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1 Introduction

MUSCOD-II is a robust and efficient optimization tool that allows to quickly implement and

solve very general optimal control problems in differential-algebraic equations (DAE).

The manual is organized as follows:

1. In Section 2 we present class of problems which can be solved, already introducing the

problem syntax used in MUSCOD-II.

2. In Section 3 a brief introduction to the solution algorithm – the direct multiple shooting

method – is given. Some understanding of the underlying method helps in learning the

specific way of formulating problems for MUSCOD-II.

3. The installation of MUSCOD-II on a Unix-workstation is described in detail in Section 4.

You will find information on necessary and useful third-party software, on obtaining the

source code, on the file structure of the software, on the installation process, and on

details about the location of the algorithmic modules.

4. How to set up and run a problem is described in Section 5. Setting up a problem involves

creating a model source file and a data file. A description of the model source file is given

in Section 6. In Section 7, a description of the data file as well as command line options

are given.

5. An overview of the available dynamically loadable algorithmic modules is given in Sec-

tion 8.

6. Screen and file output of MUSCOD-II is explained in Section 9. The interactive mode,

which allows to view and log data during the optimization run, is described in Section 10.

7. The mixed-integer extension of MUSCOD-II, which is called MS MINTOC, is described

in Section 11.

8. An example (source and data file) for standard MUSCOD-II is given in Section 13. An

example for MS MINTOC can be found in Section 14.

2 Multistage Optimal Control Problems in DAE

Many dynamic process optimization problems of practical relevance can be expressed as multi-

stage optimal control problems in DAE. MUSCOD-II is able to treat the following general class

of multistage optimal control problems, where the time horizon of interest [t0, tM ] is divided

into M model stages corresponding to the subintervals [ti, ti+1], i = 0, 1, . . . ,M−1. On each

of these intervals, the corresponding system state is described by the differential and algebraic

state vectors xi(t) ∈ IR nx
i and zi(t) ∈ IR nz

i . The system behaviour is controlled by the control

vectors ui(t) ∈ IR nu
i and the global design parameter vector p ∈ IR np

.
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On each of the model stages the system obeys a differential algebraic equation:

Bi(t, xi(t), zi(t), ui(t), p) · d
dt
xi(t) = fi(t, xi(t), zi(t), ui(t), p)

0 = gi(t, xi(t), zi(t), ui(t), p)

 , t ∈ [ti, ti+1]

with the matrix function Bi in IR nx
i ×nx

i and the derivative
∂gi
∂zi
∈ IR nz

i×nz
i invertible, such that

the linear-implicit DAE is of semi-explicit type and of index one.

The duration hi := ti+1 − ti of model stage i may be variable. The end value of the

differential state on stage i, xi(ti+1), is determined completely by the initial value xi(ti), the

control trajectory ui(·) and the global parameters p and the duration hi.

2.1 Transition between Model Stages

Between model stages continuity of the differential states is required by default:

xi+1(ti+1) = xi(ti+1)

Therefore the differential dimensions do not change: nxi+1 = nxi .

Jumps in the differential states and even dimension changes can be implemented by a special

type of model stage, called transition stage. A transition stage with index j replaces the DAE

integration for the determination of the final state value xj(tj+1) by the simple evaluation of

a transition function cj that may even change the differential state dimensions (nxj+1 is not

necessarily equal to nxj ). Usually, the duration of a transition stage is set to zero, i.e. tj+1 = tj.

The continuity condition after the transition stage j provides an initial value for the following

model stage j + 1:

xj+1(tj+1) = cj(tj, xj(tj), zj(tj), uj(tj), p)

Here the transition function cj has the same syntax as the right-hand side function f . 1

2.2 Interior Point and Path Constraints

For all variables, i.e. states, controls, parameters, and durations, upper and lower bounds can

and in fact have to be given. Additionally, general decoupled constraint vector functions rdk
(with dimension nrdk ) can be specified that require at single points t = tk in time or on complete

model stages (i.e. ∀t∈[tk,tk+1]):

rdk(t, x(t), z(t), u(t), p, prk)

{
=

≥

}
0

1 Please note that allowing the point control value uj(tj) to enter the transition function amounts to giving

it the status of a parameter. If algebraic variables zj(tj) are used on the transition stage they have to be defined

by declaring an appropriate algebraic equation at time tj

0 = gj(tj , xj(tj), zj(tj), uj(tj), p)

Note that a pointwise influence of the control values uj(tj) on the transition function as above can also occur

indirectly via the algebraic states.
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Here, the first nrdek components are equalities and the remaining ones (of altogether nrdk ) in-

equalities. These decoupled constraints can be formulated either only at the start or end points

of a stage or on the whole interior of a stage.

For the formulation of coupled constraints, MUSCOD-II employs a specific formulation (for

reasons of numerical efficiency) – it allows to couple different time points linearly in the following

way: the user specifies vector functions rck (at time points tk) all of equal dimension nrc. The

vector sum of these functions is then required to satisfy:

K∑
k=0

rck(tk, x(tk), z(tk), u(tk), p, p
r
k)

{
=

≥

}
0

Again, the first nrce components are taken as equalities, the rest as inequalities.

In both, decoupled and coupled constraints, local parameters prk can be employed in addition

to the global parameters p – they are preferable to global parameters for reasons of numerical

efficiency (if they can replace them) 2.

2.3 The Objective Function

The objective function is of generalized Bolza type, containing Lagrange and Mayer terms for

each model stage:

M−1∑
i=0

 ti+1∫
ti

Li(t, xi(t), zi(t), ui(t), p) dt + Φi(ti+1, xi(ti+1), zi(ti+1), p)

 (1)

Note that no Lagrange term can be defined for transition stages.

2.4 Least Squares Objective Contributions

The objective function of Bolza type may be extended by an additional contribution that

contains pointwise defined least squares terms of the form

K∑
k=0

‖lpk(tk, x(tk), z(tk), u(tk), p, p
r
k)‖2

2

where the time points tk are specified as for the interior point constraints rdk().

Though this special form of an objective contribution could also be formulated by use of

Mayer terms as in (1), this explicit formulation allows to exploit the structure of the least

squares terms in the numerical solution procedure.

As an additional feature, a continuous least squares function may be defined on each differ-

ential modelstage, so that a further contribution of the following form is added to the objective.

M−1∑
i=0

ti+1∫
ti

‖lck(t, x(t), z(t), u(t), p)‖2
2 dt,

2Please note that a possible use of controls and algebraic states in the coupled interior point constraints

allows some point control values to enter the problem and gives them the effective influence of parameters.
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Figure 1: Piecewise constant representation of a control (mi = 5).

which again could in principle be covered by Lagrange terms as in (1), but allows a favourable

numerical treatment if explicitly formulated in least-squares form.

Remark:

The relevant dimensions of the problem and all functions mentioned in this section have to be

provided by the user in the model source file described in section 6. A correspondence between

the customary notation in the model-source file and the notation used in this section is given

in Table 1.

3 The Direct Multiple Shooting Method

In the direct multiple shooting method the original continuous optimal control problem is

reformulated as an NLP problem which is then solved by an iterative solution procedure, a

specially tailored sequential quadratic programming (SQP) algorithm. A far more complete

description of the methods employed is given by Leineweber, 1999 [Lei99].

3.1 Piecewise Control Discretization

In order to reformulate the original continuous problem as an NLP problem, first the control

functions are approximated by a piecewise representation using only a finite set of control

parameters. This is done by first dividing each model stage i into a number of mi subintervals,

called multiple shooting intervals Ii,j := [ti,j, ti,j+1], j ∈ {0, 1, . . . ,mi − 1}, with intermediate

time points ti,j. Then a piecewise approximation ûi of the control functions ui on this grid is

defined by

ûi(t) := ϕi,j(t, qi,j), t ∈ Ii,j j = 0, 1, . . . ,mi−1, (2)
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using “local” control parameters qij. The functions ϕij are typically vectors of polynomials.

If for example piecewise constant approximations are used for all control functions, we simply

have ϕij(t, qi,j) = qi,j for t ∈ Ii,j, see the scalar example shown in Figure 1.

In MUSCOD-II, five possibilities are implemented: piecewise constant controls; piecewise

linear with continuitiy on the corresponding stages, but not between different stages; linear

with overall continuity; cubic with continuous differentiability, again stagewide or overall.

The user can explicitly specify the locations of the multiple shooting grid points relative

to the model stage duration or instead use a uniform grid. If the model stage duration varies,

the multiple shooting (sub-)intervals are scaled proportionally (and accordingly the piecewise

control representations).

3.2 Multiple Shooting State Parametrization

The basic concept of the multiple shooting method is to solve the differential (algebraic) equa-

tion independently on each of the multiple shooting intervals. On interval j of the ith model

stage (j ∈ {0, 1, . . . , nmsi }) the initial value for the DAE solution is given by the so called node

values sxi,j, s
z
i,j for differential and algebraic states3. Consistency of the algebraic equations

g(ti,j, s
x
i,j, s

z
i,j, ûi(ti,j), p) = 0, (3)

and, particularly, continuity of the state trajectory at the multiple shooting grid points

sxi,j+1 = xi,j(ti,j+1) (4)

(where xi,j(t) denotes the differential part of the DAE solution on Interval t ∈ Ii,j with initial

values sxi,j, s
z
i,j) are incorporated as constraints into the NLP. They are required to be satisfied

only at the solution of the problem, not during the SQP iterations. This allows to easily

incorporate information about the trajectory behaviour into the initial guess, and it leads to

good convergence properties of the multiple shooting method.

For more details, see e.g. Bock and Plitt [BP84] or Leineweber [Lei99].

3.3 Discretization of Bounds, Interior Point and Path Constraints

Upper and lower bounds for all multiple shooting variables, i.e. node state values si,j+1 , control

parameters qij, local and global parameters prk and p, as well as the stage durations, can be

specified. Note that this means a slight modification of the original problem, as state and control

bounds may be violated between multiple shooting nodes in the solution. The same applies to

the decoupled path constraints described by functions rdk. It should be noted, however, that

in the important case of a piecewise constant or linear control representation, upper and lower

control bounds are satisfied on the whole interval, if and only if they are satisfied at the multiple

shooting nodes.

3Potential inconsistency of the algebraic equations at the m.s. nodes is dealt with a specific relaxed DAE-

formulation on the m.s. intervals. See e.g. Leineweber [Lei99]
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tion between known boundary values.
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3.4 Discretization of Least Squares Terms

The pointwise defined least squares functions lpk can be evaluated at all specified multiple

shooting nodes, analogously to the constraint functions rck, without any discretization errors.

The advantage of an explicit formulation of these least squares terms – compared to formulating

them as general Mayer objective contributions – is that this allows to obtain a Gauss-Newton

approximation of the second derivative, e.g.

∂2‖lpk‖2
2

∂s2
k

≈ 2
∂lpk
∂sk

T ∂lpk
∂sk

,

which is good for small residuals ‖lpk‖2
2.

If a continuous least squares function lck has to be integrated on a multiple shooting stage,

this integral is in the current version of MUSCOD-II approximated by a sum using the trape-

zoidal rule as follows:

ti,j+1∫
ti,j

‖lck(t, xi,j(t), zi,j(t), ûi(t), p)‖2 dt ≈
nstop
i,j∑
k=0

wi,j,k‖lck(ti,j,k, xi,j(ti,j,k), zi,j(ti,j,k), ûi(ti,j,k), p)‖2

where the grid points ti,j,k are equally spaced between ti,j,0 = ti,j and ti,j,nstop
i,j

= ti,j+1 and the

weights wi,j,k are set to wi,j,k = (ti,j+1 − ti,j)/nstopi,j for k = 1, . . . , nstopi,j − 1 and half this value

for k = 0, nstopi,j : wi,j,0 = wi,j,nstop
i,j

= 1
2
(ti,j+1 − ti,j)/nstopi,j . The integrator has to stop at the grid

points ti,j,k to evaluate the objective contribution and its derivatives4.

Note that the approximation of the integral least-squares terms by a sum of intermediate

points allows to compute a Gauss-Newton approximation of the second derivatives analogously

to the case of point wise defined least-squares terms.

Remark:

All features specific to the multiple shooting method, i.e. the numbers mi of multiple shooting

intervals on the stages, upper and lower bounds, scales and initial guesses for the multiple

shooting variables, and some output specifications have to be provided by the user in the data

file described in section 7.1. For correspondence of the data file notation to the notation used

in this section see also Table 2.

3.5 The resulting Nonlinear Programming Problem

If we subsume all multiple shooting variables (i.e. sxi,j, s
z
i,j, qi,j, hi, p, and prk) to a single vector w

of (large) dimension n, we can write the objective function as F (w) : IR n → IR . Similarly, we

can subsume all equality constraints (in particular the continuity and consistency conditions (4)

and (3)) to a vector valued function G(w) and the inequality constraints in a vector valued

function H(w). Then, the parametrized optimal control problem can be written as a finite

4Note that this feature is so far only implemented in the integrators DAESOL and adfDAESOL.
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dimensional Nonlinear Program:

min
w

F (w)

subject to

G(w) = 0

H(w) ≥ 0

(5)

where the inequalities hold componentwise.

3.6 The SQP Algorithm

The SQP algorithm deals with the NLP problem where all functions are explicitly or implicitly

defined as functions of the multiple shooting variables only. The numerical DAE solution on

the multiple shooting intervals is performed in an underlying evaluation module and has to be

carried out with sufficiently high integration tolerance.

Starting with an initial guess w0 provided by the user, the SQP algorithm iterates

wk+1 = wk + αk∆wk

with step directions ∆wk (and relaxation factors αk ∈ (0, 1]), until a prespecified convergence

criterion is satisfied.

At the k-th SQP iteration with multiple shooting variables wk, the algorithm evaluates the

NLP functions (i.e. F (wk), G(wk), and H(wk)) and their derivatives (∇wF (wk), ∇wG(wk),

and ∇wH(wk)) with respect to w. In this way, linearizations of the originally nonlinear NLP

functions are obtained that are used to build a quadratic programming (QP) subproblem. Fur-

thermore, an approximation Hk of the Hessian matrix of the Lagrangian function is calculated.

The quadratic programming subproblem solved at the k-th SQP iteration can be written

as:
min

∆wk∈Ω
∇F (wk)

T∆wk + 1
2
∆wTkHkwk

subject to

G(wk) +∇wG(wk)
T∆wk = 0

H(wk) +∇wH(wk)
T∆wk ≥ 0

(6)

where Ω is either the full Euclidean space IR n or a suitably chosen box in IR n (that contains

∆wk = 0) in the trust region approach.

The QP problem is then solved and results in a direction ∆wk that helps to determine

the next iterate wk+1 = wk + αk∆wk. Different line search strategies are implemented that

determine the relaxation factor αk ; they are described in section 8.4.

For the new values of the multiple shooting variables all NLP functions and derivatives are

again evaluated, a new Hessian matrix approximation Hk+1 is provided and a new QP problem

is solved for the next SQP iteration.

The iterations stop when the solution accuracy, measured by the so called KKT-tolerance,

has reached a prespecified value acc. It indicates, roughly spoken, to how many digits the

objective value is expected to be correct.
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In MUSCOD-II, the approximation of the Hessian matrix is either chosen as an initially

diagonal matrix5 which is then revised during the SQP iterations by appropriate update pro-

cedures (described in section 8.3) that keep Hk positive definite. Alternatively, an “exact”

Hessian matrix can be calculated numerically in each iteration – as positive definiteness of Hk

is not guaranteed in this case, a trust region (i.e. a bounded Ω in Equation 6) has to be specified

to have a well defined QP.

Remark:

Some specifications concerning the SQP algorithm (as warm starts, final accuracy, maximum

number of iterations,...) can be given as optional arguments to the executable. See the expla-

nations in 7.

4 The software package MUSCOD-II

The MUSCOD-II package is delivered together with the linear algebra library LIBLAC (Leinewe-

ber and Jost, 1996 [LJ96]) and with our ODE/DAE solver DAESOL (Bauer et al., 1997

[BFD+97, BBKS00]). However, for MUSCOD-II to be fully functionable, some extra software

is required:

• Linear algebra packages and subroutines:

– BLAS routines (Lawson et al., 1979 [LHKK79]; Dongarra et al., 1988 [DCHH88]

and 1990 [DCDH90]). The ATLAS library (Whaley, Petitet, Dongarra, 2005) of

optimized BLAS routines may be used.

– LAPACK routines DGETRF, DGETRS (Anderson et al., 1995 [ABB+95])

– Harwell MA48 direct linear solvers (Reid and Duff, 1993 [RD93] and 1996 [DR96])

– Harwell TD12 (HSL archive) sparse numerical derivative subroutine (Reid, 1972 [Rei72])

• Visualization packages:

– PGPLOT 5.2 (Pearson, 1997 [Pea97]) is a graphics package that may be used for on-

line graphics. It is not essential, but online graphics helps a lot to better understand

possible difficulties.

– MATLAB (The Mathworks, Inc.) may be used for online graphics as well.

Furthermore, MUSCOD-II contains interfaces to some external software modules not dis-

tributed with it. You may use these interfaces if you have the software available and hold

an appropriate license. user (commercial products in italics):

• ODE/DAE solvers:

– DDASAC (Caracotsios and Stewart, 1985 [CS85])

5By default, according to Plitt [BP84], an initial scaling factor is determined that bounds the first QP

solution to be roughly twice as big as the minimum norm step satisfying the linearized constraints.
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– MBSNAT

– METANB

• standard QP solvers, of which at least one has to be licensed, preferably QPQPT:

– BQPD

– OOQP

– QPOPT (Gill et al.)

– NAG E04NFF / QPOPT (Gill et al.)

– NAG E04NAF / QPSOL (Gill et al., 1983 [GMSW83])

Installation of MUSCOD-II under Windows is possible, but will require additional software to

provide a Linux-like working environment.

• MSYS, a Linux-like shell for Windows.

• MinGW, a collection of the C/C++ and Fortran development tools for Windows.

• GrWin, which provides PGPLOT support for Windows.

The installation of MUSCOD-II under Windows is currently not covered by this manual.

4.1 Installation Steps for a UNIX/Linux System

here we describe the installation of MUSCOD-II within a so-called suite, a structured collection

of packages used in the context of MUSCOD-II. We highly recommend to use the suite when

working with MUSCOD-II. Using a manual installation of all required packages is possible, but

requires expert knowledge and is likely to cause problems. You have been warned!

4.1.1 Overview

The MUSCOD-II Suite is a structured collection of software packages which are somehow

related to MUSCOD-II. Major aims of this bundle are

• reduce the effort required for setting up a MUSCOD-II work environment to a minimum,

• simplify migrating MUSCOD-II to new platforms and operating systems and

• provide standardized environment for easy debugging.

4.1.2 Getting it

The MUSCOD-II suite is checked in to SimOpt’s Subversion revision control system. The

MUSCOD-II suite repository has a sub-folder for each target platform. Currently, only the

Linux version is supported. Like every Subversion repository, the suite also comes in different

flavors: tags/*, a collection of fixed versions that are not subject to change and trunk, the
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developers’ version (unstable). To check out a local working copy of MUSCOD-II to your sys-

tem, call

name@machine:~> svn checkout \

https://liz.iwr.uni-heidelberg.de/MUSCOD/muscod_suite/linux/<flavor> ~/MUSCOD_SUITE

You will have to enter your svn password several times during the checkout, once for every

new sub-repository that is accessed, see section Technical Stuff. The name of the target dir

(here: MUSCOD_SUITE) can be chosen arbitrarily.

If you cannot access the SimOpt subversion server, either contact our system administrator

(in the case you are a group member) or your SimOpt cooperation partner (if you are not a

group member).

4.1.3 Structure

In its minimal version, the suite has the following directory structure

• MUSCOD_SUITE/: Root folder of the MUSCOD-II suite (name arbitrary)

– Apps/: MUSCOD-II applications, problem-dependent code and data

– AuxScripts/: Auxiliary shell scripts

– Packages/: Software packages used by MUSCOD-II

– MC2/: The package MUSCOD-II itself, problem-independent code

– bootstrap: Installation script for the whole MUSCOD-II Suite

– cleanup: Convenience script for removing files created by bootstrap (”make clean”)

– LICENSE: License

– README: Basic information

– VERSION: Version

The directories MC2, Packages/*, Apps/* all have a similar structure to facilitate the separation

of source files (which are also in the repository) and configuration and compiled files, also called

binary files (which only exist on the local machines). Thus, one can have one source but several

differently configured or compiled versions of MUSCOD-II, generated from the same source.

The source files are all contained in the Src subdirectory, e.g., ~\MUSCOD_SUITE/MC2/Src.

Typically, binary files are in directories Debug (in the case of a compilation with debug in-

formation), or Release (in the case of a compilation with high compiler optimization and no

debug information). The bootstrap script creates these directories automatically as described

below.

The subdirectories of ~\MUSCOD_SUITE/MC2/Src encapsulate different modules of MUSCOD-

II which are explained in section 4.2.1. The applications’ subdirectories, e.g., MUSCOD_SUITE/Apps/TEST,

have the following structure:

• Src: Source directory including problem-dependent configuration files, program code, and

problem description data
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– SRC Subdirectory containing program code

– DAT Subdirectory containing problem description data

• Debug, Release, ...: Binary directories containing compiled libraries

– DAT Subdirectory containing problem description data (usually a symbolic link to

../Src/DAT)

– RES Subdirectory where the results of computations are stored

4.1.4 Functionality

The suite comes with some bash-scripts which automate common tasks. All scripts that are

usually invoked by the user are located in the suite root folder and have executable file permis-

sions. All scripts provide usage information if invoked with the --help command-line option.

Here is a brief overview:

bootstrap Configures and installs all packages of the MUSCOD-II suite and some applications.

Installations with different ”build types” (Debug, Release etc.) are supported. The

binaries of each build type have their own directories (with the same names as the build

type) and can hence reside in the suite in parallel. This script extensively uses resources

from folder AuxScripts. The whole installation procedure is described below.

cleanup Removes the binary directories of a selected build type from all packages in the

suite. This is essentially a make clean for the whole suite and reverts the actions of

bootstrap. Note: currently only packages built using CMake as install tool are affected,

which are essentially all packages developed by the SimOpt group. Binaries from third-

party packages currently have to be removed manually. When using the -C option, it only

removes the CMake cache of all packages using CMake, effectively re-setting all CMake

options to their default values.

4.1.5 Technical Stuff

The repository physically only contains the scripts. Packages belonging to the suite are linked

via Subversion’s externals mechanism. On checkout, update or export, subversion recursively

checks out or updates the suite itself and all referenced packages and applications. If you have

a revision-controlled working copy of the suite, you can query the current list of references with

user@machine:~/MUSCOD_SUITE> svn propget svn:externals .

Lines in the output that start with a # are commented out.

4.1.6 Installation

The MUSCOD-II suite should be easily installed by checking it out from the Subversion repos-

itory and running the bootstrap script.
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Prerequisites MUSCOD-II uses many different software packages. The following list of

software should be installed by the system’s native package management system (e.g., YaST,

aptitude, etc.):

• boost-dev

• cmake ≥ V2.6.0

• gcc

• gfortran

• subversion

• tcl

• make

Building You can now build and install the whole suite with the bootstrap script. By typing

./bootstrap --help

you get a list of supported options. They are related to build target (Release/Debug),

32/64 bit compilation, number of parallel build jobs, and more. The default settings should be

reasonable for most target platforms. If performance is not an issue for you, it is recommended

to build the suite in Debug mode, which is the default. After a successful installation, you may

want to run a sample MUSCOD-II application to check if everything was built properly.

If you encounter problems during install which you cannot solve, ask for help on the

MUSCOD-II mailing list6 or the SimOpt Wiki7.

Local Installation The files installed by the command

name@machine:~/MUSCOD_SUITE> ./bootstrap

stay within the suite folder as long as no -ipref argument is specified. This is the desirable

behavior for developers. It is also possible to install to a system folder, which is described in

the next section.

After successfully running bootstrap, the executables provided by MUSCOD-II can be found

in ~/MUSCOD_SUITE/MC2/Debug/bin. You might want to add that path to your PATH envi-

ronment variable (however, be careful if you have several build types in parallel!) by adding

export PATH=$PATH:$HOME/MUSCOD_SUITE/MC2/Debug/bin

to your ~/.bashrc.

6mailto:agbock_mc2_developer@iwr.uni-heidelberg.de
7http://ginger.iwr.uni-heidelberg.de/wiki/index.php5/Category:MUSCOD-II
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To remove the files of a <build_type> installation, just type

name@machine:~/MUSCOD_SUITE> ./cleanup --btype=<build_type>

Install To System It is possible to install the packages to subfolders of a central location,

from where it can be used by every regular user. The install procedure is identical to the one

described above, except that the installation path prefix (e.g. /use/local) has to be specified:

name@machine:~/MUSCOD_SUITE> ./bootstrap --ipref=<prefix>

Depending on their type, files are installed to different subfolders:

→ <prefix>/bin/: executables

→ <prefix>/lib: static (*.a) and shared (*.so) libraries (on 32 bit platform)

→ <prefix>/lib64: static (*.a) and shared (*.so) libraries (on 64 bit platform)

→ <prefix>/share/<package>/: other data related to <package>

Attention: Applications for MUSCOD-II and MUSCOD-II itself are never installed to a dir

other than ~/MUSCOD_SUITE/Apps/<app>/<build_type>/! After a successful installation, the

suite dir could be removed. But mind the note above and do not delete your applications!

Deinstallation has to be done manually. Installation logs are provided at least by the CMake

packages in their respective binary dirs.

Usage with other Software Suites In case you use other software from the SimOpt

repository which uses common packages (e.g. both MUSCOD-II and VPLAN both use COM-

MON CODE), it may be advisable to have the common packages installed only once on your

system. This can be achieved by creating a symlink called Packages (with exactly that name!)

in the MUSCOD_SUITE dir to the single common Packages directory before the checkout, e.g.:

user@machine:~/MUSCOD_SUITE> ln -s ../Packages

Then the packages will actually be checked out to the packages directory on the “suites”

level. Using the same technique on your other projects ensures that you only have one actual

location for the sources of common packages. You are expected to encounter problems with

this approach if you try to mix branches/tags/trunk versions of different suites, e.g. a special

MUSCOD-II/tag with MUSCOD-II/trunk. In this case, MUSCOD-II will try to check out a

tagged version of the package and MUSCOD-II will try to check out the trunk version of the

package to the same directory. In this case the use of suite packages is not advisable and you

are encouraged to perform the recursive checkout manually.

Since revision 6, there is only one executable, which links dynamically shared object files at

runtime, corresponding to algorithmic settings.
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4.2 Making Changes to the Installation

4.2.1 Organization of the Source Code

The directory MC2 contains a number of subdirectories organizing the source code into specific

algorithmic parts of MUSCOD-II. Some subdirectories offer alternative source files that are

compiled into different flavors of the same algorithm.

COND Condensing of the block sparse multiple shooting QP into a dense unstructured QP.

Comes in two flavors: Standard condensing and minimal condensing. The latter only deals

with the control discretization and with separability of global optimization variables such as

model parameters, but does not do any condensing.

EVAL Evaluation of all model functions, and computation of derivatives using finite-difference

approximation.

HESS Computation of the Hessian of the Lagrangian of the multiple shooting NLP. Comes in

various flavors: Constant hessian, Gauß-Newton approximation, BFGS approximation, limited-

memory BFGS approximation, and exact Hessian using finite difference stars.

IND Internal Numerical Differentiation. Holds a broad selection of integrators for the solution

of ODE/DAE system with various properties, all equipped with internal numerical differenti-

ation.

MSSQP Multiple Shooting Sequential Quadratic Programming.

PLOT Plotting. Visualization of state trajectories, control profiles, and the history of objec-

tive function values, model parameters, and stage lengths using different backends. Currently

implemented are PGPLOT, Matlab, and no plotting.

QPS Quadratic Programming. Solution of the condensed quadratic programs using a broad

range of commercial and open–source QP solvers such as QPSOL, QPOPT, OOQP, and BQPD.

SOLVE Globalization of the MSSQP step. Holds line search, trust region, and watchdog

approaches.

TCHK Termination Checks for the MSSQP algorithms.

Besides those algorithmic parts, a number of subdirectories hold integral parts of MUSCOD-

II that are always present.

ADCAUX ADOL-C auxiliary functions for computation of derivatives of model functions.

DOC Holds the LATEX source code of this documentation.
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INCLUDE Holds C++ header files for all algorithmic parts.

INOUT Input and Output of MUSCOD-II data structures. Ultimately responsible for load-

ing the DAT file.

LINALG Selected linear algebra routines from the HSL archive, used by PRSQP and some

of the integrators found in IND.

MAIN Different flavors of the main executable of MUSCOD-II. Currently maintained is

main dynamic.cpp only.

MINTOC Mixed-Integer Optimal Control package, see section 11.

MODEL Description of the optimization problem.

NMPC Nonlinear Model Predictive Control.

PDAUX Problem Data Auxiliary functions.

PRSQP Partially Reduced Sequential Quadratic Programming, for optimizationm problems

with DAE models. Comes in two flavors: A sparse variant using HSL MA48, and a dense

variant using LAPACK.

SCALE Scaling of problem variables.

TD12AUX Support for approximation of sparse jacobians using finite differences and CPR

seed matrix compression, uses HSL archive routine TD12.

UTIL Utility functions for MUSCOD-II for things like error handling, logging, interactive

mode, stack traces, etc.

Some directories hold currently deprecated or non-maintained code: QUICKAUX, ROBUST.

The following directories belong to the CMake build system: CMake, helperscripts.

4.2.2 CMake Compilation Flags

In the main makefile of the MUSCOD-II sources, ~/MUSCOD-II/MC2/makefile several optional

compilation flags can be set.

# user-defined parts of CFLAGS

# NDEBUG ... generate non-debug version

# MSPLOT ... include online graphics

# CSTATS ... include computational statistics

# PRSQP ... use partially reduced SQP strategy
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# FEASIMP ... use feasibility improvement for PRSQP

# NDIRDER ... do not use directional derivatives for PRSQP

# CENTDIFF ... use central difference gradient approximations

# REGOBJ ... use regularized objective

# LSQ ... allow least squares terms

# CLSQ ... allow continuous least squares terms

As an example, your compilation flags could be:

CCUFLAGS = -O2 -DNDEBUG -DCSTATS -DPRSQP -DMSPLOT -DLSQ -DCLSQ

# user-defined parts of FFLAGS

FCUFLAGS = -O2

Here, -O2 stands for the desired optimization level of your compiler.

Please note that after changing one of these flags no automatic compiling is performed after

calling make without arguments. Instead, one has to use:

make FRC=force_rebuild

4.3 Compiler Warnings

As a MUSCOD-II distribution contains also third-party software, the developers cannot guar-

antee that every of the source files will compile without an compiler warning.

These warnings are not of importance neither for the developers nor for the users and can some-

times be quite disturbing. Therefor the compiler warnings for these (individually checked) files

can be deactitaved by setting the MC2_FORGET_KNOWN_COMPILER_WARNINGS in the file user.mk

to YES. This is also the default behavior.

4.4 Compatibility of Compilation Flags

Here are listed some known imcompatibilities between different compilation flags:

• (NC): Are incompatible and will not compile together.

• (PW): Partially working. Will compile together, but some functionality of either of one

is not provided in some cases.

List of Imcompatibilities:

(NC) PRSQP and EXTPRSQP

(PW) CLSQ and EXTPRSQP: eval_clsq not evaluated in rkfXX and DAESOL-II.
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5 How to set up a problem

In order to solve an optimal control problem with the stand-alone version of MUSCOD-II,

two files have to be prepared by the user: a C or Fortran 77 file which defines the model

equations (objective, differential equations, constraints), and an ASCII file which contains the

correponding problem data (e.g., initial guesses, scaling factors, bounds).

1. Model Source File. Here, the model equations are defined either as ANSI C functions

or as Fortran 77 subroutines. In addition to these routines, a function or subroutine

def_model() must be provided in which the multistage optimal control problem is for-

mally defined.

The model file must be compiled as a dynamic library as described below.

2. Data File. The contents of this ASCII keyword file and its syntax are described below.

5.1 Running an existing problem from the test set

The directories MUSCOD_SUITE/Apps/TEST and MUSCOD_SUITE/Apps/MIP contain sample prob-

lems which lend themselves to being used as reference and templates. To launch one of these

problems, change to a binary directory (e.g., Debug) and inspect the files in the DAT subdirec-

tory. Each of these files describes a combination of a dynamic optimization problem and the

variant of the direct multiple shooting SQP algorithm to be used for the solution. To launch one

of these, e.g., DAT/reentry.dat, create a symbolic link in MUSCOD_SUITE/Apps/TEST/Debug

by entering

user@machine:~/.../TEST/Debug> ln -s ~/MUSCOD_SUITE/MC2/Debug/bin/muscod

(of course, this has to be done only once) and call

user@machine:~/.../TEST/Debug> ./muscod reentry

Alternatively, one may create an alias or to add the MC2/bin directory to the PATH environ-

ment variable (cf. your shell’s manual, e.g., man bash) to avoid the need of typing the prefix

~/MUSCOD_SUITE/MC2/Debug/bin/ of the muscod executable. Please note, that when using a

different MUSCOD-II binary, e.g. from a Release build, you have to adapt the symbolic link

(or any other of the described shortcuts).

5.2 Setting up a new problem

We recommend to add new problems to the existing MUSCOD_SUITE/Apps/TEST/Src (or MIP/Src)

directory. The user has to provide the model source file and the data file, say <problem>.cpp

and <problem>.dat (a detailed description of the structure of these files is given below). The

files have to be treated as follows:

• The model source file <problem>.cpp has to be added to the TEST/Src/SRC direc-

tory. Then, edit the CMakeLists.txt in this directory. Search for the first occur-

rence of the CMake variable TEST_LIBS in CMakeLists.txt. This should be looking
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like SET ( TEST_LIBS followed by a (long) list of names. Add the name of your source

file ( i.e. <problem>) to the list. Take care that you put the name before the end of the

list (the right parenthesis) and that you skip the file extension .cpp. Save your changes

to CMakeLists.txt.

• The data file <problem>.dat has to be added to the TEST/Src/DAT directory.

In the desired binary directory, say MUSCOD_SUITE/Apps/TEST/Debug, run make. The make

process deals automatically with the changes in CMakeLists.txt by calling CMake before

starting the build. After a successful build, one may execute the problem as described above.

6 The Model Source File

In the model source file, the dynamical model equations, the constraints, and the objective

functions of the optimization problem are defined. Furthermore, the user has to provide a

function for the setup of the optimization problem. It is highly recommended for the unversed

user to use an existing model source file as a template to create new problem source files.

6.1 The parts of the model - dynamic equations, constraints, and

objective functions

All functions explained below are defined in def_usrmod.hpp, so this file must be included in

every new model source file. To relate the function and variable names used in this section to

the nomenclature of the theoretical part of the manual the user may refer to Table 1.

ffcn(t, xd, xa, u, p, rhs, rwh, iwh, info)

This function describes the differential right-hand side of an ODE or DAE system. Argu-

ments t, xd, xa, u, and p are double pointers to the current time, differential and algebraic

states, controls, and model parameters respectively. Upon return of the function call, the

double pointer res should have been filled with the requested function values. Double

pointer rwh and long pointer iwh are auxiliary real and integer working arrays, and long

pointer info should return an error code indicating the status of the function evaluation.

gfcn(t, xd, xa, u, p, rhs, rwh, iwh, info)

This function describes the algebraic right-hand side of a DAE system. The arguments

are exactly the same as for the differential right-hand side.

afcn(t, xd, xa, u, p, amat, lda, rwh, iwh, info)

This function describes the left-hand side of a DAE system. Double pointer amat should

be filled with the left-hand side matrix upon return of the function call. Long pointer

lda holds the leading dimension of amat as input. The other arguments are the same as

for the differential right-hand side.
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source file manual mathematical content

NMOS M number of model stages

NP np number of global parameters

NRC nrc number of (global) coupled constraints

NRCE nrce number of (global) coupled equality constraints. The first

NRCE of the total number NRC of coupled constraints are de-

fined to be equality constraints.

rcfcn rci coupled multi point constraint function

NXD nxi number of differential states on model stage i

xd xi differential state vector on model stage i

sd sxi,j differential node value on model stage i at node j

NXA nzi number of algebraic states on model stage i

xa zi algebraic state vector

sa szi,j algebraic node value on model stage i at node j

NU nui number of controls on model stage i

NRD nrdk number of decoupled constraints for specific constraint func-

tion at time tk.

NRDE nrdek number of decoupled equality constraints at time tk. The first

NRDE of the total number NRD of decoupled constraints are

defined to be equality constraints.

rdfcn rdi decoupled interior point constraint function

NPR nprk number of local constraint parameters for constraint point tk
pr prk local constraint parameter vector

afcn Bi invertible matrix in semi-explicit DAE formulation on model

stage i. By default: Bi ≡ II

ffcn fi differential right hand side function on model stage i

ftrans ci transition function on model stage i. Same syntax as ffcn.

gfcn gi algebraic right hand side function on model stage i

mfcn Φ Mayer term of objective

lfcn L Lagrange term of objective

lsqfcn lpk,l
c
k least squares residual vector function

Table 1: Correspondence between customary MUSCOD-II source file notation and mathemat-

ical notation

The RKFSWT integrator supports the detection of implicitly defined switching events within

a model stage, thus eliminating the need for a multi-stage modelling approach and the intro-

duction of transition stages under certain circumstances.

Implicit switches are realized by an implicit switching function, which enables the detection

of a switching event by the change of sign in the switching function residuals and a state

jump function, which allows for an update of the differential states once a switching event has

occurred. The interfaces of the implicit switching function and the state jump function are as
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follows:

swtdtcfcn(imos, tau, xd, xa, u, p, nstep, iswt, nswsta, res, rwh, iwh, info)

This function is called to detect implicitly defined switch conditions. imos is a long

pointer to the current model stage index. tau, xd, xa, u, and p are double pointers to the

current physical time, differential and algebraic states, controls, and model parameters

respectively. The parameter nstep is undocumented. iswt is a long pointer to a list of

indices of the switches to be evaluated by the current function call. nswsta is a long

pointer to the length of the index list pointed to by iswt. Upon return of the function

call, res should have been filled with the requested switch function residuals.

swtexecfcn(imos, tau, xd, xa, u, p, iswt, rwh, iwh, info)

This function is called when an implicitly defined switch condition has been detected.

iswt is a long pointer to the index of the flipped switch, while the meaning of all other

parameters is identical to swtdtcfcn. Upon return of the function, the differential states

xd should have been updated if desired.

The switching functions described above are assigned to the model stages by using the

def_swt function within the model definition function, see below.

The ODE model’s right-hand side ffcn is provided with the current switch structure by way

of the following mechanism, that had to favour backward-compatibility over clarity. Although

still declared a long *, the info pointer of ffcn no longer points to a single long integer value,

but may instead be safely typecast into a pointer to the structure rkfXXswt_info_t defined in

MC2/IND/RKFSWT/ind_rkfXXswt.hpp with the following declaration:

typedef struct {

long info; // return code, as usual

long* swt; // sign structure of the NSWT switches on the stage

} rkfXXswt_info_t;

It is up to the model implementor to respect the swt vector within ffcn so as to evaluate the

proper model. Using this mechanism, implicit discontinuities in the model’s right-hand side

may be covered. In order to cover discontinuities in the differential states themselves, modify

them from within swtexecfcn.

rfcn(ts, sd, sa, u, p, pr, res, dpnd, info)

This function describes the decoupled and coupled interior point constraints. Double

pointer ts contains the time point at the multiple shooting node where the function is

evaluated. Double pointers sd, sa, u, and p hold the differential and algebraic node values,

the control node values, and the parameter values, respectively. Interior point constraints

may use separate local parameter values, which are provided by double pointer pr. Upon

return of the function call, double pointer res should be filled with the interior point

constraint residuals. Double pointer dpnd holds information about the dependencies of

the functions w.r.t. the input variables. The user should start each implementation of an

interior point constraint with
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if (*dpnd) { *dpnd = RFCN_DPND(*ts, *sd, *sa, *u, *p, *pr); return;},

where arguments of RFCN_DPND which are not used in the function should be set to NULL.

Long pointer info should contain the error code after evaluation, as usual.

mfcn(ts, sd, sa, p, mval, dpnd, info)

This function represents a Mayer-type objective function. Double pointer mval should

contain the Mayer objective value after evaluation. The other arguments have the same

meaning and usage as the corresponding arguments in the interior point constraints.

lfcn(t, xd, xa, u, p, lval, rwh, iwh, info)

This function represents a Lagrange-type objective function. Note, that the actual objec-

tive function value is the integral over time of this function. Double pointer lval should

return the value of the Lagrange term at time t. All other arguments are the same as in

the differential right-hand side.

6.2 Putting the model together - the model definition function

The essential function in the model source file is

def_model() (without arguments)

that formally defines the optimization problem by calling internal MUSCOD-II functions

(declared and documented in def_usrmod.hpp or def_usrmod_f77.hpp). Here the pre-

viously defined model functions are assigned their role in the optimization problem. If

any of the model functions does not exist for a given problem, the NULL pointer must be

passed instead of the function pointer.

In def_model() the following internal MUSCOD-II functions must be called appropriately:

def_mdims(NMOS, NP, NRC, NRCE)

must be used to specify the global model dimensions, where

NMOS is the number of model stages,

NP the number of global parameters,

NRC the total number of coupled interior point constraints (i.p.c.), and

NRCE is the number of those that are equality constraints (thus NRCE ≤ NRC). By con-

vention, the first NRCE components of the res vector in the coupled i.p.c. functions

rcfcnXX are interpreted as equalities, the remaining ones are required to be greater

than zero. Cf. section 2.2.

def_mstage(I, NXD, NXA, NU, mfcn, lfcn, jacmlo, jacmup, astruc,

afcn, ffcn, gfcn, rwh, iwh)

Call to define a model stage with index I, where

NXD is the differential state dimension,
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NXA the algebraic state dimension, and

NU is the control dimension.

mfcn is a pointer to a Mayer term function (or NULL) to be evaluated at the end of the

stage, and

lfcn a pointer to a Lagrange term (or NULL).

For documentation of the left-hand side matrix function afcn, and of the integers jacmlo,

jacmup, and astruc that provide structural matrix information please consult the

DAESOL-manual [BBS99]; setting the integers to zero is equivalent to not defining

any structural information.

ffcn is a pointer to the differential right hand side function,

gfcn the pointer to the algebraic right hand side function (or NULL).

rwh, iwh are real and integer work arrays which can be used to pass a common workspace

to the stage functions.

def_mpc(I, SCOPE, NPR, NRD, NRDE, rdfcn, rcfcn) (optional)

Call def_mpc to define interior point constraints (i.p.c.) on a stage.

I is the stage index,

SCOPE is a string whose first character should be one of "s","i","e" or "*" (case

insensitive), indicating if the following constraint functions shall be evaluated at the

start point of the stage only (s), at the interior multiple shooting nodes (i), at the

end point (e), or at all multiple shooting nodes of the stage together (*).

Note: The end point can only appear in the final model stage, otherwise the start

point of the following stage must be used.

PR is the number of local parameters pr used in rdfcn() and rcfcn(),

NRD defines the dimension of the decoupled residual vector res in rdfcn.

NRDE leading componenents of this vector are required to be zero, while the remaining

ones are required to be greater than zero. It should be noted here that the coupled

rcfcn-functions at different points have to agree in the dimension NRC of the residuals

res, cf. section 2.2.

def_lsq(I, SCOPE, NPR, NLSQ, lsqfcn) (optional)

may be called to define least squares terms contributing to the objective on a stage.

I is the stage index,

SCOPE selects the contributing nodes. The string should contain "s","i","e" or "*"

(case insensitive) as first character to define least squares terms lp() at the corre-

sponding multiple shooting nodes, as described in def_mpc(), or alternatively "c"

to define a continous least squares term lc() that is integrated on the model stage

analogously to a Lagrange term.
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Attention: The continuous least squares terms can so far only be treated by the

integrators DAESOL, DDASAC, RKF45ADJ, and RKFSWT. Also, this command

is only allowed if the CMake flags LSQ resp. CLSQ are set.

NPR indicates the dimension of the vector of local parameters.

NLSQ defines the dimension of the residual vector res in lsqfcn(). The function

lsqfcn() obeys the same syntax as rdfcn() and may depend also on the local

parameters pr, the dimensions of which are specified in def_mpc()8.

def_mio(minp, mout, mplo) (optional)

allows for an (optional) definition of input, output and external plot functions. The

input function minp is called by MUSCOD-II immediately after the problem data file (see

subsection 7.1) has been read. (Data passed through minp supersedes the data read from

the data file.) The output function mout gets is called by MUSCOD-II with the final

results (as standard arrays) and thus allows to implement a user defined output, i.e. by

printing some results into an external file.

def_plotoptions(min, max, f1, f2, f3, f4) (optional)

allows to adjust plot options. The first two arguments set the plot granularity of the

above mplo function, and also of the online graphics. The values specify the lower and

upper bound for the number of calls to mplo per multiple-shooting interval. The default

values are min=5 and max=200. If you require more precise plot data, you should increase

the lower bound. Excessively large values of the upper bound will damage the online

graphics performance.

The flags f1, f2, f3, f4 turn on or off the plotting of f1 vertical lines to indicate stage

transition times, f2 plotting of MS nodes, f3 plotting of state bounds and f4 plotting of

control bounds. The default value is 1 (yes) for all of them.

def_swt(I, NSWT, swtdtcfcn, swtexecfcn) (optional)

Attention: Implicit switches are currently supported by the RKFSWT integrator only.

def_swt defines NSWT implicit switches (discontinuities in the states and/or right-hand

side) on model stage I. swtdtcfcn is a mandatory pointer to the switch detection function

called to detect switch conditions during integration, while swtexecfcn is a mandatory

pointer to the switch execution function called only if a switch actually happens.

7 Data and Options

MUSCOD-II uses a keyword based data file for problem data input. Furthermore, this file is

also used to override default values for algorithmic settings and options (which in turn can

again be overridden by command line options). The order of data items in the problem data

8For the continuous least squares terms lc() the local parameters mean an additional argument, in contrast

to the formulation used in subsections 2.4 and 3.4: now, the local parameters are treated like piecewise constant

controls, each one used on the multiple shooting interval after the point it is originally defined for.
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file is relevant only in the sense that the first keyword match from the beginning of the file

determines the data item which is read, i.e., possible further keyword matches are ignored.

7.1 Data and the DAT File

Table 2: Correspondence between MUSCOD-II data file notation and manual notation

data file manual mathematical content

nshoot mi number of multiple shooting nodes on model stage i

nstop(i,j) nstopi,j number of integrator stopping points on m.s. interval Ii,j
sd(i,j) sxi,j differential multiple shooting node value at time point ti,j on

model stage i.

sa(i,j) szi,j algebraic multiple shooting node value at time point ti,j on

model stage i.

7.1.1 Data items in DAT Files

Each data item has the form:

key

.

. (associated data)

.

The keyword must start at the beginning of a line and must be terminated by a white-space

character (the rest of the line is ignored and can be used, e.g., for comments). The following

line(s) must then contain the data associated with the keyword. Six different types of data may

occur, namely long scalar (long), long vector (LVec), double scalar (double), double vector

(DVec), string (Str), and string vector (StrVec). Comments can follow any line exept those

containing a string or an element of a string vector. Note that vectors are written one element

a line with element indices starting from zero.

Example (data items)

s_spec ! long

2 ! start integration

nshoot ! LVec with three elements

0: 4 ! initial stage

1: 6 ! intermediate stage

2: 4 ! final stage
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of_sca ! double

1.0 ! unscaled

p_sca ! DVec with one element

0: 1.0E-8 ! catalyst concentration

of_unit ! Str

g/h

xd_name ! StrVec with three elements

0: Substrate Concentration S

1: Product Concentration P

2: Volume V

sd(1,1) ! DVec with arbitrary number of elements

ALL: 1.0

All keywords are explained in the next section.

7.1.2 Keywords in DAT Files

There are keywords containing one argument

key(arg1)

and keywords containing two arguments

key(arg1,arg2)

where arg1 specifies the model stage and arg2 in addition specifies one or more multiple

shooting points on this model stage. Hence, arg1 may be

• a valid model stage index

• an asterisk * (“all model stages”)

and arg2 may be

• a valid multiple shooting point index for the model stage specified by arg1

• the letter S or s (“start point”)

• the letter I or i (“interior points”)

• the letter E or e (“end point”, valid only for final model stage)

• an asterisk * (“all multiple shooting points”, including “end point” on final model stage)
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Note that model stage indices and multiple shooting point indices start from zero. (Therefore,

arg2 = S and arg2 = 0 are equivalent.)

Example (keywords with arguments)

sd_sca(*,*) ! all multiple shooting points on all model stages

sd(*,S) ! ‘‘start point’’ on all model stages

u(0,*) ! all multiple shooting points on first model stage

rd_sca(0,S) ! ‘‘start point’’ on first model stage

d_sca(0,I) ! ‘‘interior points’’ on first model stage

rd_sca(0,E) ! ‘‘end point’’ (assuming there is only one model stage)

Some of the data items are optional – if not explicitly specified, an internal default is used.

In the following description, optional data items are indicated by keywords in square brackets

[ ], and the corresponding default is given.

7.2 Keywords Defining the Optimal Control Problem

nshoot

numbers of multiple shooting intervals on model stages (LVec)

[grid(*)]

multiple shooting grids on model stages (DVec)

default: equal spacing of grid points

[mos_start], [msn_start]

model stage start index and multiple shooting point start index for partial reoptimization

(long)

defaults: 0

p, p_sca, p_min, p_max

global model parameter start values, scale factors, and bounds (DVec)

[p_fix]

global model parameter fixed value flags (LVec) (if p_fix[i] is 1, then parameter p[i]

is fixed at its start value)

default: no global model parameters fixed

h, h_sca, h_min, h_max

model stage duration start values, scale factors, and bounds (DVec)
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[h_fix]

model stage duration fixed value flags (LVec) (if h_fix[i] is 1, then duration h[i] is

fixed at its start value)

default: no model stage durations fixed

[s_spec]

specification mode for state variable start values (long)

0 : all values sd(*,*), sa(*,*) specified in data file

1 : only values sd(*,S), sa(*,S) and sd(M−1,E), sa(M−1,E) specified, other values

automatically generated by linear interpolation (M denotes the number of model

stages)

2 : only values sd(0,S), sa(0,S) specified, other values automatically generated by

integration

3 : only values sd(0,S), sa(0,S) specified, other values automatically generated by

integration. The integration will be repeated, with the initial values replaced by

the values at the end of the time horizon, until a steady state is reached or the

maximum number of simulation_maxiter iterations has been performed. To cope

with special cases with shifted variables, see simulate_shift_select.

default: 0

[simulation_maxiter]

Maximum number for repeated integration to reach steady state (long) (relevant only if

s_spec is 3)

default: 100

[simulate_shift_select]

For every differential variable an index is given. Any value less or equal to −2 for variables

with fixed initial value, the value −1 for all variables for which the initial value is replaced

with the value at the end of the time horizon (after integration), and the index 0 ≤ i ≤ nx
of another differential variable, if for variable j a periodic shift is performed (as in the SMB

example), xk+1
j (t0) = xki (tf ) in iteration 1 ≤ k ≤simulation_maxiter (LVec) (relevant

only if s_spec is 3, works only if number of differential states is constant)

default: -1

[s_itol], [s_pert]

start integration tolerance, state perturbation factor (double) (relevant only if s_spec is

2 or 3)

defaults: 1.0E-6, 0.0

[nstop(*,*)]

number of integrator stopping points on corresponding multiple shooting interval(s) –

only needed for continuous least squares terms. (long) .
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sd(*,*), sd_sca(*,*), sd_min(*,*), sd_max(*,*)

differential state start values, scale factors, and bounds (DVec)

[sd_fix(*,*)]

differential state fixed value flags (LVec) (if sd_fix(arg1,arg2)[i] is 1, then the corre-

sponding differential state is fixed at its start value by internally setting the lower and

upper bounds to sd(arg1,arg2)[i])

default: no differential states fixed

sa(*,*), sa_sca(*,*), sa_min(*,*), sa_max(*,*)

algebraic state start values, scale factors, and bounds (DVec)

[u_type(*)]

control parametrization types (LVec)

0 : piecewise constant

1 : piecewise linear (continuous on model stages only, not between)

2 : piecewise continuous linear with matching across model stage boundaries

(“external” matching)

3 : piecewise cubic (continuously differentiable on model stages)

4 : piecewise cubic with matching across model stage boundaries

(“external” matching)

default: all controls piecewise constant

[u_midx(*)]

“external” matching indices for controls (LVec) (relevant only at model stage boundaries

and if u_type is 2 or 4)

default: matching of controls with same index

u(*,*), u_sca(*,*), u_min(*,*), u_max(*,*)

control start values, scale factors, and bounds (DVec)

[u_fix(*,*)]

control fixed value flags (LVec) (if u_fix(arg1,arg2)[i] is 1, then the corresponding

control is fixed at its start value by internally setting the lower and upper bounds to

u(arg1,arg2)[i])

default: no controls fixed

[ue(*)], [ue_sca(*)], [ue_min(*)], [ue_max(*)]

“end of model stage” control start values, scale factors, and bounds (DVec) (relevant only

if u_type is 1 or 3)

default: same values as at previous multiple shooting point

[udot(*,*)], [udot_sca(*,*)], [udot_min(*,*)], [udot_max(*,*)]
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control slope start values, scale factors, and bounds (DVec) (relevant only if u_type is 3

and 4)

defaults: all elements udot(*,*), udot_sca(*,*), udot_min(*,*), and udot_max(*,*)

set to values 0.0, 1.0, -100.0, and 100.0, respectively

[uedot(*)], [uedot_sca(*)], [uedot_min(*)], [uedot_max(*)]

“end of model stage” control slope start values, scale factors, and bounds (DVec) (relevant

only if u_type is 3)

default: same values as at previous multiple shooting point

pr(*,*), pr_sca(*,*), pr_min(*,*), pr_max(*,*)

local interior point constraint parameter start values, scale factors, and bounds (DVec)

[pr_fix(*,*)]

local i.p.c. parameter fixed value flags (LVec) (if pr_fix(*,*)[i] is 1, parameter pr(*,*)[i]

is fixed at its start value)

default: no local i.p.c. parameters fixed

g_sca(*,*)

algebraic right-hand side scale factors (DVec)

rd_sca(*,*)

decoupled i.p.c. scale factors (DVec)

rc_sca

coupled i.p.c. scale factors (DVec)

of_sca, of_min, of_max

objective scale and expected range (double)

7.2.1 Keywords for Robust Optimal Control

Some additional keywords allow to automatically create a robustified version of an optimal con-

trol problem. For theory and algorithms, and to understand the implications of the approximate

linearization robustification approach used in MUSCOD-II, please refer to [DBK06].

rob_sd0, rob_p

Select the initial values and model parameters that are considered uncertain. Set a 1 for

each uncertain value, a 0 for each conventional value.

rob_may(*)

Selects the Mayer type objective functions (one per model stage) to be robustified against

uncertainty of the selected initial values and/or parameters. Set a 1 if the Mayer type

objective on the selected stage is to be robustified, a 0 if not. Default: 0.

rob_rd(*,*)

33



Selects the decoupled point constraints to be robustified against uncertainty of the selected

initial values and/or parameters. Set a 1 for each constraint on the selected stage and

node that is to be robustified. Default: all 0.

rob_cov_sd0, rob_cov_sd0_p, rob_cov_p

Sets the covariance submatrices Σx0,x0 ∈ Rnx×nx , Σx0,p ∈ Rnx×np , and Σp,p ∈ Rnp,np that

form the overall covariance matrix

Σ =

(
Σx0,x0 Σx0,p

ΣT
x0,p

Σp,p

)
.

Default: Σ = Id, i.e., Σx0,x0 = Id, Σp,p = Id, Σx0,p = 0.

rob_gamma

Set the overal scale factor for the penalties on objective and residuals computed from the

linearizations (double). Defaults to 1.0

7.3 Keywords Selecting Dynamically Loadable Modules

The following keywords define the algorithm used to solve the solve the optimal control problem.

For the names and a description of all available modules, refer to section 8. All settings may

be overridden on the command line, see section 7.7

libmodel Selects the model library compiled from the model source file. Defaults to the name

of the DAT file.

libhessian Selects the hessian algorithm module. Defaults to hess update, the BFGS update

with Powell modification.

libsolve Selects the globalization strategy module for the SQP algorothm. Defaults to

solve slse, the standard line search.

libcond Selects the condensing algorithm module for the condensing of the block sparse QP.

Defaults to cond std and should not normally need to be changed.

libtchk Selects the termination check module for the SQP algorithm. Defaults to tchk using

the KKT-tolerance as termination criterion.

libmssqp Selects the multiple shooting SQP algorithm. Defaults to mssqp standard.

libeval Selects the EVAL module variant. Defaults to eval ind.

libind Selects the ODE/DAE solver module to use per stage of the multi stage optimal control

problem. All stages default to ind rkf45, the 4th/5th order Runge–Kutta–Fehlberg

solver. You will want to set this to ind daesol for DAE and stiff ODE problems.

Unlike all other library selection options, this option takes a vector of strings as a value.

You need to specify an IND module per stage, like in the following example:
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0: ind_daesol ! DAE or stiff ODE on first stage

1: ind_strans ! transition stage

2: ind_rkf45 ! non-stiff ODE on second stage

libqps Selects the QP solver module to use for the solution of the condensed QP. Defaults to

qps qpopt, the C-converted solver QPOPT.

libplot Selects the visualization module. Defaults to plot pgplot. You’ll want to set this to

plot noplot if you take timings.

libmintoc Selects the mixed-integer optimal control module. Defaults to mintoc and does not

need to be changed.

7.4 Keywords Setting Algorithmic Options

The following keywords set algoritmic options. All settings have default values and may also

be overridden on the command line, see section 7.7. There is no need to specify any of the

keywords of this section in the DAT file. It is however good practice to do so, because it’s a

standard way to document the ideal algorithmic options for the efficient solution of the problem

you’re working on.

options acc Sets the termination criterion’s acceptable KKT tolerance kktacc of the solution.

The default value is 10−6. The value can be overridden on the command line using the

-a option.

options ftol Sets the final integration tolerance ftol. Should be lower than the termination

accuracy kktacc to ensure validity of the termination criterion. By default, its value is

acc/10. The value can be overridden on the command line using the -t option.

options itol Sets the initial integration tolerance itol. By default, the value is ftol. The value

can be overridden on the command line using the -h option.

options rfac Regularization factor rfac to make some non unique problems solvable. If the

original problem has a flat minimum this option may be useful, as it adds a tiny quadratic

term of all problem variables to the objective function to define the minimum uniquely;

the weighting factor is measured as a multiple of acc: 1/2 rfac acc PVars2. Defaults to

0.0 The value can be overridden on the command line using the -r option.

options levmar Sets the Levenberg–Maquardt regularization factor λ for the Hessian. Use

this to add λ · Id onto a Gauß-Newton approximation of the Hessian matrix. Defaults to

0.0. The value can be overridden on the command line using the -l option.

options qp featol Sets the feasibility tolerance of the QP solver QPOPT. Defaults to 10−8.

The value can be overridden on the command line using the --qp-featol option.

options qp relax Sets the constraint relaxation factor for infeasible QPs. When an infeasible

QP is detected, all infeasible constraints are shifted by rel times the amount of infeasibility,
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to make the next QP guaranteedly feasible. Defaults to 1.1. Useful values are greater

than 1.0. The value can be overridden on the command line using the --qp-relax option.

options nhtopy Allows to employ a homotopy strategy: beginning with a lower initial integra-

tion tolerance itol (and thus faster SQP iterations) set via options itol, the current inte-

gration tolerance ctol is tightened until – after nhtopy steps – ftol (set via options ftol)

is attained. The steps in ctol interpolate logarithmically between itol and ftol. A homo-

topy step is performed during the SQP iterations whenever the current accuracy cacc is

attained. It is determined as cacc = ctol · acc/ftol. By default, no homotopy is employed.

The value can be overridden on the command line using the -h option.

options frstart and options frmax Allows to freeze the integrator discretization after frstart

SQP iterations to possibly enable better convergence to the solution. The value can be

overridden on the command line using the -f option.

If the termination criterion is not satisfied after the mf following steps, the integrator

is once again given full freedom to adapt the discretization, to be maintained for the

following mf SQP iterations, etc. Currently works only for RKF integrators. Default: no

freezing (sf=0, mf=0). Syntax: -fsf,mf . Example: -f10,5.

options bflag Sets the MS-MINTOC strategy code, see section 11. The value can be over-

ridden on the command line using the -b option.

options cflag Cold start after a previous run of the problem. Uses only the attained state

and control variable values. Note that it is possible to perform small changes in the

DAT file between restarts, e.g. concerning bounds or output specifications. Dimensional

changes are not allowed, however. Default: no cold start. The value can be overridden

on the command line using the -c option.

options itmax Sets the maximum number of SQP iterations. The default is 100. The value

can be overridden on the command line using the -i option.

options qp expand Sets the expansion factor of the EXPAND strategy of the QP solver

QPOPT. EXPAND is a strategy to avoid cycling in the active set. Useful values range

from about 5 to 100, values greater than 9999999 by design of QPOPT disable the EX-

PAND strategy. This option only has an effect if the QP solver module qps_qpopt is

loaded.

options qp itmax Sets the maximum number of iteration of the QP solver per SQP itera-

tion. Defaults to 10000. The value can be overridden on the command line using the

--qp-itmax option.

options sflag Stop after each SQP iteration and wait for a keystroke. The value can be

overridden on the command line using the -s option.

options wflag Warm start after previous run of same problem. Warm start uses all informa-

tion from the previous ./RES/*.bin-file, including the Hessian approximation. Note that

it is possible to perform small changes in the DAT file between restarts, e.g. concerning
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bounds or output specifications. Dimensional changes are not allowed, however. Default:

no warm start. The value can be overridden on the command line using the -w option.

options iest hess plitt Another choice to be taken by the user is the initial scaling of the

Hessian matrix: either according to Plitt by setting the value to true, or as a unit matrix

by setting it to false. Default: true.

7.5 Keywords Setting Output Options

Keywords from this section control how much information is written to the console and to text

files in the ./RES/ directory during the solution process. There is no need to specify any of the

keywords of this section in the DAT file if you don’t want to.

options plevel screen Sets the print level for printout to the screen or console. Defaults to

0.

options plevel file Sets the print level for printout to the text files. Defaults to 1. The

value can be overridden on the command line using the -p option.

options plevel matlab Sets the print level for printout to the MATLAB log file. Defaults to

0. The value can be overridden on the command line using the --pmatlab option.

7.6 Keywords for Visualization

The following keywords influence the visualization of the optimal control problem’s solution

and of the solution progress. There is no need to specify any of the keywords of this section in

the DAT file if you don’t want to.

options output ps Enables or disables the output of PGPLOT graphics to PostScript files.

options output gif Enables or disables the output of PGPLOT graphics to GIF files.

[nhist]

number of values in objective/parameter history plots (long)

default: 0 (i.e., no objective/parameter history plots)

[plot_first], [plot_last]

index of first and last model stage to be visualized (long)

defaults: 0 and number of model stages minus one (i.e., all model stages are visualized)

[xd_name], [xa_name], [u_name], [h_name], [p_name]

state, control, duration, and parameter name strings (StrVec)

note: if the first nonspace character of the string is !, the corresponding variable will

not be plotted, if it is >, a new graphics window will be opened; a leading # switches to

logarithmic plotting.

Greek letters can be obtained with the prefix \g, e.g., ε = \ge. Sub- and upperscripts can
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be obtained by switching the mode with \d and \u, e.g., A0 = A\u0\d.

If Matlab online graphics are used, the name strings should be in Matlab syntax

defaults: Differential State Function, Algebraic State Function, Control Function,

Model Stage Duration, Global Model Parameter

[of_name]

objective name string (Str)

note: if Matlab online graphics are used, the name strings should be in Matlab syntax

default: Objective

[xd_unit], [xa_unit], [u_unit], [h_unit], [p_unit]

state, control, duration, and parameter unit strings (StrVec)

note: if Matlab online graphics are used the unit strings should be in Matlab syntax

default: empty string

[of_unit]

objective unit string (Str)

note: if Matlab online graphics are used, the unit strings should be in Matlab syntax

default: empty string

[t_unit]

time unit string (Str)

note: if Matlab online graphics are used, the unit strings should be in Matlab syntax

default: empty string

7.7 The Command Line

After compilation and linking, the executable (e.g. target muscod) can be called with a number

of options. The syntax is as follows:

muscod [-switch[=value] ... | --option[=value] ... ] problem

Square backets indicate optional parts of the command line. Any number of switches (named

with single characters) and options (long names) may be specified. Some of them may take

values, which may be appended immediately or after an assignment sign (’=’). Only the last

argument problem is mandatory as it determines the files to be used:

• ./DAT/<problem>.dat is the DAT file, see section 7.1.

• ./RES/<problem>.txt output files for detailed solution information.

• ./RES/<problem>.log chronological history of solution process.

• ./RES/<problem>.bin binary solution information for warm starts, potentially incom-

patible across machines.
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The list of possible options depends on the global compilation flags (cf. appendix 4.2.2).

When calling the executable muscod without any argument a brief list of possible options is

shown. The command line option --help prints a detailed list of switches and options, together

with a quick reference and the default values.

Furthermore, option values specified on the command line have precedence over those set

in the DAT file.

-akktacc Sets the termination criterion’s acceptable KKT tolerance kktacc of the solution.

Example: -a1e-6 (which gives the default acc = 10−6).

-bcode Sets the MS-MINTOC strategy code, see 11.

-c, -w Warm/Cold start after previous run of same problem. Warm start uses all information

from the previous ./RES/*.bin-file, including the Hessian approximation. The cold start

uses only the attained variable values. Note that it is possible to perform small changes

in the DAT file between restarts, e.g. concerning bounds or output specifications. Di-

mensional changes are not allowed, however. Example: either -w or -c.

-e ”Evaluate twice”. Use of two gradient evaluations per SQP iteration to better approxi-

mate the partially reduced Hessian. There exists a proof for asymptotically superlinear

convergence [Sch96, Sch98]. Example: -e.

This option only appears if PRSQP is employed.

-fsf,mf Allows to freeze the integrator discretization after sf SQP iterations to possibly enable

better convergence to the solution. If the termination criterion is not satisfied after the mf

following steps, the integrator is once again given full freedom to adapt the discretization,

to be maintained for the following mf SQP iterations, etc. Currently works only for RKF

integrators. Default: no freezing (sf=0, mf=0). Syntax: -fsf,mf . Example: -f10,5.

-hitol,N Allows to employ a homotopy strategy: beginning with a lower initial integration

tolerance itol (and thus faster SQP iterations), the current integration tolerance ctol is

tightened until – after N steps – ftol is attained. The steps in ctol interpolate logarith-

mically between itol and ftol. A homotopy step is performed during the SQP iterations

whenever the current accuracy cacc is attained. It is determined as cacc = ctol · acc/ftol.

By default, no homotopy is employed. Example: -h1e-3,1.

-iitmax Maximum number of SQP iterations. Example: -i100 (default).

-jcores Sets the number of CPU cores on multicore machines. Currently without effect.

-llmreg Sets the Levenberg–Maquardt regularization factor λ for the Hessian. Use this to

add λ · Id onto a Gauß-Newton approximation of the Hessian matrix.

-plevel Print level for ./RES/*.log-file, ranging from 0 to 3. A print level of 0 corresponds

to printing only the visible standard output into the log file whereas 3 is the maximum

output. If Matlab online graphics are used, the Matlab output buffer is printed into the

log file in case print level is greater or equal to 1.

Example: -p0 (default).
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-rrfac Regularization factor rfac to make some non unique problems solvable. If the original

problem has a flat minimum this option may be useful, as it adds a tiny quadratic term

of all problem variables to the objective function to define the minimum uniquely; the

weighting factor is measured as a multiple of acc: 1/2 rfac acc PVars2 Example: -r1.5

(default: 0.0).

This option appears only if the global compilation flag REGOBJ is set in the MC2/makefile.

-s Stop after each SQP iteration and wait for a keystroke. Example: -s.

-tftol Sets the final integration tolerance ftol. Should be lower than the termination accuracy

kktacc to ensure validity of the termination criterion. By default, its value is acc/10.

Example: -t1e-7.

--gif Enables output of the graphical visualization to GIF files in the ./RES/ directory. This

is only possible if the plot_pgplot visualization module is loaded.

--help Prints an extended list of all command line options, their effect, and their default value.

--libcondname Override the IND module specified in the DAT file. For a list of possible

values of name, refer to section 8.

--libdirpath Override the search path for dynamically loadable modules. Defaults to the

CMake installation directory.

--libevalname Override the EVAL module specified in the DAT file. For a list of possible

values of name, refer to section 8.

--libhessianname Override the hessian module specified in the DAT file. For a list of

possible values of name, refer to section 8.

--libindname Override the IND module specified in the DAT file. For a list of possible

values of name, refer to section 8.

--libmssqpname Override the MSSQP module specified in the DAT file. For a list of possible

values of name, refer to section 8.

--libplotname Override the visualization module specified in the DAT file. For a list of

possible values of name, refer to section 8.

--libqpsname Override the QP solver module specified in the DAT file. For a list of possible

values of name, refer to section 8.

--libsolvename Override the globalization strategy module specified in the DAT file. For a

list of possible values of name, refer to section 8.

--libtchkname Override the termination check module specified in the DAT file. For a list

of possible values of name, refer to section 8.
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--plotadjointsname Opens a new window in which the multipliers for the continuity con-

ditions of the differential equations at the multiple shooting nodes are plotted. Note that

these values can be seen as an approximation to the adjoint variables λ(t), however, they

are only defined and calculated on the MS nodes.

--pmatlablevel Sets the MATLAB logging level. Possible values range from 0 to 3 and increase

the amount of data written to the MATLAB log file.

This option only has an effect if the MATLAB header files and libraries were found at

compile time (when the bootstrap script was last run).

--ps Enables output of the graphical visualization to PostScript (PS) files in the ./RES/ di-

rectory. This is only possible if the plot_pgplot visualization module is loaded.

--qp-expandN Sets the expansion factor of the EXPAND strategy of the QP solver QPOPT.

EXPAND is a strategy to avoid cycling in the active set. Useful values range from about 5

to 100, values greater than 9999999 by design of QPOPT disable the EXPAND strategy.

Example: --qp-expand50 (default).

This option only has an effect if the QP solver module qps_qpopt is loaded.

--qp-featoltol Sets the feasibility tolerance of the QP solver QPOPT.

Example: --qp-featol1e-8 (default).

This option only has an effect if the QP solver module qps_qpopt is loaded.

--qp-itmaxitmax Sets the maximum number of QP solver iterations per SQP iteration. Ex-

ample: --qp-itmax10000 (default).

--qp-relaxrel Sets the constraint relaxation factor for infeasible QPs. Useful values are

greater than 1.0. When an infeasible QP is detected, all infeasible constraints are shifted

by rel times the amount of infeasibility, to make the next QP guaranteedly feasible.

Example: --qp-relax1.1 (default).

--plotadjoints Opens an additional output window in which the adjoint trajectories of the

ODE are drawn.

--lagmulregreg Regularization of the multipliers resulting from solution of the condensed QP.

Applies a singular value decomposition to the matrix of active constraints and determines

the multipliers with minimum `2 norm from the set of multipliers satisfying stationarity.

This helps for convergence problems that are caused by LICQ violation. The parameter

reg gives the cutoff threshold for the smallest accepted singular value. Setting reg to zero

disables this feature (default). Example: --lagmulreg1e-08

8 Dynamically Loadable Modules

MUSCOD-II incorporates a variety of different algorithms, as a combination of different dy-

namically loadable libraries. The choice between these libraries is performed on three levels:
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default values that are overridden by settings in the DAT file of the problem, Section 7.1,

which in turn can be overridden by command line options. The shared object files (dynamic

link libraries) are loaded on startup of MUSCOD-II.

8.1 SQP Algorithms

For overall control of SQP solution process, the following shared objects are provided:

• mssqp standard: The standard multiple shooting SQP algorithm.

• mssqp nmpc gn: Nonlinear model-predictive control with a Gauß-Newton approximation

of the Hessian.

• mssqp mhe gn: Moving horizon estimation with a Gauß-Newton approximation of the

Hessian.

• mssqp picard: A Newton-Picard algorithm. Alpha stage, usage strongly discouraged.

8.2 ODE/DAE Solvers

To control the solution of the ODE/DAE system, the following shared objects are provided.

Their individual capabilities are summarized in table 3.

• ind daesol: Our preferred variable order variable step size BDF method for stiff and non-

stiff ODE and DAE systems. Use ind daesol spa for the sparse variante of DAESOL.

Use ind daesol prsqp or ind daesol spa prsqp if you use PRSQP.

• ind rkf12: The 1st/2nd order Runge-Kutta-Fehlberg method.

• ind rkf23: The 2nd/3rd order Runge-Kutta-Fehlberg method.

• ind rkf45: Our preferred Runge–Kutta solver, the 4th/5th order Runge-Kutta-Fehlberg

method.

• ind rkf45adj: The 4th/5th order Runge-Kutta-Fehlberg method, currently the only

solver capable of computing adjoint sensitivities. Use ind rkf45adj spa for a sparse

variant using TD12.

• ind rkf78: The 7th/8th order Runge-Kutta-Fehlberg method.

• ind rkf7b: A 7th/8th order Runge-Kutta method by H.G.Bock.

• ind rkfswt: The 4th/5th order Runge-Kutta-Fehlberg method, currently the only solver

capable of treating implicitly discontinuous ODE systems.

• ind strans: Stage transition solver for multistage optimal control problems.

• ind nullslv: Null solver, does nothing. It can be used to define NLP-Problems without

any underlying dynamic system.

42



In addition, the following solvers are available:

• ind ddasac: Another ODE/SAE solver. Use ind ddasac adf for models with derivative

functions generated by ADIFOR. Use ind ddasac prsqp or ind ddasac adf prsqp if you

use PRSQP.

• ind mbsnat: The multibody system solver MBSSIM. Usage discourages as MBSSIM is

currently unmaintained.

• ind metanb: The METANB solver from PARFIT.

Solver ODE Stiff ODE DAE CLSQ SPA ADJ ADF Switches

ind_rkf12 •
ind_rkf23 •
ind_rkf45 •
ind_rkf78 •
ind_rkf7b •
ind_rkf45adj • • • •
ind_rkfswt • • •
ind_daesol • • • • •
ind_ddasac • • • • •
ind_mbsnat • • ? ?

ind_metanb • • •

Table 3: Available ODE/DAE solvers and their capabilities.

8.3 Computation of the Hessian

For the computation or approximation of the Hessian, the following shared objects are provided:

• hess const: Constant Hessian matrix for simplified Newton method. Good for refinement

of almost converged solutions.

• hess finitediff: Calculation of Hessian approximation from finite differences. Very

efficient for systems with few state variables and many multiple shooting intervals. Needs

module solve tbox to cope with possibly non-positive-definite Hessian approximations.

• hess gaussnewton: Hessian approximation for least-squares objective functionals. Very

efficient for problems with a solution with small objective value.

• hess update: variable metric Hessian approximation. By default, BFGS updates with

Powell modification are selected.

For expert users: By manually changing the source code in hess update.cpp, the

following alternatives may be realized:

– Update formula:
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∗ BFGS updates by defining BFGS UPDATE.

∗ DFP updates by defining PSB UPDATE.

∗ PSB updates by defining PSB UPDATE.

∗ SR1 updates by defining SR1 UPDATE.

– For the BFGS update there exist modifications to keep the Hessian matrices positive

definite which may be selected by manually changing the source code in hess update.cpp:

∗ Powell modification of the BFGS update by defining MOD BFGS POWELL.

∗ Swaney modification of the BFGS update by defining MOD BFGS SWANEY.

∗ Nocedal modification of the BFGS update by defining MOD BFGS NOCEDAL.

• hess limitedmemoryupdate: Limited memory version of hess update. Only BFGS up-

dates are realized for this module.

For expert users: You can choose the update modification, and the initial scaling of the

Hessian matrix by modifying the file hess limitedmemoryupdate.cpp in the same way

as described for the module hess update. Here you have the additional option whether

the number of update vectors is set adaptively via the flag VARIABLE MEMORY, or if a fixed

maximum number is used. The macros HAP LLIMIT and HAP ULIMIT provide lower and

upper limits.

8.4 Globalization Strategy

For the calculation of SQP correction step, the following shared objects are provided:

• solve alf for the Schittkowski augmented line search.

• solve fullstep to disable globalization and always perform the full SQP step.

• solve lsq for a line search via natural level functions, suited for least-squares problems.

• solve slse for a standard line search. For NMPC, the variants solve slse nmpc and

solve slse fullstep nmpc exists. In contrast to the standard line search, they both also

includes simple bounds in the line search. The fullstep variant always attempts to do a

full step first.

• solve tbox for a boxstep trust region technique. This variant is especially required if you

work with Hessians that are not guaranteed to be positive definite (SR1 or PSB updates,

BFGS updates without modification, exact Hessians by finite differences).

• solve vmcwd for a line search with a watchdog technique.

• solve vmcwd nmpc for a line search with a watchdog technique. For NMPC, the variant

solve vmcwd nmpc exists that also includes simple bounds in the line search.

• solve wdog A watchdog technique using Powell’s penalty function.

• For expert users: By manually changing the source code, the following alternatives may

be realized:

44



– In the slse and tbox algorithms you have the choice of using a second order correction

step via the flag SOC STEP to be set in solve slse common.cpp or solve tbox.cpp.

– The flag LARGER_ALPHA can be used in all modules to enforce the calculation of a

maximum line search stepwidth.

– The flag UPHILL_MOD sets an optional uphill modification that introduces a new

weighting parameter for the objective function in the line search function to enforce

descent of the line search function.

– The value MAX_ALPHA holds the maximum step length and defaults to 1.0.

8.5 Condensing of the Block Sparse QP

For the condensing of the block sparse multiple shooting QP, the following shared objects are

provided:

• cond_std: The standard condensing algorithm reduces the large amount of independent

variables of the multiple shooting method by exploiting the linearized continuity condi-

tions. Only the condensed quadratic program is then solved by a dense QP solver.

• cond_min: The minimal condensing algorithm is normally not used. It only cares about

the control discretization and a separabile formulation for the global unknowns. It does

not eliminate state variables using the linearized continuity conditions. This variant may

be useful in conjunction with a sparse QP solver (such as OOQP) which is able to exploit

the sparsity in the uncondensed QP. For dense QP solvers (the majority of supported QP

codes), using this variant will result in inferior performance.

• For expert users: By manually changing the source code, the following alternatives may

be realized:

– You have the option to truncate the step to avoid violation of bounds via the flag

TRUNC_STP (inactive by default). This may be advantageous if no feasible QP solution

was available (only a relaxed one), and bounds should be given priority over linearized

continuity conditions.

– Not all state bounds are given to the lower level QP solver: only potentially active

ones, i.e. those that have previously been active are condensed and passed on. By

inactivating the flags SD_BOUNDS and SA_BOUNDS (default: active) for differential and

algebraic states the corresponding bounds are neglected and not even checked.

– The flag RECALC_QP (default: active) enforces a recalculation the QP problem in the

same SQP iteration, if the potentially active bounds have changed.

8.6 Solution of the Condensed QP

For the solution of the condensed QP, the following shared objects are provided:
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• qps_qpopt is an interface to our in–house C-converted version of the QP solver QPOPT

1.0-10 by Gill, Murray and Saunders. This is by far the most important QP solver

available. The solver itself is included in Packages/QPOPT and is licensed to IWR for

academic purposes.

• qps_ooqp is an interface to the open–source sparse interior–point QP solver OOQP, avail-

able from the COIN-OR project web site. It is up to now the only publicly available sparse

QP solver interfaced with MUSCOD-II and should be used in conjunction with the min-

imal condensing module cond min.

Using this solver inside an SQP algorithm is usually ineffective. It has however been

successfully used for highly sensitive multibody ODE systems in robotics for which con-

densing leads to ill-conditioned QPs.

• qps_bqpd is an interface to the QP solver BQPD by R. Fletcher. The solver itself is not

included and has to be separately licensed and obtained from the University of Dundee.

• qps_old_qpopt is an interface to the QP solver QPOPT (Fortran version 1.0-9), part of

the NAG library. The interface is deprecated, it is recommended to use the qps_qpopt

instead.

• qps_old_qpsol is an interface to the QP solver QPSOL (now superseeded by QPOPT),

part of the NAG library. The interface is deprecated, it is recommended to use the

qps_qpopt instead.

• qps_old_lssol is an interface to the linear least-squares solver LSSOL, part of the NAG

library. Using this solver is recommeded for QPs which have only few active constraints

in the solution. The interface is experimental.

• The solvers ve02 and ve17 available in older releases of MUSCOD-II have been removed

as these codes are nowadays considered obsolete.

• For expert users: By manually changing the source code, the following alternatives may

be realized:

– The active set is stabilized by setting the flag ACTSTAB (default: active) that introduces

a relaxed tolerance for previously inactive constraints.

– The QPOPT solver writes a file qpopt.txt providing detailed information about the

QP solution process if you set msglvl to one of the values 5, 10, 20, or 30 in the

file qps qpopt new.cpp.

– The options BIGBND and BIGSTP define the magnitudes of bounds or steps that are

considered infinite. The default values are 106, and it may be necessary to rise them

to 1016 for ill-conditioned QPs.
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8.7 Termination Check for the SQP Algorithms

For the termination check of the SQP algorithm, there are two possible termination criteria,

namely

• tchk using the KKT-Tolerance and

• tchk loccont which is based on the local contraction theorem. You might need the

-lagmulreg option for a regularization of the Lagrange Multipliers.

For a detailed description of both see: [Sch09].

8.8 Graphical Visualization of the Results

Graphical visualization of the convergence process and the optimal control problem’s solution

is realized by using one of the following shared objects:

• plot pgplot: Visualization using the PGPLOT library.

• plot matlab: Visualization using MATLAB. This is variant is currently not maintained.

• plot noplot: No visualization. This is especially useful if you’re going for minimum

computation times (many runs, publication, etc.)

8.9 Restrictions in the Choice of Modules

Some combinations of algorithms are not sane from a mathematical point of view, or are

unsupported in the current implementation. The resulting restrictions are listed in this section.

• With the SR1 and PSB update, and with the unmodified BFGS update, the hessian

matrices do not need to be positive definite, so that you have to use a trust region

strategy.

−→ Use solve tbox if you use hess update with internally enabled SR1 or PSB update,

or BFGS update without a modification guaranteeing positive definiteness.

• The exact hessian computed using finite differences does not need to be positive definite,

so that you have to use a trust region strategy.

−→ Use solve tbox if you use hess finitediff.

• If your model uses a continuous least-squares objective (CLSQ), you must use an ODE/-

DAE solver that is capable of evaluating it.

−→ Use ind daesol, ind rkf45adj, or ind rkf45swt if you use CLSQ.

• If you use the sparse interior point QP solver OOQP, performance is usually improved by

leaving out condensing.

−→ Try using cond min if you use qps ooqp.
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9 MUSCOD-II output

MUSCOD-II provides information on algorithmic settings, on convergence behavior, and the

results on different levels, described in the following subsections. An additional possibility to

obtain information at runtime is to use the interactive version of MUSCOD-II, see Section 10.

9.1 Terminal Output

The terminal output of MUSCOD-II will start with some general information on the chosen
algorithmic settings,the current version of the software, and problem dimensions. Then SQP
iterations are described, e.g.,

>>>> SQP iterations

it qp qptol aset kkttol sobj |sinf| |vstep| |vstpr| |mulstp| |lgrd| alpha merit crit stat

0 9.402310 1.48E-05

1 42 1.48E-07 NEW 8.78E-02 9.314528 2.49E-04 2.96E-01 0.00E+0 1.18E+01 1.000000E+00 1.00 9.315597 REL SUCC

2 5 2.49E-06 NEW 9.08E-01 8.406353 2.53E-02 3.03E+00 0.00E+0 2.99E+00 3.010900E-01 1.00 8.521348 STD SUCC

3 33 1.00E-04 NEW 1.33E+00 7.078570 5.95E-02 4.08E+00 0.00E+0 1.47E+01 3.589541E-01 1.00 7.507059 STD SUCC

...

The explanation of the columns is given in Table 4.

column description

it Number of current SQP iteration

qp Number of QP iterations needed

qptol Tolerance given to the QP solver

aset Has the active set changed compared to last SQP iteration?

kkttol Karush-Kuhn-Tucker Tolerance used for termination check

sobj Objective function value

|sinf| Norm of infeasibility

|vstep| Norm of variable step

|vstpr| Norm of step in the primal variables

|mulstp| Norm of step in the dual variables

|lgrd| Norm of Lagrange gradient

alpha Step length deduced by line search

trad Trust region radius

tact Is trust region bound active?

merit Value of merit function

crit Relaxation of constraints? (STD or REL)

stat Status of iteration (SUCC, PEND, or BACK)

Table 4: Columns in the terminal output of MUSCOD-II

Finally, statistics on function evaluations and CPU time usage are displayed.
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9.2 Online Graphics

MUSCOD-II uses a powerful PLOT module that contains interfaces to different online graphic

software. Currently these are PGPLOT and MATLAB, a CairoGraphics implementation is envis-

aged. The plotting of differential and algebraic states, of control functions, and of parameters

and objective function histories are controlled by setting appropriate names in the dat file,

Section 7.1.

The PGPLOT visualization module plot pgplot reads several options from the file default.plot

as detailed in table 5

Options Possible Values Description

screen enabled on, off Switch on-screen visualization on or off.

screen width double Screen width in inch (pixels / dpi).

Recommended values are 10.6 for 1024 pixels,

13.3 for 1280 pixels, 16.6 for 1600 pixels.

screen aspect double Screen’s aspect ratio (height / width).

Recommended values are 0.75 for a 4:3 screen,

0.625 for a 16:10 widescreen.

screen hostname string PGPLOT X server host name,

e.g., jim.iwr.uni-heidelberg.de.

screen display int X server display number, usually 0.

screen screen int X server screen number, usually 0.

ps enabled on, off Switch generation of PostScript graphics

on or off.

ps append file on, off Whether to write all iterations’ figures

into the same PostScript file on multiple pages

ps width double PostScript paper width in inches.

Recommended values are 7.5 for portrait,

10.6 for landscape

ps aspect double PostScript paper aspect ratio. Recommended

values are 1.4142 for portrait,

0.7071 for landscape

ps color on, off Whether to generate a color or a grayscale

PostScript file

gif enabled on, off Switch generation of GIF graphics on or off.

gif width double GIF file width in inches

gif aspect double GIF file aspect ratio

Table 5: Options for the PGPLOT visualization module plot pgplot.

An even more flexible way to plot any function of states and controls, possibly also in a

time-dependent movie-like manner, is given by a problem-dependent usage of the PLOT module.

We refer here to examples that serve best to illustrate the broad applicability.

• MIP/lotkaindirekt: additional plotting of a switching function and an implicitely de-
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termined control

• MIP/robotpath: 2d-spatial and time dependent visualization of robot positions with

underlying prescribed trajectories, output to movie

• MIP/smb super: 1d-spatial and time dependent visualization of concentration profiles

with text and numbers, output to movie

• MIP/urethan and MIP/vpbimolcat: plotting of optimum experimental design sampling

decisions on a discrete time grid (transition stages only)

• MIP/oberle: zoom into small region in time of interest

• TEST/chain1d: 1d-spatial and time dependent visualization of controlled chain of masses

• TEST/parest: Visualization of fitting a model to measurement data

9.3 Result Files

By default, several files will be written to the RES subdirectory.

• ./RES/name.txt: detailed solution information

• ./RES/name.log: chronological history of solution process

• ./RES/name.bin: binary solution information for warm starts

• ./RES/name.ps: if switched on, a postscript (or gif) file of the online graphics

Furthermore, by using any -b option, compare Section 11, for example -b0, a new dat-file

will be written with the result of the optimization as starting point. This file is generically

named ./DAT/name_opt.dat. Note that also several opt may be concatenated. This file may

then in turn be used for restarts, possibly with slightly modified bounds (e.g., in homotopies),

for a repetition of plotting the optimal solution in a time efficient manner, and the like.

9.4 Matlab Logging

MUSCOD-II can export internal data to Matlab. This includes not only the results of the

computations but also most of the intermediate steps for each iteration of the full computation.

The main purpose of the Matlab logging capabilities is to exploit the flexibility of Matlab for

investigating bad convergence behavior in the Multiple Shooting SQP method. The full range

of numerical tools can be exploited, e.g., to calculate projected Hessians and their eigenvalues,

which can lead to insight about violated assumptions like LICQ or positive definiteness of the

projected Hessian. This may give rise to clues for a reformulation of the underlying optimization

problem. Additionally, the user may also find the flexibility of Matlab’s visualization tools

helpful. However, MUSCOD-II can slow down considerably when large amounts of data have

to be logged which is why Matlab logging is disabled by default in the MUSCOD-II suite.
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Reconfiguring the suite. We assume that you have checked out a fresh suite and have

it configured and compiled with bootstrap. The procedure to enable Matlab logging is the

following:

• Locate the Matlab installation on your file system. We assume here that Matlab has been

installed to /usr/local/matlab.

• Reconfigure the COMMON CODE package in the suite by calling the CMake-GUI, e.g.,

with

user@machine:~/MUSCOD_SUITE/Packages/COMMON_CODE/Debug> ccmake .

Enable the options PROVIDE_LOGGING_TO_MATLAB and PROVIDE_TYPE_CONVERSION_MATLAB.

Press “c” to configure the package. CMake will try to find your Matlab installation.

Sometimes, you have to help manually by setting the advanced variable MATLAB_DIR to

your Matlab installation path. Even that may not be enough: It is a known problem of

CMake (at least for version 2.6 and earlier) that libraries ending in a version number (e.g.,

.so.1.0, instead of .so) will not be found automatically. In Matlab 7.6, the following

needed libraries have that problem:

MATLAB_ICUDATA_LIBRARY /usr/local/matlab/bin/glnxa64/libicudata.so.36

MATLAB_ICUI18N_LIBRARY /usr/local/matlab/bin/glnxa64/libicui18n.so.36

MATLAB_ICUIO_LIBRARY /usr/local/matlab/bin/glnxa64/libicuio.so.36

MATLAB_ICUUC_LIBRARY /usr/local/matlab/bin/glnxa64/libicuuc.so.36

You can either create symbolic links, e.g., via

user@machine:/usr/local/matlab/bin/glnxa64> ln -s libicuuc.so.36 libicuuc.so

which is only possible if you have root access on your machine. Alternatively, you have to

type in the proper locations in the CMake-GUI. If you work in a 32bit environment, you

will have to exchange glnxa64 for glnx86. Press “c” and “g” to configure and generate

the Makefiles. Leave the CMake-GUI.

• Recompile COMMON CODE by calling

user@machine:~/MUSCOD_SUITE/Packages/COMMON_CODE/Debug> make install

• Call the CMake-GUI in your MC2 binary directory

user@machine:~/MUSCOD_SUITE/MC2/Debug> ccmake .
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• Enable the options MATLAB_SUPPORT

• Press “c” and fill in the possibly missing Matlab libraries like above.

• Configure, generate the Makefile, leave the GUI and recompile MUSCOD-II via

user@machine:~/MUSCOD_SUITE/MC2/Debug> make install

• Recompile your application, e.g., by

user@machine:~/MUSCOD_SUITE/Apps/TEST/Debug> make

Using Matlab logging. You can now have MUSCOD-II data logged to a file RES/problemname.mat

by via the --pmatlab<n> option of the MUSCOD-II executable. The print level <n> currently

knows two thresholds:

n=2: Log only primal and dual variables. The Matlab file will contain a single hierarchical cell

array called iterations which contains a struct for each iteration. The struct consists of

the substruct variables varstep, varnew, and mulnew, corresponding to the step in the

primal variables, the updated primal variables, and the updated dual variables, respec-

tively. The substructs are structs themselves. E.g., varnew.sd is a cell array containing

the differential Multiple Shooting states. To examine the differential state at the third

shooting node (attention: counted from 1 according to Matlab) at the end of the fifth

iteration, one calls

>> iterations{5}.newvar.sd{3}

in Matlab.

n=3: Log most of the intermediate data. The names in the iterations cell array will be close

to or the same as in the MUSCOD-II source code which shall serve as a reference here. In

this print level, there can be a lot of warnings in the output for values which are written

several times in one iteration, e.g., when line search damping has to be performed.

10 Interactive MUSCOD-II

MUSCOD-II incorporates an interactive mode that can be initiated by wither the -s command

line flag, or by pressing simultaneously the Ctrl and the c key at runtime9. The result will

be an interactive mode that waits for commands between SQP iterations. The list of possible

commands is given in Table 6.

Note that QP data and solution are always unscaled. The order of variables here is:

phf, sd 0, (qls, qc, sa, prf, qle) j,

where j is the index over all multiple shooting nodes.

9note that pressing Ctrl+c twice aborts directly without possibility to restart in the current solution point
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command description

h,help Print list of available commands

s,step,[return] Calculate next SQP iteration

c,cont Continue in noninteractive mode

q,quit Quit (may be restarted with -c or -w)

set List all current options

set OPTION VAL Change option to val:

output screen, log or filename

outputmode col, row, mat, std, rseq or cseq

scaled, unscaled Scaled or unscaled output

tol VAL Set tolerance for constraint violation

dd,dumpDers Dump derivatives to Matlab file

pd,printDers Print nonzero objective derivatives

pcd,printConDers Print nonzero constraint derivatives

pf,printFuns Print objective and constraint function values

pmc,printMatch Print matching conditions

pm,printMults Print all multipliers

ps,printSens Print nonzero Wronskian sensitivities (scaled)

pv,printVars Print all variables

pvc,printVConst Print all violated constraints

save,saveBin Store current variables and Hessian in binary file

pfp,printFixedPars Print fixed global parameter values

eval,evaluate Reevaluate functions and gradients (necessary after change of

parameters)

sfp Set fixed parameter to new value, needs 2 arguments: index

and new value

uif,userInteract Call def uif function

ph,printHess Print Hessian matrix

kkt,pkkt Print details about KKT tolerance

pqpd,printQPData Print QP data (hessian, gradient, constraint matrix/vector,

lower/upper bound vector)

pqps,printQPSol Print QP solution (step, constraint multipliers, bound multi-

pliers)

dqp,dumpQP Dump QP data and solution to matlab file

Table 6: Interactive mode commands

11 MS MINTOC

MS MINTOC is an extension of MUSCOD-II written by Sebastian Sager to incorporate integer-

valued functions and variables into the problem formulation. Good places to look for a descrip-

tion of theory and algorithms are [Sag09] and [SRB09].

The main difference compared to the MUSCOD-II problem formulation is that in addition
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to the interior point and path constraints (2.2) integrality conditions on global parameters

and/or control functions are imposed.

It is expected that an outer convexification [Sag09] is performed by the modeler himself.

Hence, all integer controls are expected to be of the form

ωj(t) ∈ {ωmin
j , ωmax

j } ∀ t ∈ [ti, ti+1] (7)

for control function j on model stage i.

11.1 Defining integer variables

The feasible values for binary controls and parameters are given in the usual way as upper

and lower bounds. E.g., ωmin
j is given by the corresponding value of u min. To define whether

a control function is an integer, binary or continuous control, the option u int within the

dat-file is used. For every control function a natural number xj has to be specified with the

interpretation

• xj = 0: continuous control function, ωj(t) ∈ [ωmin
j , ωmax

j ]

• xj = 1: binary control function, ωj(t) ∈ {ωmin
j , ωmax

j }

• xj = −1: integer control function, ωj(t) ∈ {ωmin
j , ωmin

j + 1, . . . , ωmax
j − 1, ωmax

j }

• xj > 1: binary control function, ωj(t) ∈ {ωmin
j , ωmax

j }, with SOS 1 constraint

∑
k:xk=xj>1

ωk(t) = 1 ∀ t ∈ [ti, ti+1] (8)

that needs to be taken into account when applying, e.g., rounding algorithms. Note that

several independent SOS1 constraints can be specified by choosing different values for xk.

• xj < −1: as in the case xj > 1, but the modeler replaced ωnω by 1−
∑nω−1

k ωk(t).

A similar formulation (however model stage independent) is used for global parameters via the

flag p int.

11.2 Available algorithms

Table 7 lists all possibilities to select different algorithms to solve a MIOCP. The general concept

is a little uncommon: digits correspond to algorithms, and their order determines the order of

their execution, from right to left. For example, 5 corresponds to a switching time optimization,

and 8 to the default rounding procedure. Hence, method 58 will first solve a relaxed problem

(that will always be done), then apply the rounding procedure 8 to the result, and use the

rounded solution as starting value and fixed structure for the switching time optimization.10

10As there are not enough digits for all algorithms, this system is not always consistent, unfortunately. 586

means first 6, then 8, then 5; however, 581 means first 81, then 5.
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column description

0 Relaxed solution (writes result into DAT/... opt.dat)

1 Enumeration

10 Random integer solution

11 Lower bound solution

12 Upper bound solution

13 Internal use (simulation, modify mintoc.cpp)

2 Branch and Bound [default 241]

20 .. without start heuristics

2x .. with start heuristics x in 8, 81, 82, 83, 84, 85, 41, 42

21 .. with all start heuristics 8, 9, 11, 12, 41

3 Outer Approximation (not yet implemented)

4 Penalty approach [default 41]

41 .. quadratic penalty function

42 .. exponential penalty function

5 Switching time optimization [default 5816]

5x .. with initialization x in 1, 10, 2, 4x, 6, 64, 8x

6 Adapt control discretization grid numadaptiters times

60 Adapt c.d.g. combined with penalty approach

7 Integral Approximation

8 Rounding [default 83]

81 Rounded relaxed solution

82 Sum Up Rounding with specific offset

83 Sum Up Rounding

84 Sequentially relaxed solution on shrinking horizon with round-

ing on (moving) 1st interval

85 Sequentially relaxed solution on shrinking horizon with enu-

meration on (moving) 1st interval

86 Sequentially relaxed solution on shrinking horizon with SUR

on (moving) 1st interval

Table 7: Possible values for the -b flag and the corresponding algorithms of MS MINTOC

11.3 MS MINTOC specific options

There are several options that are only meaningful in the context of MS MINTOC. They are

typically specified by means of the dat file, compare Section 7.1. In Table 8 a list of possible

options, their meaning, and the default value is given.
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key word mintoc description and [default]

Penalty term parameters

eps init Initialization of penalty parameter [0.0001]

eps step Multiplier of penalty parameter [2.5]

penTolZero Penalty tolerance [0.0001]

penIntTol Penalty integer tolerance [1e-08]

penConTol Penalty convergence tolerance [1e-06]

penNumQPSteps Number of QP iterations in Penalty strategy [100]

penMaxSteps Maximum number of iterations in Penalty strategy [50]

penMaxStuck Maximum number of iterations before stuck in Penalty strat-

egy [20]

Adaptparam parameters

minstagelength Minimum length of stages [1e-05]

numadaptiters Number of successive adaptations [1]

adaptmode Adaptmode: 0 bisection 1 middle peak 2 adaptive [0]

adaptPenStart Start of Penalty after adaptivity [5]

adaptPenIter What was this again [0.5]

General parameters

tolZero Zero tolerance [1e-06]

simIndex Index of control to be used for simulation (internal) [7]

maxIterationsForConvergence Maximum number of iterations for NO restart in solution [6]

restart s spec What s spec for restarts? [2]

plotAlgorithmicData Open additional plot window? [0]

milp solver Name of callable (by AMPL) MILP solver [cbc]

Rounding parameters

roundOffset Offset that has been added to u max to avoid cycling [0]

simulateOnly What after rounding? 0 Optimize 1 Simulate only [0]

roundedEmbedding Rounding: 1 fix only bounds, 0 set also variable value [0]

Sequential parameters

seqOptFreq Frequency of re-optimization on shrinking horizon in mode 86

[1]

Integral Approximation

u switch max(imos) Vector of maximum number of switches of binary control [6]

Table 8: List of MS MINTOC specific options. The key word in the leftmost column is prece-

dented by mintoc in the dat files.

11.4 Switching Time Optimization

The optimization of switching times within MS MINTOC is implemented as a reformulation

towards a multiple model stage problem with model stage lengths subject to optimization.

Obviously, the model description provided by the def model() routine needs to be adjusted.
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The number of model stages will depend on the algorithm that has been applied. To be

as flexible as possible and to allow, e.g., both fixed and free end time formulations of the

original problem, a user specific formulation in the form def model ct() is necessary (ct for

continuous time). However, MS MINTOC supplies information on the number of introduced

model stages at runtime, allowing for usage of def model ct() both within the first run and

from scratch with an automatically written dat file DAT/name ct.dat. The callback function

getNmos (NMOS) takes the original number NMOS as an argument and returns a LVec with the

dimension NMOS and the number of introduced stages per original stage.

The last entry, V EACC( newnmos , NMOS ), contains the overall new number of model

stages.

The usage is best exemplified by an easy example, see Section 14.

12 Win XP

12.0.1 Requirements

Administrator Rights

The installation process will require you to hold administrator’s rights.

WinZip

In order to uncompress tar.gz files you need to install WinZip. Download a free eval-

uation version of WinZip from http://www.winzip.com if necessary. As of writing this

document, the file in question is named winzip100.exe.

MinGW and MSYS

The GNU toolsets, headers and libraries, as well as a linux-like shell, are freely available

from http://www.mingw.org. Download from the following files or their appropriate

newer releases from the ’Current’ section

1. binutils-2.15.91-20040904-1.tar.gz

2. gcc-core-3.4.2-20040916-1.tar.gz

3. gcc-g++-3.4.2-20040916-1.tar.gz

4. gcc-g77-3.4.2-20040916-1.tar.gz

5. gdb-5.2.1-1.exe

6. mingw-runtime-3.9.tar.gz

7. mingw32-make-3.80.0-3.exe

8. w32api-3.5.tar.gz

9. tcltk-8.4.1-1.exe

10. MSYS-1.0.11-2004.04.30-1.exe from the ’Snapshot’ section.
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GrWin

PGPLOT support for Windows, download from

http://spdg1.sci.shizuoka.ac.jp/grwinlib/english/download.html the file

1. lGrWn0999be-MinGW.exe

or an appropriate newer release.

LAPACK

Download the LAPACK archive from http://www.netlib.org/lapack/lapack.tgz.

MUSCOD-II

MUSCOD-II can be found in the workgroup’s subversion repository.

Follow the steps precisely as listed below. Especially make sure to

• properly distinguish slashes (’/’) from backslashes (’\’),

• perform all the actions using Windows, unless you’re told to launch an MSYS shell and

do things from there.

12.0.2 Installing WinZip

1. Download and start the WinZip executable and follow the installation process, if you

don’t already have a working version of WinZip installed. An open–source alternative to

WinZip is http://sourceforge.net/projects/sevenzip/.

2. Before you extract the first archive, launch WinZip, click ...., and make sure that the

checkbox that reads ’Convert ....’ is unchecked.

12.0.3 Installing MinGW, Tcl/Tk, MSYS, and GrWin

1. Create the folder

C:\Program Files\MinGW, or

C:\Programme\MinGW, etc.,

depending on the language of your Windows XP installation. For the sake of simplicity

we’ll just use the German path names from now on.

2. Extract the files below to the folder

C:\Programme\MinGW

in precisely this order:

(a) mingw-runtime-3.9.tar.gz

(b) gcc-core-3.4.2-20040916-1.tar.gz
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(c) gcc-g++-3.4.2-20040916-1.tar.gz

(d) gcc-g77-3.4.2-20040916-1.tar.gz

(e) w32api-3.5.tar.gz

(f) binutils-2.15.91-20040904-1.tar.gz

3. Install the GNU Debugger (GDB) by executing

gdb-5.2.1-1.exe

When it asks for a folder to install to, enter the path to MinGW:

C:\Programme\MinGW

4. Install GNU Make by executing

mingw32-make-3.80.0-3.exe.

When it asks for a folder to install to, enter the path to MinGW:

C:\Programme\MinGW

5. Install Tcl/Tk by executing

tcltk-8.4.1-1.exe

When it asks for a folder to install to, enter the path to MinGW:

C:\Programme\MinGW

6. Install MSYS by executing

MSYS-1.0.11-2004.04.30-1.exe

Don’t install it to MinGW’s folder, but enter

C:\Programme\MSYS

as the installation folder instead. A windows command prompt dialog will ask you several

questions, enter ’y’ twice. When it asks for MinGW’s installation folder, enter

C:/Programme/MinGW

Make sure to use linux-style slashes this time.

You can ignore any Microsoft Word documents jumping at you.

7. Install GrWin by executing

lGrWn0999be-MinGW.exe

Enter

C:\Programme\GrWin

as the installation folder.
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12.0.4 Compiling LAPACK, LIBLAC, and MUSCOD-II

1. Extract the LAPACK archive

lapack.tgz

to your home directory

C:\Programme\MSYS\home\<user>

2. Now open an MSYS shell using the new blue M icon on your desktop. You’re now in a

linux-like shell and have to use slashes instead of backslashes.

The Windows folder

C:\Programme\MSYS\home\<user>,

where <user> is your Windows account’s user name, will serve as your home directory;

within MSYS the command

cd ~

will bring you there.

The Windows drives C:\, D:\, etc. can be found as invisible directories below the root.

For example, within MSYS your home folder can also be accessed by typing

cd /c/Programme/MSYS/home/<user>

MinGW itself can be found in the folder /mingw, which corresponds to /c/Programme/MinGW.

3. We’re now applying some changes to several make files. Should you find that these changes

have already been applied in your version of these files, this is fine.

Change to the LAPACK installation folder by typing

cd ~/LAPACK/INSTALL

Make sure the correct makefile will be used by typing

cp make.inc.linux ../make.inc

Change to the parent folder (which is ~/LAPACK) by typing

cd ..

Open the file Makefile again using your favourite editor, and change the line

all: install lib testing blas_testing timing blas_timing

to read

all: blaslib lapacklib

Make LAPACK by typing

make

This may take some minutes. When make finished, the files lapack_LINUX.a and blas_LINUX.a

should have been created. Move and rename them by typing
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mv lapack_LINUX.a /mingw/lib/liblapack.a

mv blas_LINUX.a /mingw/lib/libblas.a

4. Change to your home directory

cd ~

and create a new directory MUSCOD-II there

mkdir MUSCOD-II

Check out a current version of MUSCOD-II from the workgroup’s subversion repository

and put it into that folder.

5. Still using the MSYS shell, change to the LIBLAC folder by typing

cd ~/MUSCOD-II/LIBLAC

Open the file makefile and make sure that the line at the very top reads

MACHINE=inc_MINGW32.mk

Look for the LIBS entry and comment it (put a ’#’ in front of all lines belonging to

the LIBS entry). Uncomment the currently commented MinGW32 version (remove the

appropriate ’#’ signs).

Leave the editor and make LIBLAC by typing

make

Again this may take some time.

6. Change to the MUSCOD-II folder by typing

cd ../MC2

Run make once to create the file user.mk. Open this file and make sure that

MACHINE=inc_MINGW32.mk

is set. Make MUSCOD-II by typing

make

Again this may take some time.

7. Create the file

~/.profile

and type the following lines:

export PGPLOT_DIR=/c/Programme/GrWin/pgplot

export PGPLOT_FONTS=/c/Programme/GrWin/pgplot/grfont.dat

export PGPLOT_RGB=/c/Programme/GrWin/pgplot/rgb.txt

Leave the editor again. Apply the changes by typing

source .profile
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8. If you checked out the MUSCOD-II test projects, change to the MUSCOD-II test projects

folder by typing

cd ../MC2_TEST

Make the MUSCOD-II test projects by typing

make

Again this may take some time.

9. The installation process is now complete and MUSCOD-II should be at your services.
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13 Example: ODE Test Problem reentry

Listing 1: reentry source file
/∗
∗
∗ MUSCOD−I I /Apps/TEST/SRC/ r e en t r y . cpp

∗ ( c ) Danie l B. Leineweber , 1995

∗
∗ r e en t r y o f Apo l l o t ype v e h i c l e ( P l i t t , 1981 ; S toe r / Bu l i r s ch , 1992)

∗
∗ $ Id : r e en t r y . cpp 3369 2009−07−14 09 : 10 : 40Z c h r i s $

∗
∗/

#include <cmath>

#include ”def usrmod . hpp”

#define NMOS 1

#define NP 0

#define NRC 0

#define NRCE 0

#define NXD 3

#define NXA 0

#define NU 1

#define NPR 0

#define NRD S 3

#define NRDE S 3

#define NRD E 3

#define NRDE E 3

#define PI 3.1415

#define BETA 4.26

#define G 3.2172E−4
#define R 209.0

#define SM 53200.0

#define RHO 0 2.704E−3

stat ic void l f c n (double ∗t , double ∗xd , double ∗xa , double ∗u ,

double ∗p , double ∗ l va l , double ∗ rwh , long ∗ iwh , long ∗ i n f o )

{
∗ l v a l = 10.0∗xd [ 0 ] ∗ xd [ 0 ] ∗ xd [ 0 ] ∗ sq r t (RHO 0∗exp(−BETA∗R∗xd [ 2 ] ) ) ;

}

stat ic void f f c n (double ∗t , double ∗xd , double ∗xa , double ∗u ,

double ∗p , double ∗ rhs , double ∗rwh , long ∗ iwh , long ∗ i n f o )

{
double rho = RHO 0∗exp(−BETA∗R∗xd [ 2 ] ) ;

double cw = 1.174 − 0.9∗ cos (u [ 0 ] ) ;

double ca = 0.6∗ s i n (u [ 0 ] ) ;

rhs [ 0 ] = − 0.5∗SM∗ rho∗xd [ 0 ] ∗ xd [ 0 ] ∗ cw
− G∗ s i n ( xd [ 1 ] ) / ( 1 . 0+ xd [ 2 ] ) / ( 1 . 0+ xd [ 2 ] ) ;

rhs [ 1 ] = 0.5∗SM∗ rho∗xd [ 0 ] ∗ ca

+ xd [ 0 ] ∗ cos ( xd [ 1 ] ) /R/(1.0+xd [ 2 ] )

− G∗ cos ( xd [ 1 ] ) / xd [ 0 ] / ( 1 . 0+ xd [ 2 ] ) / ( 1 . 0+ xd [ 2 ] ) ;

rhs [ 2 ] = xd [ 0 ] ∗ s i n ( xd [ 1 ] ) /R;

}

stat ic void r d f c n s (double ∗ ts , double ∗sd , double ∗sa , double ∗u ,

double ∗p , double ∗pr , double ∗ res , long ∗dpnd , long ∗ i n f o )

{
i f (∗dpnd) { ∗dpnd = RFCN DPND(0 , ∗sd , 0 , 0 , 0 , 0 ) ; return ; }

r e s [ 0 ] = sd [ 0 ] − 0 . 3 6 ;

r e s [ 1 ] = sd [ 1 ] + 8.1∗PI /180 . 0 ;

r e s [ 2 ] = sd [ 2 ] − 4 .0/R;

}

stat ic void rd f cn e (double ∗ ts , double ∗sd , double ∗sa , double ∗u ,

double ∗p , double ∗pr , double ∗ res , long ∗dpnd , long ∗ i n f o )

{
i f (∗dpnd) { ∗dpnd = RFCN DPND(0 , ∗sd , 0 , 0 , 0 , 0 ) ; return ; }

r e s [ 0 ] = sd [ 0 ] − 0 . 2 7 ;

r e s [ 1 ] = sd [ 1 ] ;

r e s [ 2 ] = sd [ 2 ] − 2 .5/R;

}

extern ”C” void def model (void )

{
def mdims (NMOS, NP, NRC, NRCE) ;

def mstage ( 0 , NXD, NXA, NU, NULL, l f cn , 0 , 0 , 0 , NULL, f f cn , NULL, NULL, NULL ) ;

def mpc (0 , ” Star t Point ” , NPR, NRD S, NRDE S, rd f cn s , NULL) ;

def mpc (0 , ”End Point ” , NPR, NRD E, NRDE E, rd fcn e , NULL) ;

}
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Listing 2: reentry dat file

∗
∗
∗ MUSCOD−I I /Apps/TEST/DAT/ reent ry . dat

∗ ( c ) Danie l B. Leineweber , 1995

∗
∗ r eent ry o f s pa c e c r a f t (Bock/ P l i t t , 1984 ;

∗ Stoer /Bul i r sch , 1992)

∗
∗ $Id : r e ent ry . dat 651 2009−05−18 10 : 25 : 48Z ck i r ch e s $

∗
∗

∗ # of mul t ip l e shoot ing i n t e r v a l s on each model s tage

nshoot

0 : 6

∗ mult ip l e shoot ing g r i d s on model s t age s

g r id (∗ )
0 : 0 .0

1 : 0 .25

2 : 0 .375

3 : 0 .5

4 : 0 .675

5 : 0 .75

6 : 1 .0

∗ model s tage durat ion s t a r t values , s c a l e s , bounds

h

0 : 230 .0

h sca

0 : 225 .0

h min

0 : 220 .0

h max

0 : 240 .0

∗ mode f o r d i f f e r e n t i a l s t a t e va r i ab l e s t a r t va lues

s sp e c

1

∗ d i f f e r e n t i a l s t a t e s t a r t values , s c a l e s , bounds

sd (0 , S)

0 : 0 .36

1 : −0.1414

2 : 0 .01914

sd (0 ,E)

0 : 0 .27

1 : 0 .0

2 : 0 .01196

sd sca (∗ ,∗ )
0 : 0 .4

1 : 0 .1

2 : 0 .02

sd min (∗ ,∗ )
0 : 0 .2

1 : −0.2

2 : 0 .006

sd max (∗ ,∗ )
0 : 0 .4

1 : 0 .1

2 : 0 .03

∗ con t r o l parameter i za t i on types

u type (∗ )
0 : 1

∗ con t r o l s t a r t values , s c a l e s , bounds

u (∗ ,∗ )
0 : 0 .5

u sca (∗ ,∗ )
0 : 1 .0

u min (∗ ,∗ )
0 : −3.0

u max (∗ ,∗ )
0 : 2 .0

∗ con t r o l s l ope s t a r t values , s c a l e s , bounds

udot (∗ ,∗ )
0 : 0 .0

udot sca (∗ ,∗ )
0 : 1 .0

udot min (∗ ,∗ )
0 : −0.1

udot max (∗ ,∗ )
0 : 0 .1

∗ decoupled i . p . c . s c a l e f a c t o r s

rd s ca (0 , S)

0 : 0 .4

1 : 0 .2

2 : 0 .02

rd s ca (0 ,E)

0 : 0 .4

1 : 0 .2

2 : 0 .02

∗ ob j e c t i v e s c a l e and expected range

o f s c a

0 .0275

of min

0 .0

of max

0 .05

∗ Number o f va lues in h i s t o r y p lo t

nh i s t

30

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Choosing l i b r a r i e s ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
l ibmode l

SRC/ l i b r e e n t r y

l i b h e s s i a n

h e s s f i n i t e d i f f

l i b s o l v e

so l v e tbox

l ibcond

cond std

l i b t chk

tchk

l ibmssqp

mssqp standard

l i b e v a l

e va l i nd

l i b i n d

0 : i nd dae s o l

l i bqp s

qps qpopt

l i b p l o t

p l o t pgp l o t

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Set t ing a l go r i thmic parameters ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
op t i on s a c c

1e−6
o p t i o n s f t o l

−1.0

o p t i o n s i t o l

−1.0

op t i o n s r f a c

0 .0

opt ions l evmar

0 .0

o p t i o n s qp f e a t o l

1 .0 e−8
op t i on s qp r e l a x

1 .1

opt ions nhtopy

0
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o p t i o n s f r s t a r t

0

opt ions f rmax

0

opt ions i tmax

100

op t i o n s p l e v e l s c r e e n

0

o p t i o n s p l e v e l f i l e

1

op t i on s p l ev e l mat l ab

0

op t i o n s b f l a g

−1

opt ions qp i tmax

10000

opt ions qp expand

99999999

o p t i o n s s f l a g

0

op t i on s w f l ag

0

o p t i o n s c f l a g

0

opt i ons output ps

0

op t i o n s ou tpu t g i f

0
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14 Example: MS MINTOC Problem lotka

Listing 3: lotka source file
/∗
∗
∗ MUSCOD−I I /Apps/MIP/SRC/ l o t k a . cpp

∗ Se ba s t i an Sager (2003)

∗/

#include <math . h>

#include <s t d i o . h>

#include ”def usrmod . hpp”

#define NMOS 1

#define NP 2

#define NRC 0

#define NRCE 0

#define NXD 3

#define NXA 0

#define NU 1

#define NPR 0

stat ic void f f c n (double ∗t , double ∗xd , double ∗xa , double ∗u ,

double ∗p , double ∗ rhs , double ∗rwh , long ∗ iwh , long ∗ i n f o )

{
double r e f 0 = 1 , r e f 1 = 1 ; /∗ s t e ady s t a t e w i th u == 0 ∗/

rhs [ 0 ] = xd [ 0 ] − xd [ 0 ] ∗ xd [ 1 ] − p [ 0 ] ∗ u [ 0 ] ∗ xd [ 0 ] ;

rhs [ 1 ] = − xd [ 1 ] + xd [ 0 ] ∗ xd [ 1 ] − p [ 1 ] ∗ u [ 0 ] ∗ xd [ 1 ] ;

rhs [ 2 ] = (xd [0]− r e f 0 )∗ ( xd [0]− r e f 0 ) + (xd [1]− r e f 1 )∗ ( xd [1]− r e f 1 ) ;

}

stat ic void mfcn (double ∗ ts , double ∗sd , double ∗sa , double ∗p ,

double ∗mval , long ∗dpnd , long ∗ i n f o )

{
i f (∗dpnd) { ∗dpnd = MFCNDPND(0 , ∗sd , 0 , 0 ) ; return ; }

∗mval = sd [ 2 ] ;

}

extern ”C” void def model (void )

{
def mdims (NMOS, NP, NRC, NRCE) ;

def mstage ( 0 , NXD, NXA, NU, mfcn , NULL, 0 , 0 , 0 , NULL, f f cn , NULL, NULL, NULL ) ;

def mio (NULL, NULL, NULL) ;

}

stat ic void rd f cn e (double ∗ ts , double ∗sd , double ∗sa , double ∗u , double ∗p ,

double ∗pr , double ∗ res , long ∗dpnd , long ∗ i n f o ) {
i f (∗dpnd) { ∗dpnd = RFCN DPND(∗ ts , 0 , 0 , 0 , 0 , 0 ) ; return ; }
r e s [ 0 ] = ∗ t s − 12 ;

}

extern ”C” void de f mode l c t (void )

{
long i ;

LVec newnmos = getNmos (NMOS) ;

long nmos = V EACC( newnmos , NMOS ) ;

def mdims (nmos , NP, NRC, NRCE) ;

for ( i =0; i<nmos−1; i++) {
def mstage ( i , NXD, NXA, NU, NULL, NULL, 0 , 0 , 0 , NULL, f f cn , NULL, NULL, NULL ) ;

}
def mstage ( nmos−1, NXD, NXA, NU, mfcn , NULL, 0 , 0 , 0 , NULL, f f cn , NULL, NULL, NULL ) ;

def mpc (nmos−1, ”End Point ” , NPR, 1 , 1 , rd fcn e , NULL) ;

def mio (NULL, NULL, NULL) ;

}
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Listing 4: lotka dat file

∗
∗
∗ MUSCOD−I I /Apps/MIP/DAT/ lo tka . dat

∗ ( c ) Sebast ian Sager , 2003

∗
∗

∗ # of mul t ip l e shoot ing i n t e r v a l s on each model s tage

nshoot

0 : 60

∗ parameters

p

0 : 0 .4

1 : 0 .2

p i n t

0 : 0

1 : 0

2 : 0

p sca

0 : 1 .0

1 : 1 .0

2 : 1 .0

p min

0 : 0 .0

1 : 0 .0

2 : 0 .0

p max

0 : 1 .0

1 : 1 .0

2 : 1 .0

p f i x

0 : 1

1 : 1

2 : 1

∗ model s tage durat ion s t a r t values , s c a l e s , bounds

h

0 : 12 .0

h sca

0 : 1 .0

h min

0 : 3 .0

h max

0 : 12 .0

∗ model s tage durat ion f i x ed value f l a g s

h f i x

0 : 1

s sp e c

2

∗ d i f f e r e n t i a l s t a t e s t a r t values , s c a l e s , bounds

sd (0 , 0 )

0 : 0 .5

1 : 0 .7

2 : 0 .0

s d f i x (0 , 0 )

0 : 1

1 : 1

2 : 1

sd s ca (∗ ,∗ )
0 : 1 .0

1 : 1 .0

2 : 1 .0

sd min (∗ ,∗ )
0 : 0 .0

1 : 0 .0

2 : 0 .0

sd max (∗ ,∗ )
0 : 20 .0

1 : 20 .0

2 : 25 .0

∗ ob j e c t i v e s c a l e and expected range

o f s c a

1 .0

of min

0 .0

of max

25 .0

of name

! Quadratic dev i a t i on

h name

0 : ! Ze i t

p name

0 : ! ParamA

1 : ! ParamB

2 : ! Force parameter eps

u name

0 : Control func t i on u( t )

xd name

0 : ! Biomass o f Prey

1 : ! Biomass o f Predator

2 : ! In t eg ra t ed dev i a t i on

nh i s t

30

u type (∗ )
0 : 0

u sca (0 ,∗ )
0 : 1 .0

u (0 ,∗ )
0 : 1 .0

u min (0 ,∗ )
0 : 0 .0

u max (0 ,∗ )
0 : 1 .0

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ MINTOC va r i a b l e s ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ x=0 cont inuous

∗ x=1 binary

∗ x=−1 i n t e g e r

∗ x>1 SOS1 va r i ab l e

∗ x<−1 SOS1 va r i ab l e with con t r o l n w e l iminated

u in t (0 ,∗ )
0 : 1

p i n t

ALL: 0

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ MINTOC opt ions ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

### penalty term parameters

# I n i t i a l i z a t i o n o f penalty parameter

e p s i n i t

0 .0001

# Mu l t i p l i e r o f penalty parameter

ep s s t ep

2

# Penalty t o l e r an c e

penTolZero

0 .001

# Penalty i n t e g e r t o l e r an c e

penIntTol

1e−05

# Penalty convergence t o l e r an c e

penConTol

0 .0001

# Number o f QP i t e r a t i o n s in Penalty s t r a t egy

penNumQPSteps

100

67



# Maximum number o f i t e r a t i o n s in Penalty s t r a t egy

penMaxSteps

20

# Maximum number o f i t e r a t i o n s

# be fo r e stuck in Penalty s t r a t egy

penMaxStuck

30

### adaptparam parameters

# Minimum length o f s t age s

minstage length

0.0001

# Number o f s u c c e s s i v e adaptat ions

numadaptiters

3

# Adaptmode : 0 b i s e c t i o n 1 middle peak 2 adapt ive

adaptmode

0

# Star t o f Penalty a f t e r adapt iv i ty

adaptPenStart

3

# What was t h i s again

adaptPenIter

1

### General parameters

# Zero t o l e r an c e

to lZe ro

1e−05

# Index o f c on t r o l to be used for s imu la t ion ( i n t e r n a l )

simIndex

7

# Maximum of how many i t e r a t i o n s

# for NO r e s t a r t in s o l u t i on

maxIterat ionsForConvergence

6

# What s sp e c for r e s t a r t s ?

r e s t a r t s s p e c

2

### Rounding parameters

# Of f s e t that has been added to u max to avoid cy c l i n g

roundOffset

0

# What a f t e r rounding ? 0 Optimize 1 Simulate only

simulateOnly

0

# Rounding :

# 1 f i x only bounds , 0 s e t a l s o va r i ab l e value

roundedEmbedding

1

# Open add i t i ona l p l o t window?

plotAlgor i thmicData

1

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Choosing l i b r a r i e s ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

l ibmode l

SRC/ l i b l o t k a

l i b h e s s i a n

hess update

l i b s o l v e

s o l v e s l s e

l ibcond

cond std

l i b t chk

tchk

l ibmssqp

mssqp standard

l i b e v a l

e va l i nd

l i b i n d

0 : i nd rk f 45

l i bqp s

qps qpopt

l i b p l o t

p l o t pgp l o t

l ibmintoc

mintoc

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Set t ing a l go r i thmic parameters ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

op t i on s a c c

1e−6
o p t i o n s f t o l

−1.0

o p t i o n s i t o l

−1.0

op t i o n s r f a c

0 .0

opt ions l evmar

0 .0

o p t i o n s qp f e a t o l

1 .0 e−8
op t i on s qp r e l a x

1 .1

opt ions nhtopy

0

o p t i o n s f r s t a r t

0

opt ions f rmax

0

opt ions i tmax

100

op t i o n s p l e v e l s c r e e n

0

o p t i o n s p l e v e l f i l e

1

op t i on s p l ev e l mat l ab

0

op t i o n s b f l a g

−1

opt ions qp i tmax

10000

opt ions qp expand

99999999

o p t i o n s s f l a g

0

op t i on s w f l ag

0

o p t i o n s c f l a g

0

opt i ons output ps

0

op t i o n s ou tpu t g i f

0
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15 Appendix A: MUSCOD-II test library

This section gives an overview over the testproblems in the software MUSCOD, that can be

found in /Apps/Test/Src/. Note that some of the literature is no longer available and that

description, solution characteristics or literature do not exist for all problems.

15.1 List of all Testproblems

academy batchdist batchdistrob batchdistRobEx batchdistUT

brac brgr1 brgr2 ccbat ccrane

chain1d chain container bridge cstr cstr est

dcbat1 dcbat2 dcbat3 eason energy f77

eocar1 eocar2 extrosen fedbat1 fedbat1m

fedbat2 fedbat2m fedbat3 fedbat3m fedbat4

freudenstein ftlos1 ftlos2 ftlos2 nlp ftlos3

ftlos4 hang helical hydroscal inventory f77

kite lbat macro1 macro2 macro3

macro4 macro5 maratos nlbat nlp1

nlp2 nlp3 nlp4 nmpc1 ocean3a

ocean3b optcar lego orbit oven pbreac

powerkite qlin reactdiff reentry rob2link

rob2link flex rob3link rob3link flex rocket f77 rosen

singular skeleton smb soccer stp1

stp1 gn stp2a stp2b stp2c stp2d

stp2e stp3 stp3 f77 stp3 gn stp4a

stp4a gn stp4b swtball tocar1 tocar2

tocar3 tolin1 tolin2 tolos1 tolos2

tolos3 tolos4 twobat1 twobat2 unload1

unload2 vdpol watson wood

15.2 List of solution characteristics

The tables are taken from PhD thesis of D. Leineweber 1999. They use the following symbols

and abbreviations:

• name gives a mnemonic description of the test problem (usually this is also the name of

the corresponding model and data files),

• M̂ denotes the total number of model stages (each set of stage transition conditions - if

explicitly specified - counts as an additional “algebraic” model stage),

• nxi , nzi , nui are the numbers of differential states, algebraic states and control functions

(specified separately for each model stage i if there are changes in the model dimensions),

• np and nv are the numbers of the free model parameters and model stage durations (np

includes global as well as local model parameters),
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• ndis denotes the total number of discretization points used (i.e. the number of multiple

shooting intervals plus one),

• nvar is the total number of variables in the resulting structured NLP problem (including

all discretized state variables, control parameters and free model parameters/model stage

durations),

• neq and nin refer to the numbers of equality and inequality constraints in the NLP

problem (nin includes lower and upper bounds on all variables),

• mc2 specifies the variant of MUSCOD-II used for the solution of the problem (way of

Hessian approximation, globalization strategy)

– ch: constant diagonal Hessian,

– fd : forward-difference Hessian approximation,

– lm: limited-memory BFGS Hessian approximation,

– vm: standard BFGS Hessian approximation,

– bt : boxstep trust region strategy with SOC,

– sl : standard line search strategy without SOC,

– wl : watchdog line search strategy,

• int specifies the ODE or DAE integrator employed within MUSCOD-II,

• itr is the number of SQP iterations,

• cpu is the CPU time in seconds - excluding graphics - on an SGI Indy workstation (MIPS

R4000 CPU with 100Mhz speed, MIPS R4010 FPU) running IRIX Version 5.3,

• obj is the value of the objective function at the solution,

• inf is the (scaled) norm of the constraint infeasibilities at the solution,

• lag is the (scaled) norm of the Lagrangian gradient at the solution,
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Figure 2: Table 1: List of Test Problems

71



Figure 3: Table 2: List of Test Problems
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Figure 4: Table 3: List of Test Problems

Figure 5: Table 4: List of Test Problems
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15.3 Further description of some of the problems

• academy

This is a model of G. Feichtinger and coworkers. The idea is to optimize the recruitment

strategy of an ”Academy of Sciences”, that aims at

– keeping the average age of the academy down,

– maximizing the number of recruitments.

The size of the academy is fixed to 70 persons. Only persons between 40 and 70 are

counted as members. The ratio between the two goals is given by the parameters p[2]

and p[3]. The optimal control is given by the control constraint rdfcn, otherwise full

recruitment of young resp. very old researchers is optimal.

• batchdistUT

This model uses the Unscented Transform to obtain mean and variance of the inequality

constraint functions and optimizes then with a security back-off. (It can also be used for

simple dat-file controlled simulation runs. This version is active at the moment.)

• brac

Classical brachistochrone problem (Betts, J.T.; Eldersveld, S.K.; Huffman, W.P.; Sparse

nonlinear programming test problems (Release 1.0); Technical Report BCSTECH-93-047.

Boeing Computer Services (1993)).

• brgr1

Burgers equation for EPS B = 1.0E-1 (Betts, J.T.; Eldersveld, S.K.; Huffman, W.P.;

Sparse nonlinear programming test problems (Release 1.0); Technical Report BCSTECH-

93-047. Boeing Computer Services (1993)).

• brgr2

Burgers equation for EPS B = 5.0E-2 (Betts, J.T.; Eldersveld, S.K.; Huffman, W.P.;

Sparse nonlinear programming test problems (Release 1.0); Technical Report BCSTECH-

93-047. Boeing Computer Services (1993)).

• ccbat

Continuous charge batch reactor (Vassiliadis, V.S.; Pantelides, C.C.; Sargent, W.H.; Op-

timization of discrete charge batch reactors; Comput. Chem. Engng 18, Suppl., p.415 -

419 (1994)).

• ccrane

Container crane (Goh, C.J.; Teo, K.L.; Control parametrization: a unified approach to

optimal control problems with general constraints; Automatica 24, p.3-18 (1988)).

• cstr - constrained stirred tank reactor

Model Equations according to: Chen, H., Kremling, A. and Allgwer, F.: Nonlinear pre-

dictive control of a benchmark CSTR, Proc. 3rd European Control Conference ECC’95,

pp. 3247-3252, 1995.
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(see also: Diehl, M.; Real-Time optimization for large scale nonlinear processes; Ph.D.

thesis, Heidelberg University; 2001; p.12 ff).

• eason

This is an example for unconstrained minimization, namely Eason’s function. (Reklaitis,

G.V.; Ravindran, A.; Ragsdell, K.M.; Engineering Optimization. Methods and Applica-

tions; 1983).

• dcbat1

Discrete charge batch reactor I (2 charges) (Vassiliadis, V.S.; Pantelides, C.C.; Sargent,

W.H.; Optimization of discrete charge batch reactors; Comput. Chem. Engng 18, Suppl.,

p.415 - 419 (1994)).

• dcbat2

discrete charge batch reactor II (5 charges) (Vassiliadis, V.S.; Pantelides, C.C.; Sargent,

W.H.; Optimization of discrete charge batch reactors; Comput. Chem. Engng 18, Suppl.,

p.415 - 419 (1994)).

• dcbat3

discrete charge batch reactor III (10 charges) (Vassiliadis, V.S.; Pantelides, C.C.; Sargent,

W.H.; Optimization of discrete charge batch reactors; Comput. Chem. Engng 18, Suppl.,

p.415 - 419 (1994)).

• energy f77

Energy Problem (given in Bryson, A.E., and Ho, Y.-C., Applied Optimal Control, Hemi-

sphere, Washington, D.C. 1976)

min 0.5

1∫
0

a2(t)dt

s.t.ẍ = a(t)

x(t) ≤ l(constant)

x(0) = 0, ẋ(0) = 1, x(1) = 0, ẋ(1) = −1

Formulation0 (by setting x0 = x, x1 = ẋ, x2 = 0.5
∫ t

0
a2(t)dt)

minx2(1)

s.t.ẍ0 = x2

ẍ1 = a

ẍ2 = 0.5 · a2

x0(t) ≤ l(constant)

x0(0) = 0, x1(0) = 1, x2(0) = 0,

x0(1) = 0, x1(1) = −1
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Formulation1 (by setting x0 = x, x1 = ẋ)

min 0.5

1∫
0

a2(t)dt

s.t.ẍ0 = x2

ẍ1 = a

x0(t) ≤ l (constant)

x0(0) = 0, x1(0) = 1,

x0(1) = 0, x1(1) = −1

• eocar1

Energy-optimal car I.

• eocar2

Energy-optimal car II.

• extrosen

This is another example for unconstrained minimization, the Rosenbrock function (in its

extended version, using more variables).

see Rosenbrock: ’An automatic method for finding the greatest or least value of a func-

tion’, Comput. J. 3 (1960).

• fedbat1

Fed-batch fermentor, case I (Cuthrell, J.E.; Biegler, L.T.; Simultaneous optimization and

solution methods for batch reactor control profiles; Comp. Chem. Engng 13; p.49-62,

1989).

• fedbat1m

Fed-batch fermentor, modified case I (max. productivity) (Cuthrell, J.E.; Biegler, L.T.;

Simultaneous optimization and solution methods for batch reactor control profiles; Comp.

Chem. Engng 13; p.49-62, 1989).

• fedbat2

Fed-batch fermentor, case II (Cuthrell, J.E.; Biegler, L.T.; Simultaneous optimization and

solution methods for batch reactor control profiles; Comp. Chem. Engng 13; p.49-62,

1989).

• fedbat2m

Fed-batch fermentor, modified case II (max. productivity) (Cuthrell, J.E.; Biegler, L.T.;

Simultaneous optimization and solution methods for batch reactor control profiles; Comp.

Chem. Engng 13; p.49-62, 1989).

• fedbat3

fed-batch fermentor (high initial substrate) (Lim, H.C.; Tayeb, Y.J.; Modak, J.M.; Bonte,

P.; Computational algorithms for optimal feed rates for a class of fed-batch fermentation:
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numerical results for penicillin and cell mass production; Biotechn. Bioengng. 28; p.

1408-1420, 1986).

• fedbat3m

fed-batch fermentor (high initial substrate, max. productivity) (Lim, H.C.; Tayeb, Y.J.;

Modak, J.M.; Bonte, P.; Computational algorithms for optimal feed rates for a class of fed-

batch fermentation: numerical results for penicillin and cell mass production; Biotechn.

Bioengng. 28; p. 1408-1420, 1986).

• fedbat4

Fed-batch fermentor, case IV (Cuthrell, J.E.; Biegler, L.T.; Simultaneous optimization

and solution methods for batch reactor control profiles; Comp. Chem. Engng 13; p.49-62,

1989).

• freudenstein

This is a modell of the Freudenstein-Roth function (see Fletcher, Roger; Practical methods

of optimization; Chichester [et.al.] 1987, p. 120).

• ftlos1

Fixed-time linear oscillating system I (Logsdon, J.S.; Biegler, L.T.; Decomposition strate-

gies for large-scale dynamic optimization problems; Chem. Engng Sci., 47, p.851-864;

1992).

• ftlos2

Fixed-time linear oscillating system II (Logsdon, J.S.; Biegler, L.T.; Decomposition strate-

gies for large-scale dynamic optimization problems; Chem. Engng Sci., 47, p.851-864;

1992).

• ftlos2 nlp

The problem ftlos2 in NLP formulation (eliminated states).

• ftlos3

Fixed-time linear oscillating system III (Logsdon, J.S.; Biegler, L.T.; Decomposition

strategies for large-scale dynamic optimization problems; Chem. Engng Sci., 47, p.851-

864; 1992)

• ftlos4

An indirect approach (maximum principle) to the fixed-time linear oscillating system,

(Logsdon, J.S.; Biegler, L.T.; Decomposition strategies for large-scale dynamic optimiza-

tion problems; Chem. Engng Sci., 47, p.851-864; 1992).

• hang

Hang glider problem

Betts, J.T.; Eldersveld, S.K.; Huffman, W.P.; Sparse nonlinear programming test prob-

lems (Release 1.0); Technical Report BCSTECH-93-047; Boeing Computer Services, 1993.

Bulirsch, R.; Nerz, E.; Pesch, H.J.; Stryk, O. von; Combining Direct and Indirect Meth-

ods in Optimal Control: Range Maximization of a Hang Glider; in: International Series

of Numerical Mathematics, Vol. 111, 1991; p. 273-288.
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• helical

A helical valley function. See Fletcher; Powell; A rapidly convergent descent method for

minimization; Comput. J., 6, (1963).

• hydroscal

Distillation model, 82 diff + 122 alg var.

For a description see e.g. Chapter 7 in the PhD thesis ”Real-Time Optimization for Large

Scale Nonlinear Processes” (2001) by Moritz Diehl (Download at: http://www.ub.uni-

heidelberg.de/archiv/1659/)

Optimization problem is to steer the column from a disturbed state back into the nominal

operating point, minimizing an integrated least-squares deviation of two temperatures and

the controls.

• inventory f77

min
∫ T

0
(exp(−ρ2 · ts) · a · xd(0) + exp(−ρ0 · ts) · b0 · u(0)− exp(−ρ1 · ts) · b1 · u(1))dts,

s.t.ẋ = u0− u1− d,
α1 ≤ x ≤ α2,

0 ≤ u1 ≤ δ1, 0 ≤ u2δ2,

γ1 · u0 + γ2 · u1 ≤ δ3,

x(0) = x0,

x(T ) = xT .

discount rates ρI ∈ [0, 1], γ1 + γ2 = 1, a, b0, b1 are unit cost of storage (w.r.p. ρ2),

replenishment (w.r.t. ro0) and selling price (with respect to ro1), respectively, d = own

demand, x is the stock function, u0 is replenishment, u1 is selling amount, 4te constraint

financial restriction, where
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b0 = 5 t ∈ [0,2]

= 5 + 2*(t-2) t ∈ [2,2.4]

= 5.8 t ∈ [2.4,4]

= 5.8 + 2*(t-4), t ∈ [4,7]

b1 = b0 + 1

ρ0 = 0.0 t ∈ [0,2]

= 0.1, t ∈ ]2,7]

ρ1 = 0.9 t ∈ [0,2]

= 0.2, t ∈ ]2,7]

ρ2 = 0.1 t ∈ [0,2]

= 0.7, t ∈ ]2,7]

d = 0.5 t ∈ [0,2]

= 1.5, t ∈ ]2,4]

= 1.0+0.5*(t-3.0) t ∈ ]4,7]

a = 3.0-2*(t-1.0) t ∈ [0,2]

= 1.0, t ∈ ]2,7]

γ1 = γ2 = 0.5

α1 = 0, α2 = 2, x0 = xT = 1,

δ1 = δ2 = 2, δ3 = 3.

• kite

Kite Tracking Problem for Stability Optimization. Model as in Diehl, Magni, Scattolini:

”Online NMPC of a Looping Kite using Approximate Infinite Horizon Closed Loop Cost-

ing”, Bratislava, 2003.

• lbat

Batch reactor, linear in states (Ray, W.H.; Advanced Process Control; New York, 1981).

(Logsdon, J.S.; Biegler, L.T.; Decomposition strategies for large-scale dynamic optimiza-

tion problems; Chem. Engng Sci., 47, p.851-864; 1992).

• maratos

Maratos example (avoiding fullstep with nondifferentiable meritfunction).

• macro1

Simple consumption savings problem: Maximize utility function, dependent on consump-

tion. Capital increases by a deterministic life-cycle income profile.

• macro2

Neoclassical growth model with endogeneous labor supply.

• macro3

Neoclassical growth model.

• macro4

Optimal growth model, extended as to macro3 with additional agent government and

taxing:
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– spends variable amount gov=u[3] (thrown away),

– takes τ = p[6] percent tax of everything (capital and labour),

– bonds influence government capital.

Make sure you modify NSHOOT in both DAT and C file.

• macro5

Optimal growth model, extended as to macro4 with split up of the worker: now two

generations (young and old). Make sure you modify NSHOOT in both DAT and C file.

• nlbat

Batch reactor, nonlinear in states

(Ray, W.H.; Advanced Process Control; New York 1981).

(Renfro, J.G.; Morshedi, A.M.; Asbjornsen, O.A.; Simultaneous optimization and solu-

tion of systems described by differential/algebraic equations; Comput. Chem. Engng.

11; p. 503-517 1987).

(Logsdon, J.S.; Biegler, L.T.; Decomposition strategies for large-scale dynamic optimiza-

tion problems; Chem. Engng Sci., 47, p.851-864; 1992).

• nlp1

Standard NLP test example I. (Gill, P.E.; Murray, W.; Wright, M.H.; Practical Opti-

mization; London [et.al] 2006).

• nlp2

Standard NLP test example II. See Harwell Subroutine Library Specification, subroutine

VF13.

• nlp3

Standard NLP test example III. (Reklaitis, G.V.; Ravindran, A.; Ragsdell, K.M.; Engi-

neering Optimization. Methods and Applications; 1983).

• nlp4

Standard NLP test example IV. (Reklaitis, G.V.; Ravindran, A.; Ragsdell, K.M.; Engi-

neering Optimization. Methods and Applications; 1983).

• nmpc1

Simple NMPC problem.

• optcar lego

Optimal control for little car, built with LEGO. Results can be obtained by calling first

”mc2ts optcar” and then ”mc2ts -c optcar”. Plot of the resulting paths can be obtained

by calling ”gnuplot” in the RES directory and typing: plot ”optcar lego.gnuplot” using

2:3 w lines.

• orbit

2d orbit transfer.
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• qlin

Quadratic-linear problem (Betts, J.T.; Eldersveld, S.K.; Huffman, W.P.; Sparse nonlinear

programming test problems (Release 1.0); Technical Report BCSTECH-93-047; Boeing

Computer Services, 1993).

• pbreac

Packed-bed reactor optimization problem, case Ia, (Cuthrell, J.E.; Biegler, L.T.; On the

optimization of differential-algebraic process systems; AIChE J. 33, p.1257-1270; 1987).

• reactdiff

Constrained PDE minimization example. Finite Difference Discretization of elliptic PDE

in 2-D on unit square

0 = d2u/dx2 − αu2 + βq

with bound restrictions 0 < u < 1, 0 < q < 1. u corresponds to a the concentration of a

species that

1. diffuses,

2. reacts with second order and

3. is added with distributed controls q.

• reentry

Reentry of Apollo type vehicle

(Bock, H.G.; Plitt, K.J.; A multiple shooting algorithm for direct solution of optimal

control problems; Proceedings of the 9th IFAC World Congress; Budapest 1984).

(Stoer, J.; Bulirsch, R.; Introduction to Numerical Analysis; New York, 1992).

• rob2link

Two link robot model without joint flexibility. Time optimal movement.

• rob2link flex

Two link robot model with joint flexibility. Time optimal movement with least squares

penalty on accelerations.

• rob3link

Three link robot model without joint flexibility. Time optimal movement, 6 state variables

r, θ1, θ2, ṙ, θ̇1, θ̇2, 3 controls Ur, Uθ1 , Uθ2 (u[0], u[1], u[2]).

• rob3link flex

Three link robot model with joint flexibility. Time optimal movement, 12 state variables:

r, θ1, θ2, φ1, φ2, φ3, ṙ, θ̇1, θ̇2, φ̇1, φ̇2, φ̇3, 3 controls: Ur, Uθ1 , Uθ2 (u[0], u[1], u[2]).
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• rocket f77

minT,

ṡ = v,

v̇ =
c1

m
· a− c2v

2,

ṁ = −c3a
2,

with |a| ≤ 1,

s(0) = 0, v(0) = 0, m(0) = 1,

s(T ) = 10, v(T ) = 0.

• rosen

Unconstrained minimization example, Rosenbrock’s function. (Gill, P.E.; Murray, W.;

Wright, M.H.; Practical Optimization; London [et.al] 2006).

• singular

Unconstrained minimization example, Powell’s singular function. (Powell; An iterative

method for finding stationary values of a function of several variables; Comput. J., 5;

1962).

• smb

Model of a Simplified SMB process.

• stp1

Simple test problem 1 (Steinbach, M.C.; Fast recursive SQP methods for large-scale

optimal control problems; PhD thesis, University of Heidelberg, 1995).

• stp2a

Simple test problem IIa (Goh, C.J.; Teo, K.L.; Control parametrization: a unified ap-

proach to optimal control problems with general constraints; Automatica 24, p.3-18;

1988).

• stp2b

Simple test problem IIb (Goh, C.J.; Teo, K.L.; Control parametrization: a unified ap-

proach to optimal control problems with general constraints; Automatica 24, p.3-18;

1988).

• stp2c

Simple test problem IIc (Goh, C.J.; Teo, K.L.; Control parametrization: a unified ap-

proach to optimal control problems with general constraints; Automatica 24, p.3-18;

1988).

• stp2d

Simple test problem IId (Goh, C.J.; Teo, K.L.; Control parametrization: a unified ap-

proach to optimal control problems with general constraints; Automatica 24, p.3-18;

1988).

82



• stp2e

Simple test problem IIe (Goh, C.J.; Teo, K.L.; Control parametrization: a unified ap-

proach to optimal control problems with general constraints; Automatica 24, p.3-18;

1988).

• stp3

Simple test problem III (Goh, C.J.; Teo, K.L.; Control parametrization: a unified ap-

proach to optimal control problems with general constraints; Automatica 24, p.3-18;

1988).

• stp3 f77

Simple test problem III, Fortran 77 version (Goh, C.J.; Teo, K.L.; Control parametriza-

tion: a unified approach to optimal control problems with general constraints; Automatica

24, p.3-18; 1988).

• stp4a

Simple test problem IVa (DAE extension of simple test problem III).

• stp4b

Simple test problem IVb (DAE extension of simple test problem III with Mayer objective

instead of Lagrange objective).

• swtball

This is a test for the sensitivity updates on switches implemented in RKF45SWT. The

bouncing ball’s energy loss upon contact with the floor is to be adjusted so that the

ball hits the ground exactly at the end of the stage. In between, it bounces several

times. Without sensitivity updates, there would be no advance in the objective, since the

derivatives with respect to the responsible parameter are zero.

• tocar1

Time-optimal car I

(Cuthrell, J.E.; Biegler, L.T.; On the optimization of differential-algebraic process sys-

tems; AIChE J. 33, p.1257-1270; 1987).

(Logsdon, J.S.; Biegler, L.T.; Decomposition strategies for large-scale dynamic optimiza-

tion problems; Chem. Engng Sci., 47, p.851-864; 1992).

• tocar2

Time-optimal car II

(Cuthrell, J.E.; Biegler, L.T.; On the optimization of differential-algebraic process sys-

tems; AIChE J. 33, p.1257-1270; 1987).

(Logsdon, J.S.; Biegler, L.T.; Decomposition strategies for large-scale dynamic optimiza-

tion problems; Chem. Engng Sci., 47, p.851-864; 1992).

• tocar3

Time-optimal car III

(Cuthrell, J.E.; Biegler, L.T.; On the optimization of differential-algebraic process sys-

tems; AIChE J. 33, p.1257-1270; 1987).
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(Logsdon, J.S.; Biegler, L.T.; Decomposition strategies for large-scale dynamic optimiza-

tion problems; Chem. Engng Sci., 47, p.851-864; 1992).

• tolin1

Time-optimal linear problem I (fixed grid).

• tolin2

Time-optimal linear problem II (model stage formulation).

• tolos1

Time-optimal linear oscillating system I (Plant, J.B.; Athans, M.; An iterative technique

for the computation of time-optimal controls; Proceedings of the 3rd International IFAC

Conference; London, 1966).

• tolos2

Time-optimal linear oscillating system II (Plant, J.B.; Athans, M.; An iterative technique

for the computation of time-optimal controls; Proceedings of the 3rd International IFAC

Conference; London, 1966).

• tolos3

Time-optimal linear oscillating system III (Plant, J.B.; Athans, M.; An iterative technique

for the computation of time-optimal controls; Proceedings of the 3rd International IFAC

Conference; London, 1966).

• tolos4

Fixed-time linear oscillating system IV, indirect approach (maximum principle)

(Logsdon, J.S.; Biegler, L.T.; Decomposition strategies for large-scale dynamic optimiza-

tion problems; Chem. Engng Sci., 47, p.851-864; 1992).

• twobat1

Two-stage batch reactor system I (Vassiliadis, V.S.; Sargent, R.W.H.; Pantelides, C.C.;

Solution of a class of multistage dynamic optimization problems. 1. Problems without

path constraints; Ind. Eng. Chem. Res. 33; p.2111-2122; 1994).

• twobat2

Two-stage batch reactor system II (Vassiliadis, V.S.; Sargent, R.W.H.; Pantelides, C.C.;

Solution of a class of multistage dynamic optimization problems. 2. Problems with path

constraints; Ind. Eng. Chem. Res. 33; p.2123-2133; 1994).

• unload1

Ore unloading system

(Plitt, K.J.; Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung

beschrnkter optimaler Steuerungen; Diploma thesis; University of Bonn, 1981).

• unload2

Ore unloading system

(Plitt, K.J.; Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung

beschrnkter optimaler Steuerungen; Diploma thesis; University of Bonn, 1981).
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• vdpol

Van der Pol problem (Bock, H.G.; Plitt, K.J.; A multiple shooting algorithm for di-

rect solution of optimal control problems; Proceedings of the 9th IFAC World Congress;

Budapest 1984).

• watson

Nonlinear Complementary Problem (restricted version). (Watson; Solving the nonlinear

complementary problem by a homotopy method; SIAM J. Cont. Appl., 17, 1979).

• wood

Unconstrained minimization example, Wood’s function. (Reklaitis, G.V.; Ravindran, A.;

Ragsdell, K.M.; Engineering Optimization. Methods and Applications; 1983).

• oven

Model Equations according to: Bertsekas, Dimitri; Dynamic Programming and Optimal

Control (Vol. I); Belmont, MA; 1995, pp. 21ff.

Discrete dynamical system of material passed through two ovens

min r · (x2 − T )2 + u2
0 + u2

1,

s.t.xk+1 = (1− a) · xk + a ·k (k = 0, 1).

analytical solution for feedback laws:

µ0(x0) =
r · (1− a) · a · (T − (1− a)2 · x0)

1 + r · a2 · (1 + (1− a)2)
,

µ1(x1) =
r · a · (T − (1− a) · x1)

1 + r · a2
.
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