
sapt2012: An Ab Initio Program for Symmetry-Adapted

Perturbation Theory Calculations of Intermolecular

Interaction Energies. Sequential and parallel versions.

User’s Guide

Revision SAPT2012.2

Robert Bukowski, Wojciech Cencek, Piotr Jankowski, Ma lgorzata Jeziorska,

Bogumi l Jeziorski, Stanis law A. Kucharski, Victor F. Lotrich,

Alston J. Misquitta, Robert Moszyński, Konrad Patkowski, Rafa l Podeszwa,

Fazle Rob, Stanis law Rybak, Krzysztof Szalewicz, Hayes L. Williams,

Richard J. Wheatley, Paul E.S. Wormer, and Piotr S. Żuchowski

Department of Physics and Astronomy,

University of Delaware, Newark, Delaware 19716

Department of Chemistry, University of Warsaw,

ul. Pasteura 1, 02-093 Warsaw, Poland

August 6, 2013

1

Contents

1 Introduction 5

2 What’s new since sapt2002 7

2.1 New in revision sapt2012.2 . 7

2.2 New in revision sapt2012.1 . 8

2.3 New in revision sapt2008.2 . 9

2.4 New in revision sapt2008.1 . 9

2.5 New in sapt2006 . 10

3 Short overview of theory 12

4 Downloading sapt2012 15

5 Packages included in the distribution 15

6 Structure of ./SAPT2012 directory 16

7 SAPT installations at a glance 17

8 Installing SAPT2012 19

8.1 Compall installation script . 19

8.2 Compall asymp installation script . 24

8.3 Testing sapt2012 installation . 25

9 Using sapt2012 with different front-end packages 25

9.1 atmol1024 . 25

9.2 cadpac . 26

9.3 gaussian . 26

9.4 gamess . 27

9.4.1 Optional modification of gamess source . 27

9.4.2 Required and recommended input options 27

9.4.3 runGAMESS script . 28

9.4.4 Interface . 30

9.5 dalton . 30

9.6 molpro . 30

10 How to run sapt2012 33

10.1 Calculations of integrals and SCF energies . 35

2

10.1.1 DCBS and DC+BS approaches . 35

10.1.2 MCBS and MC+BS approaches . 36

10.2 Input for post-Hartree-Fock part . 40

10.2.1 Namelist TRN . 41

10.2.2 Namelist CCINP . 43

10.2.3 Namelist INPUTCOR . 44

10.3 How to read the output . 49

10.4 Calculations of dispersion energy at CCD+ST(CCD) level 50

10.5 Calculation of electrostatic energy from relaxed CCSD densities 51

10.5.1 DCBS calculation . 51

10.5.2 MCBS calculation . 52

10.6 Submitting a sequence of sapt2012 jobs . 54

10.7 Memory and disk requirements . 57

11 Description of some internal data sets 58

12 Performance of sapt2012 59

13 Tests and example input and output files 61

13.1 The examples directory . 61

13.2 Running test jobs . 63

14 Parallel SAPT: psapt2k2 64

14.1 Structure of ./psapt2K2 directory . 65

14.2 Installing psapt2k2 . 67

14.2.1 compall installation script . 67

14.2.2 Testing psapt2k2 installation . 68

14.3 Using psapt2k2 with gamess as a front-end . 68

14.4 How to run psapt2k2 . 70

14.4.1 Running psapt2k2 on SGI . 71

14.4.2 Running psapt2k2 on an SP3/SP4 . 73

14.4.3 Running psapt2k2 on a Beowulf cluster . 73

14.5 Input files . 79

14.6 Memory and disk requirements . 79

14.7 Electrostatic, dispersion, and induction (EDI) energies from monomer properties . 80

14.7.1 The pEDI scripts . 82

3

14.7.2 Calculating electrostatic, induction, and dispersion energies from fitted monomer

electron densities and susceptibility functions 85

15 SAPT(CC) 86

16 SAPT(DFT)—SAPT based on coupled Kohn-Sham treatment of monomers 87

16.1 Introduction . 87

16.2 Installation and usage . 88

16.3 Terms beyond second order in the interaction operator 90

16.4 Density-fitting version of SAPT(DFT) . 90

16.4.1 Using dalton for monomer DFT calculations 92

16.4.2 Using orca for monomer DFT calculations 92

References 99

A Porting sapt2012 to different platforms 100

B Integral/SCF interfacing 101

C List of subroutines 102

D Summary table from output for the example BER (Be2) 112

E Capabilities of pcksdisp program 113

F Generation of auxiliary basis 116

4

1 Introduction

sapt2012 is a computer code implementing Symmetry-Adapted Perturbation Theory (SAPT).

SAPT is designed to calculate the interaction energy of a dimer, i.e., a system consisting of two

arbitrary closed-shell or high-spin open-shell monomers. Calculations can also be performed for

trimers. Each monomer can be an atom or a molecule. In SAPT, the interaction energy is expressed

as a sum of perturbative corrections in the intermolecular interaction operator V , each correction

resulting from a different physical effect. This decomposition of the interaction energy into distinct

physical components is a unique feature of SAPT which distinguishes this method from the popular

supermolecular approach. The SAPT methodology and its applications are discussed in several

review papers [1–7] where complete references to the original developments can be found. Most of

the formulas programmed in sapt2012 are given in the paper published in the book accompanying

the METECC collection of computer codes [8]. The METECC paper is available on the SAPT

web page http://www.physics.udel.edu/∼szalewic/SAPT/SAPT.html and can be also found in

the sapt2012 distribution (SAPT2012/doc/METECC.ps). Note that the formulas for the SAPT

corrections in the METECC paper contain several misprints—for an errata, see Ref. 9.

The METECC project [8] was the first distribution of the SAPT codes. The next version

of SAPT, called sapt961, was available since 1996. Compared to sapt96, the next version,

sapt2002, was about a factor of two faster in medium size (about 200 functions) bases. It also

allowed calculations with up to 1023 basis functions (sapt96 was restricted to 255), was interfaced

with a larger number of front-end SCF packages, and ran on a larger number of platforms. A

parallel version of the SAPT suite [9], referred to as psapt2k2, became available in SAPT2002.

This version runs on SGI Origin, IBM SP, and on Linux clusters and scales well up to about 32

processors. See Sec. 14 for a detailed description of this version. The SAPT2006 edition added

a new, powerful version of SAPT based on the density-functional description of monomers and

called SAPT(DFT) [10–14]. The density fitting implementation of SAPT(DFT) [15, 16], allowing

calculations for dimers with nearly 100 atoms, was the main addition appearing in SAPT2008.

The current version of the programs became available in 2012 and is denoted as sapt2012. The

list of changes relative to sapt2002 is given in Sec. 2.

A version of SAPT has also been developed [17–19] which allows calculations of the nonaddi-

tive portion of the interaction energy for an arbitrary trimer consisting of closed-shell monomers.

Thus, SAPT can now be used to calculate the two leading terms in the many-body expansion of the

interaction energy of a cluster. The package sapt3b containing the three-body SAPT is distributed

1During work on sapt2002 a small error was detected in the ccsdt module of sapt96 which slightly affected

the correction ε(1)(CCSD), especially in calculations for small systems in large basis sets. In all tested cases the

magnitude of this error was small enough not to change the published results.

5

optionally with sapt2012. The package also includes a set of codes for three-body SAPT based on

the Kohn-Sham description of the monomers [SAPT(DFT)] with or without density-fitting [20].

Unfortunately, no further description of the three-body codes is available, but users should be able

to use these programs following the examples provided. For details of the methods, we refer to the

original papers [17, 19, 20].

The two-body SAPT(DFT) can tackle high-spin open-shell systems [21]. This option is avail-

able since the SAPT2008 edition. However, density fitting has not been implemented in open-shell

SAPT(DFT). No manual is available for open-shell SAPT(DFT), but it is quite similar from a

user point of view to closed-shell SAPT(DFT) and therefore, with the examples provided in the

distribution package, the use of these codes should not be problematic.

The calculation of the interaction energy of a dimer using sapt2012 involves four steps.

In the first step, one and two-electron integrals are computed in a chosen orbital basis set and

then SCF calculations are performed on both monomers. The SCF calculation for the dimer can

also be performed at this stage. Several integral/SCF packages are interfaced to sapt2012 and

can be used, including free packages such as gamess [22] (see http://www.msg.ameslab.gov/

GAMESS/GAMESS.html) and atmol [23] (a modified version of the latter package, atmol1024, is

included in the sapt2012 distribution and can be downloaded from the SAPT web page). After

the SCF calculations are completed, the “atomic” integrals (i.e., integrals between the functions

of the basis set used) are transformed into molecular integrals using the 4-index transformation

program tran. In the third step, the Coupled-Cluster (CC) program ccsdt is invoked to calculate

the many-body perturbation theory (MBPT, known also as the MP method since it is based on

the Møller-Plesset partition of the Hamiltonian) and/or CC amplitudes for monomers A and B.

Finally, the sapt.x program is run to compute the interaction energy components. Several short

interface programs are also invoked between the calls to tran and ccsdt. An alternative (to

that implemented in the sapt.x module) way of calculating the electrostatic component of the

interaction energy computes the Coulomb interaction of the monomer charge densities obtained at

the relaxed CCSD level. If such a calculation is desired, additional two codes are run after ccsdt.

These are ccsdm, producing the relaxed CCSD densities, and e1dcbs, performing the integration

of these densities.

SAPT approach described above is a double perturbation expansion in powers of the oper-

ator V and in powers of the intramonomer correlation operator W = WA + WB , the sum of the

Møller-Plesset fluctuation operators for monomers A and B. The expansion in V is truncated at

the third-order terms. The expansion in W is truncated at different orders depending on the

particular component and the most important components (the electrostatic, first-order exchange,

and dispersion energies) are selectively summed to infinity in W . Thus, one may call this approach

SAPT(MP/CC). A complete SAPT(CC) approach at the CCSD (CC with single and double exci-

6

tations) level was developed by Korona et al. [24–31] and is available in SAPT2012.

The computational cost of the SAPT corrections scales as a product of some powers of the

number of occupied orbitals and of the virtual orbitals. Therefore, with a given basis set size,

calculations for larger systems will take longer. At the present time (2012), the largest runs per-

formed at the full theory level included about 500 (300) virtual orbitals for systems with monomers

containing about 10 (20) occupied orbitals, whereas routine runs typically use basis sets of about

250 functions. Larger systems can be tackled by using psapt2k2 and a few dozen of processors

or by neglecting some effects of intramonomer correlation, i.e., using the SAPT2 or SAPT0 levels

defined later on. However, the recommended option is to use SAPT(DFT) [14] (see Sec. 16), which

gives interaction energies similarly accurate as those given by the full SAPT at the costs close to

those of SAPT0. Complete SAPT(DFT) calculations have been performed for dimers with nearly

100 atoms and the dispersion energies can be computed for dimers with about 300 atoms [32].

In the asymptotic region, i.e., for large intermonomer separations, SAPT calculations may be

significantly simplified by means of the multipole expansion which allows to express the interaction

energy as a series of inverse powers of the intermonomer separation. Coefficients of this series, the

so-called van der Waals constants, depend only on monomer multipole moments and polarizabilities

(static and dynamic) and can be computed using the polcor suite of codes by Wormer and

Hettema [33, 34]. The polcor suite, as well as a fitting program developed in our group and

utilizing the ab initio asymptotic information, comprise the independent package asymp sapt,

distributed optionally with sapt2012.

This document is intended to provide a basic introduction to the SAPT method and the

instructions on how to download, compile, and run the sapt2012 and psapt2k2 codes. Also

included are some details on the types of computers, compilers, and integral plus Hartree-Fock

self-consistent field (SCF) packages that SAPT has been tested with. Whereas extensive tests of

SAPT have been performed, there may appear unforeseen difficulties with the installation and

running of the codes. As sapt2012 and psapt2k2 are products of a research project, no resources

are available to provide support for users. The authors of the code will try to provide limited help

within the restrictions of their schedules.

2 What’s new since sapt2002

2.1 New in revision sapt2012.2

• This is a bugfix release. No new features were added.

• Fixed gfortran compilation problem caused by the use of entry statements in integer∗8

functions.

7

• Fixed several gfortran runtime errors.

• Restored compatibility with Fortran 77 compilers (such as g77).

2.2 New in revision sapt2012.1

• SAPT(CC): interaction energy contributions from relaxed monomer CCSD density matrices

and their cumulants [24–31]. This functionality requires molpro and the patch supplied

here.

• Relaxed third-order induction correction E
(30)
ind,resp [35].

• Removed limitation of 1024 orbitals (current limitation is 65535). The option has to be

compiled in (not enabled by default).

• Added code for calculating CKS exchange-dispersion (both non-DF and DF versions) with

amplitudes obtained from CKS propagators in addition to version scaled from uncoupled

versions. This correction, together with analogous exchange-induction corrections, is en-

abled by default when SAPT(DFT) calculations are requested. Old versions are retained for

compatibility.

• orca interface for DF-SAPT(DFT).

• Gaussian09 interface.

• Gradient-regulated asymptotic correction (GRAC) [36] for the dalton program.

• Optional support for dimer.cnf in Angstroms.

• Lowered memory requirements in DF-SAPT(DFT) transformation. Added automatic auto-

matic calculation of required memory in DF-tran.

• Added trailing zeroes to the name of output of Runlot. Helps with sorting.

• Fixed timing routines with Intel Fortran.

• Renamed sapt program to sapt.x enabling correct use of SAPT2012 on filesystems that are

not case-sensitive (e.g., Mac OS X).

• Fix for DF-SAPT(DFT) going into infinite loop in some cases when compiled with gfortran.

• Fixed DF-SAPT(DFT) code in some calculations with large intermonomer distances.

• Fixed SAPT(DFT) geometry code with some versions of awk.

• Fixed integer overflows for large-scale SAPT(DFT) calculations.

8

2.3 New in revision sapt2008.2

• This is a bugfix release. No new features were added.

• Fixed crashing of very large (over 1000 shells in auxiliary basis sets) SAPT(DFT) jobs.

• Fixed crashing of DF-SAPT(DFT) for calculations with large intermonomer distances.

• Removed incorrect “integral unsupported for DF-TRAN” in density-fitting calculations for

third-order induction calculations that prevented such calculations with DF-SAPT(DFT).

• Fixed a bug in the MOLPRO interface to prevent a crash when molpro is compiled with

ifort.

• Fixed a compilation failure for TARGET=gfortran and GAMSI8=’YES’.

• Fixed a bug in the e1dcbs program that resulted in a crash of ccsddSAPT when GAMSI8=’YES’.

• Fixed SAPT script to correctly handle energies printed by molpro.

• Small fixes in the examples and scripts for running the examples.

• Attached new dalton patch with small compilation fixes and a fix to correctly handle ECP

dalton runs.

2.4 New in revision sapt2008.1

• Density-fitting SAPT(DFT) [16], optionally with quadruple precision electrostatic compo-

nent.

• Three-body SAPT(DFT) with or without density fitting [20].

• SAPT(DFT) for open-shell high-spin complexes [21].

• Faster transformation algorithm for non-four-virtual integrals, reusing partially transformed

integrals whenever possible. Optimal performance is achieved when twice as much memory as

for the regular in-core transformation is available. When additional memory is not available,

the new implementation is still faster than the one from sapt2006.1, especially in dimer-

centered basis sets.

• The four-virtual diagram in cc can now be evaluated in atomic orbitals, eliminating the need

for a four-virtual transformation. The AO algorithm currently works only with atmol1024

and molpro interfaces.

• Faster (∼ o2v3, not ∼ o3v3) implementation of the tE
(22)
ind correction, backported from parallel

SAPT.

9

• Support for monomer-centered basis sets in the molpro interface.

• The C6H6_H2O_DCBS example replaced by a similar, C6H6_H2O_ADZM one. In the old example,

the basis set was nearly linearly dependent which caused problems with the coupled-cluster

convergence.

• A new example showing how to run SAPT with effective core potentials (ECPs) using the

molpro interface.

• A new example showing how to calculate a relativistic SAPT interaction energy utilizing

the second-order Douglas-Kroll-Hess Hamiltonian, with the relevant integrals generated by

molpro.

• CKS program can now allocate more than 2 Gwords of memory.

• Fixed a bug resulting in a crash of the sapt.x program in an (extremely unlikely) situation

when no transformed integrals of a given type were larger than the threshold so that no

integrals of this type were written to disk.

• Fixed a bug causing the ccsdm program to allocate too little memory in some cases.

• Fixed a bug in misc/atmolstuff.F resulting in a compile error under HPUX.

• Fixed a bug in cc/tpdrvn.F resulting in a compile error when setting EXTRADEFS=’-DTWOGIGAMAX’.

• Fixed a bug in the molpro interface which caused SAPT to produce nonsensical results

when used with molpro2006.1. Updated example input files for use with molpro2006.1

and molpro2008.1.

• Updated the gamess interface for use with the 2008 release of gamess.

• Corrected a POSIX-noncompliant use of the tail command in the Compall script that

resulted in compile errors on some of the platforms.

• Replaced an advanced regular expression in the SAPT script by a simpler one which is

compatible with mawk. The previous version was problematic for systems for which mawk was

the default awk program.

• Added a preliminary version of the library with common utilities (saptlib/).

2.5 New in sapt2006

• SAPT(DFT) [14] calculations available, with DFT quantities extracted from dalton 2.0 [37].

• Third-order SAPT corrections: E
(30)
ind , E

(30)
exch−ind, E

(30)
ind−disp, E

(30)
exch−ind−disp, E

(30)
disp , and E

(30)
exch−disp [38].

10

• Optional computation of E
(1)
elst from relaxed-monomer CCSD densities. If a pure monomer

basis set is used, the densities may be precomputed and reused, after translation and rotation,

to compute the whole surface of E
(1)
elst(CCSD) using direct integrals.

• Optional calculation of the second-order dispersion energy using converged CCD ampli-

tudes [39].

• The E
(10)
exch(S2) correction reimplemented using a formula valid in both dimer-centered basis

set (DCBS) and monomer-centered basis set (MCBS). The implementation of this correction

in sapt2002 was valid in DCBS only, and for MCBS a wrong result was printed. This

correction does not enter the final SAPT interaction energy, as the formula of infinite order

in S is used.

• New, much faster algorithm for the calculation of E
(20)
exch−disp—the most demanding correction

at the SAPT0 or SAPT(DFT) level. An out-of-core algorithm utilizing much less memory is

also available for this correction.

• New, faster and more memory-efficient CHF routines.

• Frozen core implemented for all standard SAPT corrections [40].

• New interfaces: dalton 2.0, molpro [41], and gaussian03 [42].

• New architectures: AMD64 (Opteron, Athlon64) and Intel EMT64 with g77 (32 and 64 bit)

and pgf compilers (32 and 64 bit), as well as HPUX (Itanium).

• DIIS [43] in coupled-cluster calculations. Turned on by default if compiled in.

• More efficient algorithms for the four-virtual diagram in CC calculations.

• Both energy-based and amplitude-based convergence criteria for CC available.

• Smarter scripts for running SAPT.

• Fixed a memory allocation bug on x86 Linux machines with kernel 2.6.x using g77.

• Several small bug fixes and enhancements.

Note that turning DIIS on/off, as well as changing the CC convergence criterion from energy-based

to energy- and amplitude-based, affects the converged CC amplitudes as well as the E
(1)
exch(CCSD)

SAPT correction if CC convergence thresholds are not very tight (as it is in the default case). This

may lead to slight differences in the value of E
(1)
exch(CCSD) between sapt2006 and older versions

of SAPT.

11

3 Short overview of theory

In SAPT, the total Hamiltonian for the dimer is partitioned as H = F+V +W , where F = FA+FB

is the sum of the Fock operators for monomers A and B, V is the intermolecular interaction

operator, and W = WA + WB is the sum of the Møller-Plesset fluctuation operators. The latter

operators are defined as WX = HX −FX , where HX is the total Hamiltonian of monomer X. The

interaction energy, Eint, is expanded as a perturbative series

Eint =

∞∑
n=1

∞∑
j=0

(E
(nj)
RS + E

(nj)
exch) (1)

with the indices n and j denoting the orders in the operators V and W , respectively. The energies

E
(nj)
RS are the corrections defined by the regular Rayleigh-Schrödinger perturbation theory. These

terms were named “polarization” energies by Hirschfelder [44] and this terminology was used in

earlier editions of SAPT, but was dropped later due to the confusion with the induction interactions

often called polarization interactions. The exchange corrections, E
(nj)
exch, arise from the use of a global

antisymmetrizer to force the correct permutational symmetry of the dimer wave function in each

order, hence the name “symmetry adaptation”. Whereas the double perturbation theory expansion

of Eq. (1) is very convenient for analyzing the results, SAPT is actually a triple perturbation theory

as the WA and WB operators appear individually in SAPT expressions. The resulting triple index

corrections, E(nij), with the consecutive indices referring to V , WA, and WB , respectively, will

occasionally appear later on in this manual.

The RS corrections of the first order in V , E
(1j)
RS , describe the classical electrostatic interaction

and are denoted by E
(1j)
elst . An alternative to expanding the electrostatic energy in powers of the

intramonomer correlation operator is to calculate monomer electron charge densities ρA and ρB at

a certain level of correlation and then use these densities in the formula

E
(1)
elst =

∫
ρA(r1)

1

r12
ρB(r2)dr1dr2 +

∫
ρA(r)VB(r)dr +

∫
ρB(r)VA(r)dr + V0, (2)

where VA and VB denote the electrostatic potential of the nuclei of monomer A and B, respectively,

and V0 is the nuclear repulsion term. In sapt2012, the densities in Eq. (2) can be computed at the

relaxed CCSD level. The quantity E
(1)
elst,resp(CCSD) obtained in this way contains all the second-

and third-order intramonomer correlation corrections as well as some other classes of diagrams

(diagrams resulting from single and double coupled-cluster excitations) summed up to infinite

order [45]. Similarly, the E
(1)
exch(CCSD) correction sums up the respective exchange contributions

[46].

The second-order corrections can be decomposed into the induction and dispersion parts:

E
(2j)
RS = E

(2j)
ind + E

(2j)
disp and E

(2j)
exch = E

(2j)
exch−ind + E

(2j)
exch−disp. (3)

12

The induction component is the energy of interaction of the permanent multipole moments of one

monomer and the induced multipole moments on the other, whereas the dispersion part comes from

the correlation of electron motions on one monomer with those on the other monomer. Similarly,

the third-order polarization corrections are decomposed as

E
(3j)
RS = E

(3j)
ind + E

(3j)
ind−disp + E

(3j)
disp (4)

and the same holds for the corresponding exchange corrections. A detailed discussion of the physical

interpretation of various parts of the third-order polarization energy can be found in Refs. 1 and 38.

The SAPT interaction energy can be computed at different levels of intramonomer correlation

and an approximate correspondence can be made between these levels and the correlation levels

of the supermolecular methods. It can be shown [47], for example, that an appropriate sum of the

polarization and exchange corrections of the zeroth order in W provides a good approximation to

the supermolecular Hartree-Fock interaction energy, EHF
int :

EHF
int = E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch−ind,resp + δEHF

int,resp, (5)

where δEHF
int,resp, defined by the equation above, collects all third- and higher-order induction

and exchange-induction terms. The subscript “resp” means that the coupled Hartree-Fock-type

response of a perturbed system is incorporated in the calculation of this correction. Including

the intramonomer correlation up to a level roughly equivalent to the supermolecular second-order

MBPT calculation, we obtain the interaction energy referred to as SAPT2:

ESAPT2
int = EHF

int + E
(12)
elst,resp + ε

(1)
exch(2) + tE

(22)
ind + tE

(22)
exch−ind + E

(20)
disp + E

(20)
exch−disp, (6)

where the notation ε(n)(k) =
∑k
j=1E

(nj) has been used, tE
(22)
ind is the part of E

(22)
ind not included in

E
(20)
ind,resp, and tE

(22)
exch−ind is the estimated exchange counterpart of tE

(22)
ind :

tE
(22)
exch−ind ≈ E

(20)
exch−ind,resp

tE
(22)
ind

E
(20)
ind,resp

. (7)

The highest routinely used level of SAPT, approximately equivalent to the supermolecular

MBPT theory through fourth order, is defined by:

ESAPT
int = ESAPT2

int + E
(13)
elst,resp + [ε

(1)
exch(CCSD)− ε(1)exch(2)] + ε

(2)
disp(2), (8)

where ε
(1)
exch(CCSD) = E

(1)
exch(CCSD)−E(10)

exch is the part of ε
(1)
exch(∞) with intramonomer excitations

at the CCSD level only.

The SAPT2 level of theory takes much less time than the full SAPT calculation and therefore

it is recommended for large systems. If still faster calculations are required, the correction tE
(22)
ind

can be omitted, as it is usually fairly small.

13

The corrections E
(20)
ind,resp, E

(20)
exch−ind,resp, E

(12)
elst,resp, and E

(13)
elst,resp can also be computed in non-

response versions, but these forms are not recommended and are not calculated unless explicitly

requested.

In case the sum E
(20)
disp + ε

(2)
disp(2) is not converged well enough, the CCD+ST(CCD) approach

developed in Ref. 39 is also available in sapt2012. In this method, first, the dispersion energy

is approximated at a level corresponding to the dimer CCD calculation. The energy E
(2)
disp(CCD)

obtained in this way can be shown [39] to contain the full corrections E
(20)
disp and E

(21)
disp and the

so-called “DQ” part of E
(22)
disp . Next, to take into account the remaining, “S” and “T” contributions

to E
(22)
disp , the expressions for these contributions (Eqs. (91) and (98), respectively, of Ref. 48) are

evaluated with the converged CCD dispersion amplitudes replacing the first-order ones [hence the

name CCD+ST(CCD)].

The corrections listed above constitute the set typically used in SAPT calculations. Recently,

it has become possible to calculate also the corrections of the third order in V and zeroth order in

W [38],

E
(30)
SAPT = E

(30)
ind + E

(30)
ind−disp + E

(30)
disp + E

(30)
exch−ind + E

(30)
exch−ind−disp + E

(30)
exch−disp. (9)

The first and fourth of these corrections constitute a part of the δEHF
int,resp quantity, however, for

some systems it is advantageous to replace δEHF
int,resp by the sum E

(30)
ind +E

(30)
exch−ind [38] or by their

response versions [35]. Note that the third-order polarization and exchange corrections tend to

cancel each other to a large extent, and one should not include any part of E
(30)
RS without including

the corresponding exchange correction.

A few other corrections have been developed by the authors of SAPT but these are either not

working in the current version of the program or for some other reasons are not recommended to

be computed. These corrections include in particular various parts of E
(14)
elst,resp [49].

The theory presented above was restricted to SAPT(MP/CC) for dimers. The SAPT(DFT)

approach is actually simpler since the intramonomer correlation effects are accounted for by DFT

and the only operator is V . The SAPT approach is quite similar for trimers, except that there is

a total of six perturbation operators: VAB , VAC , VBC , WA, WB , WC in SAPT(MP/CC) and the

three former operators in SAPT(DFT).

At intermonomer separations R large enough for the exchange effects to be negligible, the

SAPT results become identical to those of the regular Rayleigh-Schrödinger perturbation theory.

The calculation of the interaction energies in this region can be substantially simplified by ne-

glecting the overlap effects and expanding V in the multipole series. The long-range part of the

interaction energy becomes then expressed as a power series in R−1, with coefficients that can

be obtained using only monomer properties (viz. multipole moments and polarizabilities). These

monomer properties can be calculated ab initio at the correlation level consistent with finite-R

14

SAPT calculations [50, 51] using the monomer parts of the basis set and the polcor suite of codes

developed by Wormer and Hettema [33, 34] and distributed as a part of the package asymp sapt.

4 Downloading sapt2012

The sapt2012 distribution, the parallel version psapt2k2, the asymp sapt asymptotic package,

and the atmol1024 integral and SCF code can be obtained from the web page

http://www.physics.udel.edu/∼szalewic/SAPT/SAPT.html.

All these codes are distributed free of charge but we require users to sign a license agreement

which can be downloaded from this web site and mailed or faxed to us as described there. We will

then email to the interested party the password needed to complete the download. The users who

download the asymp sapt and atmol1024 modules will be also asked to notify the authors of

the polcor and atmol suites of the intended use of their codes.

5 Packages included in the distribution

There are several options for downloading sapt2012 and the accompanying programs, so that

users can download only the parts of interest to them:

1. sapt2012. This file contains only the sapt2012 codes including SAPT(DFT). Users will

have to obtain some integral/SCF package (like gamess, molpro, gaussian, etc.) or down-

load the atmol1024 code (see below) before running sapt2012. On decompression, this file

expands into ./SAPT2012/.

2. atmol1024. This file contains the atmol1024 package. This package is a subset of the

atmol codes [23] modified by us to handle basis sets of up to 1023 orbitals. On decompres-

sion, this file expands into ./SAPT2012/atmol1024, so users should decompress it in the root

directory that sapt2012 is in.

3. asymp sapt. Contains the polcor suite [33, 34] and the accompanying programs nec-

essary for computation of asymptotic coefficients. Also included is the potential energy

fitting program genfit v1, developed in our group. On decompression this file expands into

./asymp SAPT/. Documentation for this package is located in ./asymp SAPT/doc.

4. Complete set of sequential two-body codes

This file contains all the above modules. On decompression it expands into ./SAPT2012/

and ./asymp SAPT/.

15

5. sapt3b. Contains the three-body SAPT [17] and three-body SAPT(DFT) [20]. Requires

sapt2012. On decompression this file expands into ./sapt3b/.

6. psapt2k2

Contains the parallel version of the SAPT codes, psapt2k2. To make the most of this version,

you will have to obtain and install parallel gamess(us) as the integral/SCF package. See

Sec. 14 and Ref. 9 for a detailed description of psapt2k2.

7. SAPT.os

Contains SAPT(DFT) code for open-shell high-spin complexes [21].

8. SAPT(CC):

SAPT(CC) codes [24–31]. This is actually not a separate package, but a part of SAPT2012,

point 1 above. The codes are provided as a patch to MOLPRO in the directory misc/patch.ccsapt

of the SAPT2012 package, see Sec. 15.

The instructions on unpacking these files can be found on the SAPT web page in the Download

Area.

6 Structure of ./SAPT2012 directory

After unpacking, the ./SAPT2012 main directory will contain the following files and subdirectories:

• Cleandirs: use this script to clean the entire sapt2012 directory tree before recompiling

from scratch.

• Compall: script used to build the package (see Sec. 8).

• Makefile: a generic makefile used by Compall.

• UPDATES: log of the history of changes and updates.

• atmol1024/: present if atmol1024 has been downloaded, this directory contains the sources

of the atmol1024 integral and SCF code.

• tran/: program performing the one- and two-electron integral transformation.

• cc/: program performing the coupled cluster singles and doubles calculations for the monomers.

The first few iterations are performed perturbatively, in this way producing MBPT order-by-

order amplitudes needed in SAPT. Both CCSD and MBPT amplitudes are later used by the

sapt.x module to compute intramonomer correlation contributions to various interaction

energy components.

16

• sapt.x/: program computing the SAPT corrections.

• e2d/: program computing the dispersion energy with the intramonomer correlation effects

included at the CCD level [39].

• ccsdd/: programs computing the relaxed CCSD densities of the monomers and the integrals

of Eq. (2) in DCBS bases.

• elsden/: programs computing the electrostatic energy from monomer charge densities pre-

computed in MCBS bases, translated and rotated to monomers’ positions in the dimer.

• cks/: program computing the coupled Kohn-Sham (CKS) dispersion and induction energies

used in SAPT(DFT).

• df/: program computing the density version of the CKS dispersion and induction energies

used in SAPT(DFT).

• misc/: contains various interface and utility programs. Most integral/SCF packages need an

interface program to extract one-electron integrals and SCF orbital energies and coefficients

from files created by these packages and transform them into a standard form readable

by the transformation code (two-electron integrals are read by the transformation program

directly, without such preprocessing). Other programs present in misc/ include int and sort,

interfacing the transformation to the coupled cluster code, the memory estimator memcalc,

a set of geometry converters which can be used with the bin/Runlot* scripts for automatic

generation of potential energy surfaces (see Sec. 10 for details), and a few scripts helpful in

creating dalton input files.

• bin/: utility scripts for running SAPT. After compilation, this directory will also contain

the executables used in a SAPT run.

• doc/: documentation for sapt2012; contains this document and the METECC paper [8]

in the postscript form. Documentation for asymp sapt can be found in the directory

asymp SAPT/doc/.

• examples/: input and output files for a set of systems and a variety of integral/SCF packages.

This is a good source of templates for users runs.

7 SAPT installations at a glance

Table 1 presents a summary of hardware configurations, compilers, and integral/SCF packages

with which SAPT has been tested. This list is meant to be used as a guide only. In case one needs

to port SAPT to a new architecture, some important hints are provided in Appendix A.

17

Table 1: Grid of operating systems (OS) and front-end programs with which sapt2012 has been

tested. Symbols used: ‘+’ – tested and working, ‘±’ – tested, some problems, ‘−’ – not working, ‘0’

– not tested. This table is only for SAPT(MP/CC). SAPT(DFT) is interfaced only with Dalton

2.0 and Orca.

OS/processor/compilera atmol1024 gamess(us) gaussian03/09 dalton 2.0 molpro

Linux/amd64 gfortran + 0 0 + 0

Linux/i386 g77b + + 0c + −d

Linux/amd64 g77e + ±f 0e + −d

Linux/i386 pgf77g + −h + 0 −d

Linux/amd64 pgf90i + ±f + + +

Linux/ifortj ±k 0 0 +/0l +m

SUN OS + + +n 0 0

IBM AIX + + 0 + 0

HPUX/Itanium + 0 +n 0 0

a The systems presented in the table were tested with sapt2012. Some obsolete systems such as SGI OnK,

Alpha, and IBM RS/6000 were tested at the time of the sapt2002 version and may still work with sapt2012.

b Tested on various i386 Linux systems with g77 versions 3.3.x and 3.4.x. gfortran 4.x should work with

SAPT2008.2 and above.

c gaussian does not support compilation with g77.

d molpro requires a Fortran 90 compiler.

e AMD Opteron, AMD Athlon64, and Intel EM64T. Both 32-bit and 64-bit mode available. Compilation requires

use of proper target flags: g77_32 or g77_64.

f The SCF package does not work in 64-bit mode. Integral files calculated with 32-bit

g77 GAMESS can be processed with 32-bit g77 or 32 and 64-bit pgf90 SAPT.

g Portland Fortran Compiler pgf77 on i386 Linux systems.

h GAMESS does not work.

i Portland Fortran Compiler pgf90 on AMD64 Linux systems.

j Intel Fortran Compiler ifort version 8.1 and above on i386 and AMD64 Linux systems.

k ATMOL does not work in 64-bit mode on AMD64.

l 64-bit mode not tested.

m Tested on AMD64 only.

n Tested with gaussian98 but should work with newer versions just as well.

18

8 Installing SAPT2012

Installation of sapt2012 is controlled by a universal script Compall, a small portion of which has to

be customized by the user. The Compall script sets the compilation options appropriate for a given

hardware platform and for the integral/SCF interfaces chosen. It then compiles and links all the

pieces of the code, which sometimes requires access to the I/O libraries of the integral/SCF pack-

ages. If atmol1024 has been downloaded and the ./SAPT2012/atmol1024 directory is present,

this package is also built. Finally, Compall updates the scripts used to run sapt2012 (SAPT,

Runlot*) by inserting updated paths to executables. (The asymp sapt package is installed by a

separate script).

8.1 Compall installation script

The following adjustments must be made by the user to the Compall script:

1. Execution shell: Change the first line of the script to one of the following:

• #!/bin/bash : The Bash shell on a Linux box, or

• #!/bin/ksh : The Korn shell on all other platforms.

2. Integral/SCF program: Declare the SCF packages you wish sapt2012 to be inter-

faced with. An integral/SCF package is activated by simply setting the corresponding

variable in the script to the complete path to the directory where the libraries (or ex-

ecutables, depending on the SCF package) of a given package are located (for example,

GAMESS=/home/local/gamess). Otherwise set the variable to ‘NO’ (note the capitals). In ad-

dition, for gamess, the so-called “version number” environmental variable, VERNO=XX, needs

to be specified (sapt2012 assumes that the name of the gamess executable is gamess.$VERNO.x).

The list of SCF codes in Compall does not include atmol1024. This latter option is activated

automatically if atmol1024 has been downloaded and is present in the ./SAPT2012/atmol1024

directory. Thus, you may set all the integral/SCF variables to ‘NO’, provided that at-

mol1024 has been downloaded. Otherwise at least one integral/SCF variable must be set

by specifying the path. If atmol1024 is present and in addition one or more integral/SCF

packages are selected, both atmol1024 and the explicitly selected interfaces should work

with the created sapt2012 executables. In most cases, the sapt2012 codes use I/O libraries

of the integral/SCF packages in order to read the data created by these packages. Therefore,

a given SCF package has to be installed before sapt2012 and its libraries must be accessible.

Three exceptions are cadpac, gamess, and dalton, which generate data read by sapt2012

using its own subroutines. The SCF programs that can be used to generate atomic integrals

and SCF vectors for sapt2012 are

19

• atmol1024: This is the current and maintained by us version of atmol [23], extended

to handle up to 1023 basis functions. atmol1024 is the default integral/SCF package.

The Compall script checks if the atmol1024 source is present in ./SAPT2012/atmol1024

subdirectory and compiles it automatically. (If for some reasons atmol1024 has to be

kept in another location, and compiled separately, it can still be used by sapt2012

if the line ATMOL1024=NO in Compall is changed to reflect the current location of the

atmol1024 main directory.) atmol1024 code has been tested with sapt2012 more

extensively than any other package and is the recommended choice.

• gaussian: gaussian94 (G94) and gaussian98, gaussian03, or gaussian09 [42] (G03).

A full gaussian installation including the source code must be present at

the location specified by the G94/G03 variable. A binary-only gaussian in-

stallation will not suffice. Set at least one of the variables G94, G03 to NO as these

packages are mutually exclusive. The path specified here should contain the gaussian’s

library util.a (usually it is the main directory of the gaussian distribution). Addi-

tionally, the variable GAUEXE holds the name of the gaussian executable (no path is

necessary) so that the SAPT scripts know which executable to call. The default value

GAUEXE=g09 must be changed if a different version is used. Finally, the Compall script

declares a variable EXTRADEFS which is an empty string by default. If gaussian was

compiled with the option -DI64 (64-bit integers, default on several architectures) and/or

-DPACK64 (64-bit packing of integral indices, also default on a few platforms), the same

set of options (-DI64 and/or -DPACK64) must be given to the variable EXTRADEFS so

that the gaussian interface and the transformation program are compiled to work with

this particular configuration of gaussian. These options do not affect running SAPT

with any other integral and SCF front-ends.

One should note that, as the SAPT codes are linked to the gaussian’s util.a library,

the user must make sure that this library (and the whole gaussian code) has been

compiled for exactly the same architecture as SAPT. For example, the Sun SPARC

architecture (TARGET=sunf90) supports generation of codes for several different flavors

of SPARC via the compilation option -xarch=PLATFORM. If gaussian was compiled

for an architecture other than the default -xarch=generic, the user needs to edit all

occurrences of -xarch=generic in both Compall and atmol1024/Makefile.sunf90,

replacing generic by the architecture for which gaussian was compiled. It is not

a problem if Fortran 77 (rather than Fortran 90 as in the case of SAPT) was used

to compile gaussian for TARGET=sunf90, as the compatibility library -lf77compat is

automatically linked in where necessary.

20

SAPT does work with the latest releases of gaussian03 that support the AMD64

architecture. Note, however, that the TARGET=pgf90 architecture has to be chosen in

this case despite the fact that for this platform, gaussian itself is compiled with pgf77.

The TARGET=pgf77 setting is restricted to the 32-bit i386 architecture and will

not produce a valid code on an AMD64 machine.

• gamess [22]: sapt2008.1 works with the most recent release of gamess (dated 11

Apr 2008). If you want to use an older version of gamess, you may need to edit the

file misc/gamint/gamsintf.F, subroutine OPENDA, changing the value of the variable

IRECLN from 4090 to whatever is returned by the gamess function NRASIZ(10); see

gamess source code, file iolib.src.

If the gamess interface is used, set the variable GAMESS to the path where the gamess

executable is located. Also set the variable VERNO which is the middle part of the name

of this executable (e.g., for gamess.01.x, VERNO=01). The sole purpose of the variable

GAMESS in Compall is to pass the path and name of the gamess executable to the SAPT

execution script. No access is needed to any gamess files at the compilation time. Thus,

compilation will proceed even if gamess is not installed beforehand.

64-bit gamess: if you intend to use gamess compiled with a 64-bit integer (this

happens by default on the ALPHA platform, but may also happen on SGI when “sgi64”

is specified during compilation of gamess), replace the line GAMSI8=NO with GAMSI8=YES.

• cadpac [52]: This package does not need any interface programs since the files created

by it can be read directly by sapt2012 codes. Also, sapt2012 does not need access

to any cadpac libraries, so that the compilation will proceed even if cadpac is not

installed on your system.

• dalton [37]: If used, set the path to wherever the dalton executable script is located.

The sole purpose of the variable DALTON in Compall is to pass the path and name of

dalton executable to the SAPT execution script. No access is needed to any dalton

files at the compilation time. Thus, compilation will proceed even if dalton is not

installed on your system beforehand.

• orca [53]: If used, set the path with the orca executable files. Similarly as for dalton,

the only use of the variable ORCA during the compilation is to pass the path to orca

executable files to the SAPT execution script.

• molpro [41]: If the molpro interface is used, set the variable MOLPRO to the full

name of the molpro executable (including the path). All versions of molpro start-

ing from molpro2002.1 up to and including molpro2010.1 are supported. During

the compilation of sapt2012, no access to any molpro libraries is needed so the

21

compilation will proceed even if molpro is not installed on your system beforehand.

However, the molpro program itself must be modified and recompiled before using

it with sapt2012 as the SAPT interface to this front-end has the form of a mol-

pro patch. This interface is located in the misc/patch.molpro2sapt subdirectory and

consists of four files: src/common/sapt1, src/common/sapt2, src/util/user.f, and

src/util/user sapt.f. The first two of these files must be placed in the src/common

subdirectory, and the last two—in the src/util subdirectory of your parent molpro

directory before recompiling molpro. Note that the standard distributions of molpro

already contain a dummy version of the file src/util/user.f. It may safely be replaced

by the file from sapt2012 if, as it is the case for a default molpro installation, no other

user-supplied subroutines have been placed there. As a Fortran 90 compiler is required

to build molpro, this interface has been tested only for such compilers (Portland pgf90

and Intel ifort on a 64-bit AMD architecture running Linux) so far.

• aces: This interface has not been tested recently but might work.

It is also possible to build the sapt2012 package for use with the older version of atmol

(such a version, limited to 255 basis functions, is included in the asymp sapt distribution).

This can be accomplished by setting the variable ATMOL in Compall equal to the path of the

main atmol directory (change the line ATMOL=NO) and removing or renaming the directory

./SAPT2012/atmol1024 (if present). The atmol package has to be compiled prior to the

compilation of sapt2012. sapt2012 cannot be interfaced with atmol1024 and atmol

simultaneously.

3. PLATFORM: Two variables need to be set:

• TARGET is the system on which sapt2012 will be compiled. This can be one of (all lower-

case): sgi, ibm32, ibm64, alpha, g77, pgf77, pgf90, ifort, g77_32, g77_64,

sunf90, or hpux. sgi stands for the Silicon Graphics ORIGIN or POWER CHAL-

LENGE series computers with the MIPSPRO 7.3 or higher compiler, ibm32 – for the

IBM RS6000 or SP machines (on 64-bit IBM platforms, ibm64 is also possible), alpha –

for the (formerly DEC) ALPHA platform. g77 and pgf77 are used for a 32-bit LINUX

box with the compiler g77 or pgf77 (Portland Group Fortran), respectively. If one

needs to run SAPT on an old Linux machine which does not support files larger than

2 GB, splitting of all potentially large temporary files into 2 GB chunks can be turned

on at compile time by adding the -DTWOGIGAMAX declaration to the variable EXTRADEFS

at the beginning of the Compall file. On a 64-bit AMD platform running Linux, one

may compile SAPT using the Portland Group Fortran 90 (Portland Group Fortran 77

22

will not suffice in this case) or the Intel Fortran Compiler (versions 8.1 and above) by

setting TARGET=pgf90 and TARGET=ifort, respectively. For the compilation on 64-bit

AMD using g77, the user needs to specify the g77_32 or g77_64 target flag for a 32-bit

or a 64-bit binary, respectively. TARGET=pgf90 and TARGET=ifort work in the 64-bit

mode by default; note, however, that atmol1024 does not work with TARGET=ifort in

64-bit mode. GNU Fortran95, gfortran is supported starting with SAPT2008.2, except

for atmol, where some combinations of compiler versions/systems do not work. Since

gfortran changed the file binary format between versions 4.1 and 4.2, it is strongly

recommended that all programs (including SCF/DFT interface programs) are compiled

with the same version of the compiler. TARGET=sunf90 is for the Sun SPARC machines

equipped with the FORTRAN90 compiler. Finally, TARGET=hpux corresponds to the

64-bit Itanium architecture running HPUX and equipped with the HP Fortran90 com-

piler. Note that for this platform several necessary system calls (used, e.g., in the timing

routines) are contained in the libU77.a library whose location may vary on different

machines (/lib/hpux64 or other). To compile SAPT for TARGET=hpux, the user must

make sure that the correct, 64-bit version of the libU77.a library is present in one of

the directories in which the linker searches for libraries.

• BLAS points to the Basic Linear Algebra Subprograms (BLAS) and the Linear Alge-

bra PACKage (LAPACK) libraries. On SGIset BLAS=’ -llapack -lblas ’. On an

ALPHA, set BLAS=’ -ldxml ’, on IBM AIX (RS6000 or SP4): BLAS=’ -lessl ’,

and on SPARC: BLAS=’ -xlic lib=sunperf ’. On Linux machines, one may set

BLAS=’ -llapack -lblas ’, however, other options usually lead to substantially bet-

ter performance. For example, if you have compiled yourself a self-optimizing BLAS li-

brary like ATLAS (http://math-atlas.sourceforge.net), set BLAS=’ -L<Full Path

to Library> -llapack -lcblas -lf77blas -latlas ’. However, a simpler option

which usually leads to only slightly lower performance may be to download the pre-

built ATLAS library for your architecture from, e.g., www.netlib.org. The efficiency

of the BLAS library is important for the performance of SAPT and users are encour-

aged to use the fastest BLAS library on their machines. The performance of LAPACK,

however, is of minor importance and if optimized LAPACK is unavailable, one can set

BUILDLAPACK=YES in the Compall script and the subset of LAPACK required for SAPT

will be compiled.

4. Several additional preprocessor definitions may be specified during the compilation by listing

them in the variable EXTRADEFS in the Compall script. This variable, equal to an empty

string by default, may contain the options -DI64 and/or -DPACK64 defining the format of

23

files imported from gaussian, the option -DTWOGIGAMAX which requests splitting of all large

temporary files into chunks smaller than 2 GB, and/or, the definition -DTPDRVN used to

switch on the old algorithm of calculating the four-virtual contribution to the monomer CC

amplitudes using unsorted integrals. The default algorithm uses sorted integrals and is faster,

especially when a well-optimized BLAS library is available, but it requires more disk space

during the CC stage of the calculation.

Once all the variables mentioned above are set, simply type:

• C-Shell users: ./Compall >& compall.log &

• K-Shell or Bash users: ./Compall > compall.log 2>&1 &

and the compilation should begin. Check compall.log to see if all is well. The Compall script will

create a file ‘./SAPT2012/stamp.intf’ containing a summary of the settings you have used in the

compilation. A subsequent invocation of Compall will detect any changes made to these settings

since stamp.intf was last created and only those parts of the code which were affected by these

changes will be rebuilt. Running the script ./SAPT2012/Cleandirs will restore the ./SAPT2012

directory to its “distribution” state, i.e., all object files and executables (except shell scripts) will

be deleted and a subsequent invocation of Compall will start the compilation from scratch.

One more customization step may be required before sapt2012 is run with gamess as the

SCF front-end: the ./SAPT2012/bin/runGAMESS script must be modified by setting the TARGET

variable, which depends on the platform and on the way gamess has been compiled. In most cases,

the default TARGET=sockets will be appropriate, although on SGI machines TARGET=sgi-mpi is

also popular. Consult your local gamess installation. Further customization of runGAMESS will

be needed for other targets (if you need to do such a customization, see examples given in both

runGAMESS and the standard rungms script for the gamess distribution).

8.2 Compall asymp installation script

If you have downloaded the asymp sapt package, it will expand into ./asymp SAPT directory.

Change to this directory and use Compall asymp script to build all programs in this package. The

subdirectory doc contains the user’s manual for these programs. The asymptotics calculations are

presently limited to 255 orbitals per monmer and the relevant codes are interfaced only with the

older version of atmol (included in the asymp sapt package). Furthermore, the POLCOR pro-

gram computing the dynamic polarizabilities works only under SGI’s IRIX and IBM AIX operating

systems.

24

8.3 Testing sapt2012 installation

Once the compilation has been completed successfully (if unsure, just grep the compall.log file

for the word error), we strongly recommend that you perform as many tests as possible before

starting to use sapt2012 for production runs. A suite of test jobs of varying size and for various

SCF front-ends has been provided for this purpose in the subdirectory examples/. Sample outputs

from different platforms can also be found there. For more information on running the test jobs,

see Sec. 13.

9 Using sapt2012 with different front-end packages

9.1 atmol1024

A good place to look for the description of input to atmol1024 is Paul Wormer’s web page,

http://www.theochem.ru.nl/∼pwormer (strictly speaking, this is a description of the older ver-

sion of atmol, but the input options are the same as for atmol1024). Below we discuss several

options relevant for a sapt2012 run.

It is convenient to reduce printouts from the integral (integw) module of atmol1024 by

adding the directive NOPRINT GROU GTOS to the “intinp” files. This will suppress printing of the

groups or ordered Gaussian Type Orbitals (GTOs). Adding the word BASI to the list will also

suppress the basis set printout. To avoid computation of the multipole integrals, not needed in a

SAPT calculation, include the directive BYPASS PROPERTY (this may be important especially on

SGI machines, where the absence of such directive may cause a run-time error). Inclusion of a line

FPRINT NVCT NEIG NFTE NITE NPOP in the *.scfinp input files will ask the scf program to skip

the printout of the vectors, eigenvalues, Fock trial matrix, iterations, and populations for that run.

When the supermolecular SCF interaction energy is calculated during a SAPT run, i.e., when

the scfcp option is in effect (most runs are like this), the files nameA.intinp and nameB.intinp

should contain the directive BYPASS TWO to avoid recalculation of two-electron integrals. This

directive should not be present in the file name.intinp or, in the case of a MC+BS calculation – in

nameMA.intinp and nameMB.intinp (name denotes here the name of the job). If the supermolecular

SCF calculations are not performed, i.e., if the scfcp option is not in effect, then the directive

BYPASS TWO must be also removed from the file nameA.intinp. See Sec. 10 for further explanation.

On old Linux platforms with the g77 compiler, there is a 2 GB restriction on the size of any

file. In such a case, if the two-electron integral file generated by atmol1024 is likely to exceed

this size, it has to be split into several pieces each 2 GB or less. For example, if the integrals are

anticipated to take 5 GB of disk space, one should have them distributed over at least three files.

This can be done by specifying

25

MAINFILE MT3 MT4 MT5

MAXBLOCK 499999

in the *.intinp files, somewhere below the basis set specification but before the ENTER directive.

The first of the lines above means that the files called MT3, MT4, MT5 will be used to store the

integrals, and that the size of each will not exceed MAXBLOCK*511*8 bytes, which in this case

amounts to somewhat less than 2 GB (the number 511 comes from some internal data structures

of atmol1024). Now we have to tell the transformation module of sapt2012 how many files

atmol1024 produced by including NMFILES=3 in the TRN namelist in the *P.data input file (see

Secs. 10 and 10.2 for description of this file). Of course, the number “3” would have to be changed

if some other number of MT* files were used. atmol1024 and sapt2012 support up to 18 such

files, MT3 through MT20. This option is left for compatibility but is not necessary on modern Linux

distributions.

9.2 cadpac

The cadpac interface to sapt2012 is not maintained anymore, however, it is likely to work.

Notice that cadpac can use only Cartesian basis functions, and only angular functions up to f are

allowed. The input file used for cadpac runs must include the SAPT keyword. This keyword makes

cadpac write out to a file the SCF vectors and other information in the format required by the

sapt2012 transformation code tran. Thus, there is no interface program required for cadpac.

cadpac was the first front-end for SAPT(DFT) and the use of this package may be still

be of some interest despite the slowness of this interface due to the large number of DFT eX-

change Correlation (XC) functionals implemented in cadpac. Notice, however, that the complete

SAPT(DFT) [14], with coupled Kohn-Sham dispersion and induction energies, does not work any-

more with cadpac (it works with dalton 2.0 and Orca only).

To run sapt2012 with cadpac as the front-end, a special script /SAPT2012/bin/SAPT CADPAC

should be used instead of SAPT used for all other SCF programs.

9.3 gaussian

When using gaussian with sapt2012, a symbolic link in the compilation script Compall is made

to point to the util.a file in the gaussian directory structure. The transformation module tran of

sapt2012 links to this library to be able to read the rwf and two-electron integral files. In the input

to the post-Hartree-Fock stage of the calculation (the file nameP.data), in the TRN namelist, the

user must specify either ISITG94=T for gaussian94 or ISITG03=T for gaussian98, gaussian03,

or gaussian09. In the latter case, the variable GAUEXE, set up during the compilation of SAPT,

is passed to the script so that it knows whether to execute g98, g03, or g09.

26

In gaussian94 and in newer versions of this code, the default method of SCF calculations is

direct (two-electron integrals calculated in-core and not written to disk). Since sapt2012 always

needs the two-electron integrals, the command SCF=(CONV), which stands for “do conventional

SCF”, must be used to force the two-electron integrals to be written to disk. Note that in the

conventional (non-direct) mode gaussian is limited to s, p, d, f basis functions and one must

use a different integral and SCF front-end when g (or higher) functions are present in the basis

set. We recommend the SCF=(TIGHT,CONV) keyword to be used to tighten the SCF iterations

convergence criteria. Moreover, the keywords SYMM=NOINT and NORAFF must be present in all

inputs to gaussian since SAPT does not use the point group symmetry of integrals and accepts

integrals in the regular (non-Raffenetti) format only. For unknown reasons, these settings do

not always work in gaussian03 if the default method of selecting the initial guess for the SCF

iterations is used. In case of such problems, the user should specify GUESS=INDO so that the initial

guess is obtained using the method which was the default in gaussian98 and previous releases

(note that the GUESS=INDO keyword is not understood by gaussian98 and older versions). Finally,

we remind the user that the MASSAGE keyword should be used in gaussian when setting the charges

to zero (e.g., to perform an SCF run for a monomer in a dimer-centered basis set).

9.4 gamess

9.4.1 Optional modification of gamess source

In order to ensure that the SCF energies from gamess are printed with a sufficient number of

decimals, we recommend one FORMAT change in the rhfuhf.src module, prior to compilation of

gamess. In the subroutine RHFCL, the statement

8000 FORMAT(’--- CLOSED SHELL ORBITALS --- GENERATED AT ’,3A8/10A8/

* ’E(’,A,’)=’,F20.10,’, E(NUC)=’,F16.10,’,’,I5,’ ITERS’)

should be replaced by:

8000 FORMAT(’--- CLOSED SHELL ORBITALS --- GENERATED AT ’,3A8/10A8/

* ’E(’,A,’)=’,F24.16,’, E(NUC)=’,F16.10,’,’,I5,’ ITERS’)

9.4.2 Required and recommended input options

Please note that standard (non-direct) SCF calculations must be performed and some options in

the gamess input must have specific values:

• In the $CONTRL input group, NOSYM=1 option must be present (i.e., no symmetry must be

requested).

27

• In the $INTGRL input group, NOPK=1 (integrals must not be in supermatrix form) and NINTMX=2048

options must be present. Maximum number of integrals in a record block NINTMX must

be the same as linrec variable in the sapt2012 module trans.f which is set in the

IF(isitgams) THEN block. The linrec is currently set to 2048 (but can be changed to

a different value).

• We recommend that the following thresholds for the two-electron integrals, linear dependence,

and SCF convergence are set instead of the gamess default values:

– in the $CONTRL input group, ICUT=24, ITOL=26

– in the $CONTRL input group, QMTTOL=1.0E-30; this will prevent gamess from unex-

pectedly removing quasi-linearly dependent combinations of basis functions from the

variational space (sapt2012 does not work correctly if such a removal occurs)

– in the $SCF input group, NCONV=9.

• We recommend using the option ISPHER=1 in the $CONTRL input group, which forces gamess

to do SCF calculations in the basis set of spherical Gaussian orbitals instead of the default

Cartesian ones and thus reduces the risk of linear dependencies. Unfortunately, although

using this option reduces the dimension of the variational space available to the system, the

atomic integral file produced by gamess remains “Cartesian” and thus its size is not reduced.

• In the MC+BS-type run (see Sec. 10 for explanations), the variable SPHG in the namelist TRN

in the *P.data file (see Secs. 10 and 10.2 for a detailed description of this file) must be set

to F or .FALSE., even if gamess was run with ISPHER=1. This is because of the “Cartesian”

character of the integrals file, as mentioned above. The variable SPHG, which defaults to

.TRUE. (i.e., spherical basis is assumed), is only important for MC+BS and MCBS runs and

has no effect in the DCBS case.

9.4.3 runGAMESS script

Whereas most other integral/SCF packages are invoked in the SAPT script by just executing a given

program, gamess needs its own script, ./SAPT2012/bin/runGAMESS, called from the SAPT script.

runGAMESS is a slightly modified version of the standard script rungms distributed with gamess.

As already pointed out in Sec. 8, the user must edit this script and supply the appropriate value of

the TARGET variable. The targets sockets and sgi-mpi have been extensively tested, while other

targets may require some additional customization to make gamess run. These additional changes

are independent of the sapt2012-related portions of runGAMESS and, if needed, can be introduced

with the help of the standard gamess documentation.

28

If you rather prefer your own gamess script instead of runGAMESS, you can easily adapt it for

use with sapt2012 by following these steps:

• Copy your script into the ./SAPT2012/bin directory. In the SAPT script, change the name

of runGAMESS to that of your own script.

• The SAPT script communicates with runGAMESS (or your custom-made script) through the

syntax of the type

runGAMESS $JOB $VERNO $NNODES $SCR $PUNCHDIR $GMSPATH

where

– JOB is the name of the input file, like xxx.inp, give only the xxx part

– VERNO is the “version number” of the executable (usually the name of the executable is

something like gamess.$VERNO.x)

– NNODES is the number of compute processes to be run (only 1 can be used with sequential

sapt2012 and that’s what the SAPT script is requesting)

– SCR is the scratch directory for gamess

– PUNCHDIR is the punch directory for gamess

– GMSPATH is the path to the gamess executable

All the parameters in the invocation of runGAMESS are set automatically in the SAPT script

upon compilation of sapt2012 or at run time. Your custom-made replacement of runGAMESS

should recognize these command-line parameters instead of having them hard-coded, as it is

usually the case with the standard rungms.

• In your script, after the SCF calculation is done but before file cleanup, some gamess files

should be saved with appropriate names:

– $SCR/$JOB.F05 as $SCR/$JOB.INP,

– $SCR/$JOB.F08 as $SCR/inttw.data, and

– $SCR/$JOB.F10 as $SCR/$JOB.DAF,

where SCR denotes gamess scratch directory and JOB is a script variable which will be set

by the SAPT script on each call to gamess.

29

9.4.4 Interface

The sources of gamess—sapt2012 interface are located in the ./SAPT2012/misc/gamint subdi-

rectory. The interface consists of the Fortran program gamsintf.f which extracts one-electron in-

tegrals and SCF vectors from the “dictionary” file of gamess, and two simple awk scripts, gms awk1

and gms awk2, which scan the gamess standard output for the number of basis functions, occupied

orbitals, and system geometry.

9.5 dalton

The dalton 2.0 interface was tested on machines with 32-bit integers only (but most of the ‘64-

bit’ architectures, including AMD64 and IBM64, have 32-bit integers). dalton must be compiled

without -DVAR_SPLITFILES option and the operating system must support files larger than 2 GB.

The input file .dal must include .INTERFACE directive in **WAVE FUNCTIONS and .NOSUPSYM in

*ORBITAL. If the job has more than 255 basis functions, .NOSUPMAT in *AUXILLIARY INPUT is

required, see examples/DALTON/He2. The symmetry must be switched off. For larger basis sets,

prone to linear dependencies, .AO DELETE and .CMOMAX in *ORBITAL INPUT should be set to a

small and a large value (e.g., 1.D-8 and 1.D+5), respectively, to suppress removing of quasi-linear

dependencies from the basis set combinations since sapt2012 would not work if such a removal is

performed. It is recommended to compile dalton with the same compiler as SAPT.

9.6 molpro

When using molpro as an integral and SCF front end, only one molpro input file that takes care

of the dimer and both monomers is required irregardless of whether the DCBS/DC+BS (Sec. 10.1.1)

or MCBS/MC+BS (Sec. 10.1.2) approach is used. The SAPT script assumes that this file is named

name.molpro where name is the name of the job. Example name.molpro files can be found in the

examples/MOLPRO subdirectory of sapt2012. Several important things should be kept in mind

when writing the name.molpro file:

• The integral symmetry must be switched off using the SYMMETRY,NOSYM keyword.

• After the SCF calculation for each monomer, the records containing eigenvectors and other

important quantities have to be saved so that these records are accessible to the interface

routine. Furthermore, the number of electrons, the spin multiplicity, the nuclear repulsion

energy, and the total SCF energy must be saved to appropriate variables. This is accom-

plished (in case of the DCBS/DC+BS approach) by a series of keywords in the molpro input

file

orbital,2110.3

30

NelecA=nelec

NspinA=spin

nucmonoA=enuc

emonoA=energy

data,copy,1200.1,1202.1

data,copy,1410.1,1412.1

data,copy,700.1,702.1

for monomer A and

orbital,2111.3

NelecB=nelec

NspinB=spin

nucmonoB=enuc

emonoB=energy

data,copy,1200.1,1201.1

data,copy,1410.1,1411.1

data,copy,700.1,701.1

for monomer B. Note that the order of some of these keywords is important as molpro2006

appears to forget the SCF energy after the data,copy command. The interface also needs

the variable nucrep containing the nuclear repulsion term between monomers:

nucrep=nucdimer-nucmonoA-nucmonoB

• If the CP-corrected supermolecular SCF interaction energy is requested apart from the SAPT

corrections, the SCF energy for the dimer must be calculated and saved:

hf

edim=energy

Later in the script, all three SCF energies should be listed with sufficient precision

show[1,d25.15],edim

show[1,d25.15],emonoA

show[1,d25.15],emonoB

as the SAPT programs extract these values from the output of the molpro part of calcula-

tion. If the supermolecular SCF interaction energy is not requested, the dimer SCF energy

31

edim is not needed, however, the nuclear repulsion energy for the dimer nucdimer is still

required. The simplest way to get nucdimer is to request a zero-iteration SCF calculation

for the dimer in some minimal basis set like STO-3G:

basis=sto-3g

hf;maxit=0

nucdimer=enuc

• At the very end of the molpro input, the interface routine has to be called using the keyword

user

Starting from the sapt2008.1 release, the molpro interface supports the use of a monomer-

centered basis set as well as of a dimer-centered one. An example of an MC+BS sapt2012 run em-

ploying the molpro interface can be found in the directory ./SAPT2012/examples/MOLPRO/CO2D MCBS.

Several changes in the molpro input file name.molpro are needed to perform an MC+BS run:

• Before (not after) the regular set of dimer and monomer integral/SCF calculations in the full

DC+BS basis is done, separate monomer SCF calculations have to be performed in restricted,

MC+BS parts of the full dimer basis. The only data that is needed from these calculations are

the SCF orbitals and orbital energies, and these quantities must be saved using the keywords

orbital,2110.3 for monomer A and orbital,2111.3 for monomer B.

• The same orbital keywords must be removed for the subsequent monomer SCF calculations

employing full DC+BS set to avoid overwriting the MC+BS orbitals.

• One should note that a name.molpro input file for an MC+BS run contains three basis

specifications (the MC+BS set for monomer A, the MC+BS set for monomer B, and the

full DC+BS set). The user must make sure that these three bases have exactly the same

ordering of functions apart from some DC+BS functions being omitted in the MC+BS sets.

Special care should be taken when specifying different basis sets for different atoms of the

same type, as under some circumstances molpro changes the ordering of atoms compared

to the ordering given in the geometry specification. The user is strongly advised to check in

the molpro output if the ordering of atoms is consistent with the basis set specification.

The post-SCF input file nameP.data must in this case contain the BLKMB=F directive so that the

assignment of the basis functions to monomer A/monomer B/dimer sets is specified using the ‘tags’

mechanism, cf. Sec. 10.1.2.

One should note that the geometry section of the final SAPT summary table looks a little

different than usual when molpro is used as the integral and SCF front-end. The charges on the

32

nuclei are not given, and all atoms (those of monomer A, those of monomer B, and dummy atoms)

are listed together. Nevertheless, all energies calculated by SAPT should be correct.

10 How to run sapt2012

To perform a sapt2012 calculation for one dimer geometry, one has to run a dozen or so programs:

integral/SCF calculations for the monomers and possibly for the dimer, interface programs (in most

cases) rewriting integral/SCF files into different forms, one- and two-electron integral transforma-

tions, MBPT/CCSD calculations for monomers, and finally, the “proper” SAPT calculations. All

of this is performed automatically using the script SAPT from ./SAPT2012/bin directory (note,

however, that a special script doSAPT CADPAC has to be used if cadpac is the front-end SCF

program). This script calls other executables and scripts which can be found in the same place.

Calculation of the interaction potential energy surface of a dimer involves multiple invocations of

the SAPT script for different dimer geometries. This process can be simplified and automated with

the help of the Runlot utility scripts, described in Sec. 10.6.

One of the scripts called by SAPT is the script bin/Clean that cleans up unnecessary files

after a SAPT run (it will erase the SAPT-related files from the directory in which it is run). The

files are not automatically erased at the end of of each run in order to enable restarts (which has

to be done on a case-by-case basis by modifying the SAPT script except when starting from the

transformation step). Therefore, bin/Clean is called at the beginning of the SAPT script, so that a

consecutive calculation can be performed in the same directory (do not forget to change the name

of the output file). This is necessary since several temporary files are named with no reference

to the job name. Thus, two simultaneous calculations cannot be done in the same directory (but

can be run, of course, in separate directories). It is also prudent to run bin/Clean itself (just by

executing ./SAPT2012/bin/Clean) to release unnecessary disk space after finishing calculations in

a given working directory.

The actual running of the program when using the SAPT script is very simple. On most

installations runs are performed in a “working” or “scratch” directory designed to hold large

temporary files. We find it simplest to make a subdirectory there, copy the input files (created

by the user or taken from the ./SAPT2012/examples) to this subdirectory, and either execute the

SAPT script in this directory using the full path (e.g., /home/local/SAPT2012/bin/SAPT ...) or

simply copy the SAPT script to the working directory (several other possibilities exist, for example

users can add the ./SAPT2012/bin directory to their PATH environment variable). However, the

SAPT script requires the vars.cfg file present in the same directory so this file must be copied

accordingly if the script is not run from the SAPT2012/bin directory.

During the compilation, the script Compall updates vars.cfg file with proper paths to ex-

33

ecutables and the scripts should run properly on any installation without changes if vars.cfg is

present in the same directory. If the paths need to be changed for some reasons, the file vars.cfg

should be edited and the variable MAIN SAPT DIR and the SCF HOME DIRECTORIES changed to re-

flect user’s directory structure (if gamess is used, it concerns also additional directories relevant

for this program).

Also note that the large core memory requested typically by the sapt2012 programs requires

on some systems the use of the ulimit command to change the default user resources. This

command, built into the SAPT script, is currently commented out but it may be reactivated and

adjusted as needed.

The SAPT script is written in ksh although on Linux platforms, some of which are not equipped

in ksh, it is actually executed under bash. A sapt2012 calculation is launched by typing SAPT

with appropriate options. Typing SAPT without any options will produce a brief description of the

necessary input. A typical run statement might be something like (in Unix ksh):

SAPT jobname [opt1] [opt2] >output.file 2>&1 &

The keyword jobname has to be the same as the beginning of the name of the input files for the

system considered (we use a naming scheme to reference the needed input files). For example, let

the keyword be name. Then, as the script is running, it will look for the nameP.data file, which

contains the input data to the programs tran, ccsdt, and sapt.x. Similarly, the SAPT script will

look for input files to the integral/SCF parts of a calculation starting with name. The number and

full names of such files depend on the type of basis set used in calculations and on the choice of

the integral/SCF code.

For all SCF front-ends except gamess, the keyword opt2 can be skipped and opt1 is optional.

Using the string scfcp for opt1 will request, in addition to the standard SAPT calculation, also

the CP-corrected supermolecular SCF interaction energy in the dimer-centered basis set. If such

a calculation is not required, leave opt1 blank or, better yet, use noscfcp instead. Using the

keyword gototran as opt1 will result in restarting a sapt run from the transformation step, i.e.,

from the program tran. Both parameters, opt1 and opt2, are required when gamess is used as

the SCF program. opt1 can assume one of the values listed above (but noscfcp must now be

used instead of a blank), while opt2 must be the full path of the scratch directory in which the

whole calculation is taking place. opt2 has the same meaning when dalton is used. However,

for dalton opt2 is optional and the place where SAPT is launched will be assumed as the scratch

directory if this parameter is omitted.

The output from all programs executed by SAPT is written to a file output.file (this name

can be set by the user to an arbitrary string, usually connected with the system being computed

and its geometry). The last two elements in the command line given above are Unix ksh constructs

34

which indicate that standard error messages will be written to the same file as the standard output

and that the process will be run in the background.

Most modern computer clusters do not allow command line submission of jobs. Instead,

one has to use a queuing system (batch processor). In this case, the sequential SAPT should be

submitted in a way analogous to that described in Sec. 14 on psapt2k2, of course, requesting just

one core.

10.1 Calculations of integrals and SCF energies

A sapt2012 run starts with calculations of “atomic” integrals, i.e., integrals involving the basis

functions, and proceeds to calculations of the SCF orbitals and orbital energies for monomers.

Optionally, if the opt1 keyword is set to scfcp, a counterpoise (CP) corrected supermolecular

calculation of the HF-SCF interaction energy is also performed. The number and type of SCF

calculations depend on the chosen approach to the basis set construction and on the selection of

the supermolecular calculation. For a description of possible choices of basis sets, see the following

subsections and Ref. 54.

For information on the input to the integral/SCF programs please refer to the original doc-

umentation for those codes. Some remarks on this subject can also be found in Sec. 9. For an

atmol manual see

http://www.theochem.ru.nl/∼pwormer .

Please note that symmetry considerations are not built into the sapt2012 codes, so the SCF pack-

ages should be asked to output the integrals with no symmetry assumptions.

The sapt2012 codes make an implicit assumption that for each monomer the number of

occupied orbitals is smaller or equal to the number of virtual orbitals and a crash will occur if this

condition is not met. It is thus not recommended to run sapt2012 calculations in minimal

basis sets.

Regardless of the interface program, sapt2012 is limited to 65535 molecular orbital indices

(or 1024, if the setting BEYOND1024=YES was not used in the Compall script).

10.1.1 DCBS and DC+BS approaches

If a dimer-centered basis set (DCBS), possibly including “bond” functions (denoted then by

DC+BS), is used and the supermolecular SCF interaction energy is not needed, then only two inte-

gral/SCF calculations, for monomer A and for monomer B, will be performed. The DCBS/DC+BS

approach means that the calculations for monomer X are performed using the orbital basis set con-

sisting of all functions, those “belonging” to monomer X (i.e., centered on the nuclei of monomer

X), those of the interacting partner (i.e., centered at the positions where the partner’s nuclei are

35

in the dimer), and the bond functions (in DC+BS case). In the inputs, the bond functions and

the functions of the interacting partner are typically connected with zero-charge centers and are

sometimes called “ghost” orbitals. The script will then look for files nameA.* and nameB.* for the

respective monomers. The number and full names of the files depend on the integral/SCF code

used. Here is a list of files needed for some of the front-end codes:

atmol1024: nameA.intinp, nameA.scfinp, nameB.intinp, and nameB.scfinp

gamess: nameA.inp and nameB.inp

gaussian: nameA.data and nameB.data

dalton: nameA.dal, nameA.mol, nameB.dal, and nameB.mol

molpro: name.molpro

In each case, the file nameP.data will also be needed containing input for the post-SCF part of the

calculation (tran, cc, and sapt.x stages). In a DC+BS run, the variable DIMER in the namelist

TRN in this file must be set to T (or .TRUE.).

If DCBS or DC+BS is used and a supermolecular SCF interaction energy calculation is re-

quested (the scfcp option is set), the script will additionally look for a dimer input file (or files)

name.* (notice the convention: nameA, nameB, and name for the monomers A, B, and for the dimer,

respectively). Thus, for example for atmol1024, the complete set of input files necessary for

this type of run are: name.intinp, name.scfinp, nameA.intinp, nameA.scfinp, nameB.intinp,

nameB.scfinp, and nameP.data.

In the DCBS or DC+BS approach, the basis set specifications for all integral/SCF calculations

are identical except for different charges set to zero in different files and for different numbers of

electrons in each run. If the scfcp option is used, the file of two-electron integrals can be computed

only once, during the dimer run, and the subsequent SCF calculations for monomers A and B can

then use this file (most integral/SCF programs are flexible enough to allow such a route). Note,

however, that the one-electron integrals must be computed separately for monomers A and B. If

the scfcp option is not used, only the monomer A calculation needs to compute the two-electron

integrals.

10.1.2 MCBS and MC+BS approaches

An alternative, and strongly recommended, way of performing sapt calculations is to use the

so-called monomer-centered ‘plus’ basis set (MC+BS) [54]. To understand this approach, first

notice that the conceptually simplest (and most natural) method is to use in SAPT the monomer-

centered basis set (MCBS), i.e., a basis that includes only functions that one would have used if

36

the calculations involved only the energies and properties of a given monomer (calculations for

monomer X involve only basis orbitals centered on this monomer). In the limit of infinite orbital

basis set, the MCBS approach converges to the exact values for each SAPT correction. However,

for several reasons this convergence is slow for some corrections [54]. The simplest cure for this

problem is to use the DCBS or, even better, the DC+BS approach. The advantage of such a method

is a close relation to the supermolecular approach with the CP correction. The disadvantage is

that the basis set is increased by a factor of two (between MCBS and DCBS methods for identical

monomers). Reference [54] has shown that many of the functions used in DCBS/DC+BS are not

needed for the SAPT convergence. If a DCBS/DC+BS is reduced to some intermediate size, it is

called an MC+BS. It has been recommended in Ref. 54 that MC+BS’s are constructed from an

MCBS by adding all the midbond functions and only a part of the basis set on the interacting

monomer (so-called ‘farbond’ functions). The simplest choice for the farbond part is the “isotropic”

part of the basis set, i.e., orbitals with symmetries appearing in the occupied orbitals of constituent

atoms (i.e., s part of the basis for H and He and sp part of the basis centered on the first and

second row atoms). In practice, MC+ basis sets match the accuracies of DC+ bases and at the

same time reduce several times the costs of SAPT calculations.

An MC+BS approach requires a little more work with setting up the basis sets than a DC+BS

calculation. The reason is that in the former approach the basis functions appear in three different

roles: a given basis function can belong only to monomer A, only to monomer B, or to both

monomers. A calculation of the integrals in a set with repeated functions would be unnecessarily

time and disk space consuming, but a method has been developed to avoid this problem. Below,

the individual files needed for an MC+BS calculation are listed first and then the dependence

between the structure of these files and the control parameters in the file nameP.data is described.

If MC+BS calculations are performed and the supermolecular SCF interaction energy is not

requested (scfcp keyword not present), the SAPT script will look for input files nameMA.*, nameMB.*

to perform integral/SCF calculations for monomers A and B, respectively. The input files for these

runs should contain the basis of a given monomer plus the midbond and farbond functions on the

“ghost” centers. Since the basis sets are different for A and B, the two-electron integrals from A

cannot be reused for B. The eigenvalues and eigenvectors from these two runs are saved, whereas

both one- and two-electron integrals are discarded. The script will next look for an input file

nameA.* to calculate one- and two-electron integrals for monomer A in the DC+BS equivalent of

the MC+BS used (this basis is identical to the one described in the previous subsection, but in

some cases the functions have to be ordered in a special way or the proper “tag” parameters have

to be specified in the file nameP.data, as discussed below). No SCF calculations are needed (if

performed, the results will be discarded). This step is needed to produce the integrals for the sapt

calculations. Next the script will look for a file nameB.* to calculate one-electron integrals only for

37

the monomer B in the DC+ basis set (the two-electron integrals need not be calculated since these

are identical as for monomer A). Again, no SCF step is needed. Thus, if for example atmol1024

is used as the integral/SCF program, the needed input files are: nameMA.intinp, nameMA.scfinp,

nameMB.intinp, nameMB.scfinp, nameA.intinp, nameB.intinp, and nameP.data. In the last of

these files, the variable DIMER in namelist TRN should be set to F (or .FALSE.).

If MC+BS calculations are performed and the supermolecular HF-SCF interaction energy is

requested (the scfcp option is used), the script will, as in the previous case, first look for input files

nameMA.* and nameMB.* to perform integral/SCF runs for monomers A and B in an appropriate

MC+BS. Next, the script will look for the file(s) name.* to perform integral/SCF calculations for

the dimer in the DC+BS equivalent of the MC+BS used. In the next two steps the files nameA.*

and nameB.* containing the same DC+ basis set will be used, as in the calculations described in

the previous paragraph. However, now neither the monomer A nor B calculation need to com-

pute the two-electron integrals since these are already available from the dimer calculation. Also,

in contrast to the case of the previous paragraph, the SCF calculations are performed for each

monomer since the total SCF energies are needed to compute the supermolecular HF-SCF inter-

action energy. The SCF orbital energies and coefficients from these runs are discarded. Thus, if

for example atmol1024 is used as the integral/SCF program, the following input files are needed:

nameMA.intinp, nameMA.scfinp, nameMB.intinp, nameMB.scfinp, name.intinp, name.scfinp,

nameA.intinp, nameA.scfinp, nameB.intinp, nameB.scfinp, and nameP.data. If gaussian

is used as the integral/SCF program, the input files needed are: nameMA.data, nameMB.data,

name.data, nameA.data, nameB.data, and nameP.data. If dalton is used, the following input

files are needed: nameMA.dal, nameMA.mol, nameMB.dal, nameMB.mol, nameA.dal, nameA.mol,

nameB.dal, nameB.mol, nameP.data, name.dal, and name.mol.

The possibility of skipping parts of integral/SCF calculations varies between programs. In

the case of atmol1024, the calculations of two-electron integrals are omitted by simply including

the BYPASS TWO statement in the proper *.intinp file and an SCF calculation is omitted by not

executing the corresponding binary (scf). The two-electron files from a previous atmol1024 run

will be recognized by a subsequent SCF run due to the naming convention. For dalton, the

appropriate keyword is .NOTWO and it can be used in the file nameB.dal in MC+BS calculations.

It appears that some integral/SCF programs, e.g., gamess, do not have an input option to skip

the calculation of two-electron integrals.

There are two ways of arranging basis functions in an MC+BS (or MCBS) run. The first way

is known to work with atmol1024 and to fail with gaussian, dalton, and molpro. It may work

with other packages, but it has not been tested. This method is chosen by specifying the keyword

BLKMB=T in the TRN namelist read from the file nameP.data (this is also the default and therefore

this keyword can be omitted). If this path is used, the basis functions in the DC+BS-type input

38

files specified above (name.*, nameA.*, and nameB.*) have to be ordered as follows:

polA isoA mid isoB polB

where isoX is the isotropic part of the basis set of monomer X (as defined above), polX are the

polarization functions on monomer X (orbitals with symmetries p and higher for H and He and d

and higher for the first and second-row atoms), and mid are midbond functions (optional). In the

calculations producing the orbital energies and coefficients for monomers A and B (files nameMA.*

and nameMB.*), the basis set should be ordered as:

polA isoA mid isoB

and

isoA mid isoB polB ,

respectively. The method is in fact more general than the names isoX and polX indicate. As it

should be clear from the above, the basis set for each monomer can be divided into two arbitrary

subsets. Examples of MC+BS input files set up using this strategy can be found in the directo-

ries ./SAPT2012/examples/ATMOL1024/HF2 MCBS, ./SAPT2012/examples/ATMOL1024/CO2D MCBS,

and also ./SAPT2012/examples/ATMOL1024/ArH2O MCBS.

A more general method that works for all integral/SCF front-ends is the “tags” method. In

this method, chosen by BLKMB=F, the ordering of functions is arbitrary, except that it has to be

the same in all input files. Of course, the “MCBS files”, nameMA.* and nameMB.* will contain

only subsets of the whole basis. It is, however, required that the basis specifications in these files

differ from the specification in the files name.*, nameA.*, and nameB.* by only the deletion of

functions which belong exclusively to the other monomer, i.e., the sequence of functions in the

subset remaining after such deletion is not altered with respect to the whole DC+BS set. The role

of a given function is specified by “tagging” it in the TRN namelist read from the file nameP.data.

This is achieved by first setting the variable BASIS to a string containing letters spdf..., one letter

for each shell in the DC+BS-type basis (thus, for a part of the basis with 3s2p1d, the string should

be sssppd). Since the program expands each symbol into a number of orbitals, one has to provide

information on the type of basis set, spherical or Cartesian, which is done by setting the variable

SPHG to .TRUE. or .FALSE., respectively. Note that when running sapt2012 with gamess as a

front-end, SPHG must always be set to .FALSE., even if the ISPHER=1 option was applied during

the SCF calculations to enforce removal of spurious spherical components from the Cartesian basis

used by gamess. The other string variable to be specified is TAGS. It has to contain exactly the

same number of characters as the BASIS variable. The allowed characters are a, b, and m, denoting

basis functions appearing only in the MC+BS of monomer A (which can be the same as in polA

part of the basis discussed above), only in the MC+BS of B (like polB), and in the MC+BS sets

39

of both monomers, respectively. Each of the variables BASIS and TAGS should end with a + sign

denoting the end of a string.

For an example of using tags with gamess, see the files in the directory

./SAPT2012/examples/GAMESS/HF NH3 MCBS. This example does not use the iso/pol splitting, to

show the more general character of the tags method. Here, in the files HF NH3.inp, HF NH3A.inp,

and HF NH3B.inp, the DC+BS basis functions are entered in the order F (5s3p2d), H of HF (3s2p),

midbond (2s1p), N (5s3p2d), H1 of NH3 (3s2p), H2 of NH3 (3s2p), and H3 of NH3 (3s2p). Now,

in this example, the MC+BS for monomer A (HF) is constructed by deleting the last two s, the

last p, and the last d functions of N, as well as the last s and p functions on each H of NH3

(see the file HF NH3MA.inp). The functions deleted here happen to be the most diffuse ones for

each symmetry, although in principle other choices could have been made as well. Similarly, the

MC+BS for monomer B (NH3) is constructed from the whole DC+BS set by deleting the last two

s, the last p, the last d functions of F, and the last s and p functions of HF’s hydrogen (see the file

HF NH3MB.inp). Note that the sequence of basis functions in the input files is determined by the

sequence of atomic centers and the sequence of functions within each center. Thus, simply deleting

a contraction does not change the relative sequence in the remaining set, as required. The part of

the TRN namelist corresponding to this setup is

BLKMB=F, SPHG=F,

BASIS=’ssssspppddsssppsspssssspppddsssppsssppssspp+’,

TAGS=’mmmaammamammamammmmmmbbmmbmbmmbmbmmbmbmmbmb+’

Note that the variable SPHG has been set to .FALSE. since gamess always generates integrals in

the Cartesian basis (even if the SCF calculations are performed in variational space spanned by

only pure spherical components, as it is done with the option ISPHER=1 in gamess input files

*.inp). If the “tags” method is used with some other SCF program, make sure that the value of

SPHG matches the actual type of basis set for which the atomic integrals are generated.

Other examples of MC+BS input files using the BASIS and TAGS options with gamess

can be found in directories ./SAPT2012/examples/GAMESS/* MCBS. For atmol1024, gaussian,

and molpro, the examples are in ./SAPT2012/examples/ATMOL1024/ArHF MCBS, ./SAPT2012/

examples/GAUSSIAN/CO2D MCBS, and ./SAPT2012/examples/MOLPRO/CO2D MCBS, respectively.

10.2 Input for post-Hartree-Fock part

The input for the transformation tran, the MBPT/CC code cc, and the proper SAPT program

sapt.x is supplied in the file nameP.data. This input consists of a title line and three namelist

sets. The first line is reserved for the title of the run (up to 80 characters). The three namelists

that follow are TRN, which is for the input to the transformation program, CCINP, which passes

40

information to the MBPT/CC program, and INPUTCOR, which informs the perturbation program

which corrections are to be computed.

It should be noted that the exact syntax of a namelist statement depends on the platform.

For example, on SGI and Linux platforms, each namelist should start with the name preceded by

& (e.g., &TRN) and end with &END. On the other hand, IBM compilers require the forward slash (/)

as the namelist end marker. Throughout this manual, the former convention will be followed.

10.2.1 Namelist TRN

The major function of this namelist is to tell the tran program which integral/SCF package is in

use. Currently supported codes are listed in Table 1. In addition, a number of legacy codes should

still work, although several of them have not been used for years.

Out of the 10 possible integral/SCF selections the user should select only one by setting the

corresponding variable equal to .TRUE. and all the other variables equal to .FALSE. The selection

variables are given by:

• ISITANEW selects atmol1024

• ISITGAMS selects gamess

• ISITG03 selects gaussian98, gaussian03, or gaussian09

• ISITDALT selects dalton 2.0

• ISITMOLP selects molpro

• ISITG94 selects gaussian94

• ISITCADP selects cadpac.

• ISITACES selects aces

• ISITATM selects the older version of atmol

• ISITORCA selects orca [only works in SAPT(DFT)].

Of course, selecting a given SCF package in the TRN namelist will work only if sapt2012 has been

compiled for use with this package (see Sec. 8).

The variable DIMER is used to determine whether the transformation type is dimer (default)

or monomer (DIMER=.FALSE.). The dimer-type transformation is chosen for DCBS/DC+BS cal-

culations and the monomer-type one for MC+BS calculations.

If monomer type of transformation is set, several other options become available. These

are BLKMB, BASIS, TAGS, and SPHG variables connected with the tags system. The use of these

41

variables was described in Sec. 10.1.2. Also, a description is provided in comments of the subroutine

mkoffset of the module trans.F (in subdirectory ./SAPT2012/tran).

Setting the OUT variable to .TRUE. will give more extensive printing from tran, showing

mainly memory partitioning and the input vectors.

The variable TOLER sets the threshold for writing the transformed integrals to disk. The input

is an integer n which is then used to discard all integrals which are less than 10−n in absolute

value. An input of –1 gives a threshold of identically 0. We recommend values slightly tighter than

normally used for similar purposes in isolated molecules calculations, of about 10−12 around the van

der Waals minimum and progressively smaller as one proceeds farther away from the minimum.

Note that the usual default thresholds in most integral/SCF programs will be larger than this

value and must therefore be lowered so that the atomic integral files which are the input to the

transformation contain sufficiently small integrals. It is also advisable to tighten the threshold for

the convergence on the density matrices in order to increase the accuracy of the SCF eigenvectors.

If the SCF program used is atmol1024 and if the two-electron integrals produced by this

program are stored in more than one file, the number of such files has to be given in TRN as the

variable NMFILES. For example, NMFILES=3 will tell the transformation to look for atmol1024

integrals in the files MT3, MT4, and MT5. The most likely use of this option is on old Linux platforms

which do not support files larger than 2 Gbytes so that the integrals have to distributed over several

smaller files.

Finally, the MEMTRAN variable can be used to dynamically allocate memory for the transfor-

mation section (tran) of sapt2012. As a default, the memory for the tran program is set to 40

Mwords (320 Mbytes). If possible, the memory should be set large enough so that the transfor-

mation program uses the faster “in core” path. When DIMER=.TRUE., an even faster algorithm is

switched on if twice as much memory as for the ordinary “in core” algorithm is available. The

amount of memory needed for the available transformation paths can be calculated beforehand

using the program memcalc in ./SAPT2012/bin (see Sec. 10.7). Declaring more than the amount

needed for the “fast in core” algorithm when DIMER=.TRUE., or more than needed for the standard

“in core” approach for DIMER=.FALSE., makes no difference for the performance of transformation

(and may increase the probability of crashing due to requesting more memory than available on a

system at a given time). The transformation will work in smaller memory, except that the slower

“out of core” pathway will be chosen (see the source module memory.F for more details). One can

read from the transformation output of a test run whether the “out of core” or “in core” (faster)

pathway has been chosen and what was the largest size of memory used. This method can also be

used to adjust the MEMTRAN variable appropriately (look for lines containing phrases similar to:

... Mem: 8182228 CPU: 463.7

or

42

AABBOVVV Integrals. Out of core. 2 passes Mem: 29848693).

The minimal information absolutely necessary for the namelist TRN is given by: &TRN ISITx=T

&END, where x is one of the symbols denoting the integral/SCF program listed above.

10.2.2 Namelist CCINP

The purpose of this namelist is to pass information to the MBPT/CC program which generates

the required cluster amplitudes for the intermolecular perturbation theory program sapt.x. The

namelist variable CCPRINT tells the program whether or not to do extra printing. This printing

involves information about the memory partitioning and the integral class which is currently being

read in. The namelist variable VCRIT gives the tolerance for retaining cluster amplitudes. Here we

recommend a tolerance of 1 × 10−10.

The variables TOLITER and TOLAMP determine the convergence criteria of the CC iterations if

the converged amplitudes are required, i.e., if the variable CONVAMP (see namelist INPUTCOR) is set

to .TRUE. In such a calculation, the CC program continues the iterations until one of the following

two conditions is fulfilled:

1. The iteration number, k, exceeds 39 (no convergence).

2. All of the conditions listed below are met:

DE(k) =

∣∣∣∣∣E(k)
CC − E

(k−1)
CC

E
(k)
CC − ESCF

∣∣∣∣∣ < TOLITER

D(D)(k) =

√∑
ijab(t

ab
ij

(k) − tabij
(k−1)

)2

o2v2
< TOLAMP

D(S)(k) =

√∑
ia(tai

(k) − tai (k−1))2
ov

< TOLAMP

where tabij and tai are the double- and single-excitation amplitudes, respectively. Note that DE(k) is

the relative correlation energy change. The default values are TOLITER=10−5 and TOLAMP=10−6.

DIIS convergence acceleration in the coupled cluster iterations can be turned off by the DIIS=F

directive. DIIS is turned on by default (recommended). The variables RPA, CCD, CCSD, and several

others can be set to .TRUE. or .FALSE. to choose one of the possible forms of CC theory.

At this moment only CCSD=T and CCD=T are guaranteed to work and are needed for the SAPT

corrections. Since CCSD=T and all other variables of this type are false by default, these keywords

can be omitted from the namelist. The variables SITEA and SITEB allow to perform MBPT/CC

calculations for one of the monomers only (for testing purposes). The default values are .TRUE.

and therefore these variables can be omitted from the list. The variable WRTEACH allows writing

of the cluster amplitudes from each iteration into separate disk files for future use. It is .FALSE.

by default and is not needed for the ordinary SAPT run; however, it must be set to .TRUE.

43

if one wants to calculate the dispersion energy at the CCD level - see Sec. 10.4. Finally, the

logical variable AOCC switches on/off the atomic-orbital (AO) based algorithm for calculating

the most time-consuming four-virtual contribution to the CCSD amplitudes. This slows down

the CC calculations slightly, but the tran program requires much less time since no four-virtual

transformation is needed. At present, AOCC=.TRUE. works only when atmol1024 or molpro has

been used as the integral/SCF interface, and when either the DCBS/DC+BS approach is used,

or, in case of an MC+BS calculation, the basis functions are properly grouped (i.e., the variable

BLKMB in the TRN namelist is equal to its default value of .TRUE.). Note that this implies that the

AOCC=.TRUE. algorithm with the molpro interface works only for the DCBS/DC+BS approach.

The default value of AOCC is .TRUE. if the above conditions are satisfied and .FALSE. otherwise,

so an explicit specification of this variable is not needed unless one wants to turn off the AO-based

pathway for atmol1024 or molpro interfaces. The defaults should be sufficient for this namelist,

so all that is absolutely necessary to specify would be a statement of the form: &CCINP &END, i.e.,

no input.

10.2.3 Namelist INPUTCOR

This namelist tells the SAPT program which of the perturbation theory corrections are to be

computed. All the variables are by default set to .FALSE., so only those corrections that one

wants to be computed have to be mentioned in the namelist. The list of variables and of the

associated currently available corrections is as follows:

1. E1TOT — E
(10)
elst and E

(10)
exch. By default, the so-called S2 approximation to E

(10)
exch is also

computed. This computation can be turned off by setting E1S2=.FALSE. in the INPUTCOR

namelist.

2. E2IND — E
(20)
ind

3. E2INDR — E
(20)
ind,resp

4. EEX2I — E
(20)
exch−ind

5. EEX2IR — E
(20)
exch−ind,resp

6. EEX2D — E
(20)
exch−disp

7. EEX2 — E
(20)
exch−disp and E

(20)
exch−ind, i.e., EEX2=.TRUE. implies EEX2I=.TRUE. and EEX2D=.TRUE.

8. EEX2R — E
(20)
exch−disp and E

(20)
exch−ind,resp, i.e., EEX2R=.TRUE. implies EEX2IR=.TRUE. and EEX2D=.TRUE.

9. E12 — E
(12)
elst

10. E12R — E
(12)
elst,resp

44

11. E13PL — E
(13)
elst

12. E13PLR — E
(13)
elst,resp

13. E11 — E
(11)
exch

14. E111 — E
(111)
exch

15. E12X — E
(120)
exch + E

(102)
exch

16. CONVAMP — E
(1)
exch(CCSD)

17. E2DSP — E
(20)
disp

18. E21D — E
(21)
disp

19. E22D — E
(22)
disp

20. EMP2 — E(02) = MBPT2 correction to monomer’s correlation energy (for tests only)

21. E22I — tE
(22)
ind (see Ref. 2)

22. E300D — E
(30)
disp

23. E3IND — E
(30)
ind

24. DSPIND — E
(30)
ind−disp

25. E30XD — E
(30)
exch−disp

26. E30XDSDQ — E
(30)
exch−disp without the most time-consuming ‘triples’ term

27. E30XI — E
(30)
exch−ind

28. DSPIX — E
(30)
exch−ind−disp

29. E3INDR — E
(30)
ind,resp and a scaled approximation to E

(30)
exch−ind,resp

Notice that the electrostatic energies E
(1i)
elst are sometimes denoted as E

(1i)
RS as these terms result

from the Rayleigh-Schrödinger perturbation theory that in this context is often called polarization

theory. The acronym “pol” in several places in the program, as well as the letters “PL” in E13PL, are

resulting from this terminology. If tE
(22)
ind is requested, its exchange counterpart will be estimated

from the formula of Eq. (7). The triple superscripts appearing for example in the correction E
(111)
exch

denote the order with respect to the operators V , WA, and WB , respectively.

The programs calculating the following corrections either have not been sufficiently tested,

or are known to contain errors. Therefore, calculations of the following corrections are not recom-

mended:

45

1. E122 — E
(122)
elst

2. E14PLR — E
(140)
elst,resp + E

(104)
elst,resp (without triples)

3. TE14 — Triples for E
(14)
elst,resp

4. E1CC — calculates the electrostatic energy from the formulas analogous to those appearing

in E
(12)
elst using the converged CCSD amplitudes in place of the second-order ones. Instead,

use E
(1)
elst,resp(CCSD) described in Sec. 10.5.

Six variables are provided to select groups of corrections: SAPT0, SAPT2, SAPTNOCC, DELTASCF,

SAPTKS, and SAPT, and only one of them should be set to .TRUE. The settings SAPT2=T and

SAPT=T select the groups of corrections defined by Eqs. (6) and (8), respectively. The choice

SAPTNOCC=T is equivalent to SAPT=T except that the intramonomer correlation contribution to E
(1)
exch

is approximated as E
(11)
exch + E

(12)
exch instead of ε

(1)
exch(CCSD). The choice SAPT=T is approximately

equivalent in accuracy of predictions to using supermolecular MBPT through fourth order. It

has been used for most published recent SAPT calculations for small and medium-size systems.

The choice SAPT2=T, equivalent to MBPT2, requires significantly less computer time and can be

recommended for larger dimers if time of calculations at the SAPT=T level becomes an issue. In

most cases, we recommend that the δEHF
int,resp term defined by Eq. (5) is included as implied by

Eq. (6) (this requires the scfcp keyword as a command-line parameter to the SAPT script). Only

for nonpolar or nearly nonpolar monomers this term should be omitted, see Ref. 38 and the text

below for a discussion of this issue.

The choice SAPT0=T selects all available SAPT corrections of the first and second order in V

and of zeroth order in W , i.e.,

ESAPT0
int = E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch−ind,resp + E

(20)
disp + E

(20)
exch−disp. (10)

This level is recommended for calculations for very large systems when a higher level of theory

would be too time-consuming (however, note that SAPT(DFT) described in Sec. 16 would offer

much better accuracy at similar computational costs). One can expect that this level of theory

may introduce about 20-30% errors with respect to the exact interaction energies, but such an

accuracy can be acceptable for large systems. Also the errors due to the basis set truncation will

most likely be of the same order of magnitude for systems that large. For increased accuracy, we

recommend the addition of the δEHF
int,resp term.

The choice DELTASCF=T selects all SAPT corrections necessary for computing the δEHF
int,resp

term, i.e. E
(10)
elst , E

(10)
exch, E

(20)
ind,resp, and E

(20)
exch−ind,resp. This setting should be selected when only

δEHF
int,resp is required since it skips calculations of the dispersion and exchange-dispersion correc-

tions. Such separate calculations of δEHF
int,resp may be required for certain SAPT(DFT) jobs, see

46

Sec. 16.3. Since δEHF
int,resp is calculated automatically also for SAPT0, SAPT2, SAPTNOCC, and SAPT

(as long as the keyword scfcp has been specified upon the submission of the SAPT script), it is

not necessary to select DELTASCF=T when the former options are used. For additional keywords

required for SAPT(DFT), see Sec. 16.2.

The SAPTx variable takes precedence over the settings of individual corrections in the sense

that a correction included in a given level will be computed even if it is explicitly set to .FALSE.

However, a correction not included will be computed if it is explicitly set to .TRUE.

The variable CONVAMP selects the use of the converged CCSD amplitudes in the expressions

analogous to those appearing in the corrections E
(111)
exch , E

(120)
exch , and E

(102)
exch . Setting this variable

to .TRUE. results in the calculation of the ε
(1)
exch(CCSD) correction regardless of whether E

(111)
exch ,

E
(120)
exch , and E

(102)
exch terms are calculated or not. The logical variable DCONVAMP selects the calculation

of the dispersion energy with the inter- and intramonomer correlation treated at the CCD level.

However, this energy must be computed in a separate run, see Sec. 10.4.

The six leading components of the third-order SAPT energy, Eq. (9), are calculated when

the variables E3IND, DSPIND, E300D, E30XI, DSPIX, and E30XD, respectively, are set to .TRUE. It

is also possible to calculate the relaxed third-order induction correction E
(30)
ind,resp [35] by setting

E3INDR=.TRUE. In this case, the corresponding relaxed exchange-induction energy E
(30)
exch−ind,resp

has to be estimated by a scaling of the nonrelaxed quantity,

E
(30)
exch−ind,resp = E

(30)
exch−ind ·

E
(30)
ind,resp

E
(30)
ind

. (11)

Note that the polarization corrections, especially E
(30)
ind (or E

(30)
ind,resp), tend to cancel to a large

extent with the corresponding exchange corrections, so calculating also the latter is highly rec-

ommended. The effects described by E
(30)
ind,resp and E

(30)
exch−ind,resp, together with the higher-order

induction and exchange-induction contributions, are approximately included in the δEHF
int,resp term

resulting from the supermolecular Hartree-Fock interaction energy. For the interactions of po-

lar molecules, where the induction component of the interaction energy plays an important role,

δEHF
int,resp tends to provide a more accurate description of the high-order induction interactions than

the third-order approximation. For nonpolar and nearly nonpolar systems, the inclusion of E
(30)
ind

and E
(30)
exch−ind, or of E

(30)
ind,resp and E

(30)
exch−ind,resp, usually gives more accurate results than the addi-

tion of δEHF
int,resp. Whereas the corrections E

(30)
ind , E

(30)
ind,resp, E

(30)
ind−disp, E

(30)
exch−ind, and E

(30)
exch−ind−disp

are fairly inexpensive, the terms E
(30)
disp and E

(30)
exch−disp scale like o2v4 and o3v4, respectively, with

the numbers (o, v) of occupied and virtual orbitals for a given monomer. Moreover, these two

corrections require the mixed-monomer four-virtual integrals over the molecular orbital basis that

are expensive to produce. Because of this, SAPT has a built-in mechanism to calculate these terms

in a semi-direct way, utilizing the integrals over AOs and removing the need for a mixed-monomer

four-virtual transformation. Currently, this mechanism, just like the AO-based algorithm for the

47

four-virtual diagram in the monomer CCSD calculations (controlled by the variable AOCC in the

CCINP namelist), works only when atmol1024 or molpro are employed as integral and SCF

front-ends, and when either the DCBS/DC+BS approach is used, or, in case of an MC+BS calcu-

lation, the basis functions are properly grouped (i.e., the variable BLKMB in the TRN namelist is equal

to its default value of .TRUE.). If this is the case, the semi-direct calculation is chosen by default;

the user can change this behavior by setting DIRECTE3=.FALSE. in the INPUTCOR namelist. The

computation of the most expensive o3v4 contribution to the E
(30)
exch−disp correction can be omitted

by specifying E30XD=.FALSE. and E30XDSDQ=.TRUE. This contribution usually constitutes about

10% of E
(30)
exch−disp and converges fast with the basis set size [38]. The remaining part of E

(30)
exch−disp

scales like o2v4 with the number of orbitals.

The variables FROZEN, NFOA, NFOB, NFVA, and NFVB control the range of orbitals used for

electron excitations [40]. If FROZEN is set to .FALSE., an all-electron calculation is performed and

the values of NFOA, NFOB, NFVA, and NFVB are irrelevant; this is the default setting. If FROZEN is

set to .TRUE., NFOA lowest orbitals on A and NFOB lowest orbitals on B are treated as core and no

excitations out of these orbitals are taken into account. Additionally, NFVA highest virtual orbitals

on A and NFVB highest virtual orbitals on B are also excluded from the excitation space. One may

set NFVA=NFVB=0 to perform a conventional frozen-core calculation with excitations onto all virtual

orbitals allowed. Setting NFVA=NFOB and NFVB=NFOA is another reasonable choice. Note that setting

FROZEN=.TRUE. affects not only the SAPT program, but also the integral transformation and the

calculation of monomer CC amplitudes. However, the parameters FROZEN, NFOA, NFOB, NFVA, and

NFVB need, and can, be set only in the INPUTCOR namelist.

sapt2012 can be used with effective core potentials (ECPs). So far, this option has only

been tested with the molpro front end, however, using other ECP-enabled integral front ends

interfaced with sapt2012 should be pretty straightforward. Contrary to a frozen-core SAPT run,

the ECP effects are taken care of at the integral program level and no special input or options are

needed for SAPT. In particular, the variable FROZEN in the INPUTCOR namelist should be set to its

default value of .FALSE. unless freezing of a larger core on top of a small-core ECP is requested.

The frozen-core and ECP SAPT approaches are described in Ref. 40. Note that when using SAPT

with ECPs, the inclusion of the δEHF
int,resp term, Eq. (5), is strongly recommended [40] (this requires

the scfcp keyword as a command-line parameter to the SAPT script).

The relativistic contributions to the SAPT interaction energy can be estimated by using rela-

tivistic ECPs. Alternatively, one can calculate a relativistic SAPT interaction energy by employing

the second-order Douglas-Kroll-Hess relativistic one-electron Hamiltonian as implemented in mol-

pro. This requires a special syntax of the molpro integral and SCF input: please see the example

in the directory MOLPRO/ArHF AVDZ for details.

48

The variable PRINT is used to print more information about intermediate results and memory

partitioning. The variable MEMSAPT can be used to dynamically allocate memory for the perturba-

tion theory stage (sapt.x) of sapt2012. As a default, the memory for the sapt.x program is set

to 20 Mwords. The amount of memory required by the sapt.x program may be computed using

the memcalc utility, as described in Sec. 10.7.

10.3 How to read the output

The values of all the calculated SAPT corrections are summarized at the end of the output file

in the section entitled Summary Table. An example of the Summary Table can be found in Ap-

pendix D. The first part of the table lists the numbers of orbitals, the Cartesian geometry of

the dimer, and the SCF energies of the monomers and the dimer (if computed) obtained in the

full DC+BS. What follows is a set of low-order SAPT corrections which, when summed up, ap-

proximate the supermolecular SCF interaction energy (also printed as E^{HF}_{int} if the key-

word scfcp was used on job submission). The quantity SAPT SCF_{resp} is equal to the sum of

E^{(10)}_{elst}, E^{(10)}_{exch}, E^{(20)}_{ind,resp}, and E^{(20)}_{ex-ind,r}, i.e.,

the first 4 terms on the rhs of Eq. (5). The quantity \delta^{HF}_{int,r} represents the last term

in this equation. If the third-order induction and exchange-induction corrections have been calcu-

lated, the quantity SAPT SCF(3)_{resp}, equal to a sum of SAPT SCF_{resp}, E^{(30)}_{ind},

and E^{(30)}_{exch-ind}, is displayed, and the appropriate third-order effects are subtracted

from \delta^{HF}_{int,r} to form the \delta3^{HF}_{int,r} quantity. If the non-response

corrections E^{(20)}_{ind} and E^{(20)}_{ex-ind} have been computed, the corresponding

non-response approximation to the SCF interaction energy, SAPT SCF, and \delta^{HF}_{int}

are also given.

The CORRELATION part of the Summary Table contains all the computed SAPT corrections of

order higher than zero in the intramonomer correlation operator, and the dispersion and induction-

dispersion energies, as defined in Sec. 3. Two partial sums are also provided, SAPT_{corr,resp}

and SAPT_{corr}. The first of these quantities is the sum of \eps^{(1)}_{elst,r}(k),

\eps^{(1)}_{exch}(k) or, if available, \eps^{(1)}_{exch}(CCSD), ^tE^{(22)}_{ind},

^tE^{(22)}_{ex-ind}, E^{(2)}_{disp}(k), E^{(20)}_{exch-disp}, E^{(30)}_{disp},

E^{(30)}_{ind-disp}, E^{(30)}_{exch-disp}, and E^{(30)}_{exch-ind-disp}. The defini-

tion of the second partial sum is completely analogous, except that \eps^{(1)}_{elst}(k) is

used. Note that if any of the corrections appearing in the definition of a partial sum is not com-

puted (for example, because it has not been requested in the namelist INPUTCOR), this partial sum

will not contain this correction. For example, if only SAPT=T is requested in the INPUTCOR namelist,

the non-response electrostatic corrections, as well as the components of E(30), will not be computed

49

and the quantity SAPT_{corr} will not contain any correlation contribution to electrostatics, and

neither SAPT_{corr} nor SAPT_{corr,resp} will include any contribution of the third order in

the intermolecular interaction operator.

If the Ẽ
(1)
elst(CCSD) energy is requested by setting E1CC=T in the namelist INPUTCOR, the

quantity ε
(1)
elst(CC) = Ẽ

(1)
elst(CCSD) − E(10)

elst will be reported in the correlation section of Summary

Table, but it will not be counted as a part of SAPT_{corr,resp}. An example of using the E1CC

option can be found in examples/GAMESS/HF2 MCBS.

Finally, the last set of entries in the Summary Table gives the hybrid interaction energies, i.e.,

the sums of the supermolecular SCF and the correlation parts, represented by SAPT_{corr,resp}

or SAPT_{corr}. If all the relevant corrections have been computed (such as when one of the SAPTx

variables is set to .true. in INPUTCOR), the quantity SCF+SAPT_{corr,resp} should be considered

the recommended SAPT interaction energy. If the third-order induction and exchange-induction

energies have been computed, the sums SAPT SCF(3)+SAPT_{corr} and SAPT SCF(3)_{resp}

+SAPT_{corr,resp}, with the terms \delta^{HF}_{int} and \delta^{HF}_{int,r}, respec-

tively, replaced by their third-order component E^{(30)}_{ind}+E^{(30)}_{exch-ind}, are also

displayed.

10.4 Calculations of dispersion energy at CCD+ST(CCD) level

An algorithm for calculating the second-order dispersion energy with the inter- and intramonomer

correlation effects included at the CCD level has been developed in Ref. 39. This energy cannot be

calculated along with the other SAPT corrections: instead, a separate run of the SAPT script must

be performed. For this run, the user needs to supply a set of integral and SCF inputs just like for

the ordinary SAPT calculation, and the file nameP.data must contain, apart from the TRN, CCINP,

and INPUTCOR namelists, a namelist E2DINP which contains the necessary input for the e2disp

program.

The logical variables RPA, MPENER, CCD, and CCSD in the E2DINP namelist control the level

of theory employed in the e2disp program. Currently, only the CCD=.TRUE. version works, so

this variable should be set to .TRUE. and all others to .FALSE. Note that the default values are

CCD=.TRUE. and RPA=MPENER=CCSD=.FALSE. so that no explicit specification of these variables in

the E2DINP namelist is necessary. The logical variable PT governs the perturbative/nonperturbative

methodology of the iterations; currently, only the first one works so this variable should be always

set to .TRUE. The logical variables PMEM, PNRM, PKL, PSEP, and PCOMP control the printing of various

intermediate quantities. Finally, the variable TOLITER states the (relative) convergence threshold

for the dispersion iterations; the recommended default is TOLITER=1.0d-5.

The CCD+ST(CCD) path of the calculation is turned on by specifying DCONVAMP=.TRUE.

50

in the namelist INPUTCOR. Note that this turns off all SAPT corrections other than the second-

order dispersion energy since the values of some of these corrections would be incorrect when

CCD, rather than CCSD, amplitudes for monomers are calculated. Note also that the frozen core

(FROZEN=.TRUE.) option has not been implemented for the CCD+ST(CCD) dispersion energy.

The namelist CCINP controlling the behavior of the CC program also needs to be adjusted when

one performs the calculation of the dispersion energy at the CCD+ST(CCD) level. First of all,

the single-excitation contribution needs to be omitted from the calculation, i.e. both CCD=.TRUE.

and CCSD=.FALSE. need to be specified in the CCINP namelist. Furthermore, partial amplitudes

from each coupled-cluster iteration need to be saved for the further use in the e2disp program. To

save these amplitudes, one needs to set the option WRTEACH to .TRUE. Finally, a sufficiently tight

convergence threshold for the CCD equations is required: we recommend setting TOLITER=1.0d-9

in the CCINP namelist.

The computation of the CCD+ST(CCD) dispersion energy proceeds as follows. After the in-

tegral transformation, the CC program is invoked to produce CCD amplitudes for both monomers.

Next, the e2disp program is run which perturbatively calculates the converged intermolecular

dispersion amplitudes and the CCD part of the dispersion energy. Finally, the amplitudes are used

by the SAPT program, with the option DCONVAMP=.TRUE. specified in the INPUTCOR namelist,

to calculate the singles and triples contribution to the dispersion energy with converged doubles

amplitudes, i.e., the ST(CCD) term. The final result for the CCD+ST(CCD) dispersion energy is

then listed in the SAPT summary table.

10.5 Calculation of electrostatic energy from relaxed CCSD densities

In order to compute the energy E
(1)
elst,resp(CCSD) from the relaxed CCSD monomer densities, it

is necessary to use a special script ccsddSAPT from the bin subdirectory. At present, such a

calculation can only be performed using gamess as the SCF program.

10.5.1 DCBS calculation

In the DCBS or DC+BS approach, the user needs to supply a set of gamess SCF input files,

just like for the ordinary SAPT calculation in DCBS or DC+BS basis. The namelist TRN in

the file nameP.data has to set ISITGAMS=T and DIMER=T. In the namelist INPUTCOR, the option

CONVAMP=.TRUE. must be requested and the namelist CCINP has to be set up so that the CCSD

calculations for the monomers are performed (i.e., the variables CCSD and CCD should be either

omitted or set to CCSD=.TRUE. and CCD=.FALSE.). The computation of the E
(1)
elst,resp(CCSD) elec-

trostatic energy using the ccsddSAPT script proceeds as follows. After the integral transformation,

the ccsdt program is invoked to produce the CCSD amplitudes for both monomers. Next, the

51

ccsdm program is run twice (for each monomer) to calculate the relaxed CCSD densities. The

latter are stored in the AO representation in the unformatted sequential files ccsd dena.out.A

and ccsd dena.out.B. The obtained densities are then used by the program e1dcbs, together

with the atomic one- and two-electron integrals, to compute E
(1)
elst,resp(CCSD), reported in the out-

put as CCSD electrostatics:. The correction E
(10)
elst is computed here as well and reported as

SCF electrostatics:. The script ccsddSAPT then proceeds to invoke the sapt.x module, which

calculates the other SAPT corrections, as specified by namelist INPUTCOR.

An example of a DCBS calculation of the electrostatic energy from the CCSD densities can

be found in examples/GAMESS/CO E1DEN DCBS.

10.5.2 MCBS calculation

In the (pure) MCBS basis set (i.e., without midbond or farbond functions), it is possible to pre-

compute the electron densities for both monomers and then reuse them, after suitable translations

and rotations, for a whole set of dimer geometries. In this way, the expensive calculation of CCSD

densities has to be done only once per monomer. A calculation of this type can be accomplished

using the ccsddSAPT script described above and a separate program elstdenrot, which computes

the electrostatic energies using the AO density files produced by ccsdm and basis set information

extracted for this purpose from gamess output files. The script ccsddSAPT follows the appropriate

path once the option DIMER=F is detected in the TRN namelist. The steps involved in the calculation

are the following:

1. Assuming that the name of the job is name, prepare the files nameA and nameB containing

the specifications of the geometries and basis sets of monomers A and B in gamess(us)

format. Remember to put blank lines after the basis set of each atom, including the blank

line at the end of the file. From these files, the ccsddSAPT script will construct the gamess

input files needed to calculate the SCF vectors and generate integrals. A spherical basis set

will be assumed (i.e., ISPHER=1) and the name of the job will be used as the comment line.

Geometries of the monomers specified in nameA and nameB should correspond to whatever

is considered to be the initial configuration of a given monomer, i.e., the COM (or other

characteristic point around which rotations will be performed) should coincide with the origin

of the coordinate system, and all Euler angles describing the orientation of the monomer will

be assumed zero at this geometry.

2. Prepare the file nameP.data, as for the regular MCBS SAPT calculation (note that in the

namelist TRN, the variables basis and tags have to be specified for such a calculation, as

well as DIMER=F). In the namelist INPUTCOR, the option CONVAMP=.TRUE. must be requested

and the namelist CCINP has to be set up so that the CCSD calculations for the monomers are

52

performed (i.e., the variables CCSD and CCD should be either absent or set to CCSD=.TRUE.,

CCD=.FALSE.). The corrections specified in INPUTCOR will be calculated and printed in the

Summary Table for one dimer geometry, obtained by shifting the position of monomer B by

10 bohr along the positive z axis with respect to the position specified in the nameB file. The

E
(10)
elst result from the Summary Table may be later compared to what comes out from the

density algorithm.

3. Prepare the file input.edi, specifying the dimer geometries for which the electrostatic en-

ergies are to be calculated by elstdenrot out of the precomputed monomer densities. The

file input.edi consists of lines (one for each dimer geometry) containing, in this order, the

COM-COM separation (in Å), the β and γ Euler angles (in degrees) for monomer A (α is

assumed as zero), followed by the α, β, and γ Euler angles of monomer B. It is assumed

that the COM of monomer A coincides with the origin of the coordinate system and that

monomer B is shifted in the positive direction of the z axis. For example,

5.29177249 0. 0. 0. 0. 0.

2.38521611 86.80692336 90.00000000 180.00000000 93.37890335 360.00000000

2.63658901 87.13779711 90.00000000 180.00000000 81.94039222 360.00000000

2.89422970 87.42491802 90.00000000 180.00000000 75.80434134 359.99999915

would be a valid input.edi file containing 4 geometries. The first of these geometries is

exactly the same as the one for which the interaction energies are computed by the sapt.x

module during the ccsddSAPT run.

4. Run the ccsddSAPT job the same way a “regular” job would be run. For example, to run in

/scratch/mydir from ksh, one would type

ccsddSAPT name noscfcp /scratch/mydir > name.out 2>&1 &

Note that the noscfcp keyword has been used since the supermolecular SCF interaction

energy is of no interest here.

The result of running the ccsddSAPT script in MCBS will be the file name.out containing the

standard output from the whole run. In this file, the SAPT corrections requested in the nameP.data

file will be reported (in the Summary Table section) for one specific dimer configuration, described

earlier. Furthermore, the calculated monomer densities will be packed for a further use into a file

name.den.tar.gz, which, after running

gzip -d name.den.tar.gz

tar -xvf name.den.tar

53

will decompress info the following files:

1. unformatted sequential files ccsd dena.out.A and ccsd dena.out.B, containing the SCF

and relaxed CCSD densities of monomer A and B, respectively,

2. formatted files infoa m.data and infob m.data (in the format readable by the code elstdenrot,

run subsequently) containing geometry and basis set info for the monomers.

After collecting the files listed above and input.edi in one scratch directory, one can run the

elstdenrot program by issuing a command similar to

elstdenrot > dimers.out 2>&1

modifying, of course, the paths and the output file name appropriately. As usual, the executable

elstdenrot can be found in SAPT2012/bin directory. The electrostatic energies at the E
(10)
elst and

CCSD levels, calculated from the monomer densities translated and rotated into appropriate posi-

tions, will be reported in the standard output from elstdenrot (is this example—in dimers.out).

An example of MCBS CCSD densities calculation using the ccsddSAPT script, followed by a

batch of electrostatic energy calculations with the elstdenrot program, can be found in examples/

GAMESS/CO E1DEN MCBS.

10.6 Submitting a sequence of sapt2012 jobs

The directory ./SAPT2012/bin contains three utility scripts, RunlotATMOL, RunlotCADPAC, and

RunlotDALTON, which allow automatic calculations for multiple points on a potential energy surface

in a single submission of a computer task. Some members of our group found it also convenient to

utilize RunlotATMOL2, a more elaborate and flexible version of RunlotATMOL. Currently available

only for atmol1024, cadpac, and dalton, these scripts can be fairly easily extended to other

integral/SCF programs. An example of using RunlotATMOL can be found in the directory

./SAPT2012/examples/ATMOL1024/ArH2O MCBS.

The idea behind the Runlot* scripts is to construct the input files (appropriate for a given

SCF front-end) by combining universal, geometry-independent templates containing basis set and

all the necessary integral/SCF options with Cartesian geometries calculated from a minimal set

geometric data. Once all the input files are generated, the SAPT script is invoked to calculate the

interaction energy for a given dimer geometry and the results are recorded in a file with a name

unique for this geometry. Then, the input files are prepared and the calculation performed for the

next geometry from the set, and the process continues until the set of geometries is exhausted.

Below, using the ArH2O MCBS example, we describe steps needed to set up a RunlotATMOL job.

1. Prepare the files containing the basis sets in atmol1024 format:

54

• iso.d: “isotropic” part of the whole (DCBS) basis, i.e., the functions which will be

used in SCF calculations for both monomers; the sequence should be A, midbond (if

present), and B;

• polA.d and polB.d: polarization functions for A and B, respectively; functions for

polA.d will not be used in expansion of molecular orbitals of B, and vice versa;

• head.d: a simple file containing a header common to all *.intinp files;

• end.d, endA.d, endB.d, endMA.d, and endMB.d: end parts of *.intinp files, specific

for a given system (e.g., end.d corresponds to the dimer, endMA.d – to monomer A in

its MC+BS, endA.d – to monomer A in DC+BS, and so on; note that in this example

the files endA.d and endB.d contain the atmol1024 directive BYPASS TWO which allows

to avoid recalculation of two-electron integrals generated during the dimer SCF run);

• *.scfinp files needed for SCF calculations on all subsystems;

2. Prepare the file dimer.cnf which specifies the Cartesian geometry (in bohr) of monomers A

and B in their “initial” configurations, i.e., for all Euler angles equal to zero. The charge,

atomic mass, and an up to two-character symbol are also given for each atom.

3. Prepare the file geoparm.d which contains dimer geometries for which the sapt calculations

are to be performed. Each such geometry is specified by a single line containing the separation

(in Å) between the centers of mass (as defined by the masses and geometries supplied in

dimer.cnf) of the monomers, the z − y− z Euler angles [55] βA and γA of monomer A, and

the z − y − z Euler angles αB , βB , and γB of monomer B. These angles (to be supplied in

degrees) are measured with respect to the coordinate system in which the z axis points from

A to B. The Euler angle αA is not needed, since the intermolecular potential depends only

on the difference αB − αA, so that αA may be assumed zero without loss of generality. At

the end of each line of geoparm.d there is also a string ‘DOIT‘ (including the apostrophes).

If for some reason you do not need the calculation for a given geometry but still want to keep

it in the geoparm.d file, put ’DONE’ instead. The file geoparm.d may contain any number

of lines.

Once all these files are prepared, copy them, along with the RunlotATMOL script itself, to your

scratch directory where the whole calculation is to take place. Then start the job with the command

nohup time RunlotATMOL name >name.con 2>&1 &

in ksh or bash, or

time RunlotATMOL name >& name.con &

55

in csh, where, as usual, name is how the job is called and how the names of all input files start.

The calculation will then proceed as follows. First, the program getgeoATMOL is invoked by

RunlotATMOL (this program is automatically compiled during the installation of sapt2012 and the

path to it is inserted into RunlotATMOL) which analyzes the geoparm.d file looking for the first

line containing the ’DOIT’ directive. When such a line is found, getgeoATMOL reads the COM

separation and Euler angles and uses them, along with the data of dimer.cnf, to produce a set of

files geo*.d containing Cartesian coordinates of all atoms comprising the given dimer configuration

with appropriately set charges. A ghost (i.e., zero-charge) site called Mb is also inserted halfway

between the COMs of the monomers. A copy of geoparm.d is also produced (fort.7) in which

the just processed input line is given the label ’DONE’. The RunlotATMOL script then proceeds to

overwrite the old geoparm.d with this modified copy and create all the needed *.intinp files out of

the previously prepared pieces (head.d, end*.d, iso.d, polA.d, polB.d), and the Cartesian

geometry files geo*.d generated by getgeoATMOL. Once all the *.intinp files are created, the SAPT

script is called (the path pointing to this script is automatically set up during installation) to do

the proper sapt2012 calculation for this geometry. The output is written to the file name1.out.

After the SAPT script completes its task, the whole cycle is repeated, i.e., geoparm.d is searched

for the new geometry labeled ’DOIT’, the input files for this geometry are generated and the SAPT

script invoked. The process continues automatically until all the geometries in geoparm.d are

taken care of. Consecutive output files are named name1.out, name2.out, name3.out, ..., in

accordance with the position of geometries in geoparm.d. In this way, using the Runlot utility,

the whole surface (or a significant portion of it) can be filled up with data points with a minimum

interference on the user’s part.

For larger systems, placing of the midbond ‘ghost’ atom halfway between monomer COMs

can result in significant linear dependencies since the location chosen in this way can be close or

overlapping with the monomers. In such cases the ’DOR6’ directive can be used instead of ’DOIT’.

With the ’DOR6’ directive, getgeoATMOL places the midbond according to the 1/r6 weights based

on distances from all atoms. With this scheme, the midbond is placed in a more balanced way [56].

The rest of the atoms and the behavior of the getgeoATMOL program is identical to the ’DOIT’

directive. The ’DOR6’ scheme is recommended for all non-trivial monomers.

The philosophy behind the scripts RunlotCADPAC and RunlotDALTON (and the related getgeoCADPAC

geometry conversion program) is very similar, consult the scripts themselves for details. The struc-

ture of both scripts is simple enough to allow relatively easy modifications.

56

10.7 Memory and disk requirements

When setting up a sapt2012 computational project, it is imperative to know how much computa-

tional resources this project will consume and whether or not it will fit into the memory and disk

of the machine at hand.

Memory requirements of sapt2012 can be estimated based on the total number of basis func-

tions and the numbers of occupied and virtual orbitals. The transformation code tran should work

even with small memory, although it may then choose the “out-of-core” path which significantly

increases the time of this step. To allow the transformation to work entirely in-core, the amount

of available memory should be slightly more than on3/2 8-byte words, where n is the dimension

of the basis set and o is the number of occupied orbitals of the larger monomer. For DCBS or

DC+BS calculations, it is advantageous to set memory (if possible) to about twice as much, i.e.,

slightly more than on3 words, as a somewhat faster algorithm is chosen when additional memory

is available. For the cc part, memory requirements can be roughly estimated as 2o2v2 + 2o2n2 or

o2v2 + 2o2n2 + n3 words, whichever is greater (v is the number of virtual orbitals for the larger

monomer.) The sapt.x code will ask for about 5o2v2 or v3 + 3o2v2 words, whichever is greater,

and max(2o2v2, v3 + ov) + 6 000 000 words will be needed to generate the relaxed CCSD densities

using the ccsdm code.

More precise calculation of the memory required for an efficient run can be done using the

program memcalc (built automatically during installation). In order to use this program, prepare

the regular nameP.data file with the first (title) line containing five numbers, in the following order:

the total number of DC+BS basis functions, the total number of functions for monomer A (will

be different than the previous number in a MC+BS-type run), the number of occupied orbitals for

monomer A, and then the same information for monomer B. Then run the program by typing

memcalc < nameP.data > memcalc.out

The file memcalc.out will contain detailed information about memory requirements of different

parts of the code. The variables MEMTRAN from namelist TRN and MEMSAPT from namelist INPUTCOR

should then be adjusted accordingly. The memory needed to run the cc program is calculated

there explicitly so that no separate namelist variable is needed.

The memory requirements of the SCF programs are much smaller than those of sapt2012.

For specific information, consult the manuals distributed with these programs.

Disk space requirements of sapt2012 are more difficult to estimate as these depend not only

on the size of the monomers and basis set dimensions, but also on the assumed integral thresholds

and the dimer configuration. For larger intermonomer separations, more two-electron integrals will

be neglected, and the integral files will be smaller than for “close” configurations. While providing

an accurate estimate of the required disk space is not possible, some guidance can be obtained by

57

considering the upper limits on sizes of different scratch files involved and their scaling with the

system and basis sizes.

With the dimension of the atomic basis (DC+BS) equal to n, the size of the raw integral file

produced by an SCF run scales as n4/8. This should be multiplied by 12 to 16 bytes (each integral

is represented by an 8-byte real number plus 4 to 8 bytes for index storage) to give an upper bound

(in bytes) for the file size. In practice, with usual integral thresholds, this maximum size is often

reduced by about 50%.

In the transformation step of the calculation, the atomic integral file has to coexist with

files produced by the transformation (it is deleted after the tran program completes unless the

AO-based calculation of E
(30)
disp or E

(30)
exch−disp has been requested). During the most demanding four-

virtual transformations (performed in the beginning), the upper bound on the disk space becomes

roughly (3n4/8 + v2n2/4 + v4/8)× 13 bytes. Once the four-virtual transformations are completed,

the files (including raw integrals) will take at most about (n4/8 + v4/4) × 13 bytes, which will

have to coexist with new “incoming” integrals being generated subsequently. At the end of a

typical transformation for a dimer consisting of identical monomers, the disk space taken up by

the raw and transformed integrals will scale approximately as 2.5o4+8o3v+8o2v2+2.5ov3+0.25v4,

which should be multiplied by 13 to give the maximum number of bytes. Again, due to nonzero

thresholds, this number has a good chance to be reduced by about 50%.

In the subsequent stages of the calculation, the ccsdt and sapt.x codes will generate addi-

tional scratch files of the order of o2v2, ov3, and smaller, which will have to share disk space with

the transformed integrals. Moreover, unless the non-default algorithm has been switched on at

compile time by adding the -DTPDRVN definition to the EXTRADEFS variable, one more file of the

order v4/4 will be temporarily created by the ccsdt program. However, the original file of raw

atomic integrals (n4/8) will be removed beforehand unless the corrections E
(30)
disp and/or E

(30)
exch−disp

(employing the AO integrals) are to be calculated.

11 Description of some internal data sets

We present here a short schematic of the program run sequence with emphasis on the description

of various files used. First, the integral/SCF program performs the appropriate calculations for

the dimer, monomer A, and monomer B (depending on the type of basis set used and on the choice

whether to calculate the supermolecular SCF interaction energy). The output of the integral/SCF

calculations is included in the file output.file with the name selected on the command submitting

the SAPT script. In the later stages, output from other programs as well as output of some system

commands will be added to this file. Next, with the aid of an interface program written specifically

for that integral/SCF package, several new files are created by extracting information from the

58

data sets of the integral/SCF program just run. The vecta.data and vectb.data files contain

the eigenvalues (orbital energies) and eigenvectors (molecular orbital coefficients) produced by the

SCF step. The onela.data and onelb.data files contain the one-electron integrals of site A and

B, respectively. The file inta.data contains the two-electron integrals (in some cases the original

two-electron file from a given package is used). The infoa.data and infob.data files contain some

general information about the system being investigated like the number of occupied orbitals, the

geometry, and charges of each of the monomers.

These files (vecta.data, vectb.data, onela.data, onelb.data, infoa.data, infob.data,

and inta.data) serve as input files to the four-index transformation program. This program

transforms the one- and two-electron atomic integrals into molecular integrals and produces the

files f2e.000.xxx (direct access, integrals other than four-virtual), f72.000.xxx (sequential, vvvv

integrals for monomer A), and f73.000.xxx (vvvv for monomer B) as output. xxx is normally

always 001, but on legacy systems with file-size limitations, a series of files with consecutive labels

is produced instead. The numbers of these chunks for different file types are stored in the file

nfiles, which is used by the other programs.

Next, two interfacing programs, int and sort, are called to extract different types of integrals

from f2e.000.xxx and to put them in ccsorta.000.xxx, ccsortb.000.xxx (ov3 integrals, direct

access files) and in a number of sequential files named o???? a and o???? b. Additionally,

small formatted files ccloca.000 and cclocb.000 with indexing information are created. The

infoa.data, infob.data, and nfiles files are required by both interfaces.

Then, the MBPT/CC program is run. It uses the files generated by int and sort, as well

as f72.000.xxx, f73.000.xxx, infoa.data, infob.data, vecta.data, vectb.data, and nfiles.

The generated cluster amplitudes are stored in sequential files locx y m, where x is s for singles

and d for doubles, m is a or b depending on the monomer, and y can be 1, 2, 3, or i (amplitudes

from the first 3 iterations or from the last one).

The last step of the process is the calculation of the SAPT corrections. The needed input

files are vecta.data, vectb.data, infoa.data, infob.data, loc*, and f2e.000.xxx. These files

contain the output from each of the previous steps. The perturbation program uses some temporary

files and prints to output.file the values of the corrections as well as time needed to compute

them. Near the end of the output file, there is a table collecting all the corrections expressed in

various energy units.

12 Performance of sapt2012

The computational cost of sapt2012 calculations depends on the system size in the following way.

The integral/SCF calculation time scales at most as (o+v)4, with a somewhat lower power expected

59

for large systems. When the AO-based algorithm for the four-virtual diagram in CC is used (which

is the default in sapt2012.2 when atmol1024 or molpro are used as the integral/SCF program),

the transformation step scales as o(o+v)4 and the CCSD step as o2(o+v)4. Otherwise, the scalings

of the transformation and CCSD steps are proportional to v(o+v)4 and o2v4, respectively. Finally,

the scaling of the perturbation theory code strongly depends on the required level of theory: o3v2

for SAPT(0), o2v3 for SAPT2, and o3v4 for the full SAPT. For a general orientation, Table 2

contains timings from an Opteron 252 Linux system, obtained with the sapt2012 suite compiled

in the 64-bit mode with Portland pgf90 compiler. The examples chosen are described in Sec. 13

under the labels ArHF DCBS, CO2D MCBS, and C6H6 H2O DCBS. For the sake of completeness, the

amounts of memory and disk space required in each calculation are also reported (see Sec. 10.7 for a

general discussion of these two issues). The memory requirements of the integral/SCF calculations

are omitted because they are negligible compared to the other steps. Table 2 is restricted to

regular SAPT calculations on a single core. See Ref. 57 for a detailed analysis of the SAPT(DFT)

performance and Ref. 9 for a discussion of the parallel SAPT scaling.

Table 2: Wall-clock execution times and memory/disk requirements of different parts of the

sapt2012 suite on the Opteron 252 Linux system. The integral/SCF package used is atmol1024.

system Ar-HF (CO2)2 C6H6-H2O

occupied orbitals (A/B) 9/5 11/11 21/5

DCBS size 86 200 262

MC+BS size - 149 -

integral/SCF time 21 s 13 min 53 min

transformation time 15 s 21 min 53 min

CC time 128 s 32 min 16 h 25 min

sapt.x time 84 s 41 min 8 h 9 min

transformation memorya 5.8 Mwords 40 Mwords 380 Mwords

CC memory 2.3 Mwords 11 Mwords 112 Mwords

sapt.x memory 3.0 Mwords 12 Mwords 128 Mwords

integral/SCF disk 42 MB 1.1 GB 7.8 GB

transformation disk 138 MB 1.9 GB 17 GB

CC disk 300 MB 4.8 GB 38 GB

sapt.x disk 268 MB 2.0 GB 23 GB

aMemory amount required for the fastest ’in core’ algorithm is given. tran can also run is significantly smaller

memory at the expense of execution time.

60

13 Tests and example input and output files

A set of test and example runs is provided in the distribution of sapt2012. These include several

very small cases which should finish in seconds or minutes and which can be used to check the

correctness of the sapt2012 installation. In each case, both the complete set of input files and the

output files (at least from one platform) are provided. With the large number of front-end SCF

programs interfaced with sapt2012 and with the large number of hardware platforms on which it

can be run, it is not practical to provide examples for all possible cases. The mix of combination

of various factors chosen should be sufficient to establish the correctness of installation and help

in preparation of user’s production runs.

In some cases, the test files compute all currently available SAPT corrections. This is not

needed for calculations of interaction potentials. In such calculations, use one of the SAPTn control

variables to select the minimal needed set of corrections. This will reduce the time of calculations.

13.1 The examples directory

The directory ./SAPT2012/examples is divided into subdirectories corresponding to different SCF

front-end programs, e.g., gamess or atmol1024. Each of those subdirectories contains the fol-

lowing test job directories (named the same for all SCF programs):

• BER: a very small test calculation for the beryllium dimer in a DCBS consisting of a 2s1p set

on each atom. The run will complete in a few seconds using 0.1 Mwords of memory and should

be tried first. We note again the naming convention for clarity: for atmol1024 the dimer

files are called BER.intinp and BER.scfinp, the monomer A files are called BERA.intinp

and BERA.scfinp, the monomer B files are called BERB.intinp and BERB.scfinp, and the

perturbation file input is given by BERP.data. The input files needed when using gamess are

called BER.inp, BERA.inp, and BERB.inp (integral/SCF input files) and BERP.data (pertur-

bation input file). Monomer A and monomer B input files are created by setting the charge

to zero on the proper site. For example, in the case of monomer A the charges on site B

should be set to zero. The perturbation program should produce the results given below in

Appendix D. These results can be found in the Summary Table at the end of an output.

• HF2 DCBS: the HF basis set [4s2p1d/2s1p] is taken from Ref. 48, and a 2s1p set of midbond

functions is added. Needs about 1 Mword of memory and takes less than a minute to

complete. In the gamess input files, the option ISPHER=1 is used, so that the results of this

test performed with gamess should agree with those from an atmol1024 run.

• HF2 MCBS: the MC+BS version of the above: monomer basis set (files HF2MA.* and HF2MB.*)

are obtained by removing the d and p orbitals of F and H, respectively, of the “ghost”

61

molecule. In the gamess version of this test, the “tags” technique is used to enforce MC+BS,

whereas in the atmol1024 version, the basis functions are arranged in blocks polA, isoA,

mid, isoB, polB, as described in Sec. 10.1.2. As in the DC+BS variant, the space spanned by

the basis functions is always restricted to spherical Gaussian functions, even in the gamess

version.

• ArHF DCBS: the basis set [8s5p2d1f/6s3p2d1f/3s2p1d] has been taken from Ref. 58. No

midbond functions are present here. This run will need about 6 Mwords of memory and

about 4 minutes to complete (on an Opteron 252 machine).

• ArHF MCBS: an MC+BS version of the above. Monomer basis sets (in files ArHFMA.* and

ArHFMB.*) are obtained by deleting the polarization functions (d and f on F and Ar and p

and d on H) of the “ghost” molecule. The “tags” technique is used for MC+BS for both the

gamess and atmol1024 examples.

• CO2D MCBS: an MC+BS run for the CO2 dimer in the basis of Ref. 51 (DCBS size: 200,

MC+BS size: 149). This example is larger than the previous ones, it requires about 40

Mwords of memory and takes slightly less than two hours to complete on an Opteron 252

machine. The gaussian and molpro versions of this example are also provided (note that

these two require the specification of monomer A/monomer B/dimer sets using the “tags”

mechanism presented in Sec. 10.1.2).

• C6H6 H2O ADZM: the benzene-water dimer in a 262-term basis. This is the largest example

included and will take about 27 hours (on an Opteron 252) to complete.

Some additional examples are also included, namely

• GAMESS/HF NH3 MCBS: an example illustrating the use of the MC+BS technique in gamess

with the “tags” and “basis” options, as described in Sec. 10.1.2. About 7 minutes on a 2.80

GHz processor.

• ATMOL1024/ArH2O MCBS: an example of using the RunlotATMOL script, as described in Sec. 10.6.

Consists of two jobs, each taking about 6 minutes on an Opteron 252.

• ATMOL1024/Ar2 FROZENCORE 3ORDER: an example of calculating the third-order SAPT correc-

tions in Eq. (9), and of performing a frozen core calculation. The files Ar2P.data.allelectron

and Ar2P.data.frozencore present in this example’s subdirectory correspond to an ordi-

nary all-electron calculation and a frozen core calculation, respectively. Rename either one to

Ar2P.data and invoke the SAPT script. The basis set employed is aug-cc-pVQZ+(3s3p2d2f1g)

midbond, and the MC+BS approach is used. The calculation requires about 1.5 hours (all-

electron) or half an hour (frozen core) on an Opteron 252.

62

• ATMOL1024/HE2 E2DISPCCD: an example of the CCD+ST(CCD) dispersion energy calculation

(Sec. 10.4) for the helium dimer in the d-aug-cc-pVQZ basis set. This calculation will take

about 15 minutes on an Opteron 252. A gaussian version of this example is also provided.

• MOLPRO/ArHF AVDZ: a simple example for a molpro–sapt2012 calculation. Note that for

molpro a single input file ArHF.molpro takes care of all integral and SCF calculations and

only the usual ArHFP.data post-SCF input file is needed as well. This example takes less

than two minutes on an Opteron 252. A relativistic version of this example, showing how to

use SAPT with the molpro front end and the second-order Douglas-Kroll-Hess relativistic

Hamiltonian, can be found in the same directory (files ArHFrel*). An atmol1024 equivalent

of this example (the nonrelativistic version) is also provided.

• MOLPRO/KR2 ECP: an example of using sapt2012 with an effective core potential. An ECP

basis set aug-cc-pVTZ-PP [59] supplemented by a (3s3p2d2f1g) midbond set is employed for

the van der Waals minimum of the krypton dimer. This example takes slightly more than

two hours on an Opteron 250.

• DALTON/He2: helium dimer example with basis set larger than 255 basis functions. The

dalton input files have .dal and .mol extensions.

• saptdft: a few examples utilizing SAPT(DFT) with dalton interface and DF-SAPT(DFT)

with orca interface. ArHF is a quick example of basic SAPT(DFT) usage. Directories

Ne2-aTZ-GGAKER and Ne2-aTZ-LDAKER contain neon dimer with GGA kernel or LDA kernel

(default), respectively (see Sec. 16.2). H2O2 MCBS contains water dimer example with calcula-

tion of δEHF
int,resp. Finally, C6H6 contains a large calculation for benzene dimer. All examples

except ArHF utilize RunlotDALTON, described in Sec. 10.6.

• dfsaptdft: examples utilizing DF-SAPT(DFT) with dalton interface.

• ORCA: water dimer examples utilizing DF-SAPT(DFT) with orca interface, compared with

analogous jobs with dalton interface.

13.2 Running test jobs

The simplest way to run an example is to copy all files from the corresponding directory (e.g.,

./SAPT2012/examples/ATMOL1024/BER) to a scratch directory, then cd to this scratch directory

and submit the job using the submit line described in Sec. 10, for example, in ksh

SAPT BER scfcp > BER.out 2>&1 &

63

Recall that the string BER is the same as the initial part of the name of all input files. If the

./SAPT2012/bin directory is not in your PATH, you may need to supply the full path to the SAPT

script.

To simplify the process of running multiple tests, two simple ksh scripts, runtstGAMESS and

runtstATMOL are provided in the directories ./examples/GAMESS and ./examples/ATMOL1024,

respectively. The scripts execute loops over the subdirectories selected in the for statement,

running the SAPT script inside these directories, and cleaning up after each such run. To select the

jobs to be executed, adjust the for statement in runtstGAMESS and runtstATMOL. The names of

output files from the tests are given an ending (see the variable MACHINE) which can be used, e.g.,

to distinguish between the runs performed on different platforms.

Under Unix, the output file can be viewed while the program is run. This allows to check

how far the program has advanced. Note, however, that Unix first writes the data to fairly large

buffers, and only when the buffers are filled, to the output file. It is important to remember about

it when debugging the program (some info may not appear in the output after a crash, although

it may come from a successful part of the run). SAPT uses instructions flushing buffers in several

places but more such statements may have to be added for debugging. Also, for larger runs,

one should monitor the disk use (by just doing ls -lt or du -k in the working directory). The

memory actually used by the program can be checked by using the top command (called prstat

or monitor on some systems). When the program crashes, our practice shows that in most cases

it is due to errors in the integral/SCF parts of the code. Thus, make first sure that these stages

have finished successfully. When there is an error there, consecutive stages of the code do start

(and immediately fail), creating an impression that the code crashed in a later stage than it was

the case.

Once the test runs are completed, the results, especially the Summary Table at the end of

each output file, should be compared to the reference ones, provided in each test directory for at

least one platform. One can notice slight differences between the results obtained with different

front-ends and/or on different platforms. In any case, reproducibility of at least 5 significant digits

should be expected. The main differences come in the corrections using the converged CCSD

amplitudes. The CC convergence threshold has sometimes to be adjusted to obtain several digit

agreement. Notice also that in different versions of sapt the threshold was changing between

relative and absolute, which of course makes a significant difference.

14 Parallel SAPT: psapt2k2

The parallel implementation of SAPT has been described in detail in Ref. 9. The parallel psapt2k2

codes have essentially the same functionality as their sequential counterpart sapt2002. Slight

64

differences exist in user interface-related areas, such as compilation (more libraries are needed in

psapt2k2), input options (sapt2002 is more user-friendly when it comes to input defaults), or

output presentation. Since psapt2k2 parallel runs are more prone to various types of problems,

the output of psapt2k2 contains a lot of debugging and profiling information. sapt2012 has been

tested with a large number of (sequential) SCF front-end programs, while in the case of psapt2k2

the parallel gamess(us) is effectively the only SCF code which can be used. psapt2k2 should

also work with the sequential SCF codes, like atmol1024, although quite often the time cost of

such a calculation would be dominated by the SCF step. As stated above, psapt2k2 is essentially

the parallel version of sapt2002. Thus, the extensions introduced in later versions of SAPT codes

are not available for parallel execution.

All modules of the psapt2k2 code have been parallelized using only the MPI library and

thus the suite is very portable and should run on any parallel architecture. It is also recommended

that the program is linked with the scalapack/blacs libraries, as these are needed for the CHF

routine to run in parallel. In the case these libraries are not available, the CHF routines will

run in sequential mode, which may have substantial impact on the timings, especially for larger

numbers of occupied orbitals. The scalapack/blacs libraries are also necessary to build the code

generating the static and dynamic CHF propagators, also referred to as susceptibility functions.

This code will not be built if the libraries are missing.

To date, the program has been tested on the SGI Origin2000 and Origin3800 shared-memory

machines, the IBM SP3 and SP4 platforms (shared/distributed memory), as well as on Beowulf

clusters running Linux. From the standpoint of that latter machine, it is important that psapt2k2

is able to distribute its temporary files over file-systems local to the nodes, so that the scratch file-

systems do not have to be NFS-mounted across the whole cluster.

Novel algorithms have also been developed for efficient calculation of the electrostatic, induc-

tion, and dispersion energies, see Sec. 14.7. The idea behind these algorithms is that all these

interaction components are expressible through monomer charge densities and dynamic suscepti-

bility functions. These monomer properties can be calculated just once for each monomer at a

high level of correlation, then simplified, stored, and reused many times for different dimer ge-

ometries. Scalable beta versions of these new algorithms are also included in this distribution. As

mentioned before, the induction/dispersion module requires the SCALAPACK/BLACS libraries

to be installed.

14.1 Structure of ./psapt2K2 directory

After unpacking, the ./psapt2K2 main directory will contain the following files and subdirectories:

65

• bin/: utility scripts for running SAPT. After compilation, this directory will also contain

the executables used in a SAPT run.

• pcksdisp/: contains sources and detailed documentation for the code generating the static

and dynamic susceptibility functions (currently at the CHF level).

• cleandirs: use this script to clean the entire psapt2k2 directory tree before recompiling

from scratch.

• compall: script used to build the package (see Sec. 14.2).

• doc/: documentation for sapt2002; contains this document and the METECC paper [8] in

the postscript form.

• edi notran/: contains sources of the code implementing the new transformationless algo-

rithms for calculations of electrostatic, induction, and dispersion energies using the precom-

puted densities, susceptibility functions, and the Casimir-Polder formula.

• examples/: input and output files for a set of systems and platforms. This is a good source

of templates for your runs.

• misc/: contains various interface and utility programs. Most integral/SCF packages need an

interface program to extract one-electron integrals and SCF orbital energies and coefficients

from files created by these packages and transform them into a standard form readable by the

transformation code (two-electron integrals are read by transformation directly without such

preprocessing). Other programs present in misc/ include int, sort, and even, interfacing the

transformation to coupled cluster code, memory estimator memcalc, and a utility program

tmerge which can be used to merge the transformed integral files if these are to be used

further by sequential codes.

• pcc/: program performing the coupled cluster singles and doubles calculations for the

monomers. The first few iterations are performed perturbatively, in this way producing

MBPT order-by-order amplitudes needed in SAPT. Both CCSD and MBPT amplitudes are

later used by the psapt module to compute intramonomer correlation contributions to various

interaction energy components as well as electron densities at various MBPT levels.

• psapt/: program computing the SAPT corrections.

• ptran/: parallel program performing the one- and two-electron integral transformation.

• updates.log: log of the history of changes and updates.

66

14.2 Installing psapt2k2

Installation of psapt2k2 is controlled by the ksh script compall, a small portion of which has

to be customized by the user. The compall script sets the compilation options appropriate for a

given hardware platform. It is assumed that the integral/SCF code used is gamess(us). No other

SCF programs are currently supported by the compall script. The use of other SCF packages

is still possible although it would require some hand-tuning of the compilation process. After the

compilation options have been set, the compall script compiles and links all the pieces of the

code. Finally, the scripts used to run psapt2k2 are updated by inserting the current paths to the

executables.

14.2.1 compall installation script

The following environment variables must be adjusted by the user in the top section of the compall

script:

1. Execution shell: Change the first line of the script to one of the following:

• #!/bin/bash : The Bash shell on a LINUX box, or

• #!/bin/ksh : The Korn shell on all other platforms

2. TARGET: the machine the program is being compiled on. Choose one from o2k (will work for

O3K also), sp (will work for SP3 and SP4), or mpich (on Beowulf clusters).

3. BLAS: if TARGET=mpich, specify how you want the BLAS library to be linked (usually this is

just -lblas, but Beowulf configurations differ, so beware!). For other TARGETs – ignore this

option.

4. GAMESS: path containing the gamess exec you will be using.

5. VERNO: gamess “version number” (compall assumes that the name of gamess executable is

gamess.$VERNO.x).

6. TRGT GMS: if TARGET=o2k, specify how gamess should be run (pick from sockets and sgi-mpi,

consistently with your gamess installation). For other TARGETs this will be set automatically.

7. POE COM: if TARGET=sp, specify which poe command (poe, grd poe, or sge mpirun) will be

used to run parallel codes. Usually an MPI code on an SP machine is launched by the Load

Leveler queuing system using the poe command. At ARL, a wrapper sge mpirun is used

instead, which works with the GRD queuing system (or grid engine). On IBM SP3 brainerd

at ARL, the command grd poe also works. For TARGETs other than SP – ignore this variable.

67

8. SCLPCK: specify how the scalapack and blacs libraries are to be linked. If this is set to

’NO’, then the sequential CHF procedure will be used (will spoil scaling of psapt for large

systems), and the pcksdisp code (for susceptibility functions) will not be built at all.

9. LPCKLIB: specify how the Lapack library is to be linked. This library is needed to build

the program tdenfit, fitting the densities and propagators in terms of auxiliary bases. If

LPCKLIB is set to ’NO’, tdenfit will not be built. On SP machines, lapack is a part of

ESSL library and hence LPCKLIB does not have to be given at all (just set it to YES).

Once all the variable mentioned above are set, simply type:

• C-Shell users: ./compall >& compall.log &

• K-Shell users: ./compall > compall.log 2>&1 &

and the compilation should begin. Check compall.log to see if all is well. The compall script

works by invoking the make command with platform-specific makefiles. Thus, any subsequent

invocation of compall will detect changes made to the sources and only those parts of the code

will be rebuilt which were affected by these changes. Running the script ./psapt2K2/cleandirs

will restore the ./psapt2K2 directory to its “distribution” state, i.e., all object files and executa-

bles (except shell scripts) will be deleted and a subsequent invocation of compall will start the

compilation from the beginning.

14.2.2 Testing psapt2k2 installation

Once the compilation has been completed successfully (if unsure, just grep the compall.log file

for the word error), we recommend that you perform as many tests as possible before starting to

use psapt2k2 for production runs. A suite of test jobs of varying size and for different parallel

platforms has been provided for this purpose in the subdirectory examples/. Sample outputs from

different machines (*out ref.*) and queuing system submission scripts can be also found there.

Examples of using the new, monomer property-based algorithms for electrostatics, induction, and

dispersion can be found in directories ./psapt2K2/examples/PLATFORM/EDI, where PLATFORM is

one of O3K, SP3, SP4, and BEOWULF.

14.3 Using psapt2k2 with gamess as a front-end

gamess(us) is currently the only parallel SCF package psapt2k2 is interfaced with. See Sec. 9 for

information about setting up the gamess input files for psapt2k2 runs and about the structure

of the gamess driver script runGAMESS and of the GAMESS-ptran interface program gamsintf.

68

There are a few minor differences between the runGAMESS script used with the sequential pro-

gram sapt2012 (described in Sec. 9) and the one used with psapt2k2. Although these differences

are completely transparent to the user, we list them here for the sake of completeness:

• Unlike in the sequential version of the code, the variable TARGET in runGAMESS is set auto-

matically by the compall script, so no additional action is needed here.

• A separate version of the runGAMESS script, called runGMS.mpich, has been created for samson

– our Beowulf cluster here at UD. The gamess submission instruction present in this script

were causing syntax errors on other platforms - hence the need to create a separate script for

mpich implementation of MPI. runGMS.mpich will be called automatically from within the

pSAPT.mpich driver script, so the user does not have to worry about these details.

• A separate version of the runGAMESS script, called runGMS.mpich.maui, has been created for

huinalu – a Beowulf cluster at Maui supercomputer center. runGMS.mpich.maui differs from

runGMS.mpich slightly in details of how the HOSTLIST is constructed and by the usage of ssh

instead of rsh for interhost communication. runGMS.mpich.maui will be called automatically

from within the pSAPT.mpich.maui and pSAPT.mpich.maui.sep driver scripts, so the user

does not have to worry about these details.

• Should you prefer to use your own script as a driver for gamess, adapt it for psapt2k2

following the instructions of Sec. 9 with one exception: the integral file generated by process

“0”, $JOB.F08, has to be renamed into inta.0, while the integral files from the other pro-

cesses, $JOB.F08.X – into inta.X. This can be accomplished in C-shell using the following

syntax:

mv $JOB.F08 inta.0

set m=1

foreach fle (‘ls -1 $JOB.F08.*‘)

mv $fle inta.$m

@ m++

end

• On some BEOWULF clusters, such as huinalu at Maui center, the communication between the

nodes is furnished in terms of ssh rather than rsh. In such cases, gamess’s parallel launcher

ddikick.x must be modified to use ssh instead of rsh and recompiled, as suggested in the

source ddikick.c.

69

14.4 How to run psapt2k2

To perform a psapt2k2 calculation for one dimer geometry, one has to run a dozen or so pro-

grams: integral/SCF calculations for the monomers and possibly for the dimer, interface programs

(in most cases) rewriting integral/SCF files into different forms, 1- and 2-electron integral transfor-

mations, MBPT/CCSD calculations for monomers, and finally the “proper” SAPT calculations.

All of this is performed automatically using the script pSAPT.X from the ./psapt2K2/bin direc-

tory, where X denoting a platform is one of o2k, sp, mpich, mpich.maui, and mpich.maui.sep.

The last two cases pertain to the huinalu cluster at Maui center. While pSAPT.mpich.maui con-

trols a calculation utilizing the common scratch file-system /scratch/huinalu, the other script,

pSAPT.mpich.maui.sep, makes use of local scratch disk (/scratch/local) on every node. The

pSAPT.X script is executed on one “master” processor which in turn calls other executables and

scripts, also found in the ./psapt2K2/bin directory. The MPI executables (such as ptran, pcc,

psapt) are launched by the “master” using the mpirun command (on SP systems poe, grd poe, or

sge mpirun is used for this purpose). The details of the calculation “flowchart”, input files, and

the use of various types of basis sets are presented in Sec. 10. Here we only expose the features

characteristic of the parallel version of the code.

The executables invoked by the pSAPT.X script communicate with one another through various

(usually large) temporary files. Most of these files are written and read by only one process and

do not need to be accessed directly by other processes. This means that such files can be stored

locally in some scratch directory accessible only to one process. This is indeed the case on a

Beowulf cluster, where scratch file-systems are usually local to the nodes. Another class of (smaller)

temporary and input files have to be accessed from all processes. On a Beowulf cluster such files

have to be replicated in each processes’ local scratch area. This problem does not exist on most

other multiprocessor platforms (like the SGIs and SPs in the DoD centers), where all temporary

files are stored in a common large file-system accessible to all processes. All the details of how the

files are handled are taken care of by the pSAPT.X scripts and the MPI executables themselves and

are completely transparent to the user (with the exception of the input files - vide infra).

During the compilation, the script compall adapts the appropriate pSAPT.X script by insert-

ing the proper global paths to executables and should run properly on any installation without

changes. Currently, this feature is not functional in the case of scripts used on huinalu, namely

pSAPT.mpich.maui and pSAPT.mpich.maui.sep. The paths in these scripts need to be changed

manually so that the variables MAIN SAPT DIR and SCF HOME DIRECTORIES reflect user’s directory

structure (if gamess is used, it concerns also additional directories relevant for this program).

These variables are set about 500 lines down in the pSAPT.X script. The pSAPT.X script is written

in ksh, although on Linux platforms, some of which are not equipped with ksh, it is actually

70

executed under bash.

14.4.1 Running psapt2k2 on SGI

We first consider a situation where there is no queuing system installed and a psapt2k2 job can

be submitted interactively from the command line.

Before launching a psapt2k2 run, the scratch directory should be created and all the input

files should be copied to this directory. The psapt2k2 calculation is then launched in this scratch

directory by typing pSAPT.o2k with appropriate options. If ksh is used as the login shell and an

SGI machine is the platform, one would type

pSAPT.o2k jobname opt1 nproc opt2 >output.file 2>&1 &

(if psapt2K2/bin is not in your $PATH then the full path to pSAPT.o2k will have to be given.)

The keyword jobname has to be the same as the beginning of the name of the input files for the

system considered (we use a naming scheme to reference the needed input files). For example, let

the keyword be name. Then, as the script is running, it will look for the nameP.data file, which

contains the input data to the programs ptran, pcc, and psapt. Similarly, the pSAPT.o2k script

will look for gamess input files to the integral/SCF parts of a calculation starting with name.

The number and full names of such files depend on the type of basis set used in calculations. See

Sec. 10 for details on how to prepare gamess input files for different types of runs. Using the string

scfcp for opt1 will request, in addition to the standard SAPT calculation, also the CP-corrected

supermolecular SCF interaction energy in the dimer-centered basis set. If such a calculation is not

required, use noscfcp instead. Using the keyword gototran as opt1 will result in restarting a

pSAPT.o2k run from the transformation step, i.e., from the program ptran. The parameter nproc

is the number of processors to launch the job on. The parameter opt2 must be the full path of the

scratch directory in which the whole calculation is taking place.

The output from all programs executed by pSAPT.o2k is written to a file output.file located

in the scratch directory (this name can be set by the user to an arbitrary string, usually connected

with the system being considered and its geometry). The last two elements in the command line

given above are Unix ksh constructs which indicate that standard error messages will be written

to the same file as standard output and that the processes will be run in the background.

A more common situation occurs when jobs have to be submitted through some sort of a

queuing system, such as GRD (or, more recently, the grid engine). In this case, all the opera-

tions described above should be performed by a script submitted to the queue. A sample script,

ARL script, could look like

#!/bin/ksh

#$ -S /bin/ksh

71

#$ -N ArHF_Tc

#$ -l o3k

#$ -pe pe_4hr 8

###

Set the these parameters:

###

NODT=8 # number of processors to run everything

CURDIR=/home/bukowski/ArHF_Tc # Starting directory

WRKROOT=/usr/var/tmp/bukowski # root of the scratch directory

SAPTSCRIPT=/home/bukowski/psapt2K2/bin/pSAPT.o2k # driver script

JOB=ArHF # Core of the job name

##

No need to modify anything below this line

##

WRKDIR=$WRKROOT/$JOB # scratch directory where

the calculation will take place

cd $CURDIR

Create the job-specific scratch directory

if [! -d $WRKDIR]

then

mkdir $WRKDIR

fi

Copy the input files from HOME to scratch

cp $JOB’.inp’ $WRKDIR

cp $JOB’A.inp’ $WRKDIR

cp $JOB’B.inp’ $WRKDIR

cp $JOB’P.data’ $WRKDIR

Run the job in scratch

cd $WRKDIR

$SAPTSCRIPT $JOB scfcp $NODT $WRKDIR >>$JOB’.out_test.’$NODT 2>&1

Copy output file back to HOME

cp $JOB’.out_test.’$NODT $CURDIR

The first few lines starting with #$ are options passed on to the queuing system (in this case:

GRD), specifying the name of the job, what machine it should be run on, in what queue, and on

how many processors. The syntax of these options depends of the queuing system at hand and so

these few lines must be adjusted accordingly. The script is submitted typically using the command

qsub ARL_script

After the script enters execution, it first creates a scratch directory named after the name of the

job, then copies the input files from the home subdirectory (CURDIR) to the scratch directory, and

runs the pSAPT.o2k script (SAPTSCRIPT). Upon completion of the psapt2k2 calculation, the

72

output file is copied back to the home subdirectory CURDIR. Note that after the job is finished,

the scratch directory will contain all kinds of temporary files which are kept there in case a restart

is needed. These files should be manually cleaned up.

14.4.2 Running psapt2k2 on an SP3/SP4

The job submission technique here is very similar to the one used on an SGI platform, except that

interactive submissions are generally not possible and everything must be handled by a queuing

system. Consult the ARL script and NAVO script in the psapt2K2/examples/SP? directories for

examples of the GRD and Load Leveler submission scripts.

14.4.3 Running psapt2k2 on a Beowulf cluster

Configurations of Linux-based Beowulf clusters may vary between installations. Presented below

are techniques of running psapt2k2 on our local cluster samson at University of Delaware, and

on the huinalu cluster at Maui supercomputer center.

samson cluster

The machine consists of 132 compute nodes equipped with 1 GHz AMD Athlon processors and

connected by Ethernet. Each node is equipped with a local scratch file-system not accessible from

other nodes. On each node, this file-system is mounted as /tmp. In addition, there is a login node

which hosts home directories of the users and some shared resources, like the MPI implementation

mpich. The home and shared directories are NFS-mounted on all compute nodes. Commands and

programs can be executed on compute nodes from the login node through the rsh utility. It is

also possible to rlogin to the compute nodes, although it is not necessary for running psapt2k2.

The consecutive modules of psapt2k2 are launched from within the script pSAPT.mpich using the

mpirun command, while gamess is started using the ddikick.x utility of the ddi package.

It is a good rule on samson that jobs are to be run on compute nodes only and not on the

login node. For any MPI application, this may be accomplished by executing the mpirun command

on the login node with the option -nolocal, supported by mpich. Unfortunately, this option (or

a similar one) is not available in the ddi package which is the gamess parallelization tool. This

creates a problem if an MPI application depends on files generated by gamess and both are to be

run from the same driver script, such as pSAPT.mpich. This means that pSAPT.mpich has to be

submitted directly on one of the compute nodes rather than on the login node, and that the MPI

programs should be launched without the -nonlocal option.

The process of submitting a psapt2k2 run on samson consists of the following steps:

1. In your $HOME, create a subdirectory for the job and copy the input files job*.inp and

jobP.data to this subdirectory.

73

2. Create file calcnodes listing the nodes about to be used in the calculation, for example,

sam2

sam4

sam5

sam6

Make sure there are no blank lines in this file.

3. Make sure that the appropriate scratch directory (we will use /tmp/bukowski as an example)

is present on each of the compute nodes listed in the file calcnodes.

4. Submit the job using a command ./submit JOB, where JOB is the job name (the core of the

input file name) and submit is a script similar to the following:

#!/bin/bash

########## Customize scratch directory on compute nodes

########## and the directory where the driver script resides.

SCRDIR=/tmp/bukowski # scratch directory

SAPT_SCRIPT=/home/bukowski/psapt2K2/bin/pSAPT.mpich

SAPT driver script

####### Paths to the SAPT executable directory

SAPTDIR=/home/bukowski/psapt2K2/bin

########## End of customized part ######################################

##

Create all the needed PROC files based on calcnodes

PTRAN=$SAPTDIR/ptran

PCC=$SAPTDIR/pcc

PSAPT=$SAPTDIR/psapt

INT=$SAPTDIR/int

SORT=$SAPTDIR/sort

EVEN=$SAPTDIR/even

FRSTNODE=‘head -1 calcnodes‘

echo $FRSTNODE 0 > PROC

echo $FRSTNODE 0 > PROCc

echo $FRSTNODE 0 > PROCe

echo $FRSTNODE 0 > PROCi

echo $FRSTNODE 0 > PROCs

echo $FRSTNODE 0 > PROCso

for i in ‘tail +2 calcnodes‘

do

echo $i 1 $PTRAN >> PROC

74

echo $i 1 $PCC >> PROCc

echo $i 1 $EVEN >> PROCe

echo $i 1 $INT >> PROCi

echo $i 1 $PSAPT >> PROCs

echo $i 1 $SORT >> PROCso

done

########### PROCs file ready - run the job now ############################

JOB=$1 # job name

copy all SAPT input files and the PROC file onto the scratch dir

on every node specified in PROC file

for i in ‘awk ’{print $1}’ PROC‘

do

echo Copying input to $i

rcp *inp $i:$SCRDIR

rcp $JOB’P.data’ $i:$SCRDIR

rcp PROC $i:$SCRDIR

rcp PROCs $i:$SCRDIR

rcp PROCi $i:$SCRDIR

rcp PROCc $i:$SCRDIR

rcp PROCso $i:$SCRDIR

rcp PROCe $i:$SCRDIR

done

Set the number of nodes

NPROC=‘wc PROC | awk ’{print $1}’‘

Determine the master node (the first one in PROC)

MASTER=‘head -1 PROC | awk ’{print $1}’‘

echo Submitting job on $MASTER

Submit the job on master node. Make sure that master knows what

LOGNAME is (needed for psapt).

rsh $MASTER "LOGNAME=bukowski; export LOGNAME; echo $LOGNAME; cd $SCRDIR;

$SAPT_SCRIPT $JOB scfcp $NPROC $SCRDIR > OUT 2>&1 " &

exit

The variables SCRDIR (the scratch directory, its name assumed to be the same on each node),

SAPT SCRIPT (full path to the driver script), and SAPTDIR (location of psapt2k2 executables) have

to be customized by the user. Using the node information from calcnodes, the script first creates

the files PROC, PROCc, PROCe, PROCi, PROCs, and PROCso which will be used by mpich to run

the consecutive modules of psapt2k2. The input files and the PROC* files are then copied from

the home subdirectory to the scratch directory on each node. Based on analyzing the PROC file,

the script detects the number of processors and the “master” node on which pSAPT.mpich will be

submitted (this is the first node listed in calcnodes). Finally, having set up some environment

75

parameters, it launches pSAPT.mpich on the “master” node. The temporary files produced by

gamess and psapt2k2 will be created and stored in (local) directories /tmp/bukowski. The

output from the run will be written to the file OUT in the scratch directory (/tmp/bukowski) of

the “master” node (in this case: sam2) only. It will have to be copied (by rcp, for example) back

to the home subdirectory.

huinalu cluster

The machine consists of 256 batch nodes and 4 interactive (or login) nodes, each equipped

with two 933 MHz Pentium III processors and 1 GB of memory. The nodes are connected via a

200 MB/s Myrinet Switch and also via 100 Mbit/s Ethernet. Each node is equipped with a local

scratch file-system not accessible from other nodes. On each node, this filesystem is mounted as

/scratch/local. In addition to the local scratch, all nodes have access to a shared scratch area,

mounted as /scratch/huinalu, with the capacity of 239 GB. All nodes have also access to users’

home directories and other shared resources. The machine features the mpich implementation of

MPI and a variety of Fortran compilers: g77, Intel, and Portland, all capable of using both the

Myrinet and the Ethernet connectivity. Special care must be taken at the time of compilation and

execution so that the PATH variable points to the proper libraries and the mpirun command ap-

propriate for a given connection/compiler combination. Commands and programs can be executed

on compute nodes from the login node through the ssh utility. It is also possible to ssh-login to

the compute nodes, although it is not necessary for running psapt2k2. The consecutive modules

of psapt2k2 are launched from within the script pSAPT.mpich.maui or pSAPT.mpich.maui.sep

(described in the following) using the appropriate mpirun command, while gamess is started using

the ddikick.x utility of the ddi package. The default source of ddikick.x, ddikick.c, has to be

modified to use ssh instead of rsh.

In the debugging stage, psapt2k2 jobs may be submitted on the four interactive nodes

hnfe01 – hnfe04 (i.e., on up to 8 processors) using a technique similar to that described above for

samson. The only practical difference is that the invocation of the mpirun command utilizes the

-machinefile option, which for some reason is not working on samson. Consequently, the PROC

file is only needed by gamess while the psapt2k2 modules use a file called calcnodes in a format

similar to

hnfe01:2

hnfe02:2

hnfe03:2

where :2 means that two processes will be run on each of the three interactive (2-processor) nodes,

a total of 6 processes. In this case, a PROC file consistent with calcnodes, needed to inform gamess

where to run, will have the form

76

hnfe01

hnfe01

hnfe02

hnfe02

hnfe03

hnfe03

The driver script to be called by submit is now pSAPT.mpich.maui which differs from samson’s

pSAPT.mpich in the syntax of mpirun command as well as in some file management portions (it is

assumed here that the scratch directory is set to the common filesystem /scratch/huinalu). In

order to run gamess, pSAPT.mpich.maui calls a custom script runGMS.mpich.maui which differs

from runGMS.mpich in details of how the ddi’s HOSTLIST is constructed and in the use of ssh

instead of rsh for internode communication. Jobs on interactive nodes can only be run using the

Ethernet network interface.

In the production stage, psapt2k2 jobs have to be run on compute nodes. The legal way to

accomplish this is to use the huinalu’s queuing system called “Maui Scheduler”. The scheduler

requires the user to prepare two scripts. The first is the scheduler command script which in turn

calls the second script performing the file management tasks and invoking the psapt2k2 driver

script. The format of the scheduler commands script MAUI script is as follows:

Initial working directory and wallclock time

IWD == "/u/bukowski/tests/ArHF_Tc"

Job wall-time limit in seconds

WCLimit == 1800

Task geometry

Tasks == 8

Nodes == 8

TaskPerNode == 1

Feature requests

Arch == x86

OS == Linux

Account

Account == "AFPRD-0102-001"

MPI Ethernet job; for Myrinet, use gm instead of p4

JobType == "mpi.ch_p4"

Execute a script file managing files and submitting the SAPT job

Exec == "/u/bukowski/tests/ArHF_Tc/sub_s_sep"

Optional arguments to the "Exec" script

Args == ""

Where scheduler output will end up

77

Output == "/u/bukowski/LOGS/$(MAUI_JOB_ID).out"

Error == "/u/bukowski/LOGS/$(MAUI_JOB_ID).err"

Log == "/u/bukowski/LOGS/$(MAUI_JOB_ID).log"

Input

Input == "/dev/null"

The launch script sub s sep should be similar to

#!/bin/sh

JOB=ArHF # job name

CURDIR=/u/bukowski/tests/ArHF_Tc

SCRDIR=/scratch/local/bukowski # local scratch directory

SAPT_SCRIPT=/u/bukowski/psapt2K2/bin/pSAPT.mpich.maui.sep

SAPT driver script

Set the number of nodes as assigned by the scheduler

NPROC=$MAUI_TASK_COUNT

OUTFILE=/scratch/huinalu/bukowski/$JOB.out_tst.$NPROC

copy all SAPT input files onto the scratch dir

on every node assigned by scheduler. With common file-system -

use just a simple copy

cd $CURDIR

Create the list of nodes

rm -f calcnodes

for node in ‘echo $MAUI_JOB_NODES | sed -e ’s/:/ /g’‘ ; do

echo $node >> calcnodes

done

cp calcnodes PROC

Copy input files and lists of nodes to each local scratch directory

for i in ‘awk ’{print $1}’ calcnodes‘

do

echo Copying input to $i

ssh $i mkdir $SCRDIR

scp *inp $i:$SCRDIR

scp $JOB’P.data’ $i:$SCRDIR

scp PROC $i:$SCRDIR

scp calcnodes $i:$SCRDIR

done

Submit the job in scratch directory

cd $SCRDIR

$SAPT_SCRIPT $JOB nocp $NPROC $SCRDIR > $OUTFILE 2>&1

for i in ‘awk ’{print $1}’ calcnodes‘

do

echo Cleaning up on $i

ssh $i rm $SCRDIR/*

done

78

The script sub s sep launches the psapt2k2 calculation using the local scratch file-systems

/scratch/local, where all the necessary data files (including input) are copied using the scp com-

mand. The number and the list of nodes are retrieved from the environment variables MAUI TASK COUNT

and MAUI JOB NODES supplied from within the scheduler environment. Due to some file manage-

ment issues which could not be resolved, it is necessary that only one process is launched on each

compute node (i.e., the parameter TaskPerNode in MAUI script must be set to 1). The actual

psapt2k2 run is started using the driver pSAPT.mpich.maui.sep, adapted to make use of the

local scratch environment. Replacing this driver with pSAPT.mpich.maui, changing the scratch

directory to the global one, say,

/scratch/huinalu/bukowski, and replacing the loop structure with scp by a set of simple cp

commands would result in a psapt2k2 calculation utilizing the common scratch directory instead

of the local ones. Since psapt2k2 jobs are crucially dependent on the efficiency of I/O opera-

tions, the local scratch option should be preferred as it allows to avoid competition for bandwidth

between the processes.

14.5 Input files

The input files for gamess and the SAPT suite of codes are constructed in essentially the same way

as in the case of the sequential version of the program, sapt2012, as described in detail in Sec. 10.

The only difference is that the options SAPT0, SAPT2, SAPT, and others of this kind introduced in

later editions of SAPT codes are currently not supported in the namelist INPUTCOR. The theory

levels corresponding to these options may of course be recovered by requesting the appropriate

SAPT corrections individually. Note also that no SAPT corrections beyond the standard level,

like, e.g., the components of E
(30)
SAPT, Eq. (9), are available in psapt2k2, and frozen core is not

implemented in the parallel SAPT program.

14.6 Memory and disk requirements

Memory requirements of psapt2k2 can be estimated based on the total number of basis functions,

the numbers of occupied and virtual orbitals, and the number of processors involved. The trans-

formation code ptran requires slightly more than on3/P 8-byte words on each of the P processors,

where n is the dimension of the basis set and o is the number of occupied orbitals of the bigger

monomer. For the pcc and psapt parts, memory requirements can be roughly estimated as 3o2v2

words on each processor, where v is the number of virtual orbitals for the larger monomer.

More precise calculation of the memory required for a psapt2k2 run can be done using the

program memcalc (built automatically during installation). In order to use this program, prepare

the regular nameP.data file with the first (title) line containing, in this order: the total number of

79

DC+BS basis functions, the total number of functions for monomer A (will be different than the

previous one in a MC+BS-type run), the number of occupied orbitals for monomer A, and then the

same information for monomer B, followed by the number of processors. Then run the program

by typing

memcalc < nameP.data > memcalc.out

The file memcalc.out will contain detailed information about memory requirements of different

parts of the code. The variables MEMTRAN from namelist TRN and MEMSAPT from namelist INPUTCOR

should then be adjusted accordingly. The memory needed to run the pcc program is calculated

there explicitly, so that no separate namelist variable is needed.

An estimate of the total disk space requirement can be obtained as presented in Sec. 10.7 for

a sequential program. It should be noted here that most of the large scratch files are distributed

between the processes. The amount of disk space needed on a single processor is thus only a

fraction 1/P of the total disk requirement. This feature becomes important on Beowulf clusters,

where typically only a relatively small scratch area is available on each node.

14.7 Electrostatic, dispersion, and induction (EDI) energies from monomer

properties

It is well known that the electrostatic component of the interaction energy can be calculated

from monomer charge densities, which are purely monomer properties. Similarly, the (second-

order) induction energy may be expressed in terms of monomer charge densities and the static

susceptibility functions. The same holds also for the dispersion energy, which is given by an integral

of the product of two monomer dynamic susceptibility functions over (imaginary) frequency, the so-

called Casimir-Polder integral. Thus, with the exception of exchange energies, all the components

of the interaction are in fact determined exclusively by monomer properties. These properties

can be calculated only once for each monomer at a high level of (intramonomer) correlation,

and then used, after rotating and translating to the new monomer positions, to obtain the three

interaction components for any dimer configuration. The point is that the expensive parts of

the calculation – those of the correlated charge density and susceptibility functions – have to be

performed only once for each monomer, and not at each and every dimer geometry. In particular,

costly four-index transformations usually needed in highly correlated methods (such as the four-

virtual transformations) are done only for a single-point monomer calculation, and avoided during

the actual interaction energy calculations.

The electron density of a monomer can be expressed as a combination of n(n+ 1)/2 products

of atomic orbitals (AOs), where n denotes the number of these orbitals in the basis set used.

Thus, a calculation of the electrostatic energy from two precomputed monomer densities requires

80

of the order of n4 2-electron integrals (for similar size monomers, so that n is approximately the

same for both of them). The monomer susceptibility functions (both static and dynamic) are

given as combinations of ov ∗ (ov+ 1)/2 terms (products of four molecular orbitals, two depending

on coordinates of electron 1 and the other two on coordinates of electron 2). The time cost of

obtaining induction and dispersion components is again dominated by the need to compute n4

2-electron integrals. This unfavorable scaling can be greatly reduced if both the electron densities

and the susceptibility functions are fitted in terms of a suitably chosen auxiliary basis. In most

cases, the size of this basis, m, can be assumed to be proportional to the size of the original AO

basis (but several times larger). The electron density can now be expressed as a combination of

m terms, while the susceptibility functions consist of m(m+ 1)/2 terms (products of the auxiliary

basis functions). The cost of the calculation of electrostatics, induction, and dispersion, dominated

by 2-electron integrals between the auxiliary functions, is now proportional to just m2 instead of

n4.

The electron densities and susceptibility functions are fitted by minimizing functionals of the

type

∆ =

∫
[ρ(r1)− ρ(r1)](1/r12)[ρ(r2)− ρ(r2)]dr1dr2 (12)∫

ρ(r1)dr1 = N or zero. (13)

The quantity ρ denotes here either one of the MBPT contributions to electron density, which is

normalized to the number of electrons N , or a transition density (a product of an occupied and a

virtual orbital), which is normalized to zero. The quantity ρ is an approximation to ρ in the form

of a linear expansion in terms of auxiliary basis functions. The choice of 1/r12 as the “weight” in

the functional ∆ has been suggested by Dunlap [60]. Minimization of the functional ∆ reduces

then to solving a system of linear equations for the expansion coefficients. Only one such equation

system needs to be solved for each of the MBPT components of density, whereas fitting of the

susceptibility function for each imaginary frequency requires solving ov such systems, one for each

pair of the occupied and virtual orbitals.

Presented here is the beta version of the suite of codes implementing the ideas discussed above.

The codes allow the generation of monomer charge densities (currently at the SCF, MBPT2 and

MBPT3 levels, with and without orbital relaxation) and susceptibility functions (currently at the

CHF level), generation of an auxiliary basis, and the fitting of the monomer properties in terms of

this basis. The charge densities, susceptibility functions, and SCF vectors are then used as input

to a program which calculates the electrostatic, induction, and dispersion energies for an arbitrary

set of dimer geometries. Two versions of this code exist, one utilizing the exact representation of

monomer properties (i.e., in terms of the original AO basis), called caldisp gms, and the other –

working with the density-fitted monomer properties, called caldisp fit.

81

14.7.1 The pEDI scripts

Most of the the tasks mentioned above are accomplished with the help of the script pEDI.X, where

X stands for the platform at hand. This script works very much like the script pSAPT.X used in

“regular” psapt2k2 calculations. Thus, the SCF runs for the two monomers are performed first,

followed by the integral transformation, the CCSD/MBPT, and psapt runs. A new element is that

the psapt module now calculates the MBPT2 and MBPT3 densities and stores them on disk, and

the pcksdisp program is called to produce the susceptibility functions, currently at the CHF (or

RPA) level. In addition to generating the monomer properties, the regular psapt2k2 calculation

is also performed for one dimer geometry, obtained by shifting the position of monomer B by 10

bohr along the positive z axis with respect to the position specified in the nameB file. The CHF

dispersion energy is also computed for this geometry by the program pcksdisp (the same one that

generates the susceptibility functions). The results for this one geometry, reported in the output

from the pEDI.X run, may then be compared to their counterparts obtained using the transforma-

tionless codes, to assess the correctness and accuracy of the latter. The transformationless code

itself, caldisp gms, is invoked at the end of pEDI.X to compute the electrostatics, induction, and

dispersion energies for specified dimer geometries.

The detailed instructions for running pEDI.X are as follows:

1. Assuming that the name of your job is name, prepare the files nameA and nameB containing the

specifications of the geometries and basis sets of monomers A and B in gamess(us) format.

Remember to put blank lines after basis set of each atom, including the blank at the end

of the file. Out of these files, the pEDI.X script will construct gamess input files needed to

calculate the SCF vectors and generate integrals. A spherical basis set will be assumed (i.e.,

ISPHER=1), and the name of the job will be used as the comment line. Geometries of the

monomers specified in nameA and nameB should correspond to whatever you consider to be

the initial configuration of the given monomer, i.e., the COM (or other characteristic point

around which rotations will be performed) should coincide with the origin of the coordinate

system, and all Euler angles describing the orientation of the monomer will be assumed zero

at this geometry.

2. Prepare the file nameP.data, as for the regular (pure) MCBS SAPT calculation (note that

in namelist TRN the variables BASIS and TAGS have to be specified for such a calculation). In

the namelist INPUTCOR, the variables CHFDISP=T, CHFIND=T, E12=T, E12R=T, E13PL=T,

E13PLR=T have to be specified in order for the MBPT2 and MBPT3 densities to be dumped

on disk. Failure to specify any of these corrections will result in the corresponding density

missing in the dump files denaMO.data and denbMO.data (it does not hurt the subsequent

calculations except that the quantities requiring the missing densities will be reported as

82

zero). Also, some other corrections may be specified, so that the results from the Summary

Table may be later compared to what comes out of the transformationless algorithms for the

geometry considered in the pEDI.X run. These may include E1TOT=T, E2IND=T, E2INDR=T,

and E2DSP=T. The namelist INPUT controlling the behavior of the propagator code pcksdisp

is generated automatically by the pEDI.X script (and appended to file5.dat), so the user

does not have to worry about it. For the sake of completeness we state here that this namelist

currently contains the following:

ISITCASPOL=T, ISITINDUCT=T,

ISITSOSDISP=F,

ISITPROP=F,

ISITCKS=T, ISITUCKS=F,

ISITPOL=F,ISITC6DISP=F,

USESUMN6=T,

MAKEH1H2=T,

IQUADTYP=1, NQUAD=16,

OMEGA0=0.5

The meaning of these parameters is described in Appendix E. In particular, the user may

want to alter the length NQUAD of the quadrature employed in the calculation of the Casimir-

Polder integral.

3. Prepare the file input.edi, specifying the dimer geometries for which the interaction energies

are to be calculated by caldisp gms out of the precomputed monomer properties. input.edi

consists of lines (one for each dimer geometry) containing, in this order, the COM-COM

separation (in Å), the β and γ Euler angles (in degrees) for monomer A (α is assumed as

zero), followed by the α, β, and γ Euler angles of monomer B. It is assumed that the COM

of monomer A coincides with the origin of the coordinate system and that monomer B is

shifted in the positive direction of the z axis. For example,

5.29177249 0. 0. 0. 0. 0.

2.38521611 86.80692336 90.00000000 180.00000000 93.37890335 360.00000000

2.63658901 87.13779711 90.00000000 180.00000000 81.94039222 360.00000000

2.89422970 87.42491802 90.00000000 180.00000000 75.80434134 359.99999915

would be a valid input.edi file containing 4 geometries. The first of these geometries is

exactly the same as the one for which the interaction energies are computed during the

pEDI.X run.

83

4. Run the EDI job the same way a “regular” psapt2k2 job would be run. For example, on

O2K/O3K platform without a queuing system, to run in /scratch/mydir on 8 processors one

would type

pEDI.o2k name noscfcp 8 /scratch/mydir > name.out 2>&1 &

Note that the noscfcp keyword has been used since the supermolecular SCF interaction

energy is of no interest here.

A result of running the pEDI.X script will be the file name.out containing standard output

from the whole run. In this file, the SAPT corrections requested in the nameP.data file will be

reported (in the “Summary Table” section), together with the dispersion and induction energies

calculated by the propagator code pcksdisp for one specific dimer configuration, described earlier.

The last part of name.out will be the output from the caldisp gms code, i.e., the electrostatic,

induction, and dispersion energies for all geometries specified in input.edi. Specifically, the fol-

lowing corrections will be calculated: E
(10)
elst , E

(12)
elst , E

(12)
elst,resp, E

(13)
elst , E

(13)
elst,resp, E

(20)
ind , E

(20)
ind,resp, E

(20)
disp ,

and E
(2)
disp(RPA). The last of the corrections mentioned above is calculated from the dynamic

susceptibility functions at the CHF level (equivalent to RPA) and currently does not have its

counterpart among the corrections calculated in a regular psapt2k2 run. It is more accurate in

terms of theory level than E
(20)
disp .

The calculated monomer properties will be packed for further use (e.g., for a standalone

invocation of caldisp gms) into a file name.prop.tar.gz, which, after running

%

gzip -d name.prop.tar.gz

tar -xvf name.prop.tar

will decompress info the following files:

1. vecta.data and vectb.data – unformatted sequential files with orbital energies and SCF

vectors

2. unformatted sequential files denaMO.data and denbMO.data, containing MBPT2 and MBPT3

densities (relaxed and non-relaxed)

3. propa.data and propb.data – dynamic susceptibility functions, currently at the CHF level

(unformatted sequential files)

4. prop0a.data, prop0b.data – static susceptibility functions, currently at the CHF level (un-

formatted sequential files)

84

5. geometry and basis set info of the monomers will be recorded in formatted files infoa.data

and infob.data in the format readable by the subsequent transformationless codes.

After collecting these files and input.edi in one scratch directory, one can run the caldisp gms

program independently of the pEDI.X script by typing (or submitting through the queuing system)

a command similar to

mpirun -np 8 caldisp_gms > dimers.out 2>&1

modifying, of course, the number of processing nodes, paths, and output file name appropriately.

As usual, the executable caldisp gms can be found in psapt2K2/bin directory.

14.7.2 Calculating electrostatic, induction, and dispersion energies from fitted monomer

electron densities and susceptibility functions

A promising alternative route of EDI calculations utilizes approximate representations of monomer

properties in terms of the auxiliary basis sets. The accuracy of this method strongly depends on the

quality of these sets. The auxiliary basis sets can be obtained using the utility program make aux,

realizing the method described in Appendix F, and the property fitting can be accomplished with

the help of the program tdenfit (the relevant lines in the compall script must be commented out

if these two programs are to be built during installation). Later, in the work on SAPT(DFT), it

was found [14, 15] that the optimized auxiliary basis sets like those from Ref. 61 perform better.

Thus, we recommend to use these sets in EDI calculations.

The driver scripts pEDI.X can be easily adapted to perform the property fitting by uncomment-

ing the Generate auxiliary basis and Fit propagators and densities using auxiliary

basis sections. The invocation of the tar command should also be changed so that the fitted

representations of monomer properties are included in the name.prop.tar file. The pEDI.X script

modified in this way will ask for two additional input files, input.aux.A and input.aux.B, spec-

ifying parameters needed for the construction of auxiliary bases. These involve the number of

pruning cycles and the ε parameter for each of these cycles for each atom. For example, in the

case of molecule A consisting of 2 atoms and with 3 pruning cycles required for each of them, the

file input.aux.A could look like

3

0.8

0.9

1.0

3

0.8

85

0.9

1.0

After the run finishes, the auxiliary bases generated by make aux will be placed in files auxa.data

and auxb.data, similar to infoa.data and infob.data, whereas the fitted properties will be

placed in (unformatted sequential) files auxdena.data, auxdenb.data, auxprop0a.data,

auxprop0b.data, auxpropa.data, and auxpropb.data. The automatic generation of auxiliary

basis sets results in rather large sets if high accuracy of the fits is required.

To perform the interaction energy calculation using density-fitted monomer properties, col-

lect all these files, along with input.edi, in a scratch directory (e.g., by uncompressing the

name.prop.tar.gz file resulting from the modified pEDI.X script) and then run the caldisp fit

executable by typing a command similar to

mpirun -np 8 caldisp_fit > dimers.out 2>&1

possibly modifying the number of processing nodes, paths, and output file name. The output

file, dimers.out in this case, will contain, for each dimer geometry, the following corrections:

E
(10)
elst , E

(12)
elst , E

(12)
elst,resp, E

(13)
elst , E

(13)
elst,resp, E

(20)
ind,resp, and E

(2)
disp(RPA).

Important note: The number of processors to run caldisp gms and caldisp fit is indepen-

dent of the number of processors on which the pEDI.X script was run. It is, however, important,

that all the files used (with an exception of input.edi) are obtained in a single pEDI.X run. For

example, using vecta.data and vectb.data obtained on a different number of processors (or a dif-

ferent machine) than that used to get denaMO.data, denbMO.data or propa.data, propb.data

may result in nonsensical results if orbital degeneracies are present for one (or both) monomers as

it is the case, e.g., for atoms and linear molecules. In such cases, gamess can perform arbitrary

rotations within the degenerate subspaces. These rotations are dependent on the number of pro-

cessors and even on the platform where the calculation is run, so it is imperative that all the files

are obtained consistently. It is therefore recommended that the monomer properties are always

moved around in the form of the compressed files name.prop.tar.gz rather than separately.

15 SAPT(CC)

A SAPT version of first and second order in V and of infinite order in W at the CCSD level, devel-

oped by Korona et al. [24–31], is avilable in SAPT2012. Such calculations require molpro2010.1

since the code for these corrections has a form of a molpro patch. This patch is located in the

misc/patch.ccsapt subdirectory of regular SAPT2012. In order to run these codes, one must

apply the patch by copying all the files from the misc/patch.ccsapt/src/eom subdirectory to the

src/eom subdirectory of an existing molpro2010.1 installation and recompiling molpro. Exam-

86

ple inputs for SAPT(CC) runs are provided in the misc/patch.ccsapt/examples subdirectory.

One should note that the SAPT(CC) patch is independent from the patch required to run regular

SAPT with molpro as the integral and SCF front end (Sec. 8.1) and the two patches can, but do

not have to, be applied simultaneously. No further information is available on SAPT(CC).

16 SAPT(DFT)—SAPT based on coupled Kohn-Sham treat-

ment of monomers

16.1 Introduction

SAPT(DFT) is an extension of the SAPT theory. In SAPT(DFT), the monomers are described in

terms of Kohn-Sham (KS) orbitals and orbital energies as well as of TD-DFT response functions.

A complete description of the theory together with references to the historical developments of the

method, as well as numerical examples, can be found in Ref. 14.

SAPT(DFT) consists of two steps. First is the so-called SAPT(KS), where electrostatics, first-

order exchange, induction, exchange-induction, dispersion, and exchange-dispersion are obtained

by using SAPT terms of the zeroth order in W with SCF orbitals and orbital energies replaced by

their KS equivalents. For meaningful results, SAPT(KS) requires asymptotically corrected (AC)

Kohn-Sham calculations. SAPT(KS) does not reproduce dispersion correctly. This problem was

found to be due to the use of a formula asymptotically related to uncoupled dynamic polarizabilities.

Instead, the dispersion (and induction) energies should be calculated from frequency-dependent

density susceptibility (FDDS) functions, also referred to as propagators, obtained from TD-DFT,

i.e., at the coupled Kohn-Sham (CKS) level. The SAPT(KS) and CKS steps form the complete

SAPT(DFT). The total SAPT(DFT) interaction energy (up to second order in V) can be defined

as [14]

E
SAPT(DFT)
int = E

(1)
elst(KS) + E

(1)
exch(KS) + E

(2)
ind(CKS) + Ẽ

(2)
exch−ind(CKS)

+E
(2)
disp(CKS) + Ẽ

(2)
exch−disp(CKS), (14)

where the terms with the CKS label result from the coupled Kohn–Sham approach. The Ẽ
(2)
exch−ind(CKS)

and Ẽ
(2)
exch−disp(CKS) are approximated by scaling their KS counterparts as described in Ref. 14.

The method can be shown to be potentially exact for all major components of the interaction

energy (asymptotically for exchange interactions) in the sense that these components would be

exact if the DFT description of the monomers were exact.

The nominal scaling of SAPT(KS) is O(N5) and that of SAPT(DFT) is O(N6), in both

cases significantly better than the O(N7) scaling of the regular SAPT. The scaling of SAPT(DFT)

can be lowered to O(N5) by using density fitting [12, 14, 15, 57, 62]. Furthermore, although the

87

density-fitting transformation still scales as O(N5), it has a greatly reduced prefactor.

16.2 Installation and usage

SAPT(DFT) requires dalton 2.0 [37] or orca [53] for monomer DFT calculations (in the latter

case, only the density-fitting version has been interfaced, because orca does not provide two-

electron integrals needed for the standard version. See Sec. 16.4.2 for the detailed description).

The users of SAPT(DFT) need to obtain a separate license and download the package from

http://www.kjemi.uio.no/software/dalton/dalton.html. Consult the dalton manual for in-

stallation requirements. Some of the SAPT(DFT) functionality is available via a patch dalton.diff

distributed together with sapt2012. First, compile and install the standard dalton 2.0. After

testing the installation, update the path to the dalton directory in the patchdalton script lo-

cated in the main sapt2012 directory and run the script. If the patching is successful, compile the

patched dalton. The recompilation should last significantly shorter than the original compilation.

If you have not compiled sapt2012 with dalton support, set the DALTON variable of the Compall

script to the proper path to the dalton executable, make sure the variable SAPTDFT=YES, and

recompile sapt2012. If the compilation is error-free, the SAPT(DFT) code is ready to use (both

the regular and density-fitted versions are created).

Before performing calculations for systems of interest to you, check the examples from examples/saptdft

directory. The SAPT(DFT) run consists of the monomers calculation, transformation, the SAPT(KS)

step, and the CKS step. Notice that some of the errors printed by Dalton are harmless in the

SAPT(DFT) calculations. In particular,

--- SEVERE ERROR, PROGRAM WILL BE ABORTED ---

SIRIUS NORMAL STOP AFTER ORBITAL ORTHONORMALIZATION.

is a normal stop after calculating the necessary one-electron integrals. Warning. Patched dalton

should not be used for any ather purpose except for SCF/DFT calculations. The effect of the patch

on other parts of the dalton code has not been tested.

The keywords discussed below are for both the regular and density-fitted versions of SAPT(DFT).

Some additional keywords for the latter case are described in Sec. 16.4. SAPT(DFT) requires

SAPTKS=T keyword in the INPUTCOR namelist of the nameP.data file and proper keywords in the

TRN namelist prepared like for the regular runs (see also Sec. 9.5). For CKS calculations that are a

part of SAPT(DFT), a separate SAPTDFT namelist with keywords CKSDISP=T and CKSIND=T should

also be present at the minimum. The complete set of SAPTDFT namelist keywords is:

1. CKSDISP —E
(2)
disp(CKS)

2. CKSIND — E
(2)
ind(CKS)

88

3. MAXMEM — maximum memory in words to be used in the CKS calculation. The program will

allocate necessary memory not greater than MAXMEM. If the required memory is greater than

MAXMEM, the program will exit. If not set, up to 100 megawords will be used.

4. IQUADTYP : The type of quadrature scheme to be used in performing the ω-integral in the

Casimir-Polder dispersion formula:

• IQUADTYP=1 sets the Gauss-Legendre quadrature with the transformation of the integral

variable ω = ω0
(1+t)
(1−t) . This is the default.

• IQUADTYP=2 sets the Gauss-Legendre quadrature with the transformation ω = ω0 tan(t).

• IQUADTYP=3 sets the Gauss-Laguerre quadrature scheme.

5. NQUAD : The variable NQUAD sets the number of quadrature points to be used for the integra-

tion. The default is 8.

6. OMEGA0 and ALPHA : The transformation used in the Gauss-Legendre quadrature schemes

involves a constant ω0. The variable OMEGA0 in the namelist SAPTDFT allows you to set this

constant. It is typically between 0.3 and 0.5 and the default is 0.5. The Gauss-Laguerre

quadrature scheme involves the constant α. For the integrals encountered here, one should

set ALPHA=0.0.

The dalton patch enables some new options in dalton which are required for SAPT(DFT)

calculations. All the new keywords belong to the *DFT INPUT submodule. The following new

keywords are implemented:

1. .DFTAC — the Fermi-Amaldi asymptotic correction with the Tozer-Handy splicing scheme [63].

The subsequent line should contain 4 numbers: DFTIPT, DFTBR1, DFTBR2, DELTAIPT. The first

parameter, DFTIPT, is the ionization potential of the monomer in atomic units. It is recom-

mended to use an experimental value. The parameters DFTBR1 and DFTBR2 are related to

the Tozer-Handy switching function and are distances, in Bragg radii, where the switching

takes place. Tozer et al. recommend values of 3 and 4 [64]. The last parameter, DELTAIPT, is

reserved for the open-shell program and should be set to zero for all closed-shell systems. For

open-shell calculation it is equal to IPβ − IPα, where IPβ are IPα are ionization potentials

for β and α electrons, respectively.

2. .CKS — Calculates TD-DFT integrals for the CKS program. Mandatory if the CKS code is

used. By default, the LDA kernel is used in TD-DFT (see point 3 below).

3. .GGAKER — Use generalized gradient approximation (GGA) instead of LDA in the TD-DFT

kernel. It is significantly slower and is not recommended for large systems. More details and

a discussion of accuracy of the LDA kernel is given in Ref. 14.

89

4. .GRAC — Gradient-regulated asymptotic correction (GRAC) of Ref. 36. The subsequent

line should contain 4 numbers. The first and last one are identical to the Fermi-Amaldi

asymptotic correction (see above) and describe the ionization potential. The second and

third numbers describe switching function parameters. Recomended values are 0.5 and 40,

respectively.

For the DFT calculations, we recommend the standard Dalton grid or one of the denser grids.

For the .THRESH parameter in *HF INPUT, we recommend values of about 10−7.

Since SAPT(DFT) currently works with dalton interface only (and with orca in the density-

fitted version), a few scripts are located in misc/daltutil to help in creating dalton input files.

Script atmol2dalton converts atmol name.intinp input files into name.mol required by dal-

ton, altergeo.awk updates the name.mol geometry, and with createinputs one can construct

name.mol files using basis sets included in the dalton distribution. The usage of the scripts is

explained in the sources. The name.dal files can be taken from the examples.

16.3 Terms beyond second order in the interaction operator

The SAPT(DFT) formalism presented above has been implemented up to second order in the

operator V . For systems with a significant induction component (e.g., the water dimer), some

higher-order terms constitute a large fraction of the total interaction energy. Those terms can be

estimated from the supermolecular HF-SCF approach, with δEHF
int,resp defined in Eq. (5). Since

no such term can be computed from a pure DFT calculation, this term has to be extracted from

a separate SAPT/HF-SCF run. For the calculation of δEHF
int,resp, no expensive SAPT terms are

needed and the scaling is O(N5). Nevertheless, the time of this calculation would be similar to that

of the SAPT(DFT) step since the costly transformation step must be done again. To calculate only

δEHF
int,resp, one should prepare inputs as for the regular SAPT runs (any interface can be used as

long as the geometry and basis sets are the same as in the SAPT(DFT) run), set DELTASCF=T in the

INPUTCOR namelist (cf. Sec. 10.2.3), and use scfcp option for the SAPT script. The δEHF
int,resp value

should then be added to the SAPT(DFT) interaction energy. An example of such a calculation is

in the directory examples/saptdft/H2O-aTZ-MC.

16.4 Density-fitting version of SAPT(DFT)

Density-fitting (DF) method (also known as resolution of identity) has been implemented in

SAPT(DFT) [15, 57]. The resulting approach has the scaling reduced from O(N6) to O(N5).

Substantial savings are also achieved for O(N5) terms. The code with density fitting is also more

memory and disk efficient.

Running DF-SAPT(DFT) requires some modifications of the input files and the creation

90

of a file with an auxiliary basis set. The latter file should be named name.aux and contains

coefficients of the auxiliary basis function for each atom. The format is the following (see also

examples/dfsaptdft):

0 z

charge 0.0 0.0 0.0

coefficients

...

0 z

charge 0.0 0.0 0.0

coefficients

where charge is the charge of an atom and the coefficients are in the turbomole format.

We recommend basis sets from Ref. 61. These basis sets are available in turbomole format at

ftp://ftp.chemie.uni-karlsruhe.de/pub/cbasen/. The number and ordering of the atoms

must be identical to the main basis set used. The quality of the auxiliary basis set is critical for

the accuracy of the DF approach and using auxiliary basis set optimized for a different main basis

would result in poor accuracy.

In the TRN namelist of the nameP.data, one should specify T2EL=F to suppress the stan-

dard two-electron transformation. There is also an additional DF namelist. The only parametr

used in this memlist is MEMTRAN=x keyword, where x is equal to either the number of requested

memory words or zero. In the latter case, the memory is allocated automatically to the lowest

reasonable level. Finally, for running DF-SAPT(DFT), one uses SAPTdf and RunlotDALTONdf

scripts instead of SAPT and RunlotDALTON, respectively. Example inputs and scripts for running

DF-SAPT(DFT) (analogous to non-DF SAPT(DFT) counterparts in examples/saptdft) are lo-

cated in examples/dfsaptdft, along with the pertinent outputs. Notice small DF errors when

comparing the results of DF and non-DF calculations.

For larger auxiliary basis sets, where the linear dependencies start to emerge, the numerical

errors start to amplify and the accuracy of the electrostatic energy is diminished. The problem

has been described in Ref. 57. An effective solution is to perform the inversion of the auxiliary J

matrix with quadruple precision (QP). For compilers supporting QP, one should use this option

to improve the accuracy. The QP code has been tested with ifort and ibm64 platforms. To

compile the QP code, one should include QUADINV=YES in the Compall script. If the compiler does

not support quadruple precision, the compilation will fail. Since QP calculations are more time

consuming than double precision ones, the QP inversion is not turned on by default. To use it,

one needs to also specify quad option for SAPTdf or RunlotDALTONdf scripts. With this option,

after the SAPT(DFT) calculation is complete, an extra calculation of the electrostatic energy is

91

performed. This result replaces the standard double precision results in the summary table. By

comparing the double and quadruple precision values, one can estimate the severity of the quasi-

linear dependence. Additionally, slightly better accuracy of density-fitting of the electrostatic

energy is obtained by using basis sets of Ref. 65 rather than those of Ref. [61]. One can include

such basis set in name-elst.aux and it will be used instead of name.aux in the quadruple precision

calculation of the electrostatic energy. If the file is missing, the standard name.aux will be used.

DF-SAPT(DFT) is also partially parallelized. All calculations performed by the (patched)

dalton program can be run in parallel. Also the calculations of the CKS kernel integrals are

parallelized. The rest of the programs is not parallelized but can be used with parallel dalton.

DF-SAPT(DFT) is limited to up to g functions in the auxiliary basis set. This restriction is

due to the use of gamess integrals. In addition, when using the orca interface, the main basis

set is currently limited to up to f functions (in practice, both these restrictions are equivalent,

because the auxiliary basis set should contain functions with the highest angular momentum L at

least by one larger than the main basis set).

The density-fitting code contains some atomic integrals code from gamess. The gamess

authors requested that the users of density-fitting SAPT(DFT) should cite gamess [22] along

with SAPT.

16.4.1 Using dalton for monomer DFT calculations

The dalton input files required in a DF-SAPT(DFT) run are almost identical with those in

regular SAPT(DFT). However, in name.dal files, CKS keyword should be replaced by CKSAUX.

This keyword works only with the LDA kernel, therefore, GGAKER keyword cannot be used. It

it recommended to include .NOTWO keyword in **INTEGRALS of nameA.dal and nameB.dal when

monomer basis sets are used.

16.4.2 Using orca for monomer DFT calculations

Orca is a quantum chemistry package developed by Neese and coworkers [53]. Its DFT module

has very efficient density-fitting techniques and we recommend this front-end for DF-SAPT(DFT)

calculations, especially in the case of monomers larger than about a dozen of atoms. The Linux,

Windows, and Mac-OS X binaries are available at http://www.thch.uni-bonn.de/tc/orca, free

of charge for academic users (a registration and acquiring a license is necessary). The orca source

files are not needed by DF-SAPT(DFT). Version 2.9.0 or later is required, because earlier versions

contain errors in the GRAC asymptotic correction code and lead to incorrect SAPT results. The

installation of orca can be done before or after the installation of SAPT, as both are completely

independent, but in the latter case one has to edit the file vars.cfg so that the variable ORCADIR

is set to the directory with the orca executables.

92

To use DF-SAPT(DFT) with orca, ISITORCA=T must be set in the TRN namelist of the

nameP.data file. The required monomer and/or dimer orca input files follow the same naming

pattern (ending with .data) as in the case of gaussian (see Sec. 10.1 for the detailed description).

Each such file, besides containing regular orca input in the first section, must end with a special

second section starting with a line containing the string META as its first four characters. This

section always defines the molecular geometry and basis set used in the DFT calculation (even if a

basis set is already defined in the first section, it gets overridden here). Additionally, if one of the

density-fitting DFT algorithms implemented in orca is invoked, the META section can be used

to override the auxiliary (density fitting) basis set defined before or provided by orca as a default.

The example shown below can be used to performed the DFT calculation of the first monomer

within the water dimer, using the full dimer-centered basis set (file nameA.data).

! PBE def2-svp def2-svp/J RI TightSCF bohrs

%method

Grid 4 FinalGrid 5

gracLB true

ip 12.62

end

META

6 0 1

8 0.1088092367800 0.0000000000000 -0.0607755435800 8.0

1 -0.1616146814400 0.0000000000000 1.7553074350400 1.0

1 -1.5793331071000 0.0000000000000 -0.7828987377400 1.0

8 -0.0964834851100 0.0000000000000 6.5351482873200 0.0

1 0.7718678809000 1.4536519623000 7.2451823417100 0.0

1 0.7718678809000 -1.4536519623000 7.2451823417100 0.0

BAS 1

3

0 3

13.0107010000 0.0334854882

1.9622572000 0.2347218706

0.4445379600 0.8137702843

0 1

93

0.1219496200 1.0000000000

1 1

0.8000000000 1.0000000000

BAS 8

6

0 5

2266.1767785000 -0.0053893504

340.8701019100 -0.0402347214

77.3631351670 -0.1800818421

21.4796449400 -0.4682885766

6.6589433124 -0.4469261716

0 1

0.8097597567 1.0000000000

0 1

0.2553077223 1.0000000000

1 3

17.7215043170 0.0626302488

3.8635505440 0.3333113849

1.0480920883 0.7414863830

1 1

0.2764154441 1.0000000000

2 1

1.2000000000 1.0000000000

The first line declares the use of the PBE functional, def2-SVP as the main basis set and

def2-SVP/J as the Coulomb-fitting auxiliary basis set, as well as tight convergence criteria for

the SCF procedure and the use of bohr units in the geometry section (see the orca manual for

details). The gracLB true setting is essential for any SAPT(DFT) calculation as it turns on the

GRAC asymptotic correction of the exchange-correlation functional (the other type of asymptotic

correction, Fermi-Amaldi, is curently not implemented in orca). The correction requires the

ionization potential of the molecule, which must be given in electron-volt units (as opposed to the

hartree units used in dalton). The META section starts with a line containing three integers:

number of atoms (including ghosts), total charge and multiplicity. For each atom, there is a line

containing: atomic number, x, y, and z Cartesian coordinates, and atomic charge (zero for ghost

atoms). The main basis set for each element is defined in a block (separated by exactly one

94

empty line from previous blocks) starting with a line containing the string BAS as the first three

characters and the atomic number. The next line of the BAS block gives the total number of

contracted orbitals. For each such orbital, there is a sub-block starting with two integers (angular

momentum and number of primitive functions) and then containing, in separates lines, pairs of

exponential Gaussian parameters and contraction coefficients. The order of elements (BAS blocks)

is arbitrary but all elements contained in the geometry specification must have an explicitly defined

basis set (in particular, it can be specified as empty by setting the number of contracted orbitals

to zero), even if this definition is redundant with respect to the basis set keyword in the general

orca input. This requirement stems from the fact that the META section information is used

not only by orca but also by a separate one-electron integral module, based on routines extracted

from the gamess(us) code. Currently, only Gaussian basis functions with angular momenta up

to f can be used.

The def2-SVP/J auxiliary basis set requested in the orca input could be replaced by another

basis set, by using in the META section additional blocks, with the keyword BAS replaced by

AUX. The order of these blocks is also arbitrary but no empty AUX blocks are allowed (this is

an orca restriction). Note also that the RI-J Coulomb fitting (requested by the RI keyword in

our example) can only be used with pure density functionals. For hybrid functionals, orca has

two other methods known as RIJCOSX and RI-JK, the latter requiring “/JK” (rather than “/J”)

auxiliary basis sets. All these DFT fitting basis sets must not be confused with auxiliary basis

sets required by DF-SAPT(DFT) and defined in the file name.aux, which are designed to fit the

correlation effects and must be provided by the user, as in the case of dalton (such basis sets are

actually used in orca at the MP2 level and denoted by “/C”).

The orca route in DF-SAPT(DFT) requires a preparation of one input file not occuring in

the dalton route, called kernel.data. This file contains just two lines of the form

n_rad n_aug mem

ksi

where n rad and n aug are the numbers of radial and angular grid points around each atom in the

quadrature of the CKS kernel integral. In general, much looser grids can be used here compared

to the main DFT grids without any significant loss of accuracy. Typically, the values of n rad =

50 and n ang = 50 lead to completely negligible errors, while values of n rad = 30 and n ang =

26 introduce errors in the dispersion energy of just a few tenths of one percent. Parameter mem

specifies the maximum amount of memory (in 8-byte words) to be used in the kernel generation.

For larger systems, limiting memory use requires slower multipass calculations. The parameter

ksi is the fraction of exact exchange of the employed functional (for instance, 0.25 for PBE0). As

the last difference compared to the dalton route, the script dfSAPT.orca rather than dfSAPT is

95

used.

References

[1] B. Jeziorski, R. Moszyński, and K. Szalewicz, Chem. Rev. 94, 1887 (1994).

[2] K. Szalewicz and B. Jeziorski, in Molecular Interactions — from van der Waals to strongly

bound complexes, edited by S. Scheiner (Wiley, New York, 1997), p. 3.

[3] B. Jeziorski and K. Szalewicz, in Encyclopedia of Computational Chemistry, edited by P. von

Ragué Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and

P. R. Schreiner (Wiley, Chichester, UK, 1998), vol. 2, pp. 1376–1398.

[4] B. Jeziorski and K. Szalewicz, in Handbook of Molecular Physics and Quantum Chemistry,

edited by S. Wilson (Wiley, 2003), vol. 3, part 2, chap. 9, pp. 232–279.

[5] K. Szalewicz, K. Patkowski, and B. Jeziorski, in Intermolecular Forces and Clusters, edited

by D. J. Wales (Springer, 2005), vol. 116 of Structure and Bonding, pp. 43–117.

[6] K. Szalewicz, R. Bukowski, and B. Jeziorski, in Theory and Applications of Computational

Chemistry: The First 40 Years. A Volume of Technical and Historical Perspectives, edited

by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005),

chap. 33, p. 919.

[7] K. Szalewicz, Wiley Interdisc. Rev.–Comp. Mol. Sci. 2, 254 (2012).

[8] B. Jeziorski, R. Moszyński, A. Ratkiewicz, S. Rybak, K. Szalewicz, and H. L. Williams, in

Methods and Techniques in Computational Chemistry: METECC-94, edited by E. Clementi

(STEF, Cagliari, 1993), vol. B, p. 79.

[9] R. Bukowski, W. Cencek, K. Patkowski, P. Jankowski, M. Jeziorska, M. Kolaski, and K. Sza-

lewicz, Mol. Phys. 104, 2241 (2006).

[10] H. L. Williams and C. F. Chabalowski, J. Phys. Chem. A 105, 646 (2001).

[11] A. J. Misquitta and K. Szalewicz, Chem. Phys. Lett. 357, 301 (2002).

[12] A. J. Misquitta, B. Jeziorski, and K. Szalewicz, Phys. Rev. Lett. 91, 033201 (2003).

[13] A. J. Misquitta and K. Szalewicz, J. Chem. Phys. 122, 214109 (2005).

[14] A. J. Misquitta, R. Podeszwa, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 123, 214103

(2005).

96

[15] R. Bukowski, R. Podeszwa, and K. Szalewicz, Chem. Phys. Lett. 414, 111 (2005).

[16] R. Podeszwa, R. Bukowski, and K. Szalewicz, J. Phys. Chem. A 110, 10345 (2006).

[17] V. Lotrich and K. Szalewicz, J. Chem. Phys. 106, 9668 (1997).

[18] R. Moszyński, P. Wormer, B. Jeziorski, and A. van der Avoird, J. Chem. Phys. 103, 8058

(1995), erratum: 107, 672 (1997).

[19] V. F. Lotrich and K. Szalewicz, J. Chem. Phys. 112, 112 (2000).

[20] R. Podeszwa and K. Szalewicz, J. Chem. Phys. 126, 194101 (2007).

[21] P. S. Żuchowski, R. Podeszwa, R. Moszyński, B. Jeziorski, and K. Szalewicz, J. Chem. Phys.

129, 084101 (2008).

[22] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen,

S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, et al., J. Comput. Chem. 14, 1347 (1993).

[23] V. Saunders and M. Guest, ATMOL Program Package, SERC Daresbury Laboratory, Dares-

bury, Great Britain.

[24] T. Korona, R. Moszyński, and B. Jeziorski, Mol. Phys. 100, 1723 (2002).

[25] T. Korona and B. Jeziorski, J. Chem. Phys. 125, 184109 (2006).

[26] T. Korona, M. Przybytek, and B. Jeziorski, Mol. Phys. 104, 2303 (2006).

[27] T. Korona, Phys. Chem. Chem. Phys. 9, 6004 (2007).

[28] T. Korona and B. Jeziorski, J. Chem. Phys. 128, 144107 (2008).

[29] T. Korona, J. Chem. Phys. 128, 224104 (2008).

[30] T. Korona, Phys. Chem. Chem. Phys. 10, 6509 (2008).

[31] T. Korona, J. Chem. Theory Comput. 5, 2663 (2009).

[32] R. Podeszwa, W. Cencek, and K. Szalewicz, J. Chem. Theory Comput. 8, 1963 (2012).

[33] P. E. S. Wormer and H. Hettema, POLCOR package, University of Nijmegen, 1992.

[34] P. E. S. Wormer and H. Hettema, J. Chem. Phys. 97, 5592 (1992).

[35] K. Patkowski, K. Szalewicz, and B. Jeziorski, Theor. Chem. Acc. 127, 211 (2010).

[36] M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys.

114, 652 (2001).

97

[37] dalton, a molecular electronic structure program, Release 2.0 (2005), see

http://www.kjemi.uio.no/software/dalton/dalton.html.

[38] K. Patkowski, K. Szalewicz, and B. Jeziorski, J. Chem. Phys. 125, 154107 (2006).

[39] H. L. Williams, K. Szalewicz, R. Moszyński, and B. Jeziorski, J. Chem. Phys. 103, 4586

(1995).

[40] K. Patkowski and K. Szalewicz, J. Chem. Phys. 127, 164103 (2007).

[41] molpro: a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, version

2002.6, R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan,

A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T. Korona, R. Lindh, A. W.

Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R.

Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteins-

son, and H.-J. Werner.

[42] M. J. Frisch et al., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.

[43] P. Pulay, J. Comp. Chem. 3, 556 (1982).

[44] J. O. Hirschfelder, Chem. Phys. Lett. 1, 325 (1967).

[45] R. J. Wheatley, unpublished.

[46] R. Moszyński, B. Jeziorski, S. Rybak, K. Szalewicz, and H. L. Williams, J. Chem. Phys. 100,

5080 (1994).

[47] M. Jeziorska, B. Jeziorski, and J. Cizek, Int. J. Quantum Chem. 32, 149 (1987).

[48] S. Rybak, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 95, 6579 (1991).

[49] R. Moszyński, B. Jeziorski, A. Ratkiewicz, and S. Rybak, J. Chem. Phys. 99, 8856 (1993).

[50] E. M. Mas, K. Szalewicz, R. Bukowski, and B. Jeziorski, J. Chem. Phys. 107, 4207 (1997).

[51] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S. A. Kucharski, H. L.

Williams, and B. S. Rice, J. Chem. Phys. 110, 3785 (1999).

[52] CADPAC: The Cambridge Analytic Derivatives Package Issue 6, Cambridge, 1995. A suite of

quantum chemistry programs developed by R. D. Amos with contributions from I. L. Alberts

et al.

[53] F. Neese, ORCA, An Ab Initio, DFT and Semiempirical electronic structure package, with

contributions from U. Becker, D. Ganyushin, A. Hansen, D. Liakos, C. Kollmar, S. Kossmann,

T. Petrenko, C. Reimann, C. Riplinger, K. Sivalingam, B. Wezisla, and F. Wennmohs.

98

[54] H. L. Williams, E. M. Mas, K. Szalewicz, and B. Jeziorski, J. Chem. Phys. 103, 7374 (1995).

[55] A. J. Stone, The Theory of Intermolecular Forces (Clarendon Press, Oxford, 1996), p. 8.

[56] O. Akin-Ojo, R. Bukowski, and K. Szalewicz, J. Chem. Phys. 119, 8379 (2003).

[57] R. Podeszwa, R. Bukowski, and K. Szalewicz, J. Chem. Theory Comput. 2, 400 (2006).

[58] V. F. Lotrich, H. L. Williams, K. Szalewicz, B. Jeziorski, R. Moszynski, P. E. S. Wormer, and

A. van der Avoird, J. Chem. Phys. 103, 6076 (1995).

[59] K. A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, J. Chem. Phys. 119, 11113 (2003).

[60] B. I. Dunlap, Phys. Chem. Chem. Phys. 2, 2113 (2000).

[61] F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).

[62] A. Hesselmann, G. Jansen, and M. Schütz, J. Chem. Phys. 122, 014103 (2005).

[63] D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998).

[64] D. J. Tozer, R. D. Amos, N. C. Handy, B. O. Roos, and L. Serrano-Andrés, Mol. Phys. 97,

859 (1999).

[65] F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).

[66] A. J. Misquitta, Ph.D. thesis, University of Delaware (2004).

99

A Porting sapt2012 to different platforms

If one wants to port the SAPT codes to an architecture that is not supported in the official release,

there are three main fragments of the codes that are strongly architecture-dependent and should

be taken care of. Note that the issues described below have to be resolved for each program (e.g.,

tran, cc, and sapt.x) separately, as the programs do not currently use any common library with

the system-dependent routines.

1. The memory allocation routines. Each of the programs in the SAPT suite uses a single

REAL∗8 array which is allocated when this program starts. All matrices, both real and

integer, used by the program are then defined within the allocated core array so that no

further calls to any architecture-dependent allocation routines are needed (the programs

assume that the integer variables are 4-byte by default). Note that whereas the CC program

automatically determines the core size needed and allocates that much memory, all other

programs need to have the requested core size declared in an appropriate namelist unless the

default value of 40 000 000 words is sufficient (see Sec. 10.2 for details). Currently, the SAPT

codes use the following mechanisms to allocate the core arrays:

• The Fortran 90 ALLOCATE routine for SUN, HPUX, and Linux with the PGF90 or Intel

compilers,

• The Fortran malloc intrinsic for SGI and Linux with the PGF77 compiler,

• A C function memget supplied by SAPT for the G77 compiler under Linux and for IBM

AIX.

For a new platform, a proper way of handling memory allocation must be chosen. The

Fortran 90 ALLOCATE is recommended where available.

2. The timing routines. The routines timit in tran/main.F, second in cc/whole.F, timing

in e2d/ccbits.F, and timt in sapt/m.F return time (in seconds) elapsed since some fixed

moment and are called throughout the program. These routines call system timing routines

which are architecture-dependent:

• the etime routine for SUN and HPUX,

• the mclock routine for SGI, IBM, and Linux with Portland or Intel compilers (note that

this one returns time in hundredths of seconds),

• the second routine for Linux and the G77 compiler.

Again, a proper system timing routine needs to be chosen for a new architecture.

100

3. The packing/unpacking routines which manipulate the integral indices. As the current basis

set size limit for SAPT is 1023 functions, 40 bits are needed to store the four orbital in-

dices for a transformed two-electron integral. These indices are stored on disk packed into

one 4-byte integer and one 1-byte integer, and the routines that take care of the integral

packing and unpacking are located in tran/unpack.F, cc/unpack.F, e2d/ccbits.F, and

sapt/unpack10.F. These routines have the following functions:

• unpack10: (INTEGER∗4,INTEGER∗1)→4 orbital indices

• pack10: 4 orbital indices→(INTEGER∗4,INTEGER∗1)

• unpack10a: (INTEGER∗4,INTEGER∗1)→2 pair indices

• pack10a: 2 pair indices→(INTEGER∗4,INTEGER∗1)

• spltindx: INTEGER∗8→(INTEGER∗4,INTEGER∗1)

• joinindx: (INTEGER∗4,INTEGER∗1)→INTEGER∗8

The packing/unpacking routines are implemented using the intrinsic functions for bitwise

operations: ishft, ibits, and iand. The efficiency of packing and unpacking influences

the total calculation time quite notably, and the implementation through bitwise opera-

tions has been found to be optimal for several architectures. Note, however, that subtle

differences in the syntax of these intrinsics exist for different architectures and some of the

packing/unpacking routines are platform-dependent. Apart from the set of routines described

above, the tran program needs another set of unpacking procedures to access two-electron

integral indices written by various integral and SCF front-ends, including gaussian, gamess,

and dalton (see the tran/unpack.F file for details). These routines are highly architecture-

dependent since the structure of the integral indices depends on the endianness (big-endian

or little-endian) of the machine (for gaussian) and on the options selected when compiling

gaussian or gamess [see Sec. 8.1 (gaussian) and Sec. 9.4 (gamess) for more on this sub-

ject]. When porting to a new architecture, one must make sure that both the internal SAPT

packing/unpacking routines listed above and the routines used to unpack integral indices

written by a particular front-end program work correctly.

B Integral/SCF interfacing

The SAPT group of codes can be interfaced with virtually any integral/SCF program. A short

description of the elements of the interfacing process is presented here. The existing interfaces can

be used as a template for the creation of new interfaces. A short listing of what the tran program

needs follows.

101

• One-electron integrals.

1. Overlap

2. Hamiltonian

3. Kinetic

4. Potential

• Two-electron integrals.

• SCF eigenvalues.

• SCF eigenvectors.

• Information about the run.

1. Basis set size.

2. Number of occupied orbitals.

3. Number of virtual orbitals.

4. Charge on each atom.

5. Geometry of the monomers.

Most of the information is read by a small interface program from the integral/SCF program

files and then rewritten into a simple form that the next stages of the process can easily understand.

Modifications to the transformation program must be made to read in the two-electron integrals (in

trans.f, atmtr.f, and trnn.f modules). Notice also the common block SCFPACK which contains

logical variables indicating which integral/SCF program is used. This common block must be

changed throughout the program to include a logical variable for any new integral/SCF program.

Finally, in the driver subroutine trans.F, make sure that there is a correct setting of the logical

input record length for the new integral/SCF program.

C List of subroutines

This appendix contains the list of sapt2012 subroutines with a short description of their functions.

102

Table 3: List of subroutines - tran.

Module Subroutine Comments
trans.F metatrans Allocate memory and call main driver.
trans.F trans Main driver routine.
trans.F mkoffset Prepare auxiliary arrays for MC+BS.
trans.F lvalue Number of orbitals for a given shell.
trans.F cpvc Copy eigenvectors for a MC+BS transformation.
trans.F whichint Flag integral types needed.
trans.F pread Read gamess integral file.
trans.F pread1–pread2 Variants of pread.
atmtr.F atmtr Driver for the four-virtual transformation.
atmtr.F index4 Perform four-virtual transformation.
atmtr.F sort1 First sort for the four-virtual transformation.
atmtr.F wrda Write intermediates to a direct access file.
atmtr.F calc1 Transform first two indices for four-virtual integrals.
atmtr.F sort2 Second sort for the four-virtual transformation.
atmtr.F calc2 Transform last two indices for four-virtual integrals.
atmtr.F peswrec Write final transformed integrals to file.
atmtr.F writem Print matrix for debugging.
atmtr.F chksum1 Check control sum for debugging.
atmtr.F get cadp Manipulate cadpac integral buffer.
atmtr.F find cadp Read cadpac integral buffer.
io.F daopen Open direct access files.
io.F dawrit Write to direct access files.
io.F daread Read from direct access files.
io.F daclos Close direct access files.
io.F r8zero Zero a REAL∗8 array indexed by an INTEGER∗4 variable.
io.F r8zero8 Zero a REAL∗8 array indexed by an INTEGER∗8 variable.
io.F i4zero Zero an INTEGER∗4 array.
io.F putrec Put a record on disk.
io.F ropen Open input file.
io.F seopen Open other sequential files.
io.F closeall Close all files.
io.F seqopn Open gamess integral file.
io.F nr2asc Integer→string conversion for constructing filenames.
io.F inittwoeldalt Initialize dalton integral file.
io.F readtwoel Read integrals from dalton.
io.F findlab Find dalton labels.
io.F readmolpro Read integrals from molpro.
main.F timit Read elapsed time.
main.F prsq Print square matrix.
main.F rdvc Read eigenvectors.
main.F ifa Initialize table lookup values.
main.F flag1 Choose either eigenvectors
main.F flag2 of monomer A or B.
main.F alarmx Abnormal ending.

103

Table 3: List of subroutines - tran (part 2).

Module Subroutine Comments
memory.F memory Partition core memory.
mono.F chkitype Analyze indices for a MC+BS transformation.
mono.F permut Perform index permutation.
mono.F sameinds Compare index quadruplets.
tonel.F onel One electron transformation driver.
tonel.F tr1e Actual transformation of one-electron integrals.
tran.F tran Driver for in-core two-electron transformation.
tran.F igetlda Get dimension of the eigenvector matrix.
tranw.F tranw Driver for out-of-core two-electron transformation.
trnn.F intowp Calculate space for an integer array.
trnn.F inread Read integrals from gaussian.
trnn.F labscf90 Unpack record label for gaussian90 and later.
trnn.F unpacka Unpack aces indices.
trnn.F seeka Search for aces labels.
trnn.F namemain Get names of atmol1024 mainfile parts.
trnn.F atmini Initialize atmol two-electron integral file.
trnn.F atmininew Initialize atmol1024 two-electron integral file.
trnn.F tr1 First step of in-core and out-of-core transformation.
trnn.F canon Return indices in canonical order.
trnn.F tr2 Second step of in-core transformation.
trnn.F loop2lims Set loop limits for tr2 and tr2w.
trnn.F tr3 Third step of in-core transformation.
trnn.F loop3lims Set loop limits for tr3 and tr4w.
trnnw.F tr2w Second step of out-of-core transformation.
trnnw.F tr3w Third step of out-of-core transformation.
trnnw.F tr4w Fourth step of out-of-core transformation.
trnnw.F looptr3w Set loop limits for tr3w.
unpack.F packg Pack four 8-bit numbers into a 32-bit integer.
unpack.F unpackg Do the reverse of packg.
unpack.F packg64 Pack four 16-bit numbers into two 32-bit integers.
unpack.F unpackg64 Do the reverse of packg64.
unpack.F unpack64to32 Unpack a 64-bit integer into two 32-bit ones.
unpack.F unpack10 Unpack an (INTEGER∗4,INTEGER∗1) pair into four indices.
unpack.F unpack10a Unpack an (INTEGER∗4,INTEGER∗1) pair into two indices.
unpack.F pack10 Do the reverse of unpack10.
unpack.F pack10a Do the reverse of unpack10a.
unpack.F spltindx Split an index into an (INTEGER∗4,INTEGER∗1) pair.
unpack.F itobyte Integer→byte conversion.
unpack.F unpckgms Unpack gamess integral labels.
unpack.F unpckdlt Unpack dalton integral labels.

104

Table 4: List of subroutines - cca.

Module Subroutine Comments

mcc.F mccsd Main driver.
mcc.F mono Perform CC for a given monomer.
ccio.F getamp, getampn Get amplitudes from disk (obsolete, replaced by newget).
ccio.F putamp Write amplitudes to disk (obsolete, replaced by newput).
ccio.F ampinf, mapda Auxiliary routines for getamp and putamp (obsolete).
ccio.F getbuf Read one packet (of the size ov2) of ovvv integrals.
ccio.F readen Read orbital energies.
ccio.F lrecl Adjust buffer sizes for sorting 2el integrals.
ccio.F save Omit small values in an array.
ccio.F desym1 <oo|vv> array: symmetry unique elements → full
ccio.F desym2 <oo|oo> array: symmetry unique elements → full
ccio.F desym3 <oo|ov> array: symmetry unique elements → full
ccio.F getampa Add disk amplitudes to array (obsolete, replaced by newgeta).
ccm1.F izero Zero an INTEGER∗4 array.
ccm1.F r8zero Zero a REAL∗8 array indexed by an INTEGER∗4 variable.
ccm1.F r8zero8 Zero a REAL∗8 array indexed by an INTEGER∗8 variable.
ccm1.F xdata Initialize some arrays.
ccm1.F i8zero Zero an INTEGER∗8 array.
ccm2.F result Print final energies.
data.F zdata Get user input data.
data.F howmany Determine number of iterations.
data.F params Initialize some parameters depending on o and v.
data.F getinf Read the numbers of occupied and virtual orbitals (o and v).
diis.F diis drv Driver for DIIS.
diis.F diis Perform DIIS extrapolation after an iteration.
diis.F writemat Write a matrix to disk.
diis.F readmat Read a matrix from disk.
diis.F closediis Cleanup of DIIS stuff (close files).
double.F d0a–d2a Calculates t2 amplitude (CCSD).
double.F d1at2b Compute the most expensive (’ladder’) diagram of t2 amplitude

(obsolete, replaced by d1prep and daxpys).
double.F energy Calculate CC energy after each iteration.
double.F vda Calculate single terms contributing to double amplitude.
double.F ampcnv Convergence check for amplitudes.
int1.F iq0a Calculate τ intermediate.
int1.F iq1a–iq6a Calculate two-index χ intermediates and χ(i, j, k, l).
int1.F fi0a,fi2a,fi3a Calculate f intermediates.
int2.F iq7a–iq9a Calculate four-index χ intermediates.
mem.F ccmem Memory partitioning.
mpi.F mpion, mpioff Initialize and close MPI environment
mpi.F mpiar1, mpiar Wrappers to MPI ALL REDUCE routine.
mpi.F dist Assign task numbers to all processes.
mpi.F sy2124 x(i, j, k, l)← 2x(i, j, k, l)− x(i, l, k, j).
mpi.F de2124 Do the reverse of sy2124.
mpi.F nr2asc Integer→string conversion for constructing filenames.
mpi.F wcread, wcwrit Simplified versions of newget and newput.
mpi.F newput Write amplitudes to disk.
mpi.F newget Read amplitudes from disk.
mpi.F newgeta Add amplitudes from disk to array.
mpi.F inwc14 x(i, j, k, l)← x(l, j, k, i).

105

Table 4: List of subroutines - cc (continued)a.

Module Subroutine Comments

mpi.F iveccp Copy an integer vector.
mpi.F ioset Establish I/O channel numbers.
mpi.F opens Open integral, amplitude, and intermediate files.
mpi.F estim Calculate core size needed for CC.
newr.F symtr x(i, a, j, b)← x(i, a, j, b) + x(j, b, i, a).
newr.F vecmul Multiply vector by a constant.
newr.F matmulsk Wrapper to DGEMM matrix multiplier.
newr.F matmula Perform C ← A ·B for one column of C.
newr.F symt21 x(i, j, k, l)← 2x(i, j, k, l) + x(i′, j′, k′, l′) (two indices switched).
newr.F desm21 Do the reverse of symt21.
newr.F insi12 x(i, j, k)← x(j, i, k).
newr.F insi13 x(i, j, k)← x(k, j, i).
newr.F insi23 x(i, j, k)← x(i, k, j).
newr.F insitu Permute two indices of a 4-dimensional array.
newr.F transq Transpose a square array.
newr.F veccop, vecadd Copy (add) one vector to another.
newr.F tranmd permute two indices (same size) of a 4-dimensional array.
newr.F trt1 Transpose a rectangular array.
newr.F vadd21 x(i, a, j, b)← 2x(i, a, j, b)− y(i, j, a, b).
newr.F trnsp1 x(a, i, b, j)← y(i, a, j, b).
newr.F trnsp2 x(i, a, j, k)← x(k, j, i, a).
newr.F filli Fill an INTEGER∗4 array with natural numbers.
newr.F wt2 Calculate second-order energy.
newr.F vminus Multiply a vector by −1.
rpamono.F RPA stuff (currently not functional).
single.F sda Calculate single amplitude terms depending on τ intermediates.
single.F vsta Calculate single amplitude terms depending on χ′ intermediates.
single.F ssa Calculate single amplitude terms depending on τ intermediates.
single.F t1ft2 Calculate single ampl. terms depending on integrals and singles.
tpdrvn.F tpdrvn Loop over vvvv integrals in the ’ladder’ diagram.
tpdrvn.F d1prep Store indices involved in the ’ladder’ diagram.
tpdrvn.F daxpys Perform the ’ladder’ diagram for one vvvv integral batch.
tpdrvn.F fort daxpy Explicitly calculate DAXPY (usually faster than BLAS1).
tpdrvn.F sort2 Sort indices from d1prep to optimize cache use.
tpdrvn.F resort Re-sort four-virtual integrals for faster access.
tpdrvn.F vvvvsort4 Evaluate four-virtual diagram.
tpdrvn.F sort4v Sort four-virtual integrals with 2-fold desymmetrization.
tpdrvn.F wrtbu Write sorted integrals to disk.
tpdrvn.F getbufv4mod Read sorted integrals from disk.
tpdrvn.F getbufseq Read re-sorted integrals from disk.
triple.F totsamp, totamp Sum single and double amplitudes.
unpack.F unpack10 Unpack an (INTEGER∗4,INTEGER∗1) pair into four indices.
whole.F errorx,errorx8 Error exit from program.
whole.F get2el Get integrals from disk (obsolete, replaced by newget).
whole.F timing Gather and print timing info from subroutines.
whole.F nmfind Locate a subroutine in a list.
whole.F indxsm Calculate an index in a triangular matrix.
whole.F bdaxpy,bdnrm2 Wrappers to BLAS routines DAXPY and DNRM2.
whole.F other Auxiliary routines for get2el (obsolete).

aA good reference for this program is the paper by M. Urban, I. Černušák, V. Kellö, and J. Noga in Methods in
Computational Chemistry edited by S. Wilson, Plenum Press, 1987, page 117.

106

Table 5: Comments on selected subroutines - sapt.x (part 1).

Module Subroutine Comments
m.F driver Main SAPT driver.
m.F theta Calculate Θ intermediate for monomer A.
m.F thetb Same as theta for monomer B.
m.F veta Calculate v intermediate for monomer A.
m.F vetb Same as veta for monomer B.
m.F omaov Calculate Ω (occ,vir) intermediate for monomer A.
m.F ombov Same as omaov for monomer B.
m.F tsa Evaluate singles amplitudes for monomer A.
m.F tsb As tsa for monomer B.
m.F copy Copy vector A to vector B.
m.F rbfov Read into core 1el integrals of (occ,vir) type.
m.F timt Architecture-dependent function to read elapsed time.
m.F omaoo Computes Ω A (occ,occ) intermediate for A.
m.F omavv (vir,vir) for monomer A.
m.F omboo (occ,occ) for monomer B.
m.F ombvv (vir,vir) for monomer B.
m.F rbfoo Read into core 1-el integrals and store (occ,occ).
m.F rbfvv . . . and store (vir,vir).
m.F save Omit small values in a table.
m.F nr2asc Integer→string conversion for constructing filenames.
b.F report Print a table with subroutine timings.
b.F izero Zero an integer array.
b.F r8zerobig Zero a REAL∗8 array indexed by an INTEGER∗8 variable.
b.F r8zero Zero a REAL∗8 array indexed by an INTEGER∗4 variable.
b.F saptbd Initialization block data for the program.
b.F alarm0 Error exit with an INTEGER∗8 message code.
b.F alarm0a Error exit with an INTEGER∗4 message code.
b.F ienter Keep track of subroutines entered for timing purposes.
b.F ndx0 Indexing function with entries ndxnn for various 2el. integrals.
b.F readin Read 2el integrals, special version for E(10).
b.F readon Read 1el integrals, store only (occ,occ).
b.F readov Read 1el integrals of a given type.
b.F readbf Read 2el integrals, most general version.
b.F readvv Read 1el integrals divided by number of electrons.
b.F readen Read HF orbital energies from disk.
b.F getbuf Get sorted 2el integral buffer from disk.
b.F wrtbu Write sorted 2el buffer.
b.F iexit Keep track of subroutines exited for timing purposes.
b.F lrecl Adjust buffer sizes for sorting 2el integrals.
b.F rbfab Read first-order dispersion amplitudes.
b.F getampr11 Reads amplitudes written by the e2disp program.
b.F getr11 Opens an appropriate file and calls getampr11.
chf.F setchf Coupled Hartree-Fock routine driver.
chf.F solvea Linear eq. solver for monomer A.
chf.F solvea ooc Out-of-core version of the above.
chf.F solveb Linear eq. solver for monomer B.
chf.F solveb ooc Out-of-core version of the above.
chf.F quit Exit routine if no convergence.
chf.F putchf Write computed CHF coefficients onto disk.
chf.F getchf Get computed CHF coefficients back.

107

Table 5: Comments on selected subroutines - sapt.x (part 2).

Module Subroutine Comments
getamp.F getamp Retrieve monomer CC amplitudes from disk.
getamp.F gampoovv Like getamp but with permuted indices.
getamp.F gampvovo ”
getamp.F gampvvoo ”
getamp.F newget Actual reading of amplitudes.
getamp.F newoovv Like newget but with permuted indices.
getamp.F newvovo ”
getamp.F newvvoo ”
getamp.F ampopen Open files with monomer CC amplitudes.
memreq.F memreq Calculate memory needed for different corrections.
unpack10.F unpack10 Unpack an (INTEGER∗4,INTEGER∗1) pair into four indices.
unpack10.F pack10 Do the reverse of unpack10.
unpack10.F unpack10a Unpack an (INTEGER∗4,INTEGER∗1) pair into two indices.
unpack10.F pack10a Do the reverse of unpack10a.
unpack10.F spltindx Split an index into an (INTEGER∗4,INTEGER∗1) pair.
unpack10.F joinindx Do the reverse of spltindx.

e1.F first E
(10)
elst and E

(10)
exch driver.

e1.F delta Special form of Kronecker delta function.
e1.F inv Calculate inverse matrix.
e1.F pmat Prepare the P matrix for inversion.

e1xs2.F e1xs2 Driver routine for E
(10)
exch(S2).

e1xs2.F e1s2k Actual calculation of E
(10)
exch(S2).

e12.F srt12 E
(120)
elst and E

(102)
elst driver routine.

e12.F sort12 Presort of 2el integrals for E
(12)
elst .

e12.F e120pl Compute E
(120)
elst .

e12.F e102pl Compute E
(102)
elst .

e13.F e13 A wrapper for the E
(13)
elst driver.

e13.F e13drv Actual driver for E
(130)
elst and E

(103)
elst .

e13.F e13pl1–e13pl7 Compute components of E
(13)
elst .

e13.F komaov Compute (occ,vir) electrostatic potential for A–different version.
e13.F kombov As komaov but for monomer B.
e13.F komaoo As komaov but form (occ,occ) matrix.
e13.F komavv As komaov but form (vir,vir) matrix.
e13.F komboo As komaoo but for monomer B.
e13.F kombvv As komavv but for monomer B.

e11x.F e11ex E
(11)
exch driver.

e11x.F e11x Actual calculation of E
(11)
exch.

e11x.F transpov Transpose the overlap matrix.

e11x.F e11x1–e11x4 Compute components of E
(11)
exch.

e1x.F e111e E
(111)
exch driver.

e1x.F e111exh Calculate E
(111)
exch .

e1x.F mkg24 Construct g intermediate.
e1x.F readbfshrink Read two-electron integrals omitting the core ones.

108

Table 5: Comments on selected subroutines - sapt.x (part 3).

Module Subroutine Comments

e12x.F e12ex Main E
(120)
exch and E

(102)
exch driver.

e12x.F k2f1 Driver for the K2
f part of E

(120)
exch .

e12x.F k2fa Calculate the K2
f part of E

(120)
exch .

e12x.F k2f2 Driver for the K2
f part of E

(102)
exch .

e12x.F k2fb Calculate the K2
f part of E

(102)
exch .

e12x.F add1a Prepare the one-electron component for k2fa.
e12x.F add2a Prepare the one-electron component for k2fb.

k11u.F k11u Driver for the K11
u part of E

(12)
exch.

k11u.F k11u1–k11u32 Calculate components of K11
u .

k11u.F writemat Write a matrix to a temporary file.
k11u.F getmat Read a matrix from a temporary file.
k11u.F getmat2 Another version of getmat.
e2.F e02 MBPT2 monomer energies calculation.

e2.F e200d E
(20)
disp driver.

e2.F e200disp Calculate E
(20)
disp .

e2.F eind E
(20)
ind driver.

e2.F eindab Calculate E
(20)
ind .

e2.F e21 E
(21)
disp driver.

e2.F prep210 Prepare matrices for E
(210)
disp .

e2.F prep201 Prepare matrices for E
(201)
disp .

e2.F e21d Actual calculation of E
(210)
disp or E

(201)
disp .

e2.F e21d1–e21d3 Compute components of E
(21)
disp .

e4i.F e22i0 E
(22)
ind driver.

e4i.F e22its Compute triple excitation part of E
(22)
ind .

e4i.F e22is Compute single excitation part of E
(22)
ind .

e4i.F e22irl Compute the ring-ladder diagram of E
(22)
ind .

e4i.F e22ib Compute the remainder of E
(22)
ind .

e4.F e22d0 E
(22)
disp driver.

e4.F srt220 Sort three-virtual integrals for E
(220)
disp .

e4.F srt202 As above but for E
(202)
disp .

e4.F e211a Calculate the first part of E
(211)
disp .

e4.F e211b Calculate the remaining terms in E
(211)
disp .

e4.F e22ds Compute E
(220)
disp (S) or E

(202)
disp (S).

e4.F e22dr The ring contribution to E
(220)
disp (D)/E

(202)
disp (D).

e4.F e22rl The ring-ladder contribution to E
(220)
disp (D)/E

(202)
disp (D).

e4.F e22da First part of E
(220)
disp (Q)/E

(202)
disp (Q).

e4.F e22db Second part of E
(220)
disp (Q)/E

(202)
disp (Q).

e4.F e220dso Compute singles term for E
(220)
disp (CCD+ST(CCD)).

e4.F e202dso Compute singles term for E
(202)
disp (CCD+ST(CCD)).

e4.F prntime1 Print extended timings for E
(22)
disp .

109

Table 5: Comments on selected subroutines - sapt.x (part 4).

Module Subroutine Comments

e22t94.F e22t94 E
(220)
disp (T)/E

(202)
disp (T) driver.

e22t94.F eq98 Outer loops for E
(22)
disp(T).

e22t94.F eq99 Inner loops for E
(22)
disp(T).

e22t94.F invndx Calculate orbital indices from the amplitude index.

e22t94.F srt22t94 Sort three-virtual integrals for E
(22)
disp(T).

e22t94.F getvvb Special version of b.F/getbuf.
e22t94.F getvva ”
e22t94.F rbfabx Special version of b.F/rbfab.
e22t94.F pack2 Pack two integers into one INTEGER∗4 word.
e22t94.F unpack2 Undo pack2.
e22t94.F getr11x Special version of b.F/getr11.
e22t94.F getampx Special version of b.F/getampr11.

e2ex.F e2ex Main driver for E
(20)
exch.

e2ex.F exia Driver for E
(20)
exch−ind(A← B).

e2ex.F e2iba Calculate E
(20)
exch−ind(A← B).

e2ex.F exib Driver for E
(20)
exch−ind(B ← A).

e2ex.F e2iab Calculate E
(20)
exch−ind(B ← A).

e2ex.F ex2d Driver for the in-core version of E
(20)
exch−disp.

e2ex.F exd2 Actual (in-core) calculation of E
(20)
exch−disp.

e2ex.F ex2d1a–ex2d1c Calculate components of E
(20)
exch−disp.

e2ex.F ex2d2–ex2d8 ”
e2ex.F transp13 Transpose an intermediate matrix.

e2xdooc.F ex2dsemiooc Driver for the out-of-core version of E
(20)
exch−disp.

e2xdooc.F wrseq Write an intermediate matrix to disk.
e2xdooc.F rdseq Read an intermediate matrix from disk.
e2xdooc.F writechunk Write a chunk of the intermediate matrix.
e2xdooc.F readchunk Read a chunk of the intermediate matrix.
e2xdooc.F wrooo Special version of wrseq.

e2xdooc.F exd2ooc Actual (out-of-core) calculation of E
(20)
exch−disp.

e2xdooc.F exd2semiooc Actual (semi out-of-core) calculation of E
(20)
exch−disp.

e2xdooc.F oex2d1a–oex2d1c Out-of-core-versions of e2ex.F/ex2d1a–ex2d1c.
e2xdooc.F preoex2d2 Prepare matrices for oex2d2.
e2xdooc.F oex2d2 Out-of-core-version of e2ex.F/ex2d2.
e2xdooc.F preoex2d3 Prepare matrices for oex2d3.
e2xdooc.F oex2d3–oex2d4 Out-of-core-versions of e2ex.F/ex2d3–ex2d4.
e2xdooc.F preoex2d5 Prepare matrices for oex2d5.
e2xdooc.F oex2d5 Out-of-core-version of e2ex.F/ex2d5.
e2xdooc.F preoex2d6 Prepare matrices for oex2d6.
e2xdooc.F oex2d6–oex2d8 Out-of-core-versions of e2ex.F/ex2d6–ex2d8.

e2xdooc.F srte2xd Sort integrals for out-of-core E
(20)
exch−disp.

e2xdooc.F getbufshrink Like b.F/getbuf but omit core integrals.
e2xdooc.F readbfs14 Read integrals for a fixed index.
e2xdooc.F readbfs15 ”
e2xdooc.F readbfs48 ”

110

Table 5: Comments on selected subroutines - sapt.x (part 5).

Module Subroutine Comments

e3.F srt3d0 Driver routine for E
(30)
disp .

e3.F sort3d Sorting routine for above.
e3.F e3dsp Calculate above.

e3.F dspin0 Driver routine for E
(30)
ind−disp.

e3.F srtind Sorting routine for above.

e3.F dspin1a–dspin1b Compute first part of E
(30)
ind−disp.

e3.F dspin2 Compute second part of E
(30)
ind−disp.

e3.F eind3 Driver for E
(30)
ind .

e3.F e3ind Actual calculation of E
(30)
ind .

e3.F readbfsh2 Special version of e1x.F/readbfshrink.
e3.F readbfsh3 ”
e3.F readbfsh4 ”

e3x.F e30exi Driver routine for E
(30)
exch−ind.

e3x.F e3x1 Prepare amplitudes for E
(30)
exch−ind(10) and (01).

e3x.F e3x3a Calculate E
(30)
exch−ind(20).

e3x.F e3x3b Calculate E
(30)
exch−ind(02).

e3x.F e30exdi Driver routine for E
(30)
exch−ind−disp.

e3x.F e3xid1a Prepare amplitudes for E
(30)
exch−ind−disp(10).

e3x.F e3xid1b Prepare amplitudes for E
(30)
exch−ind−disp(01).

e3x.F e3xid2a–e3xid2b Prepare amplitudes for E
(30)
exch−ind−disp(11).

e3x.F e3xid4a–e3xid6a Calculate E
(30)
exch−ind−disp(21).

e3x.F e3xid4b–e3xid6b Calculate E
(30)
exch−ind−disp(12).

e3x.F e3x11 Calculate the (11) part of E
(30)
exch.

e3x.F ex2d3ind Version of e2ex.F/ex2d3 suitable for E
(30)
exch(11).

e3x.F ex2d4ind Version of e2ex.F/ex2d4 suitable for E
(30)
exch(11).

e3x.F prep11i Prepare amplitudes for E
(30)
exch−ind(11).

e3xd.F e30exd Driver routine for E
(30)
exch−disp.

e3xd.F e3xd2a–e3xd2c Prepare amplitudes for E
(30)
exch−disp(11).

e3xd.F e3xd4a–e3xd4c Calculate E
(30)
exch−disp(20).

e3xd.F e3xd4d–e3xd4f Calculate E
(30)
exch−disp(02).

e3xd.F e3xd5ab Calculate E
(30)
exch−disp(21).

e3xd.F e3xd5cd Calculate E
(30)
exch−disp(12).

e3xd.F e3xd6 Calculate E
(30)
exch−disp(22).

e3xd.F prep11d Prepare amplitudes for E
(30)
exch−disp(11).

direct.F directe3d Driver for the semi-AO-based E
(30)
disp .

direct.F directe3xd Driver for the semi-AO-based E
(30)
exch−disp.

direct.F eeo Calculate the four-virtual diagram in AO basis.

direct.F de3dsp Actual (semi-AO-based) calculation of E
(30)
disp .

direct.F de30exd Actual (semi-AO-based) calculation of E
(30)
exch−disp.

direct.F de3xd2a Version of e3xd.F/e3xd2a with amplitudes computed in AOs.
direct.F namemain Get the name of the atmol1024 integral file.
direct.F search Manipulate the atmol1024 integral file.
direct.F find ”
direct.F rdsam ”

111

D Summary table from output for the example BER (Be2)

==

Summary Table

==

Mono A: 2 occupied 8 virtual 10 total

Mono B: 2 occupied 8 virtual 10 total

----------- Molecule A 4 Electron(s)

ATOM XX YY ZZ Charge

1 0.000000000 0.000000000 0.000000000 4.0

----------- Molecule B 4 Electron(s)

2 0.000000000 7.000000000 0.000000000 4.0

E^{HF}_{AB} -21.5579794623086016 hartrees

E^{HF}_{A} -10.7773391618701009 hartrees

E^{HF}_{B} -10.7773391618701009 hartrees

--

Correction mHartree Kcal/mol 1/cm

---------- -------- -------- ----

--- SCF (SAPT_super) ---

E^{HF}_{int} -3.301138568 -2.07149746 -724.5162

E^{(10)}_{elst} -3.687513408 -2.31395154 -809.3156

E^{(10)}_{exch} 3.149525953 1.97635903 691.2410

E^{(10)}_{exch}{S^2} 3.135991881 1.96786627 688.2707

E^{(10)}_{exch}-S^2 0.013534072 0.00849277 2.9704

E^{(20)}_{ind} -4.659057533 -2.92360519 -1022.5449

E^{(20)}_{ind,resp} -6.900439657 -4.33009489 -1514.4714

E^{(20)}_{ex-ind} 4.109230703 2.57858336 901.8719

E^{(20)}_{ex-ind,r} 6.033628681 3.78616233 1324.2284

SAPT SCF ^a -1.087814286 -0.68261434 -238.7476

SAPT SCF_{resp} ^b -1.404798432 -0.88152506 -308.3176

\delta^{HF}_{int} -2.213324283 -1.38888312 -485.7685

\delta^{HF}_{int,r} -1.896340137 -1.18997240 -416.1985

--- CORRELATION ---

E^{(12)}_{elst} 0.616739822 0.38701041 135.3587

E^{(13)}_{elst} 0.811463861 0.50920169 178.0957

\eps^{(1)}_{elst}(k) 1.428203683 0.89621209 313.4545

E^{(12)}_{elst,resp} 0.748858176 0.46991599 164.3554

E^{(13)}_{elst,resp} 0.764997350 0.48004349 167.8975

\eps^{(1)}_{elst,r}(k) 1.513855526 0.94995948 332.2529

E^{(11)}_{exch} 0.640864839 0.40214909 140.6536

E^{(12)}_{exch} -0.125792341 -0.07893595 -27.6082

\eps^{(1)}_{exch}(k) 0.515072498 0.32321314 113.0453

\eps^{(1)}_{exch}(CCSD) -0.784465905 -0.49226020 -172.1704

^tE^{(22)}_{ind} 1.081861737 0.67887906 237.4412

^tE^{(22)}_{ex-ind}* -0.945961754 -0.59360046 -207.6146

E^{(20)}_{disp} -1.195076004 -0.74992214 -262.2889

E^{(21)}_{disp} -0.203325820 -0.12758899 -44.6249

E^{(22)}_{disp} 0.473822197 0.29732817 103.9920

\eps^{(2)}_{disp}(k) 0.270496376 0.16973918 59.3671

E^{(2)}_{disp}(k) -0.924579627 -0.58018296 -202.9218

E^{(20)}_{exch-disp} 0.069731391 0.04375715 15.3043

SAPT_{corr} -0.075210475 -0.04719533 -16.5068

SAPT_{corr,resp} 0.010441367 0.00655206 2.2916

--- TOTAL (hybrid) ---

112

SCF+SAPT_{corr} -3.376349044 -2.11869279 -741.0230

SCF+SAPT_{corr,resp} -3.290697201 -2.06494540 -722.2246

==

E Capabilities of pcksdisp program

This Appendix contains a more detailed description of the program pcksdisp. In the pEDI.X

scripts, this program is used to calculate the CHF static and dynamic susceptibility functions of

the monomers. In addition, both these objects can also be calculated at the UCHF level. The CHF

and UCHF induction and dispersion energies are also reported. The uncoupled (UCHF) dispersion

and induction energies are equivalent to E
(20)
disp and E

(20)
ind SAPT corrections, respectively. At the

CHF level, the induction energy is equal to E
(20)
ind,resp. The CHF dispersion is equivalent to the

so-called RPA dispersion (see Ref. 39 for examples). The RPA dispersion energy is currently

not computed by the regular (non-parallel) SAPT algorithms. Two other quantities that can

be obtained using pcksdisp are the static/dynamic dipole-dipole polarizability tensor and the

isotropic C6 dispersion asymptotic coefficient (for the interaction of identical monomers), both at

the UCHF and CHF levels.

The pcksdisp program uses the transformed intra- and intermonomer integrals (i.e., the MO

representation) as generated by the ptran module. Therefore, within a script like pEDI.X, it

should be run after the SCF and transformation programs. Note that currently pcksdisp assumes

all integrals to be located in a single file f2e.000.001. Thus, all such files have to be properly

merged after a parallel ptran run. This task is accomplished with the help of the program tmerge.

To ensure that ptran generates all the integrals necessary for pcksdisp, the namelist INPUTCOR in

the nameP.data file should contain the directives

CHFDISP=T, CHFIND=T

The actual control parameters for pcksdisp are collected in the namelist INPUT, which should

be appended to nameP.data (the scripts pEDI.X do this automatically) and look similar to

&INPUT

ISITCASPOL=T, ISITINDUCT=T,

ISITSOSDISP=T,

ISITPROP=F,

ISITCKS=F, ISITUCKS=T,

ISITPOL=F,ISITC6DISP=F,

USESUMN6=T,

MAKEH1H2=T,

113

IQUADTYP=1, NQUAD=10,

OMEGA0=0.5,

DEBUG1=T, DEBUG2=F, DEBUG3=F, DEBUG4=F, DEBUG5=F, DEBUG6=F, DEBUG7=F,

DEBUG8=F

&END

The meaning of the options is as follows:

• Main Control flags:

– ISITCASPOL : (T/F) Set if this is a Casimir-Polder dispersion calculation.

– ISITINDUCT : (T/F) Set if this is an induction calculation.

– ISITPROP : (T/F) Set if a properties calculation needs to be performed.

– ISITSOSDISP : (T/F) Set to perform the regular sum-over-states (SOS) E
(20)
disp calculation.

• Propagator Type (only one can be selected):

– ISITCKS : (T/F) Set to T if the propagator is to be computed in the CHF approximation,

otherwise – set to F.

– ISITUCKS : (T/F) Set to T if the UCHF approximation is to be used, otherwise – set to

F.

• Properties calculation options:

– ISITPOL : (T/F) Set if the frequency-dependent dipole polarizability tensor αxy(ω) is to

be computed. The frequencies at which the computation will be made are set by the

input keywords NUMFREQ and FREQ<#> (see below). The dipole integrals are needed for

this calculation.

– ISITC6DISP : (T/F) Set if the C6 dispersion coefficient is to be computed. At the moment

the program outputs only the isotropic coefficient.

• USESUMN6 : (T/F) Sets the o3v3 summation algorithm in a Casimir-Polder dispersion calcu-

lation. Set this to T unless you want to use the old o4v4 summation algorithm.

• MAKEH1H2 : (T/F) Set to enable construction of the Electric and Magnetic Hessians (the H(1)

and H(2) matrices) in the CHF approximation. Transformed integrals of certain types are

required for this option. If this option is set to F, then the H(1) and H(2) matrices must be

read in from a file in either the CHF or CKS approximation.

• NUMFREQ and FREQ1, FREQ2,...,FREQ8 : NUMFREQ is the number of frequencies at which

a frequency-dependent polarization calculation is to be made. This should be less than or

114

equal to 8. The variables FREQ1, FREQ2,...,FREQ8 contain the frequencies. If complex

frequencies are required, set a negative frequency. These variables override the quadrature

scheme described below.

• IQUADTYP and NQUAD : The type of quadrature scheme to be used in performing the ω-integral

in the Casimir-Polder dispersion calculation and in the calculation of the C6 dispersion co-

efficient:

– IQUADTYP=1 sets the Gauss-Legendre quadrature with the transformation ω = ω0
(1+t)
(1−t) .

– IQUADTYP=2 sets the Gauss-Legendre quadrature with the transformation ω = ω0 tan(t).

– IQUADTYP=3 sets the Gauss-Laguerre quadrature scheme.

The variable NQUAD sets the number of quadrature points to be used for the integration.

• OMEGA0 and ALPHA : The transformation used in the Gauss-Legendre quadrature schemes

involves a constant ω0. The namelist variable OMEGA0 allows one to set this constant. It is

typically between 0.3 and 0.5. The Gauss-Laguerre quadrature scheme involves the constant

α. For the integrals encountered here, one should set ALPHA=0.0.

• Debugging levels : There are many debugging levels built into the code. These can be

activated by setting the relevant combination of debugging flags to T. Nota bene: large

matrices may be printed out at certain levels. Here is a list of current debugging levels:

– DEBUG1 : (T/F) Test the quadrature grid.

– DEBUG2 : (T/F) Use the un-coupled propagator in the coupled propagator route. This

is very useful when testing the code as the dispersion energy obtained this way should

be the same as the value of E
(20)
disp obtained from the SOS formula.

– DEBUG3 : (T/F) Print out all matrices in the construction of the coupled propagator.

– DEBUG4 : (T/F) Print out all 2-electron integrals read in.

– DEBUG5 : (T/F) Print out information in the N6 summation algorithm (subroutine

SUMN6).

– DEBUG6 : (T/F) Print out information in the PROPERTIES and C6DISP routines.

– DEBUG7 : (T/F) Print out integrals, etc. Used in computing the H(1) and H(2) matrices

in the CHF approximation.

– DEBUG8 : (T/F) Print out information in the induction module. Integrals and interme-

diates are printed. This can generate a very large output.

115

F Generation of auxiliary basis

This Appendix is adopted from the Ph.D. Thesis by Alston Misquitta [66].

The following procedure can be applied to construct an auxiliary basis set for each atom in

the dimer under consideration. Denoted by M is the decontracted basis set used in calculations

for given dimer. The auxiliary basis, denoted by X , is developed as follows:

1. Construct an auxiliary basis as the tensor product of M with itself. That is,

X =M⊗M. (15)

If GM(li, αi) and GM(lj , αj) are two basis functions of M centered at the same point,

where li and lj are the angular quantum numbers and αi and αj are the exponents, then

the product is a basis function belonging to X centered at the same point and given by

GX (lk, αk) where lk = li + lj and αk = αi + αj . The resulting basis X is a (large) basis

including high symmetry functions compared to the original basis. All the products involving

basis functions from different centers are rejected.

2. Within each angular symmetry of X , a reduction is performed in the number of basis functions

as follows. Given an ε, if there are n basis functions for which logαk1 , logαk2 ,...,logαkn are

in an ε neighborhood, then these n functions are replaced by one function with the exponent

β = (αk1αk2 ...αkn)1/n. Perform this reduction for the whole basis set.

3. If necessary, the resulting basis can be reduced even further with the previous step repeated

on the reduced basis with a different value of ε.

4. Further pruning of the reduced basis X can be done as follows:

(a) Reject all functions of g-symmetry and higher. This is necessary if cadpac is used to

obtain integrals.

(b) The ‘large’ exponents, particularly the ones of high symmetries, can generally be re-

moved. The criterion for this removal is best found by trial and error and by monitoring

the constraint conditions.

We have found the optimal values of ε used in the pruning process to be between 0.3 and

0.5. This procedure typically results in an auxiliary basis X that is 2 to 3 times larger than the

basis used to obtain molecular orbitals and eigenvalues. While in general the auxiliary basis for a

molecule should be centered also on sites between pairs of atoms in addition to atomic sites, it is

our experience that the use of only atomic centers is adequate. This is also true for the optimized

auxiliary basis sets [14].

116

