

ipChip Integer. Address offset of the timer/counter
chip on which the input frequency will be
measured.

ipChan Integer. Input timer/counter channel on which
to perform the frequency measurement. The
external signal must be connected to the clock
input of this channel. Another timer channel
(chan-2) will also be used to provide the gate
signal. This may be on the previous chip.

opChip Integer. Address offset of the timer/counter
chip on which to generate the output frequency.
One of the following pre-defined constants may
be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

opChan Integer. Output timer/counter channel number
within the chip (0, 1 or 2).

divisor Float. Division Factor

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard

See Also TCmultiplyFreq
TCfreeResource

PC214E Page 87

6.6.9 Digitally- and Voltage-Controlled Oscillator Functions

6.6.9.1 Prepare a Digitally-Controlled Oscillator - TCsetDCO

Implements a digitally controlled oscillator (DCO) which periodically reads a data value from a
digital input channel and generates an external frequency based on the value. The digital input
channel can be 1, 4, 8, 12, 16, or 24-bits wide, as specified by a previous call to function
DIOsetChanWidth. The digital channel must have already been setup as an input with a call to
function DIOsetMode. See section 4.2.9 for more details on the Digitally Controlled Oscillator
application.

i = TCsetDCO (h, diChip, diChan, opChip, opChan, udFreq, udChip, MinF,
MaxF)

where h Integer. Board handle as issued by function
registerBoard.

diChip Integer. Address offset of the digital input chip.
Use one of the following pre-defined constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

diChan Integer. Digital input channel.

opChip Integer. Address offset of the timer/counter
chip to be used for frequency output. One of the
following pre-defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

opChan Integer. Frequency output timer/counter
channel number within the chip (0, 1 or 2)

udFreq Float. Update frequency in Hertz.

udChip Integer. Address offset of a timer/counter chip
of which counter 1 will be used to generate the
update interrupts. One of the following pre-
defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

MinF Float. Output frequency corresponding to DI
data value 0.

Page 88 PC214E

MaxF Float. Frequency corresponding to the
maximum digital input data value, which itself
depends on the channel width specified in
DIOsetChanWidth

Returns Integer: Positive handle to DCO. Use this handle to call TCfreeDCO when
finished

or ERRHANDLE
ERRCHAN
ERRDATA
ERRRANGE

Prior Calls registerBoard

See Also TCsetVCO
enableInterrupts
TCfreeDCO

PC214E Page 89

6.6.9.2 Prepare a Voltage-Controlled Oscillator - TCsetVCO

Implements a voltage controlled oscillator which periodically reads a voltage from an analog
input channel and generates an external frequency based on the value. The analog input
channel can be from an Amplicon PC226E, PC30AT, PC26AT or PC27E data acquisition
board. Please ensure the board is configured for a 10V unipolar input range (or 4V unipolar,
for the PC27E). See section 4.2.10 for more details on the Voltage Controlled Oscillator
application.

i = TCsetVCO (h, AImodel, AIbaseAddr, AIchan, opChip, opChan, udFreq,
udChip, freq0V, freq10V)

where h Integer. Board handle as issued by function
registerBoard.

AImodel Integer. Model name of the analog input card
being used. Use one of the following pre-
defined constants:

PC226E = 226
PC30AT = 30
PC26AT = 26
PC27E = 27

AIbaseAddr Integer. Analog input card base address.

AIchan Integer. Analog input card channel number.

opChip Integer. Address offset of the Frequency
Output timer/counter chip. One of the following
pre-defined constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

opChan Integer. Frequency output timer/counter
channel within the chip (0, 1 or 2).

udFreq Float. Update rate, in Hertz.

udChip Integer. Address offset of the Update Rate
timer chip. One of the following pre-defined
constants may be used:

X1 = 0
X2 = 4
Y1 = 8
Y2 = 12
Z1 = 16
Z2 = 20.

Counter1 of this chip will be used to generate

Page 90 PC214E

the update ticks.

freq0V Float. Output frequency, in Hertz,
corresponding to 0.0 Volts on the analog input
channel.

freq10V Float. Output frequency, in Hertz,
corresponding to +10.0 Volts on the analog
input channel (or +4.0 Volts if using a PC27E).

Returns Integer: Positive handle to VCO. Use this handle to call TCfreeDCO when
finished.

or ERRHANDLE
ERRCHAN
ERRDATA
ERRRANGE
ERRPC226

Prior Calls registerBoard

See Also TCsetDCO
enableInterrupts
TCfreeDCO

6.6.9.3 Free-up a DCO or VCO's Timer/Counters - TCfreeDCO

Frees the timer/counter & DIO resources used by a DCO, or VCO, as previously setup by
TCsetDCO or TCsetVCO. Call this function when you’ve finished using the DCO or VCO.

i = TCfreeDCO (h, hO)

where h Integer. Board handle as issued by function
registerBoard.

hO Integer. DCO or VCO handle, as issued by
TCsetDCO or TCsetVCO, respectively.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
TCsetDCO
TCsetVCO
enableInterrupts

See Also disableInterrupts

PC214E Page 91

6.6.10 Digital Input/Output Functions

6.6.10.1 Test if Digital I/O Chip is Free - DIOisAvailable

Checks if a particular Digital I/O (DIO) chip is available on a board. A DIO chip may not be
available for one of two reasons:

1. the DIO chip is not provided by the board specified, or
2. the DIO chip is being used by some other function.

i = DIOisAvailable (h, chip)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of the DIO chip. Use
one of the following pre-defined constants:

PPIX = 0
PPIY = 8
PPIZ = 16.

Returns Integer: 0 = DIO Chip NOT Available, 1 = Available

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard

See Also DIOfreeResource

Page 92 PC214E

6.6.10.2 Configure a Digital I/O Port for Input or Output - DIOsetMode

Sets up a digital I/O port for basic input or output.

i = DIOsetMode (h, chip, port, isInput)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of the DIO chip. Use
one of the following pre-defined constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

port Integer. DIO port within the chip. Port C is split
into two 4-bit nibbles, which can be programmed
independently. Use one of the following pre-
defined constants:-

PORTA = 0
PORTB = 1
PORTC_L = 2
PORTC_U = 3

isInput Integer. Non-zero if port is to be set as input,
zero if port is to be set as output.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard

See Also DIOsetChanWidth
DIOsetData
DIOgetData

PC214E Page 93

6.6.10.3 Re-define Channel Width within a Digital I/O Chip - DIOsetChanWidth

Redefines the number of bits per DIO channel to be used in subsequent calls to the
DIOsetData and DIOgetData functions. The default channel width is 8-bits, and this can be
changed to 1, 4, 8, 12, 16, or 24. After calling this function, the chan argument in the
DIOsetData and DIOgetData functions refers to the group of bits of width numBits, starting at
Port A bit 0. Note that the three ports (A, B, C-upper and C-lower) must be setup correctly for
input or output accordingly by calling the DIOsetMode function for each.

i = DIOsetChanWidth (h, chip, numBits)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of the DIO chip. Use
one of the following pre-defined constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

numBits Integer. Bit width to be used in subsequent
calls to functions DIOsetData, DIOgetData and
TCsetDCO. Valid widths are 1, 4, 8, 12, 16, or
24.

numBits
 1
 4
 8
12
16
24

channels per chip
 24
 6
 3
 2
 1
 1

Returns Integer: OK

or ERRHANDLE
ERRCHAN
ERRDATA

Prior Calls registerBoard

See Also DIOsetMode
DIOsetData
DIOgetData

Page 94 PC214E

6.6.10.4 Send Digital Output Data - DIOsetData

Writes a data value to a DIO channel. It is assumed that the channel has already been set as
an output by a call to function DIOsetMode.

i = DIOsetData (h, chip, chan, data)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of the DIO chip. Use
one of the following pre-defined constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

chan Integer. DIO channel. Note the channel
numbering depends on the channel width as set
by DIOsetChanWidth (default is 3 8-bit
channels).

dat Long. Digital data word.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
DIOsetMode
DIOsetChanWidth

See Also DIOgetData

PC214E Page 95

6.6.10.5 Read Digital Input Data - DIOgetData

Reads a data value from a DIO channel. It is assumed that the channel has already been set
as an input by a call to function DIOsetMode.

i = DIOgetData (h, chip, chan, data)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of the DIO chip. Use
one of the following pre-defined constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

chan Integer. DIO channel. Note the channel
numbering depends on the channel width as set
by function DIOsetChanWidth (default is three 8-
bit channels).

dat Pointer to Long. Pointer to a variable, declared
as a long integer, into which the digital data
word will be placed.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
DIOsetMode
DIOsetChanWidth
DIOsetData

See Also

Page 96 PC214E

6.6.11 Switch Scanner Matrix Functions

6.6.11.1 Setup a Switch Scanner Matrix - DIOsetSwitchMatrix

Sets up one, two or three 82C55 DIO chips as a switch matrix scanning device. The order of
the matrix specified can be 12 (for a 12 X 12 matrix scanning 144 switches, using PPIX), 24
(for a 24 X 24 matrix scanning 576 switches, using PPIX and PPIY), or 36 (for a 36 X 36 matrix
scanning 1296 switches, using PPIX, PPIY and PPIZ). Group A (ports A and C-upper) are set
for output, to send test patterns to the matrix, and group B (port B and C-lower) are set for input
to read the switch status information back in. The user must ensure that the switch array is
wired correctly with suitable diodes and resistors, otherwise the board could get damaged.
See section 4.2.11 for details. Only one switch matrix implementation is available per board.

i = DIOsetSwitchMatrix (h, order)

where h Integer. Board handle as issued by function
registerBoard.

order Integer. Order of the matrix (12, 24 or 36)

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard

See Also DIOgetSwitchStatus
DIOfreeSwitchMatrix

PC214E Page 97

6.6.11.2 Query Status of a Switch within the Scan Matrix - DIOgetSwitchStatus

Queries the status of a particular switch in the switch matrix setup by the DIOsetSwitchMatrix
function. The grid reference of the switch is given, and the function performs a test on that
switch and returns 1 for switch on (closed) or 0 for switch off (open).

i = DIOgetSwitchStatus (h, xcoord, ycoord)

where h Integer. Board handle as issued by function
registerBoard.

xcoord Integer. X-co-ordinate of the position of the
switch in the matrix (origin is at port A0/B0 of
PPIX). Valid values should be in the range 0 -
order (as specified in DIOsetSwitchMatrix).

ycoord Integer. Y-co-ordinate of the position of the
switch in the matrix (origin is at port A0/B0 of
PPIX). Valid values should be in the range 0 -
order (as specified in DIOsetSwitchMatrix).

Returns Integer: Zero, if switch was OFF (open). Non-zero if switch was ON
(closed).

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
DIOsetSwitchMatrix

See Also DIOfreeSwitchMatrix

6.6.11.3 Free-up the Digital I/O Chip(s) from a Switch Matrix - DIOfreeSwitchMatrix

Frees the DIO resources used by the switch matrix as setup in function DIOsetSwitchMatrix.

i = DIOfreeSwitchMatrix (h)

where h Integer. Board handle as issued by function
registerBoard.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
DIOsetSwitchMatrix

See Also

Page 98 PC214E

6.6.12 Bi-Directional Data Bus Functions

6.6.12.1 Prepare an 8-bit Bi-Directional Data Bus - DIOsetBiDirectionalBus

Programs Group A of a DIO chip for Mode 2 ‘Strobe bi-directional bus I/O operation’. Group B
(Port B and Port C-lower) are not used in the bi-directional bus, and are programmed by this
function for Mode 0 input or output as specified in the isPBip and isPCLip arguments. They
can be accessed in the normal way using the DIOsetData and DIOgetData functions. Up to
three bi-directional buses are available per board (if PPIs are available). See section 4.2.12 for
more details on the Bi-directional Bus application.

i = DIOsetBiDirectionalBus (h, chip, isPBip, isPCLip, bIn, bOut)

where h Integer. Board handle as issued by function
registerBoard.

chip Integer. Address offset of the DIO chip. Use
one of the following pre-defined constants:-

PPIX = 0
PPIY = 8
PPIZ = 16

isPBip Integer. Non-zero if Port B is to be set as input,
zero if output.

isPCLip Integer. Non-zero if Port C-lower are to be set
as input, zero if output.

bIn Integer. Handle to a buffer previously allocated
as 2-bytes per item by the allocateBuf function.
This buffer will be used to store incoming digital
input data from the bus.

bOut Integer. Handle to a buffer previously allocated
as 2-bytes per item by the allocateBuf function.
This buffer should contain digital output data to
be send out onto the bus upon request.

Returns Integer: Positive handle to the bi-directional bus. Use this handle in the call
to DIOfreeBiDirectionalBus when finished, to free the DIO
resources.

or ERRHANDLE
ERRCHAN
ERRBUFFER

Prior Calls registerBoard

See Also enableInterrupts
DIOfreeBiDirectionalBus

PC214E Page 99

6.6.12.2 Free-up Bi-Directional Data Bus Digital I/O Chip - DIOfreeBiDirectionalBus

Frees up the DIO chip used by the given Bi-Directional bus handle.

i = DIOfreeBiDirectionalBus (h, hI)

where h Integer. Board handle as issued by function
registerBoard.

hI Integer. Bi directional bus handle as issued by
function DIOsetBiDirectionalBus.

Returns Integer: OK

or ERRHANDLE
ERRCHAN

Prior Calls registerBoard
DIOsetBiDirectionalBus
disableInterrupts

See Also

6.7 PC214E Library Error Codes

Mnemonic Returned
Value

Meaning

OK 0 Operation successful.
ERRSUPPORT -1 Operation not supported by board, or the maximum

boards/buffers are already registered.
ERRBASE -2 Base address is invalid or in use.
ERRIRQ -3 Interrupt level is invalid or in use.
ERRHANDLE -4 Invalid board handle, or board not registered.
ERRCHAN -5 Invalid channel number
ERRDATA -6 Invalid data
ERRRANGE -7 Out of range
ERRMEMORY -8 Insufficient Memory
ERRBUFFER -9 Invalid buffer handle - not allocated
ERRPC226 -10 PC226 board not found (for VCO function)

Page 100 PC214E

6.8 PC214E Interface Guide For LABTECH NOTEBOOK

The LABTECH NOTEBOOK drivers supplied by Amplicon on the PC214E distribution diskette
are specifically designed to interface the PC214E hardware to the LABTECH NOTEBOOK Data
Acquisition and Analysis software package.

The appropriate drivers to support the functionality of the board are provided with all Amplicon
200 Series products.

A list of I/O types supported by the LABTECH NOTEBOOK software, and their compatibility with
some of the Amplicon 200 series I/O boards is given in the following table. Functions provided
by the Amplicon I/O boards which are not listed in the table are not supported by the LABTECH
NOTEBOOK software.

LABTECH Software I/O Types

Module AD AD DA DI/DO TEMP STRN CNT FREQ PLSE
Normal Hi-Spd

AMPLICON Board Types

PC224/34 No No Yes No No No Yes Yes Yes

PC226 Yes Yes No Yes Yes No No No No

PC230 Yes Yes Yes Yes Yes No Yes Yes Yes

PC237 No No No Yes No No No No No

PC263 No No No DO No No No No No

PC214E No No No Yes No No Yes Yes Yes

PC215E No No No Yes No No Yes Yes Yes

PC212E No No No Yes No No Yes Yes Yes

PC218E No No No No No No Yes Yes Yes

PC272E No No No Yes No No No No No

Figure 13 - LABTECH NOTEBOOK Driver Functions

where: AD = Analog Input DA = Analog Output
DI = Digital Input DO = Digital Output
TEMP = Temperature Measurement STRN = Strain Measurement
CNT = Counter Input FREQ = Frequency Measurement
PLSE = Frequency Output.

The PC214E provides the following I/O types supported by LABTECH NOTEBOOK:

• 8-bit Digital Input/Output channels
• 1 Frequency Output channel
• 1 Counter Input channel
• 1 Frequency Measurement channel

PC214E Page 101

6.8.1 Channel Assignments:

Digital Input/Output channels:

Channel 0 PPIX Port A
Channel 1 PPIX Port B
Channel 2 PPIX Port C
Channel 3 PPIY Port A
Channel 4 PPIY Port B
Channel 5 PPIY Port C

Frequency Output channel:

Channel 0 Z1 Counter 2

Counter Input channel:

Channel 0 Z1 Counter 0

Frequency Measurement channel:

Channel 0 Z1 Counter 0

6.8.2 Configuring the Board

The following connections are required to set the board up for the supported LABTECH NOTEBOOK
channel types:

Frequency Output channels:
Frequency output available on Counter 2 OUT
J4 must be in position 1: (1 MHz)

Counter Input channels:
Connect the input signal to Counter 0 CLOCK

J2 must be removed
J3 must be in position 7: OUT0

Frequency Measurement channels:
Connect the input signal to Counter 0 CLOCK

J2 must be removed
J3 must be in position 7: OUT0

Page 102 PC214E

6.9 Guide to User Programming

When developing an application specific program, it is advised that the supplied dynamic link
library functions are used for Windows applications and extracts are taken from the DOS
examples. However if there are good reasons for writing low level code then a study of the
source code supplied will be of assistance.

For programming at register level, reference should to be made to section 5 describing the
function and assignments of each I/O register in the PC214E.

6.10 Signal Centre

Signal Centre is a Signal Processing Applications Program available from Amplicon, with
support for the PC214E. Operates under Microsoft Windows.

PC214E Page 103

APPENDICES

APPENDIX A - GLOSSARY OF TERMS

The following glossary explains some terms used in this manual and in data acquisition and control applications.

Active Filter: An electronic filter that combines active circuit devices with passive circuit elements such as
resistors and capacitors. Active filters typically have characteristics that closely match ideal filters.
ADC (A/D): Analog to Digital converter. q.v.

Alias Frequency: A false lower frequency component that appears in analog signal reconstructed from original
data acquired at an insufficient sampling rate.
Algorithm: A set of rules, with a finite number of steps, for solving a mathematical problem. An algorithm can be
used as a basis for a computer program.
Analog to Digital Converter (ADC): A device for converting an analog voltage to a parallel digital word where
the digital output code represents the magnitude of the input signal. See ‘Successive Approximation’.
Analog Switch: An electronic, single pole, two way switch capable of handling the full range of analog signal
voltage, and operating under the control of a logic signal.
Array: Data arranged in single or multidimensional rows and columns.

ASCII: American Standard Code for Information Interchange. A code that is commonly used to represent symbols
in computers.
Assembler: A program that converts a list of computer instructions written in a specific assembly language format
that can be executed by a specific processor.
Bandpass Filter: A type of electrical filter that allows a band of signals between two set frequencies to pass,
while attenuating all signal frequencies outside the bandpass range.
Base Address: A unique address set up on an I/O card to allow reference by the host computer. All registers are
located by an offset in relation to the base address.
BASIC: The most common computer language. BASIC is an acronym for Beginners All-purpose Symbolic
Instruction Code. BASIC is not rigorously structured and relies on English-like instructions which account for its
popularity.
Binary Coded Decimal (BCD): A system of binary numbering where each decimal digit 0 through 9 is
represented by a combination of four bits.
BIOS: Basic Input Output System. BIOS resides in ROM on a computer system board and provides device level
control for the major I/O devices on the system.
Bipolar: A signal being measured is said to be bipolar when the voltage on its 'high' terminal can be either of
positive or negative polarity in relation to its 'low' terminal.
Bit: Contraction of binary digit. The smallest unit of information. A bit represents the choice between a one or zero
value (mark or space in communications technology).
Buffer: A storage device used to compensate for a difference in rate of data flow, or time of occurrence of events,
when transferring data from one device to another. Also a device without storage that isolates two circuits.
Bus: Conductors used to interconnect individual circuitry in a computer. The set of conductors as a whole is
called a bus.
Byte: A binary element string operated on as a unit and usually shorter than a computer word. Normally eight
bits.
C: A high level programming language, developed around the concept of structured programming and designed
for high operating speeds. Microsoft 'C' and Turbo 'C' are dialects of C.
Channel: One of several signal/data paths that may be selected.

Character: A letter, figure , number, punctuation or other symbol contained in a message or used in a control
function.
Code: A set of unambiguous rules specifying the way in which characters may be represented.

Conversion Time: The time required for a complete conversion of a value from analog to digital form (ADC) or
analog to digital form (DAC). Inverse of Conversion Rate.
Cold Junction: See Thermocouple Reference Junction

Cold Junction Compensation (CJC): A technique to compensate for thermocouple measurement offset when
the reference or cold junction is at a temperature other than 0° C.

Page 104 PC214E

Common Mode Rejection Ratio (CMR): A measure of the equipment's ability to reject common mode
interference. Usually expressed in decibels as the ratio between the common mode voltage and the error in the
reading due to this common mode voltage.
Common Mode Voltage: In a differential measurement system, the common mode voltage usually represents an
interfering signal. The common mode voltage is the average of the voltages on the two input signal lines with
respect to ground level of the measuring system.
Comparator: An electronic circuit used to compare two values and set an indicator that identifies which value is
greater.
Compiler: High level language used to pre-process a program in order to convert it to a form that a processor
can execute directly.
Contact Closure: The closing of a switch, often controlled by an electromagnetic or solid state relay.

Conversion Time: The time required, in an analog/digital input/output system, from the instant that a channel is
interrogated (such as with a read instruction) to the moment that accurate an accurate representation of the data
is available. This could include switching time, settling time, acquisition time , converter processing time etc.
Counter: In software, a memory location used by a program for the purpose of counting certain occurrences. In
hardware, a circuit that can count pulses.
Counter/Timer Device: Converts time-dependent digital signals to a form that can be further processed by the
host PC. Typical functions include pulse counting, frequency and pulse width measurement. This can relate to
time, number of events, speed etc.
Crosstalk: A phenomenon in which a signal in one or more channels interferes with a signal or signals in other
channels.
Current Loop: (a) Data communications method using presence or absence of current to signal logic ones

and zeros.

(b) A method of analog signal transmission where the measured value is represented by a
current. The common current loop signal is in the range 4 to 20 mA, but other standards include
1 to 5 mA or 10 to 50 mA.

DAC (D/A): Digital to Analog Converter. q.v.

Data Acquisition or Data Collection: Gathering information from sources such as sensors and transducers in
an accurate, timely and organised manner.
Debouncing: Either a hardware circuit or software delay to prevent false inputs from a bouncing relay or switch
contact.
Decibel (dB): A logarithmic representation of the ratio between two signal levels.
Digital-Analog Multiplier: Same as Multiplying DAC. q.v.

Digital Signal: A discrete or discontinuous signal; one whose various states are identified with discrete levels or
values.
Digital to Analog Converter: A device for converting a parallel digital word to an analog voltage, where the
magnitude of the output signal represents the value of the digital input.
DIP Switch: A set of switches contained in a dual in line package.
Drift: Small variations in a measured parameter over a period of time.
Drivers: Part of the software that is used to control a specific hardware device.

Expansion Slots: The spaces provided in a computer for expansion boards that enhance the basic operations of
the computer.
FIFO: First In First Out. A buffer memory that outputs data in the same order that they are input.

Form A, Form B, Form C Contacts: Relay contact sets which are normally open, normally closed and
changeover respectively.
Four Quadrant Operation: In a multiplying DAC, four quadrant operation means that both the reference signal
and the number represented by the digital input may both be either positive or negative polarity. The output obeys
the rules of multiplication for algebraic sign.
GAL (Generic Array Logic): Programmable logic device where the architecture and functionality of each output
is defined by the system designer.
Handshaking: Exchange of predetermined codes and signals between two data devices to establish and control
a connection.
Hardware: The visible parts of a computer system such as the circuit boards, chassis, peripherals, cables etc. It
does not include data or computer programs.
Hexadecimal (Hex): A numbering system to the base 16.

Input/Output (I/O): The process of transferring data from or to a computer system including communication
channels, operator interface devices or data acquisition and control channels.

PC214E Page 105

Interface: A shared boundary defined by common physical interconnection characteristics, signal characteristics
and meanings of interchanged signals.
Interrupt: A computer signal indicating that the CPU should suspend its current task to service a designated
activity.
I/O Address: A method that allows the CPU to distinguish between different boards and I/O functions in a
system. See Base Address.
Latch: A device to store the state of a digital signal until it is changed by another external command signal. The
action of storing this signal.
Least Significant Bit (LSB): In a system in which a numerical magnitude is represented by a series of digits, the
least significant bit (binary digit) is the digit that carries the smallest value or weight.
Linearity: Compliance with a straight line law between the input and output of a device.

Load Voltage Sensing: A technique for maintaining accuracy of an analog signal at the load by monitoring the
voltage and compensating for errors due to cable and source resistance.
Micro Channel Architecture (MCA): A unique architecture defined by IBM™ to provide a standard input/output
bus for Personal System computers.
Monotonic: A DAC is said to be monotonic if the output increases as the digital input increases, with the result
that the output is always a single valued function of the input.
Most Significant Bit (MSB): In a system in which a numerical magnitude is represented by a series of digits, the
most significant bit (binary digit) is the digit that carries the greatest value or weight.
Multiplexer: A multiple way analog switch q.v., where a single path through the switch is selected by the value of
a digital control word.
Multiplying DAC: A Multiplying DAC (or Digital-Analog Multiplier) operates with varying or AC reference signals.
The output of a Multiplying DAC is proportional to the product of the analog ‘reference’ signal and the fractional
equivalent of the digital input number.
Noise: An undesirable electrical interference to a signal.

Normal Mode Signal: Aka Series mode signal. In a differential analog measuring system, the normal mode
signal is the required signal and is the difference between the voltages on the two input signal lines with respect
to ground level of the measuring system.
Offset: (a) A fixed, known voltage added to a signal.

(b) The location of a register above the base address.
Pascal: A high level programming language originally developed as a tool for teaching the concepts of structured
programming. It has evolved into a powerful general-purpose language popular for writing scientific and business
programs. Borland Turbo Pascal is a dialect of Pascal.
Passive Filter: A filter circuit using only resistors, capacitors and inductors.
PC: Personal Computer (Also printed circuit - see PCB)
PCB: Printed Circuit Board
Port: An interface on a computer capable of communication with another device.
Range: Refers to the maximum allowable full-scale input or output signal for a specified performance.
Real Time: Data acted upon immediately instead of being accumulated and processed at a later time.

Reed Relay: An electro-mechanical relay where the contacts are enclosed in a hermetically sealed glass tube
which is filled with an inert gas.
Repeatability: The ability of a measuring system to give the same output or reading under repeated identical
conditions.

Resolution: A binary converter is said to have a resolution of n-bits when it is able to relate 2n distinct analog
values to the set of n-bit binary words.
Rollover: Symmetry of the positive and negative values in a bipolar conversion system.

RTD (Resistive Temperature Device): An electrical circuit element characterised by a defined coefficient of
resistivity.
Sample/Hold: A circuit which acquires an analog voltage and stores it for a period of time.

Sensor: Device that responds to a physical stimulus (heat, light, sound, pressure, motion etc.) producing a
corresponding electrical output.
Settling Time: The time taken for the signal appearing at the output of a device to settle to a new value caused
by a change of input signal.
Signal to Noise Ratio: Ratio of signal level to noise in a circuit. Normally expressed in decibels.

Simultaneous Sample/Hold: A data acquisition system in which several sample/hold circuits are used to
simultaneously sample a number of analog channels and hold these values for sequential conversion. One
sample/hold circuit per analog channel is required.

Page 106 PC214E

Software: The non-physical parts of a computer system that includes computer programs such as the operating
system, high level languages, applications program etc.
Spike: A transient disturbance of an electrical circuit.
Stability: The ability of an instrument or sensor to maintain a consistent output when a consistent input is applied.

Successive Approximation: An analog to digital conversion method that sequentially compares a series of
binary weighted values with the analog input signal to produce an output digital word in ‘n’ steps where ‘n’ is the
number of bits of the A/D Converter. q.v.
Symbol: The graphical representation of some idea. Letters and numerals are symbols.
Syntax: Syntax is the set of rules used for forming statements in a particular programming language.

Thermocouple: A thermocouple is two dissimilar electrical conductors, known as thermo-elements, so joined as
to produce a thermal emf when the measuring and reference junctions are at different temperatures.
Thermocouple Measuring Junction: The junction of a thermocouple which is subjected to the temperature
being measured.
Thermocouple Reference Junction: The junction of a thermocouple which is at a known temperature. aka Cold
Junction.
Throughput Rate: The maximum repetitive rate at which a data conversion system can operate with a specified
accuracy. It is determined by summing the various times required for each part of the system and then taking the
reciprocal of this time.
Transducer: Device that converts length, position, temperature, pressure, level or other physical variable to an
equivalent voltage or current accurately representing the original measurement.
Trigger: Pulse or signal used to start or stop a particular action. Frequently used to control data acquisition
processes.
Unipolar: A signal being measured is said to be unipolar when the voltage on its 'high' terminal is always the
same polarity (normally positive) in relation to its 'low' terminal.
Word: The standard number of bits that can be manipulated at once. Microprocessors typically have word lengths
of 8, 16 or 32 bits.
Wrap, Wraparound: Connection of a FIFO buffer such that the contents once loaded, are continuously
circulated.

PC214E Page 107

APPENDIX B PC214E CIRCUIT LAYOUT DRAWING

A p.c.b. layout drawing of the PC214E Board is given below. A full set of circuit drawings is available
upon request.

B.1 PC214E Assembly Detail

A short description of each user setting and indicator is given in the following table.

Component
Reference

Function

SW1 Switch for Base Address Selection
J1 Jumper for IRQ Level Selection
J2 Jumper for Z1 Counter 0 Clock Selection
J3 Jumper for Z1 Counter 1 Clock Selection
J4 Jumper for Z1 Counter 2 Clock Selection
J5 Jumper for Interrupt Source Selection

Figure 14 - PC214E Printed Circuit Layout

	INTRODUCTION
	The Amplicon 200 Series
	The 200 Series Digital I/O Counter/Timer Family
	Typical Applications
	Product List

	Product Configurator
	Features of the PC214E
	PC214E General Description
	The Software

	What the PC214E Package Contains
	The Amplicon Warranty Covering the PC214E
	Contacting Amplicon Liveline Limited for Support or Service
	Technical Support
	Repairs

	GETTING STARTED
	General Information
	Installing the Board
	System Requirements
	Backing up the Software Diskettes
	Software Installation
	Configuration Switch and Jumper Settings
	Base Address Selection
	PC I/O Map
	Selection of Interrupt Request (IRQ) Level
	Interrupt Source Selection
	Counter/Timer Clock Source Selection
	Counter/Timer Gate Source Selection

	Test Points

	MAKING THE CONNECTIONS
	The Input/Output Connector
	Cable Connections
	Features Summary of the Expansion Panels

	Use of Shielded Cables
	Digital Input/Output Conditions
	Counter/Timer Input/Output Conditions
	PC Back-plane Bus Connections

	USING THE PC214E
	Multiple PC214E Boards in a Single Application
	User Applications
	Differential Counter
	Monostable Multivibrator
	Astable Multivibrator
	Stopwatch
	Event Recorder
	Frequency/Period Measurement
	Frequency Generation
	Frequency Multiplication
	Digitally Controlled Oscillator
	Voltage Controlled Oscillator
	Switch Matrix
	8-Bit Bi-Directional Bus

	STRUCTURE AND ASSIGNMENTS OF THE REGISTERS
	Register Assignments
	Register Groups
	Cluster X, Y and Z Groups
	Counter Connection Register Group
	Interrupts Group

	The Register Details
	Programmable Peripheral Interface PPI-X Data Register Port A
	Programmable Peripheral Interface PPI-X Data Register Port B
	Programmable Peripheral Interface PPI-X Data Register Port C
	Programmable Peripheral Interface PPI-X Command Register
	Programmable Peripheral Interface PPI-Y Data Register Port A
	Programmable Peripheral Interface PPI-Y Data Register Port B
	Programmable Peripheral Interface PPI-Y Data Register Port C
	Programmable Peripheral Interface PPI-Y Command Register
	Z1 Counter 0 Data Register
	Z1 Counter 1 Data Register
	Z1 Counter 2 Data Register
	Counter/Timer Z1 Control Register
	Z1 Counter/Timer Status Register

	PROGRAMMING THE PC214E
	Copyright
	Files installed from the Distribution Diskette
	Windows DLL and Examples
	DOS 'C' Library and Examples
	Borland C++ User Information
	Microsoft C/C++ User Information

	Using the Dynamic Link Library
	Visual Basic

	Windows and DOS Library Functions
	Initialisation Functions
	Interrupt Control Functions
	Data Buffer Functions
	Timer/Counter Functions
	Differential Counter Functions
	Frequency Generation Functions
	Millisecond Stopwatch Functions
	Frequency Input and Output Functions
	Digitally- and Voltage-Controlled Oscillator Functions
	Digital Input/Output Functions
	Switch Scanner Matrix Functions
	Bi-Directional Data Bus Functions

	PC214E Library Error Codes
	PC214E Interface Guide For LABTECH NOTEBOOK
	Channel Assignments:
	Configuring the Board

	Guide to User Programming
	Signal Centre

	CONTENTS
	DECLARATION OF CONFORMITY

