
33
00

08
54

.0
3

Breite: 185 mm
Höhe: 230 mm

Concept

Functionblocks for Heating, Ventilation
& Air Condition

HVAC

Version 2.5

Block Library

840 USE 478 00

12/03



Data, Illustrations, Alterations
Data and illustrations are not binding. We reserve the right to alter products in line with our policy
of continuous product development. If you have any suggestions for improvements or
amendments or have found errors in this publication, please notify us using the form on one of
the last pages of this publication.

Training
Schneider Automation offers suitable further training on the system.

Hotline
See addresses for the Technical Support Centers at the end of this publication.

Trademarks
All terms used in this publication to denote Schneider Automation products are trademarks of
Schneider Automation.

All other terms used in this publication to denote products may be registered trademarks and/or
trademarks of the corresponding Corporations.
Microsoft and MS-DOS are registered trademarks of Microsoft Corporation, Windows is a
brandname of Microsoft Corporation in the USA and other countries.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of the Intel Corporation.

Copyright
All rights are reserved. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including copying, processing or by online file
transfer, without permission in writing by Schneider Automation. You are not authorized to
translate this document into any other language.

  1999-2003 Schneider Automation GmbH. All rights reserved



Contents

III

Breite: 185 mm
Höhe: 230 mm

00

Contents

About 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Symbols used 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Terms and abbreviations used 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Additional documentation 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Note on validity 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 1 Parameter assignment 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1 General Information 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.1.1 Operation 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1.2 Operand 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1.3 Formal parameter/Actual parameter 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1.4 Conditional/Unconditional Call 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2 General information 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 General instructions 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 Function blocks 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3 Scaling and descaling within a control program 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3.1 General instructions 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.2 Single loop controls 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.3 Multi–loop controls 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

EFB Descriptions 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
CC2_VAC Cascade controller for air conditioning with 2 outputs 17. . . . . . . . . . . . . . . . . 
CC3_VAC Cascade controller for air conditioning with 3 outputs 24. . . . . . . . . . . . . . . . . 
MC_VAC Air mix controller for air conditioning with one output 32. . . . . . . . . . . . . . . . . . 
PI_VAC PI controller for air conditioning 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SEQ_VAC Scaling/Sequence Block for Air Conditioning 49. . . . . . . . . . . . . . . . . . . . . . . . 
SW_VAC Summer / Winter Setpoint Compensation for Air Conditioning 54. . . . . . . . . . 
THRS_VAC Threshold Switch with Hysteresis for Air Conditioning 57. . . . . . . . . . . . . . . 
UC2_VAC Universal PI controller for air conditioning with 2 outputs 59. . . . . . . . . . . . . . 
UC3_VAC Universal PI controller for air conditioning with 3 outputs 65. . . . . . . . . . . . . . 
VQ_VAC Measured Value Deadband Block for Air Conditioning 71. . . . . . . . . . . . . . . . . 
WASH_VAC Basic Washer Block for Air Conditioning 74. . . . . . . . . . . . . . . . . . . . . . . . . . 

Glossary 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

00IV



1

Width: 185 mm
Height: 230 mm

00

About

This documentation helps you to configure EFBs for ventilation and air conditioning
(VAC) which can be loaded into Concept at a later stage.

Layout of the documentation:

Chap. 1 Contains general information on assigning parameters to EFBs

Chap. 2 Contains general information on the use of EFBs for air conditioning

EFB descriptions Includes a description of EFBs in alphabetical order according to their respective
abbreviations.

Glossary Includes a glossary in alphabetical order.

Note
For the work with this software package, the user must have acquired knowledge of
closed loop control.



About

002

Symbols used

Note
This symbol is used to draw your attention to important circumstances.

Caution
This symbol indicates error sources which occur frequently.

Warning
This symbol points out potential dangers to you which could result in financial
damage, personal injury or other serious consequences.

Expert
This symbol is used if more detailed information is given which is intended exclusively for
experts (with special training). Skipping this information does not affect comprehensibility
of the document and does not restrict standard application of the product.

Tip
This symbol draws your attention to explanations given in special tips which help you in
your dealings with the product.

This symbol indicates an application example.

� Proceed as follows ...
The start of a sequence of applications, the execution of which is necessary to obtain a
specific product function, is marked with this.

This symbol indicates manuals/other sources dealing with the topic in greater detail.

STOP

Example:



About

3

Width: 185 mm
Height: 230 mm

00

Terms and abbreviations used

The notation used for figures is in line with international practice, as well as a type of
representation allowed by SI (Système International d’ Unités): Thousands are separated
by a space and the decimal point is used, e.g. 12 345.67.

Additional documentation

Description Type
Concept Installation instructions 840 USE 502 00
Concept User Manual (Vol.1 + Vol. 2) 840 USE 503 00
IEC block library Concept (Vol. 1 + Vol. 2 + Vol. 3) 840 USE 504 00
Modicon TSX Quantum PLC Series, Hardware User Manual 840 USE 100 00
Modbus Plus Network User Manual 890 USE 100 00
Modlink User’s Guide Modicon GM–MLNK–001
User’s Guide Modicon IBM Host Based Devices GM–HBDS–001
User’s Guide BM85 Modbus Plus Bridge / Multiplexer GM–BM85–001
Planning and Installation Guide Modicon Quantum Hot Standby System 840 USE 106 00
Quantum Ethernet TCP/IP Module User Guide 890 USE 107 00

Note on validity

This documentation applies to Concept Version 2.5 / 2.6 under Microsoft Windows 95,
Windows 98, Windows NT or Windows 2000.

Note
You will find additional up–to–date instructions in the Concept file called README.PDF.



About

004



5

Breite: 185 mm
Höhe: 230 mm

00

Parameter assignment

This chapter contains general notes for parameter assignment of the function and
function blocks (FFBs).

1



Parameter assignment

006

1.1 General Information

Each FFB is composed of an operation, operands required for the operation, and an
instance name/function number.

Figure  1 Parameter assignment with the function block SW_VAC as an example

FFB

OperandOperation

Actual parameterFormal parameter
(Variable, element of a
multi–element variable,

e.g. SW_VAC

e.g. SP; CV; SPRT

e.g. IN, DEGREE, OUT,

(e.g. on–delay)

%1:00005

SW_VAC

SP

CV

SPRT

FBI_2_22(18)

IN

DEGREE

OUT

SP_SPCV%1:00005

Literal, direct address)

Instance name/
Function number

1.1.1 Operation

The operation determines which functionality is to be executed by the FFB, e.g. shift
register, conversion operations.



Parameter assignment

7

Breite: 185 mm
Höhe: 230 mm

00

1.1.2 Operand

The operand determines what the operation will be executed with. In FFBs it consists of
formal parameter and actual parameteralparameter und Aktualparameter.

1.1.3 Formal parameter/Actual parameter

The formal parameter is a placeholder for an operand. During parameter assignment, the
formal parameter is allocated an actual parameter (actual parameter).

The actual parameter can be a variable, a multi–element variable, an element of a
multi–element variable, a literal or a direct address.

1.1.4 Conditional/Unconditional Call

Each FFB has the capability of a ”conditional” or an ”unconditional” call. The condition
will be evaluated via a prelink of the EN input.

� EN = ENABLE
conditional call (the FFB will only  be executed when ENABLE is set )

� EN hidden
unconditional call (FFB is always executed)

Note
If the EN–input is not parameterized, it must be hidden, or the FFB will never be
executed.



Parameter assignment

008



9

Width: 185 mm
Height: 230 mm

00

General information

In this chapter, you will find general information about using EFB library air conditioning
(HVAC) modules.

Note
For the work with this software package, the user must have acquired knowledge of
closed loop control.

2



General information

0010

2.1 General instructions

The HVAC EFB library puts at your disposal an extensive range of function blocks for the
implementation of air conditioning systems using the Concept programming language.

2.2 Function blocks

11 function blocks are available, split up as follows:

� 6 basic function blocks (Basic Group , see Table  1)
� 5 complex function blocks (Complex Group, see Table  2)

Basic Function Blocks
The basic function blocks implement low level functions that are required for solving
basic airconditioning problems.

Table  1 Basic Functions Blocks

Function Block Description
PI_VAC PI Controller for Air Conditioning
SEQ_VAC Scaling / Sequence Block for Air Conditioning
SW_VAC Summer / Winter Setpoint Compensation for Air Conditioning
THRS_VAC Threshold Switch with Hysteresis for Air Conditioning
VQ_VAC Measured Value Deadband Block
WASH_VAC Basic Washer Block for Air Conitioning



General information

11

Width: 185 mm
Height: 230 mm

00

Complex Function Blocks
The complex function blocks implement in the form of EFB’s  the more complex functions
found in controllers which are frequently used in air conditioning systems. They are built
using the basic function blocks.

Table  2 ComplexFunctions Blocks

Function Block Description
CC2_VAC Cascade Controller for Air Conditioning with 2 Outputs
CC3_VAC Cascade Controller for Air Conditioning with 3 Outputs
MC_VAC Air Mix Controller for Air Conditioning with 1 Output
UC2_VAC PI Controller for Air Conditioning with 2 Outputs
UC3_VAC PI Controller for Air Conditioning with 3 Outputs

Note
It is strongly recommended that the user familiarizes himself with the operation of the
basic function blocks before reading the complex function block sections.

2.3 Scaling and descaling within a control program

2.3.1 General instructions

Basically, a control set up consists of 3 parts (see Figure 2):

� The scaling of input variables
� The controller
� The sequencing of output variables

Figure 2 Control Set up

Input
Scaling Controller Output

Sequencing

”Output Sequencing” is used to take the controller single output, split it into several parts,
and to scale the resultant outputs. It can be used for example, to split the controller
output amongst multiple actuators. For the purposes of the Concept HVAC library, the
controller and output sequencing are combined into one EFB.

The scaling of inputs can be handled using standard Concept libraries or the HVAC
library SEQ_VAC EFB can be used.



General information

0012

The complex EFB’s include the controller plus one or more freely parameterizable output
sequence blocks. The behavior of a complex EFB can be determined by examining the
basic EFB’s from which it is built. The complex EFB’s are described in this document by
referring to their constituent basic EFB’s .

The combination of the controller with the output sequencing  has been done to simplify
the parameterization of the EFB as all the output sequence parameters can be assigned
at the same time as the controller parameters. Furthermore, the links from the controller
output to the sequenced outputs are automatically created with a fixed structure.

2.3.2 Single loop controls

In the case of simple, single loop controls, the purpose of the output sequencing is
simply to match the controller output to the process actuators.

For controllers operating in simple P–mode, the controller output will equal zero when the
setpoint is equal to the process variable. In this case, the output sequencing must be
able to handle negative controller outputs and convert them into signals for the actuators.
By assigning the appropriate values to the output sequences, it is possible to design a
P–controller with a 50% output when the process variable is equal to the setpoint. The
advantage of such an approach is that on startup, the controller output will drive a
heating action which will reduce the chances of icing up in winter conditions. However,
where the risk of icing up is great, this mechanism should not be depended upon for
freeze protection as unfavorable dynamics could result in the heating control valve
closing. In this case one should control the temperature manually by opening the heating
control valve 100% on start up for a specific period of time before putting the controller
into automatic and starting the fan.

Where a project uses multiple controllers that have the same behavior, the user should
define a consistent naming convention for the Concept project, e.g.,

Y1 / Y2 / Y3 = Heat / Air Mix / Cool.

Where a controller output is divided into multiple process outputs using the sequence
functions, one may have to take into account the fact that different process actuators
have different gains. As a result, the controller gain may vary depending on the position
of its output, i.e., whether the output is driving, a hot water control valve, an air mixing
damper or humidity control device. The different actuator gains can be compensated by
using the appropriate sequence layout.



General information

13

Width: 185 mm
Height: 230 mm

00

2.3.3 Multi–loop controls

As well as single loops directly connected to process outputs, cascaded loops where the
output of one controller is connected as the setpoint of another controller are often
required for HVAC systems. The use of cascaded controllers not only gives improved
dynamics, it also results in a clearer and easier to understand layout of the HVAC
controls.

The output sequence functions allow the user to design a wide variety of control options
for his HVAC strategy.

Examples of output sequencing are given in Figure 1. Y refers to the PI controller output,
while Y1, Y2 and Y3 refer to the final outputs from the output sequencing which are
either sent directly to the process actuators or to other programming
controllers/functions.



General information

0014

Figure 1 Examples of sequences with direct output of output values as manipulated

variables

Y

50%

Y1

100%

0

50%

+100%–100%

Y

100%

Y1

100%

0–100%

a) Single manipulated variable

b) Double manipulated variable

Y

0% heat

Y2 Y1
100%

0-100.0 +100.0

Cool Heat

Y

50% heat

Y2 Y1
100%

0-150.0 +50.0

Cool Heat
50%

–50.0

Y

100% heat

Y2 Y1
100%

0.0–200.0 –100.0

Cool Heat

c) Triple manipulated variable

Y

0% ML

Y3 Y1100%

0.0–67.0 +133.0

Cool Heat

+67.0

Air–mix

Y2

Y

100% ML

Y3 Y1100%

0.0–67.0

Cool Heat

+67.0

Air–mix

Y2

–133.0



15

Breite: 185 mm
Höhe: 230 mm

00

EFB Descriptions

The EFB descriptions are arranged alphabetically according to their abbreviations.



0016



CC2_VAC

17

Width: 185 mm
Height: 230 mm

00

CC2_VAC
Cascade controller for air conditioning with
2 outputs

1 Brief description

The CC2_VAC module is a cascade controller used to provide temperature or humidity
control of the inlet air to a room. It consists of a P–only outer loop which uses the room
temperature/humidity as process variable and an inner PI loop that controls the
temperature/humidity of the inlet air supplying the room.

The EFB has a fixed structure where the setpoint of the P–controller is fed forward and
added to the P–controller output to form the setpoint of the PI–controller. The output of
the PI–controller has 2 output sequences, Y1 and Y2.

The EFB provides the following :

� Winter/summer setpoint compensation as per DIN 1946 pert 2.
� Full four quadrant operation of the output sequence scaling
� The display of output variables as percentages
� Upper and lower limits on outputs
� Presetting the controllers’ gains in the form of GAIN or PROP with the possibility of

using negative values for switching the control direction.
� Operation with Anti–Windup–Reset (AWR)
� Manual adjustment  of either the PI–controller output or the individual sequence

outputs (Y1 and Y2)  using percentages. When the controller output is manually
adjusted, the EFB tracks the I contribution in order to provide bump–less switching
back to automatic mode.

� The display of the P and PI controller errors (SP–PV).

Note
Additional parameters EN and ENO should not be configured.

You will find this EFB in the HVAC library.



CC2_VAC

0018

2 Representation

2.1 Symbol

SP

CV

PV1

PV2

Y1

Y2

Y1_PC

Y2_PC

CC2_VAC

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

NORM

MAN_CTR

MAN_SEQ

YMAN_PC

BOOL

BOOL

BOOL

REAL

YMAN1_PC

YMAN2_PC

PARA

REAL

REAL

PARA_CC2

ERR1

ERR2

REAL

REAL

2.2 Parameter Specifications

Table  3 CC2_VAC

Parameter Data Type Meaning
SP REAL Setpoint
CV REAL Command variable
PV1 REAL Actual value P controller
PV2 REAL Actual value PI controller
NORM BOOL Basic setting
MAN_CTR BOOL MANUAL for controller
MAN_SEQ BOOL MANUAL for sequences
YMAN_PC REAL Total manual manipulated variable as a % for controller
YMAN1_PC REAL Individual manual manipulated variable as a % for 1 Sequence
YMAN2_PC REAL Individual manual manipulated variable as a % for 2 Sequence
PARA PARA_CC2 Parameter structure
Y1 REAL Manipulated variable / Output variable 1
Y2 REAL Manipulated variable / Output variable 2
Y1_PC REAL Manipulated variable / Output variable 1 as a %
Y2_PC REAL Manipulated variable / Output variable 2 as a %
ERR1 REAL Control difference P controller
ERR2 REAL Control difference PI controller



CC2_VAC

19

Width: 185 mm
Height: 230 mm

00

Table  4 PARA_CC2

Element Data Type Meaning
SP_SPCV BOOL Setpoint / setpoint + command variable
P controller
YMAX1 REAL Upper limit manipulated variable
YMIN1 REAL Lower limit manipulated variable
GAIN1 REAL Controller gain
PROP1 REAL Proportional value
PREF1 REAL Proportional value reference
PI Controller
YMAX2 REAL Upper limit manipulated variable
YMIN2 REAL Lower limit manipulated variable
GAIN2 REAL Controller gain
PROP2 REAL Proportional value
PREF2 REAL Proportional value reference
TI2 TIME Reset time
1. Sequence
X1_1 REAL 1. Abcissa value
Y1_1 REAL 1. Ordinate value
X2_1 REAL 2. Abcissa value
Y2_1 REAL 2. Ordinate value
2. Sequence
X1_2 REAL 1. Abcissa value
Y1_2 REAL 1. Ordinate value
X2_2 REAL 2. Abcissa value
Y2_2 REAL 2. Ordinate value



CC2_VAC

0020

3 Detailed description

3.1  EFB structure
A block diagram representation of the CC2_VAC complex function block is shown in
Figure 1. It is made up of the following basic function blocks:

� SW_VAC Summer/winter compensation (see page 54)
� PI_VAC Basic PI controller for HVAC applications (see page 45)
� SEQ_VAC Output Sequence/scaling module (see page 49)

Please refer to the respective individual basic function block description for detailed
information.

Figure 1 Controller structure

PI_VAC

SW_VAC

SEQ_VAC

SEQ_VAC

Module

control

MAN

Y
SP

SP

CV

PV

YMAN_PC

NORM

MAN_CTR

MAN_SEQ

Y1

Y1_PC

Y2

Y2_PC

YMAN2_PC

YMAN1_PC

PI_VAC

YPV

SP

P
PV1

PV2

BIAS

MAN

PARA_CC2 Module parameters

While the CC2_VAC function block can be used for both temperature or humidity control,
the remainder of this description refers to temperature control only.



CC2_VAC

21

Width: 185 mm
Height: 230 mm

00

3.2 Basic Operation
The setpoint for the CC2_VAC function block is fed to the P–controller via the
summer/winter compensation block SW_VAC (description see page 54).

The output of the SW_VAC block is fed not only to the setpoint of the room P–controller,
but also to its BIAS input. In this way, the P–controller setpoint is added to the
P–controller output (which is equal to the P–controller error amplified by the controller
gain), and the result is fed as setpoint to the inlet air PI–controller. This is shown in
Figure 2.

Figure 2 Diagram of setpoint formation

PI

–

P
–

+

+

Inlet air

Room air

P contribution adjustable from 0
to the point of instability

Y SP

PV2

PV1
Room temperature

Direct setpoint
or
Command variable

Inlet air temperature

In order to understand the operation of this PPI controller, consider the case of a room
with no temperature gains or losses. In this case, the room temperature PV1 would be
equal to the PPI controller setpoint, and the inlet air temperature PV2 would  be equal to
the room temperature PV1. If we now consider the case of a heat source in the room, the
room air temperature PV1 will rise to a value greater than the setpoint. As a result, the
output of the P–controller, equal to controller error (SP–PV1) multiplied by the GAIN,
would trim the setpoint to the PI–controller resulting in a lowering of the inlet air
temperature to offset the heat source in the room. Because the inlet air dynamics are
much faster than the room air dynamics, a stable steady state condition will be reached
under fluctuating room conditions using this cascaded approach. A simple PI–controller
using the room temperature as process variable would not achieve satisfactory control



CC2_VAC

0022

because of the dead–time between the adjustment of the inlet air temperature and a
reaction in the room air temperature.

Please note however that while this PPI control algorithm will result in a stable room
temperature, there will be a small offset from the PPI controller setpoint, i.e., PV1 will
never equal SP. The size of the offset will depend on the disturbance conditions in the
room. If an application requires tight control of temperature to an absolute value, the
CC2_VAC function block should not be used. However, for applications that do not
require tight absolute control, the PPI controller provides a simple, stable and
easy–to–use control algorithm.

The PI–controller setpoint can be maintained within minimum and maximum limits by
using the P–controller output limits YMAX1 and YMIN1. This facility can be used to
prevent large swings in the inlet air temperature.

3.3 Manual Operation
There are 3 possible modes of manual operation which are specified by setting the
mutually exclusive  NORM, MAN_CTR and MAN_SEQ parameters.

� NORM mode (NORM = 1)
The output of the PI–controller output is set to zero. The zero value is fed to the
output sequences that are active in NORM mode. As a result the actual values of
Y1 and Y2  that are  output to the control actuators will depend on the output
sequence parameters. In the case where the controller output limits YMIN2 and
YMAX2 have been set to values that do not enclose zero, the output will be set to
the value of YMIN2 and YMAX2 that is closest to zero. In other words:

Y = YMAX2 if  YMAX2 < 0  AND  YMIN2 < 0,
Y = YMIN2 if  YMAX2 > 0  AND  YMIN2 > 0.

Again, the actual values of Y1 and Y2  that are  output to the control actuators will
depend on the output sequence parameters.

� MAN_CTR mode (MAN_CTR=1)
The output of the PI controller is set equal to the user–specified parameter
YMAN_PC. Again, the output sequences are active in this mode and therefore the
actual values of Y1 and Y2 that are output to the control actuators will depend on
the output sequence parameters.

� MAN_SEQ mode (MAN_SEQ=1)
The outputs Y1 and Y2 are set to the values specified by the parameters
YMAN1_PC and YMAN2_PC, i.e., Y1_PC = YMAN1_PC and Y2_PC =
YMAN2_PC.

In MAN_CTR mode, the I contribution of the PI–controller is tracked so that a bumpless
transfer back to automatic mode may be carried out.  In NORM and MAN–SEQ modes,
the I contribution is set to zero.



CC2_VAC

23

Width: 185 mm
Height: 230 mm

00

3.4 Output Parameters
The CC2_VAC outputs Y1 and Y2 are available in real or percentage form (Y1, Y2,
Y1_PC and Y2_P2).

The percentage values specified for the manual control of outputs (YMAN_PC,
YMAN1_PC and YMAN2_PC) refer to the specified range of the appropriate output. For
example, the variable YMAN_PC sets the total output of the PI_VAC basic function
block. The range of this output is specified by the parameters YMIN (0%) and YMAX
(100%).

The variables YMAN1_PC and YMAN2_PC set the outputs of the two SEQ_VAC blocks,
the ranges of which are specified by their corresponding ordinate vales Y1..Y2 (where Y1
and Y2 refer to the SEQ_VAC ordinates, not the actual outputs Y1 and Y2 of the two
SEQ_VAC blocks). It is important to note that the smaller value of Y1 and Y2 is always
equated to 0% and the greater value to 100%. In other words, the percentage value is
related to the size of the output variable Y irrespective of its direction:

Y1 < Y2 –> 0%..100% = Y1..Y2

Y1 > Y2 –> 0%..100% = Y2..Y1

For more information on the operation of the SEQ_VAC block, please refer to the
respective description  (see page 49).



CC3_VAC

0024

CC3_VAC
Cascade controller for air conditioning with
3 outputs

1 Brief description

The CC3_VAC module is a cascade controller used to provide temperature or humidity
control of the inlet air to a room. It consists of a P–only outer loop which uses the room
temperature/humidity as process variable and an inner PI loop that controls the
temperature/humidity of the inlet air supplying the room.

The EFB has a fixed structure where the setpoint of the P–controller is fed forward and
added to the P–controller output to form the setpoint of the PI–controller. The output of
the PI–controller has 3 output sequences, Y1, Y2 and Y3.  The operation of CC3_VAC is
identical to CC2_VAC, the only difference being the additional output.

The EFB provides the following :

� Winter/summer setpoint compensation as per DIN 1946 part 2.
� Full four quadrant operation of the output sequence scaling
� The display of output variables as percentages
� Upper and lower limits on outputs
� Presetting the controllers gains in the form of GAIN or PROP with the possibility of

using negative values for switching the control direction.
� Operation with Anti–Windup–Reset (AWR)
� Manual adjustment  of either the PI–controller output or the individual sequence

outputs (Y1 and Y2)  using percentages. When the controller output is manually
adjusted, the EFB tracks the I contribution in order to provide bump–less switching
back to automatic mode.

� The display of the P and PI controller errors (SP–PV).

Note
Additional parameters EN and ENO should not be configured.

You will find this EFB in the HVAC library.



CC3_VAC

25

Width: 185 mm
Height: 230 mm

00

2 Representation

2.1 Symbol

SP

CV

PV1

PV2

Y1

Y2

Y3

Y1_PC

CC3_VAC

REAL

REAL

REAL

REAL

REAL

REAL

REAL

REAL

NORM

MAN_CTR

MAN_SEQ

YMAN_PC

BOOL

BOOL

BOOL

REAL

YMAN1_PC

YMAN2_PC

YMAN3_PC

PARA

REAL

REAL

REAL

PARA_CC3

Y2_PC

Y3_PC

ERR1

ERR2

REAL

REAL

REAL

REAL



CC3_VAC

0026

2.2 Parameter Specifications

Table  1 CC3_VAC

Parameter Data Type Meaning
SP REAL Setpoint
CV REAL Command variable
PV1 REAL Actual value P controller
PV2 REAL Actual value PI controller
NORM BOOL Basic setting
MAN_CTR BOOL MANUAL for controller
MAN_SEQ BOOL MANUAL for sequences
YMAN_PC REAL Total manual manipulated variable as a % for controller
YMAN1_PC REAL Individual manual manipulated variable as a %, 1st sequence
YMAN2_PC REAL Individual manual manipulated variable as a %, 2nd sequence
YMAN3_PC REAL Individual manual manipulated variable as a %, 3rd sequence
PARA PARA_CC3 Parameter structure
Y1 REAL Manipulated variable / Output variable 1
Y2 REAL Manipulated variable / Output variable 2
Y3 REAL Manipulated variable / Output variable 3
Y1_PC REAL Manipulated variable / Output variable 1 as a %
Y2_PC REAL Manipulated variable / Output variable 2 as a %
Y3_PC REAL Manipulated variable / Output variable 3 as a %
ERR1 REAL Control difference P controller
ERR2 REAL Control difference PI controller



CC3_VAC

27

Width: 185 mm
Height: 230 mm

00

Table  2  PARA_CC3

Element Data Type Meaning
SP_SPCV BOOL Setpoint / setpoint + command variable
P controller
YMAX1 REAL Upper limit manipulated variable
YMIN1 REAL Lower limit manipulated variable
GAIN1 REAL Controller gain
PROP1 REAL Proportional value
PREF1 REAL Proportional value reference
PI Controller
YMAX2 REAL Upper limit manipulated variable
YMIN2 REAL Lower limit manipulated variable
GAIN2 REAL Controller gain
PROP2 REAL Proportional value
PREF2 REAL Proportional value reference
TI2 TIME Reset time
1. Sequence
X1_1 REAL 1. Abcissa value
Y1_1 REAL 1. Ordinate value
X2_1 REAL 2. Abcissa value
Y2_1 REAL 2. Ordinate value
2. Sequence
X1_2 REAL 1. Abcissa value
Y1_2 REAL 1. Ordinate value
X2_2 REAL 2. Abcissa value
Y2_2 REAL 2. Ordinate value
3. Sequence
X1_3 REAL 1. Abcissa value
Y1_3 REAL 1. Ordinate value
X2_3 REAL 2. Abcissa value
Y2_3 REAL 2. Ordinate value



CC3_VAC

0028

3 Detailed description

3.1  EFB structure
A block diagram representation of the CC3_VAC complex function block is shown in
Figure 1. It is made up of the following basic function blocks:

� SW_VAC Summer/winter compensation (see page 54)
� PI_VAC Basic PI controller for HVAC applications (see page 45)
� SEQ_VAC Output Sequence/scaling module (see page 49)

Please refer to the respective individual basic function block description for detailed
information.

Figure 1 Controller structure

PI_VAC

SW_VAC
SEQ_VAC

SEQ_VAC

Module

control

MAN

Y
SP

SP

CV

PV

YMAN_PC

NORM

MAN_CTR

MAN_SEQ

Y1

Y1_PC

Y3

Y3_PC

YMAN3_PC

YMAN1_PC

PI_VAC

YPV

SP

P
PV1

PV2

BIAS

MAN

SEQ_VAC

Y2

Y2_PC

YMAN2_PC

PARA_CC3 Module parameters

While the CC3_VAC function block can be used for both temperature or humidity control,
the remainder of this description refers to temperature control only.



CC3_VAC

29

Width: 185 mm
Height: 230 mm

00

3.2 Basic Operations
The setpoint for the CC3_VAC function block is fed to the P–controller via the
summer/winter compensation block  SW_VAC (description see page 54).

The output of the SW_VAC block is fed not only to the setpoint of the room P–controller,
but also to its BIAS input. In this way, the P–controller setpoint is added to the
P–controller output (which is equal to the P–controller error amplified by the controller
gain), and the result is fed as setpoint to the inlet air PI–controller. This is shown in
Figure 2.

Figure 2 Diagram of setpoint formation

PI

–

P
–

+

+

Inlet air

Room air

P contribution adjustable from 0
to the point of instability

Y SP

PV2

PV1
Room temperature

Direct setpoint
or
Command variable

Inlet air temperature

In order to understand the operation of this PPI controller, consider the case of a room
with no temperature gains or losses. In this case, the room temperature PV1 would be
equal to the PPI controller setpoint, and the inlet air temperature PV2 would  be equal to
the room temperature PV1. If we now consider the case of a heat source in the room, the
room air temperature PV1 will rise to a value greater than the setpoint. As a result, the
output of the P–controller, equal to controller error (SP–PV1) multiplied by the GAIN,
would trim the setpoint to the PI–controller resulting in a lowering of the inlet air
temperature to offset the heat source in the room. Because the inlet air dynamics are
much faster than the room air dynamics, a stable steady state condition will be reached
under fluctuating room conditions using this cascaded approach. A simple PI–controller
using the room temperature as process variable would not achieve satisfactory control



CC3_VAC

0030

because of the dead–time between the adjustment of the inlet air temperature and a
reaction in the room air temperature.

Please note however that while this PPI control algorithm will result in a stable room
temperature, there will be a small offset from the PPI controller setpoint, i.e., PV1 will
never equal SP. The size of the offset will depend on the disturbance conditions in the
room. If an application requires tight control of temperature to an absolute value, the
CC3_VAC function block should not be used. However, for applications that do not
require tight absolute control, the PPI controller provides a simple, stable and
easy–to–use control algorithm.

The PI–controller setpoint can be maintained within minimum and maximum limits by
using the P–controller output limits YMAX1 and YMIN1. This facility can be used to
prevent large swings in the inlet air temperature.

3.3 Manual Operation
There are 3 possible modes of manual operation which are specified by setting the
mutually exclusive  NORM, MAN_CTR and MAN_SEQ parameters.

� NORM mode (NORM = 1)
The output of the PI–controller output is set to zero. The zero value is fed to the
output sequences that are active in NORM mode. As a result the actual values of
Y1 and Y2  that are  output to the control actuators will depend on the output
sequence parameters. In the case where the controller output limits YMIN2 and
YMAX2 have been set to values that do not enclose zero, the output will be set to
the value of YMIN2 and YMAX2 that is closest to zero. In other words:

Y = YMAX2 if  YMAX2 < 0  AND  YMIN2 < 0,
Y = YMIN2 if  YMAX2 > 0  AND  YMIN2 > 0.

Again, the actual values of Y1 and Y2  that are  output to the control actuators will
depend on the output sequence parameters.

� MAN_CTR mode (MAN_CTR=1)
The output of the PI controller is set equal to the user–specified parameter
YMAN_PC. Again, the output sequences are active in this mode and therefore the
actual values of Y1, Y2 and Y3 that are output to the control actuators will depend
on the output sequence parameters.

� MAN_SEQ mode (MAN_SEQ=1)
The outputs Y1, Y2 and Y3 are set to the values specified by the parameters
YMAN1_PC, YMAN2_PC and YMAN3_PC, i.e., Y1_PC = YMAN1_PC, Y2_PC =
YMAN2_PC and Y3_PC = YMAN3_PC.

In MAN_CTR mode, the I contribution of the PI–controller is tracked so that a bumpless
transfer back to automatic mode may be carried out.  In NORM and MAN–SEQ modes,
the I contribution is set to zero.



CC3_VAC

31

Width: 185 mm
Height: 230 mm

00

3.4 Output Parameters
The CC3_VAC outputs Y1, Y2 and Y3 are available in real or percentage form (Y1, Y2,
Y3, Y1_PC, Y2_PC and Y3_PC).

The percentage values specified for the manual control of outputs (YMAN_PC,
YMAN1_PC, YMAN2_PC and YMAN3_PC) refer to the specified range of the
appropriate output. For example, the variable YMAN_PC sets the total output of the
PI_VAC basic function block. The range of this output is specified by the parameters
YMIN (0%) and YMAX (100%).

The variables YMAN1_PC, YMAN2_PC and YMAN3_PC set the outputs of the two
SEQ_VAC blocks, the ranges of which are specified by their corresponding ordinate
vales Y1..Y2 (where Y1 and Y2 refer to the SEQ_VAC ordinates, not the actual outputs
Y1, Y2 and Y3 of the two SEQ_VAC blocks). It is important to note that the smaller value
of Y1 and Y2 is always equated to 0% and the greater value to 100%. In other words, the
percentage value is related to the size of the output variable Y irrespective of its
direction:

Y1 < Y2 –> 0%..100% = Y1..Y2

Y1 > Y2 –> 0%..100% = Y2..Y1

For more information on the operation of the SEQ_VAC block, please refer to the
respective description  (see page 49).



MC_VAC

0032

MC_VAC
Air mix controller for air conditioning with one
output

1 Brief description

The MC_VAC module is a controller designed for applications that require switching of
the controller direction, and maximum/minimum selection of outputs. Examples of such
applications would be air mixing controls where the control direction will depend on the
relative values of the outside air temperature and return air temperature, or heat
exchanger controls used in energy conservation schemes.

The EFB provides the following :

� Winter/summer setpoint compensation as per DIN 1946 part 2.
� Full four quadrant operation of the output sequence scaling
� The display of output variables as percentages
� Upper and lower limits on outputs
� Presetting the controllers’ gains in the form of GAIN or PROP with the possibility of

using negative values for switching the control direction.
� Control reversal using comparison inputs with built–in hysterisis
� Selection of operating mode as a ”Direct Controller” or ”Auxiliary Controller” with

Max/Min selection.
� Operation with Anti–Windup–Reset (AWR)
� Manual adjustment  of either the PI–controller output or the individual sequence

outputs (Y1 and Y2)  using percentages. When the controller output is manually
adjusted, the EFB tracks the I contribution in order to provide bumpless switching
back to automatic mode.

� The display of the P and PI controller errors (SP–PV).

Note
Additional parameters EN and ENO should not be configured.

You will find this EFB in the HVAC library.



MC_VAC

33

Width: 185 mm
Height: 230 mm

00

2 Representation

2.1 Symbol

SP

CV

PV

YEXT

Y

Y_PC

ERR

MC_VAC

REAL

REAL

REAL

REAL

REAL

REAL

REAL

CMP_T1

CMP_H1

CMP_T2

CMP_H2

REAL

REAL

REAL

REAL
NORMBOOL

MAN_CTR

MAN_SEQ

YMAN_PC

PARA

BOOL

BOOL

REAL

PARA_MC



MC_VAC

0034

2.2 Parameter Specifications

Table  1 MC_VAC

Parameter Data Type Meaning
SP REAL Setpoint
CV REAL Command variable
PC REAL Actual value
YEXT REAL Manipulated variable of higher–level controller in the case of ca-

scade mode
CMP_T1 REAL Reference value T1
CMP_H1 REAL Reference value H1
CMP_T2 REAL Reference value T2
CMP_H2 REAL Reference value H2
NORM BOOL Basic setting
MAN_CTR BOOL MANUAL for controller
MAN_SEQ BOOL MANUAL for sequence
YMAN_PC REAL Total manual manipulated variable as a % or sequence manual

manipulated variable as a %
PARA PARA_MC Parameter structure
Y REAL Manipulated variable / Output variable
Y_PC REAL Manipulated variable / Output variable as a %
ERR REAL System Deviation

Table  2 PARA_MC

Element Data Type Meaning
CASC BOOL Direct / cascade mode
SP_SPCV BOOL Setpoint / setpoint + command variable
MIN BOOL Max/min switch (max=0)
PI Controller
YMAX REAL Upper limit of manipulated variable (YAU always 0)
GAIN REAL Controller gain
PROP REAL Proportional value
PREF REAL Proportional value reference
TI TIME Reset time
Output sequence
X1 REAL 1. Abcissa value
Y1 REAL 1. Ordinate value
X2 REAL 2. Abcissa value
Y2 REAL 2. Ordinate value



MC_VAC

35

Width: 185 mm
Height: 230 mm

00

3 Detailed description

3.1  EFB structure
A block diagram representation of the CC2_VAC complex function block is shown in
Figure 1. It is made up of the following basic function blocks:

� SW_VAC Summer/winter compensation (see page 54)
� PI_VAC Basic PI controller for HVAC applications (see page 45)
� THRS_VAC Limit Selector with hysteresis (see page 57)
� SEQ_VAC Output Sequence/scaling module (see page 49)

Figure 1 Controller structur

PI_VAC

SW_VAC

Module

control

MANYMAN

Y

SP

SP

CV

YMAN_PC

NORM

MAN_CTR

MAN_SEQ

MAX
MIN

switching

100%
–15%

+15%

0
100%

Y

EF

100%
–15%

+15%

0
100%

Y

EF

CMP_H2

CMP_T2

CMP_H1

CMP_T1

YEXT

+

+

+

+

–

Y

Y_PC

OAMX

RETOUT

OUTRET

PV

MAN

X

X

MAN

SEQ_VAC

SEQ_VAC

E >=0

E  <0

A=1�

� A=0

E

A

Unbroken line = Outside air damper activated
Broken line = Mixed air damper activatedYMAN_PC

PARA_MC Module parameters

Control
direction

MX
OA
OUT
RET

=
=
=
=

Mixed Air Damper
Outside Air Damper
Outside Air Temperature/Humidity
Return Air Temperature/Humidity

THRS_VAC



MC_VAC

0036

Please refer to the respective individual basic function block description for detailed
information.

3.2 Setpoint
The setpoint for the MC_VAC function block is fed to the PI–controller via the
summer/winter compensation block SW_VAC (description see page 54).

The PI–controller setpoint can be maintained within minimum and maximum limits by
using the P–controller output limits YMAX1 and YMIN1. This facility can be used to
prevent large swings in the inlet air temperature as a result of unusual room temperature
fluctuations or a badly adjusted P–controller.

3.3 Control Direction
The function block has 4 reference variables CMP–T1, CMP_H1, CMP_T2 and
CMP_H2. CMP_T1 is added to CMP_H1 and CMP_T2 is added to CMP_H2. The
resulting additions are then compared with one another, and the result of the comparison
is fed to the THRS_VAC block to provide switching with a built in hysteresis of 1.0. The
output of the THRS_VAC block is used to ”reverse” the action of the output sequences.

The user is free to choose what inputs are connected to the reference variables. In
general though, temperature comparisons should use CMP_T1 and CMP_T2 while
humidity comparisons should use CMP_H1 and CMP_H2.  If temperature comparison
only is required, the variables CMP_H1 and CMP_H2 can be set to zero.

The comparison inputs can be used to compare the heat content of 2 air streams. The
heat content of air can be calculated as follows:

Q = Qa + Qsw + Qlw

Where 
Qa = sensible heat content of air (kJ)
Qsw = sensible heat content of water vapor (kJ)
Qlw = latent heat content of water vapor (kJ)

Therefore

Q = m * Ca * Ta + m * x * Cw * Ta + m * x * hw

Where
m = mass of air (kg)
Ca = specific heat capacity of air = 1.006 kJ/(kg*K)
Ta = temperature of air (deg C)
x = absolute humidity (g/kg)
Cw = specific heat capacity of water vapour = 1.92 kJ/(kg*K)
hw = specific enthalpy of water vapour = 2500 kJ/kg = 2.5 kJ/g



MC_VAC

37

Width: 185 mm
Height: 230 mm

00

Bearing in mind that Ca is approximately equal to one and that hw is much greater than
Cw*Ta, the equation can be simplified to :

Q = m * Ta + m * hw * x

Therefore, the enthalpy H of the air can be calculated as :

H = Q / m = Ta + h w* x = Ta + 2.5x

Therefore by scaling the air temperature in degrees Celsius and by multiplying the
absolute humidity (scaled in g/kg) by 2.5 the resultant addition gives a good indication of
the enthalpy content of the air in kJ/kg. In this case, the built in hysteresis corresponds to
1.0 kJ/kg.

In cases where an accurate value for hysteresis is not necessary, the absolute humidity
can be substituted by its corresponding dew point temperature. This can be obtained by
the use of WASH_VAC, feeding the measured relative humidity to SP_RH and the
measured temperature Ta to SP_RT. The resulting SP_TW replaces in this case the term
2.5x.

H = Ta + SP_TW

SP_TW represents a nonlinear but fixed function or the unknown absolute humidity.
Because both values of H, from RETURN AIR and OUTSIDE AIR, are calculated in the
same way, the comparison of both values does not need to take care that these
calculated values themselves are nonlinear to the true H values.

During the first execution cycle of the function block, the hysteresis is initialized on the
assumption that CMP_T1 < CMP_T2. If after the first calculation cycle the comparison
result is within the hysteresis band, the initial switching status is retained.

3.4 Output Sequences

Note
Only one output sequence is specified by the user. The function block will then calculate
the reversed sequence when the control direction is switched. The sequence specified
must have an increasing slope, i.e., Y2>Y1.

In order to understand how the output sequencing works, the example of temperature
control using a mixing air damper can be used. For a mixing air controller, there are
normally 2 dampers – a control damper for mixing the return air with the outside air and a
control damper on the outside air inlet (see examples on page 40). The control action on
one damper is the reverse of the other. In practical terms, the controller output is sent to
1 damper only, the other damper being controlled mechanically or electrically. It therefore
follows that the output sequences will depend on which damper is being controlled
directly. Also, a minimum outside air flow is always guaranteed to provide some fresh air
into the room. Assuming an outside air minimum of 15%, the output sequences would
look like the following :



MC_VAC

0038

� If the air mixer damper is controlled, the sequences would be :

Figure 2 Air Mixing Damper

X

Y

0%

Y2 85%

100%

Y1

X1
100%
X2

X

Y

0%

Y1 85%

100%

Y2

X1
100%
X2

Sequence 1:

X1 = 0
Y1 = 0
X2 = 100
Y2 = 85

Sequence 2:

X1 = 0
Y1 = 85
X2 = 100
Y2 = 0

Outside air temp.> Return air temp. Outside air temp. < Return air temp.

� If the outside air damper is controlled, the sequences would be :

Figure 3 Outside Air Damper

Sequence 1:

X1 = 0
Y1 = 15
X2 = 100
Y2 = 100

Sequence 2:

X1 = 0
Y1 = 100
X2 = 100
Y2 = 15

Outside air temp.< Return air temp. Outside air temp. > Return air temp.

X

Y

0%

Y2 100%

X1
100%
X2

X

Y

0%
X1

100%
X2

Y1 15%

Y1 100%

Y2 15%



MC_VAC

39

Width: 185 mm
Height: 230 mm

00

The reference values CMP_T1 and CMP_T2 will determine which of the sequences are
activated as follows:

CMP_T1 > CMP_T2 => Sequence 1 is active

CMP_T1 < CMP_T2 => Sequence 2 is active

In order to get the desired control, the comparison inputs should be connected as
follows:

� If the air mixer damper  is controlled:
CMP_T1 = Outside air temperature
CMP_T2 = Return air temperature

� If the outside air damper  is controlled:
CMP_T1 = Return air temperature
CMP_T2 = Outside air temperature

3.5 Direct and Auxiliary control
Direct or Auxiliary control is selected using the CASC parameter.

Direct control is specified by setting CASC = 0.  In this mode, the Max/Min selection is
disable and the external input YEXT is ignored.

Auxiliary control is specified by setting CASC = 1. In this mode, the Max/Min selection is
enabled and the external input YEXT is compared to the PI controller output.

3.6 Manual operation
There are 3 possible modes of manual operation which are specified by setting the
mutually exclusive  NORM, MAN_CTR and MAN_SEQ parameters.

� NORM mode (NORM = 1):
The output of the PI–controller output is set to zero. However, the actual value
forwarded to the output sequences depends on whether the controller is set up in
”Direct” or ”Auxiliary mode. In ”Direct” mode the PI–controller output is fed through
the Max/Min block to the output sequence. In ”Auxiliary” mode, the value passed
through to the output sequence depends on the result of the comparison between
the controller output and the value of YEXT which is set by the higher level
controller. Therefore, in order to operate in true NORM mode, both the Auxiliary
controller and the higher level controller must be set to NORM. The actual value
that is output to the control actuator depends on the output sequence parameters.

� MAN_CTR mode (MAN_CTR=1):
The output of the PI controller is set equal to the user–specified parameter
YMAN_PC. However, the YEXT value coming from the higher level controller may
override the YMAN_PC value. Again, the output sequence is active in this mode
and therefore the actual value of Y that is output to the control actuator will depend
on the output sequence parameters and the control direction.



MC_VAC

0040

� MAN_SEQ mode (MAN_SEQ=1):
The sequence output Y is set to the value specified by the parameter YMAN_PC,
i.e., Y_PC = YMAN_PC.  When in MAN_SEQ mode, switching the control direction
has no effect on the output.

In MAN_CTR mode, the I contribution of the PI–controller is tracked so that a bump–less
transfer back to automatic mode may be carried out. In NORM and MAN–SEQ modes,
the I contribution is set to zero.

3.7 Output Parameters
The MC_VAC output Y is available in real or percentage form (Y, and Y_PC).

The percentage values specified for the manual control of outputs (YH_PC, and
YMAN_PC) refer to the specified range of the appropriate output. For example, the
variable YH_PC sets the total output of the PI_VAC basic function block. The range of
this output is specified by the parameters YMIN (0%) and YMAX (100%).

The variable YMAN_PC sets the output of the SEQ_VAC block, the range of which is
specified by the corresponding ordinate vales Y1..Y2 (where Y1 and Y2 refer to the
SEQ_VAC ordinates). It is important to note that the smaller value of Y1 and Y2 is
always equated to 0% and the greater value to 100%. In other words, the percentage
value is related to the size of the output variable Y irrespective of its direction:

Y1 < Y2 –> 0%..100% = Y1..Y2

Y1 > Y2 –> 0%..100% = Y2..Y1

For more information on the operation of the SEQ_VAC block, please refer to the
respective description  (see page 49).

3.8 Example Applications
You will find two examples for using the MC_VAC block:

� Air Mixing
� Heat Recovery Exchangers

Note
In both of the examples, the user must carefully select all control actuators in order to
provide failsafe operation and prevent freezing of water coils. Hardwired antifreeze
controls should also be used to override the PLC controls and if necessary shutdown the
make up air handling unit to protect the coils.



MC_VAC

41

Width: 185 mm
Height: 230 mm

00

Air Mixing

An example where switching of control direction is commonly used is air mixing and is
shown in Figure 4. In this application, return air from a room is mixed with the outside air
to supply the inlet air to the room. In the winter, the outside air is at a lower temperature
and humidity than the return air. The return air is therefore mixed with the outside air to
provide free heating of the outside air. In the summer, the return air may have a lower
temperature and humidity than the outside air. In this case, the return air is mixed with
the outside air to provide free cooling. The example shows the use of temperature and
humidity sensors on the return air and outside air being used to determine the control
direction of the controller.

The example also shows control of the mixing air damper. It is then assumed that the
outside air damper is connected mechanically or electro–mechanically to the mixing air
damper.

Figure 4 Example for Air Mixing

M

HT TT

++

TT HT

+

+
– +

OUTSIDE AIR

EXHAUST RETURN AIR

Y

X

Y

X

SEQUENCE A

SEQUENCE B

CURVE
SELECTION

PI

MC_VAC

NEGATIVE GAIN

TT

INLET AIR

PV

SP = ROOM
TEMPERATURE

In the winter, if H_OUTSIDE < H_RETURN, sequence B is used. In this case it can be
seen that if the inlet air temperature is too low, the PI controller output (whose gain is

Example:



MC_VAC

0042

negative) will be increasingly negative, opening the mixing air damper in order to mix a
greater quantity of warmer air with the colder outside air, thereby increasing the inlet air
temperature. Conversely, if the inlet air temperature is too warm, the PI controller output
will be increasingly more positive, resulting in a closing of the mixing air damper in order
to mix a smaller quantity of the warmer return air with the cooler outside air, thereby
decreasing the inlet air temperature.

In the summer, if H_OUTSIDE > H_RETURN, sequence A is used. In this case it can be
seen that if the inlet air temperature is too low, the PI controller output (whose gain is
negative) will be increasingly negative, closing the mixing air damper in order to mix a
smaller quantity of colder return air with the warmer outside air, thereby increasing the
inlet air temperature. Conversely, if the inlet air temperature is too warm, the PI controller
output will be increasingly more positive, resulting in the opening of the mixing air
damper in order to mix a greater quantity of cooler return air with the warmer outside air,
thereby decreasing the inlet air temperature.



MC_VAC

43

Width: 185 mm
Height: 230 mm

00

Heat Recovery Exchangers

Another example of heat recovery exchangers is shown in Figure 5. In this example, a
closed water loop between two heat exchangers is used to transfer heat between the
return air and incoming outside air. A re–circulation pump is used in combination with a
check valve and control valve. Closing the control valve will result in more of the water
circulating through the check valve and less through the outside air heat exchanger.
Conversely, opening the control valve, will result in more water circulating through the
outside air heat exchanger.

Figure 5 Example Heat Recovery Exchangers

TT

++

TT

+

+
– +

OUTSIDE AIR

EXHAUST RETURN AIR

Y

X

Y

X

SEQUENCE A

SEQUENCE B

CURVE
SELECTION

PI

NEGATIVE GAIN

INLET AIR

PV

ROOM
TEMPERATURE

CMP_H2 = 0 CMP_H1 = 0

MAX

SP

PI

MC_VAC

POSITIVE GAIN

PV

SP = Tmin/
Antifreeze

YEXT

TT

TT

The example shows two control loops – an inlet air controller and an anti–freeze
controller.  The anti–freeze controller measures the water loop temperature and is used
to guarantee a minimum temperature so as to prevent freezing of return air condensed
water on the return air exchanger surfaces. The setpoint is set to a suitable value above
8the freezing point of water. Under normal conditions, the PV will be greater than the SP,
the controller output will be zero, and the MAX selection block will ensure that the inlet air
controller controls the heat exchangers. If however, the water temperature decreases

Example:



MC_VAC

0044

below the minimum setpoint, the  anti–freeze controller output will increase and take over
from the inlet air controller to maintain the minimum water temperature through the return
air heat exchanger, thereby preventing freezing of any condensation that may have
occurred.

The inlet air controller controls the inlet air temperature. An MC_VAC block is used for
the anti–freeze controller and is run in CASCADE mode. The output of the inlet air
controller is fed as the input Yext to the anti–freeze controller, thereby controlling the heat
exchanger control valve.

If T_OUTSIDE < T_RETURN, sequence B is used. In this case it can be seen that if the
inlet air temperature is too low, the PI controller output (whose gain is negative) will be
increasingly negative, opening the control valve in order to divert a greater quantity of
warmer water to the outside air heat exchanger, thereby increasing the inlet air
temperature. Conversely, if the inlet air temperature is too warm, the PI controller output
will be increasingly more positive, resulting in a closing of the control valve in order to
divert a smaller quantity of the warmer water to the outside air heat exchanger, thereby
decreasing the inlet air temperature.

If T_OUTSIDE > T_RETURN, sequence A is used. In this case it can be seen that if the
inlet air temperature is too low, the PI controller output (whose gain is negative) will be
increasingly negative, closing the control valve in order to divert a smaller quantity of
cooler water to the outside air heat exchanger, thereby increasing the inlet air
temperature. Conversely, if the inlet air temperature is too warm, the PI controller output
will be increasingly more positive, resulting in the opening of the control valve in order to
divert a greater quantity of the cooler water to the outside air heat exchanger, thereby
decreasing the inlet air temperature.



PI_VAC

45

Width: 185 mm
Height: 230 mm

00

PI_VAC
PI controller for air conditioning

1 Brief description

The PI_VAC basic function block is a general PI–controller designed for air conditioning
applications. It can be used for temperature control, humidity control, air mixing control or
other general functions. As it is a basic function block it consists of a PI controller only
with no setpoint compensation, output sequencing, or other functions. It is used
extensively by the complex function blocks.

Where the standard complex function block library does not meet the requirements of a
particular application, the PI_VAC basic function block can be combined with other basic
function blocks to create the user’s own complex function block using the Concept
Derived Function Block facilities.

The EFB provides the following :

� SP (setpoint), PV (process variable) and BIAS inputs.
� Ability to operate in P, I, or PI modes
� Bump–less initialization of the I contribution as well as bump–less switching

between I and PI operation
� Presetting the controller’s gain in the form of GAIN or PROP with the possibility of

using negative values for switching the control direction.
� Bump–less switching between GAIN and PROP operation in the case of PI control.
� Operation with Anti–Windup–Reset (AWR)
� Manual operation mode with tracking of the I contribution in order to provide

bump–less switching back to automatic mode.
� HALT operating mode for freezing the controller output at its current value with

tracking of the I contribution
� DYNAMIC HALT operating mode that prevents step–changes in the controller

output when the setpoint is changed.
� Upper and lower limits on controller output with indication when limits are reached

using the QMAX and QMIN outputs.
� The display of the PI controller error (SP–PV).

Note
Additional parameters EN and ENO should not be configured.

You will find this EFB in the HVAC library.



PI_VAC

0046

2 Representation

2.1 Symbol

MAN

HALT

DHALT

SP Y

ERR

QMAX

QMIN

PI_VAC

BOOL

BOOL

BOOL

REAL REAL

REAL

BOOL

BOOL

PV

BIAS

YMAN

YMAX

REAL

REAL

REAL

REAL

YMIN

GAIN

PROP

PREF

REAL

REAL

REAL

REAL

TITIME

2.2 Parameter Specifications

Parameter Data Type Meaning
MAN BOOL MANUAL mode
HALT BOOL HALT mode
DHALT BOOL Dyn. HALT for next scanning step
SP REAL Setpoint
PV REAL Actual value
BIAS REAL DEVIATION (deviation compensation)
YMAN REAL Manual manipulated variable
YMAX REAL Upper limit manipulated variable
YMIN REAL Lower limit manipulated variable
GAIN REAL Controller gain
PROP REAL Proportional value
PREF REAL Proportional value reference
TI TIME Integral Time
Y REAL Manipulated variable
ERR REAL Control deviation
QMAX BOOL Upper limit of signalling device reached
QMIN BOOL Lower limit of signalling device reached



PI_VAC

47

Width: 185 mm
Height: 230 mm

00

3 Detailed description

3.1 Parameter Specifications
SP, PV, BIAS
The setpoint SP and process variable PV are connected directly to the function block as
real values. The controller error is calculated as:

ERR =  SP – PV.

The error value is available for display.

A BIAS value may also be specified as a real value. This BIAS  value is added to the
result of the PI calculation. In this way, the user can ensure that the controller output is
”biased” with a specific value during the first cycle. This is shown in Figure 6.

GAIN, PROP, PREF, TI
The controller gain can be specified by either setting a value for the GAIN, or
alternatively, by specifying the proportional rate using the PROP and PREF parameters
as follows:

� If GAIN is not equal to zero , then the GAIN mode is activated. In this case, the
controller output for P–only control  is then calculated as :
Y = GAIN * (SP – PV)
A negative value of GAIN may be specified to reverse the action of the controller.

� If GAIN = 0 and PROP is not equal to zero , then the PROP mode is activated. In
this mode, a change in the PV by an amount PROP will result in a change of the
controller output by an amount PREF. In other words, for a P–only controller , the
output is calculated as :
Y = PREF * (SP –  PV) / PROP
In the case where an actuator is connected directly to the output of the controller, a
PREF of 100 can be set to indicate 100% output.
A negative value of PROP may be specified to reverse the action of the controller.
However, PREF must always be specified as positive.

� If GAIN = 0 and PROP = 0 , the proportional value of the controller is effectively
switched off. By specifying an integral time using the TI input, the controller will act
as an I–only controller. In the event that the integral time TI is set to zero, there will
be no PI action at all, and only the BIAS value will be forwarded to the controller
output. In this case, the operating modes MAN, HALT and DHALT will still be
active.

3.2 Manual Operation
There are 3 possible modes of manual operation which are specified by setting the
mutually exclusive  MAN, HALT and DHALT  parameters.

� MAN mode (MAN = 1):
The value specified at YMAN is written to the controller loop output Y. This is
effective in both P and PI modes. The I contribution is continually tracked to allow
bump–less switching of the controller back to automatic mode. The output limits
and anti–reset–windup are therefore still active in MAN mode.



PI_VAC

0048

� HALT mode (HALT = 1):
In HALT mode the controller output is frozen at its current value. The I contribution
is tracked to allow bump–less switching back to automatic mode.

� DHALT mode (DHALT=1):
This mode is used to prevent step changes to the controller output when the
setpoint is changed. When the setpoint is changed, the controller I contribution is
adjusted so that the controller output does not change on the next controller cycle.
The controller will subsequently integrate the output in a ramp–like fashion until the
PV reaches the new SP.

3.3 Output Parameters
The controller output is set at Y. The range of the output is defined by the parameters
YMIN and YMAX. When these limits are reached, the parameters QMIN and QMAX are
set. In the event that an output limit is reached, anti–reset–windup is activated. This
prevents the I–contribution from continually integrating, and guarantees that when the
controller inputs create a change of direction of the output, the output Y will be
immediately released from the upper or lower limit.

Figure 6 Controller structure

�

HIGH LOW

Priority controller operating mode:
Operating mode switchover (P,I,PI or GAIN, PROP)...DHALT...MAN...Limitation

YMAX

YMIN

AWR

QMAX

Y

QMIN

Y*
Y**

HALT MANUAL DHALT
1 1 1

1

TI=0

TI=0

1

TI

PROP

PREF

Xd

–

1

P

SP

CV

BIAS

YMAN

(GAIN=0)
&

(PROP=0)

XI(I–1)

GAIN

(GAIN=0)
&

(PROP=0)

XI(I–1)



SEQ_VAC

49

Width: 185 mm
Height: 230 mm

00

SEQ_VAC
Scaling/Sequence Block for Air Conditioning

1 Brief description

SEQ_VAC is a basic function block that can be used to scale real input variables to real
output variables using a linear relationship. The block can be used to scale both process
variable inputs as well as controller outputs.

The scaling is performed in the form of cartesian coordinates. The input variable range is
specified as X1...X2. The output variable range is specified as Y1...Y2.

The EFB provides the following:

� Full four quadrant operation, allowing the creation of both positive, negative,
forward and reverse acting sequences.

� Limitation of the outputs Y1...Y2 when the input range X1...X2 is exceeded. When
this happens, the variables QMIN and QMAX are set.

� A manual operation mode to allow the presetting of the output in percentage form.
� Display of the output in both REAL and percentage form.

Additional parameters EN and ENO may be configured.

You will find this EFB in the HVAC library.



SEQ_VAC

0050

2 Representation

2.1 Symbol

X

X1

Y1

X2

Y

Y_PC

QMAX

QMIN

SEQ_VAC

REAL

REAL

REAL

REAL

REAL

REAL

BOOL

BOOL

Y2

MAN

YMAN_PC

REAL

BOOL

REAL

2.2 Parameter Specifications

Parameter Data Type Meaning
X REAL Input variable
X1 REAL 1. Abcissa value }1. Value pair
Y1 REAL 1. Ordinate value }1. Value pair
X2 REAL 1. Abcissa value }2. Value pair
Y2 REAL 1. Ordinate value }2. Value pair
MAN BOOL MANUAL mode
YMAN_PC REAL Manual control value 0 – 100%
Y REAL Output variable ( control value )
Y_PC REAL Output variable as a %
QMAX BOOL Upper limit of signalling device reached
AMIN BOOL Lower limit of signalling device reached



SEQ_VAC

51

Width: 185 mm
Height: 230 mm

00

3 Detailed description

3.1 Basic Operation
The SEQ_VAC module is processed in each active cycle. Examples of the use of

SEQ_VAC can be find in chapter 2 ”General Information”, Figure 2.

3.2 Parameter Specifications
The input variable to be scaled is denoted as X. The range over which it is to be scaled is
specified by X1 and X2. X1 must be less than X2. The corresponding output range is
specified by the parameters Y1 and Y2.

If the input range X1 <= X <= X2 is exceeded, the output variable is clamped to the limits
represented by the values Y1 and Y2 such that:

Y(X>X2) = Y2 and 
Y(X<X1) = Y1.

If the input range is exceeded and clamping is activated, this is indicated by the setting of
the variables QMAX and QMIN.

An increasing sequence is specified by setting Y1 < Y2.

A decreasing (reverse acting) sequence is specified by specifying Y1>Y2.

The percentage value of the scaling result is output at Y_PC. It is important to note that
the smaller value of Y1 and Y2 is always equated to 0% and the greater value to 100%.
In other words, the percentage value is related to the size of the output variable Y
independent of the direction (increasing/decreasing) of the sequence.

This is shown in Figure 1 and Figure 2.

Figure 1 Ascending sequence, 1. Quadrant

Y2

X1

Y (i)

Y1

X (i) X2
X

Y

D

63% W

W = Output value range
D = Input definition range
X (i), Y (i) = current values

Module inputs/outputs:
X = 2173.0
X1 = 1000.0
Y1 = 400.0
X2 = 3000.0
Y2 = 8000.0
Y = 4857.4
Y_PC = 58.65

W



SEQ_VAC

0052

Figure 2 Descending sequence, 1. Quadrant

Y1

X1

Y (i)

Y2

X (i) X2
X

Y

D

W
95% W

W = Output value range
D = Input definition range
X (i), Y (i) = current values

Module inputs/outputs:
X = 117.0
X1 = 100.0
Y1 = 7500.0
X2 = 450.0
Y2 = 1250.0
Y = 7196.428
Y_PC = 95.143

3.3 Manual Operation
The SEQ_VAC block may be put in manual by setting MAN = 1. In manual mode, the
percentage value specified by YMAN_PC is written to the block’s output, i.e., Y_PC =
YMAN_PC. The real value Y is determined by the scaling of the sequence.



SEQ_VAC

53

Width: 185 mm
Height: 230 mm

00

An analogue input 4 – 20 ma must be converted to a REAL value corresponding to a
temperature range of –20 to +80 degrees Celsius. The corresponding parameters are :

X1 = 6400.0 (accordingly –20 degrees C)
X2 = 32000.0 (accordingly +80 degrees C)
Y1 = –20.0 (accordingly –20 degrees C)
Y2 = 80.0 (accordingly +80 degrees C)

Figure 3 Sequence 4. –1. Quadrant

(X2/Y2)

(X1/Y1)

6400.0

32000.0
X

Y

80.0

–20.0

0 (Analog value LZ.standard signal)

Module inputs/outputs:
X1 = 6400.0
Y1 = 20.0
X2 = 32000.0
Y2 = 80.0

Example:



SW_VAC

0054

SW_VAC
Summer / Winter Setpoint Compensation for Air
Conditioning

1 Brief description

SW_VAC is a basic function block that provides summer/winter compensation of a
temperature setpoint based on the outside air temperature command variable CV.

The EFB provides the following :

� Summer/winter setpoint compensation with summer compensation following the
DIN 1946 Part 2 standard.

� Switchable operating modes offering the choice of compensation or no
compensation.

Additional parameters EN and ENO may be configured.

You will find this EFB in the HVAC library.

2 Representation

2.1 Symbol

SP

CV

SP_SPCV

SPRT

SW_VAC

REAL

REAL

BOOL

REAL

2.2 Parameter Specifications

Parameter Data Type Meaning
SP REAL Setpoint
CV REAL Command variable, (as a rule the outside air temperature)
SP_SPCV BOOL Setpoint / setpoint + command variable
SPRT REAL Setpoint room temperature



SW_VAC

55

Width: 185 mm
Height: 230 mm

00

3 Detailed description

3.1 Basic Operation
The SW_VAC function block is processed in each cycle. The function block is used to
adjust the room or inlet air temperature setpoint SPRT based on the outside air
temperature command variable CV. The compensation curves are shown in Figure 1.

Figure 1 Summer / Winter compensation curve

0.0 22.0 32.0–10.0

26.0

24.0

22.0

CV

SPComp

Degrees C

Degrees C

The SP_SPCV input can be used to switch the block’s mode of operation.

In ”Setpoint” mode (SP_SPCV = 0), no compensation is performed and SPRT = SP.

In ”Setpoint with command variable” mode (SP_SPCV = 1), compensation is performed
and SPRT = SP + SPComp as shown in Figure 2).

Figure 2 Module structure

SP

CV

SP_SPCV

SPRTCompensation curve

+

SPComp

Under normal circumstances, when operating in compensation mode, SP is set to zero
and SPRT = SPComp. However, the user may choose to input a value for SP. This will



SW_VAC

0056

have the effect of moving the summer/winter compensation curve shown in Figure 1
vertically up or down.

3.2 Parameter Specifications
The command variable is specified in degrees Celsius. The setpoint SP is a real value
and should be scaled as appropriate. The output of the block SPRT is scaled as a real
value.



THRS_VAC

57

Width: 185 mm
Height: 230 mm

00

THRS_VAC
Threshold Switch with Hysteresis for Air
Conditioning

1 Brief description

THRS_VAC is a basic function block that is used to detect a threshold on a REAL
variable with a built in hysteresis.

The EFB provides the following :

� The setting of an on and off threshold on a real input variable.
� The possibility to set the control direction by selecting any threshold values.
� Positive and negative output signals

Additional parameters EN and ENO may be configured.

You will find this EFB in the HVAC library.

2 Representation

2.1 Symbol

X

THRS_ON

THRS_OFF

YP

YN

THRS_VAC

REAL

REAL

REAL

BOOL

BOOL

2.2 Parameter Specifications

Parameter Data Type Meaning
X REAL Input variable
THRS_ON REAL ‘Energize’ limit value
THRS_OFF REAL ‘Switch off’ limit value
YP BOOL Positive reply signal
YN BOOL Negative reply signal



THRS_VAC

0058

3 Detailed description

3.1 Basic Operation
The block monitors an input variable X for 2 limits/thresholds. When the on–threshold
THRS_ON is reached, the output YP is set equal to one, and when the off–threshold
THRS_OFF is reached, the output YP is set to zero. The output YN is set as the
complement of YP.

The user is free to set any values for the thresholds. The behavior of the outputs based
on the relative sizes of the 2 thresholds is shown in Figure 1.

Figure 1 Hysteresis and switching function of THRS_VAC with different configurations

X

THRS_OFF

THRS_ON

0

1

YP = YN

X

THRS_OFF

THRS_ON

0

1

YP = YN

X

THRS_ON = THRS_OFF
0

1

YP = YN

a) THRS_ON > THRS_OFF b) THRS_ON < THRS_OFF c) THRS_ON = THRS_OFF

In the case where THRS_ON is not equal to THRS_OFF, when the variable X lies
between the 2 thresholds, the output YP remains in its current state until the opposite
threshold is reached. In this way, a hysteresis function is provided (see  Figure 1). When
THRS_ON = THRS_OFF, the block acts as a comparator switch.

The THRS_VAC function block is processed in each cycle. During the first cycle, YP = 0
and YN = 1.

The THRS_VAC block may be used as a switch in many applications such as
summer/winter compensation, day/night temperature drops, anti–freeze device, etc.



UC2_VAC

59

Width: 185 mm
Height: 230 mm

00

UC2_VAC
Universal PI controller for air conditioning with
2 outputs

1 Brief description

The UC2_VAC complex function block is a general PI–controller designed for air
conditioning applications. It can be used for temperature control, humidity control, air
mixing control or other general functions. It consists of a PI controller, summer/winter
setpoint compensation and 2 output sequences.

The EFB provides the following :

� Winter/summer setpoint compensation as per DIN 1946 part 2.
� Full four quadrant operation of the output sequence scaling
� The display of output variables as percentages
� Upper and lower limits on outputs
� Presetting the controllers’ gains in the form of GAIN or PROP with the possibility of

using negative values for switching the control direction.
� Operation with Anti–Windup–Reset (AWR)
� Manual adjustment  of either the PI–controller total output or the individual

sequence outputs (Y1 and Y2)  using percentages. When the controller output is
manually adjusted, the EFB tracks the I contribution in order to provide bump–less
switching back to automatic mode.

� The display of the P and PI controller errors (SP–PV).

Note
Additional parameters EN and ENO should not be configured.

You will find this EFB in the HVAC library.



UC2_VAC

0060

2 Representation

2.1 Symbol

SP

CV

PV

NORM

Y1

Y2

Y2_PC

ERR

UC2_VAC

REAL

REAL

REAL

BOOL

REAL

REAL

REAL

REAL

MAN_CTR

MAN_SEQ

YMAN_PC

YMAN1_PC

BOOL

BOOL

REAL

REAL

YMAN2_PC

PARA

REAL

PARA_UC2

Y1_PC REAL

2.2 Parameter Specifications

Table  1 UC2_VAC

Parameter Data Type Meaning
SP REAL Setpoint
CV REAL Command variable
PV REAL Actual value
NORM BOOL Basic setting
MAN_CTR BOOL MANUAL for controller
MAN_SEQ BOOL MANUAL for sequences
YMAN_PC REAL Total manual manipulated variable as a % for controller
YMAN1_PC REAL Individual manual manipulated variable as a % for 1 Sequence
YMAN2_PC REAL Individual manual manipulated variable as a % for 2. Sequence
PARA PARA_UC2 Parameter structure
Y1 REAL Manipulated variable / Output variable 1
Y2 REAL Manipulated variable / Output variable 2
Y1_PC REAL Manipulated variable / Output variable 1 as a %
Y2_PC REAL Manipulated variable / Output variable 2 as a %
ERR REAL System Deviation



UC2_VAC

61

Width: 185 mm
Height: 230 mm

00

Table  2 PARA_UC2

Element Data Type Meaning
SP_SPCV BOOL Setpoint / setpoint + command variable
PI Controller
YMAX REAL Upper limit manipulated variable
YMIN REAL Lower limit manipulated variable
GAIN REAL Controller gain
PROP REAL Proportional value
PREF REAL Proportional value reference
TI TIME Reset time
1. Sequence
X1_1 REAL 1. Abcissa value
Y1_1 REAL 1. Ordinate value
X2_1 REAL 2. Abcissa value
Y2_1 REAL 2. Ordinate value
2. Sequence
X1_2 REAL 1. Abcissa value
Y1_2 REAL 1. Ordinate value
X2_2 REAL 2. Abcissa value
Y2_2 REAL 2. Ordinate value



UC2_VAC

0062

3 Detailed description

3.1  EFB Structure
A block diagram representation of the UC2_VAC complex function block is shown in
Figure 1. It is made up of the following basic function blocks:

� SW_VAC Summer/winter compensation (see page 54)
� PI_VAC Basic PI controller for HVAC applications (see page 45)
� SEQ_VAC Output Sequence/scaling module (see page 49)

Please refer to the respective individual basic function block description for detailed
information.

Figure 1 Controller structure

PI_VAC

SW_VAC

SEQ_VAC

SEQ_VAC

Module

control

MANYMAN

YPV

SP

SP

CV

PV

YMAN_PC

MAN_CTR

MAN_SEQ

Y1

Y1_PC

Y2

Y2_PC

YMAN2_PC

YMAN1_PC

PARA_UC2 Module parameters

NORM



UC2_VAC

63

Width: 185 mm
Height: 230 mm

00

3.2 Basic Operation
The setpoint for the UC2_VAC function block is fed to the PI–controller via the
summer/winter setpoint compensation block SW_VAC (description see page 54). The
output of the SW–VAC block is fed to the setpoint input of the PI controller

The PI–controller output is fed to 2 sequence output blocks SEQ_VAC. The PI–controller
output can be maintained within minimum and maximum limits by using the PI–controller
output limits YMAX1 and YMIN1.

3.3 Manual Operation
There are 3 possible modes of manual operation which are specified by setting the
mutually exclusive  NORM, MAN_CTR and MAN_SEQ parameters.

� NORM mode (NORM = 1):
The output of the PI–controller output is set to zero. The zero value is fed to the
output sequences that are active in NORM mode. As a result the actual values of
Y1 and Y2  that are  output to the control actuators will depend on the output
sequence parameters. In the case where the controller output limits YMIN2 and
YMAX2 have been set to values that do not enclose zero, the output will be set to
the value of YMIN2 and YMAX2 that is closest to zero. In other words:

Y = YMAX2 if  YMAX2 < 0  AND  YMIN2 < 0,
Y = YMIN2 if  YMAX2 > 0  AND  YMIN2 > 0.

Again, the actual values of Y1 and Y2  that are  output to the control actuators will
depend on the output sequence parameters.

� MAN_CTR mode (MAN_CTR=1):
The output of the PI controller is set equal to the user–specified parameter
YMAN_PC. Again, the output sequences are active in this mode and therefore the
actual values of Y1 and Y2 that are output to the control actuators will depend on
the output sequence parameters.

� MAN_SEQ mode (MAN_SEQ=1):
The outputs Y1 and Y2 are set to the values specified by the parameters
YMAN1_PC and YMAN2_PC:
i.e., Y1_PC = YMAN1_PC and Y2_PC = YMAN2_PC.

In MAN_CTR mode, the I contribution of the PI–controller is tracked so that a bumpless
transfer back to automatic mode may be carried out.  In NORM and MAN–SEQ modes,
the I contribution is set to zero.



UC2_VAC

0064

3.4 Output Parameters
The UC2_VAC outputs Y1 and Y2 are available in real or percentage form (Y1, Y2,
Y1_PC and Y2_P2).

The percentage values specified for the manual control of outputs (YMAN_PC,
YMAN1_PC and YMAN2_PC) refer to the specified range of the appropriate output. For
example, the variable YMAN_PC sets the total output of the PI_VAC basic function
block. The range of this output is specified by the parameters YMIN (0%) and YMAX
(100%).

The variables YMAN1_PC and YMAN2_PC set the outputs of the two SEQ_VAC blocks,
the ranges of which are specified by their corresponding ordinate vales Y1..Y2 (where Y1
and Y2 refer to the SEQ_VAC ordinates, not the actual outputs Y1 and Y2 of the two
SEQ_VAC blocks). It is important to note that the smaller value of Y1 and Y2 is always
equated to 0% and the greater value to 100%. In other words, the percentage value is
related to the size of the output variable Y irrespective of its direction:

Y1 < Y2 –> 0%..100% = Y1..Y2

Y1 > Y2 –> 0%..100% = Y2..Y1

For more information on the operation of the SEQ_VAC block, please refer to the
respective description  (see page 49).



UC3_VAC

65

Width: 185 mm
Height: 230 mm

00

UC3_VAC
Universal PI controller for air conditioning with
3 outputs

1 Brief description

The UC3_VAC complex function block is a general PI–controller designed for air
conditioning applications. It can be used for temperature control, humidity control, air
mixing control or other general functions. It consists of a PI controller, summer/winter
setpoint compensation and 3 output sequences.

The EFB provides the following :

� Winter/summer setpoint compensation as per DIN 1946 part 2.
� Full four quadrant operation of the output sequence scaling
� The display of output variables as percentages
� Upper and lower limits on outputs
� Presetting the controllers’ gains in the form of GAIN or PROP with the possibility of

using negative values for switching the control direction.
� Operation with Anti–Windup–Reset (AWR)
� Manual adjustment  of either the PI–controller total output or the individual

sequence outputs (Y1 and Y2)  using percentages. When the controller output is
manually adjusted, the EFB tracks the I contribution in order to provide bump–less
switching back to automatic mode.

� The display of the P and PI controller errors (SP–PV).

Note
Additional parameters EN and ENO should not be configured.

You will find this EFB in the HVAC library.



UC3_VAC

0066

2 Representation

2.1 Symbol

SP

CV

PV

NORM

Y1

Y2

Y2_PC

ERR

UC3_VAC

REAL

REAL

REAL

BOOL

REAL

REAL

REAL

REAL

MAN_CTR

MAN_SEQ

YMAN_PC

YMAN1_PC

BOOL

BOOL

REAL

REAL

YMAN2_PC

PARA

REAL

PARA_UC3

Y1_PC REAL

YMAN3_PCREAL Y3_PC REAL

Y3 REAL

2.2 Parameter Specifications

Table  1 UC3_VAC

Parameter Data Type Meaning
SP REAL Setpoint
CV REAL Command variable
PV REAL Actual value
NORM BOOL Basic setting
MAN_CTR BOOL MANUAL for controller
MAN_SEQ BOOL MANUAL for sequences
YMAN_PC REAL Total manual manipulated variable as a % for controller
YMAN1_PC REAL Individual manual manipulated variable as a % for 1 Sequence
YMAN2_PC REAL Individual manual manipulated variable as a % for 2 Sequence
YMAN3_PC REAL Individual manual manipulated variable as a % for 3 Sequence
PARA PARA_UC3 Parameter structure
Y1 REAL Manipulated variable / Output variable 1
Y2 REAL Manipulated variable / Output variable 2
Y3 REAL Manipulated variable / Output variable 3
Y1_PC REAL Manipulated variable / Output variable 1 as a %
Y2_PC REAL Manipulated variable / Output variable 2 as a %
Y3_PC REAL Manipulated variable / Output variable 3 as a %
ERR REAL System Deviation



UC3_VAC

67

Width: 185 mm
Height: 230 mm

00

Table  2 PARA_UC3

Element Data Type Meaning
SP_SPCV BOOL Setpoint / setpoint + command variable
PI Controller
YMAX REAL Upper limit manipulated variable
YMIN REAL Lower limit manipulated variable
GAIN REAL Controller gain
PROP REAL Proportional value
PREF REAL Proportional value reference
TI TIME Reset time
1. Sequence
X1_1 REAL 1. Abcissa value
Y1_1 REAL 1. Ordinate value
X2_1 REAL 2. Abcissa value
Y2_1 REAL 2. Ordinate value
2. Sequence
X1_2 REAL 1. Abcissa value
Y1_2 REAL 1. Ordinate value
X2_2 REAL 2. Abcissa value
Y2_2 REAL 2. Ordinate value
3 Sequence
X1_3 REAL 1. Abcissa value
Y1_3 REAL 1. Ordinate value
X2_3 REAL 2. Abcissa value
Y2_3 REAL 2. Ordinate value



UC3_VAC

0068

3 Detailed description

3.1  EFB Structure
A block diagram representation of the UC3_VAC complex function block is shown in
Figure 1. It is made up of the following basic function blocks:

� SW_VAC Summer/winter compensation (see page 54)
� PI_VAC Basic PI controller for HVAC applications (see page 45)
� SEQ_VAC Output Sequence/scaling module (see page 49)

Please refer to the respective individual basic function block description for detailed
information.

Figure 1 Controller structure

PI_VAC

SW_VAC
SEQ_VAC

SEQ_VAC

Module

control

MANYMAN

YPV

SP

SP

CV

PV

YMAN_PC

NORM

MAN_CTR

MAN_SEQ

Y1

Y1_PC

Y2

Y2_PC

YMAN2_PC

YMAN1_PC

SEQ_VAC
Y3

Y3_PC

YMAN3_PC

PARA_UC3 Module parameters



UC3_VAC

69

Width: 185 mm
Height: 230 mm

00

3.2 Basic Operation
The setpoint for the UC3_VAC function block is fed to the PI–controller via the
summer/winter setpoint compensation block SW_VAC (description see page 54). The
output of the SW–VAC block is fed to the setpoint input of the PI controller.

The PI–controller output is fed to 3 sequence output blocks SEQ_VAC. The PI–controller
output can be maintained within minimum and maximum limits by using the PI–controller
output limits YMAX1 and YMIN1.

3.3 Manual operation
There are 3 possible modes of manual operation which are specified by setting the
mutually exclusive  NORM, MAN_CTR and MAN_SEQ parameters.

� NORM mode (NORM = 1):
The output of the PI–controller output is set to zero. The zero value is fed to the
output sequences that are active in NORM mode. As a result the actual values of
Y1, Y2 and Y3  that are  output to the control actuators will depend on the output
sequence parameters. In the case where the controller output limits YMIN2 and
YMAX2 have been set to values that do not enclose zero, the output will be set to
the value of YMIN2 and YMAX2 that is closest to zero. In other words:

Y = YMAX2 if  YMAX2 < 0  AND  YMIN2 < 0,
Y = YMIN2 if  YMAX2 > 0  AND  YMIN2 > 0.

Again, the actual values of Y1, Y2 and Y3  that are  output to the control actuators
will depend on the output sequence parameters.

� MAN_CTR mode (MAN_CTR=1):
The output of the PI controller is set equal to the user–specified parameter
YMAN_PC. Again, the output sequences are active in this mode and therefore the
actual values of Y1, Y2 and Y3 that are output to the control actuators will depend
on the output sequence parameters.

� MAN_SEQ mode (MAN_SEQ=1):
The outputs Y1, Y2 and Y3 are set to the values specified by the parameters
YMAN1_PC, YMAN2_PC and YMAN3_PC,
i.e., Y1_PC = YMAN1_PC, Y2_PC = YMAN2_PC and Y3_PC = YMAN3_PC.

In MAN_CTR mode, the I contribution of the PI–controller is tracked so that a bumpless
transfer back to automatic mode may be carried out. In NORM and MAN–SEQ modes,
the I contribution is set to zero.



UC3_VAC

0070

3.4 Output Parameters
The UC3_VAC outputs Y1, Y2 and Y3 are available in real or percentage form (Y1, Y2,
Y3, Y1_PC, Y2_PC and Y3_PC).

The percentage values specified for the manual control of outputs (YMAN_PC,
YMAN1_PC, YMAN2_PC and YMAN3_PC) refer to the specified range of the
appropriate output. For example, the variable YMAN_PC sets the total output of the
PI_VAC basic function block. The range of this output is specified by the parameters
YMIN (0%) and YMAX (100%).

The variables YMAN1_PC, YMAN2_PC and YMAN3_PC set the outputs of the two
SEQ_VAC blocks, the ranges of which are specified by their corresponding ordinate
vales Y1..Y2 (where Y1 and Y2 refer to the SEQ_VAC ordinates, not the actual outputs
Y1, Y2 and Y3 of the two SEQ_VAC blocks). It is important to note that the smaller value
of Y1 and Y2 is always equated to 0% and the greater value to 100%. In other words, the
percentage value is related to the size of the output variable Y irrespective of its
direction:

Y1 < Y2 –> 0%..100% = Y1..Y2

Y1 > Y2 –> 0%..100% = Y2..Y1

For more information on the operation of the SEQ_VAC block, please refer to the
respective description  (see page 49).



VQ_VAC

71

Width: 185 mm
Height: 230 mm

00

VQ_VAC
Measured Value Deadband Block for Air
Conditioning

1 Brief description

The VQ_VAC basic function block performs the function of adding a deadband DX to an
input variable X. If X changes by more than the amount DX, the output Y is updated with
the value of X.

The function block may be used to:

� Stabilize a process variable that has a certain amount of ”noise”, e.g., room
pressure measurement.

� Set a preset minimum modification that must be made to a value before it will be
changed.

� Provide a dynamic matching of the range of a minimum modification around a
current input variable.

Additional parameters EN and ENO may be configured.

You will find this EFB in the HVAC library.

2 Representation

2.1 Symbol

X

DX

Y

VQ_VAC

REAL

REAL

REAL

2.2 Parameter Specifications

Parameter Data Type Meaning
X REAL Input variable
DX REAL Minimum modification input
Y REAL Output variable



VQ_VAC

0072

3 Detailed description

3.1 Basic Operation
The VQ_VAC basic function block updates an output Y, with an input value X when X
changes by an amount greater than the value set at the input DX.

During the first cycle, the output Y is set to equal the value of input X. Y will then retain
this value until :

Xnew <= X – DX or Xnew >= X + DX

At which point, Y = Xnew

This is shown in Figure 1.

Figure 1 Quantization diagram VQ_VAC

B

A

Y(i+1)

Y(i)

Y(i–n)

Y

XX(i+1)X(i)X(i–n)

DX

2 DX.

AP

A:  Quantization diagram in the case of ‘slow’ movement of the working point AP from an input
value X(i–n) lying behind n steps of the current input value X(i)
B:  New quantization diagram in the case of stepped modification from X(i) to X(i+1), if the
jump is >= DX.

The function block can be used to either stabilize a varying input or to set a dynamic
deadband range around a value. The range is dynamic in the sense that it is not



VQ_VAC

73

Width: 185 mm
Height: 230 mm

00

absolute, but is relative to the input value X. One example of where it could be used is to
set a trigger point relative to a controller setpoint which may itself be changed by an
operator.

Where the block is used to manipulate a process variable to a controller, care must taken
by performing on site tests that the stability of the control loop is not adversely affected
by the introduced deadband.

3.2 Parameters
The input X and output Y are real variables. The variable DX must be set as a positive
real value. The scaling basic function block SEQ_VAC may be used before or after
VQ_VAC in order to scale the measured value X/Y.



WASH_VAC

0074

WASH_VAC
Basic Washer Block for Air Conditioning

1 Brief description

The WASH_VAC basic function block provides the Calculation of a dew point value
SP_TW based upon a dry bulb temperature SP_T and relative humidity value SP_RH.

One possible application for the WASH_VAC block is the possibility to control a room’s
humidity by regulating the outlet temperature of a washer.

Note
It can only be used with air washers that guarantee a 100% saturated air at the washer
outlet.

In other words, the block assumes that the outlet washer dry bulb temperature is
equivalent to the dew point temperature. Such an approach has the advantage of
controlling a humidity using a cost–effective temperature sensor rather than a more
expensive humidity sensor.

Additional parameters EN and ENO may be configured.

You will find this EFB in the HVAC library.

2 Representation

2.1 Symbol

SP_T

SP_RH

SP_TW

WASH_VAC

REAL

REAL

REAL

2.2 Parameter Specifications

Parameter Data Type Meaning
SP_T REAL Setpoint temperature at target location (room temperature)
SP_RH REAL nominal value rel. humidity at target location (room humidity)
SP_TW REAL Setpoint washer outlet temperature



WASH_VAC

75

Width: 185 mm
Height: 230 mm

00

3 Detailed description

3.1 Basic Operation
The principle of operation of the WASH_VAC basic function block relies on the fact that
the dewpoint temperature of air is equal to the dry bulb temperature when the air is fully
saturated, i.e., its relative humidity is equal to 100%. The purpose of the WASH_VAC
basic function block is to calculate the dewpoint temperature setpoint SP_TW, based on
a specified room temperature setpoint SP_T and relative humidity setpoint SP_RH. For a
washer application, by controlling the washer outlet temperature to SP_TW, one
guarantees that when the air is reheated to the room temperature setpoint SP_T, the
room relative humidity value will equal SP_RH. This can be done because reheating the
air does not change the air’s absolute humidity, but only its dry bulb temperature and
therefore its relative humidity.

It therefore follows that if one can guarantee that the washer outlet air has a relative
humidity of 100%, the dewpoint temperature can be measured and controlled using a
simple dry bulb temperature sensor rather than a more expensive  humidity sensor.

An example is shown on the figure ”H/X Diagram”Figure 1. For a room temperature of 22
degrees Celsius and a relative humidity of 65%, the WASH_VAC function block will
calculate the dewpoint setpoint as 15.2 degrees Celsius. By controlling the washer outlet
temperature to 15.2 degrees Celsius and subsequently reheating the air to 22 degrees
Celsius, the room relative humidity will equal 65%



WASH_VAC

0076

Figure 1 h/x diagram with clarification of the method of operation of the WASH_VAC

T Room

T-WA

Absolute humidity X [g/Kg]

R.H. = e.g. 65%

R.H. = 100%
Dew point characteristic curve
(quadratically approached)

Heat content h [KJ/Kg]

Reheating

Temperature [deg.C]

e.g. 22 deg. C

= 15.2 deg. C

XTPXAP

(XAP = 0.65 XTP)

3.2 Parameters
The air temperature dry bulb temperature setpoint is specified by the variable SP_T in
degrees Celsius. The relative humidity is specified by the variable SP_RH as a % value.

The washer outlet temperature setpoint is output in degrees Celsius at the location
specified at SP_TW.



WASH_VAC

77

Width: 185 mm
Height: 230 mm

00

An example application consisting of a preheat coil, cooling coil, washer and reheat coil
is shown in the Figure 2. The  setpoint calculated by WASH_VAC is fed to a lower level
PI controller whose PV is connected to the washer temperature transmitter and whose
output is used to control the preheat and cooling coils. In other words, this PI controller
maintains the appropriate dewpoint temperature off the washer. In addition, a
temperature controller CC2_VAC is used to control the room and inlet air temperature by
driving the preheat/reheat coils and cooling coil. A minimum select is used to switch
between the humidity and temperature controller. The controller RK3 is configured as a P
controller only with a PV set to zero and the gain set to one. In this way, it simply acts as
an output sequencer that divides the setpoint input between the preheat and cooling
coils. The washer outlet temperature is set to a range of 5 to 30 degrees Celsius to
prevent icing up or overheating of the washer.

Figure 2 Integration of WASH_VAC in a room / inlet air_cascade control system

X

Y

Y1

RK3:

P Y2

100%

100%

–100%

100%

–100%

–100%

100%
X

Y

Y1

RK1:

PI

100%

–100%

–50%

50%
X

Y

Y2

RK2:

P + PI
Y1

100%

100%

Y31M31

�

Y33M33

�

TIC
o C

TIC
o C

P

PI

P+PI

MIN

SP_TW

SP_T

SP_RH

SP

SP_SPCV

SPRT CV

B82B81

PreheatingMixed Cool Washer Reheating
Inlet Air100% R.H.

AL

<0.0>

<1>

R.H.%

SW_VAC

WASH_VAC

UC2_VAC
Humidity

CC2_VAC
Temperature controller

UC2_VAC Partition

SP

SP

SP

PV1

PV2
RLY2

Y1

Y1

PV

<0.0>

Y1

Y2

GAIN

PV
RK1:

RK2

RK3

Sequences:

Y32M32

�

controller

T_WAAir

Example:



0078



79

Breite: 185 mm
Höhe: 230 mm

00

Glossary

Here you will find a short description of the terms.



0080



Glossary

Width: 185 mm
Height: 230 mm

8122

984LL
Refer to Ladder Logic 984

A

Active window
The window selected at present. Only one window can be active at any given time. When
a window becomes active, its title bar changes color to differentiate it from the other
windows. Non–selected windows are inactive.

Actual parameter
Currently connected input/output parameter.

Addresses
(Direct) addresses are memory areas in the PLC. They are located  in State RAM and
can be assigned to input/output modules.

ANL_IN
ANL_IN represents the data type ”analog input”. It is used for analog value processing.
The data type is automatically assigned the 3x references specified in the I/O map of the
configured analog input module. Therefore, only unlocated variables can be assigned.

ANL_OUT
ANL_OUT represents the data type ”analog output”. It is used for analog value
processing. The data type is automatically assigned the 4x references specified in the
I/O map of the configured analog output module. Therefore, only unlocated variables can
be assigned.

ANY
In this version, ”ANY” includes the data types ANL_IN, ANL_OUT, BOOL, BYTE, DINT,
INT, REAL, UDINT, UINT, TIME, and WORD, as well as data types derived from those.

ANY_BIT
In this version, ”ANY_BIT” includes the data types BOOL, BYTE, and WORD.

ANY_ELEM
In this version, ”ANY_ELEM” includes the data types BOOL, BYTE, DINT, INT, REAL,
UDINT, UINT, TIME, and WORD.

ANY_INT
In this version, ”ANY_INT” includes the data types DINT, INT, UDINT, and UINT.

ANY_NUM
In this version, ”ANY_NUM” includes the data types DINT, INT, REAL, UDINT, and UINT.



Glossary

2282

ANY_REAL
In this version, ”ANY_REAL” includes the data type REAL.

Application Window
The window containing the workspace, the menu bar, and the tool bar for the application
program. The name of the application program appears in the title bar. One application
window may contain several document windows.

In Concept, the application window corresponds to a project.

Argument
Synonymous with actual parameter.

Array variables
Variables that are assigned a defined derived data type using the keyword ARRAY
(field).

An field is a collection of data elements of the same data type.

ASCII mode
American Standard Code for Information Interchange.
The ASCII mode is used for communication with different host devices. ASCII works with
7 data bits.

Atrium
The PC based controller which is based on a 386 EX microprocessor, is mounted on a
standard AT–Platine and can be used inside a Host–Computers on an ISA bus slot. The
module has a motherboard (SA85 driver needed) with 2 sockets for PC104 daughter
boards. One of this PC104–Daughter–Board is used as CPU  and the other is used for
Interbus S controlling.

B

Backup file (Concept EFB)
The backup file is a copy of the last source code file. The name of this backup file is
”backup??.c” (assuming that there are never more than 100 copies of your source code
file). The name of the first backup file is ”backup00.c”.

If the definition file has been modified without causing any interface change in the EFB, it
is not necessary to create a backup file by editing your source code file (Objects →
Source ).

If a backup file is generated, you can name it Source file.



Glossary

Width: 185 mm
Height: 230 mm

8322

Base 2 literals
Base 2 literals are used to specify integer values in the binary system. The base is
identified by the prefix 2#. The values cannot have a sign (+/–). Individual underscore
symbols ( _ ) between the numbers have no significance.

Example
2#1111_1111 or 2#11111111 (255 decimal)
2#1110_0000 or 2#11100000 (224 decimal)

Base 8 literals
Base 8 literals are used to specify integer values in the octal system. The base is
identified using the prefix 8#. The values cannot have a sign (+/–). Individual underscore
symbols ( _ ) between the numbers have no significance.

Example
8#3_77 or 8#377 (decimal 255)
8#34_0 or 8#340 (decimal 224)

Base 16 literals
Base 16 literals are used to specify integer values in the hexadecimal system. The base
is identified using the prefix 16#. The values cannot have a sign (+/–). Individual
underscore symbols ( _ ) between the numbers have no significance.

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Binary links
Links between outputs and inputs of FFBs in data type BOOL.

Bit string
A data element consisting of one or more bits.

BOOL
BOOL represents the data type ”boolean”. The length of the data elements is 1 bit
(stored in memory in 1 byte). The value range for variables of this data type is 0 (FALSE)
and 1 (TRUE).

Bridge
A bridge is a device that connects networks. It enables communication between nodes
on the two networks. Each network has its own token rotation sequence – the token is
not passed along through bridges.



Glossary

2284

BYTE
BYTE represents the data type ”bit string 8”. It is entered as base 2 literal, base 8 literal
or base 16 literal. The length of the data elements is 8 bits. This data type cannot be
assigned a numeric value range.

C

Coil
A coil is an LDelement that transfers the state of the horizontal link at its left side without
any change to the horizontal link at its right side. Through this, the state is stored in the
attached variable/direct address.

Compact format (4:1)
The first digit of the reference is separated from the address that follows by a colon (:),
and no leading zeros are entered in the address.

Constants
Constants are unlocated variables that are assigned a value that cannot be changed by
the program logic (read only).

Contact
A contact is an LDelement that transfers a state to the horizontal link at its right side. This
state is a result of the boolean AND–link of the state of the horizontal link at its left side
with the state of the attached variable/direct address. A contact does not change the
value of the attached variable/direct address.

D

Data transfer settings
Settings that determine how information is transferred from your programming unit to a
PLC.



Glossary

Width: 185 mm
Height: 230 mm

8522

Data types

ANY
ANY_ELEM

ANY_NUM

ANY_REAL

REAL

ANY_INT

DINT
INT

ANY_BIT

WORD
BYTE

TIME

Derived (from ”ANY” data types)

ANL_IN
ANL_OUT

UDINT
UINT

BOOL

System data types (IEC extension)

The overview shows the hierarchy of generic data types as used with inputs and outputs
of functions and function blocks. Generic data types are identified by the prefix ”ANY”.

DCP drop
A Distributed Control Processor (D908) can be used to set a distributed network with a
superior PLC. When using a D908 with distributed PLC, the primary PLC regards the
distributed PLC as a head setup station. The D908 and the distributed PLC are
communicating via the system bus which results in high performance with minimal effect
on scan time. Data exchange between the D908 and the primary PLC is carried out via
the distributed I/O bus at 1.5 mega bits per second. A primary PLC can support up to 32
D908 processors.



Glossary

2286

DDE (Dynamic Data Exchange)
The DDE interface is used for a dynamic data exchange between two programs that are
using Windows.

With the DDE link between Concept and Concept Graphic Tool plant signals can be
displayed as a Timing Diagram.

DDT
see Derived Data Type

Declaration
Mechanism for specifying the definition of a language element. A declaration normally
involves attaching an identifier to a language element and allocating attributes such as
data types and algorithms.

Definition file (Concept EFB)
The definition file contains general descriptive information concerning the EFB and its
formal parameters.

Derived data type
Derived data types are data types that have been derived from Elementary data types
and/or other Derived data types. Derived data types are defined in the Data Type editor
of Concept.

There is a differentiation between Global data types and Local data types.

Derived Function Block (DFB)
A derived function block represents the invocation of a derived function block type.
Details about the graphical form of the invocation can be found in the definition ”Function
Block (instance)”. Contrary to invocations of EFB types, invocations of DFB types are
identified by double vertical lines to the left and right side of the rectangular block
symbol.

The body of a derived function block type is designed in FBD language; however, only in
the current version of the programming system. At this time, other IEC languages cannot
be utilized for the definition of DFB types, nor can derived functions be defined in the
current version.

There is a distinction between Local and Global DFBs.

DFB
see Derived function block

DINT
DINT represents the data type ”double integer”. It is entered as an integer literal, base 2
literal, base 8 literal or base 16 literal. The length of data elements is 32 bits. The value
range for variables of this data type is from –2 exp (31) to 2 exp (31) –1.



Glossary

Width: 185 mm
Height: 230 mm

8722

Direct representation
A form of representation for a variable in the PLC program from which the allocation to
the logical memory location – and indirectly its physical memory location – can be
directly determined.

Distributed network
Distributed programming in the Modbus Plus network facilitates maximum performance
during data transfer and in special requirements to links. Programming of a distributed
network is easy. Setting up the network does not require additional ladder diagram logic.
By making the appropriate entries in the Peer Cop processor, all requirements for data
transfer are taken care of.

Dummy
An emtpy file that contains a header with genenral file information,  e.g.  author, editing
date, EFB name etc. The user has to complete this Dummy file by editing.

Duration literals
The units allowed for durations (TIME) are days (D), hours (H), minutes (M), seconds
(S), and milliseconds (MS), or combinations thereof. The duration must be identified by
the prefix t#, T#, time# or TIME#. The ”overflow” of the most significant unit is allowed;
e.g. the entry T#25H15M is allowed.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M, 
time#5D14H12M18S3.5MS

Document window
A window within an application window. Several document windows can be opened
simultaneously in one application window. But only one document window at a time can
be active.

Examples of document windows in Concept are sections, the message window, the
Reference Data editor, and the PLC configuration.

DX Zoom
This is a feature that allows you to interface with a programming object to observe it’s
data values and alter them if necessary.



Glossary

2288

E

EFB
see Elementary functions/Function blocks

Elementary functions/Function blocks (EFB)
A term for functions or function blocks with type definitions that are not formulated in one
of the IEC languages; for instance, the DFB editor (Concept DFB) cannot be used to
modify their bodies. EFB types are programmed in ”C” and are made available in
compiled form via libraries.

EN / ENO (enable / enable out)
If the value of EN is equal to ”0” when the FFB is invoked, the algorithms defined by the
FFB will not be executed and all ouptupts remain with their old values. In this case, the
value of ENO is automatically set to ”0”.

If the value of EN is equal to ”1” when the FFB is invoked, the algorithms defined by the
FFB will be executed. After these algorithms have executed without an error, the value of
ENO is automatically set to ”1”.

Should an error occur while these algorithms are executing, ENO is automatically set to
”0”.

The output behavior of the FFBs is independent of the FFBs being invoked without
EN/ENO or with EN=1.

If display of EN/ENO is turned on, the EN–input must be definitely connected. Otherwise,
the FFB will never be executed.

The configuration of EN and ENO is turned on or off in the dialog box of the block
properties. The dialog box is invoked with the menu commands Objects →
Properties...  or by double–clicking at an FFB.

Errors
If an error is detected while an FFBs or a Step is processing (e.g. unauthorized input
values or time errors), an error message will appear that can be viewed with the menu
command Online  → Online events... . The ENO output for FFBs is set to ”0”.

Evaluation
The process used to establish a value for a function or for the outputs of a function block
during program execution.

Expression
Expressions consist of operators and operands.



Glossary

Width: 185 mm
Height: 230 mm

8922

F

FB
see Function Block (instance)

FBD
see Function Block Diagram

FFB (Functions/Function blocks)
Collective term for EFB (Elementary functions/Function blocks) and DFB (Derived
function blocks).

FIR Filter
(Finite Impulse Response Filter)
Finite Impluse Response Filter

Formal parameters
Input/output parameters that are used within the logic of an FFB and are brought out of
the FFB as inputs/outputs.

Function (FUNC)
A program organization unit which, when executed, will yield exactly one data element. A
function has no internal state information. Multiple calls to the same function with the
same input parameter values will always yield the same output values.

Details about the graphical form of function calls can be found in the definition ”Function
Block (instance)”. Contrary to function block calls, function calls have only one single
unnamed output because its name is the name of the function itself. In FBD, each call is
identified by a unique number above the graphical block; this number is automatically
created and cannot be changed.

Function block diagram (FBD)
One or several sections containing graphically represented networks consisting of
functions, function blocks, and links.

Function block (instance) (FB)
A function block is a program organization unit which provides values for its outputs and
internal variable(s) according to the algorithms defined in its function block type
description, when executed as a specific instance. All values of the outputs and internal
variables of a specific function block instance are maintained from one invocation of the
function block to the next. Therefore, multiple calls of the same function block instance
with the same arguments (values of input parameters) do not necessarily yield the same
output value(s).

Each function block instance is graphically displayed by a rectangular block symbol. The
name of the function block type is centered on top, inside the rectangle. The name of the
function block instance is also on top, but outside the rectangle. It is automatically



Glossary

2290

generated when building an instance, but it can be modified by the user, if necessary.
Inputs are shown to the left, outputs to the right of the block. The names of the formal
input/output parameters are shown inside the rectangle at the corresponding input/output
points.

Above description of the graphical presentation applies generally to function calls and to
DFB calls as well. Any differences are described in the respective definitions.

Function block type
A language element that consists of: 1. the definition of a data structure subdivided into
input, output, and internal variables; 2. a set of operations processed with the elements
of the data structure whenever an instance of the function block type is invoked. This set
of operations can either be formulated in one of the IEC languages (DFB type) or in ”C”
(EFB type).

A function block type can be instantiated multiple times.

Function number
The function number is used to uniquely identify a function in a program or DFB. The
function number cannot be edited; it is automatically assigned. The function number
always has the structure: .n.m

n = number of section (consecutive number)
m = number of the FFB object in the section (consecutive number)

G

Generic Data Type
A data type representing more than one type of data.

Global Derived data types
Global Derived data types are available in every Concept project; they are deposited in
the  DFB directory immediately below the Concept directory.

Global DFBs
Global DFBs are available in every Concept project; they are deposited in the DFB
directory immediately below the Concept directory.

Global Macros
Global Macros are available in every Concept project; they are deposited in theDFB
directory immediately below the Concept directory.

Groups (EFBs)
Some EFB libraries (e.g. the IEC library) are subdivided into groups. This makes it easier
to find the EFBs, especially in very large libraries.



Glossary

Width: 185 mm
Height: 230 mm

9122

H

Hot Standby
A hot standby system consists of two identically configured PLC units that are
communicating with each other via hot standby processors.. If there is a failure of the
primary PLC, the secondary PLC will assume the control check. Under normal
conditions, the secondary PLC assumes no control functions, it only checks status
information to detect errors.

I

Icon
Graphical display of various objects in Windows, e.g. drives, application programs, and
document windows.

Identifier
refer to IEC naming convention

IEC 1131–3
International Standard: Programmable Controllers – Part 3: Programming Languages,
March 1993.

IEC naming conventions (Identifier)
An identifier is a string of letters, numbers, and underscore symbols that must begin with
a letter or underscore symbol (for instance, the name of a function block type, an
instance, a variable or a section). Letters from National character sets (e.g: ö, ü, é, õ)
can be used, except in project and DFB names.

Underscore symbols in identifiers are significant; for example, ”A_BCD” and ”AB_CD”
will be interpreted as different identifiers. Several leading and multiple underscore
symbols sequentially are not allowed.

Spaces are not allowed in identifiers.

Upper or lower case is not significant; for example, ”ABCD” and ”abcd” will be interpreted
as the same identifier.

Key words are not allowed as identifiers.

IIR Filter
(Infinite Impuls Response Filter)
Infinite Impulse Reponse Filter

IL
refer to Instruction List (IL)



Glossary

2292

Initial Step (Starting step)
The starting step of a sequential chain. One initial step must be defined in each
sequence. This initial step starts the sequence when first invoked.

Initial Value
The value assigned to a variable at the start of a program.

Input bits (1x references)
The 1/0 state of input bits is controlled by process data that are received by the CPU
from an input unit.

Note:
The x placed after the first digit of the reference type represents a five–digit memory
location in user data memory, e.g. reference 100201 signifies an input bit at address 201
of State RAM.

Input parameter (input)
At the invocation of an FFB it transfers the corresponding argument.

Input registers (3x references)
An input register contains information from an external source which is representing a
16–bit number. A 3x register can also contain 16 sequential input bits that were read into
the register in binary or BCD (binary coded decimal) format.

Note:
The x placed after the first digit of the reference type represents a five–digit memory
location in user data memory, e.g. reference 300201 signifies a 16 bit input register at
address 201 of state RAM.

Instance
see Function Block (instance)

Instance Name
An identifier associated with a specific   function block instance.

The name of the instance is used to uniquely identify a function block in a program
organization unit. This instance name is automatically created, but it can be edited. The
instance name must be unique throughout the program organization unit; there is no
distinction between upper and/or lower case. If the name entered already exists, you will
be warned and another name must be chosen. The instance name must comply with the
IEC naming conventions or an error message will appear. The automatically created
instance name will always have the structure: FBI_n_m

FBI = function block instance
n = number of section (consecutive number)
m = number of the FFB object in the section (consecutive number)



Glossary

Width: 185 mm
Height: 230 mm

9322

Instantiation
The creation of an instance.

Instruction (IL)
Instructions are the ”operations” of the programming language IL. Each instruction
begins in a new line and is followed by an operator, sometimes with modifier, and if
required for a respective operation, by one or several operands. If several operands are
used, they will be separated by commas.

Instruction (LL984)
Programming for electrical controls involves a user who implements Operational Coded
instructions in the form of visual objects organized in a recognizable ladder form.. The
program objects designed, at the user level, is converted to computer usable OP codes
during the download process. The Op codes are decoded in the CPU and acted upon by
the controllers firmware functions to implement the desired control.

Instruction list
IL is a text language as per IEC 1131 that displays operations, such as conditional or
unconditional calls of function blocks and functions, conditional or unconditional jumps,
etc. through instructions.

INT
INT represents the data type ”integer”. It is entered as an integer literal, base 2 literal,
base 8 literal or base 16 literal. The length of the data elements is 16 bits. The value
range for variables of this data type is from –2 exp (15) to 2 exp (15) –1.

Integer Literals
Integer literals are used to denote integer values in the decimal system. The values can
have a preceding sign (+/–). Individual underscore symbols ( _ ) between the numbers
have no significance.

Example
–12, 0, 123_456, +986

Invocation
The process that initiates the execution of operations specified by an FFB type.

The instruction can be preceded by a label that is followed by a colon. If there is a
comment, it must be the last element in the line.

I/O map
The I/O stations of the different central processing units are configured in the I/O map.

J

Jump
An element of the SFC language. Jumps are used to skip over areas of the sequence.



Glossary

2294

K

Keywords
Keywords are unique character combinations that are used as specific syntactic
elements as defined in Appendix B of IEC 1131–3. All keywords used in the IEC 1131–3
and therefore in Concept are listed in Appendix C of the IEC 1131–3. These listed
keywords may not be used for any other purpose, such as for names of variables,
sections, instances, etc.

L

Ladder diagram
Refer to 
Ladder Diagram (LD), 
Ladder Logic 984 (LL)

Ladder Diagram (LD)
Ladder diagram is a graphical programming language as per IEC1131that orientates
itself optically at the ”rungs” of a relay ladder diagram.

Ladder Logic 984 (LL)
In the terms Ladder Logic and Ladder diagram the word ladder is a reference to
technique. In contrast to a schematic diagram, a ladder diagram is used by electricians to
draw a circuit (using electrical symbols) and intended to show the sequence of events
not the actual wires that connect the parts. A common user interface to direct the actions
of programmable controllers, allows a ladder diagram interface so that electricians do not
need to learn an unfamiliar programming language to implement a control program.

The construction of the actual ladder diagram allows the electrical elements to be
connected in such a way as to create control output dependent on some logical power
flow through the electrical objects used represent the previously required condition of a
physical electrical device.

In a simple form the user interface is a video display produced by the PLC programming
application that establishes a vertical and horizontal grid into which programming objects
are arranged. The diagram has power available at the left side of the grid and when
connected to objects that are activated the power will flow from left to right.

Landscape format
Landscape (horizontal) format means that the page width, when looking at the printed
text, is larger than its height.

Language element
Every basic element in one of the IEC programming languages, e.g. a step in SFC, a
function block instance in FBD or the initial value of a variable.



Glossary

Width: 185 mm
Height: 230 mm

9522

LD
Refer to 
Ladder Diagram (LD), 
Ladder Logic 984 (LL)

Library
A collection of software objects intended for reuse when programming new projects, or
even to build new libraries. Examples are the library of Elementary function block types.

EFB libraries can be subdivided into groups.

Link
A control or data flow connection between graphical objects (e.g. steps in the SFC editor,
function blocks in the FBD editor) within a section, graphically represented as a line.

Literals
Literals are used to provide inputs of FFBs, transition conditions, etc. directly with values.
These values cannot be overwritten by the program logic (read only).

LL
Refer to Ladder Logic 984 (LL)

Local Derived data types
Local Derived data types are only available in one single Concept project and its local
DFBs, and are deposited in the DFB directory below the project directory.

Local DFBs
Local DFBs are only available in one single Concept project and are deposited in the
DFB directory below the project directory.

Local link
The local network link is the network that connects the local node with other nodes either
directly or through a repeater.

Local Macros
Local Macros are only available in one single Concept project and are deposited in the
DFB directory below the project directory.

Local network node
The local node is the one that is currently being configured.

Located Variable
The variable is assigned an address in the PLC. Located variables are used in the SFC
and FBD editors in order to read signal states from the PLC and to turn them over to the
PLC. Additionally located variables can be exported and displayed via a DDE interface.



Glossary

2296

M

Macro
Macros are created by using the software Concept DFB.

Macros are used to duplicate often used sections and networks (including their logic,
variables and variable declaration).

Local and global macros are available.

Macros have the following characteristics:

� Macros can only be created in the FBD programming language
� Macros contain only one single section
� Macros may contain any complex section
� With regard to the program, an instantiated macro, i.e. a macro inserted in a

section, does not differ from a conventionally created section.
� DFBs can be invoked in a macro.
� Macro–intrinsic variables can be declared for the macro.
� Macro–intrinsic data structures can be used.
� Automatic acceptance of variables declared in the macro.
� Initial values for the macro variables are possible.
� The multiple instantiation of a macro in the total program with different variables is

possible
� The section name, the names of variables, and the data structure name can have

the ~ character as a swap marking.

MMI
Man–Machine–Interface

Multi–element variables
Variables that are assigned a Derived data type that is defined with STRUCT or ARRAY.

There is a differentiation between array variables and structured variables.

N

Network
A network is the interconnection of units along a shared data path that are
communicating with each other via a common protocol.

Network Node
A node is a unit with an address (1...64) on the Modbus Plus network.

Node address
The node address is used to uniquely identify a network node in the routing path. The
address is set directly on the node; e.g. with a BCD switch at the rear of the module.



Glossary

Width: 185 mm
Height: 230 mm

9722

O

Operand
An operand is a literal, a variable, a function call or an expression.

Operator
An operator is a symbol for an arithmetic or boolean operation to be executed.

Output/holding bits (0x references)
An output/holding bit can be used to control real output data through an output unit of the
control system, or to define one or more discrete outputs in State RAM.

Note:
The x placed after the first digit of the reference type, represents a five–digit memory
location in user data memory, e.g. reference 000201 signifies an output or holding bit at
address 201 of State RAM.

Output/holding register (4x references)
An output/holding register can be used to store numerical data (binary or decimal) in
State RAM and/or, to send data from the CPU to an output unit in the control system.

Note:
The x placed after the first digit of the reference type represents a five–digit memory
location in user data memory, e.g. reference 400201 signifies a 16 bit output/holding
register at address 201 of State RAM.

Output parameter (output)
A parameter used to return the result(s) of the evaluation of an FFB.

P

Peer processor
The peer processor manipulates the token passes and the data flow between the
Modbus Plus network and the PLC user logic.

PLC
Programmable Logic Controller

Program
The top level program organization unit. A program is downloaded into a single PLC as a
whole. A program is further refined by IEC language elements.

Program cycle (scan)
A program cycle consists of reading the inputs, processing of program logic, and writing
of the outputs.



Glossary

2298

Programming unit
Hardware and software that supports programming, configuring, testing, delivering, and
troubleshooting in PLC applications as well as in distributed system application.  in order
provide for source documentation and archiving (backup).The programming unit can also
be used for process visualization, if necessary.

Program organization unit
A function, a function block or a program. This term can refer either to a type or to an
instance.

Project
General term for the highest level of a software tree structure which defines the overall
project name of a PLC application. After the definition of the  project name, the system
configuration and the control programm can be saved with this name. All data which is
created while creating the configuration and the program are belonging to project for this
special automation task.

General term for the complete set of programming and configuration information in the
project data base which represents the source code that describes the automation of a
system.

Project data base
The data base in the programming unit that contains the configuration information for a
project.

Portrait format
Portrait (vertical) format means that the height of the page, when looking at the printed
text is larger than its width.

Prototype file (Concept EFB)
The prototype file contains all prototypes of the respective functions. A type definition of
the internal state structure is also included, if available.

Q

R

REAL
REAL represents the data type ”floating point number”. It is entered as a real literal or as
a real literal with exponent. The length of data elements is 32 bits. The value range for
variables of this data type is from 8.43E–37 to 3.36E+38.



Glossary

Width: 185 mm
Height: 230 mm

9922

Real literals
Real literals are used to indicate floating point values in the decimal system. Real literals
are identified by a decimal point. The values can have a preceding sign (+/–). Individual
underscore symbols ( _ ) between the numbers have no significance.

Example
–12.0, 0.0, +0.456, 3.14159_26

Real literals with exponent
Real literals with exponent are used to indicate floating point values in the decimal
system. Real literals with exponent are identified by a decimal point. The exponent
indicates the power of ten for the multiplication of the previous number in order to arrive
at the value that will be displayed. The values can have a preceding sign (+/–). Individual
underscore symbols ( _ ) between the numbers have no significance.

Example
–1.34E–12 or –1.34e–12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Reference
Every direct address is a reference beginning with an identification character that
denotes whether this is an input or an output, and whether it is a bit or a register.
References that begin with the identification number 6, represent registers in the
extended memory of State RAM.
0x range = Output/holding bits
1x range = Input bits
3x range = Input registers
4x range = Output/holding registers
6x range =register in extended memory

Note:
The x placed after the first digit of each reference type represents a five–digit memory
location in user data memory, for example, reference 400201 means this is a 16 bit
output  or holding register at address 201 of State RAM.

Registers in the extended memory (6X–Reference)
6x–References are marker words in the extended memory of the PLC.They can only be
used with LL984 user programs with a CPU 213 04 or CPU 424 02.

RIO (Remote I/O)
Remote I/O refers to physical location of I/O point control units with regard to the
Processor controlling them. Remote I/O are connected to the control unit through a wired
communications cable.



Glossary

22100

RTU mode
Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM–compatible PC.
RTU works with 8 data bits.

Runtime Error
Errors that occur while the program is processing on the PLC, in SFC objects (e.g.
Steps) or FFBs. These are, for instance, value range overflows in counters or time errors
in steps.

S

SA85 module
The SA module is a Modbus Plus adapter for IBM–AT or compatible computers.

Section
A section, for instance, can be used to describe the mode of operation of a technological
unit such as a motor.

A program or DFB consists of one or several sections. Sections can be programmed with
the IEC programming languages FBD and SFC. Within a section, only one of the listed
programming languages can be used.

In Concept, each section has its own document window. However, to have a better
overview, it is recommended to subdivide a large section into several smaller ones. The
scroll bar is used to move around within a section.

Separator format (4:00001)
A colon (:) separates the first digit of the reference from the following five–digit address.

Sequential Function Chart (SFC)
The SFC language elements allow the subdividing of a PLC program organization unit
into a set of steps and transitions which are interconnected through directional links.
Each step is associated with a set of actions, and each transition is linked with a
transition condition.

Serial ports
Serial ports (COM) transfer information bit by bit.

SFC
see Sequential Function Chart

ST
refer to Structured Text (ST)



Glossary

Width: 185 mm
Height: 230 mm

10122

Standard format (400001)
The five–digit address is placed immediately after the first digit of the reference.

Statement (ST)
Statements are the ”commands” of the programming language ST. Statements must end
with semi–colons. Several statements (separated by semi–colons) may be placed into
one line.

State RAM
State RAM (state memory) is the memory location for all variables addressed in the user
program through references (direct representation). For example, input bits,
output/holding bits, input registers, and output/holding registers are located in State
RAM.

Status bits
There is one status bit for each node with global input, specific input or output of peer
cop data. If a defined group of data was successfully transferred within the set timeouts,
the corresponding status bit will be set to 1. If not, this bit is set to 0, and all data
belonging to this group (to 0) will be deleted.

Step
SFC language element: A situation in which the behavior of a program with respect to its
inputs and outputs follows a set of rules defined by the associated actions of the step.

Step Name
The step name is used to uniquely identify a step in a program organization unit. The
step name is automatically created, but it can be edited. The step name must be unique
throughout the program organization unit or an error message will occur. The
automatically created step name always has the structure: S_n_m

S = step
n = number of section (consecutive number)
m = number of step in the section (consecutive number)

Structured Text (ST)
ST is a text language as per IEC 1131that displays operations such as invocations of
function blocksfunctions, conditional execution of instructions, repeat of instructions, etc.
through instructions.

Structured variables
Variables that are assigned a Derived data type that is defined with STRUCT (structure).

A structure is a collection of data elements, generally with different data types
(Elementary data types and/or Derived data types).



Glossary

22102

Source code file (Concept EFB)
The source code file is an ordinary C++ source file. After executing the menu command
Library → Generate files  , this file will contain an EFB code frame, where a
specific code for the selected EFB must be entered by invoking the menu command
Objects → Source  auf.

SY/MAX
In Quantum controllers, Concept includes the provision to I/O Map SY/MAX I/O modules
for RIO control by the Quantum PLC. The SY/MAX remote rack has a remote I/O
adapter in slot 1 that communicates via a Modicon S908 R I/O system. The SY/MAX I/O
modules are listed for your selection and inclusion in the I/O map of the Concept
configuration.

System data types
In the current version, system data types include the data types ANL_IN and ANL_OUT.

T

Template file (Concept EFB)
The template file is an ASCII file containing layout information for the Concept FBD editor
and parameters for generating code.

Temporary storage
Temporary storage is temporary memory for cut or copied objects. These objects can be
inserted into sections. Each time something new is cut or copied, the old content in
temporary storage is overwritten.

TIME
TIME represents the data type ”duration”. It is entered as a duration literal. The length of
data elements is 32 bits. The value range for variables of this data type is from 0 to 2 exp
(32) –1. The unit for the data type TIME is 1 ms.

Token
The network ”token” controls the temporary possession of transmittal rights by an
individual node. The token passes the nodes in a rotating (ascending) address
sequence. All nodes are tracking the token rotation and can receive any data that is sent
along.

Traffic Cop
The Traffic Cop is an I/O map, which is generated from the user I/O map. The Traffic Cop
is scheduled in the PLC and contains e.g. status information in addition to the user I/O
map.

Transition
The condition whereby control passes from one or more predecessor steps to one or
more successor steps along a directed link.



Glossary

Width: 185 mm
Height: 230 mm

10322

U

UDEFB (user–defined elementary functions/function blocks)
Functions or function blocks created in C which Concept makes available in libraries.

UDINT
UDINT represents the data type ”unsigned double integer”. It is entered as an integer
literal, base 2 literal, base 8 literal or base 16 literal. The length of data elements is 32
bits. The value range for variables of this data type is from 0 to 2 exp (32) –1.

UINT
UINT represents the data type ”unsigned integer”. It is entered as an integer literal, base
2 literal, base 8 literal or base 16 literal. The length of the data elements is 16 bits. The
value range for variables of this data type is from 0 to 2  exp (16) –1.

Unlocated Variable
The variable is maintained and stored by the system. The assigned address in the PLC
is not published because the variable is addressed by its symbolic name.

V

Variables
Variables are used for data exchange within sections, between several sections, and
between the program and the PLC.

If a variable is assigned a direct address (reference), it is called a located variable. If a
variable is not assigned a direct address, it is called an unlocated variable. If the variable
is assigned a Derived data type, it is called a multi–element variable.

In addition, there are constants and literals.

W

Warning
If a critical state is detected while an FFBs or step is processing (e.g. critical input values
or time limit was exceeded), a warning occurs that can be viewed using the menu
command Online  → Online events... .In FFBs, the ENO output remains at ”1”.

WORD
WORD represents the data type ”bit string 16”. It is entered as base 2 literal, base 8
literal or base 16 literal. The length of the data elements is 16 bits. This data type cannot
be assigned a numeric value range.



Glossary

22104

X

Y

Z


