PowerNet TCP /IP Stack

v5.0

Stephen Pelc, Graham Stevenson

Copyright (© 1999-2008, 2009, 2010, 2011, 2012, 2013, 2014 Microprocessor Engineering Limited
Published by Microprocessor Engineering

PowerNet TCP/IP Stack
User manual

Manual revision 5.0

18 July 2014

Software
Software version 5.0

For technical support
please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com

Table of Contents

1

Introduction 1
1.1 What Do You Get ... 1
1.2 Documentationo 1
1.3 S0UTCE TIEE . .o oottt e e 2

PowerNet.bld - primary build file............................ 5
2.1 H A . oot 5
2.2 MulbitasKer e 5
2.3 Other Forth equateso e e 5
2.4 Configuring the stacko e 5
2.5 Default console I/O for tasks 6
2.6 Default Ethernet and IP addresses. ..., 6
2.7 Compiler eXteNSIONS .« . . o ...ttt ettt e 6
2.8 Compiling PowerNet. e 7
2.9 Compile the required SEIVICESttt e 7
2,10 Imitialisation e 7
2,11 Sanity checks. 7

PowerNet configuration....................................... 9
3.1 Features and ServiCeS.uuiuiiiite ettt e 9
3.2 DIAgnOSTICS . ¢ o vttt e 10
3.3 Queues and Buffers. ... i 10
34 ROULII G . .. e 11
3.0 IO P o 11
3.0 TP o 12
3.7 TCP configurationoo it e e 12
3.8 S0CKEES . o o 13
3.9 DINS Gl . oot e 13
3.10 Servers and SeIVICES.t e et e e 14
3.11 End of configuration 14

Debugging tools 15
4.1 MISCEIlANEOUS . .« o vttt et e 15
4.2 Using the system console i e 15
4.3 Stack checking 16
4.4 Cold Chain. . ..ot 17

Network operations - CPU specific......................... 19
5.1 Network order (big-endian) operations................cooiiiiiiiiiiiiiiiiiianan.. 19
5.2 Internet checksumi 19

Extra USER variables 21
6.1 Common to all tasksttt e 21

6.2 SLIP variables.o 21

ii PowerNet TCP/IP Stack

T QUEUES 25
7.1 QUEUE Structure e e e 25
8 QUEUE and buffer allocation............................... 27
9 PBUF buffers.............. 29
9.1 IntroducCtion.ottt e 29
9.2 Data StrUCtUIES . ..ot 29
9.3 PBUF handlingcouuiii e 29
9.4 Queue buffer allocation and release 30
10 Queue diagnostic routines.......................... 33
11 System wide equates..................., 35
11.1 Application definitionsouutti i e 35
11.2 Standard TCP/IP and Winsock values 35
12 TCP/IP data structures................ ..., 37
12.1 Primary structureso e 37
12,2 SINMP Structures. .. oo oottt e e e e 37
13 Helpers and primitives L. 39
14 Socket Primitives 41
14.1 Ephemeral portso 42
14.2 TCP control block creation and deletion...................coiiii ... 42
15 ICMP handling............ 43
16 Routing packets........ 45
17 BasicIP layer 47
17,1 L0008 o 47
17.2 Sending IP packets e 47
17.3 Receiving IP packets 47
18 ARP handler......... 49

19 UDP layer..... ... 51

20 DHCP and BOOTP, 53
20.1 DHCP/BOOTP state machineo, 53
20.2 State machine utilitiles 55
20.3 DHCP Data definitions. ... e 55

20.3.1 DHCP control data........ ... 55
20.3.2 DHCP transient data.ooiuiiiiiiii i 56
20.3.3 DHCP packet layoutoouiiii 56
20.4 DHOCP t0O0IS. . ..o ot 56
20.5 DHCP state selectiono 57
20.6 UDP transmiSsionottt e 57
20.7 Outgoing message toOlSt 57
20.8 Receive BOOTP/DHCP packet........cooviiiiiii e 59
20.9 State machine initialisation and startup i i i 59

21 DNSclient..... 61
21,1 Configuration 61
21.2 Queries and TESPOIISES . . .« et vttt ettt e et et e et e e e e 61
21,8 00l .ottt 64
21,4 USEr WOTAS . . oottt ettt e e e e 64

22 SNTP client 65
22.1 SNTP equates and Structure. 65
22.2 SNTP Configurationiiii e 66
22.3 SNTP state machine i e 66
22.4 State machine Uutilities. o 67
22.5 Outgoing message tools 67
22.6 SNTP state SeleCtionc.uuee e e e 68
22.7 Receive SNTP packet 68
22.8 Set up state machine 68

23 TCP layer ... 69
23.1 TCP configurationoo.u i e 69
23.2 Unknown socket requestsoouii 69
23.3 TCP structures and eqUAtESttt 70
23.4 TCP structure creation and deletion.......... i 70
23.5 TCP header USE. .. .oviitt ittt e e e e e e e e 70
23.6 TCP checksum handling. e 71
23.7 TCP WINAOW SIZE . .« ottt et et 71
23.8 TCP transmission primitiveso.uuiiiiie e 71
23.9 TCP state primitives e e 73
23.10 LISTEN cONnection qUEUES.ttt ettt et e e e 74
23.11 TCP state handlers 74
23.12 TCP timer handling. 75
23.13 Primitives for the BSD layer ... e 76
23.14 TCP initialisation e 76

23.15

Checksum test Codet 76

iv PowerNet TCP/IP Stack

24 SMC LAN91C92/4/6 Ethernet Driver Code 77
24.1 Introductiont 77
24.2 Hardware gotchas 7
24.3 Configurationo.uu i 7
244 COonSEANES . . .ottt 78
24.5 Hardware Interface Layer.t 79
24.6 DIagnostiCsot 80
247 Driver Layero e 80
24.8 Attached EEPROM 81
24.9 Generic I/O for PowerNet v3 and above oo 82
2410 SyStem teSt . . oottt 82

25 Ethernet processing task 83
25.1 Ethernet packet handlers....... i 83
25.2 Link failure detection. 83
25.3 Ethernet task ... 84
254 ROUBING . . oot 84

26 SLIP interface.............. 85
26.1 SLIP eqUates. . ..ottt et e e e 85
26.2 Slip input functions e 85
26.3 Slip output functions.o 85
26.4 SLIP support task.o 86

27 BSD APl layer....... ... 87
27.1 SOCKET_ERROR Teturnsoouuutite it e 87
27.2 BSD factors . . oottt 87
27.3 BSD Style AP 88
274 EXEENSIONSttt 90

28 PowerNet diagnostic tools.................................. 91

29 TFTP receiver i 93
29.1 Ident Block 93
29.2 Global data 93
29.3 TFTP State Machine equates.o e 93
29.4 Event action place-holders and defaults.......... it 93
29.5 Utility Wordso oot e 94
29.6 TFTP State Handlerst e e 94

29.7 Event Action Handlers 94

30 Support for TCP services 95
30.1 Service MUIMDETSttt et e e e 95
30.2 Service specific data. 95
30.3 Server assSiStaIICEottt ettt 97
30.4 Service KEY, EMIT and friends............ooiiiiiiiii e, 97

30.4.1 Low RAM VEISION . ..ottt e e e e 97
30.4.2 High performance vVersion., 97
30.4.3 Generic I/O devicet 98
30.4.4 Service COnSOLe SUPPOIT . .ottt ettt et ettt et 98
30.5 Service creation and deletion i 99
30.6 Service listening task e 99
30.7 Service SUPPOTt TOO0LSttt 99
30.8 ServiCe OULPUL . ..ttt 100
30,9 DIagNOStICS - . vt e 100

31 TCP Echosocket 101

32 Telnet Server....... 103
32.1 Telnet specific data e 103
32.2 TAC handlingo e 103
32.3 Telnet vectored I/Oo 103
32.4 Telnet service taskso 103
32.5 Telnet listening task.o e 104
32.6 DIagnoStiCsvvett e 104

33 FTP Server...... e 105
331 FTP data. ... 105
33.2 FTP vectored I/O.o 106

33.2.1 Data SOCKet . ..o 106

33.2.2 Command SoCKet 107
33.3 Sampling the command channel input il 107
33.4 Diagnostic control. e 107
33.5 Directory listing for FTP 107
33.6 StatlUs TeLUITIS. . .o oottt ettt e e 108
33.7 Data socket operationsooiiiiii i e 109
33.8 Command PrOCESSINE. ut ettt et ettt e e 111
33.9 Login and SeCUTILYottt e 111
33.10 Implemented FTP commandst 112
33.11 FTP service tasksoouniii 114
33.12 FTP listening task 114
33.13 DIagnostiCs ... e 114

34 WWW Support.o 115
B S 1 3 Y= PP 115
34.2 Time and date o 116

34.3 Test COAe ..o 116

vi PowerNet TCP/IP Stack

35 HTTP Server ... i, 117
35.1 HTTP specific data ... e 117
35.2 HTTP vectored I/O.o e 119

35.2.1 Stream SOCKeb 119

35.2.2 Output to a memory buffer........ ... 119
35.3 Diagnostic control. i 120
35.4 Transmit Utilities 120
35.5 CGIL SUPPOTt .« oot 120

35.5.1 Numeric QVARS ... 122
35.6 ASP SUPPOTt .ot e e 122
35.7 Header sCanningttt 123
35.8 Form body ProCessinguuuiui it e 124

3D5.8.1 T00IS .. vttt 124

35.8.2 Application Words 125
35.9 HTTP headers and reSPONSES.vvtttt ettt e et 126
35.10 Serving files.o 127
35.11 HTTP service task.o e e 127
35.12 HTTP listening taskoouu i e e 128
35.13 Notes On MEMOTY USAZE « « « o v vttt ettt et e ettt et e e e e e 128
35.14 Authentication. i 129

36 Web page handling .. 131
36.1 Configurationo e 131
36.2 Data Structuresttt e 131
36.3 Executable Pages.t 132
36.4 MEMOTY PAZES « -« e vttt ettt et e e e 132

36.4.1 Example Memory PAgES . ..« uutttt ettt 132
36.5 File PAgES . .ot t 133
36.6 Page 1oOK Up 133

37 SMTP Primitives.......... 135

38 SMTP Demonstration........................ooiiiia... 137
38.1 Configurationt 137
38.2 Sending mail.t 137

39 Ethernet and Internet configuration................... .. 139
39.1 EEPROM/Flash area definitionooiiiiiiiiiiiiiiiiian.. 139
39.2 Runtime data e 140
39.3 Flash and EEPROM routinesooiiieiiiineiit i 141

39.3. 1 Flash ..o 141
39.3.2 Serial EEPROM 141
39.4 Set UP OPETAtIONS\ttt e 141
39.4.1 Displaying and Entering IP addresses.............o.oooiiiiiiiiiiiii .. 141
39.4.2 Displaying and Entering MAC addresses...........ooviiiiiiiiinennnn.. 141

39.4.3 SEUD PIOPET . . .ttt et et e e e e e 142

40 POST handlers and HTTP updates...................... 143
40.1 DISCUSSION « o vt ettt et et e e e e e e 143
40.1.1 BOTI. ..o 143
40.1.2 Headers . ..ot 144

40.2 Form boundariesiiuii i 145
40.2.1 Form dataot 145
40.2.2 After the form 146
40.2.3 ReStriCtionS . .ot 146

40.3 Parsing multipart boundaries.o 146
40.4 Flash update application e 146
40.4.1 System interface. 146
40.4.2 Receiving a file. 147
40.4.3 Part SCANNINGotttttimi e 148

40.5 File update handler i e 149
40.5.1 Example for pages stored in files........... ... i 149

41 Internet RFCs 151
41.1 What is an REC? ... o 151
41.2 Where are the latest versions? i 151
41.3 Recommended readingoouuuiiii i 151
42 Licence terms 153
42.1 Distribution of application programs.c..oiueiieiireennieeennnee... 153
42.2 Warranties and SUPPOTtttt e 153

Chapter 1: Introduction 1

1 Introduction

1.1 What Do You Get?

PowerNet is a TCP/IP networking stack code written in Forth with support for:

1. Ethernet Layer. Reference driver for SMSC LAN91C9x series of Ethernet chips. Includes a
packet sniffer to test reception and Ping to test transmit and receive. Additional Ethernet
drivers can be found in the CPU-specific drivers directories supplied with your Forth cross-
compiler.

2. SLIP Layer. Uses a serial Interface and multiple connections are supported
3. Routing Table. IP/Hardware routing table, with life-timers on routes.

4. TP Layers.

a. ICMP handler. ECHO Request coded for PING, other codes have stubs.
b. UDP handler. Unconnected data packets.

c. DHCP client. Permits almost automatic configuration.

d. DNS client. Converts URLs to IP addresses.

e. SNTP client. Used to synchronise the local clock.

f. TCP handler. Connected data streams.
5. Socket Layer. The sockets interface being used is based on BSD/Winsock
6. Services Layer

a. Primitive TFTP client (Trivial File Transfer Protocol)

b. Multi-threaded Telnet server for Forth Interpreter over TCP/IP
Multi-threaded HTTP server with ASP and CGI.

o

d. Modbus server template.
e. Echo server
7. Examples
a. Sending mail by SMTP.
b. ModBus client and server templates.

POST handler with application binary updater.

o

e

Configuration tools.

1.2 Documentation

The main commentary on the code and all the glossaries are generated directly from the source
by the DocGen utility supplied with MPEs VFX Forth for Windows. Both PDF and HTML
versions are provided.

The code and its DocGen documentation should be considered the primary reference. Please
read it.

PowerNet TCP/IP Stack

Chapter 1: Introduction

1.3 Source Tree
e

PowerNet

I

R ARP

e DEFINES.FTH

o DHCP.FTH

e DIAGS.FTH

Fm————- DNS.fth

R GLOBALS.FTH

Fm————— ICMP.FTH

t———— IP.FTH

e NETCODE.FTH

e POWERNET.BLD

o PRIMITIV.FTH

o ROUTING.FTH

+—————— SNTP.fth

+———— STRUCTS.FTH

Fm————— TCP.FTH

Fm————— UDP.FTH

o USERVARS.FTH

I

tmm———— ETHER

| e ETHTASK.FTH
| e SMC91C9X.FTH
I

+———— SLIP

| e SLIPCOM.FTH
I

| —————- EXAMPLES

| Fm—————— SMTPmail

| S WebConfig.fth
| - WebPost.fth
| Fm————— MBusClnt.fth
I

o SOCKETS

| F———— BSD.FTH

| +————— SOCKPRIM.FTH
I

Fm————— QUEUES

| F———— PBUFFERS.FTH
| R R QPRIMS.FTH

| F———— QUEUES.FTH

| F———— RAM.FTH

I

o SERVICES

| o HTTP.FTH

| +—————— MbusSrvr

| m————— Pages.fth

| o Servers.fth
| o TcpEcho

| F———— TELNET.FTH

| o TFTP.FTH

I

+————— TestPages

I

Address Resolution Protocol
Various IP Constants

DHCP client

Diagnostic / Test routines
DNS client

Global Vars/Buffers

ICMP Packet handlers
LowLevel IP access

Network and CPU dependent code
Stack Build File

Useful code fragments
Routing table handler

SNTP client.

Various IP/BSD Structures
TCP Protocol Handler

UDP Protocol Handler
Required System Variables

Ethernet TxRx Dispatcher Task
Reference Ethernet Driver

SLIP interface

SMTP mail examples
Application Configuration
POST and binary update
Modbus framework

BSD Sockets API
Low Level Socket struct manip.

Queue Buffer handlers
En/DeQueue code
Describe/initialise queues
Describe TxRx RAM Useage

MultiThreaded Web Server
ModBus Server framework
Example web page handlers
Server core code

TCP Echo Server
Multi-threaded Telnet Server
Simple TFTP Server

Example web pages

Chapter 2: PowerNet.bld - primary build file 5

2 PowerNet.bld - primary build file

When all else fails, read the source code.

PowerNet contains a large number of confiration options. These are contained in PNconfig.fth.
You should make copy in your application folder or use an existing configuration file.

2.1 Heap

PowerNet needs a heap. The bigger the heap, the more traffic PowerNet can handle. 32kb is
good for initial testing if the number of free PBUFFS in PNconfig.fth (see below) is kept low.
If you have too low a heap size or request too many resources, PowerNet will complain at start

up.

$0000:8000 equ sizeofheap \ O=no heap, nz=size of heap
1 equ heap-diags? \ true to include diagnostic code

2.2 Multitasker

The multitasker is required.

-
1 equ tasking? \ true if multitasker needed

6 cells equ tcb-size \ for internal consistency check

0 equ event-handler? \ true to include event handler

0 equ message-handler? \ true to include message handler
\

1 equ semaphores? true to include semaphores
= J

2.3 Other Forth equates

The equate RP-SIZE should be set to $0200 bytes. Powernet is particularly heavy in its use of
locals and hence of the return stack.

2.4 Configuring the stack

First of all you must add a text macro to your main control file to tell it where the stack is
located. The code below was used during development.

c¢" C:\buildkit.dev\software\AddOns\PowerNet\Dev"
setmacro IpStack \ where the PowerNet stack lives

The macro IPSTACK tells the cross compiler where the file POWERNET.BLD is located.

By default, PowerNet.bld compiles configuration data from the file PNconfig.fth, which is always
provided with PowerNet. If you need a different configuration, create a different file based on
PNconfig.fth. The EQUate PNconfigured? must be present and non-zero in your configuration
file. It permits you to compile your configuration file before compiling PowerNet.bld and prevents
compilation of the default configuration file.

6 PowerNet TCP/IP Stack

create PNETver$ \ -- addr
PowerNet, version string.
.PNET \ -

Display PowerNet version string.

2.5 Default console I/O for tasks

All PowerNet tasks should define an input/output device used for debugging. By default, this
is CONSOLE as set up for the interactive Forth. If you need to change this, modify the word
ConsolelI0 below or provide a version before PowerNet is compiled.

: ConsolelO \ -
Define the default debug device for PowerNet tasks.
: >pos \'n --

Move to position n in the output stream for EMIT and friends.
Later versions of the MPE kernel code use a simpler timing mechanism by default.

2.6 Default Ethernet and IP addresses

These are compiled if they have not been previously defined.

create EtherAddress \ —-- addr

Holds the Ethernet MAC address (six bytes). Note that you must obtain these from the IEEE
(www.ieee.org) or from other sources. This definition is usually provided by the Ethernet driver
which must be compiled first.

create IpAddress \ -- addr

Holds the Ethernet IP address (four bytes). The range 192.168.xxx.yyy is commonly used for
private networks. This definition is usually provided by the Ethernet driver which must be
compiled first. The data is in network order.

create EnetIPMask \ —-- addr
IP mask for addresses on Ethernet port. The data is in network order.

create IPGateway \ -- addr

Gateway attached to Ethernet port. The data is in network order. Set to 0.0.0.0 if there is no
gateway.

2.7 Compiler extensions

These words will probably be removed in a future release.
: mask-ints \ -

Disable interrupts. Needed with pre-emptive schedulers.

: unmask-ints \ --

Re-enable interrupts. Needed with pre-emptive schedulers.
: flushDebug \ -- ; SFP003

Flush the debug queue. Needed if debug is handled through some buffered serial lines, SLIP or
Telnet.

Chapter 2: PowerNet.bld - primary build file 7

2.8 Compiling PowerNet

This section of POWERNET.BLD pulls in all the required files. Note that if you have coded
versions of the network order memory words and/or the Internet checksum routine (heavily
used), you can use an existing (or create your own) for the CPU you are using. The file for
CPU specific code is NETCODE.FTH. If you define an EQUATE CPU=xxx where xxx is one of
ARM, 386, 68k and so on, a CPU-specific code definition will be compiled, otherwise a default
high level (and slower) version will be used

2.9 Compile the required services

This section compiles the required services and establishes a task to handle any output they
may need.

: RunServices \ -- ; task action
This is the action of SERVICETASK, which provides I/O support for all the services to avoid
blocking problems in the service tasks themselves.

task ServiceTask \ -- addr
The task used to provide I/O for services.

: RunServiceTask \ ——
Run the service task.

2.10 Initialisation

Some initialisation code is provided in POWERNET.BLD to make it easier to manage exten-
sions.

: initip \ -- ; initialise the data structures
Initialise the PowerNet data structures and the multitasker.

: iptasks \ -- ; start required tasks
Start all the required tasks.

: PowerNet \ -
Start PowerNet.

.PowerNet \ -—-
Display PowerNet state.

2.11 Sanity checks

Next-user @ up-size > [if]
Check that the USER area is large enough.

Chapter 3: PowerNet configuration 9

3 PowerNet configuration

The file <PNET>\ PNconfig.fth contains the default configuration for PowerNet. To set your own
configuration, copy <PNET>\ PNconfig.fth and rename it. You can put the file where you like,
so placing it in your main application source folder is sensible. Then compile your file before
PowerNet.bld, which will ignore the default file if it finds a previously loaded configuration.

3.1 Features and Services

The following group of equates defines the facilities to be compiled. The defaults here can be
overridden by defining equates before the configuration file is compiled; this can be useful for
testing configuration changes.

1 equ ethernet? \ —— n ; nz for Ethernet systems
True to include Ethernet support.

0 equ slip? \ -- n ; nz to include SLIP
True to include a SLIP handler on a serial port.

0 equ GenericIP? \ -- flag
Set this equate true if the Generic IP device structure defined in ETHERCOM.FTH is required.
This is only required for systems using multiple IP devices in future releases of PowerNet.

1 equ useDHCP? \ -- flag
Set non-zero to compile DHCP client code. If you set this and want an IP address to be assigned
by a server, set IpAddress to 0.0.0.0.

0 equ useDNS? \ -- flag
Set non-zero to compile DNS client code.

1 equ DNSauto? \ -- flag

If useDNS? and useDHCP? are non-zero, set this non-zero to get the DNS server address using
DHCP.

0 equ DNSauto? \ -- flag
DNSauto? defaults to false if the build does not include both DHCP and DNS.

0 equ useSNTP? \ -- flag
Set non-zero to compile SNTP client code.

1 equ SNTPauto? \ -- flag
If useSNTP? and useDHCP? are non-zero, set this non-zero to get the SNTP/NTP server address
using DHCP.

[undefined] SNTPauto? [if]
SNTPauto? defaults to false if the build does not include both DHCP and SNTP

0 equ RAMconfig? \ -- flag

This word is now redundant, but is left in for compatibility with earlier systems. Its function
is replaced by the tools in Examples\ WebConfig.fth. Some systems use dynamic configuration,
either because of DHCP or because code is run from Flash and the configuarion is loaded
from (say) serial EEPROM at runtime. For these systems, set this equate non-zero so that
some data buffers are created in IDATA or UDATA space rather than CDATA space. Sample
production configuration routines can be found in Ezxamples\ WebConfig.fth. These rely on the
words RAM>DataFlash and DataFlash>RAM. Note that systems that copy Flash to RAM for
execution can leave this equate set to zero.

10 PowerNet TCP/IP Stack

0 equ tftp? \ --n
True to include TFTP.

1 equ tcp? \ --n
True for TCP as well as UDP. UDP is always compiled.

1 equ Servers?
True if any servers are required, e.g. HI'TP or Telnet.

1 equ Clients?
True if client code is required, e.g. HTTP or Telnet.

1 equ http? \ -=— n ; nz to include HTTP
True to include the HTTP server. Note that TCP and server support are required.

1 equ MemPages? \ -- n
Set this non-zero to compile code for HT'TP pages to be served from memory, e.g. Flash.

0 equ FilePages? \ —-n
Set this non-zero to compile code for HT'TP pages to be served from a FATfiler file system.

1 equ telnet? \ -- n ; nz to include Telmnet
True to include the Telnet server. Note that TCP and server support are required.

0 equ ftp? \ -- n ; nz to include Telnet
True to include the FTP server. Note that TCP and server support are required.

0 equ echo? \ -- n ; nz to include Echo
True to include the Echo server. TCP and server support are required.

0 equ snmp? \ -- n ; nz to include SNMP
True to include SNMP.

0 equ smtp? \ -=— n ; nz to include SMTP
True to include SMTP.

3.2 Diagnostics

The next group of equates controls the generation of debugging information.
1 equ diags? \ --n

Set true to include diagnostic code (recommended).

1 equ XC? \ --n

True if compiled by cross compiler. False if compiled by a hosted system such as VFX Forth for
DOS.

0 equ tcpdebug? \ ——n
True for lots of TCP debug info.
0 equ ICMPmon? \ - n

True to monitor ICMP packets.

3.3 Queues and Buffers
#1520 equ PSIZE \ - n

Data size in each PBuf, including all transport headers. This value should be cell aligned.
Ethernet packets require 1518 bytes from the start of the Ethernet header to the end of the
Frame Check Sequence (FCS). Note that some Ethernet DMA hardware does transfer the FCS.

Chapter 3: PowerNet configuration 11

#10 equ BUFFHDRSIZE \ --n
header size; see Queues\ PBuffers.fth for details.

#4 equ NUMFREEPBUFS \ --n

Number of PBUF's. This is the maximum number of packets that can be "in transit" in PowerNet
at any one time. The PBUFs are allocated from the heap when PowerNet starts, so there must
be enough heap space to contain the buffers, otherwise you will see a console error message.

1 equ #TXpbufs \ --n

High reliability systems, and especially internet-facing devices should set this equate to 1. This
reserves an extra PBUF for TCP transmission, which guarantees that transmission can proceed
even if the other NUMFREEPBUFS PBUFs are consumed by incoming data packets, as can happen
when NUMFREEPBUFS is small, a number of sockets are open and/or a task is sending a quantity of
data on a single socket without checking for input. Setting #TXpbufs to one can be particularly
important when using Telnet over lossy links - geologists please note!

#10 equ TRXBUFFSIZE \ --n
Data size in each IO buffer (excl. hdr)

TRXBUFFSIZE BUFFHDRSIZE + equ /TRxBuff \ -- n
Size of complete 10 buffer structure

#40 equ NUMTRXBUFFERS \ - n
Number of I0 buffers

/TRxBuff NUMTRXBUFFERS * equ /TRxBuffers \ --n
size of TRxBuffers
Do not change these unless you are really sure you know what you are doing.

$F0 equ DEV_MASK \ -- mask
Router device mask (8 bits). The device type is contained in the upper four bits and the device
number within a type is contained in the lower four bits.

$EO0 equ ETHER_MASK \ -- mask
Ethernet ports are in the range $E1..EF.

$00 equ SLIP_MASK \ -- mask
SLIP ports are in the range $01..0F.

$E1 equ ETHER_PORT \ --n
Port identifiers for Ethernet devices are in the range $E1..EF

3.4 Routing

#32 equ MAX_IPADDRS \ --n
No of entries in the routing table (not dynamic yet).

#7200000 equ ROUTE_LIFE \ -- ms
Two hours in milliseconds.

#1000 equ ROUTE_SAMPLE_MS \ -- ms
How often routes are tested im milliseconds.
#2000 equ ROUTE_SEARCH_TIME \ —— ms
Maximum time allowed for route searches.
3.5 ICMP

3 equ ARP_REQ_TRIES \ --n

Number of ARP request tries before failure.

12 PowerNet TCP/IP Stack

3.6 IP

0 equ PacketTask? \ ——n
Set this non-zero to use a separate task to handle incoming IP packets. This uses more code
and RAM, but may give better performance on some systems. The default is 0.

3.7 TCP configuration

#1460 equ TCPDATASIZE \ ——n
Transmit buffer size of a PBUF less the standard IP and TCP headers. The largest value for
Ethernet is 1460.

#1460 2 * equ TCPTXBUFFSIZE \ ——n

Size of the retransmission buffer for a TCP socket. One buffer of this size is allocated from the
heap when a TCP socket is created. If you have enough heap space, make this at least twice
TCPDATASIZE.

#1460 equ TCPWINDOWSIZE \ - n
TCP window size.

0 equ genWinSize? \ -—-u

Selects the strategy used to generate the TCP window size advertised by PowerNet.

PowerNet queues input packets in the socket structure before passing them to the BSD layer.
Usually, ACKs are delayed. There are three ways to implement receive window handling, selected
by the equate genWinSize?.

e genWinSize?=0. The receive window is always set to TCPWINDOWSIZE.

e genWinSize?=1. By default, we assume that if all the input packets have not been consumed
by the time the ACK is sent, the system is under heavy load and we do not want any more
input for the moment. This is indicated by setting the window size to zero. Otherwise,
the receive window is set to TCPWINDOWSIZE. Although this "bang bang" approach is very
crude, it works well unless many packets are being sent from PowerNet, as can happen when
web pages are served from memory.

o genWinSize?=2. The word genWindowSize (*sk *tcp —-) is provided by you to suit your
application. See tcp.fth for the examples.

#1460 equ defMSS \ —- len

Define the maximum segment size (packet size less transport, IP and TCP headers). On a LAN
1460 is the default. For WAN and broadband access, lower values may be appropriate, e.g. 1420.
The values sent in the SYN and SYN/ACK packets may be modified by intermediate routers.

#5 tick-ms max equ TcpldleMs \ -- ms

Interval in miliseconds between TCP socket polls. Using this timer mechanism reduces the CPU
load at the possible expense of transmission performance (by 10-20%) on local area networks.
Setting the value of TcpIdleMs to zero turns the load reduction mechanism off.

Note that on some systems, setting TcpIdleMs non-zero may improve performance because of
the reduction in polling time. For tuning, we recommend an initial value of 5, with the ticker
rate (usually defined by TICK-MS in the main control file) set to 1 millisecond.

#100 equ TXDELAYTIME \ -- ms
timer for delayed transmit (mSecs), default is 100 milliseconds.

#10 equ ACKDELAYTIME \ -— ms
timer for delayed ack (mSecs), default is 10 milliseconds.

#5000 equ TXRETRYTIME \ -- ms
timer for transmit retries (mSecs), default is 5 seconds.

Chapter 3: PowerNet configuration 13

#12 equ TCPMAXRETRIES \ --n

Maximum number of transmission retries before returning SOCKET_ERROR; the default value is
12. If a receiving socket fails to accept new data, the total timeout will be TXRETRYTIME *
TCPMAXRETRIES, the default being 60 seconds.

#30000 equ TCPCONNECTTIME \ -- ms
Timer for incoming connections to complete (mSecs); the default is 30 seconds.

#30000 equ TCPMSLTIME \ -- ms
Timer for maximum segment lifetime (mSecs); the default is 30 seconds.

#7200000 equ TCPIDLETIME \ -- ms
timer for idle disconnection (mSecs, default is 2 hours).

#80 equ TcpRstTime \ -— ms
Delay before closing socket after a reset.

3.8 Sockets

#16 equ MAXSOCKETS \ --n
The maximum number of sockets available in the system. The socket data structures are allo-
cated from the heap when required. The amount of data used for each socket depends on

e whether it is a UDP or TCP socket (more for TCP),

e whether it is a server socket that requires a service data structure. See the chapter on the
server architecture for more details of this.

Do not set MAXSOCKETS much higher than you need under the expected maximum load otherwise
overall system response may suffer. Note that within PowerNet, a socket number is a 16 bit
item, so the range is 2..65535. Socket 1 is a special case.

Sockets are numbered from 1 to MAXSOCKETS and socket 1 is special. In practice, you have
MAXSOCKETS-1 sockets to use.

#6000 equ FirstPortNumber \ --n
First ephemeral port number.

#9000 equ LastPortNumber \ ——n
Last+1 ephemeral port number.

3.9 DNS client

1 equ DNSdebug? \ -- x
Set this non-zero to display DNS debug information during execution.

#53 equ DNSport# \ -— port#
The standard port number for DNS servers.

3 equ #DNS \ ——u
Maximum number of DNS attempts if no response.

5000 equ /DNSms \ -- ms
Maximum time (in milliseconds) allowed for a DNS transaction.

#512 equ /DNS \ - u
Maximum size of the DNS payload.

variable DNSserver \ -- addr
Holds DNS server or 0 if not configured yet.

14 PowerNet TCP/IP Stack

3.10 Servers and Services

5 equ /ListenQ \ -- +n

TCP listening ports maintain a list of connections. This equate defines the number of outstand-
ing connection attempts that can be queued. The default is 5, which is common for Unices
such as Solaris, where it is referred to as the backlog value. Many browsers request up to four
connections for each page and queueing connections reduces peak RAM load in the heap. Do
not reduce this value to zero.

0 equ SV1owRAM? \ -- x
Set this non-zero to use the low RAM configuration for servers. Setting this non-zero increases
the CPU load and may cause a significant increase in the number of small packets transmitted.

0 equ SVsingle? \ -- x

When non zero, the HT'TP and Telnet servers accept only a single connection at at a time. This
connection is run from the listening task, so reducing RAM usage and page serve performance.
For applications on single-chip systems with limited RAM and in which the HTTP and Telnet
servers are used only for configuration and maintenance by humans, this is a useful setting,
especially where the application’s RAM needs are high.

#80 equ HTTPPort# \ -- n ; standard is 80
Define the port used for the HT'TP server. The standard port is 80.

#15 #1000 * equ HTTP_KEEPALIVE_TIME \ -- ms
The keep alive time in milliseconds used by HTTP.

#7 equ EchoPort# \ ——n
Port on which Echo server listens.

#5023 equ TelnetPort# \ -- n ; standard is 23
Define the port used for the Telnet server. The standard port is 23, but 5023 is the default set
for PowerNet as most application Telnet servers are private.

#21 equ FTPcmdPort# \ -- u ; standard is 21
Define the command port used for the FTP server. The standard port is 21.

#20 equ FTPdataPort# \ -- u ; standard is 20
Define the default data port used by the FTP server. The standard data port is 20.

#20 #1000 * equ FTP_DATA_ESTAB_MS \ -- ms
Time in milliseconds that an FTP transfer command such as RETR will wait for a passive mode
connection.

2 equ #FTPmaxConns \ -—-u

If you select multiple files to transfer in an FTP client, the client may well open one connection
per file. Since each connection requires a task, service area, and two sockets, the system can easily
run out out of heap space and/or sockets. See sizeofheap in the control file and MAXSOCKETS
in this file.

3.11 End of configuration

This must be the last section of the configuration file.

1 equ PNconfigured? \ --n
Must be defined non-zero after all configuration information has been defined.

Chapter 4: Debugging tools

4 Debugging tools

4.1 Miscellaneous

: 7dump \ addr len --
Now redundant, but does nothing for "addr 0 DUMP".

.decimal \'n -~
display a value in decimal.

: .hex \'n--
display a value in hexadecimal.

4.2 Using the system console

: consolelO \ -
Select debug console for output. By default this is the CONSOLE device.

[con \ —— ; R: —-- ipvec opvec

Save the current I/O devices on the return stack, and set I/O to the console.

previous state with io].

[con ... io]

: con] \ -— ; R: ipvec opvec —-
Restore the I/O devices from the return stack.

.ConLine \ caddr len --
Display text with leading CR on Forth console.

: debug_emit \ char --
As EMIT but always uses the CONSOLE device.

: debug_cr \ -
As CR but always uses the CONSOLE device.

: debug_space \ --
As SPACE but always uses the CONSOLE device.

: debug_spaces \ n --

As SPACES but always uses the CONSOLE device.

: debug_>pos \'n -~
Position the console output to column n.

: debug_type \ addr len --
As TYPE but always uses the CONSOLE device.

: debug_count&type \ c-addr --
As COUNT TYPE but always uses the CONSOLE device.

: debug_. \'n--
As . but always uses the CONSOLE device.

: debug_.hex \'n --
As HEX but always uses the CONSOLE device.

: debug_.decimal \'n -—-
As .DECIMAL but always uses the CONSOLE device.

: debug_.lword \ n --

15

Restore the

16 PowerNet TCP/IP Stack

As .LWORD but always uses the CONSOLE device.
: debug_.byte \ n --

As .BYTE but always uses the CONSOLE device.

: debug_.ASCII \ char --

As .ASCII but always uses the CONSOLE device.

: debug_.s \ -

As .S but always uses the CONSOLE device.

: debug_dump \ addr len --
As DUMP but always uses the CONSOLE device.

4.3 Stack checking
: ?StackEmpty \ --

If the stack depth is non-zero, issue a console warning message and clear the stack. This is often
used at the end of a task loop.

: DictTop here ;

Used by some debug tools as the highest permitted address in the dictionary. If not previously
defined, HERE is used.

! name? \ addr -- flag MPE. 0000

Check to see if the supplied address is a valid NFA, returning true if the address appears to be
a valid NFA. This word is implementation dependent. For MPE cross compilers, a valid NFA
for MPE embedded systems satisfies the following:

e All characters within string are printable ASCII within range 33..126

e String Length is non-zero in range 1..31 and bit 7 is set, ignore bits 6, 5

: ip>nfa \ addr -- nfa

Attempt to move backwards from an address within a definition to the relevant NFA.
: SF{ \' n -- ; R: -- depth

You can check for stack faults with:

n SF{ }SF

where n describes the stack change between SF{ and }SF. If the stack change is different, an
error message is generated. This word will work on most systems in which the return address is
held on the return stack.

: }SF \ -- ; R: depth -- ; perform stack check

The end of an SF{ ... }SF structure. This word is not strictly portable as it assumes that the
Forth return stack holds a valid return address. In the vast majority of cases the assumption is
true, but beware of some 8051 implementations. See SF{

: rdepth \ --n
Return the number of items on the return stack.

.TS \ —

Display to the console the current contents of the return stack. Where possible a word name is
also displayed with the data value.

Chapter 4: Debugging tools

4.4 Cold Chain

: showExecChain \ item —-

Show the contents of a chain, given an item in the chain.

: showColdChain \ --
Display the cold chain.

17

Chapter 5: Network operations - CPU specific 19

5 Network operations - CPU specific

The file NETCODE.FTH contains code that will show significant benefit from being coded, or
is sensitive to the byte order of the underlying CPU.

The code in this file is used by PowerNet v3 onwards, and should only be compiled once if both
PowerNet and NETBOOT.FTH are both compiled.

5.1 Network order (big-endian) operations

Note that these functions have to be capable of fetching 32 bit cells from 16 bit aligned addresses,
not just from 32 bit aligned addresses.

Note also that these routines assume a byte-addressed CPU.

: wo(n) \ addr -- ulé
Network order 16 bit fetch.

: w!(n) \ ul6 addr --
Network order 16 bit store. Must write MSB first if writing to some hardware

: Q(n) \ addr -- u32
Network order 32 bit fetch.

1 (n) \ u32 addr --
Network order 32 bit store.

: w, (@) \ w —-
Network order W,

, () \ x —-

Network order version of , (comma).

:w, (n) \w —-
Network order W,

, (n) \ x —-

Network order version of , (comma).

5.2 Internet checksum

Because this code is used so much in the system, it is worth coding it for maximum efficiency.
One of the following equates may be defined (any value) in the control file to compile CPU
specific code for the Internet checksum:

CPU=Cortex
Cortex v7, e.g. M3, but not Cortex-MO.

CPU=ARM All ARM variants using the 32 bit ISA

CPU=H8/300H
Hitachi H8/300H and H8S

CPU=68K Motorola 68xxx CPUs
CPU=386 Intel 386 and above (i32)

20 PowerNet TCP/IP Stack

If no CPU specific equate is defined, the high level code will be used.

If the checksum words have been defined previously, this section of code is ignored.

[defined] CPU=Cortex [if]
If this equate is defined (any value will do), a Cortex (not MO) machine code IP checksum
routine will be used.

code (cksum) \ cksum addr len -- cksum’
ARM IP Checksum routine. This word is safe against alignment issues as the network order
word fetch is done as two byte fetches.

[defined] CPU=ARM [if]
If this equate is defined (any value will do), an ARM machine code IP checksum routine will be
used.

code (cksum) \ cksum addr len -- cksum’
ARM IP Checksum routine. This word is safe against alignment issues as the network order
word fetch is done as two byte fetches.

[defined] CPU=H8/300H [if]
If this equate is defined (any value will do), an H8/300H or H8S machine code IP checksum
routine will be used.

[defined] CPU=68K [defined] CPU=Coldfire or [if]
If this equate is defined (any value will do), a 68xxx/Coldfire machine code IP checksum routine
will be used.

[defined] CPU=386 [if]
If this equate is defined (any value will do), a i386+ machine code IP checksum routine will be
used. N.B. This code has not been tested!

(cksum) \ cksum addr len -- cksum’

Compute the partial internet checksum of a memory area. This is a high level implementation
that can be used by any CPU. The word (CKSUM) is useful when calculating header checksums,
and avoids the need to create the pseudoheaders described in the TCP/IP literature.

: cksum \ addr len -- cksum ; computed as 16 bit ints

Compute the internet checksum of a memory area. This a high level implementation that can
be used by any CPU.

STRUCT /pseudohdr \ -- size
The pseudoheader structure for checksum calculation. This word is for illustration and is not
compiled.

: PHcksum \ *hdr len ipsrc ipdest ipproto -- cksum
A generic TCP/UDP checksum function. The parameters supplied are used to form a 'pseudo-
header’ from which the acual checksum is generated or checked.

Chapter 6: Extra USER variables

6 Extra USER variables

6.1 Common to all tasks
cell +User SocketErrorCode \ -- addr
Last socket error.

cell +User my_hsocket \ -- addr
Socket# owned by this task.

cell +User my_socket \ -- addr
Socket address owned by this task

\ cell +user *emitBuff \ -- addr

Start of the current emit buffer

\ cell +user *emitNext \ —-- addr
Pointer for next buffer location

\ cell +user *emitQueue \ -- addr
Pointer to interface emit queue

\ cell +user emitmode \ -- addr
O=char, 1=block, 2=udp socket

\ cell +user *keyBuff \ -- addr
Contains current key buffer address

\ cell +user *keyNext \ -- addr
Pointer to next byte in buffer

\ cell +user keyCount \ -- addr
count of bytes left in buffer

\ cell +user xkeyQueue \ -- addr
pointer to interface key queue

6.2 SLIP variables
cell +User portid \ -- addr
SCC port identifier 01-On

cell +User rxstate \ -- addr

current rx packet state

cell +User *rxpbuf \ -- addr
pointer to current rx pbuf

cell +User *rxnow \ —- addr
pointer to next rx char

cell +User rxcount \ -- addr
bytes entered into buffer

cell +User rxspace \ -- addr
space left in buffer

cell +User *txpbuf \ -- addr
pointer to current rx pbuf

22

cell +User *txnow \ -
pointer to next tx char

cell +User txcount \ —
bytes entered into buffer

cell +User txspace \ —-
space left in buffer

cell +User RXExpSlip
receive expiry time

-~
|
|

cell +User *community \ --
pointer to community string

cell +User commlen \ —-
length of community string

cell +User pdutype \ --
pdu type (Get etc.)

cell +User reqid \ —-
pdu request identifier

cell +User errStatus \ -
pdu error status

cell +User errIndex \ —-
pdu error index

cell +User numVars \ -
vars requested in pdu

cell +User *tagsln \ --
pdu tags in pointer
cell +User *varsOut \ -

pdu vars out pointer

cell +User *nextVar \ -

pointer to next variable

cell +User *outPacket \ —-

pointer to outgoing packet buffer

cell +User *replystart \ --
start of response

cell +User replylen \ —-
length of response

cell +User *data \ -

current data pointer

cell +User spaceleft \ --
remaining length of data buffer

cell +User taddr \ -
temp data pointer

cell +User trapgen \ -

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

addr

PowerNet TCP/IP Stack

Chapter 6: Extra USER variables

generic trap identifier

cell +User trapspec \ -- addr
specific trap identifier

23

Chapter 7: Queues 25

7 Queues

The PowerNet QUEUE data structure is the head of a linked list of queue buffer data structures,
usually a PBUF or an I/O buffer. The first cell of anything that is added to a QUEUE must have
a link field at offset 0, the first cell.

7.1 QUEUE structure

: QLock \ -- ; lock out interrupts
If QUEUES are used in interrupts, or if the scheduler is interrupt driven, place your locking code
here. Do not forget to change the COMPILER ... TARGET macros too.

: QUnLock \ -- ; reenable interrupts
If QUEUES are used in interrupts, or if the scheduler is interrupt driven, place your locking code
here. Do not forget to change the COMPILER ... TARGET macros too.

: PeekQ \ *queue -- xhead
Return the first item in the queue without removing it. Useful for testing and handling partially
full/empty buffers.

: Dequeue \ *queue -- *head|0 ; O indicates nothing to remove
Remove the next item from the queue.

: Enqueue \ *buffer *queue --
Add buffer to queue.

: InitQ \ *queue --—
Initialise/reset the queue.

Chapter 8: QUEUE and buffer allocation

8 QUEUE and buffer allocation

Create the various IO queues needed

0 buffer: FirstQ \ —-- addr
Address of first location in the queue RAM area. Used by initialisation code.

queue buffer: FreePBuf \ -- addr
Free PBuffers ready for RX & TX

queue buffer: IPinQ \ -- addr
Holds unprocessed incoming packets.

queue buffer: TxEnetQ \ -- addr
outgoing ethernet data buffers

queue buffer: TxSlipQ \ -- addr
outgoing Slip data buffer

0 buffer: LastQ \ —- addr
Address of last location +1 in the queue RAM area. Used by initialisation code.

/QBarea buffer: FirstQ \ -- addr
Address of first location in the queue RAM area. Used by initialisation code.

/TRxBuffers buffer: TRxBuffers \ -- addr
The block of I/O buffers.

27

Chapter 9: PBUF buffers 29

9 PBUF buffers

9.1 Introduction
PBUFs are used to hold data which is received or transmitted as IP packets. Rather than copy

data repeatedly, the system passes pointers to these structures. In order to avoid heavy heap
use, these buffers are preallocated.

Collections of buffers are handled by the QUEUE data structures.

The function of PBUFs is to hold data that will be received or transmitted to a device. Headers
are added to application data. The worst case occurs for Ethernet systems:

Ethernet header

IP header

TCP, UDP or other protocol header(s)
Application data

Traditionally, TCP/IP stacks based on the BSD implementations use separate buffers for each
data area. In order to avoid additional heap allocations and data copying, PowerNet uses a
single buffer and moves pointers as the PBUF is moved up and down the TCP/IP stack.

9.2 Data structures

struct pbuf_hdr \ -- size ; size of pbuf_hdr structure
PBUF buffer header definition. The first four fields (10 bytes) are common with the obsolete
BF_HDR definition.

PSIZE pbuf_hdr + equ pbuf \ --n
Size of complete pbuf structure.

$3FFF equ BUFFSIZEMASK \ -- mask
The buffer size is held in the low 14 bits of the 16 bit type field. This permits a maximum data
size of BUFFSIZEMASK bytes.

$C000 equ BUFFTYPEMASK \ -- mask
The buffer type is held in the top 2 bits of the 16 bit type field.

$0000 equ DATABUFFER \ - n
Set into the type bits for I/O buffers.

$4000 equ PBUFFER \ ——n
Set into the type bits for PBUFs.

9.3 PBUF handling
Ipb_size \ n *pb -- ; set buffer size

Set the size of a buffer and mark it as a PBUF.

: PBHdrStart \ *pbuf -- addr ; of packet header
Return the address of the current header.

: PBHdrLen \ *pbuf -- len ; of packet header
Return the length of the current header.

30 PowerNet TCP/IP Stack

: PBDataStart \ *pbuf -- addr ; of data
Return the address of the current data.

: PBDatalen \ *pbuf -- len ; of data
Return the length of the current data.

IPBDatalen \ len *pbuf -- ; of data
Set the length of the current data.

1 *PBData \ offset addr —-
Set offset to buffer data.

: bumpPBuffData \ n *pbuf --
Moves the data pointer/count along the buffer, incrementing the address, decrementing the
count.

: unbumpPBuffData \ n *pbuf --
Moves the data pointer/count back up the buffer, decrementing the address, incrementing the
count.

9.4 Queue buffer allocation and release

: PBinit \ *pb --
Initialise a PBUF.
: AllocPbuf \ -- *pbl0O

ALLOCATE and initialise a PBUF from the heap and return the PBUF address. If the buffer
cannot be allocated, 0 is returned without waiting.

0 value TxPbuf \ —- addr
Points to the dedicated transmit PBUF.

0 value NextTxPbuf \ -- addr
Holds TxPbuf when the transmit PBUF is available, or zero when not available.

: InitI0Queues \ --
Initialise the predefined queues and their I/O buffers and PBUF's.

: GetPbuf \ —— *pb|0
Get a PBUF from the free PBUF queue and return the PBUF address. If there are no free
buffers, 0 is returned without waiting.

: GetTxPbuf \ -- *pbl0
Get a PBUF from the free PBUF queue and return the PBUF address. If there are no free
buffers, try the dedicated transmit PBUF.

0 equ QBdiags? \ -- n
When this equate is set non-zero, additional test code is compiled and included in FREEQB below.

variable gbug \ -- addr
When set to non-zero, FREEQB will display diagnostics if the buffer is bad.

PBUFFER PSIZE or equ PBcheck \ - x
Check value for a PBUF.

: FreeQB \ *pb/bf --
Place a PBUF or I/O buffer on the relevant free queue. N.B. FreeQB cleans up the buffers before
requeueing them.

: Free(QB \ *pb/bf --

Chapter 9: PBUF buffers 31

Place a PBUF or I/O buffer on the relevant free queue. N.B. FreeQB cleans up the buffers before
requeueing them.

Chapter 10: Queue diagnostic routines 33

10 Queue diagnostic routines

The code in QUEUES/Qdiags.fth is only compiled if the equate DTAGS? is non-zero.

queue aligned equ /qdhead \ -- len
The head of the list is the original queue header forced to an aligned length.

cell BUFFHDRSIZE + aligned equ /qdentry \ -- len
Each entry in the list consists of a link field, plus the original PBUF header. The entry must be
aligned.

.q \ *queue --
Display queue info.

: @gqlen \ *queue -- len
Count queue length.

.qlen \ *queue txtaddr --
Display the queue length.

: .gs \ --
Display the lengths of the FreeloQ and the FreePbufQ.

Chapter 11: System wide equates 35

11 System wide equates

This chapter documents DEFINES.FTH which contains definitions of constants and equates
used throughout PowerNet.

11.1 Application definitions
0 equ INVALID_SOCKET \ -- 0

Words returning a socket number return zero to indicate an invalid socket.

-1 equ SOCKET_ERROR \ —- -1
Many BSD layer and lower layers return -1 for an error because a return of 0 as a length is valid.
It also permits systems to use 0< as an error check. Do not change.

11.2 Standard TCP/IP and Winsock values

PowerNet provides a number of standard equates taken from TCP/IP definitions and the
Winsock API. These are not documented here. If you are interested see DEFINES.FTH.

Although a large number of these equates are defined, and are not currently used, they occupy
no memory in the target system because these are EQUates rather than CONSTANTS.

Chapter 12: TCP/IP data structures 37

12 TCP/IP data structures

The definitions are in the file STRUCTS.FTH.

You will find the books TCP/IP Illustrated, Volumes 1 and 2 useful when exploring the PowerNet
data structures.

12.1 Primary structures

These structures are used in almost all systems.

STRUCT ether_hdr \ —- size ; of ether_hdr structure
Ethernet header. The fields have the prefix "ETHER_".

STRUCT arp_hdr \ -- size ; of arp_hdr structure
ARP header. The fields have the prefix "AR_".

STRUCT arp_ip_data \ -- size ; of arp_ip_data structure
ARP data.

STRUCT icmp_hdr \ -- size ; of icmp header structure
ICMP header structure. The fields have the prefix "ICMP_".

STRUCT ip_hdr \ -- size

IP header structure. The fields have the prefix "IP_".

STRUCT udp_hdr \ -- size ; of udp header structure
UDP header structure. The fields have the prefix "UH_".

STRUCT (socket) \ -- size ; of (socket) structure

The main socket structure. The fields have the prefix "SO_".

STRUCT tcpcb \ -- size
TCP control block structure. Notes:

e Sequence and ACK numbers are unsigned 32 bit numbers that can wrap. They must be
compared using circular arithmentic.

STRUCT port_struct \ -- size ; of structure
Port control data. The fields have the prefix "PORT_". Unused by systems with only a single
port.

STRUCT iproute_struct \ -- size ; of structure
Routing table entry. The fields have the prefix "IPROUTE_". The entries are added to when a
new IP address is received.

PSIZE ether_hdr - ip_hdr - udp_hdr - equ PDATA_MAX
The size of the largest data block.

STRUCT SOCKADDR_IN \ -- size
Used to hold socket family (always AF_INET), port number and IP address. The fields have
the prefix "SIN_".

12.2 SNMP structures

STRUCT TAGLIST_ENTRY \ -- size
SNMP Tx/Rx taglist entry definition. The fields have the prefix "SNMP_".

Chapter 13: Helpers and primitives 39

13 Helpers and primitives

: AddLink \ item anchor --

Used when a new item in the chain already exists, e.g. it has been ALLOCATEd. The item is
added to the chain. Note that this word requires the link to be at offset 0 in the item being
added.

: link, \ var-addr -- ; lay a link in a chain whose head is at var-addr
Add a link to a chain anchored at address var-addr. The old contents of var-addr are added to
the dictionary as the new link, and the address of the new link is placed at var-addr. INTER-
PRETER only.

: AddEndLink \ item anchor --
Add an item (a structure) to the end of of the chain anchored at anchor. The link field must
be at offset 0 in item.

: DelLink \ item anchor -- ; remove item from chain
Delete/Remove an item from a chain achored at address anchor. Note that this word requires
the link to be at offset 0 in the item being removed.

: ExecChain \ anchor --
Execute the contents of a chain with the following structure:
link | xt |

Each word that is run has the stack effect
link -- link

Where link is the address of the link field in the structure. Thus, data that follows the xt can
easily be accessed.

: ShowPacket \ *pbuf -- ; display the packet
A diagnostic.

: >inet_aton \ caddr len -- ipaddr
Convert a dotted Internet address string, e.g. 192.168.0.1, into an IPv4 address. If the string
cannot be converted, INADDR_NONE (-1) is returned.
(>inet_digit) \ n -- n>>8
Perform number conversion of the low byte, and shift n right by 8 bits.
: >inet_ntoa \ ipaddr -- c-addr len
Convert an IP address into a text string c-addr/len in dotted quad notation aaa.bbb.ccc.ddd
(the standard text form).

.IPaddress \ ipaddr --
Display a v4 IP address in dotted quad notation. Now obsolete.

.IPv4 \ ipaddr --
Display a v4 IP address ipaddr in dotted quad notation.

.IPnet \ addr --
Display the v4 IP address stored in network order at addr.

.IPloc \ addr --
Display the v4 IP address stored in native/local order at addr.

: 7free \ addr|0 --

40 PowerNet TCP/IP Stack

Perform FREE DROP if the input is non-zero.

: CopyEthAdd \ src dest -- ; copy ethernet address

Copy an Ethernet address. This is an ugly bit of code which is faster than using ETHER_
ADDRESS_LEN CMOVE with most VFX compilers. If your CPU does not support W@ and W! as
machine instructions, a simple CMOVE version may be faster.

[sm \ -0
Starts the definition of a state machine’s states.

: smState \' n -- n+l
Defines the next state as an EQU and increments the state number.

: sm] \'n--
Finishes the state machine and defines an equate of the number of states.

: $>maca \ caddr len dest -- flag ; O=good
Convert an Ethernet MAC address string into six bytes at dest. If the string cannot be converted,
flag is returned non-zero. The string caddr/len is in the form:

aa-bb-cc-dd-ee-ff

where the number base is hexadecimal.

Chapter 14: Socket Primitives 41

14 Socket Primitives

The file SOCKETS\SOCKPRIM.FTH contains primitives for the sockets layers.

: GetSocketError \ —- ErrorCode
Return the last socket error code.

. SetSocketError \ ErrorCode --
Set the last socket error code.

: ClrSocketError \ —-
Clear the last socket error code.

MAXSOCKETS cells equ SOCKLIST_LEN \ -- size
The size of the sockets array.

SOCKLIST_LEN buffer: socket_list \ -- addr
The static sockets array.

equ socket_list_last \ -- addr
The address of the last entry in the socket list.

: initsockets \ --
Initialise the socket list.

0 value NextSock# \ -- socknum
Returns the next socket number to be used. This value is is ranged 0..n-1, not 1..n.

: +Sock# \ --
Step to the next socket number, wrapping as required.

: NextSockEntry \ -- addr
Return the socket list entry address for NextSock#.

: add_hsocket \ *socket -- HSOCKET|O
See if we can get a socket handle.

: sub_hsocket \ *socket —--
If the given socket address is in the table, mark its socket as unused. If the socket has already
been removed, no action is taken.

: get_socket_addr \ HSOCKET -- addr|0
Given a socket handle, return the socket address, or 0 if the socket is not in use.

: get_socket_ing \ HSOCKET -- *ql0 ;
Return the socket’s input queue.

: get_socket_outq \ HSOCKET -- *q|0 ;
Return the socket’s output queue.

: find_hsocket_port { ip pcol port | hs *sk -- hsocket|O }
Find a socket handle with matching IP, protocol and port.

(find_hsocket_tcpport) { ips ps ipd pd | hs *sk -- hsocket|O0 }
Find a socket handle with matching IP and protocol and port

: find_hsocket_tcpport { ips ps ipd pd | hs *sk -- hsocket|O0 }
Find a socket handle with matching IP and protocol and port.

: WaitForIpAddress \ -

42 PowerNet TCP/IP Stack

Waits until we have a valid IP Address, i.e. one that is not 0.0.0.0.

: numsockets { | res -- numsockets }
Count the number of socket handles in use.

: RebindAllSockets {ip -}
Rebind sockets to new local IP address.

14.1 Ephemeral ports

Ephemeral ports are port numbers allocated by TCP/IP when you make a connection. These
are in a range which does not conflict with the "well known" ports. Each socket connection uses
a different port number which allows TCP to identify multiple connections from one machine
to the same port on another machine.

#6000 equ FirstPortNumber \ -—-n
First ephemeral port number. Moved to PNconfig.fth.

#9000 equ LastPortNumber \ --n
Last+1 ephemeral port number. Moved to PNconfig.fth.

variable LastPortUsed \ -- addr
Holds the last ephemeral port number used.

(GetFreePort) \ -- port
Get a free port number; the free port numbers count up.

: GetFreePort \ *socket -- port#
Get an ephemeral port for a socket.

14.2 TCP control block creation and deletion

: FlushQ \ queue --
Flush the contents of a queue, return them to the free queue, and FREE the queue itself. If
queue=0, no action is taken.

: freeConnQ \ *cb —-
Free up any outstanding items on the connection queue.

: DiscardTcpTcb \ *cb --
Free-up all resources in the TCP control block, and then free the control block itself.

: MakeTcpCb \ -- addrl0
Create a new TCP control block from the heap. On error, zero is returned.

: skTCP? \ *sk -- flag
Returns true if the socket protocol is TCP.

: FreeupSocket \ *sk --
Frees up all allocated memory for a socket. *sk is assumed to be valid.

: 7BadSocket \ *sk x flag -- *sk x | -— 0 and exit caller
A factor used by SOCKET for error recovery. If flag is non-zero, z is discarded, the socket is freed,
and exit is from the calling word.

: socket \ address-family socket-type proto-group -- hs|O0
Create a new socket of the given characteristics, returning the new socket number (1..n) on
success, or zero for failure. DO NOT CHANGE the return of INVALID_SOCKET=zero for failure!

Chapter 15: ICMP handling 43

15 ICMP handling

The ICMP implementation is fairly minimal. Only the implemented functions are documented.
Many diagnostics can be enabled by setting the equate ICMPMON? to non-zero.

See ICMP.FTH.

: ICMPcksum \ *pb -- flag ; O for a pass
Generate the ICMP checksum. When used to check an ICMP header, it will return 0 for a good
checksum.

: EchoRequest \ *pbuf *icmp -- ; got a ping
Handle a PING request.
: RxICMPPacket \ *pbuf -- ; 0K so we got an IP packet

Handle an incoming ICMP packet.

Chapter 16: Routing packets

16 Routing packets

The routing table is statically allocated. Configuration data is in PNconfig.fth.

#32 constant MAX_IPADDRS \ -=-n
No of entries in the routing table (not dynamic yet).

iproute_struct MAX_IPADDRS * equ RT_LEN \ -- n
Size of the routing table.

RT_LEN Buffer: IpRoutes \ -- addr
This is the main routing table.

#7200000 constant ROUTE_LIFE \ -- ms
Two hours in milliseconds.

#1000 constant ROUTE_SAMPLE_MS \ -- ms
How often routes are tested im milliseconds.

variable RouteTicker \ -- addr
Holds the time to sample route expiry next.

create EnetIPMask \ -- addr
IP mask for addresses on Ethernet port. The data is in network order.

create IPGateway \ -- addr
Gateway attached to Ethernet port. The data is in network order.

STRUCT iproute_struct \ -- size ; of structure
Routing table entry. The fields have the prefix "IPROUTE_".

create defRoute \ --
IPROUTE structure for the default route.

: SetRoutelLife \ ms route —-
Set the route’s life to end ms from now.

: SetInfLife \ route --
Set the route to have an infinite life.

: ExtendLife \ ms route --
Extend the life of the given route by ms if the life is not infinite.

: InitRoutes \ -
Initialise routing table.

(find_route) \ ip -- addrl|O
Get routing table entry address (if available).

: AskForRoute \ ip -- addr|O
See if we can make a route.

: ViaGateway? { ip | iptmp *rt -- addrlO }
Returns gateway route or none.

: CanWeRoute { ip -- addr|0 ; returns route or 0 }
Handles routing via the subnet mask or gateway (if one exists).

: find_route \ ip -- addr|0
Get table entry address (if available)

45

46 PowerNet TCP/IP Stack

: empty_route? \ -- addr|O
Get table entry address (if available).

: add_route \ ip -- addrl|0

Get table entry address (if available).

: expire_routes? \ -~

Decrement the route entry timers and expire any routes that have timed out.

Chapter 17: Basic IP layer 47

17 Basic IP layer

17.1 Tools

: isIPforme \ *pbuf -- flag
Flag true if this packet is for me.

variable ipid \ -- addr ; for outgoing packets
IP packet identifier, incremented by one for each outgoing IP packet.

: SetIPhdr \ len ipsrc ipdest ipproto *iphdr --
Initialise and fill in an IP header with no options.

: pb>IPH \ *ip *pb --
Step the PBuf data pointers back to the IP header from the TCP or UDP header.

17.2 Sending IP packets

defer send>other \ *pb *rt -- len
This allows other routes to be patched in to the stack without changing the stack source.

: NoOther \ *pb *rt -- len
The default action of SEND>OTHER.

(IPSend) \ *pb -- len]|-1
Send the data in the supplied PBuf (chain). *PB is the first pbuf in the chain (only 1 allowed)
Returns the number of bytes sent if OK else SOCKET_ERROR.

: IPSend \ *sk *pb -- len|SOCKET_ERROR
Send the data in the supplied PBuf (chain). Returns number of bytes sent if OK else
SOCKET_ERROR.

17.3 Receiving IP packets

defer RouteIP \ *pb --
This IP packet is not for me! Vectored routing allows later application dependent patching up.
The default action is to discard the packet with FreeQB.

defer CanRouteIP? \ *pb -- TI|F
Returns true if we can route this packet. Vectored routing allows later application dependent
patching up.

: NoCanRoute \ *pb -- False
The default action of CANROUTEIP?

: ProcessPacket \ *pb --
Process an incoming packet

Task PacketTask \ -- addr
The task that handles incoming packets.

: DoIncoming \ -
The action of the incoming packet task.

: RunIncoming \ --
Start the incoming packet task.

: GoodIPPacket { *pb —- %
Process a good packet.

48 PowerNet TCP/IP Stack

: GoodIPPacket \ *pb --
Process a good packet.

: RunIncoming \ --
Start the incoming packet task.

: BadIpPacket \ *pbuf --
A header check failed, so discard the packet.

: IPHdrLen \ *ip -- len
Find the length of the IP header.
: +IPhdr \ *ip -- addr

Step from the IP header to the next item, e.g. TCP header.

: RxIpPacket \ *pb --
Process a received IP packet.

Chapter 18: ARP handler 49

18 ARP handler

ARP.fth handles ARP packets for Ethernet and DHCP.

$E1 equ ETHER_PORT \ - n
Port identifiers for Ethernet devices are in the range $E1..EF

create EtherBCastAddress \ —-- addr
Holds the Ethernet broadcast address FF-FF-FF-FF-FF-FF.

create EtherUnkAddress \ --
Holds the Ethernet "unknown" address, all zeros.

: TurnEtherPacketRound \ *eth_hdr --
Return the packet to the sender.

: HandleArpRequest \ *pb ad *eth *arp --
Returns reply to an incoming ARP request.

: AddEtherRoute \ *etheraddr ipaddr --
Add an Ethernet route given a pointer to a 6 byte Ethernet address and an IP address.

: HandleArpReply \ *pb *arp --
Handle an incoming ARP reply - so extract info.

: ArpForMe? \ *arp -- flag ; nz=for me
Given the address of an incoming ARP payload, return true if the packet should be handled.

: EtherArpPacket { #pb | ad 1n *eth *arp -- }
Process an incoming ARP packet. The pbuf holds the received Ethernet packet. We use the
incoming packet buffer for the reply.

create ProtoArpHdr \ -- addr
Prototype ARP request header.

: SendArpRequest \ ipaddr --
Formats and sends out an ARP request packet. This is always a broadcast.

: SendGratuitousArp \ -
Send a "Gratuitous ARP Request".

Chapter 19: UDP layer 51

19 UDP layer

equ >UdpDataPos \ -- offset
The UDP data offset in an outgoing UDP packet.

: UDPcksum \ *hdr len ipsrc ipdest -- cksum
A generic UDP checksum function. The parameters supplied are used to form a 'pseudoheader’
from which the acual checksum is generated.

: UDPSend { hs *pb | *ip *sk -- lenl|err }

Send data on a connected UDP socket. HS is a handle to a UDP socket handle. *PB is the
address of a PBuff pointer already filled with the data to send (as UDP data). Returns the
number of bytes sent if OK else SOCKET_ERROR.

: SendDatagram { *pb ipaddr | *ip *udp -- %}
Send data as a UDP packet without using a socket. The parameters are *pb, a pointer to a
PBuff containing the UDP data, and ipaddr, the IP address to send to.

: GetUDPAddress \ *pbuf -- *udp
Extract start of UDP data from IP packet.

: GetUDPLen \ *udp -- len
Extract length of UDP packet.

: >UDPData \ *udp -- *udpdata
Extract pointer to UDP packet data.

variable UDPServiceChain \ -- addr
This variable anchors the chain that will be walked to find out what to do with a UDP packet
that has arrived.

struct /UDPService \ -- len

Describes the UDP service and how to run the service.
int us.next \ Link to next service in chain
int us.port \ UDP Port that this service handles
int us.xtReceive \ Word that will process this packet
int us.xtIdle \ Word that will run idle action

end-struct

: UDPprocessRx \ *pb *udp --
Walk the UDP service chain and execute the first receive action for the port. If no association
is found, try to route the packet.

: RxUDPPacket { *pb | *udp hs *q bf -- }
Process a received UDP packet.

Chapter 20: DHCP and BOOTP 53

20 DHCP and BOOTP

The code in <PNet>\DHCP.fth implements a DHCP client according to RFC2131. See also
RFC2132 and RFC1542. Do not attempt to modify this code until you have absorbed these
RFCs.

If you do not have a DHCP server on you network, there are many available. For Windows PCs,
several users have recommended the haneWin DHCP Server from www.hanewin.net.

0 equ DHCPdebug? \ —— x

Set this non-zero to display DHCP debug information during execution.

20.1 DHCP/BOOTP state machine

The DHCP system is controlled by a state machine, which is run whenever the timer
*\fo{DHCPtimer) times out. The action performed is responsible setting the next state and
updating the timer. The state machine actions are performed by DHCPidle (--) which is
called in the service task.

States of the DHCP state machine. See RFC2131 Figure 5 below for the transition diagram.

54 PowerNet TCP/IP Stack

(N
| | == > | ===mmmmm e +
| INIT- | | o >| INIT |
| REBOOT |DHCPNAK/ tmmmmmm o >| | <———+
I |Restart | [|
———————— | DHCPNAK/ I
I

I Discard offer -/Send DHCPDISCOVER
-/Send DHCPREQUEST I I

DHCPACK \ [
(not accept.)/ ——————————- |

Send DHCPDECLINE | I

|
I
I
I
|
|
I I
I I
I I
| REBOOTING | I I | SELECTING |<--——+ |
I I I / I I |DHCPOFFER/ |
——————————— | / -————-——-—-= | [Collect
I I / | I | replies |
DHCPACK/ | Y I + |
Record lease, set]| | v Select offer/
timers T1, T2 --——-—————- send DHCPREQUEST | I
| o= >| | DHCPNAK, Lease expired/ |
| | | REQUESTING | Halt network
DHCPOFFER/ | I I
Discard ~ —-—-—————————- | |
I [I ittt I
[S + DHCPACK/ I I
| Record lease, set = --———- | REBINDING |
I timers T1, T2 / | I
I I DHCPACK/ ——————————-
I v Record lease, set ~
R e L B L e > ——————- /timers T1,T2 |
o >| | <-——+ I
| | BOUND |<———+ |
DHCPOFFER, DHCPACK, | I I T2 expires/ DHCPNAK/
DHCPNAK/Discard ~ --—-———-- | Broadcast Halt network
| [I DHCPREQUEST |
R + | DHCPACK/ I

Tl expires/ Record lease, set
Send DHCPREQUEST timers T1, T2
to leasing server |

| | =mmmm e '

Figure 5: State-transition diagram for DHCP clients
- J

[sm
smState smDHidle
smState smDHinit
smState smDHselect
smState smDHrequest

idle, do nothing (pseudostate)
initialisation, o/p DHCPDISCOVER

process DHCPOFFER(s)

process ACK, discard offers

ACK/decline -> o/p DHCPDECLINE, smDHinit
ACK/accept -> record lease, smDHbound

go ACK, check -> DHCPdecline/init or bound

P

smState smDHarpcheck

Chapter 20: DHCP and BOOTP

smState smDHbound \ discard messages, time out ->

smState smDHrenew \ wait ACK, T2 expiry

smState smDHrebind \ wait ACK/NAK

smState smDHrebooting \ warm restart, DHCPREQUEST, wait ACK/NAK
sm] #smDHactions \ number of states in this machine

variable DHCPTimer \ -- addr

Holds the TICKS time at which the next DHCP action will be performed, 0 for no action.

variable smDHcount \ -- addr
Down counter used to provide repetitions and timeouts.

variable smDHstate \ - n
Holds current DHCP state.

create smDHactions \ -- addr
Execution table containing the xts of the action words.

: setDHstate \ xt state --
INTERPRETER word that sets the action of the given state.

: DHCPidle \ -
Performed periodically to do DHCP actions and lease checks.

20.2 State machine utilitiles

: SetDHCPtimer \ ms --
Set the DHCP timer to time out ms later.

.DHstate \ -—-
Debug tool to display the current state of the DHCP state machine.

: toDHCPstate \ ms n state --

95

The given state will be executed after the given period in ms and n times if sensitive to the
number of times. Note that this specifies the interval until the state is executed, not the

repetition rate of the state.

20.3 DHCP Data definitions
20.3.1 DHCP control data

These variables contain the working data used to access the DHCP server.

variable BOOTP_XID \ —— addr
Transaction ID number.

variable DHCPLease \ -- addr
Length of DHCP lease in ms.

variable DHCPLeaseTimer \ -- addr
TICKS at which lease times out.

variable DHCP_T1 \ -- addr
Time to RENEW in ms.
variable DHCP_T2 \ -- addr

time to REBIND in ms.

56 PowerNet TCP/IP Stack

variable DHCPServer \ -- addr
DHCP server IP address.
wvariable DHCPflags \ -- addr

Holds the DHCP flags, set to $8000 to force broadcast responses, or 0 when we can accept
unicast responses.

20.3.2 DHCP transient data

These variables contain data generated by the DHCP transactions. It is later manipulated to
set system variables and the DHCP control data after validation.

variable GivenIP \ —-

IP address given by DHCP or BOOTP.

variable GivenMask \ -

IP mask given by DHCP or BOOTP.

variable GivenGateway \ --
IP gateway given by DHCP or BOOTP.

variable GivenServer \ —
IP address of DHCP server given by DHCP or BOOTP.

variable GivenLease \ —-- addr
Length of DHCP lease in seconds given by DHCP or BOOTP.

variable GivenTl1 \ -- addr
Time to RENEW in ms given by DHCP or BOOTP.

variable GivenT2 \ -- addr
time to REBIND in ms given by DHCP or BOOTP.

variable GivenReply? \ -- addr

Set non-zero when a DHCP reply has been received, but the data has not yet been been pro-
cessed. During this time any following DHCP packets will be discarded.

variable GivenSNTP \ -- addr
SNTP server returned by DHCP.
variable GivenDNS \ -- addr

DNS server returned by DHCP.

20.3.3 DHCP packet layout

STRUCT /dhcp \ -- len
BOOTP and DHCP payload structure after the IP and UDP headers.

CREATE BOOTPMAGIC \ -- addr
Magic number used to identify BOOTP and DHCP packets.

20.4 DHCP tools

: umin \ ul u2 -- ullu2
Minimum of two unsigned values.

: TxMs \ secs -- ms
Return the number of seconds required for expiry of the T1/T2 timer.

: NoDHCPserver \ --

Chapter 20: DHCP and BOOTP

Set up for no known DHCP server.

: AcceptDHCPin \ --
Accept incoming DHCP packets by clearing GivenReply?.

: RejectDHCPin \ --

Reject incoming DHCP packets by setting GivenReply? to an non-valid value.

: AcceptGiven \ --
Transfer the data given by DHCP transactions to the working data.

20.5 DHCP state selection

Each state is controlled by three values defined here.
e Entry delay - delay before state is executed for the first time.
e Period - period between repetitions of the same state.
e Count - number of repetitions before smDHcount reaches zero.
: goldle \ -
Go to the smDHidle state.
: golnit \ —-
Go to the smDHnit state, so starting the DHCP process.

: goSelect \ --
Go to the smDHselect state.

: goRequest \ —-
Go to the smDHrequest state.

: goARPcheck \ -
Go to the smDHselect state.

: goBound \ --
Go to the smDHbound state.

: goRenew \ —-
Go to the smDHrenew state.

: goRebind \ —-
Go to the smDHrebind state.

: goRebooting \ --
Go to the smDHreboot state.

20.6 UDP transmission
(BOOTPSend) { *pb ipaddr -- }

57

Send BOOTP data as a UDP packet. The parameters are *pb, a pointer to a PBuff containing

the UDP data, and ipaddr, the IP address to send to.

20.7 Outgoing message tools

Some data is carried as DHCP options in the DHCP packet. Options that may contain an odd

number of bytes are forced to a 16 bit boundary.

:ocl++ \ addr b -- addr+1

58 PowerNet TCP/IP Stack

COMPILER word, saves b at addr and increments addr.
1 (n)++ \ addr x -- addr+4

COMPILER word, saves x at addr and increments addr.

: haligned \ *opt -- *opt’

Align option - assumes that options start 16 bit aligned. If necessary a zero (pad) byte is added.
: INCLUDE_SERVERID_OPT \ *opt -- *opt’

Add served IP address to the options list.

: INCLUDE_REQ_INF_LEASE_OPT \ *opt -- *opt’

Add request for an ininite lease to the options list.

: INCLUDE_OFFERED_LEASE_OPT \ *opt -- *opt’

Add the offered lease to the options list.

: INCLUDE_REQUESTADDR_OPT \ *opt -- *opt’
Add the offered IP address to the options list.

CREATE ParamRequestList
Parameter Request List that indicates which responses we want.

: INCLUDE_PARAMREQ_OPT \ *opt -- *opt’
Add parameter request list to the options list.

: addDHCPopts \ msgtype *bootp --
Add the relevant options for the message type to the options section of the DHCP message.

: UseBroadcast? \ ServerAddr IPAddr -- ServerAddr

If ServerAddr and IPAddr are not the same and IPAddr is not INADDR_BROADCAST (the
initialised value) then substitute INADDR_BROADCAST for ServerAddr. So if siaddr is left at
0 in the DHCP offer the Request will be broadcast.

: GetBOOTPServerAddr \ -- ipaddr

If there is any doubt about the server IP address then broadcast the reply. At this point the
routing table only contains entries for the received BOOTP reply and the broadcast address so
there is no point in replying to the siaddr or the address in DHCPServerID if it differs from
BOOTPServer.

.DHCPtype \ msgtype --
Display the message type as text.

: SendDHCP { msgtype | *pb *bootp -- }
Send a DHCP message. The fields and options are filled in as appropriate for the message type.

: SendDiscover \ —-

Send a DHCPDISCOVER message.

: SendRequest \ --
Send a DHCPREQUEST message.

: SendDecline \ --
Send a DHCPDECLINE message.

: doDHidle A

The idle action is just to restart the timer.

: doDHinit \ -

Send DHCPDISCOVER periodically until we get a response

Chapter 20: DHCP and BOOTP 59

: doDHselect \ --
Select is currently a no-op as we take the first offer we receive.

: doDHrequest \ --
Send DHCPREQUEST periodically until we get a response

: doDHarpcheck \ --
The DHCP specification says that clients SHOULD check that the IP address given to them is
not used elsewhere. If a route is found, the process is restarted.

: doDHbound \ -
Wait until the T1 timer expires, and go to the RENEWING state.

: doDHrenew \ -
Send DHCPREQUEST periodically until we get a response.

: doDHrebind \ —-
Send DHCPREQUEST periodically until we get a response.

: doDHrebooting \ --
Send DHCPREQUEST periodically until we get a response.

20.8 Receive BOOTP/DHCP packet

DHCP packet reception is treated as a special case because DHCP uses two ports and must
operate before the unit’s IP address has been set.

: doDHCPopt \ *option -- *option’
Process the given option if we know about it and step over it. Unknown options are ignored.
Values for known options are saved in the Givenxxx variables.

: scanDHCPopts \ *bootp len --
Given the DHCP data area, parse the DHCP options.

: RxDHCP { *pb | *udp *bootp len -- }

Process received DHCP and BOOTP packets. When we get here we know this is from port 67
to port 68 and that the Ethernet packet was either addressed to us or was broadcast.

: DHCPpacket? \ *udp -- flag

Given a UDP header, return non-zero if the packet is a DHCP packet. Used in the UDP layer
to route DHCP packets.

20.9 State machine initialisation and startup

> doDHidle smDHidle setDHstate
> doDHinit smDHinit setDHstate
’ doDHselect smDHselect setDHstate

> doDHrequest smDHrequest setDHstate
> doDHarpcheck smDHarpcheck setDHstate

> doDHbound smDHbound setDHstate
> doDHrenew smDHrenew setDHstate
’ doDHrebind smDHrebind setDHstate

> doDHrebooting smDHrebooting setDHstate

#68 equ DHCPport \ -- port
DHCP standard port.

60 PowerNet TCP/IP Stack

create DHCPServiceStruct \ -- addr
Holds the UDP Service info to run the DHCP code on receipt of DHCP packets, or idle on
timeout. Note that this must match the /UDPservice structure in UDP.fth.

: runDHCP \ --
Start the DHCP process and wait until a valid IP address has been set.

Chapter 21: DNS client

21 DNS client

61

The code in DNS.fth implements a simple DNS client. The focus of the design is on minimising

overall RAM usage. All data is transferred using UDP.

The code is compiled after the BSD layer because it makes heavy use of that layer.

The main documentation for DNS is contained in RFCs 1034 and 1035. The language is abstruse

at best.

21.1 Configuration

These equates and data are only used if not already defined.

1 equ DNSdebug? \ - x

Set this non-zero to display DNS debug information during execution.

#53 equ DNSport# \ -- port#

The standard DNS port number on the server.
3 equ #DNS \ ——u

Maximum number of DNS attempts if no response.

5000 equ /DNSms \ -- ms

Maximum time (in milliseconds) allowed for a DNS transaction.

#512 equ /DNS \ - u

Maximum size of the DNS payload.

variable DNSserver \ -- addr

Holds DNS server or 0 if not configured yet.

21.2 Queries and responses

For the full details of DNS queries and responses, see RFCs 1034 and 1035.

this documentation is a small subset.

The header (RFC 1035, 4.1.1) contains the following fields:

What follows in

62 PowerNet TCP/IP Stack

s N

11 1 1 1 1
01 2 3 45 6 7 8 9 01 2 3 4 5
+——t——t——F——F——F——F——F——F————F——F——F——F——F——+——+
I ID I
e e e ettt ot e e
IQR| Opcode |AA|TC|RD|RA| Z | RCODE |
=ttt -+
I QDCOUNT |
e Rt e e e e e S e e Rt e bt bl Lt St
I ANCOUNT I
S e R e e e LIt e e e e e St
I NSCOUNT |
-ttt ——F -t ——F——F——F——+——+
I ARCOUNT I
e e e e e it A e e R e Rt Lt et

A query section contains the following fields, QNAME (RFC 1035, 4.1.2), QTYPE (RFC 1035,
3.2.2) and QCLASS (RFC 1035, 3.2.4/5).

The question section is used to carry the "question" in most queries, i.e., the parameters that
define what is being asked. The section contains QDCOUNT (usually 1) entries, each of the
following format:

(N

601 2 3 4 5 6 7 8 9 0 1 2 3 4 5

B T S s s et TR SRR

| |

/ QNAME /

/ /

B s T S S s i Tt S TR S TR

| QTYPE I

B e e T S i i et S S

| QCLASS |

dm—t b — o —— b —p—— b ——————+
\ J
where:
QNAME a domain name represented as a sequence of labels, where each label consists of a

length octet followed by that number of octets. The domain name terminates with
the zero length octet for the null label of the root. Note that this field may be an
odd number of octets; no padding is used.

QTYPE a two octet code which specifies the type of the query. The values for this field
include all codes valid for a TYPE field, together with some more general codes
which can match more than one type of RR.

QCLASS a two octet code that specifies the class of the query. For example, the QCLASS
field is IN for the Internet.

The answer, authority, and additional sections all share the same format: a variable number of
resource records, where the number of records is specified in the corresponding count field in
the header. Each resource record has the following format:

Chapter 21: DNS client 63

()
11 1 1 1 1
0 1 2 3 45 6 7 8 9 01 2 3 45

ottt bt ——p—— bt ——F——F——+——+

I I

/ /

/ NAME /

I I

ottt —t——t——F——F——t——F——F——F——+

I TYPE |
t——t——t——F——t——t——F——t——F——t——F——t——F——F——F——F——+
| CLASS I
e e e e e it
I TTL |

do—t——t——t——t—— bbbt~ —f—— b~ ——+——+

I RDLENGTH |
e e e e T e e et e e e e |
/ RDATA /
/ /

do—t——t——t——t— bbbt~ — b —p—— b~ ——+——+

N

where:

NAME a domain name to which this resource record pertains.

TYPE two octets containing one of the RR type codes. This field specifies the meaning of
the data in the RDATA field.

CLASS two octets which specify the class of the data in the RDATA field.

TTL a 32 bit unsigned integer that specifies the time interval (in seconds) that the re-

source record may be cached before it should be discarded. Zero values are inter-
preted to mean that the RR can only be used for the transaction in progress, and
should not be cached.

RDLENGTH an unsigned 16 bit integer that specifies the length in octets of the RDATA field.

RDATA a variable length string of octets that describes the resource. The format of this
information varies according to the TYPE and CLASS of the resource record. For
example, the if the TYPE is A and the CLASS is IN, the RDATA field is a 4 octet
ARPA Internet address.

In order to reduce the size of messages, the domain system utilizes a compression scheme which
eliminates the repetition of domain names in a message. In this scheme, an entire domain name
or a list of labels at the end of a domain name is replaced with a pointer to a prior occurance
of the same name.

The pointer takes the form of a two octet sequence:

e s St S B e et e
[1 1] OFFSET I
Fm—d bttt —— b —— b ——f——f——f————+

The first two bits are ones. This allows a pointer to be distinguished from a label, since the

64 PowerNet TCP/IP Stack

label must begin with two zero bits because labels are restricted to 63 octets or less. (The 10
and 01 combinations are reserved for future use.) The OFFSET field specifies an offset from
the start of the message (i.e., the first octet of the ID field in the domain header). A zero offset
specifies the first byte of the ID field, etc.

21.3 Tools

4 buffer: DNSid \ -- addr
Holds the DNS transaction number. The number is incremented before use so that a good
response should have the same number.

create DNSQtemplate \ -- addr
Template for a DNS query.

#12 equ /DNSQtemplate \ -- len
Length of the DNS query template.

: genDNSQhead \ addr -- addr
Generate a DNS query header at addr and return the address just after the header.

:ocl++ \ addr b -- addr+1
Saves b at addr and increments addr.

: genLabel \ caddr len addr -- addr’
Add a label (n + n bytes) to the text at addr, returning the next label address.

: genDNSname \ caddr len addr -- addr’
Generate a name as a sequence of labels.

: genDNSquestion \ caddr len addr -- addr’
Generate the question section of a query.

: skipDNSQ \ caddr len -- caddr’ len’
Skip the query portion of a DNS reponse.

: skipRRname \ caddr len -- caddr’ len’
Step over the name field in a resource record (RR).

: cleanDNSq \ hs buffer --
Clean up the query by releasing the buffer and closing the socket.

21.4 User words

After acquisition of the DNS server’s IP address, either by specification or by DHCP, the only
function provided is to convert a domain name string, e.g. www.google.com into an IPv4 address.

: DNSquery \ caddr len -- ipl0
Send a UDP DNS query message requesting the IP address of the given domain name. Returns
the IP address for success, or zero on failure.

Chapter 22: SNTP client 65

22 SNTP client

As of PowerNet v4.30 (8 May 2008) the user interface to the SNTP data has changed and is not
compatible with the previous one.

The code in <PNet>\SNTP implements most of an SNTP client according to RFC1361 and
RFC4330. See also RFC1305. Do not attempt to modify this code until you have absorbed
these RFCs.

If you do not have an NTP server on your network, there are "public" ones available. See
www.ntp.org for details. Note when testing that advertised public servers are not always avail-
able. Your ISP probably maintains a functioning NTP server.

0 equ SNTPdebug? \ - x
Set this non-zero to display SNTP debug information during execution.

1 equ SNTPactions? \ - x
Defined the actions performed by default for timestamps.

0 Dummy action
1 Set clock
user defined action

22.1 SNTP equates and structure

#123 equ SNTPport# \ -- port#
The standard SNTP port number. The client (us) and the server use the same port number.

STRUCT /sntp \ -- len

SNTP payload structure after the IP and UDP headers. The Timestamp fields contain a
32.32-bit fractional time in network (big-endian) format. The first cell contains seconds,
measured since 1st Jan 1900, as per RFC1361. The second cell contains a fractional second.

If you are using the SNTP code with the Unix calendar code in Examples/UnizTime.fth\,
NTP timestamps are based from 1 Jan 1900, which has an LSECONDS value of
1291876096+86400=1291962496, so add 1291962496 to the NTP seconds value to produce a
Unix time value.

If you are using this code with NTP timestamps, these are based from 1 Jan 1900, which has
an LSECONDS value of 1291876096+86400=1291962496, so add 1291962496 to the NTP seconds
value to produce a Unix time value. Note that the Unix LSECONDS counter rolls over in 2036.
Suitable code to convert LSECONDS to time and date can be found in your cross compiler Fxam-
ples/UnixzTime.fth.

If you are planning a product which needs to cope with dates beyond 2035, note the following
from RFC4330.

As the NTP timestamp format has been in use for over 20 years, it is possible that it will be
in use 32 years from now, when the seconds field overflows. As it is probably inappropriate to
archive NTP timestamps before bit 0 was set in 1968, a convenient way to extend the useful life
of NTP timestamps is the following convention: If bit 0 is set, the UTC time is in the range
1968- 2036, and UTC time is reckoned from Oh Om Os UTC on 1 January 1900. If bit 0 is not
set, the time is in the range 2036-2104 and UTC time is reckoned from 6h 28m 16s UTC on 7

66 PowerNet TCP/IP Stack

February 2036. Note that when calculating the correspondence, 2000 is a leap year, and leap
seconds are not included in the reckoning.

22.2 SNTP Configuration
struct /SNTPparams \ -- len

A set of parameters to configure the SN'TP service This structure is the simplest way to interact
with the SNTP module. The elements have the following meaings :-

sp.SNTPserver
- the IPv4 address of the SNTP server to use.

sp.PollInterval
- log2 of the interval between polls in seconds, e.g. 5 for a 32 second interval.
This value is set to 5 by default, and you should probably increase it when you are
satisfied with your SNTP handling.

*\fo{sp.xtSetTime
- the xt of a callback to your application to process the received SNTP packet. This
is called whenever an SN'TP packet is received. The word receives the address and
length of the UDP data, i.e. a /SNTP structure described below, and should return
nothing (caddr len --). Note that the data is in a pbuff that is owned by the
SNTP engine and will be discarded. Copy required data out of the /SNTP structure.

sp.xtGetTime
- an optional configuration, and is not required for pure SNTP. If set, it must put
the current timestamp on the stack as a 32.32-bit fractional RFC1361 time. The
stack effect is (=- TimeLo TimeHi). The default action is a word that returns a
zero timestamp, which is SNTP-compliant behaviour. This configuration option is
supplied to give the system better resolution if the clock controller can generate an
NTP-compliant timestamp.

int sp.SNTPserver \ IP address of the server to use. Must be first.

int sp.PollInterval \ Time between SNTP polls, in seconds, as a power of two
int sp.xtSetTime \ Callback to alert caller to a new NTP packet

int sp.xtGetTime \ xt of word to provide current timestamp, or zero if n/a

end-struct

idata create SNTPparams \ -- addr

The /SNTPparams parameter block in IDATA space (RAM). Note: This layout must match the
layout of the /SNTPparams structure above. Patch this table with the actions you supply.
SNTPparams equ SNTPserver

Address holding SNTP server IP address.

22.3 SNTP state machine

The SNTP system is controlled by a state machine, which is run whenever the timer
*\fo{SNTPtimer) times out. The action performed is responsible for setting the next state
and updating the timer. The state machine actions are performed by SNTPidle (--) which is
called in the service task.

States of the SNTP state machine. See RFC1361

Chapter 22: SNTP client

67

-
| | | |
| INIT- |----Parameter set from caller--->| CONFIGURED |<------- +
| REBOOQOT| +=—=| |
| [|l - |
------- | | |
| NTPREQUEST Sent |
NTP Packet Received | |
| Fom e +
| | |
| ACTIVE |--- Timeout---------- +
| |
.
[sm

\ initialisation, wait for params from caller
\ Send SNTP Request, set up timeout
\ SNTP answer received within timeout period
\ number of states in this machine

smState smSNinit
smState smSNconfigured
smState smSNactive

sm] #smSNactions

variable SNTPTimer \ -- addr
Holds the TICKS time at which the next SNTP action will be performed, 0 for no action.

variable smSNcount \ -- addr

Down counter used to provide repetitions and timeouts.
variable smSNstate \ =-n

Holds current SNTP state.

create smSNactions \ —-- addr

Execution table containing the xts of the action words. This in CDATA space and is filled in later.

: setSNstate \ xt state --
INTERPRETER word that sets the action of the given state.
: SNTPidle \ -

Performed periodically to do SNTP actions.

22.4 State machine utilities

: SetSNTPtimer \ ms --
Set the SNTP timer to time out ms later.
.SNstate \ —-

Debug tool to display the current state of the SNTP state machine.

: toSNTPstate \ ms n state --

The given state will be executed after the given period in ms and n times if sensitive to the
number of times. Note that this specifies the interval until the state is executed, not the
repetition rate of the state.

22.5 Outgoing message tools
variable SNTPreply? \ -- addr

Set non-zero when an SNTP reply has been received, but the data has not yet been been
processed. During this time any following SNTP packets will be discarded.

68 PowerNet TCP/IP Stack

(SNTPPSend) { *pb ipaddr -- }
Send SNTP data as a UDP packet. The parameters are *pb, a pointer to a PBufl containing
the UDP data, and ipaddr, the IP address to send to.

: SendSNTP { | *pb *sntp -- }
Send an SNTP message.

22.6 SNTP state selection

Each state is controlled by three values defined here.
e Entry delay - delay before state is executed for the first time.
e Period - period between repetitions of the same state.

e Count - number of repetitions before smSNcount reaches zero.

: goSNTPInit \ —-
Go to the smSNnit state - stop SNTP activity and wait for parameters from the calling app.

: goSNTPConfigured \ -
Go to the smSNconfigured state; start the SNTP process.

: goSNTPActive \ --
Go to the smSNactive state - SNTP data has been received

: doSNinit \ -
SNTPauto?=nz: Do nothing until SNTP server has been set, either manually or by DHCP, and
then start SNTP.

: doSNconfigured \ —-
"Configured" state has timed out - send SNTP request and wait for response or timeout

: doSNactive \ -
"active" state has timed out; revert to "configured"

: runSNTP \ —-
Start the SNTP process and wait until a valid time has been returned.

22.7 Receive SNTP packet

: RxSNTP \ *pb --
Process received SNTP packets. When we get here we know this is from port 123 and that the
Ethernet packet was either addressed to us or was broadcast.

create SNTPServiceStruct \ -- addr
Holds the UDP Service info to run the SNTP code on receipt of SNTP packets, or idle on
timeout. Not that this must match the /UDPService structure in UDP.fth.

22.8 Set up state machine

> doSNinit smSNinit setSNstate
> doSNconfigured smSNconfigured setSNstate
> doSNactive smSNactive setSNstate

Chapter 23: TCP layer 69

23 TCP layer

You will find the books TCP/IP Illustrated, Volume 1 (Stevens) and Volume 2 (Wright &
Stevens) useful when exploring the PowerNet TCP code, especially for details of sequence and
ack numbers.

23.1 TCP configuration

The configuration below can now be found in PNconfig.fth.

0 equ TCPDEBUG \ -- n
Set this flag non-zero to generate debug messages.

#1460 equ TCPDATASIZE \ -- n ; EGS009
Transmit buffer size of pbuf less tcp hdr(ish).

#1460 2 * equ TCPTXBUFFSIZE \ --n
Size of the retransmission buffer for a TCP socket. One buffer of this size is allocated from the
heap when a TCP socket is created.

#1460 equ TCPWINDOWSIZE \ -- n ; EGS002
TCP window size.

#100 equ TXDELAYTIME \ -- ms
timer for delayed transmit (mSecs), default is 100 milliseconds.

#10 equ ACKDELAYTIME \ -- ms
timer for delayed ack (mSecs), default is 10 milliseconds.

#5000 equ TXRETRYTIME \ -- ms
timer for transmit retries (mSecs), default is 5 seconds.

#30000 equ TCPCONNECTTIME \ -- ms
timer for incoming connections to complete (mSecs), default is 30 seconds.

#30000 equ TCPMSLTIME \ -- ms
timer for maximum segment lifetime (mSecs, default is 30 secs).

#7200000 equ TCPIDLETIME \ -- ms
timer for idle disconnection (mSecs, default is 2 hours).

#12 equ TCPMAXRETRIES \ --n

Maximum number of transmission retries before returning SOCKET_ERROR, default is
12. If a receiving socket fails to accept new data, the total timeout will be TXRETRY-
TIME*TCPMAXRETRIES, the default being 60 seconds.

create MSSopt \ -- addr
Maximum Segment Size option.

23.2 Unknown socket requests
variable NoTcpHandle \ —-- addr
Holds the handle of a socket used to handle unknown TCP requests.

: Init-NoTcp-Socket \ -- res|SOCKET_ERROR

Initialise a socket structure to handle unknown TCP requests. SOCKET_ERROR is returned if the
socket cannot be initialised.

70 PowerNet TCP/IP Stack

23.3 TCP structures and equates

Most equates are not documented.

STRUCT tcp_hdr \ -- size ; of tcp header structure
TCP header structure.

STRUCT tcpcb \ -- size
TCP control block structure is defined in structs.fth.

: TcpState@ \ *sk -- state
Get socket state.

.tcpstate \'n--
Display tcp socket state. Only compiled if DIAGS? is non-zero.

: ShowTcpState \ *sk --
Display the state for the connection

23.4 TCP structure creation and deletion
: initTcpTxBuff \ buff *cb --
Use buff to initialise or reset the TCP transmit buffer.

: —TcpTxBuff \ *cb --
FREE the TCP transmit buffer and reset the transmit pointers.

: goCLOSED \ *sk --
Place socket in closed state.

(CloseSocket) \ *sk --

Prepare a socket for closure. Final closure and memory recovery is performed in the TCP idle
action to avoid race hazards.

: ChkTcpTxBuff \ *cb -- ior

If the TCPCB does not have a transmit buffer, create it. Return 0 if the buffer exists or has
been created. We assume that the TCPCB is valid.

23.5 TCP header use

: GetTCPHdrLen \ *tcp -— len
Extract length of TCP header (varies with options).

: GetTCPPktLen \ *ip -- len ; SFP005
Extract length of TCP packet

: >TCPData \ *tcp -- *tcpdata
Get pointer to TCP packet data.

: GetTCPDatalen \ *ip -- len ; SFP005
Extract length of TCP data packet.

: GetMSS \ *tcp defmss -- mss ; SFP045
If the TCP header in a SYN or SYN/ACK packet contains an MSS option return it, otherwise
return the default value. the output is limited to the range 0. .defMSS.

: GetMSSsyn \ *tcp -- mss ; SFP045
If the TCP header in a SYN packet contains an MSS option return it, otherwise return the
default value of 536. Used by servers to read the incoming MSS in a SYN packet.

Chapter 23: TCP layer 71

: GetMSSsyn/ack \ *tcp -- mss ; SFP045

If the TCP header in a SYN packet contains an MSS option return it, otherwise return the
default value of 536. Used by clients to read the incoming MSS in a SYN/ACK packet.

23.6 TCP checksum handling

: TcpCksum \ *tcp tcplen iprem iploc -- cksum
A generic TCP checksum function. The parameters supplied are used to form a 'pseudoheader’
from which the actual checksum is generated.

: GenTcpCksum \ *sk *tcp len —-—

Generate the TCP checksum using a prepared header and socket data for the IP addresses. Len
is the length of the full TCP packet.

23.7 TCP window size

The words in this section are the defaults for transmitting the TCP receive window size to the
remote end.

PowerNet queues input packets in the socket structure before passing them to the BSD layer.
Usually, ACKs are delayed. There are three ways to implement receive window handling, selected
by the equate genWinSize? in the PowerNet configuration file.

e genWinSize?=(. The receive window is always set to TCPWINDOWSIZE.

e genWinSize?=1. By default, we assume that if all the input packets have not been consumed
by the time the ACK is sent, the system is under heavy load and we do not want any more
input for the moment. This is indicated by setting the window size to zero. Otherwise,
the receive window is set to TCPWINDOWSIZE. Although this "bang bang" approach is very
crude, it works well unless many packets are being sent from PowerNet, as can happen when
web pages are served from memory.

e genWinSize?=2. The word genWindowSize (*sk *tcp --) is provided by you to suit your
application. See tcp.fth for the examples.

: genWindowSize \ *sk *tcp --

Given a socket *sk and a TCP header at *tcp, calculate the TCP window size and place it in the
TCP header. This version is used when genWinSize?=0, and implements the previous constant
window size.

: skMoreIp? \ xsk -- flag

Return true if the socket has an input packet waiting.

: NextWinSize \ *sk —- size

Return the TCP Window size to be used for the packet send.

: genWindowSize \ *sk *tcp --

Given a socket *sk and a TCP header at *tcp, calculate the TCP window size and place it in

the TCP header. This version is used when genWinSize?=1, and implements the "bang bang"
control mechanism.

23.8 TCP transmission primitives
: #unsent \ *cb -- n
Number of bytes waiting to be sent. If no transmit buffer has been allocated, this returns 0.

: #unacked \ *cb -- n ; SBDO11

72 PowerNet TCP/IP Stack

Returns the number of sent bytes awaiting acknowledgement. If no transmit buffer has been
allocated, this returns 0.

: setAckDelay \ *cb --
Set the ACK delay timer.

: checkRxWin \ *sk --

If the receive window is set to 0 and the delayed ACK timer is not running, start the delayed
ACK timer.

: checkTxUnsent \ *cb --

The TCP transmit primitive *\fo{SendTcpPkt) always clears the delayed ACK timer. If there
is no more data to send, clear the delayed transmit flag and set the delayed ACK timer if if the
receive window is zero.

: MakeTCPhdr \ fl ol *sk *tcp --
Take data from the socket *sk and create a TCP header at *tcp. The TCP header checksum is
set to 0.

: SendTcpPkt { *sk fl *opt ol *dat dl | *pb *tcp pl -- res }
Transmit a TCP packet directly through the IP layer.

*sk points to the socket struct to be used
fl the flag bits to use

*xopt,ol are the option pointer/length (if non-zero)

*dat, dl are the data pointer/length (if non-zero)
res = SOCKET_ERROR on failure, or no. of bytes sent on success
: SendTcpOpts \ *sk fl *opt ol -- ; SFP005

Send a packet that consists of the flags and options without data.

: SendTcpFlags \ *sk fl -- ; SFP005
Send a packet that just consists of the flags, without options or data.

: ForceTCPReset \ *sk -- ; SFP012
Force a socket reset, and then close the socket.

: sent<txbuff \ *cb len —-
Bump the transmit buffer after len bytes sent from txbuffer.

: SendBuff>TCP { *cb *sk | nb —- }

Send any buffered data out. No action is taken if there is nothing to send. Use this only in the
TCP state machine.

: SendAck>TCP { *cb *sk | nb —— }

Send any buffered data out with an ACK.

: skValid? \ *sk -- flag
Returns true if the socket structure is a valid TCP socket.

: skCanSend? \ *sk -- flag
Returns true if the socket structure is valid, the socket is in TCPS_ESTABLISHED state and
has not exceeded the maximum number of retry attempts.

: sendtoTCP { hsocket *bf len flags | bufflen *sk *cb nb -- res }
Move user data into the socket’s transmit buffer, waiting in the word until all data has been
transferred to the buffer. This may involve packet transmission while waiting for the buffer

Chapter 23: TCP layer

73

to empty. Because the socket may be closed during transmission, the socket must be checked
before each buffer fill operation. Note that parts of this code must not be pre-empted by the

scheduler.

23.9 TCP state primitives

: isTCP_Fin \ *tcp --
Set if FIN flag bit is set.

: isTCP_Syn \ *tcp --
Set if SYN flag bit is set.

: isTCP_Rst \ *tcp --
Set if RST flag bit is set.

: isTCP_Psh \ *tcp --
Set if PSH flag bit is set.

: isTCP_Ack \ *tcp --
Set if ACK flag bit is set.

: isTCP_Urg \ *tcp —--
Set if URG flag bit is set.

: 1sTCP_SYN/ACK \ *tcp --

we don’t know about. Go send an RST message. The packet buffer is freed.

: set2MSL \ *cb --

TIF

TIF ;

TIF ;

TIF ;

TIF ;

TIF ;

set

set

set

set

set

if flag bit

if flag bit

if flag bit

if flag bit

if flag bit

flag ; SFPOO5
Set if SYN and ACK flags are both set.

: SendNoSocket { *pb *tcp | *ip *sk *cb -- }
Handles sending the necessary RST replies when a connection request is made for a TCP socket

Start the 2xMSL timer for disconnection.

: setldle \ *cb —-

Start the disconnect timer with the IDLE period.

: setConn \ *cb --

is

is

is

is

is

set

set

set

set

set

Start the connect timer with the TCPCONNECTTIME period.

: goSYN_REC \ xsk --

Put the given socket into TCPS_SYN_RECEIVED state. This transition is performed by a

server.

: goESTABLISHED \ *sk --

Move the socket into ESTABLISHED state.

: goLAST_ACK \ xsk --

Move the socket into LAST_ACK state from CLOSE_WAIT.

: goTIME_WAIT \ *sk --

Move the socket into TIME_WAIT state.

: goCLOSING \ *sk --

Move the socket into CLOSING state from FIN_.WAIT1

: goFIN_WAIT_1 \ *sk --

Move socket into FIN_WAIT_1 state from SYN_RECVD or ESTABLISHED.

: goFIN_WAIT_2 \ *sk --

74 PowerNet TCP/IP Stack

Move the socket into FIN_WAIT_2 state.

: goCLOSE_WAIT \ *sk --
Move the socket into CLOSE_WAIT state after receiving a FIN in ESTABLISHED.

: goSYN_SENT \ *sk —-
Move the socket into SYN_SENT state from CLOSED.

23.10 LISTEN connection queues

From PowerNet v4.8 onwards, listening sockets save connection attempts (receipt of SYN) on
a linked list of connection items. When the application, e.g. a Telnet client, wants to use a
connection, it inspects the queue, and transfers the next item on the list to a new socket in
SYN_RECEIVED state. The new socket waits until the socket gets to ESTABLISHED state at
which point the new connection can be used to transfer data.

Compared to the previous design, listening sockets use less RAM and, because connection at-
tempts are stored, the design is kinder to single-threaded servers.

struct /Connltem \ -- len
Holds unprocessed connection information after a SYN packet has been received by a listening

socket. All entries are in native order.
:o.ci \ *ci --

Display the connection queue item.
:.cq \ hs --

Display the socket’s connection queue.

: TCPConnQ? \ *sk -- flag
Return true if there is a connection on the queue.

: #TCPConnQ \ *sk -— n

Return the number of connections on the queue.

: ciSame? \ *cil *ci2 -- flag

Return true if the two connection items are for the same connection, i.e. a retry has has occurred.
: onConnQ? \ *ci *sk -- flag

Return true if the connection is already on the socket’s connection queue.

: >TCPConnQ \ *tcp *sk --

Add an entry to a listening socket’s connection queue. On failure no action is taken and we
assume that the connecting socket will retry.

: TCPConnQ> \ *skl *ska --

Take a connection from the listening socket *skl and transfer it to the accepting socket
which enters TCPS_SYN_RECEIVED state.

*ska

23.11 TCP state handlers
: DoTcpClosed { *pb *sk | *ip *tcp *cb -- }
Handle incoming packet while in CLOSED state.

: DoTcpListen { *pb *sk | *tcp *cb -- }
Handle incoming packet while in listening state (server).

: DoTcpSynReceived { *pb *sk | *tcp *cb -- }

Chapter 23: TCP layer 75

Handle incoming packet while in SYN received state (server).
: DoTcpSynSent { *pb *sk | *tcp *cb -- }

Handle incoming packet while in SYN sent state (client).

: acktxbytes \ *cb nb -- nb’ ; SBDO11

Removes n bytes from the transmit buffer.

: DoTcpAcknowledge { *tcp *cb *sk | nb -- }
Handles incoming ACK. See Wright & Stevens about ack numbers.
: DoTcpEstablished { *pb *sk | *ip *tcp *cb tdlen -- }
Handle incoming packet while in established state.

: DoTcpLastAck { *pb *sk | *tcp *cb -- }

Handle incoming packet while in last ACK state.

: DoTcpFinWaitl { *pb *sk | *ip *tcp *cb -- }
Handle incoming packet while in FIN_WAIT1 state.

: DoTcpFinWait2 { *pb *sk | *ip *tcp *cb -- }
Handle incoming packet while in FIN_WAIT?2 state.

: DoTcpClosing { *pb *sk | *tcp *cb —— %}

Handle incoming packet while in closing state.

: DoTcpCloseWait \ *pb *sk --

Handle incoming packet while in CLOSE_WAIT state.

: DoTcpTimeWait { *pb *sk | *tcp *cb -- }

Handle incoming packet while in timed wait state.

: IncTcpPacket { *pb hs | *sk *xcb -- }

Process an incoming packet destined for hs.

: RxTCPPacket { *pb | *ip *tcp hs *q bf -- }
Process an incoming TCP packet.

23.12 TCP timer handling
: DoTcpRetry? \ *cb *sk -- ; SFP021
Send data if tx retry timer expiration.

: DoTcpDelayedData? \ *cb *sk -- ; SFP021
Send data if the transmit delay timer has expired.

: DoTcpDelayedAck? \ *cb *sk -- ; SFP021
Send ack/data if ack delay timer expiration.

: DoTcpDisconDelay \ *cb *sk -- ; SFP021
Handle disconnect delay timer expiration.

: DoTcpConnectTimeout \ *cb *sk -- ; SFP021
Handles timeout for failed connections.

#5 tick-ms max equ TcpldleMs \ -- ms ; SFP030
Interval in miliseconds between TCP idle checks. Using this timer mechanism reduces the
CPU load at the expense of transmission performance on local networks. Setting the value
of TcpIdleMs to zero turns the mechanism off. The value set here in tep.fth is only used if
TcpIdleMs has not been defined in your PNconfig.fth file.

76 PowerNet TCP/IP Stack

0 value TcpIldleTimer \ -- time ; SFP030
Time for next TCPIDLE check.

: TcpIdle { | *sk *cb —- }
Handles TCP idle time processing.

23.13 Primitives for the BSD layer

: Tcp_Open { *sk | *cb res -- res }
Allows an application to open the TCP connection. N.B. This is a blocking function. It will not
return until connected or timed out.

: Tcp_Close { *sk | *cb res -- res }
Allows an application to close the TCP connection cleanly. This is the TCP primitive for the
BSD disconnect function.

23.14 TCP initialisation
: TcpInit \ -
Initialise the TCP layer.

23.15 Checksum test code

Chapter 24: SMC LAN91C92/4/6 Ethernet Driver Code 7

24 SMC LAN91C92/4/6 Ethernet Driver Code

24.1 Introduction

The file Smc91C9x.fth contains the hardware driver layer for the Standard MicroSystems
LANO91C92/4/6 Ethernet controller chips as used on the MPE ARM Development Kit,
MPE/Hiden SA1110 StrongBox and other MPE boards. The data sheets for these devices
may be found at www.smsc.com and the part number for the MPE board is LAN91C96I, which
can be used at 5v or 3.3v.

The controller has 64 8 bit registers organised as four banks of 16.

The code is written for portability rather than speed and uses byte accesses only. This permits
the code to be used without change on big and little endian CPUs regardless of the bus interface
width (8 or 16 bits).

24.2 Hardware gotchas

This code assumes a CPU with byte addressing. A cell addressed machine, e.g. most DSPs, will
require considerable changes to the source code for memory buffer transfers.

When operating with fast CPUs note the following:
e The cycle time of the chip is 185ns (min. back to back access), but the read access time is
only 40ns. This is detailed in the data sheet.

e At least 400ns is required between a data register access and a pointer register access. At
least 400ns is required after writing the pointer register and accessing the data register. See
the data sheet.

e The words EC@ and EC! and the optional EW@ and EW! 16 bit words by default assume that
the SMC chip is memory mapped and that that the SMC memory area is contiguous. If
you have a 16 or 32 bit bus and one or more low address lines are ignored you must adapt
these words yourself to suit your hardware.

24.3 Configuration

The following must be defined before the file DRIVERS\SMC91C9x.FTH is compiled.

: const equ ; \n--; —-n
If you are using a standalone target with heads and you want interactive access to all the registers
and bit masks, define CONST as CONSTANT, otherwise by default CONST is defined as EQU.

$50000000 const EtherBase \ -- addr
Define the base address of the Ethernet controller.

0 equ SMC167 \ -- flag
If SMC16 is non-zero, the driver will use 16 bit register accesses where possible, otherwise it will
use two 8 bit accesses. SMC16 should only be set non-zero for little endian CPUs.

1 equ fastCPU? \ -- n
Set this value false if no software intervention is required to meet the 400ns timing requirement
before and after changing the pointer register.

0 equ smcDiags? \ -- flag

78 PowerNet TCP/IP Stack

Set this equate true to compile diagnostic code for register dumping and so on. False by default.

0 equ eeprom? \ -- flag

Set this equate true if the LAN91C9x has an attached EEPROM for configuration data storage.
False by default.

0 equ GenericIP? \ -- flag

Set this equate true if the Generic IP device structure defined in ETHERCOM.FTH is required.
This is only required for systems using multiple IP devices in future releases of PowerNet.

1 equ sniff? \ -- flag

Set this equate true to compile the packet sniffer code, which can be used to test Ethernet
reception.

create EtherAddress \ -- addr

Holds the Ethernet MAC address (six bytes). Note that you must obtain these from the IEEE
(www.ieee.org) or from other sources.

create IpAddress \ -- addr
Holds the Ethernet IP address (four bytes).

24.4 Constants

BankSelect
Offset of bank select register

BankO Registers
TCRL Transmit Control Register - lo byte
TCRH Transmit Control Register - hi byte

TXSTATUS Transmit Status Register

RCR Receive Control Register
MIR Memory Information Register
MCR Memory Control Register

Bank1l Registers

Configl Configuration Register - lo byte

Configh Configuration Register - hi byte

IAOQ Hardware Address, Ethernet MSB
IAl Hardware addr
IA2 Hardware addr
IA3 Hardware addr
IA4 Hardware addr
IA5 Hardware addr

Ctrh Control Register - hi byte

Chapter 24: SMC LAN91C92/4/6 Ethernet Driver Code

Bank2 Registers

MMU Memory management unit cmd reg
PNR Packet number register
ARR Allocation result register.

Pointerl Memory pointer register

Pointerh Memory pointer register

Datal Reg to send packets too...
Datah Reg to send packets too...
IntStatus

IntMask

Misc. Constants

RelRx MMU Command to release memory from an rx
RxRd SMC Command to read received packet
TxWr SMC Command to write to tx area of ram
AllocIntMask
Memory allocated mask
MaxMsgSize
Max 802.3 Ether frame size in bytes
AllocTx
bit0 Bitmask
bit1 Bitmask
bit2 Bitmask
bit3 Bitmask
bit4 Bitmask
bith Bitmask
bit6 Bitmask
bit7 Bitmask

EvenTx Control byte for tx of even bytes
0ddTx Control byte for tx of odd bytes
RxTask# Multi Task ID

24.5 Hardware Interface Layer

The default code is for a memory-mapped device at base address EtherBase.

: ec! \ b offset --
Set an 8 bit register contents to b, in the selected bank.

: ec@ \ offset -- val
Read an 8 bit register in the selected bank.

79

80 PowerNet TCP/IP Stack

: ew! \ w offset --
For LITTLE-ENDIAN CPUs only. Set a 16 bit register contents to w, in the selected bank.

: ew@ \ offset -- val
For LITTLE-ENDIAN CPUs only. Read a 16 bit register in the selected bank.

: ec! \ val offset --

VFX optimising compilers will probably produce shorter and faster code by using a compiler
macro for EC!.

: ec@ \ offset -- val

VFX optimising compilers will probably produce shorter and faster code by using a compiler
macro for EC@.

: ew! \ val offset --

VFX optimising compilers will probably produce shorter and faster code by using a compiler
macro for EW!.

: ew@ \ offset -- val

VFX optimising compilers will probably produce shorter and faster code by using a compiler
macro for EW@.

: 400ns \ -

For fast CPUs, use this hardware dependent word to ensure at least 400ns between back to back
Ethernet chip accesses. This is required for correct operation of the pointer register. The default
version here assumes 4 instructions per iteration at 5ns per instruction, and the call/return and
set up overheads are ignored. See FASTCPU? above.

: 400ns \ -—-

Use this version if your CPU takes at least 400 ns between back to back Ethernet chip accesses.
See FASTCPU? above.

: SetBank \ bank —- ; bank = 0 to 3

Select the active register bank.

24.6 Diagnostics
.bank \ --
Display register contents for currently selected SMC bank.

1 .reg \ -
Display contents of all SMC Ethernet Controller’s registers

24.7 Driver Layer
: eISR@ \ -- bmask
Read the bank 2 interrupt status register (IST).

: eMMU! \ cmd --
Send a command to the bank 2 MMU register.

: eTCR1@ \ -- bmask
Read the bank 0 TCRI register.

: EnEtherTx \ —-
Enable Ethernet transmission. Selects bank 0.

: eSoftRst \ -
Initiate software reset - needed to clear Tx lock up.

Chapter 24: SMC LAN91C92/4/6 Ethernet Driver Code 81

: init-SMC \ —-
Initialise SMC chip.

: init-EtherTx \ --
Enable Ethernet TX module.
: init-EtherRx \ --
Enable Ethernet RX module.

: etheradd>CS \ addr --
Store 6 byte Ethernet address into SMC chip from memory buffer.

: InitEther \ --
Perform a full initialisation of the chip, enabling Rx and Tx, and setting up the Ethernet MAC
address from ETHERADDRESS.

: EtherLink? \ -- flag
Return true if the Ethernet link is established.

: AllocTxMem \ n -- mask

Allocate n bytes of memory to hold a packet for transmission. Return the contents of the ARR
register, or -1 for a fatal error.

: GetTxMem \ n -- ior
Allocate n bytes of memory to hold a packet for transmission.

: WritePacket \ addr len --
Write an Ethernet frame to chip for transmission.

: IsRx? \ — t|f
Check if incoming data is present, returning true if a packet is available for get_ether_pkt
below.

: DiscardRX \ -
Throw away pending input packet due to lack of memory.

: get_ether_pkt \ *dest maxlen -- len

Get pending receive packet to a buffer. Note that data is valid only when ISRX? returns true,
so that you must poll with ISRX? before using GET_ETHER_PKT.

: IsTx? \ n -- flag
Return true if a packet of length n can be sent.

: send_ether_pkt \ addr len --

Send packet from supplied buffer. The word will block until sufficient packet memory is available.
Note that you should read incoming packets regularly, otherwise it is possible to get into a
situation in which SEND_ETHER_PKT blocks for ever because there is not enough space in the
device for the transmission packet. Theoretically, this should not happen because 1536 bytes
are reserved for transmission, but ...

24.8 Attached EEPROM

: eel \ word offset --
Write a 16 bit word into the EEPROM at EEPROM address offset. The EEPROM may not be
present in all SMC91C9x implementations.

: ee@ \ offset -- word
Read a 16 bit word from the EEPROM at EEPROM address offset. The EEPROM may not be
present in all SMC91C9x implementations.

82 PowerNet TCP/IP Stack

24.9 Generic I/0 for PowerNet v3 and above

The code in this section is only compiled if the equate *\fo{GenericIP?) has been defined and
1S non-zero.

The layout and usage of this structure is defined in the file COMMON\ETHERCOM.FTH.

-
create IPdevice
> MyInit , \ 0: initialisation
> MyTerm , \ 1: shutdown
> MyRx? , \ 2: receive test
> MyRx \ 3: receive packet
> MyTx? , \ 4: transmit test
> MyTx , \ 5: transmit packet
> MyGetAddr , \ 6: Get device addresses
> MySetAddr , \ 7: Set device addresses
> MySave , \ 8: Save IP device state
-
: GetAddrs \ -- ipaddr macaddr 0

For Generic I/O IPDGetAddr function

: SetAddrs \ ipaddr|0 macaddr|0 mode --

Set up the Ethernet MAC and the IP addresses. At present mode is always 0, but will be used
in future releases to indicate data formats. If ipaddr or macaddr are zero, the stored data will
not be changed.

create SMCvector \ -- addr
The device vector needed by PowerNet v3+ and COMMON\ETHERCOM.FTH.

SMCvector constant IPDevice \ -- addr
IPDevice is the default device name required by ETHERCOM.FTH. If you have multiple ports,
only one should be named IPDevice.

24.10 System test

This code is only compiled if the equate SNIFF? is non-zero.

1536 buffer: pbuff \ —-- addr
Buffer for SNIFF.
: sniff \ —-

Listens to the network and displays all the traffic that has a broadcast destination or is for this
device. SNIFF can be used to test reception.

Chapter 25: Ethernet processing task 83

25 Ethernet processing task

The Ethernet ports are handled by a task which despatches PBUFs to and from other layers of
the stack.

0 equ LoseTX? \ --u
When this EQU is set non-zero, every uth transmit packet will be discarded. This equate is used
when testing the TCP retry mechanism and for simulating lossy links.

0 equ LoseRX? \ --u
When this EQU is set non-zero, every uth receive packet will be discarded. This equate is used
when testing the TCP retry mechanism and for simulating lossy links.

25.1 Ethernet packet handlers
: Send>Ether \ *pb *rt -- len

Send the data in the supplied PBuf (chain).

params *pb is a pbuf set to the IP layer

returns #bytes sent if OK else SOCKET_ERROR

: EtherIpPacket \ *pb --
Process a PBUF which holds a received Ethernet IP packet.

: RxEtherPacket \ *pbuf --
The PBUF holds a received Ethernet packet which is processed.

: RxEtherPkt \ -- ; SFP001
Get waiting packet from the Ethernet driver layer.

25.2 Link failure detection

0 value Linked? \ --
Returns true if PowerNet is linked to the world by an active connection.

create LinkUpChain \ -- addr
Anchors the chain of words executed when the link is established. This chain must be defined
at compile time.

create LinkDnChain \ -- addr
Anchors the chain of words executed when the link fails. This chain must be defined at compile
time.

: AtLinkUp \ xt --
Add the word whose zt is given to link up chain. INTERPRETER word.

: AtLinkDn \ xt —-
Add the word whose zt is given to link up chain. INTERPRETER word.

useDHCP? [if] °’ runDHCP AtLinkUp [then]
Start DHCP when the link comes up.

useSNTP? [if] ’ runSNTP AtLinkUp [then]
Start SNTP when the link comes up.

: checkLink \ -- flag
Check PowerNet’s connection and set Linked?. Returns true if PowerNet is linked to the world
by an active connection.

84 PowerNet TCP/IP Stack

variable CheckTime \ -- addr
Holds the time at which the Ethernet link should next be checked.

: nextCheck \ -
Set the next link check time. This is normally every 200 ms.

: CheckEther \ -

The Ethernet link is checked every so often for an established link. If the link fails, the Ethernet
task halts until the link is re-established. When it is re-established a user-extensible chain of
actions takes place. This permits the system to restart actions such as DHCP and SNTP.

25.3 Ethernet task
: DoRunEther \ —-
The task action that handles all general background Ethernet processing.

task EtherTask \ -- addr
The Ethernet handler task.

: RunEtherTask \ --
Launch the Ethernet support task.

25.4 Routing
(AskForEtherRoute) \ ip -- addrl|0
See if we can get a route using ARP.

: AskForEtherRoute \ ip -- addrl|0
See if we can get a route using ARP, but retrying several times.

Chapter 26: SLIP interface

26 SLIP interface

The SLIP interface is handled by a task using a state machine. See SLIP\SLIPCOM.FTH.

26.1 SLIP equates
$CO equ FRAME_END \ -- char
Frame end character.

$DB equ FRAME_ESCAPE \ -- char
Frame escape character.

$DC equ TRANS_FRAME_END \ —-- char
Trans Frame end character.

$DD equ TRANS_FRAME_ESCAPE \ -- char
Trans Frame escape character.

#1000 equ SLIP_RX_TIMEOUT \ -- ms
Receive timout in milliseconds.

26.2 Slip input functions

(gotSlipChar) \ char --
Char is saved in the input buffer.

: gotTransFrameEsc \ —-
Received a TRANS_FRAME_ESCAPE.

: gotTransFrameEnd \ --

Received a TRANS_FRAME_END.

: gotFrameEsc \ --
Received a FRAME_ESCAPE.

: StartOfPacket \ --
Set up for a new packet.

: EndOfPacket \ --
We got the end of a packet.

: gotFrameEnd \ --
We received a FRAME_END character.

: GotSlipChar \ char --
Handle an incoming SLIP char

: GetSlipChars \ --
Receive characters from a SLIP port until all are in.

26.3 Slip output functions
: Send>Slip { *pb *rt | 1n -- int }
Send the data in the supplied PBuf (chain).

*PB the first pbuf in the chain (only 1 allowed)
*RT points to the required routing table entry
int number of bytes sent if OK else SOCKET_ERROR.

86 PowerNet TCP/IP Stack

(SendSlipChar) \ char --
Sends the char to the SLIP port.

: send_frame_esc_char \ --
Sends the escape sequence to the SLIP port.

: send_frame_end_char \ --
Sends the escape sequence to the SLIP port.

: SendSlipChar \ char --

Sends the character to the SLIP port, processing escape characters.
: SlipTx \ *pbuf --

Send the pbuf chain out of the slip port.

26.4 SLIP support task

0 value SlipDevice \ -- addr
You MUST define a REAL serial port device for SLIP.

: DoSlipPort \ -- ; task action
The action of the slip tasks.

task SlipPortTask \ -- addr
Slip port task.

: RunSlipTask \ --

Run the SLIP port task. Changes will be necessary to support multiple SLIP devices. The
technique used by the TELNET launcher is appropriate. See SERVICES\TELNET.FTH.

Chapter 27: BSD API layer 87

27 BSD API layer

Despite its complexity, this layer is unashamedly provided to ease porting applications whose
description in the TCP/IP literature is in terms of the well known BSD API. The Windows
Winsock API is similar to the BSD API. Note that the PowerNet version does not provide all
the facilities of the full BSD API. See SOCKETS\BSD.FTH.

27.1 SOCKET_ERROR returns

These words are provided to factor out error handling in the BSD layer. By default they are
implemented as COMPILER macros. If implemented as discrete words, remove the comments
around the "R> DROP" phrases.

: 7se0X \ flag -- ; flag -- SOCKET_ERROR ; exits caller
If flag is true, returns SOCKET_ERROR and exits the CALLING WORD; otherwise does
nothing. This is provided as a factor for parameter testing.

: 7selX \ n flag -- n | SOCKET_ERROR ; exits caller
If flag is true, drops 1 item, returns SOCKET_ERROR and exits the CALLING WORD; oth-

erwise does nothing. This is provided as a factor for parameter testing.

: 7se2X \ n1 n2 flag -- nl n2 | SOCKET_ERROR ; exits caller
If flag is true, drops 2 items, returns SOCKET_ERROR and exits the CALLING WORD;
otherwise does nothing. This is provided as a factor for parameter testing.

: 7se3X \ n1 n2 n3 flag -- nl n2 n3 | SOCKET_ERROR ; exits caller
If flag is true, drops 3 items, returns SOCKET_ERROR and exits the CALLING WORD;
otherwise does nothing. This is provided as a factor for parameter testing.

27.2 BSD factors

These words are not part of the official BSD interface. They are either factors or useful in
low-level code.

(pollSocket) \ #*sk -- *pb|0|SOCKET_ERROR
Non-BSD function to poll a socket and return the next input packet buffer if available.

(ioctlRead) \ #*arg *sk -- O|SOCKET_ERROR
Return the amount of data that can be read from a socket, storing it at address *arg.

(ioctlState) \ *arg *sk -- res|SOCKET_ERROR
Return the current socket state to the address *arg.

: sendtoUDP { hsocket *buffer bufflen flags | *pb res -- res }
A factor used to send the *buffer/bufflen block of memory by UDP.

: SaveSktRem \ *sk -- remip remport
A factor to return the socket’s current remote IP address and port.

: RestoreSktRem \ remip remport *sk --
A factor to restore the socket’s current remote IP address and port.

: recvinfo \ *sk *name --

A factor to extract the remote IP and port details from a received TCP or UDP packet. N.B.
Replaces the now obsolete RecvUDPinfo and RecvTCPinfo. RecvInfo uses a socket structure as
input.

88 PowerNet TCP/IP Stack

: getSocketInfo \ hs *name *len --

If *len contains at least SOCKADDR_IN and *name is non-zero, *name is the address of a
SOCKADDR_IN structure. Copy the remote IP address and port details to *name.

27.3 BSD Style API

This is a loose implementation of the BSD sockets interface. It is not exactly compliant but will
run most BSD style code without too many nasty surprises.

$04004667F constant FIONREAD \ - x
IOCTLSOCKET command code to obtain the number of bytes available.
$080000001 constant GET_TCPSTATE \ - x

IOCTLSOCKET command code to get the TCP state..

: ioctlsocket \ hs command *arg -- res|SOCKET_ERROR

Perform socket operations selected by the command parameter. Data is returned at *arg. The
supported operations are FIONREAD and GET_TCPSTATE. FIONREAD works with both
UDP and TCP sockets.

: pollSocket \ hsock -- #bytes|SOCKET_ERROR

Non-BSD function to poll a socket and return the number of bytes available to be read. Can be
used with both UDP and TCP sockets.

: bind \ hs *name namelen -- res

Associate a socket with a family, protocol and port. The parameters *name and namelen
(addr/len) describe a SOCKADDR_IN structure. The family must be AF_INET. The port is the
port number that will be listened to. The IP address is usually 0, in which case the system’s
IP address will be used. This allows use with systems which obtain an IP address dynamically,
e.g. through DHCP.

: bindTo \ hs af port ipaddr -- res

A non-BSD function that binds a socket to the given set of address family (af), port (port) and
IP address (ipaddr). The returned result (res) is 0 for success, otherwise SOCKET_ERROR.
N.B. subject to change. See BIND.

: closesocket \ hs -- O|SOCKET_ERROR

Close the socket. This is the close of last resort as it simply reclaims socket memory without
performing any notification to the other end. Use DISCONNECT in preference.

: connect \ hs *name namelen -- res

Open a connection to a destination defined by the SOCKADDR structure described by
*name/namelen. The adress family in the structure must be AF_INET. On success (res=0), the
socket is ready to send and receive data.

: disconnect \ hs -- res

Disconnect the socket. Returns 0 on success.

: DiscAllSockets \ —-
Disconnect all socket connections.

: socket \ address-family socket-type proto-group -- hs|O0

Create a new socket of the given characteristics, returning the new socket number (1..n) on
success, or zero for failure. DO NOT CHANGE the return of INVALID_SOCKET=zero for failure!

: sendto \ hsocket *buffer bufflen flags *name namelen -- len/err

Chapter 27: BSD API layer 89

A factor used to send the *buffer/bufflenlen block of memory by TCP. If *name is a valid
SOCKADDR_IN structure then save the current remote address for the socket and override with
supplied settings using CONNECT.

: send \ hsocket *buffer bufflen flags -- #sent|socket_error

The more common form of sendto when no address override is required.

: recvfrom \ hsocket *buffer bufflen flags *name *namelen -- res

Receive data from a socket. The parameters are as for SENDTO, except that *namelen is a pointer
to the length. If *name/*namelen is a valid SOCKADDR_IN structure, on return it will contain
the sender’s address and port. Note that only one packet is read, and if you do not read all of
it, the remaining data is not discarded.

! recv \ hsocket *buffer bufflen flags -- len|err

Receive up to bufflen bytes of memory from the current packet returning the length read. Note
that only one packet is read, and if you do not read all of it, the remaining data is not discarded.

: Listen \ hs -- O|SOCKET_ERROR

Starts a bound socket listening on the port specified by the previous BIND or BINDTO operation.
LISTEN just changes the mode of the socket; it does not wait for anything to happen. The socket
must be a TCP socket.

: -Listen? \ hs —- state true | O

Check the socket state, and return the state and true if it not listening. Otherwise, just return
false.

: waitListener \ hs -- flag

Wait until a connection is established or closed/closing. Return flag=false if established. If the
socket is not established, there has been an error in the listening socket.

: waitConnQ \ hs -- ior
Wait until the listening socket has a connection pending. Return 0 on success, or non-zero if
the listening socket has failed.

: repSocket \ hsl -- hs2|0
Given a socket, make another of the same type using hs! as a template.

: repService \ *skl *sk2 -- ior

create a new service data structure for sk2 using the details in skI as a template.

: WaitNextConn \ hsl -- hsa O | reason -1

Wait for the next connection on listening socket hsl, create a socket and service for the connection,
and return the new socket hsa and 0. If a failure occurs, return reason and -1. If the listening
socket failed reason is non-zero.

: Saccept \ hs *skaddr *sklen -- hsnew|SOCKET_ERROR

The PowerNet version of the BSD accept() call is named Saccept to prevent a name conflict
with the input routine accept. Wait until a connection has been made to the listening TCP
socket hs or there is an error in the socket. If a connection has been established, transfer it to
a new socket hsnew. If *skaddr is non-zero the contents of *sklen are at least SOCKADDR_IN,
*skaddr is filled in with the IP address and port of the remote end.

After a successful operation, the new socket is used for the connection just made, and the old
socket remains listening.

If SOCKET_ERROR is returned, no new socket is available and previous socket hs should be
checked to see if it should be closed and remade.

90 PowerNet TCP/IP Stack

27.4 Extensions

These extensions make life a bit simpler when connecting to servers.

: TCPsocket \ -- hs|O
Create a TCP socket. Return the socket handle on success or INVALID_SOCKET (0) on error.

: connectTo \ caddr u port# socket -- socket ior

Attempt to connect to a server. The socket has already been created in the appropriate mode.
The value of socket must be a positive non-zero number. Caddr/u describes the server address
either as a name or an IPaddress string and port# is the requested port. If u is zero, caddr is
treated as a 32 bit number representing an IPv4 address. In this implementation, u must be
zero. On success, the socket and zero are returned, otherwise SOCKET_ERROR and an error
code are returned.

: TCPConnect \ c-addr u port# -- socket ior

Attempt to create a TCP socket and connect to a server. Caddr/u describes the server address
either as a name or an IPaddress string and port# is the requested port. If u is zero, caddr is
treated as a 32 bit number representing an IPv4 address. In this implementation, v must be
zero. On success, the socket and zero are returned, otherwise SOCKET_ERROR and an error
code are returned.

: UDPConnect \ c-addr u port# -- socket ior

Attempt to create a UDP socket and connect to a server. Caddr/u describes the server address
either as a name or an IPaddress string and port# is the requested port. If u is zero, caddr is
treated as a 32 bit number representing an IPv4 address. In this implementation, u must be
zero. On success, the socket and zero are returned, otherwise SOCKET_ERROR and an error
code are returned.

Chapter 28: PowerNet diagnostic tools

28 PowerNet diagnostic tools

: check_tcp_cksum { *ip | *tcp buff[#12] -- flag }
Check incoming TCP cksum, returning true for a good checkum.

: dump_line \ address bytes --
Display a small memory area as a single line of bytes followed by the ASCII equivalent.

.protocol \ protocol --
Display the protocol type.

.socket_type \ type --
Display the socket type.

.iphdr \ addr --
Display an ip header.
: .udp \ *ip --
Prints UDP packet information.
.tcpFlags {f1 -1
Display flag word contents.
1 .tep { *ip | *tcp —- }
Prints TCP packet information.
.tcpeb { *cb - }
Prints TCP packet information.

.sockaddr_in \ “sockaddr_in --

Display the contents of a SOCKADDR_IN or SOCKADDR structure.

: show-socket \ hs --
Short form of display of socket data.

: netstat \ -
Display short-form data about all non-closed sockets.

.ippkt { *ip -- 2}
Prints IP packet information.

.etheradd \ addr --
Display an Ethernet MAC address at addr.

.route \ *rt --
Show the routing table entry contents.

.routes \ -
Show all routing table entries.

: .qd \ *q --
List the queue data.

(.socket) \ *sk --
Display the supplied socket structure.

.socket \ HSOCKET --
Long form display from the supplied socket handle.

.k { | *sk —- }

92

Show socket states in short form.

¢ L1k \ --
Show all active socket states in long form.

.err \ -
Display current socket error.
Dz \ --
Dump 64kb of memory at 0000:0000 and time the result
performance testing.

1 zz \ --
Perform Z above until a key is pressed.

PowerNet TCP/IP Stack

. Mostly used for Telnet checking and

Chapter 29: TFTP receiver 93

29 TFTP receiver

The TETP server receives files from a remote client. Only one connection at a time is supported.
See SERVICES\TFTP.FTH.

In order to use the TFTP server, you must define the actions required of the TFTP events.

N.B This is alpha test code.

29.1 Ident Block

create $MODULE \ -- addr
Module name string.

create $VERSION \ -- addr
Version string.

create $COPYRIGHT \ -- addr
Copyright string

29.2 Global data

0 VALUE TFTP_Socket \ - n

Socket used by TFTP server.

#512 VALUE TFTP_BLOCKSIZE \ - n

TFTP data block size.

TFTP_BLOCKSIZE 4 + VALUE TFTP_MAXPACKETSIZE \ -—-n

TFTP data packet size.

0 VALUE *TFTP_PACKET \ —-- addr
Current TFTP packet address.

0 VALUE TFTP_PACKETSIZE \ -- n
Current TFTP packet data block size.

0 VALUE blockid \ -— n
If blockid is non-zero then we are connected.

STATE_IDLE VALUE TFTPState \ - n
Current State Machine state ID.

29.3 TFTP State Machine equates

29.4 Event action place-holders and defaults

The reciver uses these three DEFERred words to handle incoming TFTP events.

defer TEVENT::BeginReceive \ c-addr u -- okay?
Process a STARTRX (upload to server) request.

defer TEVENT: :RxData \ addr len --
Process a receive data request. The parameters describe the TFTP data block.

:NONAME \ c-addr u -- okay?

94 PowerNet TCP/IP Stack

Default to handle the string that comes with the STARTRX (upload to server) request. Just
display the string and return true to carry on.

:NONAME \ addr len --
Default to process a received data block. Just show the address and length.

29.5 Utility Words
: DiscardTFTP \ --
Discard the current TFTP packet.

: AbortTFTP \ c-addr u --
Display the TFTP error message and discard the current packet.

: zcount \ zaddr -- zaddr len
A version of COUNT for zero terminated strings, returning the address of the first character
and the length.

29.6 TFTP State Handlers

: smIDLE { | namelen -- }
The TFTP system is idle. Perform a lot of error checks and report them if the equate DIAGS?
is true.

: smSTARTRX \ -
Handles start of receiving a file.

: smSTARTTX \ -
Handles start of a (refused) transmission request.

: smFINISHEDRX \ --
Handles the end of file reception.

: smFINISHEDTX \ --
Handles the end of file transmission.

: smRXDATA \ —-
Handles a received data packet.

: smTXDATA A
Handles transmission of a data packet.

: smACKDATA \ --
Handles a data acknowledge.

: smWAITFORACK \ --
Handles waiting for a data acknowledge.

TFTP Server Task

task TFTPTask \ -- addr
The TFTP task data structure.

: TFTP_Install \ -- flag
Starts the TFTP server, returning true for success or false for failure. SUBJECT TO CHANGE.

29.7 Event Action Handlers

This code is currently commented out. Read it as an application example.

Chapter 30: Support for TCP services 95

30 Support for TCP services

PowerNet supports multithreaded TCP servers that can accept multiple connections. The model
used is that one task listens on a port, establishes a connection, passes the socket to a service
task to run the service, and then creates a new listening socket. When a connection to a service
task is no longer established, a support task cleans up the service specific data, closes the service
socket, and terminates the service task.

The focus of the tools is for servers using text, e.g. HTTP and Telnet. To enable use of
standard Forth words and parsing tools, a Generic I/O device and a TIB are established for each
connection .

From PowerNet v4.6 onwards and then again in v4.8, much attention to reducing RAM usage has
taken place. This comes at the expense of performance. Use of the the low RAM configuration
may be necessary for single-chip applications. From v4.8 onwards, you can use the equates
SV1owRAM? andSVsingle? in the PowerNet configuration file to reduce RAM consumption in
listen state by up to 2kb per listening socket above the reductions already achieved in the TCP
layer.

30.1 Service numbers

These are MPE defined for use in the socket structure.

0 equ service_none \ ——n
Defines a null service.

1 equ service_Telnet \ - n
Defines a Telnet service.

2 equ service_HTTP \ --n
Defines an HTTP service.

3 equ service_FTP \ --n
Defines an FTP service.

8 equ service_Echo \ --n
Defines an Echo service.

9 equ service_MultiChat \ -- n
Defines a MultiChat service. Windows version only.

10 equ service_ModBus
Defines a ModBus TCP service.

20 equ service_App
Service number for an application-specific service.

.service \'n—-
Display the service type corresponding to n.

30.2 Service specific data

These data definitions are required by each server task. The data is allocated at the start of the
task and released when the task is TERMINATEd. The chain SVchain links all the service tasks.

96 PowerNet TCP/IP Stack

Each task has USER variables MY_SOCKET and MY_HSOCKET which hold the socket address and
socket number. From these, the service specific data can be found.

The first part of a service data area is common to all services, and additional fields can be added
as required. See TELNET.FTH and HT'TP.FTH for examples. The common data area includes
service managment data and facilities for routing input and output through the normal Forth
KEY and EMIT wordset.

variable SVchain \ —-- addr
Holds the tail of the service chain.

#64 equ /SVOB \ --n

Size of a service output buffer. A value of 64 or 128 bytes is sufficient to provide satisfactory
output for Telnet.

#64 equ /SVIB \ --n
Size of a service input buffer.

#256 equ /SVtib \ -- n

Size of the service’s TIB area.

struct /SVdata \ -- len
Defines the common data in a service specific data area.

int SVlink \ link to previous service
\ N.B. MUST BE FIRST
int SVtask \ task that runs this service
int SVsk# \ socket# used by this service
int SVsendflags \ TCP override flags for lower layers
int SVdone \ set nz to close service
int SVappClean \ *sv -- *sv ; application specific clean up xt
dup equ /CSVdata \ size of core service data
\ end of core structure
/SVtib field SVtibBuff \ service TIB, e.g. for Telnet
dup equ /MSVdata \ size of core+TIB service data
\ end of core plus input buffer
SVlowRAM? 0= [if]
int #SVOB \ number of characters in SVOB ; SFP002
/SVOB field SVopBuff \ service output buffer ; SFP002
int #SVIB \ number of characters in SVIB
int "SVIB \ offset of next character in SVIB
/SVIB field SVipBuff \ service raw input buffer
[then]

end-struct

The field SVappClean contains the xt of a word

cleanFTP (*sv —-— *sv)

that frees any aqdditional resources that are not released by free the service data area. For an
example, see cleanFTP in SERVICES /FTP.fth.

: MySVD \ -- addr
Returns the address of the task’s service data.

Chapter 30: Support for TCP services 97

. SVTib \ —- tib
Returns the address of the TIB buffer for this task.
: SVdone? \ -- flag

Return true if the socket can be closed.

: SVbye \ —-
Set the SVdone exit flag.

30.3 Server assistance
: CheckSV \ -- flag

Run by the service tasks to check whether the service task should be closed. Flag is returned
true if the service task should be closed.

30.4 Service KEY, EMIT and friends

$0A equ AcceptChar \ -- char

The character returned bySVkey below when an error has occurred. This should be the character
that SVaccept uses as a line terminator, usually LF.

30.4.1 Low RAM version

In this version all buffering is performed in the socket layer. This saves RAM at the cost of
performance. On a local area network the penalty may be significant - it certainly is for Telnet.

: SVkey? \ -- flag
Return true if a character is avilable from the service’s client or an error has occurred.

: SVkey \ -- char ; receive char
Return a character from the service’s client. If the service’s SVdone flag is set, an LF is returned.

: SVtype \ caddr len --
Send a string/buffer to the service’s client.

: SVemit \ char —-
Send a character to the service’s client.

: SVer \ --
Send a CR/LF pair to the service’s client.

: SVf1lushOP \ --
A compatibility NOOP in the low RAM version.

30.4.2 High performance version
: SVIBuffer \ -- addr
Returns the address of the input buffer for this task.

: SVOBuffer \ -- addr
Returns the address of the output buffer for this task.

: isSVInput \ —-
Read any available characters from the incoming TCP stream into the service input buffer.

(SVkey?) \ -- flag ; check receive char
Return true if a character has been received by the server or the service must be closed.

: SVflushOP \ -- ; SFP002

98 PowerNet TCP/IP Stack

Send current buffer if not empty by passing it to the socket. SVf1ush0P is used by SVkey? and

SVkey so that pending output is transmitted. If your code does not call either of these, e.g.

through the Generic 1/0O, you should add SVf1lushOP to your code where appropriate.
(SVemit) \ char -- ; SFP002

Send a character to a client of this service.

Service vectored 1/0

: SVkey? \ -- flag ; check receive char

Return true if a character has been received by the server. Any pending output characters are
sent.

: SVkey \ -- char ; receive char

Return a character from the service’s client. Any pending output characters are sent first. If
the service’s SVdone flag is set or a socket error has occurred, an LF character is returned.

: SVemit \ char -- ; emit char

Send a character to a service’s client.

: SVtype \ caddr len -- ; display string
Send a string to a service’s client

: SVer \ -- ; display new line

Send a new line sequence to a service’s client

30.4.3 Generic I/O device
create ConsoleSV \ -- addr ; OUT managed by upper driver
Function despatch table for service I/O. OUT is managed by the upper level driver.

: Console=SV \ -
Select the service I/O as the console.

: Init-ConsoleSV \ -

Initialise for console I/O by the service. Note that the service’s socket must have been set up
and and the private service area initialised.

30.4.4 Service console support
: +SV_responsive \ —-
Set the socket to use the TCP_PSH flag when sending to improve interactivity.

: -SV_responsive \ —-
Set the socket not to use the TCP_PSH flag when sending.

: SV_responsive? \ -- res

Return non-zero if the socket’s TCP_PSH flag override is set.

: SVaccept \ c-addr +nl -- +n2 ; read up to LEN chars into ADDR

Read a string of maximum size nl characters to the buffer at c-addr, returning n2 the number
of characters actually read. Input is terminated by LF, and CR is ignored. This satisfies the
requiresments of DOS, Windows, Unices and the TCP/IP NVT (Network Virtual Terminal). If
ECHOING is non-zero, characters are echoed. If XON/XOFF is non-zero, an XON character is sent
at the start and an XOFF character is sent at the the end.

: SVquery \ -- ; fetch line into TIB

Reset the input source specification to the console and accept a line of text into the input buffer.

Chapter 30: Support for TCP services 99

30.5 Service creation and deletion

: isMySocket \ hs --
Set up USER variables for this socket.

: NoSocket \ —
Zero the USER variables MY_HSOCKET and MY_SOCKET.

: ShutErrSocket \ —-- socket_error
Close the current server socket and return SOCKET_ERROR. All allocated socket and service
memory is released by the close.

: InitServerSocket { #service /data #port -- res }

Create a listening socket and the private data for a TCP service conversation. On success, the
USER variables MY_HSOCKET and MY_SOCKET contain the socket number and socket address. On
failure, these variables contain zero.

#service service type number.

/data size of the service private data area, at least /SVDATA.
#port port number to listen on.
res socket number (1..n) or SOCKET_ERROR.

: SVinitiate \ xt -- taskl|O0
Allocates memory for a server task and INITIATEs it with the given xt, returning the task’s
TCB address. If memory cannot be allocated, zero is returned.

(SVterminate) \ task --
Terminates a server or service task and frees off the task memory. Does not PAUSE

: SVterminate \ task --
Terminates a server or service task and frees off the task memory.

30.6 Service listening task

.SVmessage \ caddr len --
Display a message to the current output (usually the console) in the form:

<service> <given text> on socket <n>

The USER variables MY_SOCKET and MY_HSOCKET must contain valid data.

: ServiceCreate \ #service /data port# --
Create a new service listening socket.

: StartService \ hs xt --
Initialise and launch a new service task on socket hs. The action of the new task is given by xt
given by xt.

30.7 Service support tools

: waitSocketSent \ hs —-

Wait until all transmit data for a socket has been sent and acked.
: wait-socket-empty \ —-

Wait until all output has been sent from the socket.

: SVdisconnect \ --
Disconnect the current service socket and run SVbye.

100 PowerNet TCP /IP Stack

: SVstartup \ -
Performs the default actions when a service starts. 1/O is set to the console, BASE to decimal,
and a console message is issued.

: SVshutdown A
Performs actions required when a service finishes.

: SRVRstartup \ caddr len --
The first action a server task should perform. The string is displayed on the console with a
startup message.

30.8 Service output

In order to avoid race conditions, a separate task handles testing whether a service should be
closed.

variable SVkillChain \ -- addr
Holds the tail of service tasks to be destroyed.

: 7SVkill \ *SVdata --
If the service has a task, i.e. is a service rather than a server, move it to the kill chain, otherwise
just free the memory.

: 7ServiceClose \ --
Close any service tasks with a non-zero SVDONE field in the private service area.

: 7ServiceKill \ --

Kill any service tasks that are on the kill chain and free the task and service memory. The Kkill
chain is extended by CloseSocket. The service task clean up action (the xt in the SVappClean
field) is run before memory is freed.

The field SVappClean contains the xt of a word

cleanFTP (*sv —-- *sv)

that frees any aqdditional resources that are not released by free the service data area. For an
example, see cleanFTP in SERVICES/FTP.fth.

: ServicelD
Handle any queued output - called in the service task.

30.9 Diagnostics

Diagnostic code is only compiled if the EQUate DIAGS? is set non-zero.

Chapter 31: TCP Echo socket 101

31 TCP Echo socket

The Echo server just returns anything it receives to the sender. It is a simple test of TCP
transmission and reception. Only one connection at a time is supported.

To save code space, the Echo server uses the server system in SERVICES\Servers.fth and
Saccept from the BSD layer.

As discussed in the Telnet chapter, HyperTerminal PE is a reasonable test client.

TCP_PSH value EchoFlags \ -- n

For fast response for use with an interactive terminal set this to TCP_PUSH. For fast bulk
response, set this to zero.

7 equ EchoPort# \ -- n

Port on which Echo server listens. Moved to PNconfig.fth.

$100 equ EBLen \ -- n
Size of the Echo receive buffer.

EBLen buffer: EchoBuffer \ -- addr

The Echo receive buffer.

#60000 equ /EchoMs \ —— ms

Max delay after a connection before the socket is closed if there is no transmission.
: echoEst? \ hs -- flag

Return true if the socket is in ESTABLISHED state.

: echoWait \ hs -- flag

Wait for something to be received up to the timeout period. Flag is returned true if the socket
is still ESTABLISHED and there has been no timeout.

: echoResponse \ hs --
Read the input and respond.

: echoClose \ hs —-
Close the echo connection.

: EchoService \ hs --
Service an Echo connection.

: DoRunEchoSocket \ -~
The Echo task.

task TcpEchoTask \ -- addr
The task running the Echo socket.

: RunEchoSockTask \ —-
Start the Echo task.

Chapter 32: Telnet Server 103

32 Telnet Server

The Powernet Telnet server is a multithreaded server that can accept multiple Telnet connec-
tions. Local echo is not required on the client. The model used is described in SERVERS.FTH.

For testing, please be aware that the standard Windows Telnet client is very slow. A nuch faster
alternative is HyperTerminal Personal Edition from:

http://www.hilgraeve.com

32.1 Telnet specific data

These data definitions are required by each Telnet server task. The data is allocated at the start
of the task and released when the task is TERMINATEd. The chain SVCHAIN links all the service
tasks.

#5023 equ TelnetPort# \ -- n ; standard is 23
Define the port used for the Telnet server. The standard port is 23, but 5023 is the default set
for PowerNet as most application Telnet servers are private. Moved to PNconfig.fth.

32.2 TAC handling

Not yet implemented.

: DoEscapeSequence \ addr -- n
Process a character sequence with the TNET_IAC escape character at addr, returning n =
decoded length. At present these sequences are ignored.

: ParseTelnetBuffer \ numchars --
Process incoming Telnet data.

32.3 Telnet vectored I/0

The Telnet server establishes its own generic I/O based on that in SERVERS.FTH in order to
handle TAC processing in the future.

create ConsoleTN \ -- addr ; OUT managed by upper driver
Function despatch table for Telnet I/0O. OUT is managed by the upper level driver.

: Init-ConsoleTN \ -
Initialise for console I/O by Telnet. Note that the Telnet socket must have been set up and and
the private service area initialised.

/SVdata equ /TNdata \ -- len
Required size of console service area.

: Console=Telnet \ -
Select Telnet as the console.

32.4 Telnet service tasks

: tn_announce \ -
Issues Telnet signon message.

(tn_login) \ -- ior

104 PowerNet TCP /IP Stack

Perform the default login procedure and return non-zero if successful so that the return code
can be used as a user identifier by higher level code if required

defer tn_login \ -- ior

Perform the assigned login procedure and return non-zero if successful so that the return code
can be used as a user identifier by higher level code if required. When zero is returned for
unsuccessful login, the Telnet session is terminated. See TelnetService.

: tn_quit \ —-

Empty the return stack, store 0 in SOURCE-ID, and enter interpretation state. TN_QUIT repeat-
edly SVaccepts a line of input and INTERPRETS it, with a prompt if interpreting and ECHOING is
on. Note that any task that uses TN_QUIT must initialise >TIB, BASE, IPVEC, and OPVEC. Note
that TN_QUIT clears the stack on exit.

: TNbye \ -

Use this to close the connection in Telnet.

: TelnetService \ --
The Telnet service task launched for each established Telnet connection.

32.5 Telnet listening task

: TNserverPass \ --
One iteration through the Telnet server.

: TelnetServer \ -- ; stay here forever
The Telnet listening task.

: TelnetServer \ -- ; stay here forever
The Telnet listening task.

0 value TelnetTask \ -- Oltask
Returns 0 or the Telnet server task if running.

: RunTelnetSockTask \ —-
Start the Telnet server task.

: StopTelnet \ --
Stop the Telnet server.

32.6 Diagnostics

This code is only compiled if the EQUate DIAGS? is set non-zero.

.TelnetChain \ --
Display data about the Telnet sockets.

: .tn \ -- ; synonym
Display data about the Telnet sockets.

Chapter 33: FTP Server 105

33 FTP Server

The Powernet FTP server is a multi-threaded server that can accept multiple FTP connections.
The model used is described in SERVERS.FTH. The code for the command channel is based
on the Telnet code.

The objectives of the design are to use "not a lot" of RAM, and to keep the code size down by not
providing many bells and whistles. A side effect of the low RAM usage is that directory listings
are rather slow. Initially, the intention was only to support the requirements of RFC959, the
primary FTP specification. The only client that actually works fully in this mode is WS_FTP.
In order to support clients that are not so forgiving, a few extra commands are supported. The
FTP server has been tested with:

o Ipswitch WS_FTP Pro (2007). This has been our Windows FTP client of choice for many
years. Windows only.

e WinSCP. A functional free tool. Windows only.
e FileZilla. A functional free tool. Windows, Linux and Mac OS X.

The use of the FATfiler file system code is assumed. Because this is not a fully thread-safe file
system and only has a single "working directory" for all threads, this FTP server is not suitable
for use with FTP clients that assume a Unix-style operating system. Such clients include the
FTP client built into Finder on Mac OS X. FileZilla works well on the Mac, as well as on Linux
and Windows.

33.1 FTP data
struct /FTPdata \ -- n
The standard service data structure is extended for FTP.

: cleanFTP \ *sV -- *sv
Clean up an FTP service block before it is released.

: my_ftpState \ -- addr
Holds the state of the FTP system.

: my_ftpPassive? \ -- addr
Holds the passive flag.

: my_ftpBinary? \ -- addr

Holds the binary flag.

: my_ftpQuit? \ -- addr

Holds the QUIT flag.

: my_ftpDatalP \ -- addr
Holds the IP adddress of the data channel.

: my_ftpDataPort \ -- addr
Holds the port number of the data channel.

: my_ftpDataSock \ -- addr
Holds the socket handle of the data channel.

: my_ftpDataState \ -- addr
Holds the state number of the data channel.

106 PowerNet TCP /IP Stack

: my_ftpDataFile \ -- addr

Holds the handle of the file being read/written.

: my_ftpLine? \ -- addr

Holds true if a complete line can be processed.

: my_ftpLineLen \ -- addr

Holds the current length of the line excluding terminators.
: my_ftpSrc$ \ -- addr

Buffer that holds a source file path as a counted string.

: my_ftpDest$ \ -- addr

Buffer that holds a destination file path as a counted string.
: my_ftpBuff \ -- addr

Buffer that holds FTP data for transfer.

33.2 FTP vectored I/O

The FTP server establishes its own generic I/O for the data and command channels. The data
channel operations are written for minimum RAM usage and use the sockets for buffering.

33.2.1 Data socket
: checkSocket \ hs -- ior
The 7or is returned non-zero if the socket is invalid or not in TCPS_ESTABLISHED state.

: sockKey? \ hs -- #chars
Return the number of available characters from the socket. If an error has occurred, 1 is returned.

: sockKey \ hs -- char
Return a character from a socket. On a socket error, an LF is returned.

: sockType \ caddr len hs --
Send a string/buffer to the socket.

: sockEmit \ char hs --
Send a character to the socket.

: sockCr \ hs --

Send a CR/LF pair to the socket.
The following five words are used to provide generic I/O on the FTP data channel.

: FTPdataKey (-- char) my_ftpDataSock @ sockKey ;

: FTPdataKey? (-- flag) my_ftpDataSock @ sockKey? ;

: FTPdataEmit (char --) my_ftpDataSock @ sockEmit ;

: FTPdataType (caddr len --) my_ftpDataSock @ sockType ;

: FTPdataCr ¢ --) my_ftpDataSock @ sockCr ;
create ConFTPdata \ -- addr ; OUT managed by upper driver

Function despatch table for FTP data channel I/O. OUT is managed by the upper level driver.

[FTPdatalo \ -- ; R: -— ipvec opvec
Redirects console 1/0 to the FTP data channel. Use in the form:

[FTPdatalo ... iol

Chapter 33: FTP Server 107

33.2.2 Command socket
create ConsoleFTP \ -- addr ; OUT managed by upper driver

Function despatch table for FTP command channel I/0O. 0UT is managed by the upper level
driver.

: Init-ConsoleFTP \ —

Initialise the command channel. Note that the FTP socket must have been set up and and the
private service area initialised.

: FTPio \ —-
Select the FTP command channel as the console.

: checkFTP \ -- ior

Return non-zero if there is an error in the FTP command channel.

33.3 Sampling the command channel input
: —ftpLine \ —-

Reset the F'TP line input.

: +ftpLine \ -

Mark that a complete line is available.

: f£tpBS \ —-

The backspace operation for input.

: +ftpCmdChar \ char --

Add the character to the command line being assembled.

: ?FTPacceptable \ -

Process the next service input character on the command channel. Input is terminated by LF,
and CR is ignored. This satisfies the requirements of DOS, Windows, Unices and the TCP/IP
NVT (Network Virtual Terminal).

33.4 Diagnostic control
1 value FTPdiags? \ --n

Set this non-zero to get diagnostic information.
[ftp (--) FTPdiags? if [io consoleio decimal ;
A COMPILER macro used to surround debug code, and terminated by FTP].

[[FTP ." debug message" FTP]

: ftp] (--) io] endif ;
A COMPILER macro that terminates an [FTP ... FTP] structure.

.fdLine \ caddr len --

Display FTP text with leading CR on Forth console. If FTPdiags? is set to zero, no action is
taken.

33.5 Directory listing for FTP

Each line of the display is "sort of" in Unix ls format.

108 PowerNet TCP /IP Stack
—————————— 1 owner group 1803128 Jul 10 10:18 1s-1R.Z

d--——————- 1 owner group 0 May 9 19:45 Softlib

create months \ -- addr

String containing 3 character text for the months.

.ftpDate \ —-
Display the current directory entry’s date in the form:

Mmm dd yyyy

e.g.
Apr 30 2012

.ftpDirLine \ --

Display a directory entry in FTP format. FTP clients get the size information from this format.

ftpFile \ -
List the file data for the last file found.

.ftpdir \ -
Display a list of files in FTP format.

.ftpDirNlst \ --
Display a list of file names in FTP NLST format.

33.6 Status returns
.ftpResp \ caddr len --

Send the string plus a CR/LF pair to the command socket and optionally to the console.

.£tp150 \ -
Return status 150 - about to transfer data

.££p200 \ --
Return status 200 - good command.

. ££p202 \ --
Return status 202 - not needed

ftp211 \ -
Return status 211 - not available

.£tp230 \ -
Return status 230 - user logged in.

.ftp250 \ —-
Return status 250 - good file command.

.£tp226 \ --
Return status 226 - transfer successful.

.ftp331 \ -
Return status 331 - password needed

.£tp350 \ --
Return status 350 - need more info.

.ftp425 \ --
Return status 425 - can’t make data connection.

Chapter 33: FTP Server

.ftp426 \ -
Return status 426 - aborted.

.ftp450 \ --
Return FTP error code 450 - action not taken.

.ftp451 \ --
Return FTP error code 451.

.ftp502 \ --

Return FTP error code 502 command not implemented.

.ftp504 \ --
Return FTP error code 504.

.£tp550 \ --
Return FTP error code 550.

33.7 Data socket operations
: [sm \ -0

Starts the definition of a state machine’s states.

: smState \ n —— n+1

Defines the next state as an EQU and increments the state number.

: sm] \'n--

Finishes the state machine and defines an equate of the number of states.

The FTP data transfer state machine.

[sm
smState ftpDtldle
smState ftpListening
smState ftpConnected
smState ftpReadSendData
smState ftpRecvWriteData
smState ftpErrorState

sm] #FTPsm \ --n

RETRieve
STORe

P

Select the the FTP data socket states.

: goFTPidle \ -
ftpDtIdle my_ftpDataState ! ;

: goFTPlistening \ —-
ftplListening my_ftpDataState ! ;

: goFTPconnected \ -
ftpConnected my_ftpDataState ! ;

: goFTPReadSend \ --
ftpReadSendData my_ftpDataState ! ;

: goFTPRecvlrite \ —-
ftpRecvWriteData my_ftpDataState ! ;

: umin \ ul u2 -- ullu2
Minimum of two unsigned values.

: closeDataFile \ --

No data transfer in progress
PASV mode, wait connection
wait transfer command

it’s bad if we get here!

109

110 PowerNet TCP /IP Stack

Perform an emergency close of the data file if it is open.

: hasConn? \ hs -- ior true | O
Return true and an ior if the socket has an error or a completed connection. For a good
connection, tor is non-zero.

: newDataSocket \ -- hs|O
Create a new FTP data socket and set it to listen. The socket handle is also stored in the FTP
service structure.

: discDataSocket \ --
If open, flush the socket transmit data and disconnect the FTP data socket. This is a graceful
close unless the socket has failed.

: closeDataSocket \ -
If open, close the FTP data socket. This is not a graceful close.

: termDataStream \ -
Gracefully shut down a STREAM mode data transfer and return to FTPDTIDLE state.

: closeDataStream \ -
Hurriedly shut down a STREAM mode data transfer and return to FTPDTIDLE state.

: CheckFTPdata \ -- ior
Return non-zero if the FTP data socket is in error.

: FTPdataFailed? \ -- ior
Return non-zero if the FTP data socket is not in established state. If not established, the data
socket is closed and we return to FTPDTIDLE state.

: doDTidle \ -
The action in FTPDTIDLE state. Check the data socket. If it fails, close it.

: doDTlistening \ --
The action in FTPLISTENING state.

: doDTconnected \ —-
The action in FTPCONNECTED state.

: doDTReadSend \ -—-
The action in FTPREADSENDDATA state.

: doDTRecvWrite \ --
The action in FTPRECVWRITEDATA state.

: doDTerror \ —-

The action in FTPERRORSTATE state.

create FTPdataActions \ -- addr
A table of xts corresponding to the FTP data channel state.

: doFTPdata \ --
We have a data socket. Execute the action for the state.

: waitDataConnected \ -- ior
Wait for a passive mode data connection to be made. Return non-zero on failure.

: waitDataEstablished \ -- ior
Wait for a passive mode data connection to get to TCP state TCPS_ESTABLISHED. Return
non-zero on failure.

Chapter 33: FTP Server 111

33.8 Command processing

An FTP command exists on a single line. The first token identifies the command. Each command
identifier is a Forth word which parses any more data needed by the command.

: parse-name \ "text" -- caddr len
Return the next space-delimited string from the input stream.

: parse-path \ "<pathname>" -- caddr len
Return the next space-delimited path name from the input stream. Clip it to MAX_PATH 1-

bytes.
: getSrcParam \ --
Read the parameter and store it as the source name.

: getDestParam \ --
Read the parameter and store it as the destination name.

: getSrcDir \ -

Read the parameter and store it as the source name. If the name ends in a ’/’ character, remove
it. Some FTP clients terminate directory names with a ’/’, which can confuse the FAT file
system.

: SrcParam \ -- addr len

Return the string saved as the source parameter.

: FTPannounce \ --
Issues F'TP signon message.

: +decByte \ u caddr len -- u’ caddr’ len’

Accumulate the next byte of a comma separated set of numbers, e.g. 1,25,33,4. The accumulator
u is shifted left by 8 bits and the next number in the text is added. The updated accumulator
and remaining text are returned.

.decByte \u--u’
Display the top byte of 4 as a decimal number and shift it left by 8 bits.

. comma \ -
Display a comma.

: FTPabort426 \ -- 426
Close the data socket and data file and command with a 426 response.

: setDataSock \ -- ior
Depending on the mode, check or establish a data connection. Return non-zero on error.

: .quo (==) [char] " emit ;
Display a double quotes.

.pwdResp \ --
Display the PWD response with no CR/LF.

.257SrcResp \ --
A 257 response with the source buffer

33.9 Login and security

Access to FTP is provided through the FTP verbs (words) USER PASS and optionally ACCT.

112 PowerNet TCP /IP Stack

defer doFTPuser \ --
Process the FTP USER command. The default accepts any user. Once the user and password
have been confirmed, the ftpState variable can be set to 1.

defer doFTPpass \ --
Process the FTP PASS command. The default accepts any password. Once the user and
password have been confirmed, the ftpState variable can be set to 1.

defer doFTPacct \ --
Process the FTP ACCT command. The default accepts any password. Once the user and
password have been confirmed, the ftpState variable can be set to 1.

(FTPuser) \ -
The default action performed for the USER command. All users are accepted.

(FTPpass) \ -
The default action performed for the PASS command. All passwords are accepted.

(FTPacct) \ -
The default action performed for the ACCT command. All accounts are accepted.

33.10 Implemented FTP commands

FTP commands all start with a command name ("verb" in FTP parlance). Each is implemented
as a Forth word in the FTPvoc vocabulary.

vocabulary FTPvoc \ —-
Vocabulary holding FTP commands for execution.

> FTPvoc >body @ constant FTPwid \ —— x
Wordlist holding FTP commands for execution.

: FTPinterpret \ --
Interpret the current line containing an FTP command.

also FTPvoc definitions
Start of FTP command definitions.

: USER \ -- ; USER <name>
Handle the USER command.

: PASS \ -- ; PASS <password>
Handle the PASS command.

: ACCT \ -- ; ACCT <password>
Handle the ACCT command.

. SYST \ -- ; SYST

Handle the SYST command.

: STAT \ —-— ; STAT

Process the STAT command. Commands with parameters are rejected.

: HELP \ -- ; HELP [<param]
The HELP command just describes the system.

: NOOP \ -- ; NOOP
The NOOP command just returns good.

: STRU \ -- ; STRU F

Chapter 33: FTP Server 113

Obsolete command - we just accept F.

: MODE \ -- ; MODE S

Obsolete command - we just accept S.

: TYPE \ -- ; TYPE <params>

Process the TYPE command. Valid parameters are
A, AN, I, LS8

: QUIT \ --; QUIT

Process the QUIT command.

: ABOR \ -- ; ABOR

Process the ABORt command.

: PORT \ -- ; PORT al,a2,a3,a4,ph,pl

Process the PORT command. The IP address and port are saved in my_ftpDataIP and my_

ftpDataPort.

: PASV \ -- ; PASV
Process the PASV command. RFC 0959 does not document PASV well. See
http://cr.yp.to/ftp/retr.html for more details. A successful response is of the form:

227 Entering Passive Mode (al,a2,a3,a4,ph,pl)

: RETR \ -- ; RETR <filepathname>
Process the RETRieve command. Starts transmission of a server file to the FTP client.

: CWD \ -- ; CWD dirpath

Process the CWD command.

: XCWD CWD ; \ -- ; XCWD dirpath

Process the XCWD command.

: PWD \ -- ; CWD dirpath

Process the PWD command.

: XPWD PWD ; \ -- ; XCWD dirpath

Process the XPWD command.

: LIST \ -- ; LIST <filespec/dirspec>

Process the LIST command. The parameter is optional. If there is no parameter, the current
directory is listed. If the parameter is a file, the details of that file are listed. If the parameter
is a directory, the files and directories are listed in "sort of" the Unix Is format.

: NLST \ -- ; LIST <filespec/dirspec>

Process the LIST command. The parameter is optional. If there is no parameter, the current
directory is listed. If the parameter is a directory, only the files are listed by returning one name
per line.

: RNFR \ -- ; RNFR <filespec>

Process the RNFR command, checking that the file exists.

: RNTO \ -- ; RNTO <filespec>

Process RNTO, the second part of the file rename operation.

: DELE \ -- ; DELE <filespec>

Process the file delete command.

: MKD \ -- ; MKD <pathspec>

114 PowerNet TCP /IP Stack

Process the make directory command.

: RMD \ -- ; RMD <pathspec>
Process the delete directory command.

previous definitions
End of FTP command definitions.

33.11 FTP service tasks

: FTPcommands \ --

Empty the return stack, store 0 in SOURCE-ID, and enter interpretation state. FTPcommands
repeatedly inputs an command line and FTPinterprets it. Note that any task that uses
FTPcommands must initialise > TIB, BASE, IPVEC, and OPVEC.

: FTPservice \ -
The FTP service task launched for each established Telnet connection.

: #FTPconns \ -—-u
Return the number of FTP connections. This is the number FTP service tasks running. Each
one needs two sockets.

33.12 FTP listening task

: FTPserverPass \ --
One iteration through the FTP server.

: FTPserver \ -- ; stay here forever
The FTP listening task.

0 value FTPtask \ -- O|task
Returns 0 or the F'TP server task if running.

: startFTPserver \ —-
Start the FTP server task.

: stopFTPserver \ --
Stop the FTP server.

33.13 Diagnostics

This code is only compiled if the EQUate DIAGS? is set non-zero.

: +ftp 1initfatfs . powernet ;
Start the file system and PowerNet.

.FTPchain \ —-
Display data about the FTP sockets.

Chapter 34: WWW Support 115

34 WWW Support

The source code for these string and time functions is in PNmisc.fth.

34.1 Strings
: —leading \ c-addr u -- c-addr u

Modify a string address/length pair to ignore leading spaces.

: addchar \ char string --
Add the character to the end of the counted string

: append \ c-addr u $dest --
Add the string described by C-ADDR U to the counted string at $DEST.
: is= \ c-addrl c-addr2 u -- flag

Compare two same-length strings/memory blocks, returning TRUE if they are identical. The
comparison is case insensitive.

1 str= \ addrl lenl addr2 len2 -- flag

Compare two addr/len memory blocks, returning TRUE if they are identical both in length and
contents. The comparison is case sensitive.

: ISEARCH \ c-addrl ul c-addr2 u2 -- c-addr3 u3 f

Search the string c-addrl/ul for the string (\i{c-addr2/u2}. If a match is found return c-
addr83/u3, the address of the start of the match and the number of characters remaining in
c-addrl/ul, plus flag f set to true. If no match was found return c-addri/ul and f=0. Case
insensitive for English.

: left-string \ caddr len char -- caddr len’

Given a string and a delimiter, return the string to the left of the delimiter.

: right-string \ caddr len char -- caddr len’

Given a string and a delimiter, return the string to the right of the delimiter.

: extract-string \ caddr len char -- caddr’ len’

Given a string, return the substring between the delimiters, ignoring leading delimiters.

: jump-string \ caddr len char -- caddr’ len’

Ignore leading delimiters, and return the string to the right of the next delimiter character
including the delimiter.

: split \ addr len char -- laddr llen raddr rlen

Extract a substring at the start of addr/len, returning raddr/rlen the string remaining after
char and the substring laddr/llen which includes all characters before but not including char. If
the string does not contain the character, raddr is addr+len and rlen=0.

: split$LR \ addr len char -- laddr llen raddr rlen

Extract a substring at the start of addr/len, returning raddr/rlen the string remaining after char
and the substring laddr/llen which includes all characters before but not including char. If the
string does not contain the character, raddr is addr+len and rlen=0.

: split$RL \ addr len char -- raddr rlen laddr llen
As split$LR but the left string is returned topmost.

: csplit \ addr len char -- raddr rlen laddr llen

116 PowerNet TCP /IP Stack

Extract a substring at the start of addr/len, returning the string raddr/rlen which includes char
(if found) and the string laddr/llen which contains the text to left of char. If the string does not
contain the character, raddr is addr+len and rlen=0.

: string>n \ addr len radix -- value
Converts an ASCII string to a number in the given base. Characters are converted to upper
case before conversion.

: string>dec \ caddr len -- n
Converts an ASCII string as a decimal number.

: string>hex \ caddr len -- n
Converts an ASCII string as a hexadecimal number.

: dec>string \ n -- caddr len
N is converted to a signed decimal string.

: hex>string \ n -- caddr len
N is converted to an unsigned hexadecimal string with a leading $ character

: is= \ c-addrl c-addr2 u -- flag
Compare two same-length strings/memory blocks, returning TRUE if they are identical. The
comparison is case insensitive.

34.2 Time and date

These functions rely on the ANS Forth word TIME&DATE (-- s m h dd mm yyyy) and the non-
standard DOW (-- dow, 0=Sun) to get the day of the week.

create days$ \ -- addr
String containing 3 character text for the days of the week.

create months \ -- addr
String containing 3 character text for the months.

: .dow \ -
Display day of week.
.2r \'n--

Display n as a two digit number with leading zeros.

.4r \'n-—-
Display n as a four digit number with leading zeros.

.Time&Date \ -
Display the system time The format is:
hh:mm:ss dd Mmm yyyy
.AnsiDate \ zone --
Display the day of week, date and time. If zone is 0 GMT is displayed. The format is:
dow, hh:mm:ss dd Mmm yyyy [GMT]

: IncludeMem \ caddr len --
INCLUDE a block of memory as if it were a file.

34.3 Test code

Chapter 35: HTTP Server 117

35 HTTP Server

The Powernet HTTP server is a multi-threaded server that can accept multiple connections
limited only by available heap space. For details of the server architecture see Servers.fth.

Web pages may be served from memory or from the FAT file system. If you are using the FAT
file system, you can configure the root directory for web pages and the name of the home page.
If you do not specify them, they will default to \PAGES and /home.htm.

-
create pagedir$ ", \HTTP" \ -- caddr

\ *G The base directory for pages as a counted string.
\ ** The directory name must not end in a separator.

create HomePage$ ", /home.asp" \ -- caddr
\ *G Holds the counted string for the home page.
-

35.1 HTTP specific data

These data definitions are required by each HT'TP task. The data is allocated at the start of the
task and released when the task is TERMINATEd. The chain SVCHAIN links all the service tasks.

For details of QVARs see the CGI section below.

#80 equ HTTPPort# \ -- n ; standard is 80
Define the port used for the HT'TP server. The standard port is 80. Moved to PNconfig.fth.

#8 equ #QVARS \ -- n
Number of QVARs in each connection and the common area.

#20 equ /QvarName \ ——n
Length including count byte of a QVAR’s name.

#20 equ /QvarData \ - n
Length including count byte of a QVAR’s data area.

struct /QVarRec \ - n
Structure of a single QVAR.

#QVARS /QVarRec * equ /QVARS \ =-n
Size of a QVAR bulffer.

struct /HTTPdata \ -- n
The standard service data structure is extended for HTTP.

0 equ NO_SCRIPT \ -0
No selected script language identifier.

-1 equ FORTH_SCRIPT \ - -1
Selected script language identifier for Forth.

$80000000 equ WEBS_CLOSE \ -- mask
Status bit to close the connection.

$40000000 equ WEBS_SCRIPTERR \ -- mask
Status bit for a script error.

118

$00000100 equ WEBS_ASP \ -- mask
Status bit for ASP processing.

$00000002 equ WEBS_KEEP_ALIVE
Status bit for "keep alive" handling.

PowerNet TCP /IP Stack

The data type indicator for ASP data - HTML data with server side scripting. Output is not

0 equ PLAIN_TYPE \ -0

The data type indicator for PLAIN data.
1 equ GIF_TYPE \ -1

The data type indicator for GIF data.

2 equ HTML_TYPE \ -2

The data type indicator for HTML data.
3 equ ASP_TYPE \ -3
buffered.

4 equ JPEG_TYPE \ -4

The data type indicator for JPEG data.

5 equ XML_TYPE \ -5
The data type indicator for XML data.

6 equ ASMX_TYPE \ - 6

The data type indicator for ASMX data in web services - XML data with server side scripting.

7 equ ASPX_TYPE \ -7

The data type indicator for ASP data - XML data with server side scripting. Output is buffered.

8 equ CSS_TYPE \ -- 8
The data type indicator for CSS data.

: WebErrCode \ -- addr
Return the address of the service’s error code.

: WebStatus \ -- addr
Return the address of the service’s status flags.

: WebVars \ -- addr

Return the address of the service’s connection variables.

: WebScriptId \ -- addr

Return the address of the service’s script identifier.

: WebOpFlags \ -- addr

Return the address of the service’s operation flags.

bit0 set if primary headers have been read.

: WebPageDef \ -- struct

Return the address of the file page definition structure. This word is forward referenced.

: TestWebFlag \ mask -- n|0
Test the mask bits in the service’s status flag cell.

: SetWebFlag \ mask --
Set the mask bits in the service’s status flag cell.

: ClrWebFlag \ mask --

Chapter 35: HTTP Server 119

Clear the mask bits in the service’s status flag cell.

: SetHttpTimeout \ time --
Set the timeout target for HTTP. A value of 0 indicates no timing.

: GetHttpTimeout \ -- time
Get the timeout target for HI'TP. A value of 0 indicates no timing.

35.2 HTTP vectored 1/0
35.2.1 Stream socket

The HTTP server establishes its own generic I/O based on that in SERVERS.FTH in order to
handle special character processing in the future.

create ConsoleHTTP \ -- addr ; OUT managed by upper driver
Function despatch table for HT'TP I/O. OUT is managed by the upper level driver.
: HTTPio \ -

Select HT'TP as the console.

: Init-ConsoleHTTP \ -

Initialise for console I/O by HTTP. Note that the HTTP must have been set up and and the
private service area initialised.

35.2.2 Output to a memory buffer

For correct handling of error responses, some browsers require the HT'TP "Content-Length" field
to be defined. This means that the output length must be known before sending. Consequently,
error messages are buffered before transmission.

N.B. All output to the buffer is unchecked for overflow. Checking is the responsibility of the
application.

cell +user my_opbuff \ -- addr
Holds the current output buffer, the first cell holding the buffer length.

: BuffEmit \ char --
Send a character to the buffer.

: BuffType \ caddr len --
Send a string to the buffer.

: BuffCr A
Send a CR/LF pair to the buffer.

create ConsoleBuff \ -- addr ; OUT managed by upper driver
Function despatch table for HT'TP buffered I/O. OUT is managed by the upper level driver.

: Buff$ \ -- addr len
Return the address and length of the HT'TP output buffer.

: Init-ConsoleBuff \ len -- addr|0

Initialise for console I/O by the HTTP output buffer. Len is the required size of the buffer and
the address of the buffer is returned for success, or zero is returned if the buffer could not be
allocated. The first cell of the buffer contains the length used, the rest is for data.

: Term-ConsoleBuff \ —-
Terminate buffer I/O by freeing the buffer.

120 PowerNet TCP /IP Stack

35.3 Diagnostic control
1 value httpDiags? \ --n
Set this non-zero to get diagnostic information.

[hd httpDiags? if consoleio decimal ;
A COMPILER macro used to surround debug code, and terminated by HD].

[[HD ." debug message" HD]

: hd] Httplo endif ;
Terminates a [HD ... HD] structure.

.hdLine \ caddr len --
Display text with leading CR on Forth console. If httpDiags? is set to zero, no action is taken.

35.4 Transmit Utilities

PDATA_MAX equ WEB_SIZE \ -- n
Maximum web content sent in one packet.

: WebSend \ caddr len --
Send an arbitrary sized data block to the HTTP client.

35.5 CGI Support

Common Gateway Interface (CGI) defines how data is passed between a browser (client) and a
server. The equivalent of a variable is a name/value pair (e.g. submit=send). Such pairs are
sent by the browser after filling in a form.

CGI variables are "URLencoded" as key/value pairs of the form:
keyl=valuel&key2=value2&. ..

When a form response is sent with a GET message, the CGI variables are sent after the URI
separated from it by a ’?’ character. When a form response is sent with a POST message, the
CGI variables appear in the body of the message.

When a GET message is used, PowerNet receives the CGI variables before it knows what to
do with them. They are saved in structures called QVARs, which hold counted strings. Numeric
values are converted from text by the appropriate Forth words. Name comparision is case-
insensitive.

PowerNet manages two sets of these variables. The first is a common set, which may be used
to hold system data such as the host’s IP address. The second set is allocated per connection
as part of the service data, and only exists for the duration of the connection.

#20 equ /QvarName \ - n
Length including count byte of a QVAR’s name.

#20 equ /QvarData \ --n
Length including count byte of a QVAR’s data area.

struct /QVarRec \ - n
Structure of a single QVAR.

Chapter 35: HTTP Server 121

#32 equ #QVARS \ -- n

Number of QVARs in each connection and the common area.
#QVARS /QVarRec * equ /QVARS \ -=-n

Size of a QVAR buffer.

/QVARS buffer: commonQvars \ —-- addr
The buffer area for the common QVARs.

$80000000 equ NO_VAR_SET \ —-n
Indicator returned when a QVAR has not been set.

/QvarName 1 chars - equ /QV.name \ - n
Maximum length of a QVAR’s name.

/QvarData 1 chars - equ /QV.data \ - n
Maximum length of a QVAR’s string data.

(.Qvars) \ addr --
Display the variables in the given table.

.Qvars \ —
Display the common and connection variables.

(freeqvar) \ table -- addrl|O
Find a free QVAR in the given table, and return its address or zero if no free space is available.

: freeQvar \ -- addr|O

Find a free QVAR for the current connection, and return its address or zero if no free space is
available.

: freeCommonQvar \ -- addr|0
Find a free QVAR in the common QVARs, and return its address or zero if no free space is available.

(findQvar) \ caddr len table -- addr|O
Try to find a QVAR in the given table. Case insensitive.

: findQvar \ caddr len -- addr|O

Try to find the given QVAR name, returning the address if found or zero if not found. Case
insensitive.

: %xx>char \ caddr len -- caddr’ len’ char

Convert the three character sequence "%xy" as a hexadecimal two-digit number. Step over the
string.

: decodeURL$ \ caddr len dest dlen --

Converts the source string caddr/len from a URL-encoded string to a decoded counted string
in the buffer dest/dlen. No error checking is performed. Decoding converts '+’ characters to a
space and "%ab" ("%’ follwed by two hex digits) sequences to their character codes.

: setQvarData \ caddr len qvar --
Use the given URL encoded string *\i{caddr/len) to set the data area of the given quar.

: set(string \ name nlen string slen --

Set the connection QVAR name/nlen to contain string/slen. If the name already exists in the
connection or common QVARs it is overwritten. If the QVAR does not exist it is created in the
connection’s QVAR set. If there is no space for it, the request is ignored.

: setCommonQstring \ name nlen string slen --

122 PowerNet TCP /IP Stack

Set the common QVAR name/nlen to contain string/slen. If the QVAR does not exist it is created.
If there is no space for it, the request is ignored.

: Get(Qstring \ name nlen -- caddr len

Return the text for a string. If the variable cannot be found, "777" is returned.

.Qstring \ name nlen --

Output the text for a QVAR using GetQstring above.
: websetvars \ caddr len --
Process a query string. A query string has the form:

name=value&name=value. ..

WEBSETVARS can be used with any query string.

: WebQueryVars \ caddr len --
This is used by GET with query packets.
: init-CommonQvars \ —-
Initialise the common QVARs.

: init-WebVars \ --
Initialise the connection QVARs

35.5.1 Numeric QVARS

: setQvar \ caddr len n --

Set the given QVAR to n, which is held as a signed decimal string.

: getQvar \ caddr len -- n

Return the value held in the QVAR as a signed decimal number. If the QVAR does not exist
NO_VAR_SET is returned. If the string cannot be converted, zero is returned.
CEM specific numeric items are commented out.

: QvarString? \ caddr len -- type
Return true if the variable is a string variable.

35.6 ASP Support

ASP stands for "Active Server Pages". In PowerNet, these are HTML pages which are modified
by PowerNet when served. See Examples\ PowerNet\ TestPages\thanks.asp for an example.

The script language is Forth itself. Inside an HTML document, scripting commands (Forth
source) are contained inside tags of the form:

<% Forth_code %>

It is important that the script delimiters <% and %> are surrounded by white space, otherwise
the very simple parser will fail. Before any scripting can be performed, the first command must
be on one line:

<% language=forthscript %>

After that, Forth source code can be interpreted. Note that any CGI variables (QVARS above)
are available. For example, if a form was submitted with a GET request:

Chapter 35: HTTP Server 123

GET forml.asp?sname=Robert&send=submit

You can display the data using a script such as:

<% s" sname" .gstring %>

Pages can be served from a linear memory image, or from the FAT file system. When scripts
are served from memory, each script section must be on a single line. When serving scripts from
files, the script section can extend over several lines.

: script_code \ -- caddr len
Returns the command to select Forth as the scripting language.

: asp_header$ \ -- caddr len
ASP command header string.

: asp_tail$ \ -- caddr len
ASP command tail string.

: ScriptEngine \ caddr len --

Processes the string as Forth source. The data stack is checked on return to ensure system
integrity.

: AspProcess \ caddr len --

If Forth has been selected as the script language, pass the string to SCRIPTENGINE, otherwise try
to find the Forth script command. In practice, this means that the language selection command
must be on its own as the first script section.

: AspRequest \ caddr len --
Extract script section and try to process it. All output is done using TYPE and WebSend.

35.7 Header scanning

HTTP headers are processed by building a list of actions and strings. The action is an xt and
the string is theheader text that we are interested in. Each action has the stack effect

caddr len —-

where caddr/len is the string after the header and the trailing colon.

create UploadHdrs \ -- addr
> doCLength , ," Content-Length" align
> doCTypel , ," Content-Type" align
0,0,

: CheckName \ src slen name nlen -- flag

Return true if the start of the string src/slen contains the entire name name/nlen.

: CheckHeader \ src slen name nlen -- flag
Return true if the start of the string src/slen contains the entire name name/nlen and a trailing
semi-colon.

: doHeader \ caddr len list —--
Given a string, check it against the given list of headers.

: ProcessHeaders \ list --

124 PowerNet TCP /IP Stack

We have already received the GET/POST line. Process each header line and finish at the first
blank line, ready for the message body. This can be used for the header blocks in forms as well
as the for the first header.

: doCLength \ caddr len --

Process the string to extract the content length data, a decimal number. A valid results is saved
in the HTTP service data’s httpClength field.

variable FormType \ -- addr

Holds the status extracted from the first Content-Type header. This set is true if the header
includes "multipart/form-data".

#80 buffer: Boundary$ \ -- addr

Holds the boundary string.

: nextChar \ caddr len -- caddr’ len’ char

Get the next character from the string and step on.

: ?MultiPart \ caddr len --
Check for the multipart/form-data field.

: ExtractValue \ caddr len dest --

Given a string starting after the name portion of a name/value pair, e.g. name="text", save
the value text without any quote marks at dest. If there is no value text, the destination is left
unchanged.

: 7Boundary \ caddr len --

Check for the boundary=zzz field.

: doCTypel \ caddr len --

Process the string to extract the content type data, which is the multipart form item and the
boundary string.

create BaseHdrs \ -- addr

Contains a list of the basic header fields to process.

BaseHdrs value DefHdrs \ -- addr
Holds the default header list for file and memory pages.

: ReadHeaders \ --

Process the headers after the HTTP command line up to the first blank line. Do not use this
word for reading part headers. If the response headers have already been read, this word is a
no-op.

35.8 Form body processing

Words are provided for use with form results submitted as a POST request to an ASP page.
You can use these with simple URL encoded or multipart forms. An example of multipart
form handling is the file upload application in Ezamples\ WebPost.fth. This example includes
boundary handling and parsing code.

35.8.1 Tools

Correct operation of this code requires a Content-Length header in the request. In many cases,
the body of a POST request is a very long line. Because this server is designed for systems with
limited RAM, key/value pairs are not read as a single line, but are read and parsed character

Chapter 35: HTTP Server 125

by character. Keys are limited to 31 characters, and values to /SVtib - 32 characters. The
service’s TIB is where they are buffered.

: BodyLeft \ -- addr

Returns the address holding the remaining size of the HT'TP body. If no Content-Length field
has been found, ReadHeaders will have set this to -1.

: -BodyLeft \'n--
Reduce the remaining content by n.

: CGIname$ \ -- caddr

Buffer for name assembly.

: CGIval$ \ -- caddr

Buffer for data assembly.

: CGIend? \ -- flag

Return true if the body content is exhausted.

: CGIkey \ -- char

Read the next character. If the content is exhausted or there has been a socket error, LF is
returned.

: ReadKey \ -- ior

Read the key portion of a key/value pair, returning zero for success.

: ReadValue \ -- ior

Read the value portion of a key/value pair, returning zero for success.
35.8.2 Application words

These words will mostly be used inside ASP scripts. Note that the key and value strings are
not URL decoded. You can use decodeURL$ to perform the decode and copy in one operation.

It is assumed that you control both the RAM usage of the PowerNet server and that you control
the scripts it serves. We are not trying to reimplement the Apache server!

To read the pairs, call ReadNextPair and inspect the return result. If it is good, examine and
process the PairName and PairValue strings. Because you control the scripts, it is sensible to
use key names that do not require URL decoding. Especially for user input, some key values
may need decoding, e.g. email addresses. This decision is left up to you.

: ReadNextPair \ -- ior

Read the next key/value pair and return 0 on success. -1 is returned for an unexpected end of
input or socket error, and -2 is returned if input was truncated before the key terminator.

: PairName \ -- caddr len

Return the last key/value pair’s key text.

: PairValue \ -- caddr len

Return the last key/value pair’s value text.

: DumpPairs \ --

A diagnostic tool for use in scripts. Read and dump all the key/value pairs without preserving
them.

126 PowerNet TCP /IP Stack

35.9 HTTP headers and responses

This section deals with extracting the HT'TP command data and with pages served from memory.

: web-file-name \ caddr len -- caddr len’

Return the string up to the next ’?’ character. Then, if the file name starts "HTTP://.../" step
over "HTTP://...". This situation can occur with proxy servers.

: test-web-type \ caddr len -- type

Return the type code associated with the file extension, e.g ".htm" or ".asp".

.HTTP# \'n--
Output the HT'TP string and code line.

.HTTPserver \ --
Output the HTTP server name line.

.HTTPdate \ —-
Output an HTTP date line.

.HTTPar-none \ --
Output the "accept-ranges: none" line.

.HTTPcontent \ type --
Output the text string for the curent type. Unknown types generate "text/plain".

.close/keep \ --
Output the default connection type.

: WebResponse \ datalen type code --
Output a suitable HTTP header for this type of data.

create Null$ \ -- addr
A null string which may be used as a counted string or a zero-terminated string.

.ErrHead \ len err# --

Output the error header. If len is non-zero, it is used for a "Content-Length" field.

.ErrBody \ caddrl lenl caddr2 len2 err# --

Output a web error body using the given strings and error number. The string caddr2/len2
contains the error description, e.g. "Page not found". If len2 is zero no error text body is sent
and caddrl/lenl is discarded. The string caddrl/lenl is displayed if lenl is non-zero, and is
usually the resource name that caused the problem.

: weberror \ caddrl lenl caddr2 len2 err# --

Display a web error message using the given strings and error number. The string caddr2/len2
contains the error description, e.g. "Page not found". If len2 is zero no error text body is sent
and caddrl/lenl is discarded. The string caddrl/lenl is displayed if lenl is non-zero, and is
usually the resource name that caused the problem.

create HomePage$ ", /home.htm"

If not already defined, HomePage$ is set to contain the counted string /home.htm.

: CheckHomePage \ caddr len -- caddr’ len’
Check for a home page string of the forms "/ " or "/" and if found replace with " /home.htm".

: ServeSMem \ caddr len type --
Serve a page from memory, according to its page type extracted from the page name.

Chapter 35: HTTP Server 127

35.10 Serving files

#256 equ /FileUnit \ -- len
The size of a part of a file processed at once.

: FileQuery \ —— ; fetch line into TIB
Reset the input source specification to the console and accept a line of text into the input buffer.

: AspInterpret \ --
Process the current input line as if it is text entered at the keyboard.

: InterpScript \ --
Interpret a section of ForthScript which may extend over several lines.

: sendPrev \ addr --
Send the source line before this address.

semaphore InterpSem \ -- addr
Exclusive access semaphore for the Forth interpreter.
: FileScript \ —-

Read and process a file with server side scripting until EOF or an error. The file is already open
and is not closed.

: AspFileReq \ len --

Read and process a file of length len with server side scripting. The file is already open. All
input is done using the FileCon Generic I/O device (see FATcore.fth. All output is done using
TYPE and WebSend.

: badFsS \xyz--

Discard three items and set error flags.

(FileSend) \ len buff --
Serve the file using the given buffer.

: FileSend \ len --

Serve a plain file. without scripting. The file is open and the details are in the given /PageDef
structure.

: ServeFile \ len type --

Serve a page from a file, according to its page type extracted from the page name. The request
headers are read if they have not already been read.

35.11 HTTP service task

: 7CloseHTTP \ —
Run after processing input to see if the connection should be closed.

: Served04 \ gaddr glen --
Serve a "not found" page.

: ServePage \ gaddr glen --
Serve a page defined by the string gaddr/qlen which may include CGI vars. The string is the
command line with the command removed.

: http-cmd \ caddr len -- caddr’ len’
Deal with the command line after the command has been recognised. The input is the complete
line. The output is the line without the command.

: http-get \ caddr len --

128 PowerNet TCP /IP Stack

Process a GET command. The input string is the complete input line containing the GET
command.

semaphore PostSem \ -- addr
Controls access to the single POST handler. POST requests are serialised because they may
change the state of the system.

: http-post \ caddr len --
Process a POST command. The input string is the complete input line containing the POST
command.

: ParseHTTP \ caddr len --
Process received HTTP command line. At present we only deal with GET and POST commands.

: doHTTPinput \ --
Process any pending input.

: cleanHTTP \ *sv —-— *sv
Cleans up the HTTP system when a task is shut down from the kill chain.

: HTTPService \ —-
The HTTP service action or task launched for each established HTTP connection.

35.12 HTTP listening task

Listening tasks or actions are spawned when the HI'TP server gets a connection.

: HTTPServer \ -- ; stay here forever
The HTTP listening task.
0 value HTTPtask \ -- Oltask

Returns 0 or the HT'TP server task if running.

: RunHTTPtask \ —-
Start the HTTP server task.

: StopHTTPtask \ --
Stop the HTTP server.

35.13 Notes on memory usage

The majority of page requests are made using a GET request. For these, only the first line of
the header needs to be scanned and the request is contained in a single packet whose maximum
size is defined in lower layers of the Powernet system. Consequently a fixed size packet buffer is
used for HTTP input.

When handling POST requests, e.g. for Web Services, the input data is not in the headers, but
is contained in the body of the message. The size of this body is defined by the Content-Length
header. When handling POST messages, the whole of the incoming message must be read, the
body extracted and passed to the message handler. In addition, some handlers may need to
process the message header. For example, Web Services need to use the SOAPaction header
before SOAP version 1.2.

Scripting for output messages introduces the problem that the size of the message body is not (in
general) known until the script output has been generated. This means that the Content-Length
header (sent before the body) cannot be formed until the body has been generated.

Chapter 35: HTTP Server 129

To avoid the memory overhead of buffering script output, for ASP file requests no Content-Length
header is generated and the connection is closed after the response has been sent to indicate
that the message is complete. For web services, ASPX pages are served and are buffered, and a
Content-Length header is generated.

Error messages such as "404 Not found" are always buffered to produce a valid Content-Length
header because some browsers require this header for error messages.

The Content-Length header is not always required for HT'TP version 1.1 and above. However,
if HT'TP 1.0 clients have to be supported the Content-Length header must be provided. In this
case all scripted operations must be buffered. See RFC2616 for more detils.

35.14 Authentication

Before PowerNet v4.4, authentication was provided by a deferred word. Nobody reported using
it, so it has been removed to save memory. This section shows how to put it back if required.
All the code to be added can be found towards the end of HTTP.FTH.

More flexibility is provided in v4.4 because it is much easier to parse headers (see Ezam-
ples\ WebPost.fth), and scripting provides more choice as to which files are secured and which
are public.

Add the line below to the /HTTPdata structure.
int httpLogin \ login value

Add the following definitions.

: WebLogin \ -- addr
Return the address of the service’s login result.

defer WebAuthenticate \ caddr len -- res|O
Given a GET string, returns a non-zero code for permission to carry on. If permission is refused,
zero is returned.

(WebAuthenticate) \ caddr len -- res|0O
The default action of WebAuthenticate always returns true.
Restore the following code to HTTP-CMD.
2dup WebAuthenticate 7dup O= if
2drop Null$ O s" Invalid login " #401 weberror exit
endif
WebLogin ! \ stash good login result

create BaseHdrs \ -- addr
Contains a list of the basic header fields to process.

Chapter 36: Web page handling 131

36 Web page handling

Examples are given here for pages in memory and pages in files. Feel free to experiment with
mixed operation, but note that the code in <PNet>\Services\ Pages.fth is maintained by MPE
and may/will change with future releases, so we suggest that you keep changes in a separate file.

36.1 Configuration

The following two equates are only used if they are not already defined.

1 equ MemPages? \ -- n
Set this non-zero to compile the memory pages code.

1 equ FilePages? \ --n
Set this non-zero to compile the file pages code.

36.2 Data structures

Since Web pages may be stored in a file system, other mass storage or memory, a common data
structure is used based on the needs of pages stored in CPU memory. Pages stored in CPU
memory are identified by name in the HTTPPAGES.VOC vocabulary. Executing the word returns
the address of the data structure and its type.

struct /PageDef \ -- n

The structure used for a page definition.
The following equates define the types of pages that are available. They are stored in the
PG.TYPE field of a /PageDef structure.

0 equ NoPage \ -0

Page not found or unusable.

1 equ FilePage \ -- n
The page is in a file.

2 equ SMemPage \ -- n
The page is in memory (e.g. Flash) and need not be released.

3 equ xtPage \ --n
The page is created by executing a Forth word, whose xt is in the PG.addr field.

4 equ HMemPage \ -- n
The page has been loaded into the heap.

vocabulary HTTPpages.voc \ -
The default vocabulary used to hold page data.

: voc>wid \ xt(voc) -- wid

Return the WID of a vocabulary whose XT is supplied. This definition is implementation
dependent.

: FindVocPage \ caddr len -- struct|O typelO

Find a page from its name caddr/len, returning the data structure address struct and a type
code type. If the page cannot be found, both return values are zero. The action is to look up the
name in the HTTPpages . voc vocabulary and extract the page type from the /PAGEDEF structure.

132 PowerNet TCP /IP Stack

36.3 Executable pages
: xtPage: \ xt "<name> -- ; -- struct type
Creates a page which later executes the given action, e.g.

> doNewApp xtPage: /NewApp.asp

The specified action must have the stack effect

gqaddr gqlen --
where the input is the rest of the line after GET or POST.

36.4 Memory pages

: MemPage: \ "<Forthname>" "<filename>" -- ; -- struct type

An INTERPRETER definition that creates <Forthname> in the HTTPPAGES.VOC vocabulary and a
/PAGEDEF structure, and then loads file <filename> into the dictionary as data. At run-time the
address of the /PAGEDEF structure is returned. When the HT'TP server is running it will serve
the data in response to a GET request for Forthname.

[MemPage : /home.htm %IPSTACKY%\powernet.htm

36.4.1 Example memory pages

These files are compiled by default unless the equate TestPages? exists and is set to zero.

MemPage: /home.htm %IPSTACK/\TestPages\home.htm
Creates embedded memory page /HOME.HTM from the data in %IPSTACK %\home.htm. The
leading ’/’ is required as it is not removed by the command parser.

MemPage: /bgimage.jpg %IPSTACK)\TestPages\bgimage.jpg
The background image for POWERNET.HTM.

MemPage: /favicon.ico %IPSTACK)\TestPages\favicon.ico
The page icon for these pages.

MemPage: /contact.htm %IPSTACK/\TestPages\contact.htm
Creates embedded memory page /CONTACT.HTM from the data in %IP-
STACK %\ contact.htm.

MemPage: /forml.htm %IPSTACKY%\TestPages\forml.htm
A simple form.

MemPage: /thanks.htm %IPSTACK)\TestPages\thanks.htm
The response to FORMI1.HTM.

MemPage: /form2.htm %IPSTACKY%\TestPages\form2.htm
A simple form with ASP and GET handling.

MemPage: /form3.htm %IPSTACK%\TestPages\form3.htm
A simple form with ASP and POST handling.

MemPage: /thanks.asp %IPSTACK/\TestPages\thanks.asp
The scripted response to FORM2.HTM.

MemPage: /thanks3.asp %IPSTACK)\TestPages\thanks3.asp
The scripted response to FORMS3.HTM.

Chapter 36: Web page handling 133

36.5 File pages

The defaults for this section assume that the FAT file system in in use.

create PageDir$ \ -- addr

The base directory for pages. This will be prepended to the page name given to SearchPage.
The string is held as a counted string in the buffer. Make sure that your application sets
PageDir$ to point to its own pages. The directory name must not end in a separator. The
version here sets the contents to \PAGES and is only used if PageDir$ is undefined here.

: PrepFilename \ caddr len --
Prepare a URL to be a file name. For Windows/DOS file systems, convert ’/’ characters to "\ .
For Unices, do nothing.

[io \ -- ; R: -- ipvec opvec
Save the current I/O devices on the return stack.

: io] \ -- ; R: ipvec opvec --
Restore the I/O devices from the return stack.

: FindFilePage \ caddr len -- struct|O typelO
The action of SearchPage for pages in files. Find a page into memory from its name caddr/len,
returning the structure address and length.

36.6 Page look up

: SearchPage \ caddr len -- structl|O typelO
Find a page from its name caddr/len, returning the data structure address struct and a type
code type. If the page cannot be found, both return values are zero. The action is to look up the
name in the HTTPpages . voc vocabulary and extract the page type from the /PAGEDEF structure.
If file pages are required, the page directory is searched.

Chapter 37: SMTP Primitives 135

37 SMTP Primitives

This code can send any arbitary text via standard eMail systems using the Simple Mail Transfer
protocol (SMTP).

Recommended reading includes:-
RFC_821 Simple Mail Transfer Protocol
RFC_822 ARPA Internet Text Messages

1 value smtpdiags? \ --n
Set this non-zero to get diagnostic information.

#200 equ SMTPwait \ -- ms
Number of milliseconds to wait for an SMTP response from the server. If you are using a slow
connection you may have to increase this value.

#256 equ MAXRXSIZE \ --n
Size of the response buffer for messages from the SMTP server.

MAXRXSIZE buffer: SMTPin \ -- addr
The SMTP receive buffer.

: SMTP: :Wait \ hsock --
Wait for a response from the server for up to SMTPWAIT milliseconds.

: SMIP::Error? \ hsock -- flag
Read a response back from the SMTP server via the supplied socket and return a TRUE flag if
the server’s response indicates an error.

: SMTP::Connect \ ipaddr port# -- hsocket|O
Attempt to create a socket and connect to an SMTP Server. IPADDR is an ipaddress and
PORT# is the requested port. SMTP Servers are almost always found on port 25 (decimal).

: SMTP::Disconnect \ hsock --
Disconnect from a SMTP discussion by closing our socket.

(SMTPWrite) \ hsock c-addr u --
Write a buffer out via a socket.

: SMTP::Write \ hsock c-addr u --
Write a buffer out via a socket. Used to send text strings to the SMTP Server.

create crlf$ \ -- addr
A counted string holding a CR/LF pair

(SMTP: :WriteLn) \ hsock c-addr len mode --
As ’SMTP::Write’ but followed by a CR/LF pair. Mode is a TCP flag which is normally 0, but
is set to TCP_PSH by SMTP::WRITEFIELD below.

: SMTP::WriteLn \ hsock c-addr u --
As 'SMTP::Write’ but followed by a CR/LF pair.

: SMTP::WriteField \ hsock field-addr field-len val-addr val-len -- flag
Write a 'field’ to the SMTP server. In this case a ’field’ consists of a ’'field name’ and a ’'text
value’ followed by an EOL. Any field written prompts the server to make a response which is
checked for an error condition to form the return flag.

Chapter 38: SMTP Demonstration 137

38 SMTP Demonstration

38.1 Configuration

These definitions should be changed for your system.

create SMTPserver \ -- addr

Holds the remote SMTP server IP address in network order. Modify this for your own remote
SMTP server.

#25 constant SMTPport \ -- port#
The port number used by SMTP servers.

: Sender$ \ -- addr len
Returns a string containing the sender’s email address. Note the use of the angle brackets.

: Receiver$ \ -- addr len
Returns a string containing the receiver’s email address. Note the use of the angle brackets.

: Domain$ \ —-- addr len
Returns a string containing the sender’s domain name. Note the use of the angle brackets.

38.2 Sending mail

: SendBody \ hsock --

Send the body of the message. All errors are handled by THROWing.

: send-demo-email \ —- ior

This shows how to send eMail via SMTP. The ior is returned 0 for success.

Chapter 39: Ethernet and Internet configuration 139

39 Ethernet and Internet configuration

The file WebConfig.fth defines configuration data and tools for configuring the Ethernet con-
troller, TCP/IP settings and other unit details such a remote web site that your equipment
connects to. These tools are useful during both development and production for initial unit
setup.

You can use this file as a model for your own hardware. Please copy this file from the installation
folder to your application folder before use.

To avoid problems with defaults defined in other files, compile WebConfig.fth before the Ethernet
driver or other PowerNet code.

()
include %AppDir%\PNconfig \ PowerNet configuration

include %ExampleDir%\NetCode \ network order stuff

include %AppDir’%\WebConfig \ configuration tools

include %CpuDir%\drivers\EtherSAM7x \ Ethernet driver

include %IpStacky\PowerNet.bld \ PowerNet build

N J

The following equates select Flash or EEPROM storage for configuration data. Only one should
be set. Both assume that the standard MPE tools for EEPROM and Flash read/write are in
use. If these tools are not being used you will have to write your own versions of DataFlash>RAM
and RAM>DataFlash below}.

1 equ EEPROMconfig? \ - x
Set non-zero to use EEPROM configuration.

0 equ Flashconfig? \ - x
Set non-zero to use Flash configuration.

39.1 EEPROM /Flash area definition

The structure declared here defines the layout of the configuration data region.

Layout of serial EEPROM or a Flash region which holds configuration information.

#1024 constant /CfgData \ -- n
Size of the configuration data area.

#256 equ /URL \ -- len
Size of a buffer of a domain or page name.

[cfg
4 cfg: Emagic \ $5555AAAA
4 cfg: Eunit# \ 4 byte unit number
4 cfg: EcustID \ 4 byte customer ID number
6 cfg: EMACaddress \ 6 byte Ethernet MAC address
1 cfg: EDNS? \ non-zero if we can do DNS lookups
1 cfg: EDHCP? \ non-zero for DHCP
4 cfg: EIPaddress \ 4 byte IPv4 IP addresss, 0/-1 for DHCP
4 cfg: EEnetIPMask \ 4 byte network IP mask

140 PowerNet TCP /IP Stack

4 cfg: EIPGateway \ 4 byte IP gateway
4 cfg: EPollServer \ 4 byte Poll server IP address
4 cfg: EPollPort \ 4 byte Poll server port
/URL cfg: EPollURL \ server domain name
/URL cfg: EPollPage \ server page name
4 cfg: ETransaction# \ Transaction number
0 cfg: Elast \ defines size used
cfg]
create CfgTemplate \ -- addr

Default configuration which must match the configuration structure above.

39.2 Runtime data

6 buffer: EtherAddress \ -- addr
Holds the Ethernet MAC address (six bytes). Note that you must obtain these from the IEEE
(www.ieee.org) or from other sources.

1 buffer: DNS? \ -- addr
If non-zero, the first byte indicates that DNS should be used to obtain the poll server’s IP
address.

1 buffer: DHCP? \ -- addr
If non-zero, the first byte indicates that DHCP should be used to obtain the unit’s IP address
from a local DHCP server

4 buffer: IpAddress \ -- addr
Holds the Ethernet IP address (four bytes). The range 192.168.xxx.yyy is commonly used for
private networks. The data is in network order.

4 buffer: EnetIPMask \ -- addr
IP mask for addresses on the Ethernet port. The data is in network order.

4 buffer: IPGateway \ -- addr
Gateway attached to Ethernet port. The data is in network order. Set to 0.0.0.0 if there is no
gateway.

4 buffer: PollServer \ -- addr
Polling server IP address in network order. This is the server that the reader unit will connect
to. The data is in network order.

4 buffer: PollPort \ -- addr
Polling server port address, defaults to 80.

/URL buffer: PollURL \ -- addr
Buffer for the poll server’s domain name.

/URL buffer: PollPage \ -- addr
Buffer for the page to be accessed by polling operations.

0 value Unit# \ ——u
Unit serial number.

0 value CustID# \ -- u
Unit customer ID number.

0 value Transaction# \ ——u
Transaction number used by the client code.

Chapter 39: Ethernet and Internet configuration 141

39.3 Flash and EEPROM routines

Select one set of these routines as required.

39.3.1 Flash

SecTab dup @ cells + @ FlashBase + constant CfgFlash \ -- addr

For configurations in Flash, we default to using the last sector of the flash for configuration
storage. Systems that use fixed size pages, e.g. Atmel SAM7X CPUs, should predefine CfgFlash.

Elast buffer: CfgBuff \ -- addr
Buffer used during configuration read and write.

: SetDefaults \ --
Flash: Write the default configuration to Flash. Usually run during production configuration
before NetSetup below.

: DataFlash>RAM \ —-

Flash: Read the TCP/IP stack and unit settings from the Flash configuration area. Data is
copied to RAM if the magic number is correct, otherwise, the default configuration is pro-
grammed and used.

: RAM>DataFlash \ --
Flash: Write the TCP/IP stack settings to the configuration Flash.

39.3.2 Serial EEPROM

: DataFlash>RAM \ —-
EEPROM: Read the configuration from EEPROM.
: RAM>DataFlash \ —-

EEPROM: Write the configuration settings to the EEPROM.

39.4 Set up operations

39.4.1 Displaying and Entering IP addresses

(GetIPaddress) \ -- ipaddr|INADDR_NONE|O
Get an IPv4 address from the user. INADDR_NONE (-1) is is returned if the entry is bad, and zero
is returned for a zero length entry. Use .IPv4 (ipaddr --) to display an IP address.

: GetIPaddress \ caddr -- ior
Get an IP address from the console in the form "192.168.0.55" (base is decimal). A good result
is saved at caddr and ior is returned 0 for success or a null entry, or other for a bad entry. Note
that caddr will always be modified.

: GetIP \ caddr -- ior ; O=success
Get an IP address from the console in the form "192.168.0.55" (base is decimal). A good result
is saved at caddr.

39.4.2 Displaying and Entering MAC addresses

.MACaddress \ caddr --
Display the MAC address at caddr-

: getByte \ addr char -- addr’
Collect an integer delimited by char and store it at addr, returning addr+1.

: getData \ addr char n --

142 PowerNet TCP /IP Stack

Collect n integers delimited by char, and store the bytes sequentially at addr.

: GetMACaddress \ caddr -- ior ; O=success

Get an Ethernet MAC address from the console in the form "aa-bb-cc-dd-ee-ff" (base is hex).
The result is saved at caddr and ior is returned O for success or a null entry, or other for a bad
entry. Note that caddr will always be modified.

: GetMac \ caddr -- ; input new MAC address
Get a new MAC address from the user console.

39.4.3 Setup proper
1 y/n? \ -- flag
Wait for a key and return true if the key is Y.

: EtherSetup \ -
Set up the unit’s Ethernet address.

: getC$ \ caddr --
Get a counted string of up to /URL characters from the keyboard and save it at caddr. This
version is compiled if a heap is present.

: getC$ \ caddr --
Get a counted string of up to 62 characters from the keyboard and save it at caddr. This version
is compiled if a heap is not present.

(getU) \ caddr -- ior
Get an unsigned number and place it at caddr. Return 0 for success or a null entry.

1 getU \ caddr --
Get an unsigned number and place it at caddr.

.BadE$ \ -
Warning for unconfigured string.

: ES. \ caddr --
Display the counted string unless the count is $00 or $FF, in which case display a warning.

: NetSetup \ --
Configure the unit for the network and server.

.Config \ —-
Display the Flash configuration area.

(UnitSetup) \ --
Used during production test to set up the unit serial number and customer number.

: UnitSetup \ --
Used during production test to set up the unit serial number and customer number.

.Config \ —-
Display the EEPROM configuration area.

Chapter 40: POST handlers and HTTP updates 143

40 POST handlers and HTTP updates

The file <Pnet>/Ezamples/WebPost.fth provides example handlers for HTTP POST requests.
According to the RFCs, GET requests are made when the server is left unchanged by the request.
POST requests are made when the state of the server is (or may be) changed by the request.

The example here is of uploading a new application binary image to the server. DEFERred words
are used to handle the target specific actions. This example can be used as the basis of other
POST handlers, especially those using multipart forms. For details of form encoding, see RFCs
2045 and 2046. These can be obtained from http://www.rfc-editor.org.

To use the system, you need PowerNet version 4.62 or later. Compile the file
<Pnet>/Examples/WebPost.fth after the PowerNet build file. When the system is running,
point your browser at the page Reflash.htm. When you have selected the required file, press
the Submit button. This returns the form results and new binary to a page called NewApp.asp,
which is actually a Forth word that performs the process. When it is complete, the page
/naresp.asp is served to display the results to the user.

To provide flexibility in how the new binary is handled, a simple interface is provided that can
be used to save the new binary code to Flash or a file system, e.g. on an SD card.

40.1 Discussion

The requirement is to be able to point any browser at the PowerNet web server, and to be able
to upload a new binary image to it using a form for data entry. What is done with this file is
application dependent, but it may replace the existing application, or it may be saved to an SD
card.

40.1.1 Form

In order to send binary data to a server (file upload), a POST request must be made by the
form. Here is the HT'ML for an example form. Following sections indicate the response, in our
case using Firefox.

144 PowerNet TCP /IP Stack

(N
<html>
<head><title>Select new application</title></head>
<body>
<h4>Select application</h4>
<p>Select the application using the Browse button,

then press the "Submit" button to send it to me.

Once you have pressed "Submit" you are committed.

To avoid sending a file, return to the previous page.
</p>
<form enctype="multipart/form-data" method=POST action="newapp.asp">
<table>
<tr>
<td>New application file</td>
<td colspan=4><input type=file name=appfile></td>
</tr>
<tr>
<td>Upload to remote:</td>
<td colspan=2><input type=submit name=send value=Submit></td>
</tr>
</table>
</form>
</body>

</html>
N J

40.1.2 Headers

The following is a response by Firefox to the form above. Note that whenever you press a button
of the submit type, you get the complete response, including any selected file.

()
POST /newapp.asp HTTP/1.1

Host: 192.168.0.227

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.14) Gecko/2
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plai
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,%;9=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://192.168.0.227/Reflash.htm

Content-Type: multipart/form-data; boundary=----------—---———-——————————- 805274455
Content-Length: 9386

————————————————————————————— 805274455224

The Content-Type and Content-Length headers are essential. The first tells us that this is a
form response in the style we need and the second tells us the overal size of the response. If you
need security, you can use the Referer field to indentify which host and file contained the form.

In particular the Content-Type field contains a boundary string. This is the only data that
identifies where one part of the form starts and ends.

0080404 Fir
n;q=0.8,1ims

224

Chapter 40: POST handlers and HTTP updates 145

40.2 Form boundaries

The boundary string is defined by the browser. The PowerNet server has no control over it.
However, it is mandatory that the string is not contained in the data.

The example below shows three versions of the boundary string.

——————————————————————————— 805274455224
————————————————————————————— 805274455224
————————————————————————————— 805274455224~

The first is the separator defined by the boundary portion of the Content-Type header. Under
some circumstances, this may be delimited by """’ characters which are not part of the boundary
string.

The second is applied to all part separators except the last one. The second form is the same
as the first but with two leading -’ characters. It is always preceded by a CR/LF pair and
terminated by a CR/LF pair.

The third marks the end of the form. It is identical to the second type but has two additional
-7 characters at the end of the line.

40.2.1 Form data

Using the form above, we receive two blocks of form data between boundary markers.

Content-Disposition: form-data; name="appfile"; filename="memcopy.s"
Content-Type: application/octet-stream

/x%kkskokkkokkkokkkkkkkkk (C) COPYRIGHT

Note that in our form, the submit button is after the file browser, so the file is sent first! The
order in which the elements of the form are sent is the order in which they appear in the HTML
of the form.

The Content-Disposition header tells us which element of the form is being returned, and the
Content-Type header tells us the file is being transferred as 8 bit binary. There is blank line
(CR/LF pair) between the last header and the start of the binary data.

Note that there is nothing to tell us the size of the data!l We must rely on detecting the boundary
separator unless there is some magic data at the start of the binary data section.

Content-Disposition: form-data; name="send"

Submit

This represents the Submit button. You can have several buttons of type submit. They will

146 PowerNet TCP /IP Stack

each cause the form response. You can use them to decide where to place the data, e.g. primary
or secondary application.

If you want a "Cancel" button, your page will need a second form pointing to a different page.

40.2.2 After the form

After the last item of form data will come the residue, which is usually null. Note that more
than one form may be contained in a web page.

40.2.3 Restrictions

The following assumptions and restrictions should be noted.

e Only the last boundary string defined in the message headers is used. Thus nested boundary
strings are not supported.

e It is assumed that a boundary string is followed by CR/LF or -/-/CR/LF.
e Very little checking of the message is performed.

e For simplicity, compatibility with previous versions of PowerNet and to save RAM, global
variables are used.

40.3 Parsing multipart boundaries

There are two conditions we have to deal with, parsing text lines and detecting the marker at
the end of a binary file. The second situation is coded within the binary file handler.

: Not-- \ caddr -- flag ; true for not ’--’
Return true if the two characters at caddr are not .
: Bdry$? \ caddr len -- 0]-1

Returns true if the string matches the boundary string plus two leading dashes.

: Boundary? \ caddr len -- -1]0]1

Returns -1 if the string is a normal boundary marker, 0 if it is not a boundary marker, and 1 if
it is the last boundary marker.

: NextBoundary \ -- flag

Read text up to the next boundary marker. Flag is returned true if the boundary was the last
one.

40.4 Flash update application
40.4.1 System interface

The flash interface with the underlying system is handled by three DEFERred words.
#1024 equ /FlashBlock \ -- len

Unit size passed to the application.

Defer InitUpd \ caddr len --

Initialise the app’s binary update system. The input string is the file name to be received. This
is passed for validation purposes and in case the file is saved in a local file system.

Defer AddUpd \ caddr len --

Chapter 40: POST handlers and HTTP updates 147

Add the given memory block to the update. All blocks except the last contain /FlashBlock
bytes of data.

Defer TermUpd \ --
Terminate the app’s binary update system.

40.4.2 Receiving a file
#256 buffer: Filename$ \ -- addr
Buffer holding file name as a counted string.

#80 equ /BndryBlock \ -- len

Size of additional buffer for boundary detection. The maximum size of a boundary string is 70
characters (RFC2046). These are prefixed by CR/LF/-/- at the start and will be followed by
-/- in the last boundary line.

/FlashBlock buffer: BinBuff \ -- addr
Buffer for storing binary data.

/BndryBlock buffer: BndryBuff$ \ -- addr
Buffer for storing potential boundary string data. Holds a counted string starting with a CR.

variable NextByte \ -- addr
Holds the address (in BinBuff) of the next character to be received.

variable #FileSize \ -- addr

Holds the number of bytes stored as binary data.

variable #AppSize \ -- addr
Holds the number of bytes transferred to the application.

variable BinDone \ -- addr
Set if the file has been transferred.

variable BinStatus \ -- addr
Holds the file receive status (0=good).

: ResetBlock \ —-
Reset the next byte pointer.

: StartRxApp \ --
Initialise variables and buffers for file reception.

: Block>App \ -

Send the data block to the application. All blocks except the last contain /FlashBlock bytes
of data.

: StopRxApp \ —-

Clean up after receiving a file.

: addData \ byte --
Add the byte to the binary buffer.

: NotBoundary \ --
Add the partial boundary string to the data and clear the buffer.

create CrLf-- \ -- caddr
Holds the four characters CR/LF /- /-.

: FullBndry? \ -- flag

148 PowerNet TCP /IP Stack

Check the contents of BndryBuff$ against the start of Boundary$ which holds the received
boundary separator. If the data does not match copy the data to the binary buffer. If the data
matches the complete boundary string, return true, otherwise return false.

By definition the marker string does not appear in the the binary. The code reads the binary
into a buffer that is 80 characters longer than the required Flash block size to accommodate
the boundary string (70 chars maximum). We check for the sequence CR/LF/-/-, and if found
check for the following boundary string.

: ReceiveBinary \ --

The separator line between the part headers and the binary file has been read. Read the binary
up to the concluding part boundary. Later code will check if this is the final boundary. If the
boundary tail matches the last boundary condition, return true, otherwise return false.

: ReadBinFile \ -- flag

The separator line between the part headers and the binary file has been read. Read the binary
up to the concluding part boundary. If the boundary string is the last one, return true, otherwise
return false.

40.4.3 Part scanning

In this example, the only form part we need to process is the one containing a binary file. We
detect this by parsing the headers for the pair:

Content-Disposition: form-data; name="appfile"; filename="foo"
Content-Type: application/octet-stream

We assume that a valid file is present when
e the "form-data" marker is present,
e the filename is non-null

e and the "application/octet-stream" marker is present.

variable OctetStream \ -- addr
Set true when Content-Type: application/octet-stream has been received.

variable FormData \ -- addr
Set true when the "form-data" marker has been received.

: ?formData \ caddr len --
Check for the "form-data" marker.

: 7appfile \ caddr len --
Check for 'name="appfile"’.

: doPdisp \ caddr len --
Check the given content disposition line.

: doPtype \ caddr len --
Check the given content type line.

create PartHdrs \ -- addr
Table holding the headers to be processed by part header handlers.

: CheckPartHdrs \ -- x
Check the data received in the part headers, and return z, indicating what to do with the part.
If z is zero, just skip the part.

Chapter 40: POST handlers and HTTP updates 149

: ProcessPart \ -- flag
After receiving a boundary, process a part up to and including the next boundary, returning
true if it is the last one.

: ProcessParts \ --
Read the parts up to the last boundary

40.5 File update handler

: doNewApp \ caddr len --
This is the handler for the update request.

> doNewApp xtPage: /NewApp.asp
Defines the page which performs the upload.

.UploadDone \ --
Used in the body of an ASP page to indicate the response to the upload.

MemPage: /Reflash.htm %IPSTACK/\TestPages\Reflash.htm
A form used to request a new application.

MemPage: /nareply.asp %IPSTACK)\TestPages\nareply.asp
The response delivered after an upload.

40.5.1 Example for pages stored in files

This example can be used to upload binary files, e.g. a new application image, to the file system.
In order to compile this code the FAT file system must be present, and the equate FilePages?
(used in Pages.fth} must be set non-zero.

Defer InitUpd \ caddr len --
Initialise the app’s binary update system. The input string is the file name to be received. This
is passed for validation purposes and in case the file is saved in a local file system.

Defer AddUpd \ caddr len --
Add the given memory block to the update. All blocks except the last contain /FlashBlock
bytes of data.

Defer TermUpd \ --
Terminate the app’s binary update system.

create FileDir$ \ -- addr

The base directory for files. This will be prepended to the page name given to InitUpd. The
string is held as a counted string in the buffer. Make sure that your application sets FileDir$
to point to its own pages. The directory name must not end in a separator. The directory must
exist before use.

-1 value hPostFile \ -- handle
Handle of the file used to save the download data.

: InitFileUpd \ caddr len --
Initialise the file reception.

: AddFileUpd \ caddr len --
Add the given memory block to the update. All blocks except the last contain /FlashBlock
bytes of data.

: TermFileUpd \ --
Terminate the app’s binary file update system.

Chapter 41: Internet RFCs 151

41 Internet RFCs

41.1 What is an RFC?

Internet standards are generally proposed and honed by various commitees in public documents
across the World Wide Web. These documents are called RFCs (Request for Comments). For
any standard protocol you will find a number of these documents on the Web. Some relevant
ones are in the M directory.

41.2 Where are the latest versions?

The web site http://wuw.rfc-editor.org is currently the best source for finding RFCs.

Another starting place for a search engine; you can find them simply by entering the phrase:-
<protocol> +RFC

into the search engine. When looking up a protocol be aware of two things:-
1. Sometimes an RFC describing a protocol is made obsolescent by a later document.

2. Most protocols have extension documents posted after their initial release.

41.3 Recommended reading

TCP/IP Illustrated volume 1

W Richard Stevens

ADDISON WESLEY

TCP/IP Illustrated volume 2

Gary R Wight & W Richard Stevens
ADDISON WESLEY
InterNetworking with TCP /IP vol 2
Douglas E Comer & David L Stevens
PRENTICE HALL

Net BSD Sources

Net BSD Man Pages

The Linux sources will do fine

http://www.linux.org

Chapter 42: Licence terms 153

42 Licence terms

42.1 Distribution of application programs

Providing that the end user has no access to the source code, compiled applications contain-
ing the PowerNet IP Code may be distributed without royalty. An acknowledgement will be
gratefully appreciated. No part of the target source code may be further distributed without
permission from MicroProcessor Engineering.

If you need access to an open Forth interpreter for engineering and maintenance access only, this
is permitted after a (free of charge) letter of permission from MPE to ensure maintenance of our
copyright. Use of the Forth interpreter for server-side scripting is permitted with the purchase
of the PowerNet code.

If you need to ship open source, or wish to check what constitutes engineering and maintenance
access, please contact MPE.

42.2 Warranties and support

We try to make our products as reliable and bug free as we possibly can. We support our
products. If you find a bug in this product and its associated programs we will do our best to
fix it. Please check first by fax or email to see if the problem has already been fixed. Please send
us enough information including source code on disc or by email to us, so that we can replicate
the problem and then fix it. Please also let us know the serial number of your system and its
version number. We will then send you an update when we have fixed the problem. The level of
technical support that we can offer may depend on the Support Policy bought with the product.
Technical support will only be available on the current version of the product.

Make as many copies as you need for backup and security. The issue softwareis not copy
protected. The code is copyrighted material and only ONE copy of it should be use at any one
time. Contact MPE or your vendor for details of multiple copy terms and site licensing.

As this copy is sold both direct and through dealers and purchasing departments, we cannot
keep track of all our users. If you send us your contact details, we will put you on our mailing
list. This way we will be able to keep you informed of updates and new extensions, as they
become available. If you need technical support from us we will need these details in order to
respond to you. You will find the serial number of the system on the original issue discs.

Index

Index

!

LG 4 P 19
P 58
tkpbdata i 30
Ipb_size 29
Ipbdatalen..................l 30
#

#appsize il i 147
#ANS ... 13, 61
#filesize i i 147
HELPCONNS ... 114
HELPMAXCONNSottt 14
HQVATS 117, 121
HECpCONNg ot 74
HEXPDULS ... 11
#unacked 71
#unsent........ ... 71
$

BOmaCA . . 40
$copyrighto i 93
module. 93
BVerSion ...ttt 93
%

SXX>ChAT .o 121
(LQVATS) ottt 121
(.socket) ... 91
(Ginet_digit) ...l 39
(askforetherroute) 84
(bootpsend)oouiiiiiiiii i 57
(CRSUM) ..ottt 20
(closesocCket)ooiiiuiiiiiiii i 70
(filesend)oiiiiiiiiiiiii i 127
(find_hsocket_tcpport)ccoviiiiiiinnn. 41
(find_route)i i 45
(£indguar) ...ttt e 121
(freequar)vviiii e 121
(FLPACCTE) vttt 112
(EBPPASS) t ettt 112
(FLPUSET) vttt 112
(getfreeport) 42
(getipaddress)cooiuiiiiiiiinannan... 141
(etu) .o 142
(gotslipchar)oooiviiniiniiiiinin.n.. 85
(ioctlread) ...oovvuriieeeiii e 87
(1octlstate) ...vveein i 87
(Apsend) ...t 47
(POllsocket) ..ot 87

(sendslipchar)ooiiiiiiiiiiinn, 86

155
(smtp::writeln)oooiuiiiiiniininn.n. 135
(smtpwrite) ... 135
(sntppsend) ...t 68
(SOCKEL) « ettt 37
(SVEMIL) .+ttt 98
(SVKEYT) oot 97
(svterminate) il 99
(tn_login) ...t 103
(UDItSELUP) v v vv e e 142
(webauthenticate) 129
*
*tftp_packet....... il 93
+
+dechbyte ... 111
57+ T 114
+ftpemdchar................ ool 107
+ftpline 107
Hiphdr. 48
+s0Ck# 41
+SV_responsive i, 98
FUSET .ottt 21, 22, 23, 119
9
S D) 19
“bodyleft 125
—ftpline............. 107
-leading ... 115
Slisten? ... 89
-SV_Tresponsive 98
—teptxbuff ... 70
2B7STCresp. ... 111
B PN 116
AT 116
ansidate........ .. 116
baded. ..o 142
bank. 80
e 74
close/Keep. . .c.iiuiiiii 126
o1 111
cconfig .o 142
conline i 15
[PN 74
.decbyte ... ool 111
decimal ..o 15
.dheptype ... 58
.dhstate 55
QOW . et 116

156
BT o 92
cerrbody ... 126
cerrhead 126
etheradd.............. il 91
fdline 107
0 < 11 B 108
FEP200 ... 108
FEP202 ..ttt 108
FEP21T ot 108
fEP226 ... 108
FEP230 .ttt 108
FEP250 ..ottt 108
FEP331 o 108
FEPB50 ..ttt 108
FEPA25 .. 108
FEp426 109
FEPAB0 ...t 109
FEPABL .ttt 109
FEPB02 ... 109
FEPSOL .ttt e 109
FEP550 . .ottt 109
ftpchain. ..o 114
ftpdate ... 108
gtpdir oo 108
ftpdirline. ... 108
gtpdirndst ..o 108
CEEPEALe L 108
EEPTeSD 108
hdline oo 120
hex ... 15
http#. ... 126
httpar-none.............l 126
httpcontent............. oL 126
chttpdate ..o 126
chttpserver..... ... 126
Jdpaddress ..o 39
iphdr.......ooo 91
APLlOC. i 39
ipnet......... 39
Ippkt. .o 91
APVA . 39
Ko 91
TR 92
macaddresSsS. ...ttt 141
PR 6
CPOWETIEE « oottt 7
LProtocol ... 91
CPWATESD - v vttt e 111
A 33
L 91
qlen.......... 33
e = PP 33
QString ...t 122
QUO -+« ettt ettt e e e e e 111
Lo A= o= 121
B o= 80
TOUL@. .ttt 91
TOULES. ..ttt 91
o= 16
SEIVICE .\ttt 95
ssmstate ... 67
csockaddr_dm. ... 91
.socket. ... 91
.socket_type.........o il 91

LSVMESSAZE . .ottt 99

PowerNet TCP /IP Stack

1773 « T 91
BCPCD . 91
tepflags ... 91
.tepstate ... 70
.telnetchain.............. . ..ol 104
.time&date ... 116
7« 104
SUAD 91
uploaddone............ooiiiiiiiiii 149
/bgimage. JPg. .« i vt 132
/bndryblock. 147
Jefgdata. ... 139
JCOMNITOM . oottt e 74
/contact.htm............ooiiiiiii 132
JARCD oot 56
JANS .. 13, 61
JANSIS « ot 13, 61
/dnsqtemplate. ... 64
/echoms i 101
/favicon.ico......... ... ool 132
Jfileunit i 127
/flashblock. ...t 146
Jforml . htm. 132
Jform2.htm. 132
/form3.htm.ot 132
/ftpdata...... ... 105
Jhome . htm......ooii 132
/httpdata..........ooiiiiiiii 117
J1AStONg « o 14
/MArePly . @SP. ..ttt e 149
/pagedef 131
/pseudohdrl 20
/quardata ... 117, 120
/QVATNAME . ..ottt 117, 120
JQUATTEC . .ottt 117, 120, 121
/reflash.htm.............. 149
JSDED e 65
/SNEPPATASt 66
/SVAata. oo 96
/svib...o 96
JSVOD ettt 96
JSVEID . oo 96
/thanks . .asp....couuiiiii i 132
/thanks.htm.........cooiiiiiiiiiii .. 132
/thanks3.asP....couviiiii i 132
/udpService. ... 51
JUTL .o 139
>
>inet_aton. ...l 39
>inet_ntoa............ ... 39
PO 6
SECPCONNG « v e vvttet ettt et 74
>tepdata ..o 70
>udpdata ... 51
>udpdatapos..........oooiiiiiiiiiii L 51
?
Pappfile 148

Index

Thadsocket 42
Thoundary 124
?closehttp........o 127
PAUMD. ... 15
?formdata...... 148
5 6 o Y PP 39
?ftpacceptable 107
Pmultipart. ... 124
=10 87
= 5 PP 87
DS 2K e ittt e 87
=1 5 PP 87
7ServiceclosSe. ...t 100
?servicekRill. 100
?stackempty......... ...l 16
PSVKRILL L 100
(@)

Qe 7
QD) oo 19
OQlem. .. 33
[COm .t 15
[Etp . e 107
[ftpdataio.........cooiiiiiiiiii i 106
15T P 120
2 30 83
(10 133
[Sm oo 40, 109

A 93, 94
1

P 121
4

G 93
AOOMS . oottt 80
Abor . .. 113
aborttftp....... ... 94
acceptchar........... ... 97
acceptdhepin....... ... 57
acceptgiven............ ... 57
ACCE .t 112
ackdelaytimecooiiiiiiiiiiian, 12, 69
acktxbytes.......... ... 75
add_hsSoCKet i i 41
add_route 46
addcharo 115
adddata ... 147
adddhepopts ... 58
addendlink............ol 39
addetherroute............. ool 49

addfileupd..............l 149

157
addlink......... ... i 39
addupd. ... 146, 149
aligned. ...t 33
allocpbuf 30
alloCEXMEM . ..ot 81
APPENA. . . 115
arp_hdr. 37
arp_ip_data........... ...l 37
arp_req_tries.......... i il 11
arpforme? ... 49
askforetherroute.............................. 84
askforroute............l 45
ASMX_LYPe ..ot 118
asp_header$......... 123
asp_tail$ 123
ASP_LYPe ... 118
aspfilereq.......coviiiiiiiiiii 127
aspinterpret............o ool 127
ASPPTOCESS vt iee i 123
ASPrequUeSt ... 123
ASPX_LYPe .. 118
atlinkdn 83
atlinkup ...l 83
B
badfs........oo 127
badippacket 48
basehdrsol 124, 129
bAryB?. 146
bind... ... 88
bindoneol 147
bindto..... .o 88
binstatus................ ...l 147
DloCK >aPP - ottt 147
blockid.........cooii i 93
bodyleft ... 125
bootp_xid 55
bootpmagic.................i 56
boundary$ 124
boundary?.........l 146
buff. .. 119
buffer... ... 119
buffemit 119
buffer:...... 27, 41, 45, 101, 121, 135, 140, 141, 147
buffhdrsize il 11, 33
buffsizemask.......... ... il 29
bufftype......... ... 119
bufftypemask............ ... 29
bumppbuffdata............... ...l 30
C
bt 57, 64
canrouteip?............. i 47
CaANWeToULettt 45
Cell o 21
CELLS . ottt 41
cfgtemplate................. ...l 140
cgiend? 125
Cgikey. ..o 125
cginame$... 125
cgival$... 125
check_tcp_cksum.................... ...l 91

158

checkethercouiiiiii it 84
checkftp........ ... 107
checkftpdata................ oL 110
checkheader..........couuuiiiiniiinennnnnnnnnn. 123
checkhomepage................... ...l 126
checklinK ...ooitni i 83
CheCKName . ..ottt ettt 123
checkparthdrs....................l 148
CheCKYXWin . ..ot e 72
checksoCKet . ..o iiiiii i 106
CRECKR SV . ottt e 97
checktimeot 84
checktXUNSeNntovvttt ittt 72
chkteptxbuff.........l 70
CaSaAMe T . ottt 74
o2 4= 1 P 20
cleandnsq i 64
cleanftp ... 105
cleanhttp...........oiiiiiiii 128
Clients T ot e 10
closedatafile.........coviiiniiiiiininnnnn. 109
closedatasocketoiiiiiiiiii i 110
closedatastream...............ccoviireiniannan.. 110
closesoCKRet ..ot 88
ClrsSOCKeterTOr ..ottt 41
clrwebflag............ ... 118
COM it 15
conftpdata.........cooiiiiiiiiiiiiiii 106
o7 o3 0% 4 =Y o 20N 88
foZ03 0% 4 =Y o v 1 o R 90
CONSOLE=TSY . vttt ettt e et 98
console=telneto, 103
consolebuff......... i 119
consoleftp............. i 107
consolehttp........oooiiiiiiii 119
consoleio. ... 6, 15
T3 o K=o 2 == 98
CONSOLetn ..ottt 103
o o3 Y= 2 7
constant e 82
copyethadd..............l 40
CPU=386. .. it 20
Cpu=68Kk................. 20
(o] o0 ' 20
o] o1V Bl ol o v = 20
cpu=h8/300hooviiiiii 20
o o = 1 =S 66
Crlf . 135
Crlf—— . 147
csplit. ..o 115
CSS By P e 118
custid# 140
CWA et ettt 113

databuffer.............o il 29
dataflash>ram...............cooiiiiiiineinn... 141
days$. ... 116
debug ... 15
debug_.ascii............... il 16
debug_.byte........ ...l 16
debug_.decimal il 15
debug_.hex.......... il 15

PowerNet TCP /IP Stack

AEDUG .S 16
debug _>pos...........iiiiiiiiiii 15
debug_count&type ... 15
AEDUG_CT .\t 15
debug dump..................iLL 16
debug_emitl 15
AEDUG_SPACE . .. 15
debug_spaces....................... 15
debug_type............iiiiillllL 15
dec>string.....................L 116
decodeurl$ 121
definitions.........cooviiiiiiiiiiiiiiiiii... 114
defmss. ... 12
defroute 45
dele .. 113
dellinK......ooiuiiiiiiii 39
dequete.l 25
AeV_MaASK .ot o it 11
AR . 140
dhep_tl.. ... 55
ARCP_ B2, .ottt 55
dhepdebug? ... 53
dhepflags ... 56
dhepidle ... 55
dhcpleaseoiiiiii i 55
dhcpleasetimerol 55
dhecppacket?o 59
AhepPOTt .. 59
dhecpserver ...l 56
dhcpservicestruct............ol 60
dheptimer 55
diags . 10
dicttop. .o 16
discallsockets ...t 88
discardrXcooiiiiiiii 81
discardtcptcb. ... 42
discardtftp.... ..o 94
discdatasocket, 110
disconnect il 88
ANS T . 140
dnsauto? 9
dnsdebug?..........l 13, 61
dnsid........iiiii 64
dnsport#...... 13, 61
dnsqtemplate.......................ol 64
ANSQUETY .« ot vttt et e 64
ANSSEIVer. ...ttt 13, 61
doclength ... 124
doctypel ... 124
dodharpcheck.............. 59
dodhbound 59
dodhcpopt ...ovv it 59
dodhidle ..ottt 58
dodhinito i 58
dodhrebind i 59
dodhrebooting............l 59
dodhrenewooiiiiiiiiii 59
dodhrequest ...t 59
dodhselecCtooiiiiiii i 59
dodtconnected..........................LL 110
dodterror 110
dodtidle ...ttt 110
dodtlistening.................... ... 110
dodtreadsend................ ...l 110
dodtrecvwrite..........l 110

Index

doesSCcapeseqUence 103
doftpacCt .. 112
doftpdata.........coiiiiiiiiii 110
Aoftppass ... 112
doftpuser........ ..o 112
doheader il 123
dohttpinput............... . i il 128
doincoming............. oLl 47
domain® ... 137
AOMEWAPD -+ o ettt 149
Aopdisp ..o 148
AOPEYPE « oot 148
dorunechosocket il 101
dorunetherl 84
doslipport ...l 86
dosnactive il 68
dosnconfigured ool 68
dosninit 68
dotcpacknowledge ... 75
dotcpclosed. ... 74
dotcpclosewaitl 75
dotcpclosing. ... 75
dotcpconnecttimeout.. ...l 75
dotcpdelayedack?ttt 75
dotcpdelayeddata?............... 75
dotcpdiscondelay oL 5
dotcpestablishedoaal 75
dotcpfinwaitl.........o il 75
dotepfinwait2. ...l 75
dotcplastack......................ooiiia 75
dotcplisten.o 74
dotcpretry?.. 5
dotcpsynreceived ... 74
dotepsynsent..........i i 75
dotcptimewait.........ooiiiiiiiiiiiiiiii 75
dump_line 91
AUmMPPAIrS ... 125
QUD . oo 141

. 142
eblen. 101
B 79, 80
€CQ ... 79, 80
EChO T e 10
eChoCloSe .. iii 101
echoest? i 101
echoport# ... 14, 101
echorequest................ i it 43
echoresponse.................ooiiiiiiiiiL. 101
echoservice...... ...t 101
echowait ..o 101
el 81
€0 . .. 81
EPTOMT . oottt 78
eepromconfig?. 139
CIST@. . i 80
eIMMU ! .. 80
empty_route?........... ... 46
endofpacket i il 85
enethertx il 80
enetipmask........... il 6, 45, 140

ENQUEUE. . ..ttt ettt 25

159
OQU. ..t 12, 14, 66, 69, 103, 120
esoftrst 80
eterl@. ... 80
ether_ hdr o il 37
ether_mask 11
ether_port i 11, 49
etheradd>cs............ il 81
etheraddress...............ooviiiinn.. 6, 78, 140
etherarppacketl 49
etherbaseo il 7
etherbcastaddress............. 49
etherippacket..............l 83
etherlink?......... i 81
ethernet?t 9
ethersetup.........coiiiiiiiiiiiiiiiiiiia, 142
ethertask..............ooiiiiiiiiiiii .. 84
etherunkaddress ...t 49
W 80
QWO . . 80
execchain......... i il 39
expire_routes? il 46
extendlife.......... i 45
extract-stringl 115
extractvalue............. ..o, 124
F
fastepu? ... 7T
Filedir$..o 149
filename$... 147
filepage ...ttt 131
filepages?o 10, 131
filequery............ ... 127
filescript.....ooviiiii i 127
filesend ... 127
find_hsocket_port............. ..., 41
find_hsocket_tcpport.............. 41
find_route...... ..o 45
findfilepage............. ...l 133
findgvar 121
findvocpage.....................oLL 131
fionread i 88
firstportnumber............................. 13, 42
firstq...... 27
flashconfig?............ ...l 139
flushdebug o i i il 6
flushg........ ... 42
forcetcpreset...........l 72
formdata...........l 148
formtype ... 124
forth_script......... ... oo il 117
frame_end.......... 85
frame_escape...........oiiiiiiiiii 85
freecommonqvarc.oiiiiiiiiiia 121
freeconng ... 42
freegb.... 30
freeqvar ... 121
freeupsocket........ ... il 42
) PO 10
5« 1 P 107
ftpabortd26.......... ool 111
ftpannounce........... oo 111
FEpbs . 107
ftpemdport# ... 14
ftpcommands........... ... ool 114

160

ftpdataactions ... 110
ftpdatafailed?l 110
ftpdataport#............. 14
ftpdiags?...... 107
ftpinterpret..... 112
i o T 107
FEpPSerVer ... 114
ftpserverpass.........coiiiiiiiii 114
ftpservice........ ... i 114
ftptask ... 114
fEpVoC. ... 112
FUllbndry? ..o 147

gendnsname ... 64
gendnsghead......... ... i i 64
gendnsquestionl 64
genericip?........l 9, 78
genlabel 64
GeNTCPCRSUMttt 71
genwindowsize........ ...l 71
genwinsizeT 12
get_ether_pkt.......... ... oo 81
get_socket_addr il 41
get_socket_ingol 41
get_socket_outqcooiiiiiiiiiiii 41
get_tcpstate..................oooo 88
getaddrs 82
getbootpserveraddr....................... ... 58
getbyte 141
geted. . 142
getdatao 141
getdestparam.t 111
getfreeport............. il 42
gethttptimeout 119
getip.. .o 141
getipaddress........cooiiiiiiiiiii i 141
getmac. . .. ittt 142
getmacaddress........... 142
getmss. 70
GetmSSSYN 70
getmssSyn/ack. ..ot 71
getpbuf. 30
getgstring........ i 122
BetQVaT ...ttt 122
getslipchars.......................... ...l 85
getsocketerrorl 41
getsocketinfo......... ool 88
getsrcdir. 111
BeLSTCPATAmM. . .\ttt ittt 111
gettcpdatalen..................l 70
gettcphdrlen...............l 70
gettcppktlen............... ..ol 70
GeLEXMEM 81
gettxpbuf 30
== 7 142
getudpaddress................o 51
getudplen......... 51
gif_type ... 118
GiVendns ... 56
givengateway....................oiiiiii 56
Givenip........ .. 56

givenlease ...l 56

PowerNet TCP /IP Stack

givenmask 56
BiVenTeply T . .. 56
BlVeNSEerVer\t 56
givensntp ... 56
giventl. 56
givent2. 56
goarpChecCk ...t 57
gobound. 57
goclose_wait..........., 74
goclosed ... 70
g0oCloSingt 73
goestablished...............l 73
gofin_ wait_1........ il 73
gofin_ wait_2.......... il 73
goidle. ... 57
goinmit... ... 57
golast_ack..........oiiiiiiiii 73
goodippacket ...l 47, 48
gorebind 57
gorebooting............. ...l 57
oo = ¢ 1= 57
BOrequest ... 57
goselect 57
gosntpactive.............. ... 68
gosntpconfigured............. ...l 68
gosntpinit..........l 68
BOSYIL_TEC .\ttt e 73
GOSYN_Sent 74
gotframeend.............l 85
gotframeesc............. ...l 85
gotime_wait........ ... 73
gotslipchar...............l 85
gottransframeendl 85
gottransframeesc.................. ...l 85

H

haligned.............l 58
handlearpreplyccoviiiiiiiiiiiiiiiiia 49
handlearprequest 49
hasconn?.........l 110
hdl oo 120
Bl . e 112
hex>string.........oooviiiiiiiii i 116
hmempage 131
homepage$... 126
hpostfile...............oooiiiiiiiiiill 149
html_type...........o 118
http-cmd 127
http-get 127
http-post...........o . 128
http?. 10
httpdiags?........... . 120
httpio... ... 119
httppages.voc........ ... 131
httpport# 14, 117
httpserver.......... i 128
httpservice............... ...l 128
httptask ... 128

I

icmp_hdr ... 37
iempcksum. ... 43

Index

icmpmon? 10
include_offered_lease_opt..................... 58
include_paramreq_opt............. 58
include_req_inf_lease_opt..................... 58
include_requestaddr_opt....................... 58
include_serverid_opt....................ooaa 58
includemem.ttt 116
incteppacket..... ... il 75
init-commongvars i, 122
init-comsolebuffl 119
init-consoleftp......... ..ol 107
init-consolehttp...........l 119
init-consolesvl 98
init-comsoletn il 103
init-etherrx......... il 81
init-ethertx........ i il i 81
init-notcp-socket.......... ...l 69
INIt=SMC ..o 81
init-webvars. ...l il 122
initether i 81
initfileupd........... 149
initioqueues........... ... o il 30
ARAEAD . o 7
INtq. .o 25
initroutes......... ... oo 45
initserversocketl 99
injtsockets........... i 41
initteptxbuff 70
initupd........ ..o 146, 149
interpscript......... ... L 127
interpsem......... il 127
invalid_socket ... 35
0] 133
ioctlsocket................ 88
Ap>nfa. ..o 16
Ap_hdr. . 37
ipaddress..........oiiiiiiiiii 6, 78, 140
ipgatewayottt 6, 45, 140
Iphdrlenooutiiiii i e 48
ipid. .o 47
iproute_struct............. ool 37, 45
ipsend......... . 47
iptasks. ... 7
Is= 115, 116
isearch ... 115
isipforme il 47
ismysocket ... 99
ISTX? . 81
ISSVINPUL ¢ 97
istep_ack ... 73
Istep_fin ...t 73
istep_psho 73
istep_rst ... 73
IstCp_Syn ... 73
istep_syn/ack. ...t 73
IStep _urg ... 73
ISt 81

J

JPeE_LYPe .o 118
jump-string.................oooooooaallllL L 115

161
L
lastportnumber.................. ... 13, 42
lastportused.............l 42
lastq .o 27
left-string..........l 115
1ink, oo 39
linkdnchain.......... i il 83
linked?. . ..o 83
linkupchain..................o o oot 83
List .o 113
listen........ooooii 89
L10SETX T . 83
10SetX T 83
M
maketcpch ... il 42
maketcphdr ...ttt 72
mask-ints 6
11 E 12, 75
max_ipaddrs 11, 45
MAXTXSIZE ..ottt 135
MaxSOCKeTS . ..ot 13
MEMPAZE: .« oottt et ittt 132
MeMPAGEST ..\ttt 10, 131
MRA . 113
MOAE . .\ttt 113
months............. i 108, 116
MSSOPE . v 69
my_ftpbinary?....... il 105
my_ftpbuff i 106
my_ftpdatafile o ool 106
my_ftpdataip.......... ... 105
my_ftpdataport ool 105
my_ftpdatasock ool 105
my_ftpdatastate.................i 105
my_ftpdest$.. ... 106
my_ftpline?.......l 106
my_ftplinelen.................l 106
my_ftppassive?l 105
my_ftpquit?.... 105
my_ftpsrc$. ... 106
my_ftpstate......... ... 105
MySVA. ... 96
N
TAMET L oottt e e 16
NELSELUP - .\ttt 142
netstat.......... i 91
newdatasocket......... il 110
nextboundary......................oooooLL 146
nextbyte 147
nextchar il 124
nextcheckol 84
nextsoCKk# 41
NexXtSOCKeNtrY. ... 41
nexttxpbuf 30
nextwinsize...........o 71
NlSt . 113
no_script.......... ..o oo 117
MO _ VAT St ottt it e 121
NOCANTOULE . o .ottt 47

nodhcpserver................. . i, 56

162

THOOP -« v v eeeee ettt et e e e 112
noother..............l 47
TLOPAGE .« o e ettt et e e 131
NOSOCKETL ... 99
MO == 146
notboundary.........c.c.iiiiiiiii 147
notcphandle.............. ... 69
nulld . . 126
numfreepbufs......... ool 11
numsockets il 42
numtrxbuffers.......... ... i 11

O

octetstream...............ol 148
ONCOMNAT .« ot vttt ittt 74

P

packettask............ ...l 47
packettask?............ .. 12
pagedir$ 133
Palrnameiiiiiii 125
pairvalue..................iiiiiii. 125
paramrequestlist o ool 58
PATSE MAME . .ottt tttttttteeeeeeeeeeeeeeaaaaan.. 111
parse-path......... il 111
parsehttp.........l 128
parsetelnetbuffer...................... 103
pParthdrs ... 148
PSS ettt e 112
PASY e 113
Pb>iph. ... 47
pbdatalen.......... il 30
pbdatastart...................oa 30
pbhdrlen 29
pbhdrstart.........o 29
pbhinit... .. 30
pbuf_hdr ... 29
pbuff 82
pbuffer....... ... 29
PEEKQ ...t 25
pheksum. ... 20
plain_type.........l 118
pnconfigured?.......... ... i, 14
pnetver$... 6
POLIPOTE .\t 140
pollserver.................... i 140
POLLSOCKEt .\ttt 88
PO 113
POTt_StEruCt ...ttt 37
postsem i 128
powernet i 7
prepfilename............................l 133
processheadersoooiiii... 123
processpacket 47
PLrOCESSPATT ..\t 149
PrOCeSSPartsS.t 149
protoarphdr............... ... 49
pPsize ... i 10, 30
PWA ..o 113

PowerNet TCP /IP Stack

Q

gbdiags? 30
QbUG . . 30
QLOCK . 25
QUIt ... 113
QURIOCK. ... 25
Quarstring?........ ...l 122

R

ram>dataflash................o ool 141
ramconfig? 9
rdepth....... ... i 16
readbinfile.............l 148
readheaders...............iiiiiiiiiiii i 124
readkey 125
readnextpair.............l 125
readvalueoiiiiiiiiiii i 125
rebindallsocketsoiiiiiiiiL 42
receivebinary.......... ool 148
receiverd ... 137
TOCV « ettt ettt et e e e e e 89
TecVErom 89
recvinfo 87
rejectdhepin. ...t 57
TepService ...l 89
repsocket ... 89
resetblock....... ... 147
restoresktrem............ i, 87
TebT . 113
right-string..............ooiiiiiiiii 115
TIA . ettt 114
i+ s 113
i+ o 113
route_life il 11, 45
route_Sample _MS........oouuureennunneeennnnn 11, 45
route_search_time......... 11
routeip......... ... 47
routeticker.......... il 45
TUNARCP. 60
runechosocktask ol 101
runethertask.......... ..ot 84
runhttptask.............. ... il 128
runincoming 47, 48
TUNSEIVICESo 7
runservicetask.............. ... oo 7
runsliptask...........ooiiiiiiiiii 86
TUNSNED. . vttt 68
runtelnetsocktask.............. oL 104
TXAhCP. . 59
rxetherpacket............ooiiiiiiiiiiiiiiiii 83
rxetherpktl 83
rxicmppacket............... .. 43
rxippacket o ool 48
TXSHED . ottt 68
TRECPPACKet . oo 75
rxudppacket i 51

S

SACCEPT . .ottt 89
savesktrem............ ... 87
scandhcpopts. ... 59

script_code............ i 123

Index

scriptengine.......... ool 123
searchpage............. ... il 133
SENA . .o 89
send-demo-email ...ttt 137
send>ether i 83
send>othercooiiiiiii i 47
SENA>SLAP .ttt 85
send_ether_pkt 81
send_frame_end_char............................ 86
send_frame_esc_char..................iiiiiin.. 86
sendack>tCp. ... 72
sendarprequest ... 49
Sendbody ..ttt e 137
sendbuff>tep.........iiii 72
senddatagram..................iiiiiiia, 51
senddeclinettt e 58
senddhcp ... 58
senddisSCoVerviitii i e 58
senderd 137
sendgratuitousarp.................. ...l 49
sendnosocket ... 73
SENAPTEV .ttt vttt ettt e 127
sendrequest................. i 58
sendslipchar............... ... il 86
Sendsntpo 68
sendtcpflags.................. i, 72
sendtcpopts............. i 72
sendtcppkt 72
SENAEO. ..t 88
sendtotCp ... 72
Sendtoudp ...ttt 87
sent<txbuff............ 72
SerVe404 ... e 127
servefilet 127
SETVEPAZE vttt et i 127
LT =5 o= PP 10
SETVESMEOIM .« v vttt ettt et e e ee e ie e aneenns 126
SeTVICE _@PP ..ttt 95
service_echo......... ... 95
service_ftp....... ... 95
service_http............o o il 95
service_modbusiiiii 95
service_multichat.............. o a.. 95
SErVICE _MOME . ..ttt ettt et et e 95
service_telnet 95
SEIVICeCTeate . .. vttt 99
SerViCeIo .. i 100
servicetasKiiiiiiii 7
SEt2MS L. e 73
setackdelay.................. .. 72
setaddrs ...t e 82
SEEDANK. ..t 80
setcommongstring, 121
SEECOMI. o vttt e 73
SetdatasoCK .. .i it 111
setdefaults..........ooiiiiiiiiiiiiiiieaa. 141
setdhcptimer............ il 55
setdhstateot 55
sethttptimeout 119
setidle. ... 73
setinflife........ ... oot 45
setiphdrl 47
SetQStringt 121
SetQVAT ... 122

setqvardata.............oiiiiiiiii 121

163
setroutelife.............l 45
setsnstate...... ... 67
setsntptimer............. il 67
setsocketerrorl 41
setwebflag......... ... 118
show-socket il 91
showcoldchain...............ooiiiiii .. 17
showexecchain............. ... i, 17
showpacket ... 39
showtcpstate.......ooiiiiiiii i 70
shuterrsocket........... i, 99
skcansend?ol 72
skipdnsqg ... 64
skiprrnameol 64
skmoreip? ... 71
SR P T 42
skvalid? ... 72
SLADPT o 9
slipmask ...t 11
slip_rx_timeout 85
slipdeviceo 86
slipporttask........coiiiiiiiiiiiiiiiiiiiii 86
SLAiptX .o 86
SI] L 40, 109
smackdata ... 94
SIMCLB T . 77
SMCdiags? ... T
SIMCVECEOT ..ottt 82
smdhactions..............ooiiiiiiiiiiiiii 55
smdhcount oo il 55
smdhstate i 55
SMEMPAZE . ..o e oottt e e it 131
smfinishedrx............o, 94
smfinishedtx.............. 94
smidle.. ... 94
smrxdata ... 94
SMSNACtioNS 67
SIMSNCOUNT . ..ottt ettt 67
smsnstate il 67
SMSTATETX ..ot 94
SMStATTLX . ..ot 94
smstate.......... . il 40, 109
SIMEP::CONNECt. ...t 135
smtp::disconnectl 135
SMEP::eXror?.. 135
smtp::iwait.... ... i 135
smtp::write........l 135
smtp::writefield.............................. 135
smtp::writeln..... ...l 135
SIMEDP? . 10
smtpdiags? 135
SIMEPPOTE . oot i e 137
SMEPSEIVETr ...t 137
smtpwait ... 135
smtxdata ... 94
smwaitforack........... ... i, 94
sniff 82
sniff?. . 78
SIMP? . .ttt 10
SNtpPactions?. ... 65
SNtPAULO? .. 9
sntpdebug?......... ... 65
sntpidle 67
SNtPPOTtH# ... 65
SnEpreply? 67

164

sntpservicestruct.....................lL 68
sntptimer 67
sockaddr_dn.......... i 37
SOCKCT . .ttt 106
sockemit 106
SOCKET &t 42, 88
socket_error.......... i 35
socket_list_lastcoiiiiiiiiiiin.. 41
SOCKKeY 106
SoCkKey? ... 106
SOCKEYPE 106
SPlit.. ..o 115
SPLItELT .ot 115
SPLItETL oot 115
STCPATAMeeeeteeeeee ettt ettt 111
srvrstartup............oiiiiii 100
startftpserverol 114
startofpacket...... 85
startrxapp......coiiiiiii 147
startservice.........l 99
SEAT 112
stopftpserver............. ... i 114
stophttptask........... ool 128
SEOPTXAPD -« vt vt vttt 147
stoptelnet i 104
e 115
string>dec.......... ..l 116
string>hex....... il 116
SEtring>n ... 116
SETU. oo 112
sub_hsocket ... 41
SV_YeSpOonsSive? ... 98
SVACCEePL 98
SUDYE . .ttt 97
svchain........ ... o 96
BVCT ittt e 97, 98
svdisconnect........... ... il 99
SVAOME T . Lottt 97
SVEMIt ..ot 97, 98
SVEIUShOD ..o 97
svibuffer........l 97
svinitiate............ 99
SVKEY © vttt 97, 98
SVKEY P o 97, 98
svkillchain............., 100
SVIOWTAM? ...ttt 14
svobuffer..........l 97
SVQUETY . ottt et 98
svshutdown..........ol 100
svsingle? 14
SVSTArtupovviii 100
svterminate........... oL 99
SVtib. ... 97
SVEYPE .« 97, 98
SYSt et 112

taglist_entry........... ... 37
1773 o 3 PP 10
TCP_ClOSE .ottt 76
tep_hdr. ... 70
BCP_OPEI . .t 76

PowerNet TCP /IP Stack

TCPCKRSUM - oo vttt 71
tepconnect ...l 90
tcpconnecttime.............a 13, 69
TCPCONNG> ..ottt 74
tCPCONNQ? ..ot 74
tepdatasize ... 12, 69
TCPAEDUE . . 69
tepdebug? ... 10
tcepechotask................ ool 101
tepidle. ..o o 76
tepidletime ... 13, 69
tepidletimer......ooiiiiiiii i 76
tepindt. ..o 76
tepmaxretries..........iiiiiiiiiiii i, 13, 69
tepmsltime ...l 13, 69
teprsttime..........iillliilllll L 13
tepsocket ... 90
tepstate@ 70
tepwindowsize........ . ool 12, 69
telnet?. ... 10
telnetport#........l 14, 103
telnetsServer.t 104
telnetservice........... ... 104
telnettask.............oooiiiiiiiiii i 104
term-consolebuff.....................l 119
termdatastream............ ...l 110
termfileupd...........l 149
termupd. ... 147, 149
test-web-type....... il 126
testwebflag............l 118
tevent::beginreceive................. 93
tevent::rxdatal 93
L% i o X 10
tftp_blocksize ool 93
tftp_install........... i 94
tftp_packetsizel 93
tftp_socket....... 93
tftptask 94
TN _aNnNOUNCEe . ..ottt e 103
tn_login ...l 104
tn_quit ... 104
tObYe. 104
ENSEIVErPaASS . .t 104
todhcpstate...........oii 55
tosntpstate...... ... 67
trans_frame_end 85
trans_frame_escape.............. ... 85
transaction#............ol 140
trxbuffsize........ il 11
turnetherpacketround..................oooiin. 49
txdelaytime 12, 69
BEIS .o 56
txpbuf 30
txretrytimel 12, 69
1704 5= O 113

udp_hdr.............oo oo 37
UAPCKSUM . ..o 51
UAPCONNECT . .t 90
UAPPTLOCESSTX . vt vttt 51
udpsend...............iiiin 51
udpservicechain.............. ...l 51

Index

WD Lot 56, 109
unbumppbuffdata ... 30
UNdtH. . e 140
UNIESELUP . oo v i ettt 142
unmask-ints e 6
usebroadcast?.... i 58
usedhcp? ... 9
USEAIS T . ottt et s 9
L0 F=T=5 ol 112
USeSNtP? 9

Value ..o 93, 101, 124
Viagateway T 45
VOCOWAd oot 131

WHQm) oo 19
W, () o 19
WOCI) .o 19
wait-socket-empty............l 99
waitconng.............. 89
waitdataconnected.............., 110
waitdataestablished........................... 110
waitforipaddress............... il 41
waitlistener........ ..ot 89
WaitnexXtConm. ...ovvu i 89
waitsocketsent it 99
web-file-name..............iiiiiiiiiii., 126
webauthenticate............. i, 129
WEDerrCcodevi e 118

WEDETTOT .« ittt e e 126

165
weblogin ...l i 129
webopflags..............................LL 118
webpagedefl 118
WEDQUETYVATS . .. teeiiieieeeaas 122
webresponse..........l 126
WEDS _@SP oottt 118
WebS_CLOSE . ..ottt 117
webs_keep_aliveol 118
webs_scripterr i 117
webscriptid.......... ... o ool 118
websend ... 120
websetvars........... ..ol 122
webstatus......... ... i 118
WEDVATS .ottt 118
writepacket i 81
X
RO et 10
XCWA . oottt 113
XML _tyPe ..o 118
XPWA .. 113
DG 7 <1 = 131
XEPage: .. 132
Y
VM 142
Z
Z 92
ZCOUNT . ..ottt 94
ZZ e e 92

	Introduction
	What Do You Get?
	Documentation
	Source Tree

	PowerNet.bld - primary build file
	Heap
	Multitasker
	Other Forth equates
	Configuring the stack
	Default console I/O for tasks
	Default Ethernet and IP addresses
	Compiler extensions
	Compiling PowerNet
	Compile the required services
	Initialisation
	Sanity checks

	PowerNet configuration
	Features and Services
	Diagnostics
	Queues and Buffers
	Routing
	ICMP
	IP
	TCP configuration
	Sockets
	DNS client
	Servers and Services
	End of configuration

	Debugging tools
	Miscellaneous
	Using the system console
	Stack checking
	Cold Chain

	Network operations - CPU specific
	Network order (big-endian) operations
	Internet checksum

	Extra USER variables
	Common to all tasks
	SLIP variables

	Queues
	QUEUE structure

	QUEUE and buffer allocation
	PBUF buffers
	Introduction
	Data structures
	PBUF handling
	Queue buffer allocation and release

	Queue diagnostic routines
	System wide equates
	Application definitions
	Standard TCP/IP and Winsock values

	TCP/IP data structures
	Primary structures
	SNMP structures

	Helpers and primitives
	Socket Primitives
	Ephemeral ports
	TCP control block creation and deletion

	ICMP handling
	Routing packets
	Basic IP layer
	Tools
	Sending IP packets
	Receiving IP packets

	ARP handler
	UDP layer
	DHCP and BOOTP
	DHCP/BOOTP state machine
	State machine utilitiles
	DHCP Data definitions
	DHCP control data
	DHCP transient data
	DHCP packet layout

	DHCP tools
	DHCP state selection
	UDP transmission
	Outgoing message tools
	Receive BOOTP/DHCP packet
	State machine initialisation and startup

	DNS client
	Configuration
	Queries and responses
	Tools
	User words

	SNTP client
	SNTP equates and structure
	SNTP Configuration
	SNTP state machine
	State machine utilities
	Outgoing message tools
	SNTP state selection
	Receive SNTP packet
	Set up state machine

	TCP layer
	TCP configuration
	Unknown socket requests
	TCP structures and equates
	TCP structure creation and deletion
	TCP header use
	TCP checksum handling
	TCP window size
	TCP transmission primitives
	TCP state primitives
	LISTEN connection queues
	TCP state handlers
	TCP timer handling
	Primitives for the BSD layer
	TCP initialisation
	Checksum test code

	SMC LAN91C92/4/6 Ethernet Driver Code
	Introduction
	Hardware gotchas
	Configuration
	Constants
	Hardware Interface Layer
	Diagnostics
	Driver Layer
	Attached EEPROM
	Generic I/O for PowerNet v3 and above
	System test

	Ethernet processing task
	Ethernet packet handlers
	Link failure detection
	Ethernet task
	Routing

	SLIP interface
	SLIP equates
	Slip input functions
	Slip output functions
	SLIP support task

	BSD API layer
	SOCKET_ERROR returns
	BSD factors
	BSD Style API
	Extensions

	PowerNet diagnostic tools
	TFTP receiver
	Ident Block
	Global data
	TFTP State Machine equates
	Event action place-holders and defaults
	Utility Words
	TFTP State Handlers
	Event Action Handlers

	Support for TCP services
	Service numbers
	Service specific data
	Server assistance
	Service KEY, EMIT and friends
	Low RAM version
	High performance version
	Generic I/O device
	Service console support

	Service creation and deletion
	Service listening task
	Service support tools
	Service output
	Diagnostics

	TCP Echo socket
	Telnet Server
	Telnet specific data
	IAC handling
	Telnet vectored I/O
	Telnet service tasks
	Telnet listening task
	Diagnostics

	FTP Server
	FTP data
	FTP vectored I/O
	Data socket
	Command socket

	Sampling the command channel input
	Diagnostic control
	Directory listing for FTP
	Status returns
	Data socket operations
	Command processing
	Login and security
	Implemented FTP commands
	FTP service tasks
	FTP listening task
	Diagnostics

	WWW Support
	Strings
	Time and date
	Test code

	HTTP Server
	HTTP specific data
	HTTP vectored I/O
	Stream socket
	Output to a memory buffer

	Diagnostic control
	Transmit Utilities
	CGI Support
	Numeric QVARS

	ASP Support
	Header scanning
	Form body processing
	Tools
	Application words

	HTTP headers and responses
	Serving files
	HTTP service task
	HTTP listening task
	Notes on memory usage
	Authentication

	Web page handling
	Configuration
	Data structures
	Executable pages
	Memory pages
	Example memory pages

	File pages
	Page look up

	SMTP Primitives
	SMTP Demonstration
	Configuration
	Sending mail

	Ethernet and Internet configuration
	EEPROM/Flash area definition
	Runtime data
	Flash and EEPROM routines
	Flash
	Serial EEPROM

	Set up operations
	Displaying and Entering IP addresses
	Displaying and Entering MAC addresses
	Setup proper

	POST handlers and HTTP updates
	Discussion
	Form
	Headers

	Form boundaries
	Form data
	After the form
	Restrictions

	Parsing multipart boundaries
	Flash update application
	System interface
	Receiving a file
	Part scanning

	File update handler
	Example for pages stored in files

	Internet RFCs
	What is an RFC?
	Where are the latest versions?
	Recommended reading

	Licence terms
	Distribution of application programs
	Warranties and support

	{Index}

