
MDT-DCS CANopen module v2.7 19-Aug-2011

1

MDT-DCS
CANopen Module

user manual & reference
v2.7, 19 August 2011

Henk Boterenbrood

NIKHEF, Amsterdam, NL

ABSTRACT
Each ATLAS MDT muon chamber is equipped with an MDT-DCS module. The module has
been designed to monitor the chamber's environmental parameters, i.e. temperature (NTC
sensors), magnetic field (B-field sensors) and front-end electronics parameters (CSM and
Mezzanine Board voltages and temperatures), as well as to initialize and configure the MDT
chamber’s front-end electronics on the CSM and Mezzanines Boards. The heart of the module
is the general-purpose ELMB plug-on microcontroller board with CAN interface for commu-
nication. This document gives a detailed description of the MDT-DCS module and its ELMB
application firmware including the CANopen communication protocol and CANopen Object
Dictionary.

MDT-DCS CANopen module v2.7 19-Aug-2011

2

Table of Contents
1 INTRODUCTION AND OVERVIEW... 4

2 HARDWARE.. 6
2.1 CONNECTORS AND INTERFACES .. 6
2.2 ELMB / MDT-DCS INTERFACE AND ELMB JUMPERS ... 10

3 INITIALISATION ... 12

4 NODE GUARDING AND LIFE GUARDING.. 13

5 MDT ON-CHAMBER SENSORS MONITORING.. 15
5.1 DATA READ-OUT ... 15
5.2 T-SENSOR READ-OUT .. 16

5.2.1 T-sensor Data... 16
5.2.2 ADC Data Conversion ... 18
5.2.3 ADC Raw Data... 19
5.2.4 Readout-on-Change ... 19

5.3 B-SENSOR READ-OUT .. 21
5.3.1 B-sensor Data... 21
5.3.2 ADC Data Conversion ... 22
5.3.3 B-sensor Serial Number ... 23

6 CSM FRONT-END ELECTRONICS MONITORING AND CONTROL................. 25
6.1 ANALOG INPUTS .. 25

6.1.1 Readout-on-Change ... 26
6.2 CONFIGURATION AND CONTROL ... 27

6.2.1 JTAG .. 27
6.2.1.1 Implementation Overview.. 27
6.2.1.2 JTAG-action Storage.. 29
6.2.1.3 Examples of MDT-DCS JTAG Operations.. 29
6.2.1.4 JTAG TAP States... 36
6.2.1.5 JTAG Signal Timing.. 36
6.2.1.6 Additional JTAG Functionality.. 37

6.2.2 Digital I/O .. 37
7 CONFIGURATION STORAGE .. 39

7.1 STORING PARAMETERS AND SETTINGS ... 39
7.2 AUTO-CONFIGURE ... 40
7.3 EEPROM MEMORY MAP .. 41

8 UPGRADING THE FIRMWARE.. 43

9 MDT-DCS OBJECT DICTIONARY... 44

10 EMERGENCY OBJECTS .. 64

11 BUILT-IN BOARD TEST... 66

REFERENCES.. 69

APPENDIX A. MDT-DCS MOTHERBOARD SCHEMATIC....................................... 70

APPENDIX B. NTC TEMPERATURE SENSOR DATA ... 71

MDT-DCS CANopen module v2.7 19-Aug-2011

3

Version History
Version Date Comments

2.7 19 Aug 2011

• Describes firmware version "MD25", minor version "0000".
• Added subindex 22 to Object 2201h, ADC-config CSM:

mezzanine mask.
• Added ‘during latch’ item to ADC conversion time-out Emergency.
• Two additions to Object 2500h, B-sensor ADC configuration.

2.6 8 Mar 2008 • Some minor modifications to the text.

2.5 21 Aug 2007

• Describes firmware version "MD24", minor version "0001".
• PDOs for JTAG can have any number of bytes between 2 and 8 (in-

stead of previously exactly 5).
• Added Objects 4831h and 4832h, for setting the JTAG state after a

SHIFT_IR or SHIFT_DR operation.

2.4 22 Jun 2006

• Describes firmware version "MD24", minor version "0000".
• Added info on CSM+Mezz temperature sensors.
• Created separate sections for T and B data conversion.
• MDT-DCS module schematics added.
• Various minor changes, corrections and additions.
• Added Objects 480Ch, 480Dh, 49XCh, 49XDh and 49XEh.

2.3 3 Aug 2005

• Describes firmware version "MD24", minor version "0000".
• Added description and objects for JTAG string uploading and

downloading by means of the Segmented SDO protocol.
• Added description of ‘autoconfigure’ capability.
• Added pictures of production acceptance test setup.
• Corrected wrong values for the reference T-sensors 30 and 31.
• Various minor changes to text.

2.2 27 May 2004

• Describes firmware version "MD23".
• JTAG action storage, actions and sequences implemented.
• 'Readout-on-delta-change' feature added for T-sensors and

CSM analog inputs.
• Support for remotely configurable Node-ID added.
• Presence of B-sensor modules now controlled by a mask.
• PDO event timers now in seconds (instead of ms) and active for all

transmission types.
• Digital Out power-up setting now on individual bit basis.
• Another update of the section on board testing.
• Up-to-date pictures of frontpanels ('Barrel' as well as 'EndCap').

2.1 16 Jan 2004

• Describes firmware version "MD22".
• Support for up to 4 B-sensor modules, instead of 2, as before.
• Support for 'raw' T-sensor data readout.
• JTAG TDI and TDO signals swapped.
• Does not yet support JTAG-action strings storage.
• Update of the section on board testing.

2.0 17 Nov 2003
• Describes firmware version "MD21".
• Does not yet support JTAG-action strings storage.
• Added this document change record.

1.0 30 May 2002 Describes firmware version "MD14" (and older),
for the MDT-DCS module prototype equipped with ELMB103 modules.

Table 1. Document change record.

MDT-DCS CANopen module v2.7 19-Aug-2011

4

1 Introduction and Overview

The MDT-DCS module is the local monitor-and-control platform for the ATLAS MDT

muon chambers. It is based on the ELMB1 module, which is a general-purpose plug-on board
which was developed by the ATLAS collaboration to serve various detector control tasks in
and around the ATLAS detector. The ELMB is also used in several applications outside the
ATLAS environment, in other LHC experiments and at CERN. The ELMB features an in-
system-programmable microcontroller, a CAN-bus controller and interface for communica-
tion with a host system and/or the central SCADA system, and a number of analog inputs and
digital in- and outputs. It is in-system-programmable, including remotely, via the CAN-bus.
The latter combined with the ELMB’s low cost and the availability of a low cost development
environment for programming in C, have all contributed to its success. For its application in
ATLAS the fact that its radiation tolerance/sensitivity has been extensively tested and quanti-
fied is very important.

In the MDT muon subdetector of ATLAS the MDT-DCS module monitors MDT chamber

environmental parameters, i.e. temperature and magnetic field in and around the chamber, and
MDT front-end electronics voltages and temperatures. The MDT front-end electronics consist
of the so-called CSM (Chamber Service Module) plus connected Mezzanine Boards.

The MDT-DCS module has a JTAG interface, that connects to the CSM, for configuration of
the MDT front-end electronics. In addition there are a number (7) of Digital I/Os for control
output to the CSM and error status input from the CSM.

The CAN bus is the chosen fieldbus by the ATLAS Detector Control System (DCS) for in-

terconnecting distributed I/O within the detector. The CANopen protocol [2] [3] has been
adopted as the communication protocol standard to be used on the CAN-bus.

The application firmware running on the ELMB inside the MDT-DCS module complies

where possible with the CANopen DS-401 Device Profile for I/O-modules [4], but it has a
range of additional 'manufacturer-specific' Object Dictionary entries and configuration op-
tions. The complete Object Dictionary (OD) of the MDT-DCS CANopen node can be found in
section 9.

The MDT-DCS firmware development is based on a framework provided by the so-called
ELMBio application firmware described in [1].

A simplified block diagram of an MDT-DCS module mounted on an MDT muon chamber,
and its connections to sensors and front-end electronics is shown in Figure 1. There are con-
nections to the on-chamber T- (temperature) and B-sensors (magnetic field), and (multiple)
connections to the MDT front-end electronics.

The T-sensors are NTC resistors (for Barrel MDT chambers) integrated in special cables and

mounted on various locations on the MDT chamber.

Each B-sensor module measures the magnetic field along 3 orthogonal axes (Bx, By and Bz)

and the temperature (T) of the environment in the immediate vicinity of the 3 Hall-effect
transducers, which are mounted on the B-sensor module PCB. By using special cables the
number of connected B-sensor modules may be increased from 2 to 4 per MDT-DCS module.

1 see http://elmb.web.cern.ch/

MDT-DCS CANopen module v2.7 19-Aug-2011

5

Figure 1. Block diagram of the MDT-DCS module with ELMB, its connections to the
MDT front-end electronics and the external sensors (for temperature and B-
field), mounted on an MDT chamber. Although originally intended to sup-
port two Magnetic Field Sensor modules, this number may be increased to
four per MDT-DCS module using special cables (see section 5.3).

MDT-DCS CANopen module v2.7 19-Aug-2011

6

2 Hardware

2.1 Connectors and Interfaces

Figure 2 shows the front panel of the MDT-DCS module with its external interfaces. There
are 2 types of MDT-DCS modules, a 'Barrel' type and an 'Endcap' type, which visibly only
differ by their labels as shown in Figure 2. The 'Endcap' type is equipped for voltage-based T-
sensors (such as PT1000), and the 'Barrel' type for resistance-type T-sensors (NTC); the firm-
ware has been preconfigured accordingly.

Figure 2. MDT-DCS module front panel connectors and labels.

CAN Node Identifier
(address) of this module

B-sensor
connectors

CAN
connec-

tors

JTAG interface
(for CSM configuration)

+ 4x Digital I/O

connectors for
NTC temperature

sensors

SPI interface
to ADC on CSM
+ 3x Digital I/O

spare digital interface
(e.g. for SPI or JTAG, to be
implemented in software)

NTC #29
connector

NTC #14
connector

MDT-DCS
module
Serial

Number

GND +5V

B-sensor
pin 1

MDT-DCS module 'EndCap' type
indicated by:
• a yellow label
• serial number is

followed by an 'e'
(on label only)

Label with ATLAS number/barcode
on the side of the MDT-DCS box

MDT-DCS CANopen module v2.7 19-Aug-2011

7

1 2

19 20

1 2

19 20

Table 2 to Table 6 detail the pin layout of the MDT-DCS module's JTAG, SPI-AUX, CSM-
ADC and CAN frontpanel connectors.

function pin pin function comment

GND 20 19 GND

GND 18 17 Dig I/O 4 (PA7) Reprogram_FPGA*

GND 16 15 Dig I/O 3 (PA6) Reset_FPGA

+3.3V 14 13 Dig I/O 2 (PA5) Sel_SW_TDO*

+3.3V 12 11 Dig I/O 1 (PA4) Sel_HW_TDO*

+3.3V 10 9 TDI (PA3, in) JTAG interface

+3.3V 8 7 TMS (PA2, out) JTAG interface

GND 6 5 TCK (PA1, out) JTAG interface

GND 4 3 TDO (PA0, out) JTAG interface

GND 2 1 GND

Table 2. Layout of the JTAG connector pins: 8 general-purpose digital in- and out-
puts. In brackets the ELMB microcontroller pin name is shown, in italics the
CSM's name for the signal function.

function pin pin function

GND 20 19 GND

GND 18 17 not connected

GND 16 15 not connected

+3.3V 14 13 not connected

+3.3V 12 11 Aux I/O (PC5)

+3.3V 10 9 Aux I/O (PC4)

+3.3V 8 7 Aux I/O (PF6)

GND 6 5 Aux I/O (PC6)

GND 4 3 Aux I/O (PC7)

GND 2 1 GND

Table 3. Layout of the SPI-AUX connector pins: 5 general-purpose Digital I/Os, suffi-
cient and suitable for implementing a serial interface like SPI, I2C or JTAG
for instance (to be implemented in the MDT-DCS/ELMB firmware). In
brackets the ELMB microcontroller pin name is shown.

MDT-DCS CANopen module v2.7 19-Aug-2011

8

function pin pin function comment

GND 20 19 GND

GND 18 17 Dig I/O 7 (PF4) GOL | TTC
Not Ready

GND 16 15 Dig I/O 6 (PF3) I2C Error

+3.3V 14 13 Dig I/O 5 (PF2) CSM Error

+3.3V 12 11 MUX (PE7, out) for ADC

+3.3V 10 9 CS (PC3, out) for ADC

+3.3V 8 7 SDO (PE6, in) for ADC

GND 6 5 SDI (PE5, out) for ADC

GND 4 3 SCLK (PE4, out) for ADC

GND 2 1 GND

Table 4. Layout of the CSM-ADC connector pins: SPI serial interface (SCLK, SDI
and SDO) with Chip-Select (CS) and ADC-multiplexer latch signal (MUX) go
to the ADC on the CSM (which has a copy of the ELMB’s on-board ADC cir-
cuitry). In addition there are 3 general-purpose Digital I/Os. In brackets the
ELMB/microcontroller pin name is shown, in italics the CSM's description
for the signal function.

function pin pin function

 1 not connected

CAN-GND 6 2 CAN-L

CAN-H 7 3 CAN-GND

+VAP (6-12V) 8 4 AGND

CAN-POWER (8-12V) 9 5 CAN-SHIELD

Table 5. Layout of the CAN connectors pins; there are 2 connectors on each MDT-
DCS module for easy daisy-chaining multiple modules on one CAN-bus. All 9
pins of both connectors are 1-to-1 connected. CAN-POWER powers the CAN-
driver part of the ELMB. +VAP powers both digital and analog parts of the
ELMB. CAN-SHIELD is not connected to the MDT-DCS module internally.
Pins 3 and 5 (CAN-GND) are connected internally; if only one pin is con-
nected externally in the cable it must be pin 3 (CANopen cable definition).

The MDT-DCS module's serial number can be read out remotely (actually it is the serial

number of the ELMB module inside; this means the ELMB inside should not be exchanged!).

The module's CAN node identifier is stored in ELMB EEPROM (so not set by means of the

ELMB's dip-switches) and can be changed remotely, if necessary.

1 2

19 20

MDT-DCS CANopen module v2.7 19-Aug-2011

9

Pin Function Comment
1 SCLK SPI Serial Clock (to ADC)
2 GND
3 SDI SPI Serial Data In (to ADC)
4 GND
5 SDO SPI Serial Data Out (from ADC)
6 GND
7 CS Chip Select (to ADC)
8 ID 1-Wire interface (to ID-chip)
9 –
10 V+ from CAN-connector (pin 8)

Table 6. Layout of the B-sensor module connector pins.

Figure 3. Left: MDT-DCS B-sensor module and cable.
Right: T-sensor cable with integrated NTC thermistor.

Figure 3 shows some images with details of the B-sensor module and temperature sensor.

NTC thermistor inside

3x Hall sensor NTC thermistor

ADC

pin 1 10

pin 1

ID-chip

MDT-DCS CANopen module v2.7 19-Aug-2011

10

The module has 2 CAN-bus connectors to enable easy daisy chaining of multiple modules

on one CAN-bus. The last module on the bus must be equipped with a termination resistor
(120 Ω, or 180 Ω in the Y-shaped bus layout used for MDT CAN-buses), using a special ca-
ble-less connector with the terminator installed inside the connector housing, which is then
plugged into the empty CAN-connector of the last module on the bus.

2.2 ELMB / MDT-DCS Interface and ELMB Jumpers

This section describes how the ELMB board inside the MDT-DCS module interfaces hard-
ware-wise to the rest of the system, and explains the function of the jumpers and switches pre-
sent on the ELMB. It is given here for reference only.

Table 7 shows the mapping of I/O-pin-to-function of the ATmega128 microcontroller on the
ELMB inside the MDT-DCS module:

• ADC_xxx is the SPI interface for the ELMB on-board ADC with monitors up to 64

channels of MDT-chamber T-sensors (NTCs).
• AUX_IO is the spare interface with 5 digital I/O lines (function to be defined; not

yet under control of the firmware); present on module connector labelled
SPI-AUX.

• B_xxx is the SPI interface including two chip-select lines (B_CSx) and 2 lines
carrying the 1-Wire protocol for the Identification-chips (B_IDx), for up
to 2 B-sensor modules on the MDT-chamber; present on module connec-
tors labelled B-sensor 0 and B-sensor 1.

• CSM_xxx is the SPI interface to the CSM front-end electronics ELMB-ADC which
monitors up to 64 parameters; present on module connector labelled
CSM-ADC.

• DIGIOx are digital in- and outputs from/to the CSM front-end electronics (exact
function still to be defined; the firmware assumes a default configuration
of inputs and outputs, but this can be changed; see Object Dictionary);
present on module connectors labelled JTAG and CSM-ADC.

MDT-DCS CANopen module v2.7 19-Aug-2011

11

I/O PORT: A B C D E F
Function: In/Out In/Out In/Out In/Out In/Out I/O/ADC
pin 0 TDI x B_CS0 x x B_ID0
pin 1 TCK SCLK B_CS1 x x B_ID1
pin 2 TMS SDI x x DIGIO5
pin 3 TDO SDO CSM_CS B_SDI B_SCLK DIGIO6
pin 4 DIGIO1 x AUX_IO1 ADC_SCLK CSM_SCLK DIGIO7
pin 5 DIGIO2 x AUX_IO2 ADC_SDI CSM_SDI
pin 6 DIGIO3 x AUX_IO3 ADC_SDO CSM_SDO AUX_IO5
pin 7 DIGIO4 x AUX_IO4 ADC_MUX CSM_MUX B_SDO

Table 7. I/O-pin functions of the ELMB microcontroller (ATmega128) on the MDT-DCS module:
x = NOT available externally (used internally by ELMB).
SCLK/SDI/SDO = lines carrying SPI-protocol for the on-board CAN-controller.
(see text above for explanation of other signals).
Greyed out pin identifiers are not implemented in the MDT-DCS ELMB firmware (yet).

Using the ELMB's onboard DIP-switches a node identifier can be set between 1 and 63 (has

to be unique on the CAN-bus the board is connected to), using 6 of the 8 switches, and a
CAN-bus baud rate of 50, 125, 250 or 500 kbit/s, using the 2 remaining switches. See Figure 4
below for details. A label on the front panel shows the node identifier of the MDT-DCS mod-
ule. Default the baud rate is set to 125 kbit/s.

Figure 4. Location and function of ELMB DIP-switches and jumpers.

Note that, starting with MDT-DCS firmware version 2.3, it is possible to configure the node
identifier remotely, i.e. using standard CANopen messages; see objects 3300h and 3301h in
the MDT-DCS Object Dictionary for more details.

Once the Node-ID has been changed through CAN, the DIP-switch setting for the Node-ID
is ignored, and the Node-ID is read from a fixed location in the ELMB's EEPROM. The baud
rate setting is not affected.
NB: this feature should only be used if the ELMB's Bootloader firmware is version 1.3 or later!

 ELMB top side

Node-ID
(up=0, down=1; shown here = 17)
Bits: 5 4 3 2 1 0

1 2 3 4 5 6 7 8

CAN
baudrate

50 kbit/s

125 kbit/s

250 kbit/s

500 kbit/s

Programmer/RS232 adapter connector

AT-
mega
128

MDT-DCS CANopen module v2.7 19-Aug-2011

12

3 Initialisation

When the MDT-DCS ELMB firmware initialises, all hardware devices are reset and config-

ured (CAN-controller, ADC for the NTCs, ADC on the CSM, the ADCs on the B-sensor
modules, JTAG interface, etc.) and error counters and registers are reset. Digital outputs are
initialised on the occurrence of a hard reset, but not on a soft reset (see below).

After power-up, watchdog reset, manual reset or a CANopen initiated reset action (i.e. by an

NMT Reset-Node message, see below) a CANopen node sends a so-called Boot-up message
(as defined by the CANopen standard) as soon as it has finished initializing (hardware, soft-
ware); this is a CAN-message with the following syntax:

MDT-DCS module (NMT-Slave) → Host (NMT-Master)
COB-ID Data Byte 0

700h + NodeID 0

NodeID is the CAN node identifier (initially) set by means of the ELMB onboard DIP-
switches to a value between 1 and 63, as shown earlier in Figure 4. NodeID must be in the
range between 1 and 127.

To start the MDT-DCS application in the CANopen sense of the word, the following
CANopen NMT message must be sent:

Host (NMT-Master) → MDT-DCS module (NMT-Slave)
COB-ID Data Byte 0 Data Byte 1

000h 01h
(Start_Remote_Node)

NodeID or 0
(0: all nodes on the bus)

There is no reply to this message.

Now the MDT-DCS module is Operational, meaning that it monitors I/O channels (depend-
ing on configuration) and can send and receive (and processes) CANopen PDO messages,
which carry the application data (see next sections).

Optionally a feature called auto-start may be enabled, so that the MDT-DCS module auto-

matically goes to Operational state after power-up or reset. The auto-start feature can be con-
figured in OD index 3200h, subindex 2.

To generate a soft reset the following CANopen NMT message must be sent:

Host (NMT-Master) → MDT-DCS module (NMT-Slave)
COB-ID Data Byte 0 Data Byte 1

000h 81h
(Reset_Node)

NodeID or 0
(0: all nodes on the bus)

Again, there is no reply to this message.

MDT-DCS CANopen module v2.7 19-Aug-2011

13

Note that at power-up it is the Bootloader application firmware that becomes active first and

is in control of the MDT-DCS module; the Bootloader reports its presence by sending the fol-
lowing Emergency message (see also section 8):

Bootloader → Host
COB-ID Byte 0-1 Byte 2 Byte 3-7
080h +
NodeID

Emergency
Error Code
(00h 50h)

Error Register
(Object 1001h)

(80h)

Manufacturer specific error field
(FEh 01h 28h ZZh 00h)

(ZZh = MCUCSR)

(MCUCSR = MCU Control and Status Register; for details see section 10 or the ATmega128
datasheet).

Having the Bootloader activate at power-up guarantees that it is always possible to upload

new application software to the ELMB, even when the application currently programmed in
the ELMB is faulty or corrupted.

After about 4 s the Bootloader automatically jumps to the application. Alternatively, the
Bootloader starts the application immediately, if it receives an NMT Reset-Node message –as
shown above- within this period.

4 Node Guarding and Life Guarding

Node Guarding in CANopen is a mechanism whereby an NMT-master checks the state of
other nodes on the bus, at regular intervals. It can do this in one of two different ways:

1. The master sends a Remote Transmission Request (RTR) for the Node Guard message,

to each node on the bus, in turn; a node that receives the RTR, sends the Node Guard
message, which contains one data byte indicating the (CANopen) state of the node, as
well as a toggle bit. If a node does not reply the master should signal this to the higher-
level software and/or take appropriate action.
The RTR for the Node Guard message looks like this (a Remote Frame, so the CAN-
message has no data bytes):

Host (NMT-Master) → MDT-DCS module (NMT-Slave)
COB-ID

700h + NodeID

The reply Node Guard message from a node looks like this:

MDT-DCS module (NMT-Slave) → Host (NMT-Master)
COB-ID DataByte 0

700h + NodeID bit 7: toggle bit,
bit 6-0: state

2. Each node on the bus sends a Heartbeat message at regular intervals; typically, the

NMT-master monitors these messages and keeps a time-out period for each node. The
master detects nodes that stop sending their Heartbeat messages and should signal this
to the higher-level software and/or take appropriate action.

MDT-DCS CANopen module v2.7 19-Aug-2011

14

A Heartbeat message looks like this:

MDT-DCS module (Heartbeat producer) → Consumer(s) (e.g. NMT-Master)
COB-ID DataByte 0

700h + NodeID state

State is one of these CANopen states: 0 (Initializing), 4 (Stopped), 5 (Operational) or 127
(Pre-operational). Note that this makes the Boot-up message the first Heartbeat message after
a node reset (see previous section).

According to the CANopen standard, a node is not allowed to support both Node Guarding
and Heartbeat protocols at the same time. The MDT-DCS module supports both methods of
Node Guarding (but indeed not at the same time), i.e. it can send the Node Guard message or
it can send the Heartbeat message with an interval, which is configurable in OD index 1017h.

Life Guarding in CANopen is a mechanism whereby a node checks the aliveness of the host
or master, by applying a time-out on messages received. CANopen defines that the message to
time-out is the RTR for the Node Guard message, sent by the NMT-master; however, the
MDT-DCS module resets its Life Guarding timer at each properly received message ad-
dressed to it.

Life Guarding is controlled through OD objects 100Ch and 100Dh. In the MDT-DCS mod-
ule the Life Guarding time-out can be set between 1 and 255 seconds, by setting OD index
100Dh to the corresponding value, or can be switched off, by setting OD index 100Dh to zero.

If a Life Guarding time-out occurs, the node should take whatever appropriate action. The
MDT-DCS module resets and reinitializes the CAN-controller, and (tries to) resume(s) normal
operation, after sending an Emergency message (see section 10).

MDT-DCS CANopen module v2.7 19-Aug-2011

15

5 MDT On-Chamber Sensors Monitoring

5.1 Data Read-out

Each data object in the MDT-DCS module can be accessed through the CANopen Object
Dictionary (OD). The CANopen SDO (Service Data Object) confirmed message mechanism
is used to read from and write to data objects in the OD.

A complete overview of the Object Dictionary of the MDT-DCS module can be found in
section 9.

A more efficient method of read-out of data from the MDT-DCS module is offered by the

CANopen mechanism of PDO (Process Data Object) messages. This is an unconfirmed mes-
sage mechanism without protocol overhead, and thus much more suitable for regular monitor-
ing of the process data of the MDT-DCS module, such as the T- and B-sensor data. The send-
ing of this type of messages may be triggered by a host system or autonomously by the MDT-
DCS module firmware.

From the point of view of the MDT-DCS module data are transmitted by a PDO message,

called a Transmit-PDO (or TPDO), and data are received in a PDO message, called a Re-
ceive-PDO (or RPDO). In CANopen the CAN-identifier, message content and transmission
type of PDO messages may be configurable (configure by writing to the appropriate objects in
the Object Dictionary using the SDO mechanism).

However, the CANopen standard defines a predefined set of CAN-identifiers (the so-called
Predefined Connection Set), defining which CAN-identifier to use for which kind of
CANopen message, without the need for the node to support configuration. The MDT-DCS
module uses this set of identifiers. Also the PDO message content is fixed in the MDT-DCS
module and cannot be changed. The content of PDO messages can be found and read from the
OD from objects called PDO mapping objects (stored at fixed entries in the OD).

 A feature that is configurable on the MDT-DCS module is the so-called transmission type
of the TPDOs, which controls what triggers it to send its 'process' data, e.g. periodically, on
request or on-change. For each of the monitored subsystems (T, B, front-end) this is described
in the sections following.

Serious problems occurring during read-out, e.g. with the ADC hardware, are reported in so-

called CANopen Emergency messages. A list of Emergency messages the MDT-DCS module
can generate can be found in section 10, including a description of the problem.

MDT-DCS CANopen module v2.7 19-Aug-2011

16

5.2 T-sensor Read-out

5.2.1 T-sensor Data

T-sensor data is produced by the MDT-DCS module in the form of temperature readings in
millidegrees centigrade of the NTC sensors (optionally as resistance values in Ohms). Even-
numbered ADC channels measure the voltage across an NTC and odd-numbered channels the
voltage resulting from the corresponding current through a precision resistor. A division re-
sults in the NTC resistance value, which is then converted to a temperature (see end of this
section for the conversion formula used) and sent in a CAN-message by the module.

The MDT-DCS module sends one PDO message containing 4 bytes for every T-sensor. The

CAN-identifier used for this PDO is the so-called 2nd-transmit-PDO (TPDO2) of the
CANopen Predefined Connection Set.

The number of T-sensors read out can be set by configuring the number of analog channels
to any value up to 64 by writing to OD index 2100h, subindex 1. The number of T-sensors
read out is this number divided by 2 (due to the two-analog-inputs measurement per sensor).

“T-sensor” number 30 and 31 are in fact onboard reference resistors (of 16369 Ω and
341.6 Ω, representing temperatures of 0.0°C and 100.0°C, respectively) whose values may be
read out to check the proper functioning of module and ADC.

The setting of OD index 4400h determines whether the readings in the PDO messages are in

Ohms or in millidegrees centigrade. The default setting is degrees.

The MDT-DCS module produces a 4-databyte TPDO2 per T-sensor formatted either (when

OD index 4400h is set to 1) as:

MDT-DCS module → Host
COB-ID Data Byte 0 Data Byte 1-3

280h + NodeID NTC number Temperature [m°C]
with:

Temperature: 24-bits temperature reading in millidegrees centigrade, LSB in byte 1,
MSB in byte 3; invalid readings and ADC errors result in a tempera-
ture value of FFFFFFh (16777215).

NTC number: Number between 0 and 29.

or formatted (when OD index 4400h is set to 0) as:

MDT-DCS module → Host
COB-ID Data Byte 0 Data Byte 1 Data Byte 2-3

280h + NodeID NTC number Status + ADC-config Resistance [Ω]
with:

Resistance: 16-bits NTC resistance value in Ω, LSB in byte 2, MSB in byte 3.
NTC number: Number between 0 and 29.
Status+ADC-config: bit 7: Conversion status: 1=ERROR (overflow or oscillation occurred

during at least one of the two ADC conversions), 0=OKAY.
 bits 6-0: ADC configuration: conversion word rate (bits W0, W1 and

MDT-DCS CANopen module v2.7 19-Aug-2011

17

W2), gain range (bits G0, G1 and G2) and unipolar or bipolar (bit U/B);
see below. For definitions see OD index 2100h, sub 2, 3 and 4.

BIT 7 6 5 4 3 2 1 0
Meaning Error W2 W1 W0 G2 G1 G0 U/B

The method by which all 30 (or less) T-sensors is read out depends on the transmission-type

of TPDO2, which can be set by the user to the required value by writing to OD index 1801h,
subindex 2 of the MDT-DCS module. The value may be stored in onboard EEPROM perma-
nently, so that it will be the default transmission type after every subsequent reset or power-
up. The default value before configuration can be found in the OD listing in section 9.

The following modes of TPDO2 transmission are supported (see OD index 1801h, subindex

2 and 5:

• PDO transmission type 1:

after every so-called SYNC message issued on the CAN-bus the MDT-DCS module
starts an analog input channel scan and sends (up to) 32 TPDO2 messages, one message
for every T-sensor. Two A/D conversions have to be done for every T-sensor so it can
take up to about 30 seconds before all TPDO2s have been sent, depending on how the
ADC has been configured (the ADC conversion rate can be as low as 1.88 Hz).
The SYNC message is a CAN-message with a fixed COB-ID and no data bytes:

Host → all (SYNC-)slave nodes
COB-ID

080h

 Note that all nodes that have PDOs configured to respond to a SYNC message will re-

spond to the SYNC, which is a broadcast message.

• PDO transmission type 255:

after every so-called Remote Transmission Request (RTR) for TPDO2 the MDT-DCS
module starts an analog input channel scan and sends (up to) 32 TPDO2 messages, one
message per T-sensor. The Remote Frame CAN-message that constitutes this RTR has
no data bytes and looks like this:

Host → MDT-DCS module
COB-ID

280h+NodeID

 Note that an RTR is sent to and received/processed by only one particular node.

• Event Timer > 0:

If TPDO2’s event timer (OD index 1801h, sub 5) is set to a value unequal to zero (event
timer is expressed in units of 1 s and must be <=255) the MDT-DCS module automati-
cally starts an analog input channel scan (resulting in up to 32 TPDO2 messages, one
message per T-sensor) periodically, triggered by a timer (in this mode an RTR or SYNC
message also triggers an input scan, depending on the transmission mode as shown
above). Also see section 5.2.4.

MDT-DCS CANopen module v2.7 19-Aug-2011

18

Optionally a reset and calibration sequence can be done before each ADC channel scan. This
feature can be enabled via OD index 2300h (useful perhaps for increasing radiation tolerance).

Individual T-sensors resistance values can be read out using CANopen SDO messages by
reading from OD index 4000h.

Individual T-sensors temperature values can be read out using CANopen SDO messages by
reading from OD index 4010h.

Individual analog inputs (as used in the T-sensor readout) can be read out using CANopen
SDO messages by reading from OD index 6404h (in ADC counts) or from OD index 4300h
(in microvolts). Note that the data in objects 6404h and 4300h contain a 'flags' byte (generated
by the ADC), which is formatted as follows:

BIT 7 6 5 4 3 2 1 0
Value 1 1 1 0 CI1 CI0 OD OF

with CIn = Channel Indicator bits, indicating which CS5523 ADC physical channel (1 to 4,
coded as 00, 01, 10 and 11, respectively) is used, OD = Oscillation Detect Flag bit and OF =
Over-range Flag bit.

5.2.2 ADC Data Conversion

The MDT-DCS T-sensor is an NTC, Thermometrics type number DC95F502W, with a
nominal resistance of 5 kΩ. See Appendix B for datasheet and temperature data of the NTC.

Voltage UV across the NTC on ADC-channel 2*n is measured, then the current through the

NTC is measured by measuring voltage UI which the current generates across a 10 kΩ resistor
(± 1%) on ADC-channel 2*n+1. With the ADC set to 2.5V unipolar range, the conversion
from raw ADC counts A2n and A2n+1 to resistance value RNTC of T-sensor n is done by:

 RNTC = UV/(UI/104) = 104((2.5*A2n)/0xFFFF)/((2.5*A2n+1)/0xFFFF)) = 104A2n /A2n+1

To calculate temperature T (in ºC, in the range from 0 to 100 ºC) of the NTC from NTC re-

sistance value RNTC (in Ω), the following approximation equation (see Appendix B) is used:

T = (1.0 / (a + b ln(r) + c (ln(r))2 + d (ln(r))3)) - 273.15

with r = RNTC/5000,
and a = 3.3540154E-03
 b = 2.5627725E-04

c = 2.0829210E-06
d = 7.3003206E-08

when 3.274 >= r > 0.36036 (i.e. when 0º C <= T < 50º C),
or a = 3.3539264E-03

b = 2.5609446E-04
c = 1.9621987E-06
d = 4.6045930E-08

when 0.36036 >= r >= 0.06831 (i.e. when 50º C <= T <= 100º C).

The conversion functions above are applied by the MDT-DCS firmware to the ADC read-
ings when temperature read-out is set to millidegrees centigrade, which is the default.

MDT-DCS CANopen module v2.7 19-Aug-2011

19

5.2.3 ADC Raw Data

Starting with MDT-DCS firmware version 2.2, it is possible to configure the TPDO2 con-
taining the T-sensor ADC data, as described in the previous section, such that each PDO mes-
sage contains an individual analog input conversion value (in ADC counts), i.e. the PDO mes-
sage contains an object from OD index 6404h.
Note:

− this mode is the default mode of read-out of the socalled EndCap-type of MDT-DCS
modules, where the NTCs have been replaced by voltage-based T-sensors (plus addi-
tional circuitry); the host system does the conversion to temperature units.

− read-out in this mode results in calibrated values, because the ELMBs have calibra-
tion constants stored onboard for every possible voltage-range; the constants are ap-
plied by the firmware, so the conversion from ADC-counts to voltage –by the host
system– is straightforward (for example: in 2.5V unipolar mode, an ADC conversion
count of 65535 corresponds indeed to 2.5V).

When OD index 4401h is set to 1, the MDT-DCS module produces a 4-databyte TPDO2

formatted as follows:

MDT-DCS module → Host
COB-ID Data Byte 0 Data Byte 1 Data Byte 2-3

280h + NodeID Channel number Status + ADC-config ADC count
with:

ADC count: 16-bits ADC count, LSB in byte 2, MSB in byte 3.
Channel number: Number between 0 and 63 (ADC input channel number).
Status+ADC-config: bit 7: Conversion status: 1=ERROR (overflow or oscillation), 0=OKAY.

 bits 6-0: ADC configuration: conversion word rate (bits W0, W1 and
W2), gain range (bits G0, G1 and G2) and unipolar or bipolar (bit U/B);
see above. For definitions see OD index 2100h, sub 2, 3 and 4.

5.2.4 Readout-on-Change

Starting with MDT-DCS firmware version 2.3.1 a so-called 'readout-on-change' feature was
added. It means that the MDT-DCS module automatically and periodically scans the T-sensor
channels and sends a message (a TPDO2) only for a T-sensor that changed its value with a
preset minimum value (the 'delta'). This delta value is one of the ADC's configuration pa-
rameters, and can be set to any value. There is one delta that applies to all T-sensor channels.

To enable this feature for the T-sensors:

• set the TPDO2 event timer (Object 1801h, sub 5) to a value > 0: this will be the pe-
riod (in seconds) between two consecutive T-sensor channel scans,

• set the T-sensor ADC delta value (Object 2100h, sub 22) to a value > 0,
• set the MDT-DCS module to Operational.

MDT-DCS CANopen module v2.7 19-Aug-2011

20

The first scan cycle does not produce any output, but the T-sensors are read out, and the

readings are used as reference values to detect a 'delta' change in any of the values in subse-
quent channel scans. As soon as this occurs the value is sent and taken as the new reference
for the channel that changed.

At any time a host system may request a read-out of all T-sensors by sending a SYNC or
RTR message to the MDT-DCS module; it does not influence the 'scan-for-change' feature,
although an ongoing T-sensor channel scan is aborted; current T-sensor reference values are
not changed by this action. A next channel scan is automatically started when the timer ex-
pires again.

If the TPDO2 event timer is set to a value > 0, but delta is set to 0, the 'normal' procedure of
read-out takes place: every n seconds all T-sensors are read out and their values sent in mes-
sages, as described in section 5.2.1.

Note that TPDO event timer triggered readout takes place only when the node is in Opera-
tional state.

Note that the delta value is always taken to be in the units in which read-out currently takes
place, i.e. millidegrees, Ohms or raw ADC-counts. So if you change your unit of read-out, the
delta value itself does not change, but its unit does !

MDT-DCS CANopen module v2.7 19-Aug-2011

21

5.3 B-sensor Read-out

By writing to OD index 2800h, none, or up to four B-sensor modules can be selected, in the

form of a bit mask, i.e. if OD index 2800h has value Fh, all four B-sensor modules are pre-
sent). The default is: no B-sensor module present, OD index 2800h has value 0 (zero).

The MDT-DCS module has originally been designed to read out up to two B-sensor modules
only. In case three or four B-sensor modules are connected to one MDT-DCS module, they
must be connected to a cable in pairs, as illustrated in Figure 5. The module numbering is
fixed and is as shown in Figure 5.

Figure 5. Connecting more than two B-sensor modules to one MDT-DCS module.
(Note: the cable shown in the picture is of a type not approved for ATLAS !)

5.3.1 B-sensor Data

The MDT-DCS module sends one PDO message containing 5 bytes for each B-sensor input

and per B-sensor module 4 inputs are read: Hall sensors H1, H2 and H3 and the temperature
sensor. The CAN-identifier used for this PDO is the so-called 4th-transmit-PDO (TPDO4) of
the CANopen Predefined Connection Set.

The MDT-DCS module produces the following 5-databyte TPDO4:

MDT-DCS module → Host
COB-ID Data Byte 0 Data Byte 1 Data Byte 2-4

480h + NodeID Channel number ADC-config 24-bit ADC value
with:

ADC value: Signed/unsigned 24-bits ADC value, LSB in byte 2, MSB in byte 4.
 Note: Hall sensors: 24-bit signed value; T-sensor: 24-bit unsigned value

(either an ADC count or a temperature in millidegrees centigrade de-
pending on the setting of OD index 4400h),

Channel number: Number between 0 and 15.
 Chan 0-3: Hall sensor H1, H2, H3 and T-sensor resp. of B-sensor #0,

MDT-DCS

B-sensor 1 B-sensor 0
B-sensor #0

B-sensor #1

B-sensor #2

B-sensor #3

pin 7 and 8 wires to be swapped
on the connector of the second
B-sensor module on the cable

MDT-DCS CANopen module v2.7 19-Aug-2011

22

 Chan 4-7: Hall sensor H1, H2, H3 and T-sensor resp. of B-sensor #1.
 Chan 8-11: Hall sensor H1, H2, H3 and T-sensor resp. of B-sensor #2.
 Chan 12-15: Hall sensor H1, H2, H3 and T-sensor resp. of B-sensor #3.
ADC-config: bit 7: not used.

bits 6-0: ADC configuration: conversion word rate (bits W0, W1 and W2),
gain range (bits G0, G1 and G2) and unipolar or bipolar (bit U/B); see be-
low. For definitions see OD index 2500h/2501h, sub 2,3,4,5,6 and 7.

BIT 7 6 5 4 3 2 1 0
Meaning - W2 W1 W0 G2 G1 G0 U/B

The method by which the B-sensor module inputs are read out depends on the transmission-

type of TPDO4, which can be set in OD index 1803h, subindex 2 of the MDT-DCS module.
The method options are identical to what has been described for the read-out of the T-sensors
in section 5.2.

Optionally a reset and calibration sequence can be done before each B-sensor ADC channel

scan. This feature can be enabled via OD index 2700h (useful perhaps for increasing radiation
tolerance).

Individual B-sensor module channels (there are actually 7 per module) can be read out using
CANopen SDO messages by reading from OD index 4200h to 4203h (see OD tables for a de-
scription of each individual channel).

5.3.2 ADC Data Conversion

The interpretation of the Hall sensor ADC values and conversion to physical values will be
done offline using a set of calibration tables accompanying each individual B-sensor module.
Until these tables are available the user himself must interpret the data.

The B-sensor module's T-sensor is an NTC, Thermometrics type number DC95F502W, with
a nominal resistance of 5 kΩ. See Appendix B for datasheet and temperature data of the NTC.

 Table 8 shows a list of resistance values RNTC for this NTC at different temperatures, and

the resulting B-sensor module ADC input voltage. In the shaded part of the table (between 0º
and 70º C) the precision is ±0.2º C.

The ADC input voltage VNTC can be expressed as:

VNTC = Vref - VccRNTC / (RNTC + Rref)

which can be rewritten as:

RNTC = Rref (Vref - VNTC) / (VNTC + Vcc - Vref)

With Rref = 23.2 kΩ, Vcc = 5 V and Vref = 2.5 V this results in:

RNTC = 23200 (2.5 - VNTC) / (VNTC + 2.5)

MDT-DCS CANopen module v2.7 19-Aug-2011

23

VNTC is the voltage value calculated from the 24-bit ADC value A.
The ADC input has been calibrated to give A=0 (000000h) at 0 ºC (i.e. at 0.4315 V) and
A=16777215 (0xFFFFFF) at 100 ºC (i.e. at 2.4275 V), so that VNTC can be expressed as:

VNTC = 0.4315 + (2.4275 - 0.4315)A/FFFFFFh = 0.4315 + 1.996A/FFFFFFh

So RNTC can be calculated directly from ADC value A as follows:

RNTC = 23200 (2.0685 - a) / (2.9315 + a)

with a = 1.996 A / 16777215.

With RNTC known, the temperature (in ºC) can now be calculated using the equation(s) for T
from the previous section.

The conversion equations described above are applied by the MDT-DCS firmware when

temperature read-out is set to millidegrees centigrade, which is the default setting.

5.3.3 B-sensor Serial Number

Each B-sensor module comes equipped with a unique serial number, which is factory-
lasered in the on-board Dallas DS2401 device.

The 64-bit (8-byte) serial number is used to uniquely identify each module, for instance, to
match each module with its calibration data, which are stored off-line.

The serial numbers of the four B-sensor modules can be read from OD Objects 2900h,

2901h, 2902h or 2903h. The least significant 4 bytes are read from subindex 1 and the most
significant 4 bytes from subindex 2. Starting with MDT-DCS firmware version 2.4.0 the least-
or most-significant sets of 4 bytes can be read in any order.

The layout of the 64-bit serial number is as shown below:

8-bit CRC Code 48-bit Serial Number 8-bit Family Code (01h)

MSB LSB MSB LSB MSB LSB

byte 7 byte 6-4 byte 3-1 byte 0
↓ ↓ ↓ ↓

OD index 290Xh, subindex 2 OD index 290Xh, subindex 1

Figure 6. B-sensor 64-bit Serial Number and its mapping to Object Dictionary (OD)
objects (with X=0 to 3).

The MDT-DCS module checks the correctness of the serial number CRC when OD Object

2900h to 2903h is read, so a valid reply implies the CRC was correct: it is not necessary for
the host to recalculate the serial number CRC.

MDT-DCS CANopen module v2.7 19-Aug-2011

24

Table 8. NTC resistance/temperature table, and resulting B-sensor ADC input voltage
(Normalized resistance table taken from datasheets in Appendix B).

Temperature Normalized
Resistance

Resistance AIN4
(ADC)

[C] Ohm Ohm Volt
-50 68.60 343000.00 -2.1832
-45 48.16 240800.00 -2.0606
-40 34.23 171150.00 -1.9031
-35 24.62 123100.00 -1.7071
-30 17.91 89550.00 -1.4712
-25 13.17 65850.00 -1.1974
-20 9.782 48910.00 -0.8913
-15 7.339 36695.00 -0.5633
-10 5.558 27790.00 -0.2250
-5 4.247 21235.00 0.1106
0 3.274 16370.00 0.4315
5 2.544 12720.00 0.7294

10 1.992 9960.00 0.9982
15 1.572 7860.00 1.2347
20 1.250 6250.00 1.4389
25 1.000 5000.00 1.6135
30 0.8056 4028.00 1.7603
35 0.6530 3265.00 1.8831
40 0.5326 2663.00 1.9852
45 0.4369 2184.50 2.0697
50 0.3604 1802.00 2.1396
55 0.2989 1494.50 2.1974
60 0.2491 1245.50 2.2452
65 0.2087 1043.50 2.2848
70 0.1756 878.00 2.3177
75 0.1485 742.50 2.3449
80 0.1261 630.50 2.3677
85 0.1075 537.50 2.3868
90 0.09209 460.45 2.4027
95 0.07916 395.80 2.4161

100 0.06831 341.55 2.4275
105 0.05916 295.80 2.4371

MDT-DCS CANopen module v2.7 19-Aug-2011

25

6 CSM Front-end Electronics Monitoring and Control

6.1 Analog Inputs

The CSM-SPI connector provides the interface to an ADC, identical to the ADC on the
ELMB (which is used for the NTC temperature sensors on the MDT chamber), integrated in
the CSM front-end electronics, capable of monitoring up to 64 analog input channels on the
CSM. The analog values monitored include:

• Mezzanine analog voltage
• Mezzanine digital voltage
• Mezzanine temperature
• Motherboard 4.5V
• CSM +5Vcc, -5VEE, 3.3V, 2.5V, 1.8V and 1.5V
• CSM temperature

A list of ADC channels and what parameter they represent, is shown in Table 9 below.

ADC ch Source ADC ch Source ADC ch Source ADC ch Source

0 Mezz 16 Temp 16 Mezz 6 Temp 32 Mezz 10 Temp 48 Mezz 0 Temp
1 Mezz 16 Analog 17 Mezz 6 Analog 33 Mezz 10 Analog 49 Mezz 0 Analog
2 Mezz 16 Digital 18 Mezz 6 Digital 34 Mezz 10 Digital 50 Mezz 0 Digital
3 CSM 2.5V 19 CSM 3.3V 35 CSM 1.8V 51 CSM VCC
4 Mezz 15 Temp 20 Mezz 5 Temp 36 Mezz 12 Temp 52 Mezz 2 Temp
5 Mezz 15 Analog 21 Mezz 5 Analog 37 Mezz 12 Analog 53 Mezz 2 Analog
6 Mezz 15 Digital 22 Mezz 5 Digital 38 Mezz 12 Digital 54 Mezz 2 Digital
7 CSM 1.5V 23 Mezz 7 Temp 39 Mezz 11 Temp 55 Mezz 1 Temp
8 Mezz 17 Temp 24 Mezz 8 Temp 40 Mezz 14 Temp 56 Mezz 4 Temp
9 Mezz 17 Analog 25 Mezz 8 Analog 41 Mezz 14 Analog 57 Mezz 4 Analog

10 Mezz 17 Digital 26 Mezz 8 Digital 42 Mezz 14 Digital 58 Mezz 4 Digital
11 CSM 2.5V Ref 27 Mezz 7 Analog 43 Mezz 11 Analog 59 Mezz 1 Analog
12 Half CSM +5VCC 28 Mezz 9 Temp 44 Mezz 13 Temp 60 Mezz 3 Temp
13 CSM Temp 29 Mezz 9 Analog 45 Mezz 13 Analog 61 Mezz 3 Analog
14 Half CSM -5VEE 30 Mezz 9 Digital 46 Mezz 13 Digital 62 Mezz 3 Digital
15 CSM 2.5V Ref 31 Mezz 7 Digital 47 Mezz 11 Digital 63 Mezz 1 Digital

Table 9. Mapping of CSM FE-electronics voltages/temperatures to CSM-ADC channels.

A 2.5V reference connected to one of the 64 analog input channels is used to calibrate the

ADC's 5V input range (at each power-up and reset). The input channel number where the
2.5V reference is connected can be selected in OD index 2101h, subindex 19. The default set-
ting is ADC channel 11. When a value > 63 is set, an ADC-internal calibration is done; in that
case only the ADC's 2.5V voltage range would give accurate readings.

The temperature sensor device used on the CSM and Mezzanine cards is the Analog Devices

TMP36 (offset 0.5V, 10 mV/°C, i.e. output = 0.75V @ 25°C, range -40°C to +125°C, accu-
racy ±2°C). With the ADC set to 5V bipolar range, the conversion from raw ADC count A to
degrees Celcius can be done using:

0.5+0.01*Celcius = Volts or Celcius = 100*Volts-50,
with Volts = 5.0*A/0x7FFF = 5.0*A/32767.0,
this leads to Celcius = 0.01526*A – 50.

MDT-DCS CANopen module v2.7 19-Aug-2011

26

The MDT-DCS module sends one PDO message containing 4 bytes for every ADC input.
The CAN-identifier used for this PDO is the so-called 3rd-transmit-PDO (TPDO3) of the
CANopen Predefined Connection Set.

The number of analog inputs read out can be set by configuring it to any value up to 64 by
writing to OD index 2101h, subindex 1.

In addition, using subindex 22, which mezzanines’ ADC data actually gets sent in TPDO3
messages can selectively be set: the data from mezzanines not present in the mask are not sent
to the CAN bus (although the conversions of the ADC channels in question still take place), in
order to limit the sending of meaningless data (MDT-DCS firmware version 2.5.0 and later).

The MDT-DCS module produces the following 4-databyte TPDO3:

MDT-DCS module → Host
COB-ID Data Byte 0 Data Byte 1 Data Byte 2-3

380h + NodeID Channel number Status + ADC-config ADC count
with:

ADC count: 16-bits value, LSB in byte 2, MSB in byte 3. Using the default ADC
configuration setttings: value 7FFFh corresponds to +5.0V, value
0000h to 0.0V, and value 8000h to -5.0V (signed 16-bits value).

Channel number: number between 0 and 63.
Status+ADC-config: bit 7: Conversion status: 1=ERROR (overflow or oscillation), 0=OKAY.

 bits 6-0: ADC configuration: conversion word rate (bits W0, W1 and
W2), gain range (bits G0, G1 and G2) and unipolar or bipolar (bit U/B);
see below. For definitions see OD index 2101h, sub 2, 3 and 4.

BIT 7 6 5 4 3 2 1 0
Meaning Error W2 W1 W0 G2 G1 G0 U/B

The method by which all (64 or less) analog inputs are read out depends on the transmission-

type of TPDO3, which can be set in OD index 1802h, subindex 2 of the MDT-DCS module.
The options for the transmission-type are the same as described for the read-out of the T-
sensors in section 5.2.

Optionally a reset and calibration sequence can be done before each ADC channel scan. This

feature can be enabled via OD index 2301h (useful perhaps for increasing radiation tolerance).

Individual analog inputs can be read out using CANopen SDO messages by reading from

OD index 4100h. Note that the data in objects 4100h contains a 'flags' byte (generated by the
ADC), which is described in section 5.2.1.

6.1.1 Readout-on-Change

Starting with MDT-DCS firmware version 2.3.1 a so-called 'readout-on-change' feature was
added. It means that the MDT-DCS module automatically and periodically scans the CSM
analog channels and sends a message (a TPDO3) only for a channel that changed its value
with a preset minimum value (the 'delta'). This delta value is one of the ADC's configuration
parameters, and can be set to any value. There is one delta that applies to all CSM channels.

MDT-DCS CANopen module v2.7 19-Aug-2011

27

To enable this feature for the CSM analog inputs, do the following:

• set the TPDO3 event timer (Object 1802h, sub 5) to a value > 0: this will be the pe-
riod (in seconds) between two consecutive CSM channel scans,

• set the CSM ADC delta value (Object 2101h, sub 21) to a value > 0,
• set the MDT-DCS module to Operational.

For further details see section 5.2.4.

6.2 Configuration and Control

The CSM-ADC, JTAG and SPI-AUX connectors provide interfaces for additional configura-
tion and control of the CSM front-end electronics.

The CSM-ADC connector provides, in addition to the serial interface to an ADC on the CSM

as described in section 6.1, three general-purpose I/Os, which are available as bits 4-6 through
the CANopen mechanism for Digital I/O (see section 6.2.2).

The JTAG connector implements a JTAG host interface and is used to configure the CSM

electronics. In addition, this connector provides four general-purpose I/Os, which are available
as bits 0-3 through the CANopen mechanisms for Digital I/O (see section 6.2.2).

The MDT-DCS firmware does not have any support for the interface provided by the SPI-

AUX connector. It is spare and may be used to implement extra Digital I/Os or to drive a serial
interface. Appropriate additions to the module's firmware and Object Dictionary would have
to be made and possibly additional PDOs defined, to satisfy the requirements of the task fore-
seen.

6.2.1 JTAG

6.2.1.1 Implementation Overview

The MDT-DCS module supports 2 methods of uploading a JTAG bit string to the CSM elec-
tronics:

1. Relay method: the host system sends the JTAG bit string to the ELMB, in chunks; MDT-
DCS shifts out each bit string chunk, immediately upon reception, into the JTAG chain.
This method enables upload of arbitrary JTAG bit strings to the CSM.

2. Storage method: the host system sends a single message to trigger the upload of one (ac-
tually a pair) from a number of JTAG bit strings permanently stored in the MDT-DCS
module's memory. This method enables fast (compared to the relay method) upload of
any selection in any order of previously stored bit strings to the CSM.

A JTAG bit string contains always either data bits (upload takes place in TAP state Shift-

DR), or instruction bits (upload takes place in TAP state Shift-IR).
Usually an instruction bit string is shifted into a JTAG chain, followed by a data bit string;

the combination of such an instruction and data bit string is called here: a JTAG-action.

Upload method 1 supports both instruction and data bit string upload, in chunks of 32 bits

(in principle up to any bit string length), or, in a socalled ‘segmented transfer’ (MDT-DCS

MDT-DCS CANopen module v2.7 19-Aug-2011

28

firmware version 2.4 and newer) up to 1024*8 bits; the host system controls the order of up-
loading. If required, the host system may retrieve return bits for inspection. In case the 32-bit
chunk upload method is used, the host must retrieve return bits after every (32-bit) chunk up-
load (a new chunk overwrites the previous return bits). In case of a segmented transfer a host
must finish the segmented upload, and then can download all the return bits from the MDT-
DCS module, in one go, also by means of a segmented transfer.

The MDT-DCS Object Dictionary provides objects for instruction bit string upload (OD in-
dex 4800h, 4801h and 480Ah) and data bit string upload (OD index 4803h, 4804h and
480Bh), which are accessed using standard SDO messages. See example 1 in the next section.

For efficient individual MDT-DCS and CAN-bus-wide broadcast-style bit string uploading,

four RPDOs have been defined:
• with COB-ID 300h+NodeID and 400h+NodeID for instruction and data bit strings re-

spectively, for upload to individual MDT-DCS modules,
• with COB-ID 500h and 580h for instruction and data bit strings respectively, for

broadcast to all MDT-DCS modules on the CAN-bus.
NB: return bits are not available for read-back when using RPDOs for uploading!
See examples 2 and 3 in the next section.

Upload method 2 triggers the execution of a JTAG-action: an instruction bit string upload is

followed by a data bit string upload into the JTAG chain; both bit strings were previously
stored in the onboard non-volatile memory (EEPROM) of the MDT-DCS module and both
strings have to be present and valid for the JTAG-action to be successfully executed.

With each stored JTAG-action it is possible to save (and check against a reference string) up
to 32 consecutive bits of the return data bit string (not so for the instruction bit string). The
start bit, a reference bit string and a mask are stored in the MDT-DCS module’s non-volatile
memory. The return status bits and/or return status error word (as one 32-bit item) of the last
executed JTAG-action can be inspected (OD index 49F0h, sub 2 and 3). The MDT-DCS
module can be configured to automatically send the status error word after completion of each
JTAG-action (OD index 49F1h). See example 4 in the next section.

For efficient individual MDT-DCS and CAN-bus-wide broadcast requests to execute one or
more of the stored JTAG-actions, two RPDOs have been defined. Due to the limited number
of CAN-message buffers in the ELMB hardware the RPDO with COB-ID 400h+NodeID and
COB-ID 580h (already used for data bit string upload) are reused for this purpose. An upload
sequence of up to 7 JTAG-actions may be triggered in this way, with just one message. See
examples 5 and 6 in the next section.

Note that the MDT-DCS module receives and sends PDO messages only when in

(CANopen) state Operational.

MDT-DCS CANopen module v2.7 19-Aug-2011

29

6.2.1.2 JTAG-action Storage

NOTE: the JTAG-action storage features are supported starting from MDT-DCS firmware
version 2.3. Versions 2.1 and 2.2 support all JTAG features, except JTAG-actions. Versions
1.x do not have any support for JTAG operations. Versions 2.4 and newer also support JTAG
string transfer using the CANopen Segmented SDO protocol.

The MDT-DCS module has storage space for a total of 13 JTAG-actions, each with up to

128 instruction bits, ten of them with up to 512 data bits and three of them with up to 6272
data bits. A 16-bit CRC is stored with each bit string and checked before every upload into the
JTAG chain. Measurements have shown that the MDT-DCS module can shift stored strings
into the JTAG chain at a rate of about 1000 bits per 25 ms, or 40 kbits/s.

A host system sends bit strings for storage in MDT-DCS module memory in basically the

same way as it sends bit strings using upload method 1; it only takes (much) more time for
each chunk (of 32 bits) to be stored onboard permanently (ca.30 ms) than to be shifted into the
JTAG-chain (ca.0.4 ms), in other words: to store a string of 6272 bits may take up to 8 s !

Note that writing bit strings to storage can only be done with SDO messages (both Expedited
or Segmented Transfer), not with PDOs. A series of objects in the MDT-DCS Object Diction-
ary for each of the 13 JTAG-action storage spaces (OD indices 491Xh to 49DXh), provide
access to the storage spaces and operations on the bit strings, as well as the parameters for a
return bits check. See examples 7 and 8 in the next section.

6.2.1.3 Examples of MDT-DCS JTAG Operations

Examples of JTAG operations and the CANopen messages required are shown in the tables
below.

In case of SDO messages they only show the messages that carry the data read from or writ-

ten to the Object Dictionary. So the message with data is either generated by the host (the
SDO client) or by the MDT-DCS module (the SDO server), but in all cases an SDO 'message
exchange' is always initiated by the host (being the client), either writing to or reading from
the Object Dictionary of the MDT-DCS module (being the server of the request).

For receiving and sending PDO messages the MDT-DCS module must be in state Opera-

tional. PDO messages are not confirmed (by a reply) by the receiver(s).

1. Sending a JTAG data bit string and loading it into one CSM, using SDO messages.

Assume the bit string contains 68 bits and can be written as a number (hexadecimal) as:
AFEDCBA9876543210, with the least significant bit of this number to be shifted out into
the JTAG chain first. Note that each host SDO message results in an SDO reply from the
MDT-DCS module, not shown in the table below, and also note that here the data is re-
ceived by one and only one MDT-DCS module or CSM (according to the NodeID set in
the SDO CAN-message sent by the host). The following sequence of messages performs
the upload operation (messages in rows):

MDT-DCS CANopen module v2.7 19-Aug-2011

30

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
host Write OD 4803h, 0 10h 32h 54h 76h
host Write OD 4803h, 0 98h BAh DCh FEh
host Write OD 4804h, 4 0Ah 00h 00h 00h

Note that the final SDO message writes to Object 4804h, sub 4 in order to shift exactly 4
bits, being the final bits of the uploaded bit string. Non-significant bits in the last message
must be zero.
If the host wants to check the JTAG return bits, it has to request the MDT-DCS module to
send the return bits after each bit string chunk written:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
host Write OD 4803h, 0 10h 32h 54h 76h
MDT Read OD 4803h, 0 XXh XXh XXh XXh
host Write OD 4803h, 0 98h BAh DCh FEh
MDT Read OD 4803h, 0 XXh XXh XXh XXh
host Write OD 4804h, 4 0Ah 00h 00h 00h
MDT Read OD 4804h, 4 0Xh 00h 00h 00h

(Note: the final read of OD 4804h can be read from any of the subindices, and also by a
read of OD 4803h; they return the same data).

Starting with MDT-DCS firmware version 2.4, objects have been added to the Object Dic-
tionary enabling JTAG bit string up- and download by means of Segmented-SDO, the
standard CANopen protocol for transferring data items larger than 4 bytes.
The upload/download operation shown above is done with the following sequence of mes-
sages (messages in rows):

Source Segmented-SDO Bt 0 Bt 1 Bt 2 Bt 3 Bt 4 Bt 5 Bt 6 Bt 7
host Write OD 480Bh, 0, ini p’col 0Bh 48h 00h 0Bh 00h 00h 00h
host Write OD 480Bh, 0 p’col 44h 00h 10h 32h 54h 76h 98h
host Write OD 480Bh, 0, last p’col BAh DCh FEh 0Ah 00h 00h 00h
MDT Read OD 480Bh, 0, ini p’col 0Bh 48h 00h 0Bh 00h 00h 00h
MDT Read OD 480Bh, 0 p’col 44h 00h XXh XXh XXh XXh XXh
MDT Read OD 480Bh, 0, last p’col XXh XXh XXh 0Xh 00h 00h 00h

Notes on the message sequence shown above:

• The first SDO message contains the object index (0Bh, 48h) and subindex (00h),
as well as the number of bytes to be sent in this Segmented SDO, i.e 11 bytes
(0Bh); this message is part of the Segmented-SDO protocol and carries no JTAG
bit string data.

• The second SDO message contains in its first 2 bytes the length of the JTAG bit
string to be sent in this Segmented-SDO, i.e. 68 bits (44h), part of the JTAG bit
string upload protocol; bytes 4 to 7 contain the first 32 bits of the bit string to up-
load. (Reading a bit string by Segmented-SDO similarly results in a byte-array re-
turned in which the first 2 bytes contain the number of bits in the contained bit
string; see 5th message from top in the table above).

• Data byte 0 –not shown in the table above– contains the SDO protocol byte, not
further explained in detail here.

MDT-DCS CANopen module v2.7 19-Aug-2011

31

• A JTAG bit string upload by Segmented-SDO must be completed before the return
bits can be read/downloaded (by Segmented-SDO); this implies that all return bits
must be stored by the MDT-DCS module; the maximum number of return bits
stored is therefor limited to 1024*8, so this is also the allowed maximum length of
a JTAG bit string upload by Segmented-SDO.

2. Sending a JTAG data bit string and loading it into one CSM, using PDO messages.

The bit string from example 1 is written to the same (single) MDT-DCS module:

Source PDO(COB-ID) Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

host 400h + NodeID 00h 10h 32h 54h 76h 98h BAh DCh
host 400h + NodeID 0Ch FEh 0Ah

Note that byte 0 signifies whether the last bits are to be uploaded (being unequal to zero).
A single such PDO message can have any number of bytes >= 2. There are no replies to
these messages. If required the host may inspect OD index 4805h to make sure all bits have
been received. Non-significant bits in the last message must be set to zero.

3. Sending a JTAG data bit string and loading it into all CSMs connected to the CAN-

bus, using PDO messages.
The bit string from example 1 and 2 is written to all MDT-DCS modules:

Source PDO(COB-ID) Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

host 580h 00h 10h 32h 54h 76h 98h BAh DCh
host 580h 0Ch FEh 0Ah

There are no replies to these messages. If required the host may inspect OD index 4805h on
each MDT-DCS module to make sure all bits have been received on each module.
See also example 5 where PDO 580h is used for its other purpose: triggering a JTAG-
action execution. Non-significant bits in the last message must be set to zero.

An error in the PDO syntax (example 2 and 3) would result in the MDT-DCS module send-
ing the following Emergency message (see section 10):
with XX = TAP state, YY = number of bits in shift, ZZ = 1 (final shift) or 0 (not final shift).

Source Emergency (COB-ID) Byte 0-1 Byte 2 Byte 3-7
MDT 080h + NodeID Emergency

Error Code
(00h 81h)

Error Register
(Object 1001h)

Manufacturer specific
error field

(71h XX YY ZZ 00h)

4. Loading JTAG instruction and data bit strings from JTAG-action #2 storage to one

CSM (i.e. executing JTAG-action #2), using an SDO message.
The host sends the following message:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
host Write OD 4927h, 0 55h – – –

MDT-DCS CANopen module v2.7 19-Aug-2011

32

Note that the data is received by one and only one MDT-DCS module or CSM (according
to the NodeID set in the SDO CAN-message sent by the host).
If both the JTAG-action's stored bit strings are present and valid, and after the bit strings
have been sent to the CSM, MDT-DCS sends the standard SDO reply.

If the global enable of reporting the JTAG-action status error has been set (OD index
49F1h set to 1), and the MDT-DCS module is in state Operational, the completion of a
JTAG-action also results in the MDT-DCS module sending its Digital Input PDO message
with bit 7 of databyte 0 acting as a toggle bit (at each JTAG-action completion the bit is
toggled) and databytes 1 to 4 containing the status error word (OD index 4920h, sub 3):

Source PDO (COB-ID) Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
MDT 180h + NodeID 00h

+DigIn
00h 00h 00h 00h

If the JTAG-action #2 storage is empty or another JTAG-action is in progress (being
shifted into JTAG), the MDT-DCS module sends the following SDO Abort Transfer reply:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
MDT Abort OD 4927h, 0 00h 00h 1 (code):

Access
6 (class):
Access

as well as the following Emergency message (see section 10):

Source Emergency (COB-ID) Byte 0-1 Byte 2 Byte 3-7
MDT 080h + NodeID Emergency

Error Code
(00h 50h)

Error Register
(Object 1001h)

Manufacturer specific
error field

(81h 02h 00h 00h 00h)

If the stored JTAG-action is invalid (i.e. a CRC does not match the corresponding stored
bit string) the MDT-DCS module sends the following SDO Abort Transfer reply:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
MDT Abort OD 4927h, 0 00h 00h 6 (code):

Hardware
6 (class):
Access

as well as the following Emergency message (see section 10):

Source Emergency (COB-ID) Byte 0-1 Byte 2 Byte 3-7
MDT 080h + NodeID Emergency

Error Code
(00h 50h)

Error Register
(Object 1001h)

Manufacturer specific
error field

(82h 02h 01h 00h 00h)

5. Loading JTAG instruction and data bit strings from JTAG-action #2 storage, fol-
lowed by JTAG-action #8 and #6 to one CSM, using (a) PDO message(s).
The host sends the following message:

Source PDO (COB-ID) Byte 0 Byte 1 Byte 2 Byte 3
host 400h + NodeID FEh 02h 08h 06h

MDT-DCS CANopen module v2.7 19-Aug-2011

33

Value FEh in byte 0 of the PDO signifies to the MDT-DCS module that the numbers fol-
lowing are the indices of JTAG-actions to execute in the order they appear in the message.
(Compare to example 2 where PDO 400h+NodeID is used for its other purpose: data bit
string upload).

The PDO, when used for triggering JTAG-action uploads, may be any length (from 2 up to
8 bytes), which means up to 7 JTAG actions may be executed in sequence, triggered by
one such PDO message. (In future versions this number may be extended to 14 JTAG-
actions, if just 4 bits per JTAG-action number are assigned). Any number of bytes may be
present in the PDO, even more than the number of JTAG-action to execute, but then the
last JTAG-action number to be executed must be followed by a zero. The following PDO
does exactly the same as the one above:

Source PDO (COB-ID) Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
host 400h + NodeID FEh 02h 08h 06h 00h

Note that there is no direct reply to the PDO message from the host.
However, if the global enable of reporting the JTAG-action status error has been set (OD
index 49F1h set to 1), and the MDT-DCS module is in state Operational, the completion of
each JTAG-action will result in the MDT-DCS module sending its Digital Input PDO mes-
sage, in which there are 4 bytes containing the status error word (OD index 49F0h, sub 3).
In this PDO message bit 7 of byte 0 is a toggle bit that is toggled after every JTAG-action
completion, and byte 1 to 4 contains the status error word resulting from the JTAG-action.
When all returned status error words are zero the sequence of JTAG-actions was success-
fully executed.
The resulting message sequence would look like this:

Source PDO (COB-ID) Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
host 400h + NodeID FEh 02h 08h 06h -
MDT 180h + NodeID 00h

+DigIn
00h 00h 00h 00h

MDT 180h + NodeID 80h
+DigIn

00h 00h 00h 00h

MDT 180h + NodeID 00h
+DigIn

00h 00h 00h 00h

Now if the host would like to wait for each JTAG-action to complete it would trigger the
upload of only one JTAG-action at a time and wait for the Digital Input PDO message,
with the toggle bit toggled! In that case the message sequence might look like this, with al-
ternating host and MDT-DCS messages:
Source PDO (COB-ID) Byte 0 Byte 1 Byte 2 Byte 3 Byte 4
host 400h + NodeID FEh 02h - - -
MDT 180h + NodeID 00h

+DigIn
00h 00h 00h 00h

host 400h + NodeID FEh 06h - - -
MDT 180h + NodeID 80h

+DigIn
00h 00h 00h 00h

host 400h + NodeID FEh 08h - - -
MDT 180h + NodeID 00h

+DigIn
00h 00h 00h 00h

MDT-DCS CANopen module v2.7 19-Aug-2011

34

As mentioned before, the PDO sent by the host may be any length from 2 up to 8 bytes, but
in this case bytes 2 to 7 (if present) should be zero. A new sequence can only be started if
the previous one has finished; if a sequence is in progress, the PDO sent by the host is sim-
ply ignored, with one exception: to abort an ongoing sequence, the host may sent the PDO
containing only byte 0 (with value FEh).

Note that if the status mask of a JTAG-action is set to 0 (OD index 49X8h, sub 2), there is
actually no 'return status bits check' taking place. In that case the PDO message sent by the
MDT-DCS module just serves to signify completion of that JTAG-action and the status er-
ror word returned is always 0.

Any problems detected with the JTAG-action's stored bit strings are reported by Emer-
gency messages as shown in example 4.

6. Loading JTAG instruction and data bit strings from JTAG-action #2 storage, fol-

lowed by JTAG-action #8 and #6 to all CSMs connected to the CAN-bus using (a)
PDO message(s).
The host sends the following message:

Source PDO (COB-ID) Byte 0 Byte 1 Byte 2 Byte 3
host 580h FEh 02h 08h 06h

The same options for getting a PDO reply from the MDT-DCS modules and controlling the
JTAG-actions sequence as described in the previous example are valid here, but take into
account that now each MDT-DCS module on the CAN-bus may send a reply !

7. Writing/replacing a JTAG data bit string in JTAG-action #2 storage, using SDO mes-
sages.
The bit string from example 1 is written:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
host Write OD 4926h, 0 00h – – –
host Write OD 4923h, 0 10h 32h 54h 76h
host Write OD 4923h, 0 98h BAh DCh FEh
host Write OD 4924h, 4 0Ah 00h 00h 00h

Note that basically the only difference with the direct JTAG bit string upload in example 1
is a write access to OD index 4926, to make sure the next bit string write operation starts at
the first bit of storage. The first write to storage immediately invalidates any previously
stored bit string. Non-significant bits in the last message must be set to zero.
It is the responsibility of the host to make sure instruction and data bit string form a valid
JTAG-action from the CSM's point of view. Note that the data is received by one and only
one MDT-DCS module (according to the NodeID set in the SDO CAN-message sent by the
host).

MDT-DCS CANopen module v2.7 19-Aug-2011

35

If the JTAG-action #2 storage is full, the MDT-DCS module sends the following SDO
Abort Transfer reply:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
MDT Abort OD 4923/4h, 0 00h 00h 1 (code):

Access
6 (class):
Access

If an error occurs during writing of the JTAG-action #2 storage, the MDT-DCS module
sends the following SDO Abort Transfer reply:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
MDT Abort OD 4923/4h, 0 00h 00h 6 (code):

Hardware
6 (class):
Access

8. Reading the JTAG data bit string from JTAG-action #2 storage, using SDO messages.

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
host Write OD 4926h, 0 00h – – –
MDT Read OD 4923h, 0 10h 32h 54h 76h
MDT Read OD 4923h, 0 98h BAh DCh Feh
MDT Read OD 4923h, 0 0Ah 00h 00h 00h

The MDT-DCS module's SDO replies in the above table are in response to SDO read mes-
sages from the host system, which are not shown here. Note that the data is received by one
and only one MDT-DCS module (according to the NodeID set in the SDO CAN-messages
sent by the host).

Since all bits of the string have been read after the 3rd SDO read operation, any subsequent
SDO read request by the host will result in an SDO Abort Transfer reply, as follows:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
MDT Abort OD 4923h, 0 00h 00h 1 (code):

Access
6 (class):
Access

If the #2 storage is empty the same SDO Abort Transfer reply results at the first read opera-
tion attempted.

If the #2 storage has a CRC error the MDT-DCS module sends the following SDO Abort
Transfer reply:

Source SDO Byte 4 Byte 5 Byte 6 Byte 7
MDT Abort OD 4923h, 0 00h 00h 6 (code):

Hardware
6 (class):
Access

MDT-DCS CANopen module v2.7 19-Aug-2011

36

6.2.1.4 JTAG TAP States

The JTAG TAP states are defined in the MDT-DCS module by an identifier value, as listed
in Table 10; the JTAG state transition diagram with TAP states is shown next to the table on
the right. The TAP state can be read from or -if required- set by a host application through OD
index 4830h. By writing to OD index 4840h a JTAG TAP reset and subsequent transition to
state Run-Test/Idle may be triggered.

TAP State Identifier
SELECT_DR_SCAN 0
CAPTURE_DR 1
SHIFT_DR 2
EXIT1_DR 3
PAUSE_DR 4
EXIT2_DR 5
UPDATE_DR 6
TEST_LOGIC_RESET 7
RUN_TEST_IDLE 8
SELECT_IR_SCAN 9
CAPTURE_IR 10
SHIFT_IR 11
EXIT1_IR 12
PAUSE_IR 13
EXIT2_IR 14
UPDATE_IR 15

Table 10. JTAG TAP State identifiers in the MDT-DCS module and the JTAG state
transition diagram (right) with '0' and '1' indicating the value of TMS during
the TCK-controlled state transition.

6.2.1.5 JTAG Signal Timing

OD index 4860h can be used to control the period of the JTAG TCK clock signal, or actually
the time the TCK signal is high, and the minimum time TCK is low (low time is much longer
due to software overhead; for instance: shifting out 32 bits, and reading 32 return bits at the
same time, in total roughly takes about 400 μs for OD index 4860h equal to 0, and about
500 μs for OD index 4860h equal to 3).

OD index 4860h
setting

TCK high
[μs]

0 1.5
1 2.0
2 2.5
3 3.0

Table 11. JTAG TCK cycle period options.

MDT-DCS CANopen module v2.7 19-Aug-2011

37

6.2.1.6 Additional JTAG Functionality

By writing number n to OD index 4850h, n cycles of TCK are generated with the TAP state
remaining unchanged. This is only possible with the TAP in one of the states Test-Logic-
Reset, Run-Test/Idle, Shift-IR, Shift-DR, Pause-IR or Pause-DR. If required, the TAPs can be
set to the required state as described in section 6.2.1.4. The TAP state after string uploads and
JTAG actions is Run-Test/Idle.

Reading OD index 4850h provides the number of cycles still to be generated. Cycles are
generated in bursts of 32 (in between MDT-DCS performs other tasks). Any write access to a
JTAG object aborts an ongoing TCK cycle sequence.

By reading OD index 4870h the number of TAPs in the JTAG chain are counted. This is achieved by loading

the BYPASS instruction in all instruction registers. This feature may be useful for testing JTAG chain integrity.

6.2.2 Digital I/O

The MDT-DCS module has a total of 7 Digital I/Os, numbered from 1 to 7, of which number
1 to 4 are to be found on the JTAG connector and numbers 5 to 7 on the CSM-ADC connector.
See Table 2 and Table 4 in section 2.1 for the mapping of connector pin to Digital I/O num-
ber.

Digital inputs can be read out using the PDO mechanism. The CAN-identifier used for this
PDO is the 1st-Transmit-PDO (see OD index 1800h and 1A00h for configuration and mapping
resp.). In this application the PDO message contains 1 data byte containing the state of up to 8
digital inputs (7 bits significant). The message also carries the JTAG-action status error in-
formation:

MDT-DCS module → Host

COB-ID Data Byte 0 Data Byte 1-4
180h + NodeID 8-bit Digital Input JTAG-action status error

Note that the 8-bit digital port is shared between digital inputs and outputs. Whether an I/O-

line is used as input or output is set through OD index 6208h, subindex 1. An I/O-line defined
as output shows up as a zero in a digital input read operation.
On the MDT-DCS module bits 1-4 are defined as outputs and bits 5-7 as inputs, by default.

The following modes of TPDO1 transmission are supported (see OD index 1800h, subindex
2 and 5):

• PDO transmission type = 1:

after every socalled SYNC message issued on the CAN-bus the MDT-DCS module
sends the PDO message as well as on change.

• PDO transmission type = 255:
the MDT-DCS module sends the PDO message on change.

MDT-DCS CANopen module v2.7 19-Aug-2011

38

• Event Timer > 0:

if the PDO’s event timer (OD index 1804h, subindex 5) is set to a value unequal to zero
(event timer is expressed in units of 1 s, <255 s) the MDT-DCS module automatically
sends the PDO message periodically, triggered by a timer, as well as on change.

The transmission of the PDO on change only occurs if this feature has been enabled globally

(OD index 6005h; default is not enabled) and per digital input (OD index 6006h; default is
enabled). Once the MDT-DCS module is put into state Operational, it continuously monitors
the state of the digital inputs and immediately sends the PDO message if it detects a level
change of any of the inputs. A kind of debounce time-out is in effect and can be set (also to
zero) by writing to OD index 2200h.

The digital inputs can of course also be read out using CANopen SDO messages by reading

from OD index 6000h.

Digital outputs can be set using the PDO mechanism. The CAN-identifier used for this PDO

is the 1st-Receive-PDO (OD index 1400h and 1600h for configuration and mapping resp.). In
this application the PDO message contains 1 or 2 data bytes containing the setting for one set
of 8 digital outputs (7 bits significant) or a single bit (in case of the 2-byte PDO):

Host → MDT-DCS module
COB-ID Data Byte 0

200h + NodeID 8-bit Digital Output
or

Host → MDT-DCS module
COB-ID Data Byte 0 Data Byte 1

200h + NodeID Dig Out Number (1-7) 0 or 1

Note that the digital port is shared between digital inputs and outputs. Whether an I/O-line is

used as input or output is set by OD index 6208h, subindex 1. In the default setting only Digi-
tal Out 1, 2, 3 and 4 are available.

Digital outputs can of course also be set using SDO messages by writing to OD index 6200h

(all digital outputs in one 8-bit parameter) or to OD index 6220h (digital outputs individually).

At power-up a digital output is initialized to either low or high, which can be configured for

each bit individually in OD index 2F00h.

MDT-DCS CANopen module v2.7 19-Aug-2011

39

7 Configuration Storage

7.1 Storing Parameters and Settings

Parameters and settings can be stored permanently onboard in non-volatile memory
(EEPROM) by writing string "save" to OD index 1010h. The SDO mechanism is used to ac-
complish this, shown here:

Host → MDT-DCS module
Data Byte COB-ID 0 1 2 3 4 5 6 7

600h +
NodeID

0x23 0x10 0x10 subindex 73h
('s')

61h
('a')

76h
('v')

65h
('e')

with OD index 1010h in byte 1+2 and subindex in byte 3 with subindex:

= 1: store all parameters (as listed for subindex 2 and 3).
= 2: store communication parameters (concerning CAN, PDOs and Node- and Life Guarding).
= 3: store application parameters (concerning ADCs, Digital I/O and JTAG).
= 4: see next section.

If the store-operation succeeded the MDT-DCS module sends the following reply:

MDT-DCS module → Host
Data Byte COB-ID 0 1 2 3 4 5 6-7

580h +
NodeID

0x60 0x10 0x10 subindex – – –

If the store-operation did not succeed the MDT-DCS module sends the following reply
(SDO Abort Domain Transfer, error reason: ‘hardware fault’ (for more details see [2])):

MDT-DCS module → Host
Data Byte COB-ID 0 1 2 3 4 5 6 7

580h +
NodeID

80h 10h 10h subindex 0 0 6
(Error Code)

6
(Error Class)

Parameters can be reset to their default values (by invalidating the corresponding contents of
the EEPROM) by writing to OD index 1011h, using this time the string "load" (6Ch, 6Fh,
61h, 64h) in bytes 4 to 7 of the SDO. Note that the default values take effect only after a sub-
sequent reset of the node. The default parameter values are listed in the OD tables in section 9.

The Object Dictionary tables in section 9 show which settings can be stored in EEPROM:

these are marked by an asterisk (*) in the first column
(Note that storage of ADC calibration constants, the ELMB Serial Number and JTAG strings

for MDT front-end electronics configuration are handled separately).

MDT-DCS CANopen module v2.7 19-Aug-2011

40

7.2 Auto-configure

Starting with MDT-DCS firmware version 2.4.0, a so-called autoconfigure capability was
added. What it does is that the MDT-DCS module determines itself how and how many B-
sensor modules are connected to it (see section 5.3), and also if there is a connection to an
ADC on the CSM (for frontend monitoring, see section 6.1). The configuration found is stored
in EEPROM and used after subsequent power-up and resets.

An autoconfigure sequence is initiated by writing string "save" to OD index 1010h, sub-

index 4, using an SDO message, as described in the previous section.

MDT-DCS CANopen module v2.7 19-Aug-2011

41

7.3 EEPROM Memory Map

Table 12 and Table 13 below detail the layout of the ELMB’s EEPROM usage by the MDT-
DCS application firmware.

EEPROM ADDR

not used 0000h
 0001h
MDT-DCS

configuration

parameters
 00A0h
 00A1h

Rad-tolerant

working copy

of global

settings and
parameters
 00FEh
not used 00FFh
ELMB 0100h
Serial

Number 0106h

Node-ID (opt) 0107h

not used
 011F
 0120h
ELMB

Analog-in

calib consts
 01CFh
 01E0h
not used
 01FFh
 0200h
Storage space

for JTAG

strings

(see Table 13

 for details)

 0FFFh

Table 12. EEPROM memory map of the MDT-DCS ELMB application firmware.

Holds a copy of most application configura-
tion and settings and some other parameters
that don't change very often; parameters are
reread from EEPROM each time before being
used; this is an optional feature to counter the
effects of SEE (Single Event Upset).

Holds permanently saved application configu-
ration and settings, stored in up to 8 blocks of
up to 16 bytes each; includes a CRC checksum
for each data block.

DESCRIPTION

Holds the ELMB Serial Number given to it at
production time; serves to uniquely identify
the ELMB and retrieve its calibration con-
stants and/or production data in the ELMB
production database.

Holds the calibration constants, which were
determined at production time, for all 6 volt-
age ranges (note: only present for ELMBs
with an analog input part).

Space to store JTAG strings: up to 3584 bytes.
Up to 3 spaces of 6400 bits each: 3*800=2400 bytes.
Up to 10 spaces of 640 bits each: 10*80=800 bytes.
(one 'space' is for a IR + DR string: one JTAG-action)
For administration (per string): 2*(3+10)*4=104 bytes
(16-bits number of bits, 16-bits CRC).
For status info (per action): (3+10)*(3*4)=156 bytes
(32-bits each: start bit, status mask, status expected)
Total: 2400 + 800 + 104 + 156 = 3460 bytes used.

The 'Node-ID' location may optionally contain
a CAN Node-ID for the module, replacing the
DIP-switch setting; if the location contains a
valid number (0<=val<=127) it must be used.

MDT-DCS CANopen module v2.7 19-Aug-2011

42

EEPROM ADDR #bytes IR storage ADDR
 0200h Instruction string storage CRC of 00h
13 IR strings: start addresses (hex): 2 string data 01h

13*(4+16) 0200, 0214, 0228, 023C, #bits 02h
= 13*20 0250, 0264, 0278, 028C 2 in string 03h

= 260 bytes 02A0, 02B4, 02C8, 02DC, 04h
 0303h and 02F0 JTAG

 0304h IR string
 data

 16 13h

3 long

(6272 bits) DR storage

DR strings: CRC of 000h
3*(12+4+784) Data string storage 2 status data

= 3*800 start addresses (hex): status 002h
= 2400 bytes 0304, 0624 and 0944 2 startbit

 status 004h
 4 mask

 status 008h
 4 expected

 CRC of 00Ch
 0C63h 2 string data

 0C64h #bits 00Eh
10 short Data string storage 2 in string

(512 bits) start addresses (hex): 010h
DR strings: 0C64, 0CB4, 0D04, 0D54,

3*(12+4+64) 0DA4, 0DF4, 0E44, 0E94,

= 3*80 0EE4 and 0F34 JTAG

= 800 bytes DR string

 0F83h data

 0F84h
not used 784
 0FFFh or 64 031Fh or 04Fh

Table 13. EEPROM memory map of the MDT-DCS module JTAG strings storage space
(DR = Data Register, IR = Instruction Register).

MDT-DCS CANopen module v2.7 19-Aug-2011

43

8 Upgrading the Firmware

The application program in the MDT-DCS (ELMB) microcontroller can be replaced or up-
graded by uploading new program code to the MDT-DCS node via the CAN-bus.

On the ELMB resources webpage [6] PC-tools called ELMBmldr (with command-line in-
terface) and ELMBloader (with graphical user-interface) can be found, to perform a firmware
upgrade. The upgrade process leaves the EEPROM intact, in other words: configuration set-
tings are preserved.

The Bootloader [5] is an application program stored in a separate section of the ELMB mi-

crocontroller (the ELMB comes preinstalled with this application). It handles the firmware
upgrade process on the ELMB, receiving series of CAN(open) messages containing the pro-
gramming instructions.

At power-up of the MDT-DCS module it is initially the Bootloader, which is in control of
the module. After about 4 s the Bootloader automatically jumps to the start of the MDT-DCS
application program, or immediately, when it receives a CANopen NMT Reset-Node message.
However, the Bootloader remains in control if it receives a valid programming command
within those 4 s. The firmware upgrade process may then begin.

The MDT-DCS application program can transfer control of the module explicitly to the

Bootloader by writing any value to the 8-bit object 5E00h in the Object Dictionary of the
MDT-DCS application. In this case the Bootloader does not automatically jump back to the
MDT-DCS application program after 4 s. The firmware upgrade process may now begin.

After the upgrade process, the reception of a CANopen NMT Reset-Node message causes

the Bootloader to jump to the start of the new MDT-DCS application program.

If the MDT-DCS module sends an Emergency message as shown below, it signifies that the

Bootloader is in control of the module. Note that the same Emergency message is also sent as
the first message after power-up, when the Bootloader is in control for the first 4 s after pow-
er-up, before jumping to the application program. The Bootloader can be forced to jump to the
application immediately, by sending it a CANopen NMT Reset-Node message.

COB-ID Byte 0-1 Byte 2 Byte 3-7
080h +
NodeID

Emergency
Error Code
(00h 50h)

Error Register
(Object 1001h)

(80h)

Manufacturer specific error field
(5 bytes: FEh,01h,28h,ZZh,00h,

with ZZh = MCUCSR)

(MCUCSR = MCU Control and Status Register contents; for details see section 10).

MDT-DCS CANopen module v2.7 19-Aug-2011

44

9 MDT-DCS Object Dictionary

The values of objects marked with ∗ in the Index column can be stored permanently in

EEPROM. They are retrieved from EEPROM at reset and power-up.

Communication Profile Area (MDT-DCS)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

1000 - Device type U32 RO 00070191h Meaning: DSP-401 device pro-

file, analogue inputs, digital in-
and outputs on device

1001 - Error register U8 RO 0
1002 - Manufacturer status reg U32 RO 0 1 (see footnote)

1008 - Manufacturer device name VisStr RO "ELMB" = Embedded Local Monitor Board
1009 - Manufacturer hw version VisStr RO "el40" = ELMB v4
100A 0 Manufacturer software

version
VisStr RO "MD25" MDT-DCS application v2.5.0

 1 minor version number VisStr RO "0000"

100C - Guard time [ms] U16 RO 1000 = 1 second
100D

*
- Life time factor U8 RW 0 Life Guarding timeout in seconds;

0 → no life guarding timeout

1010 Store parameters Array Save stuff in onboard EEPROM
 0 Highest index supported U8 RO 3
 1 Save all parameters U32 RW 1 Read: 1; Write "save": store all
 2 Save communication pa-

rameters
U32 RW 1 Read: 1; Write "save": store

PDO par's, Life time factor, …
 3 Save application par's U32 RW 1 Read: 1; Write "save": store

ADCs config, Dig.I/O config, …
 4 Detect B-sensors and

CSM-ADC and save con-
figuration found

U32 RW 1 Read: 1; Write "save": store B-
sensor and CSM ADC config
(so-called ‘autoconfigure’)

1011 Restore default parameters Array Invalidate stuff in onboard

EEPROM; use defaults
 0 Highest index supported U8 RO 3
 1 Restore all parameters U32 RW 1 Read: 1; Write "load": invalidate

all parameters stored
 2 Restore communication

parameters
U32 RW 1 Read: 1; Write "load": invali-

date stored PDO par's, etc.
 3 Restore application par's U32 RW 1 Read: 1; Write "load": invali-

date stored ADCs config, etc.

1017
*

- Producer Heartbeat Time
[1 s]

U16 RW 0 In units of seconds (but <=255 !),
(NB: actually should be in ms ac-
cording to CANopen!);
0 → Heartbeat is disabled

1 Manufacturer Status Register: byte0 = NTC-ADC, byte1 = B0/B1-ADC, byte2 = B2/B3-ADC,

byte3 = CSM-ADC. Status byte/nibble: 01: ADC reset error, 02: ADC calibration error, 04: ADC conversion
time-out, FF: ADC absent / not used.

MDT-DCS CANopen module v2.7 19-Aug-2011

45

Communication Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

1018 Identity Record Mandatory CANopen object

 0 Number of entries 1..4 RO 1
 1 Vendor ID U32 RO 12345678h to be ordered from CiA

1400 1st Receive PDO par's Record Data type = PDOCommPar
 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 200h +

NodeID
According to CANopen Prede-
fined Connection Set

 2 Transmission type U8 RO 255
 3,4,5 Not used RO 0

1401 2nd Receive PDO par's Record Data type = PDOCommPar
 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 300h +

NodeID
According to CANopen Prede-
fined Connection Set

 2 Transmission type U8 RO 255
 3,4,5 Not used RO 0

1402 3rd Receive PDO par's Record Data type = PDOCommPar
 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 400h +

NodeID
According to CANopen Prede-
fined Connection Set

 2 Transmission type U8 RO 255
 3,4,5 Not used RO 0

1403 4th Receive PDO par's Record Data type = PDOCommPar
 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 500h
 2 Transmission type U8 RO 255
 3,4,5 Not used RO 0

1404 5th Receive PDO par's Record Data type = PDOCommPar
 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 580h
 2 Transmission type U8 RO 255
 3,4,5 Not used RO 0

MDT-DCS CANopen module v2.7 19-Aug-2011

46

Communication Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

1600 1st Receive PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 1
 1 Digital outputs 1-8 U32 RO 62000108h OD-index 6200, sub-index 1:

Outputs 1-8 (see DSP-401),
size = 8 bits

1601 2nd Receive PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2
 1 Number of JTAG IR bits U32 RO 48010008h OD-index 4801, sub-index 0:

final number of JTAG IR bits,
size = 8 bits

 2 JTAG IR bits U32 RO 48000020h OD-index 4801, sub-index 1:
JTAG IR bits, size = 32 bits

1602 3rd Receive PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2
 1 Number of JTAG DR bits U32 RO 48040008h OD-index 4804, sub-index 0:

final number of JTAG DR bits,
size = 8 bits

 2 JTAG DR bits U32 RO 48030020h OD-index 4803, sub-index 1:
JTAG DR bits, size = 32 bits

1603 4th Receive PDO mapping Record idem Object 1601

1604 5th Receive PDO mapping Record idem Object 1602

MDT-DCS CANopen module v2.7 19-Aug-2011

47

Communication Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

1800 1st Transmit PDO par's Record Data type = PDOCommPar

 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 180h +

NodeID
According to CANopen Prede-
fined Connection Set

* 2 Transmission type U8 RW 255 Only 1 and 255 allowed
 3 Inhibit time [100 μs] U16 RO 0 not used
 4 Not used U8 RO 0

* 5 Event timer [1 s] U16 RW 0 In units of secs, must be <= 255;
active for all transmission-types!

1801 2nd Transmit PDO par's Record Data type = PDOCommPar

 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 280h +

NodeID
According to CANopen Prede-
fined Connection Set

* 2 Transmission type U8 RW 1 Only 1 and 255 allowed
 3 Inhibit time [100 μs] U16 RO 0 not used
 4 Not used U8 RO 0

* 5 Event timer [1 s] U16 RW 0 In units of secs, must be <= 255;
active for all transmission-types!

1802 3rd Transmit PDO par's Record Data type = PDOCommPar

 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 380h +

NodeID
According to CANopen Prede-
fined Connection Set

* 2 Transmission type U8 RW 1 Only 1 and 255 allowed
 3 Inhibit time [100 μs] U16 RO 0 not used
 4 Not used U8 RO 0

* 5 Event timer [1 s] U16 RW 0 In units of secs, must be <= 255;
active for all transmission-types!

1803 4th Transmit PDO par's Record Data type = PDOCommPar

 0 Number of entries U8 RO 5
 1 COB-ID used by PDO U32 RO 480h +

NodeID
According to CANopen Prede-
fined Connection Set

* 2 Transmission type U8 RW 1 Only 1 and 255 allowed
 3 Inhibit time [100 μs] U16 RO 0 not used
 4 Not used U8 RO 0

* 5 Event timer [1 s] U16 RW 0 In units of secs, must be <= 255;
active for all transmission-types!

MDT-DCS CANopen module v2.7 19-Aug-2011

48

Communication Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default Comment

1A00 1st Transmit PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2
 1 Digital inputs 1-8 U32 RO 60000108h OD-index 6000, sub-index 1:

Inputs 1-8 (see DSP-401),
size = 8 bits

 2 JTAG status return bits
error

U32 RO 49F00320h OD-index 49F0, sub-index 3:
size = 32 bits

1A01 2nd Transmit PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2 should be 255 for MuxPDO, but
this is not a CANopen MPDO…

 1 NTC number U32 RO 40000008h actually not allowed, but…
 2 24-bit analogue input + stat U32 RO 40000x18h OD-index 4000, sub-index x:

Analogue inputs, multiplexed,
size = 24 bits

1A02 3rd Transmit PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2 should be 255 for MuxPDO, but
this is not a CANopen MPDO…

 1 CSM ADC channel no U32 RO 41000008h actually not allowed, but…
 2 24-bit analogue input + stat U32 RO 41000x18h OD-index 4100, sub-index x:

Analogue inputs, multiplexed,
size = 24 bits

1A03 4th Transmit PDO mapping Record Data type = PDOMapping

 0 Number of entries U8 RO 2 should be 255 for MuxPDO, but
this is not a CANopen MPDO…

 1 B-sensor ADC channel
number

U32 RO 42000008h actually not allowed, but…

 2 24-bit analogue input U32 RO 420x0x20h OD-index 4200/4201,subindex x,
Analogue inputs, multiplexed,
size = 32 bits

MDT-DCS CANopen module v2.7 19-Aug-2011

49

Manufacturer-specific Profile Area (MDT-DCS)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

2100 ADC-configuration NTC Record CRYSTAL CS5523 16-bit ADC
 0 Number of entries U8 RO 22

* 1 Number of input channels U8 RW 60 64 maximum; can be set to ac-
tual number of channels used
(2 channels per NTC; last 2 NTCs
are calib/reference inputs)

* 2 Conversion Word Rate U8 RW 0 3-bit code 1
* 3 Input Voltage Range U8 RW 5 3-bit code 2
* 4 Unipolar/Bipolar

Measurement Mode
U8 RW 1 0 = bipolar, 1 = unipolar

 5 Power Save Mode Bool WO 1 = set ADC to power save mode
0 = take ADC out of this mode

 6 Configuration Register U32 RW CS5523 Config Register
 7 Offset Register #1 U32 RW CS5523 physical channel AIN1
 8 Gain Register #1 U32 RW CS5523 physical channel AIN1
 9 Offset Register #2 U32 RW CS5523 physical channel AIN2
 10 Gain Register #2 U32 RW CS5523 physical channel AIN2
 11 Offset Register #3 U32 RW CS5523 physical channel AIN3
 12 Gain Register #3 U32 RW CS5523 physical channel AIN3
 13 Offset Register #4 U32 RW CS5523 physical channel AIN4
 14 Gain Register #4 U32 RW CS5523 physical channel AIN4
 15 Channel-Setup Register #1 U32 RW LC 1 (12-bits) in lower 2 bytes,

LC 2 (12-bits) in upper 2 bytes
 16 Channel-Setup Register #2 U32 RW LC 3 (12-bits) in lower 2 bytes,

LC 4 (12-bits) in upper 2 bytes
 17 Channel-Setup Register #3 U32 RW LC 5 (12-bits) in lower 2 bytes,

LC 6 (12-bits) in upper 2 bytes
 18 Channel-Setup Register #4 U32 RW LC 7 (12-bits) in lower 2 bytes,

LC 8 (12-bits) in upper 2 bytes
 19 Conversion Word Rate U8 RO 15 in Hz
 20 Input Voltage Range U32 RO 2500000 in μV

* 21 SPI SCLK signal high
period (opto-coupler delay)

U8 RW 75 in μs, 10 <= value <= 255

* 22 Delta value for automatic
on-change readout

U32 RW 0 in currently used units (millide-
grees, Ohms or ADC-counts);
0 = readout-on-change disabled;
works in combination with the
PDO timer (Object 1801h, sub 5)

1 000: 15.0 Hz, 001: 30.0 Hz, 010: 61.6 Hz, 011: 84.5 Hz,

100: 101.1 Hz, 101: 1.88Hz, 110: 3.76 Hz, 111: 7.51 Hz

2 000: 100 mV, 001: 55 mV, 010: 25 mV, 011: 1 V, 100: 5 V, 101: 2.5 V

MDT-DCS CANopen module v2.7 19-Aug-2011

50

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

2101 ADC-configuration CSM Record CRYSTAL CS5523 16-bit ADC
 0 Number of entries U8 RO 22

* 1 Number of input channels U8 RW 64 64 maximum; can be set to ac-
tual number of channels used

* 2 Conversion Word Rate U8 RW 0 3-bit code 1
* 3 Input Voltage Range U8 RW 4 3-bit code 2
* 4 Unipolar/Bipolar

Measurement Mode
U8 RW 0 0 = bipolar, 1 = unipolar;

default changed from 1 to 0
in version 2.3.2

 etc. …as above… … … …
* 19 2.5V ref input channel U8 RW 11 if >=64 the ADC calibration

procedure done is a socalled
'self-calibration' (using an ADC
internal reference), which is
inaccurate for all ADC voltage
ranges except 2.5V; changed
from 255 to 11 in version 2.3.2

* 20 SPI SCLK signal high
period (opto-coupler delay)

U8 RW 75 in μs, 10 <= value <= 255

* 21 Delta value for automatic
on-change readout

U32 RW 0 in currently used units (millide-
grees, Ohms or ADC-counts);
0 = readout-on-change disabled;
works in combination with the
PDO timer (Object 1802h, sub 5)

 22 CSM mezzanine mask U32 RW 0x3FFFF This mask determines which
ADC channels are sent in TPDO
messages during an ADC scan;
the mask is preserved across soft
resets

2200 - ADC-reset-and-calibrate

NTC
U8 WO Writing triggers a reset and cali-

bration sequence with the current
NTC-ADC settings

2201 - ADC-reset-and-calibrate
CSM

U8 WO Writing triggers a reset and cali-
bration sequence with the current
CSM-ADC settings

2300

*
- ADC-reset-and-calibrate

before each channel scan
NTC

U8 RW 0 If =1 a reset/calibration sequence
is performed before every
NTC-ADC input channel scan

2301
*

- ADC-reset-and-calibrate
before each channel scan
CSM

U8 RW 0 If =1 a reset/calibration sequence
is performed before every
CSM-ADC input channel scan

2400

*
- ADC enabled

NTC
U8 RW 1 Set to 0 if the ADC is not used or

not present
2401

*
- ADC enabled

CSM
U8 RW 0 Set to 0 if the ADC is not used or

not present

1 000: 15.0 Hz, 001: 30.0 Hz, 010: 61.6 Hz, 011: 84.5 Hz,

100: 101.1 Hz, 101: 1.88Hz, 110: 3.76 Hz, 111: 7.51 Hz

2 000: 100 mV, 001: 55 mV, 010: 25 mV, 011: 1 V, 100: 5 V, 101: 2.5 V

MDT-DCS CANopen module v2.7 19-Aug-2011

51

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

2500 B-sensor #0 ADC-config Record CRYSTAL CS5524 24-bit ADC 1

 0 Number of entries U8 RO 24
 1 Number of input channels U8 RO 7

* 2 Conversion Word Rate
Hall

U8 RW 0 3-bit code 2

* 3 Input Voltage Range Hall U8 RW 0 3-bit code 3
* 4 Unipolar/Bipolar

Measurement Mode Hall
U8 RW 0 0 = bipolar, 1 = unipolar

* 5 Conversion Word Rate
Temp

U8 RW 0 3-bit code 2

* 6 Input Voltage Range Temp U8 RW 5 3-bit code 3
* 7 Unipolar/Bipolar

Measurement Mode Temp
U8 RW 1 0 = bipolar, 1 = unipolar

 8 Power Save Mode Bool WO 1 = set ADC to power save mode
0 = take ADC out of this mode

 9 Configuration Register U32 RW CS5523 Config Register
 10 Offset Register #1 U32 RW CS5523 physical channel AIN1
 11 Gain Register #1 U32 RW CS5523 physical channel AIN1
 12 Offset Register #2 U32 RW CS5523 physical channel AIN2
 13 Gain Register #2 U32 RW CS5523 physical channel AIN2
 14 Offset Register #3 U32 RW CS5523 physical channel AIN3
 15 Gain Register #3 U32 RW CS5523 physical channel AIN3
 16 Offset Register #4 U32 RW CS5523 physical channel AIN4
 17 Gain Register #4 U32 RW CS5523 physical channel AIN4
 18 Channel-Setup Register #1 U32 RW LC 1 (12-bits) in lower 2 bytes,

LC 2 (12-bits) in upper 2 bytes
 19 Channel-Setup Register #2 U32 RW LC 3 (12-bits) in lower 2 bytes,

LC 4 (12-bits) in upper 2 bytes
 20 Channel-Setup Register #3 U32 RW LC 5 (12-bits) in lower 2 bytes,

LC 6 (12-bits) in upper 2 bytes
 21 Channel-Setup Register #4 U32 RW LC 7 (12-bits) in lower 2 bytes,

LC 8 (12-bits) in upper 2 bytes
* 22 SPI SCLK signal high

period (opto-coupler delay)
U8 RW 10 in μs, 10 <= value <= 255

 23 ADC recovery active Bool RW 1 Reset/calibrate procedure is at-
tempted after an ADC conver-
sion time-out during a scan

 24 ADC low-level access U8 RW Read or write a byte from/to ADC
(for test/debugging purposes)

1 Subindex 2-7, 22 and 23 are common to all B-sensor modules ! (If you change them for one, you change them for

all). Writing to subindex 8 and 9 applies to all B-sensor modules.

2 000: 15.0 Hz, 001: 30.0 Hz, 010: 61.6 Hz, 011: 84.5 Hz,

100: 101.1 Hz, 101: 1.88Hz, 110: 3.76 Hz, 111: 7.51 Hz

3 000: 100 mV, 001: 55 mV, 010: 25 mV, 011: 1 V, 100: 5 V, 101: 2.5 V

MDT-DCS CANopen module v2.7 19-Aug-2011

52

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

2501 B-sensor #1 ADC-config Record CRYSTAL CS5524 24-bit ADC
 0 Number of entries U8 RO 24

 1 Number of input channels U8 RO 7
* 2 Conversion Word Rate

Hall
U8 RW 0 3-bit code (see Object 2500h)

 etc. …as above… … … …

2502 B-sensor #2 ADC-config Record CRYSTAL CS5524 24-bit ADC
2503 B-sensor #3 ADC-config Record CRYSTAL CS5524 24-bit ADC

2600 - ADC-reset-and-calibrate

B-sensor #0
U8 WO Writing any value triggers a reset

and calibration sequence on B-
sensor #0 with its current ADC
settings

2601 - ADC-reset-and-calibrate
B-sensor #1

U8 WO

2602 - ADC-reset-and-calibrate
B-sensor #2

U8 WO

2603 - ADC-reset-and-calibrate
B-sensor #3

U8 WO

2700

*
- ADC-reset-and-calibrate

before each channel scan
all B-sensors

Bool RW 0 If =1 a reset/calibration sequence
is performed before every B-
sensor ADC input channel scan

2800

*
- B-sensor presence mask U8 RW 0 Must be <= 15; if a bit=1 the

corresponding B-sensor module
must be installed

2900 B-sensor #0 identification Record DS2401 Identification chip:
unique 8-byte serial number

 0 Number of entries U8 RO 2
 1 First 4 bytes U32 RO
 2 Second 4 bytes U32 RO

2901 B-sensor #1 identification Record DS2401 Identification chip:

unique 8-byte serial number

2902 B-sensor #2 identification Record DS2401 Identification chip:
unique 8-byte serial number

2903 B-sensor #3 identification Record DS2401 Identification chip:

unique 8-byte serial number

MDT-DCS CANopen module v2.7 19-Aug-2011

53

Manufacturer-Specific Profile Area (continued…)
Index
(hex)

Sub
Index

Name Data/
Object

Attr Default

Comment

2A00 ADC range calibration Array EXPERT

ONLY
For now triggers a ‘pure’ self-
calibration procedure only 1

 0 Number of entries U8 RO 6
 1 Calibrate 25 mV U32 WO Write any value…
 2 Calibrate 55 mV U32 WO Write any value…
 3 Calibrate 100 mV U32 WO Write any value…
 4 Calibrate 1 V U32 WO Write any value…
 5 Calibrate 2.5 V U32 WO Write any value…
 6 Calibrate 5 V U32 WO Write any value…

2B00 ADC calibration parameters

25 mV
Array Calibration constants

(always stored in EEPROM);
enable by first writing to 2D00

 0 Number of entries U8 RO 4
 1 Gain Factor phys. chan. 1 U32 RW actual gain factor * 1000000
 2 Gain Factor phys. chan. 2 U32 RW actual gain factor * 1000000
 3 Gain Factor phys. chan. 3 U32 RW actual gain factor * 1000000
 4 Gain Factor phys. chan. 4 U32 RW actual gain factor * 1000000

2B01 ADC calibration parameters
55 mV

Array Calibration constants (as above)

2B02 ADC calibration parameters
100 mV

Array “

2B03 ADC calibration parameters
1 V

Array “

2B04 ADC calibration parameters
2.5 V

Array “

2B05 ADC calibration parameters
5 V

Array “

2C00 - Erase ADC calibration pa-

rameters 25 mV
U8 WO EXPERT

ONLY
Write EEh to erase;
enable by first writing to 2D00

2C01 - Erase ADC calibration pa-
rameters 55 mV

U8 WO EXPERT
ONLY

“

2C02 - Erase ADC calibration pa-
rameters 100 mV

U8 WO EXPERT
ONLY

“

2C03 - Erase ADC calibration pa-
rameters 1 V

U8 WO EXPERT
ONLY

“

2C04 - Erase ADC calibration pa-
rameters 2.5 V

U8 WO EXPERT
ONLY

“

2C05 - Erase ADC calibration pa-
rameters 5 V

U8 WO EXPERT
ONLY

“

2D00 - Enable calibration parame-

ter write/erase operation
U8 WO EXPERT

ONLY
Writing 0xA5 enables one write
or erase operation to any of the
Objects 2B00 to 2B05
or 2C00 to 2C05.

1 In other words: resets the ADC and does a ‘self-calibration’, i.e. does NOT apply the gain factors (‘calibration
constants’), which already may have been stored in EEPROM earlier. This type of ADC initialisation is essential
if the voltage range in question ever needs to be recalibrated. Note for MDT-DCS: ADC calibration is not essen-
tial, since the T-sensor measurements are ratio measurements, using precision resistors.

MDT-DCS CANopen module v2.7 19-Aug-2011

54

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

2E00

*
- Digital Input debounce

timer
U8 RW 10 In units of ca. 400 μs (set to 0

there is ca. 400 μs between con-
secutive input polls).

2F00

*
- Digital Output Init U8 RW 01h After a hard reset:

bits defined as Digital Output
will be initialised to the setting
corresponding to the bit in this
byte (1=high, 0=low)

3000 Program Code CRC Record
 0 Number of entries U8 RO 3
 1 Check 16-bit CRC of pro-

gram code in FLASH
memory

U16 RO 0 SDO reply unequal to zero
means there is a checksum error;
absence of CRC results in SDO
Abort with Error Code 1;
error while accessing FLASH
results in SDO Abort with Error
Code 6.

 2 U16 RO 0 not used
 3 Get CRC U16 RO Return CRC from flash

3100 - ELMB Serial Number U32 RW Number or 4-byte string
uniquely identifying an ELMB,
given during production.

3101 - Enable ELMB Serial Num-
ber write operation

U8 WO EXPERT
ONLY

Writing 5Ah enables one write
operation on the Serial Number
(Object 3100).

3200 CAN-controller settings Record
 0 Number of entries U8 RO 3

* 1 Disable Remote Frames Bool RW 0 1
* 2 Enable auto-start U8 RW 0 If =1 go to Operational at startup
* 3 Bus-off max retry counter U8 RW 5 Counter is decremented every 1s,

but if the node reaches this
maximum value it abandons re-
gaining CAN-bus access

3300 - CAN Node Identifier U8 WO The new CAN Node Identifier is

used after the next reset.
(ELMB Bootloader firmware version 1.3
and later supports this feature, otherwise
don't use it !)

3301 - Enable CAN Node Identi-
fier write operation

U32 WO EXPERT
ONLY

Writing a number that matches
the ELMB Serial Number (Ob-
ject 3100) enables one write op-
eration on the CAN Node Identi-
fier (Object 3300).

1 Due to the way the ELMB’s CAN-controller handles Remote Frames, it is recommended to disable Remote
Frames permanently if not needed (for PDO read-out). A special provision in the software has been made to en-
sure that the CANopen Node Guard Remote Frame is still handled properly.

MDT-DCS CANopen module v2.7 19-Aug-2011

55

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

4000 Read NTC resistor value Array in Ohm (division of 2 consecu-

tive analogue inputs)
 0 Number of entries U8 RO 32 This value fixed, but actual

hardware configuration may vary
(depends on OD-index 2100, sub 1)

 1 NTC 0 U16 RO
 2 NTC 1 U16 RO
 … … … …
 … … … …
 30 NTC 29 U16 RO
 31 reference resistor (NTC 30) U16 RO R=16369 Ohm (± 1%)
 32 reference resistor (NTC 31) U16 RO R=341.6 Ohm (± 1%)

4010 Read NTC temperature Array in millidegrees centigrade
 0 Number of entries U8 RO 32 This value fixed, but actual

hardware configuration may vary
(depends on OD-index 2100, sub 1)

 1 NTC 0 temperature I32 RO
 2 NTC 1 temperature I32 RO
 … … … …
 … … … …
 30 NTC 29 temperature I32 RO
 31 ref temperature (NTC 30) I32 RO T = 0 m°C
 32 ref temperature (NTC 31) I32 RO T = 100000 m°C

4100 Read analogue input
CSM-ADC

Record 8 bits flags 1, 16 bits analogue
value (CSM)

 0 Number of entries U8 RO 64 This value fixed, but actual
hardware configuration may vary
(see OD-index 2101, sub 1)

 1 Input 1 (CSM-ADC) I24 RO 1st analog input:16-bit+8-bit flgs1
 2 Input 2 (CSM-ADC) I24 RO 2nd " " " "
 … … … … …
 … … … … …
 64 Input 64 (CSM-ADC) I24 RO 64th " " " "

1 See section 5.2.1 for a description of the ADC 'flags' byte.

MDT-DCS CANopen module v2.7 19-Aug-2011

56

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

4200 Read analogue input

B-sensor #0
Record 24 bits analogue value

(B-sensor #0)
 0 Number of entries U8 RO 7 Fixed value

(see OD-index 2500, subindex 1)
 1 Input 1 (B-sensor ADC #0) I24 RO 1st analog input:24-bit (Hall H1)
 2 Input 2 (B-sensor ADC #0) I24 RO 2nd " " " (Hall H2)
 3 Input 3 (B-sensor ADC #0) I24 RO 3rd " " " (Hall H3)
 4 Input 4 (B-sensor ADC #0) I24 RO 4th " " (fullscale Hall)
 5 Input 5 (B-sensor ADC #0) I24 RO 5th " " " (NTC)
 6 Input 6 (B-sensor ADC #0) I24 RO 6th " " " (0ºC ref)
 7 Input 7 (B-sensor ADC #0) I24 RO 7th " " " (100ºC ref)

4201 Read analogue input
B-sensor #1

Record 24 bits ADC count
(B-sensor #1)

4202 Read analogue input

B-sensor #2
Record 24 bits ADC count

(B-sensor #2)

4203 Read analogue input
B-sensor #3

Record 24 bits ADC count
(B-sensor #3)

4300 Read Analogue Input

of NTC, calibrated
Record 8 bits flags 1, 24 bits analogue

value, in μV;
odd ch: NTC voltage,
even ch: NTC current (I=V/10kΩ)
NB: read-out is denied if there
are no valid calibration constants
for the current ADC settings

 0 Number of analog inputs U8 RO 64 Fixed, but actual hardware con-
figuration may vary
(set in Object 2100, sub 1)

 1 Input 1 U32 RO 1st analog input: 8-bit flags
+ 24-bit (signed) data

 2 Input 2 U32 RO 2nd " " " "
 … … … … …
 … … … … …
 64 Input 64 U32 RO 64th " " " "

4400

*
- T- and B-sensor NTC read-

ings in PDO messages in
degrees centigrade

Bool RW 1 If =1 NTC readings in PDO
messages are converted to mil-
lidegrees centigrade instead of
Ohms (using hardcoded conver-
sion formulas; see text)

4401

*
- Raw T-sensor data readout

in PDO
Bool RW 0 If =1 TPDO2 messages contain

individual analog input channel
data

1 See section 5.2.1 for a description of the ADC 'flags' byte.

MDT-DCS CANopen module v2.7 19-Aug-2011

57

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

4800 - Shift IR

(Instruction Register)
U32 RW - Go to state Shift-IR.

- W: shift in 32 bits.
- R: read the 32 bits (or less) that

were shifted out in the previous
write (W) operation.

- Remain in state Shift-IR.

4801 Final IR shift Record
 0 Number of entries U8 RO 32
 1 Final IR bit shift (1 bit) U32 RW - Go to state Shift-IR.

- W: shift in 1 bit.
- R: read 32 bits (or less) that

were shifted out in the previous
write operation.
(identical to Object 4800)

- Go to state Run-Test/Idle.
 2 Final IR bit shift (2 bits) U32 RW idem, but shift in 2 bits
 … … … … …etc
 … … … … …etc
 32 Final IR bit shift (32 bits) U32 RW idem, but shift in 32 bits

4802 - Current total number of
IR bits shifted

U32 RO 0 Can be used by host system to
check if all uploaded bits up to
now have been received by
MDT-DCS

4803 Shift DR

(Data Register)
U32 RW - Go to state Shift-DR.

- W: shift in 32 bits.
- R: read the 32 bits (or less) that

were shifted out in the previous
write (W) operation.

- Remain in state Shift-DR.

4804 Final DR shift Record
 0 Number of entries U8 RO 32
 1 Final DR bit shift (1 bit) U32 RW - Go to state Shift-DR.

- W: shift in 1 bit..
- R: read 32 bits (or less) that

were shifted out in the previous
write operation
(same as Object 4803)

- Go to state Run-Test/Idle..
 2 Final DR bit shift (2 bits) U32 RW idem, but shift in 2 bits
 … … … … …etc
 … … … … …etc
 32 Final DR bit shift (32 bits) U32 RW idem, but shift in 32 bits

4805 - Current total number of
DR bits shifted

U32 RO 0 Can be used by host system to
check if all uploaded bits up to
now have been received by
MDT-DCS

MDT-DCS CANopen module v2.7 19-Aug-2011

58

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

480A - Shift IR

(Instruction Register)
Domain RW Segmented SDO only

- First 2 data bytes must contain
number of bits in JTAG string
to follow, max 8192 bits

- W: shift in N bits.
- R: read the N bits that were

shifted out in the previous
write (W) operation.

480B - Shift DR

(Data Register)
Domain RW Segmented SDO only

- First 2 data bytes must contain
number of bits in JTAG string
to follow, max 8192 bits

- W: shift in N bits.
- R: read the N bits that were

shifted out in the previous
write (W) operation.

480C - Shift IR

(Instruction Register)
Domain RO Segmented SDO only

- Read-only copy of Obj 480Ah

480D - Shift DR
(Data Register)

Domain RO Segmented SDO only
- Read-only copy of Obj 480Bh

4830 - JTAG TAP state U8 RW 8 read or set JTAG TAP state;

see text for definitions of states

4831 - JTAG TAP state
after a Shift IR operation

U8 RW 8 see text for definitions of states

4832 - JTAG TAP state
after a Shift DR operation

U8 RW 8 see text for definitions of states

4840 - JTAG TAP reset U8 WO Trigger JTAG TAP reset se-

quence, then go to TAP state
Run-Test/Idle

4850 - Generate JTAG TCK cycles U32 RW Write value n: n TCK cycles are
generated without changing state:
only possible while in certain
JTAG TAP states (see text).
Read: returns the remaining num-
ber of clock ticks to generate

4860
*

- JTAG TCK signal high
period

U8 RW 0 0 <= value <= 3
width = (1.5 + value*0.5) μs

4870 - TAP count U8 RO For test purposes:

triggers a procedure to count the
number of TAPs (BYPASS in-
struction is shifted into each TAP)
and returns the number found;
maximum number of TAPs: 31

MDT-DCS CANopen module v2.7 19-Aug-2011

59

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

4910 - JTAG-action #1

JTAG Instruction String
storage (<=128 bits total)

U32 RW W: write 32 bits to storage,
increment string index by 32.
R: read <=32 bits from storage.

4911 Storage #1 completion
JTAG Instruction String

Record <=32 IR bits

 0 Number of entries U8 RO 32
 1 Final IR bits (1 bit) U32 RW R: reset string index for reading.

W: write 1 bit, store string length
and CRC, reset string index for
writing.

 2 Final IR bits (2 bits) U32 RW idem, but write 2 bits
 … … … … …etc
 32 Final IR bits (32 bits) U32 RW idem, but write 32 bits

4912 - String length
(number of bits)

U32 RO 0 Length of stored string

4913 - JTAG-action #1

JTAG Data String storage
(<= 6272 bits total)

U32 RW W: write 32 bits to storage,
increment string index by 32.
R: read <=32 bits from storage.

4914 Storage #1 completion
JTAG Data String

Record <=32 DR bits

 0 Number of entries U8 RO 32
 1 Final DR bits (1 bit) U32 RW R: reset string index for reading.

W: write up to 32 bits (the num-
ber of bits to write is in sub-index
0), store string length and CRC,
reset string index for writing.

 2 Final DR bits (2 bits) U32 RW idem, but write 2 bits
 … … … … …etc
 32 Final DR bits (32 bits) U32 RW idem, but write 32 bits

4915 - String length
(number of bits)

U32 RO 0 Length of stored string

4916 - Reset string indices U8 WO To restart a read or write string

operation: resets string indices
for reading and writing

4917 - Execute JTAG-action #1:

upload Instruction/Data
Strings

U8 WO Write 55h to trigger upload
of the instruction string followed
by the data string

4918 JTAG-action #1 DR Status

Return Bits Configuration
Record 'RW' pars are stored in EEPROM

 0 Number of entries U8 RO 3
 1 Start bit in DR out string U32 RW 0
 2 Status mask U32 RW 00000000h Bits != 0 are checked
 3 Status expected U32 RW 00000000h Expected status bits

MDT-DCS CANopen module v2.7 19-Aug-2011

60

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

491A - JTAG-action #1

JTAG Instruction String
storage (<=128 bits total)

Domain RW Segmented SDO only
- First 2 data bytes must contain
number of bits in JTAG string
to follow

- W: write N bits to storage.
- R: read the N bits from storage.

491B - JTAG-action #1

JTAG Data String storage
(<= 6272 bits total)

Domain RW Segmented SDO only
- First 2 data bytes must contain
number of bits in JTAG string
to follow

- W: write N bits to storage.
- R: read the N bits from storage.

491C - JTAG-action #1

JTAG Instruction String
storage (<=128 bits total)

Domain RO Segmented SDO only
- Read-only copy of Obj 491Ah

491D - JTAG-action #1

JTAG Data String storage
(<= 6272 bits total)

Domain RO Segmented SDO only
- Read-only copy of Obj 491Bh

491E - JTAG-action #1

IR and DR String CRC
U32 RO IR CRC in byte 0 (LSB) and 1

DR CRC in byte 2 (LSB) and 3

491F - Erase JTAG-action #1
Instruction/Data Strings
and/or Status Return Bits
Configuration

U8 WO Write to erase the stored strings
and/or status return config; resets
string indices for reading and
writing. AAh: erase all; ABh:
erase strings; ACh: erase status

MDT-DCS CANopen module v2.7 19-Aug-2011

61

The list of objects in 4910h to 491Fh is repeated for every JTAG-action in storage:

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

492x - JTAG-action #2

 <=128 bits IR,

<=6272 bits DR
493x - JTAG-action #3 <=128 bits IR,

<=6272 bits DR

494x - JTAG-action #4 <=128 bits IR,
<=512 bits DR

495x - JTAG-action #5 <=128 bits IR,
<=512 bits DR

496x - JTAG-action #6 <=128 bits IR,
<=512 bits DR

497x - JTAG-action #7 <=128 bits IR,
<=512 bits DR

498x - JTAG-action #8 <=128 bits IR,
<=512 bits DR

499x - JTAG-action #9 <=128 bits IR,
<=512 bits DR

49Ax - JTAG-action #10 <=128 bits IR,
<=512 bits DR

49Bx - JTAG-action #11 <=128 bits IR,
<=512 bits DR

49Cx - JTAG-action #12 <=128 bits IR,
<=512 bits DR

49Dx - JTAG-action #13 <=128 bits IR,
<=512 bits DR

49F0 JTAG-action Data Register
status return

Record

 0 Number of entries U8 RO 3
 1 Last JTAG-action com-

pleted
U8 RO 0 1 <= action <= 13

= 0: no actions completed since
last reset

 2 Status return bits U32 RO 00000000h Status bits of last JTAG-action
 3 Status return bits error U32 RO 00000000h Status error of last JTAG-action:

bits != 0 are in error; result of:
(stat & mask) ^ (expect & mask)

49F1

*
- Report JTAG-action

DR status error
Bool RW 1 =1: PDO message is sent on

every JTAG-action comple-
tion

MDT-DCS CANopen module v2.7 19-Aug-2011

62

Manufacturer-specific Profile Area (MDT-DCS) (continued…)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

5C00 - Compile-time Options U32 RO Bitmask denoting which compile

options were used when the ap-
plication code was generated
(see Table 14 below for details)

5DFF ELMB/MDT-DCS board
tests

Array EXPERT
ONLY

 0 Number of test objects U8 RO 6
 1 Test of I/O-pins U32 RO For use in ATLAS DCS ELMB

production and test stand only;
described elsewhere

 2 Generate Watchdog Timer
reset

U32 RO - firmware goes into an endless
loop

 3 Test of MDT I/O-pins U32 RO For use in ATLAS MDT-DCS
module production and test
stand only
 described in section 11

 4,5,6 Additional tests of MDT
I/O-pins

U32 RO 0 For use in ATLAS MDT-DCS
module production and test
stand only
 described in section 11

5E00 - Transfer control to Boot-
loader

U8 WO

Object 5C00: Compile Options
Bit Option Comment

0 – –
1 – –
2 – –
3 – –
4 – –
5 – –
6 – –
7 ELMB103 the ELMB is an ELMB103 type (with ATmega103 microcontroller); by default

an ELMB128 (with ATmega128 microcontroller) is assumed
8 VARS_IN_EEPROM Store/retrieve working copies of configuration parameters in/from EEPROM
9 – –

10 INCLUDE_TESTS Include an OD object through which (board) tests can be executed
11 – –
12 CAN_REFRESH Refresh CAN-controller descriptor register (at each buffer write/read)
13 – –

Table 14. Optional compile-time macro defines, which can be read from Object 5C00h.
(in the source code individual options are surrounded by a double underscore '__').

MDT-DCS CANopen module v2.7 19-Aug-2011

63

Standardised Device Profile Area (MDT-DCS)
Index
(hex)

Sub
Index

Description Data/
Object

Attr Default

Comment

6000 Read state 8 input lines Array

 0 Number of 8-bit inputs U8 RO 1
 1 Read inputs 1-8 U8 RO ELMB ATmega128 PORTA/F

(Port shared with Object 6200,1)

6005
*

- Global Digital Input Inter-
rupt Enable

Bool RW 0 Enables/disables change-of-state
TPDO1 transmissions

6006 Interrupt Mask Any

Change 8 input lines
Array Enables/disables on a per-input-

bit basis change-of-state TPDO1
transmissions

 0 Number of 8-bit inputs U8 RO 1
 1 Interrupt Mask Inputs 1-8 U8 RW FFh

6200 Write state 8 output lines Array
 0 Number of 8-bit outputs U8 RO 1
 1 Write outputs 1-8 U8 RW ELMB ATmega128 PORTA/F

(Port shared with Object 6000,1)

6208 Filter mask 8 output lines Array
 0 Number of 8-bit masks U8 RO 1

* 1 Filter mask outputs 1-8 U8 RW 0Fh maskbit=1: I/O is an output;
pins not defined as outputs are
inputs, to be accessed thru
Object 6000, 1

6220 Write output bit Array Only bits defined as output (Ob-

ject 6208, sub 1) can be written
 0 Number of 1-bit outputs U8 RO 7
 1 Write output 1 Bool RW DIGIO1 (PORTA pin 4)
 2 Write output 2 Bool RW DIGIO2 (PORTA pin 5)
 3 Write output 3 Bool RW DIGIO3 (PORTA pin 6)
 4 Write output 4 Bool RW DIGIO4 (PORTA pin 7)
 5 Write output 5 Bool RW DIGIO5 (PORTF pin 2)
 6 Write output 6 Bool RW DIGIO6 (PORTF pin 3)
 7 Write output 7 Bool RW DIGIO7 (PORTF pin 4)

6404 Read analogue input
manufacturer-specific
(NTC-ADC)

Record 8 bits flags 1, 16 bits analogue
value (NTC);
odd ch: NTC voltage,
even ch: NTC current (I=V/10kΩ)

 0 Number of entries U8 RO 64 This value fixed, but actual
hardware configuration may vary
(see OD-index 2100, sub 1)

 1 Input 1 (NTC-ADC) I24 RO 1st analog input:16-bit+8-bit flgs1
 2 Input 2 (NTC-ADC) I24 RO 2nd " " " "
 … … … … …
 … … … … …
 64 Input 64 (NTC-ADC) I24 RO 64th " " " "

1 See section 5.2.1 for a description of the ADC 'flags' byte.

MDT-DCS CANopen module v2.7 19-Aug-2011

64

10 Emergency Objects

CANopen Emergency messages are triggered by the occurrence of an internal (fatal) error
situation. An Emergency CAN-message has the following general syntax:

MDT-DCS → Host
COB-ID Byte 0-1 Byte 2 Byte 3-7
080h +
NodeID

Emergency
Error Code

Error Register
(Object 1001h)

Manufacturer specific error field

Starting from MDT-DCS firmware version 2.3 a toggle bit was added to byte 7 of the Emer-

gency message. Byte 7 alternates between the values 00h and 80h from one Emergency mes-
sage to the next.

The following Emergency messages can be generated by the MDT-DCS application:

Error
Description

Emergency
Error Code

(byte 1-0; hex)

Manufacturer-specific Error Field
(byte 3-7)

CAN communication 8100 Byte 3: 81C91 Interrupt Register content 1

Byte 4: 81C91 Mode/Status Register content 2
Byte 5: error counter
Byte 6: bus-off counter (see OD index 3200, sub 3)

CAN buffer overrun 8110h CAN message buffer in RAM full: at least 1 message was lost

Life Guarding time-out 8130 CAN-controller has been reinitialized

RPDO: too few bytes 8210 Byte 3: minimum DLC (Data Length Code)

NTC-ADC / CSM-ADC:
conversion timeout

5000 Byte 3: 01h (NTC) / 61h (CSM)
Byte 4: ADC channel number (0..63)
Byte 5: 1 = during ‘mux latch set’ operation, otherwise 0.

NTC-ADC / CSM-ADC:
reset failed

5000 Byte 3: 02h (NTC) / 62h (CSM)
Byte 4: 00h
Byte 5: Error id 3

NTC-ADC / CSM-ADC:
offset calibration failed

5000 Byte 3: 03h (NTC) / 63h (CSM)
Byte 4: 00h

NTC-ADC / CSM-ADC:
gain calibration failed

5000 Byte 3: 04h (NTC) / 64h (CSM)
Byte 4: 00h

NTC-ADC / CSM-ADC:
problem(s) during initialisa-
tion

5000 Byte 3: 05h (NTC) / 65h (CSM)
Byte 4: ADC status (see OD index 1002h)

Slave processor not respond-
ing (only on ELMB103)

5000 Byte 3: 20h

…table continues on the next page…

1 81C91 INT register bits: 04h: Warning Level, 20h: Bus Off, 40h: Error Passive, 80h: Transmit Check
2 81C91 MODE/STATUS register bits: 01h: Init Mode, 02h: Reset State, 04h: Bus Off, 08h: Receive Error

Counter >= 96; 10h: Transmit Error Counter >= 96, 20h: last Transmission Complete, 40h: Receive Mode,
80h: Auto Decrement Address

3 01: Reset-Valid bit not set, 02: Reset-Valid bit not reset, 04: error in Offset Register value,
08: error in Gain Register value

MDT-DCS CANopen module v2.7 19-Aug-2011

65

Error

Description
Emergency
Error Code

(byte 1-0; hex)

Manufacturer-specific Error Field
(byte 3-7)

CRC error 5000 Byte 3: 30h

Byte 4: 1 (program FLASH),
2 (Slave FLASH; ELMB103 only)

EEPROM: write error 5000 Byte 3: 41h

Byte 4: Parameter block index 1
Byte 5: 0 : writing block info
 > 0: size of parameter block to write

EEPROM: read error 5000 Byte 3: 42h
Byte 4: Parameter block index 1
Byte 5: Error id (1=CRC, 2=length, 4=infoblock)

B-sensor ADC:
conversion timeout

5000 Byte 3: 51h
Byte 4: B-sensor number (0..3)
Byte 5: ADC channel number (0..7)

B-sensor ADC:
reset failed

5000 Byte 3: 52h
Byte 4: B-sensor number (0..3)
Byte 5: Error id 2

B-sensor ADC:
Hall-sensor calibration failed

5000 Byte 3: 53h
Byte 4: B-sensor number (0..3)

B-sensor ADC:
T-sensor calibration failed

5000 Byte 3: 54h
Byte 4: B-sensor number (0..3)

B-sensor ADC problem(s)
during initialisation (check
OD 1002)

5000 Byte 3: 55h
Byte 4: ADC 0+1 status (see OD index 1002)
Byte 5: ADC 2+3 status (see OD index 1002)

JTAG:
bit string shift protocol error

8200 Byte 3: 71h
Byte 4: TAP state (0Bh = Shift-IR, 02h = Shift-DR)
Byte 5: number of bits to shift
Byte 6: 1 = final shift, 0 = not final shift

JTAG:
sequence protocol error

8200 Byte 3: 72h

JTAG:
segmented protocol error

8200 Byte 3: 73h
Byte 4: 1 = segment too short, 2 = number of bits too large,

3 = received more bits than expected

JTAG:
JTAG-action not available

5000 Byte 3: 81h
Byte 4: JTAG-action number (1..13)

JTAG:
JTAG-action CRC error

5000 Byte 3: 82h
Byte 4: JTAG-action number (1..13)
Byte 5: 5Ah = instruction string, A5h = data string

JTAG:
JTAG-action status return
CRC error

5000 Byte 3: 83h
Byte 4: JTAG-action number (1..13)

…table continues on the next page…

1 0: PDO communication parameters, 1: Guarding parameters, 2: Digital I/O configuration, 3: NTC ADC configu-

ration, 4: B-sensor ADC configuration, 5: CSM ADC configuration, 6: CAN configuration parameters,
7: JTAG parameters, FEh: Calibration constant(s), FFh: ELMB Serial Number.

2 01h: Reset-Valid bit not set, 02h: Reset-Valid bit not reset, 04h: error in initial Offset Register value,
08h: error in initial Gain Register value.

MDT-DCS CANopen module v2.7 19-Aug-2011

66

Error

Description
Emergency
Error Code

(byte 1-0; hex)

Manufacturer-specific Error Field
(byte 3-7)

Irregular reset (Watchdog,
Brown-out or JTAG)

5000 Byte 3: F0h
Byte 4: microcontroller MCUCSR register contents 1

Bootloader: not present 5000 Byte 3: F1h

Bootloader is now in control 2 5000 Byte 3: FEh

Byte 4: 01h
Byte 5: 28h
Byte 6: microcontroller MCUCSR register contents 1
Byte 7: 00h

Bootloader cannot jump to
application: invalid 2

6000 Byte 3: FEh
Byte 4: AAh
Byte 5: AAh
Byte 6: 00h
Byte 7: 00h

Byte 2 of the Emergency message contains the value of the socalled Error Register (Object

Dictionary index 1001h, a mandatory CANopen object). One or more bits of the 8-bit Error
Register can be set to 1, depending on the node's history of errors since the last reset. The ta-
ble below gives a description of the different bits.

Error Register (Object 1001h) bits
Bit Error type
0 generic
1 current
2 voltage
3 temperature
4 communication
5 device profile specific
6 reserved (=0)
7 manufacturer specific

11 Built-In Board Test

A connectivity test function for the I/O-lines has been implemented in the MDT-DCS appli-
cation firmware, specifically for (offline) board test and acceptance test (after production) pur-
poses, so that a full pin connection test can be done, in combination with some custom exter-
nal hardware, i.e. an array of resistors for the NTC connections, some cables plus an intercon-
nection board for all the other connectors; in addition an auxiliary (modified) MDT-DCS
module is used for measuring voltages and currents of the module under test. See the pictures
in Figure 7 below.

1 ATmega128 MCUCSR register bits: 01h: Power-On Reset, 02h: External Reset, 04h: Brown-Out Reset,

08h: Watchdog Reset, 10h: JTAG Reset, 80h: JTAG Interface Disable.
2 This Emergency message is generated by the Bootloader program !

MDT-DCS CANopen module v2.7 19-Aug-2011

67

The I/O test is integrated in the standard MDT-DCS application firmware, making it possi-
ble to do board (acceptance) testing without having to upload special software, i.e. the MDT-
DCS application firmware provides objects to trigger the tests; test commands and test results
are sent in messages via the CAN-bus.

The I/O test requires that the I/O-lines are interconnected in a predefined fashion, shown be-

low; tested are PORTA and (parts of) PORTC, PORTD, PORTE and PORTF; in brackets the
initial data-direction setting.

• PORTC3-7 connected to PORTE3-7:

o CSM_CS (out) ↔ B_SCLK_0 (out)
o AUX_IO4 (in) ↔ CSM_SCLK (out)
o AUX_IO5 (in) ↔ CSM_SDI (out)
o AUX_IO2 (in) ↔ CSM_SDO (in)
o AUX_IO1 (in) ↔ CSM_MUX (out)

• PORTA0-7 connected to PORTF0-7:

o TDO (out) ↔ B_ID0 (in)
o TCK (out) ↔ B_ID1 (in)
o TMS (out) ↔ DIGIO5 (in)
o TDI (in) ↔ DIGIO6 (in)
o DIGIO1 (out) ↔ DIGIO7 (in)
o (for DIGIO2 see below)
o DIGIO3 (out) ↔ AUX_IO3 (in)
o DIGIO4 (out) ↔ B_SDO_0 (in)

• Remaining I/O-lines: B_CS0 (PC0), B_CS1 (PC1), B_SDI (PD3) en DIGIO2 (PA5):

o B_CS0 (out) ↔ DIGIO2 (out)
o B_CS1 (out) ↔ B_SDI_0 (out)

The test procedure comprises:

• all possible output values of PORTA(0-7) and PORTC(3-7), per port, using PORTF
(0-7) and PORTE (3-7) as inputs, resp.

• all possible output values of PORTA(5) and PORTD(3), using PORTC(0-1) as inputs.
• a walking-1 and a walking-0 on the combined ports (the walking-1/0 'runs' from

PORTA(0-7) to PORTC(0-7).

The test is triggered by reading CANopen Object 5DFFh sub 3, the returned 32-bit value

contains 4 bytes with errorbits per port: Byte 0: PORTA, Byte 1: PORTC, Byte 2: PORTE,
Byte 3: PORTF. The returned value is zero if no errors occurred.

A bit that is set means: the corresponding I/O line of the corresponding PORT has at least
once been read incorrectly during the test sequence described above.

The total test time of this digital I/O test is in the order of 300 ms (using a signal settling

time of 1 ms).

MDT-DCS CANopen module v2.7 19-Aug-2011

68

Figure 7. MDT-DCS module connectivity test: set-up (top) and user interface (bottom).

MDT-DCS
Module-

Under-Test

module for
analog

measure-
ments of the

Module-
Under-Test

inter-
connection

board

power
supply

CAN
bus

MDT-DCS CANopen module v2.7 19-Aug-2011

69

Missing in the digital test described above is a test of proper connectivity of the B_SCLK,

B_SDI and B_SDO signals of the "B-sensor 1" connector. In the test set-up these signals have
been routed to analog inputs on the auxiliary MDT-DCS module. Test objects 5DFFh, sub 4
and 5 have been added, which set these 3 signals as outputs to 0, 1 and 0 respectively, and to
1, 0 and 1 respectively, so that the signals can then be checked by reading analog inputs from
the auxiliary MDT-DCS module. Reading object 5DFFh, sub 6 sets the signals back to their
normal setting.

In this way all pins, except ground-pins, of an MDT-DCS module are checked for proper
connectivity. A module that passes this test is accepted for use in the ATLAS MDT detector.

References

[1] H.Boterenbrood,

CANopen Application Software for the ELMB128,
Version 2.1, NIKHEF, Amsterdam, 2 March 2004.
http://www.nikhef.nl/pub/departments/ct/po/html/ELMB128/ELMBio.pdf

[2] H.Boterenbrood,
CANopen, high-level protocol for CAN-bus,
Version 3.0, NIKHEF, Amsterdam, 20 March 2000.
http://www.nikhef.nl/pub/departments/ct/po/doc/CANopen30.pdf

[3] CAN-in-Automation e.V.,

CANopen, Application Layer and Communication Profile,
CiA DS-301, Version 4.0, 16 June 1999.

[4] CAN-in-Automation e.V.,

CANopen Device Profile for Generic I/O Modules,
CiA DS-401, Version 2.0, 20 December 1999.

[5] H.Boterenbrood,

CANopen Bootloader for the ELMB ATmega128 microcontroller,
Version 1.1, NIKHEF, Amsterdam, 10 March 2004.
http://www.nikhef.nl/pub/departments/ct/po/html/ELMB128/ELMBbl-doc.pdf

[6] ELMB software resources webpage:

http://www.nikhef.nl/pub/departments/ct/po/html/ELMB/ELMBresources.html

http://www.nikhef.nl/pub/departments/ct/po/html/ELMB128/ELMBio.pdf
http://www.nikhef.nl/pub/departments/ct/po/doc/CANopen30.pdf
http://www.nikhef.nl/pub/departments/ct/po/html/ELMB128/ELMBbl-doc.pdf
http://www.nikhef.nl/pub/departments/ct/po/html/ELMB/ELMBresources.html

MDT-DCS CANopen module v2.7 19-Aug-2011

70

Appendix A. MDT-DCS Motherboard Schematic

MDT-DCS CANopen module v2.7 19-Aug-2011

71

Appendix B. NTC Temperature Sensor Data
(datasheets taken from manufacturer website: http://www.thermometrics.com/)

http://www.thermometrics.com/

MDT-DCS CANopen module v2.7 19-Aug-2011

72

	Title page
	Table of contents
	Version history
	1 Introduction and Overview
	2 Hardware
	2.1 Connectors and Interfaces
	2.2 ELMB / MDT-DCS Interface and ELMB Jumpers

	3 Initialisation
	4 Node Guarding and Life Guarding
	5 MDT On-Chamber Sensors Monitoring
	5.1 Data Read-out
	5.2 T-sensor Read-out
	5.2.1 T-sensor Data
	5.2.2 ADC Data Conversion
	5.2.3 ADC Raw Data
	5.2.4 Readout-on-Change

	5.3 B-sensor Read-out
	5.3.1 B-sensor Data
	5.3.2 ADC Data Conversion
	5.3.3 B-sensor Serial Number

	6 CSM Front-end Electronics Monitoring and Control
	6.1 Analog Inputs
	6.1.1 Readout-on-Change

	6.2 Configuration and Control
	6.2.1 JTAG
	6.2.1.1 Implementation Overview
	6.2.1.2 JTAG-action Storage
	6.2.1.3 Examples of MDT-DCS JTAG Operations
	6.2.1.4 JTAG TAP States
	6.2.1.5 JTAG Signal Timing
	6.2.1.6 Additional JTAG Functionality

	6.2.2 Digital I/O

	7 Configuration Storage
	7.1 Storing Parameters and Settings
	7.2 Auto-configure
	7.3 EEPROM Memory Map

	8 Upgrading the Firmware
	9 MDT-DCS Object Dictionary
	10 Emergency Objects
	11 Built-In Board Test
	References
	Appendix A. MDT-DCS Motherboard Schematic
	Appendix B. NTC Temperature Sensor Data

