

Wireless Networks for Multi-Robot Communications Team

Senior Design Project

Clay Oehlke • Matt Crotts • Kenny McNutt • Jeremy Vernon

05/05/2003

 - 1 -

Table of Contents

1. Implementation Notes .. 3

1.1 Introduction .. 3
1.2 Global Variables ... 3

Byte ... 3
1.2.1 Token.. 3
1.2.2 Found ... 4
1.2.3 NextNode.. 4
1.2.4 Route Table .. 4
1.2.5 Invite .. 4
1.2.6 ID ... 4

1.3 Finite State Machine... 5
1.3.1 Initialization... 5
1.3.2 Joining ... 5
1.3.3 Inviting ... 6
1.3.4 Idle (Search Algorithm).. 6
1.3.5 Monitoring ... 7
1.3.6 Have Token .. 7

1.4 Code Outline... 7
1.4.1 init.bsp.. 8
1.4.2 mainRoutine.bsp... 8
1.4.3 TxRoutine.bsp... 8
1.4.4 RxRoutine.bsp .. 9
1.4.5 dance.bsp ... 9

1.5 Hardware .. 10
1.5.1 Servos... 10
1.5.2 Infrared circuit ... 10
1.5.3 Photo resistors ... 11
1.5.4 Radio Frequency Transmitter, Receiver, and Antennas... 12

2. User’s Manual .. 13
2.1 Introduction .. 13
2.2 Activating the Robots ... 13
2.3 Running the Search... 15

3. Course Debriefing .. 16
3.1 Group Management .. 16
3.2 Safety and Ethical Concerns ... 16
3.3 Final Analysis of Solution .. 16
3.4 Interference from the Servo Motors.. 17

3.4.1 Electrical Interference.. 17
3.4.2 Solutions... 18
3.4.3 RF interference... 23
3.4.4 Solutions... 23

3.5 Conclusion.. 25
4. Proposal .. 26

4.1 Purpose ... 26
4.2 Background... 26
4.3 Problem Statement.. 28
4.4 Design Constraints.. 29

4.4.1 This project must:... 29
4.4.2 This project should: ... 30

 - 2 -

4.5 Metrics.. 31
4.6 Cost... 31
4.7 Stability... 31
4.8 Size ... 32
4.9 Adaptability .. 32
4.10 Work in this Field.. 32
4.11 Survey of possible robots .. 34
4.12 Design Validation.. 36
4.13 Societal, Environment, and Safety Analysis .. 37
4.14 Feasibility Study.. 39
4.15 Objectives/Statement of Work... 39
4.16 Management .. 40
4.17 Scheduling... 40
4.18 Budget ... 42

5. Appendix... 44
5.1 Code for Token ring network with searching integrated... 44

5.1.1 Init.bsp ... 44
5.1.2 main.bsp ... 45
5.1.3 RxRoutine.bsp .. 49
5.1.4 TxRoutine.bsp... 52
5.1.5 Dance.bsp... 54

5.2 Code for final demo with limited network. ... 56
5.2.1 Main.bsp... 56
5.2.2 Dance.bsp... 57

5.3 Code for testing for RF interference. .. 58
5.3.1 Listen.bsp ... 58
5.3.2 display.bsp ... 58
5.3.3 spin.bsp .. 58

5.4 Code for testing electrical interference. .. 59
5.4.1 ServoTest.bsp ... 59
5.4.2 escape.bsp .. 59

 - 3 -

1. Implementation Notes

1.1 Introduction

The purpose of the program is to search for light and inform the other bots when the light is found. To

this end the main parts of the program are divided up into a search routine, a receiving routine, and a

transferring routine. The program spends most of its time in the search and only leaves the search when

it or another Boebot is transferring data. Upon successfully finding the light, the Boebot who finds the

light sends out a signal to all the other bots. The other bots then do a dance to indicate that they

acknowledge that the light has been found.

1.2 Global Variables

Because of the lack of variable space in the Basic Stamp 2p’s architecture, the different programs were

split into separate program slots. In order to pass data among the various programs, the scratchpad RAM

had to be used. Table 1 shows the variable that were treated as global and passed among the program

slots.

Table 1: Global variable passed in scratchpad RAM.

1.2.1 Token

The Token is what allows a node to transmit. Without it, the node may only listen to transmissions.

Byte 0 1 2 3 4 5

Variable token found NextNode RouteTable Invite ID

 - 4 -

1.2.2 Found

The Found variable is responsible for saving the status of the light search. When a node finds the light,

a 1 is saved into Found. When it receives the token, the node may then transmit that it has found the

light.

1.2.3 NextNode

This is no longer used. NextNode is calculated directly from the RouteTable.

1.2.4 Route Table

The RouteTable is probably the single most important part of the network. It contains information about

the network size, a node’s successor, and the list of used ID’s. See Table 2.

Table 2: Three nodes are currently in the network: nodes 1,2,4.

1.2.5 Invite

This is no longer used. Invite is now calculated locally.

1.2.6 ID

The ID variable is calculated just before the node joins the network. This ID stays with the node until

there is an error.

RouteTable

0 0 0 0 1 0 1 1

 - 5 -

1.3 Finite State Machine

The wireless token ring protocol can be modeled as a finite state machine.

1.3.1 Initialization

The Intilization State represents the starting of the protocol. It initializes all global variables to zero and

begins polling for transmissions. If it is interrupted it goes to the Monitoring State. Otherwise, it times

out, sets ID = 1 and RouteTable = 1, and goes to the Have Token State.

1.3.2 Joining

The Joining State is embedded in the Monitoring State. A node will monitor the transmissions, and if

the packet is an invitation packet and its current ID is not in the RouteTable, it will enter the Joining

State. Once in the Joining State, the node will take an ID. It looks at the RouteTable, picks the lowest

available number, and updates the RouteTable to include itself. The node then escapes to the Idle State.

 - 6 -

1.3.3 Inviting

A node can go to the Inviting State if it is the only node on the network or it begins a Random Invite.

When a node is alone in the ring, it will continually invite until it receives any acknowledgment. A

positive acknowledgement will result in adding the node to the RouteTable and passing the token to the

new node. If the invitation is a random invite, it will send five invitation packets. If no response, the

node will continue on by sending the token to the next node in the table.

A node can only invite in two cases:

1. It is the only node on the network. This can be easily computed by comparing the

RouteTable to the ID. More precisely RouteTable=(00000001<<(ID-1)).

This says that the RouteTable must equal to 2ID-1 in order for the node to be alone in

the network. Ex. RouteTable = 00000010 and ID=2. 2ID-1 = 00000010 =

RouteTable, so the node is alone in the network.

2. RandInv = 1 or 6 and the first zero in the RouteTable is after the node’s entry in the

table. RandInv gets a value between 1 and 10, inclusive. The reason for choosing 1

and 6 as the values was as random as the random number generator. The goal was

merely to average one invitation per five total successful transmissions.

1.3.4 Idle (Search Algorithm)

The Idle State is where the other activites can be performed: in our case, the light searching. Light

searching continues for some finite time, and then the node, if it has the token, moves to the Have Token

State. If the token has been lost, the lowest ID’ed node will time out first and start up a new token.

The light searching algorithm takes the values of the two photo resistors, and turns in the direction of the

lower value. The higher the value of the resistor, the darker the environment. It steers away from the

 - 7 -

darker areas. Infrared is also used to detect solid objects in front of the robot, which makes the robot

move back and to the left of the object. If the resulting light values are within a deadband value, then the

robot goes forward. This deadband value is set to five times the square root of the average value of the

resistors. This was found by experimentation with various values.

1.3.5 Monitoring

When a node is in the Monitoring State, it is receiving all transmissions and deciding what to do next. If

the packet is for it, the node will update its RouteTable. By design, all changes in the token ring’s

RouteTable are propogated throughout the network, one hop at a time. If it is an invitation packet, and it

is waiting for an invitation, it will enter the Joining State. If the node times out in the Monitoring State,

it will move to the Idle State.

1.3.6 Have Token

When a node is in the Have Token State, it has the right to transmit. If it is the only node on the

network, it will go to the Invite State. Otherwise, it will transmit to the next node on the ring. If it does

not receive an acknowledgment, it will remove that node from the RouteTable and transmit to the next

node in the table. When an acknowledgment is received, the node goes to the idle state.

1.4 Code Outline

The code is divided into the five following files init.bsp, mainRoutine.bsp, RxRoutine.bsp,

TxRoutine.bsp, and dance.bsp. See Appendix 5.1 for source code.

 - 8 -

1.4.1 init.bsp

In init.bsp everything is initialized to zero, polling is turned on for the receiving antenna, and a timeout

loop is begun. If the timeout loop is completed, ID is set to one and program control is transferred to

TxRoutine.bsp. The only way a timeout loop is not completed is if a signal is received from the antenna

in which case control is transferred to RxRoutine.bsp.

1.4.2 mainRoutine.bsp

All of the searching is contained in mainRoutine.bsp. Polling is turned back on at the beginning of the

routine in case it has been turned off in another routine. Inside main is a nested for loop. In the inner

loop the searching is done. If the value from both the photoresistors is less than a certain value than the

search is complete, found is set to one and control of the program is transferred to TxRoutine.bsp.

Otherwise the amount of distance to travel is decided by the average value of both the photoresistors and

the value of the left and right photoresistors is compared to determine if the boebot should travel left,

right, or forward. This is all done inside the inner loop. In the outer loop, we check to see if this boebot

has the token and if so we begin talking. If the boebot doesn’t have the token then the outer loop is used

as a timeout. Once it has been executed a certain number of times the boebot decides the node before it

has somehow been removed from the network. It than removes the previous node from the Route Table,

regenerates the token, and begins talking.

1.4.3 TxRoutine.bsp

TxRoutine initially pulls the variables off of the scratchpad. TxRoutine then decides if it is in a position

to invite new nodes into the network. If so it will invite nodes one out of five times or if it is the only

 - 9 -

node in the network. If not it will determine the next node to pass the token to. It then calculates the crc

value and begins trying to transmit. It then transmits a synchronizer, the next node, the packet number,

the found bit, the invite bit, the route table, and the checksum. It will try this a set number of times and

if it does not receive a correct ack within those number of trys it will try the node after the node it is

trying to send to in the route table. If it is transmitting an invite, then it will change the routing table

when it receives an ack. Following all this, TxRoutine will then set the current node to not have the

token, save the route table to the scratch pad, and return to mainRoutine.bsp.

1.4.4 RxRoutine.bsp

RxRoutine pulls the node ID off of the scratchpad and initializes the other variables in the routine. It

then receives a synchronizer, the node being transmitted to, the packet count, the route table, and the

checksum. It then checks to see if there was an error in the checksum. If there was an error in the

checksum it assumes this is due to the presence of two tokens and sends out a message sending everyone

back to mainRoutine. If there is no error in the checksum, it checks the found bit and if it is set to one

then program control is transferred to dance.bsp. It then checks to see if it’s Id is zero or is not in the

route table and the invite bit has been sent and if so it assigns it the Id being invited. If the message

being transmitted to is for this node or this node is being invited into the network, it sends back an

acknowledgement and sets the token to one. It then returns to mainRoutine.

1.4.5 dance.bsp

This causes the boebot to move in circles continuously.

 - 10 -

1.5 Hardware

The boebot comes from parallax and consists of several components. There is a chassis to which

everything attaches. There is a battery back that is mounted under the chassis. The circuit board is

called the board of education and is mounted on top of the chassis. The basic stamp attaches to the

board of education. Two servos and wheels are mounted along the chassis as well as a third wheel,

which is mounted on the back. The main peripherals we use with the boebot are two infrared LED’s and

two infrared sensors used for detecting objects near the boebot, two photo resistors used to detect if light

is near the boebot, and a radio frequency transmitter, a radio frequency receiver, and two antennas which

are used to communicate with the other boebots.

1.5.1 Servos

Pulses are sent from the servos causing them to spin. Here is a schematic of the servos circuit.

Figure 1: Servo Schematic.

1.5.2 Infrared circuit

The infrared sensors can detect IR signals in the neighborhood of 38.5 kHz. The IR LED’s can send out

IR signals at 38.5 kHz by using the freqout command. When the IR sensors are checked immediately

after the IR LED’s have pulsed, they can detect reflections of the IR signals if there is an object in front

of them. This can be used for collision avoidance. Here is a schematic of the circuit.

 - 11 -

Figure 2: IR schematic.

1.5.3 Photo resistors

The photo resistors are the resistor part of an RC circuit. The resistance of the photo resistor varies with

the amount of light. While we cannot measure the resistance directly we can measure the amount of

time it takes for the voltage from the RC circuit to change. The time will vary with the varying

resistance of the photo resistor from which we can infer the amount of light present. Here is a schematic

of the photo resistors circuit.

 - 12 -

Figure 3: Photoresistor schematic.

1.5.4 Radio Frequency Transmitter, Receiver, and Antennas

The radio frequency transmitter and receiver are treated as serial ports. The same commands that are

used to transfer data to and from the serial port can also be used to transfer data to and from the radio

frequency transmitter and receiver. Here is a schematic.

Figure 4: Transmitter and Receiver schematics. Receiver output is pin 4 and transmitter input is pin 5.

 - 13 -

2. User’s Manual

2.1 Introduction

The purpose of these Boebots is to locate a light source in a dark room and tell the other Boebots that the

light source has been located. All the other Boebots will dance around when the first Boebot finds the

light source.

2.2 Activating the Robots

First one needs to power up and load the program onto each of the Boebots. The Boebots are powered

by the power cord, which comes from the battery pack. Plug this cord into the power receptacle near the

adapter for a nine-volt battery on the lower left hand side (as seen from above).

Figure 5: Top view of completed BoeBot.

Next plug the serial cable into the back of the Boebot and into a computer. Proceed to run the stamp

editor from parallax. Using the stamp editor, open the file init.bsp by clicking on the file menu and

choosing open.

 - 14 -

Figure 6: Opening a file in Basic Stamp editor.

Now browse to the directory the project is stored, and double click the init.bsp file.

Figure 7: Opening a file (cont).

Once this file is open, make sure you are in a well-lit room, click on the run menu, and then click on the

run option, which will appear below.

 - 15 -

Figure 8: Running a program.

This should load the program into the Boebot and begin executing it. The red LED on the Boebot

should light up immediately. Repeat this for each of the Boebots.

2.3 Running the Search

Now that the Boebots all have been programmed, take them to a dark room and press and hold the reset

button on each Boebot. Turn on a flashlight and point it at the center of the room. Place the Boebots in

the darkness on the floor of the room and point them in various directions. You may now release the

reset button and move away from the Boebot. The Boebots will now begin searching for the light. They

should be able to avoid any objects during this search. Once one of the Boebots finds the light the other

Boebots will receive a message and will begin to dance. At this point you may unplug the Boebots by

pulling the power card from the receptacle. Congratulations, you are now fully prepared to use Boebots

to search for light.

 - 16 -

3. Course Debriefing

3.1 Group Management

There were several problems with our group management style. These led to some inefficiencies in our

group project.

One of the major problems our group had was a lack of communication. Some of goals and assignments

for various parts of the project were never communicated correctly, and this led to a loss of time and

effort for some people. Goals were redone several times, and some not done at all. Clear rules for

communicating would have led to increased productivity.

3.2 Safety and Ethical Concerns

There appears to be few safety concerns for the robot. The robot is too small, and has too little power to

serve as a danger to humans by either electrocution or contact.

The ethical concerns for the robot are few as well. The only conceivable one is that the frequency that

the robot transmits on (433 Mhz) could provide interference to some radio devices. This frequency is

used for amateur radio experiments, so the affect should be minimal.

3.3 Final Analysis of Solution

Our solution to this problem has one flaw, was that the program kept getting false positives for its

receive signals. This led us to analyze what was wrong with the receiver, and try to develop a solution.

 - 17 -

3.4 Interference from the Servo Motors

One of the major problems in getting our searching and network integrated was electrical interference

received when we engaged our servos. The natural flow of our program was as follows:

1. Initiate network

2. Scan for light source

3. While scanning send and receive packets on the network

4. If the object is found, transmit this and end the program

The major problem is that to scan, the servomotors must be constantly turned on and off. We recognized

that this caused the receiver to transmit that it received a packet. As soon as the servomotor turned on,

the receiver would get a false signal, transferring the program control over to the receive subroutine.

Further investigation made us realize that these false signals were being caused by electrical and radio

frequency interference.

3.4.1 Electrical Interference

The electrical interference was obvious to see when we plugged in the Boe-Bot to the oscilloscope. See

Appendix 5.4 for testing code. When the difference between VCC and ground was measured, this was

the result:

 - 18 -

Figure 9: Vdd during servo pulse.

This shows the voltage level of the power source. As it shows, when the servomotors are initialized, it

causes the voltage to take a sharp spike down, and then rise back up. After this, the receiver, which uses

this value to determine whether a signal is on the antennae. When the VCC dips, it then thinks it has

gotten a signal. When it does drop to the receive subroutine, the dip has passed, and there is not signal.

The behavior caused by this problem was as follows: the network would be established, but when the

search routine was initialized, the servos would be engaged. This caused the VCC dip, and the search

routine was interrupted. It tried to find a signal, failed, and then went back to the search routine. Thus the

process would repeat itself.

3.4.2 Solutions

We tried several different solutions for this problem. Each has some limited success in eliminating the

problem, but not enough to solve the underlying result of the VCC dip.

 - 19 -

3.4.2.1 Grounding

Our preliminary thoughts were that this might be caused by the aluminum casing that the robot uses not

being grounded. A wire was connected from the casing to ground. This had no discernable affect.

3.4.2.2 Capacitors

The first solution was to smooth out the dip, by using capacitors. These would act as a short-term

battery, providing voltage through the dip, charging back up as the dip receded. First we tried using a

2200-microfarad capacitor. This provided no discernable difference in the voltage dip. After discussion

with the professor, it was decided that a large value capacitor did not provide a fast enough response to

the voltage dip.

It was then decided to use a string of multiple capacitors placed in parallel to simulate a larger capacitor,

with better response time. 470-microfarad capacitors were used to this. The results are as follows:

Figure 10: Vdd during servo pulse with 470uF capacitor.

 - 20 -

Figure 11: Vdd during servo pulse with 940uF capacitor.

Figure 12: Vdd during servo pulse with 1410uF capacitor.

Figure 13: Vdd during servo pulse with 1880uF capacitor.

 - 21 -

Figure 14: Vdd during servo pulse with 2350uF capacitor.

Figure 15: Vdd during servo pulse with 3760uF capacitor.

All of these values did minimize the voltage levels, but at the expense of extending the dip, while not

stopping the main problem of the dip itself. A test program was designed to determine if the voltage dips

were small enough not to be detected by the receiver. The test failed on all attempts.

 - 22 -

3.4.2.3 Wait States

Another solution tried was to introduce wait states in the program’s flow. Instead of searching, and

polling while searching, it would separate the searching and the polling processes, and do each in turn.

This way the servo movements would not affect the receiver.

The problem with this solution is that this created windows in which the robots could not receive

packets. This was done by turning off polling for the result while the servo motors were activated. In

order to transmit the packet to the right receiver, the transmission would have to be repeated until the

robot was in a wait state. This might take 5 or more seconds. This lead to a great deal of missed packets,

and the network could not be established for long.

A modified solution with wait states was also tried. The poll mode option was turned off for 15ms after

each servo was run. 15 ms was used, as this was the approximate timeframe that the dip in VCC lasted.

This was meant to stop polling while the voltage was dropped, and start up when it returned to the right

level. This did not work, and only prolonged the point at which the receiver program reported the false

positive.

3.4.2.4 Non Polling Methods

We also thought that the act of polling might be the cause of the jump to the receive program. If the dip

in VCC only caused a transient shift in the receiver output, polling mode might be continuously

 - 23 -

activated. If we used a large amount of if statements instead, then it might not pick up the transient

pulses. This did not work, as it did not have any noticeable affect on the dip.

3.4.3 RF interference

We made two small programs to test for RF interference. One called spin.bsp is used to spin the wheels

and wait for a little while, then spin the wheels again. It does this a total of ten times. The other

program is called listen.bsp. See Appendix 5.3 for source code. The listen program displays output

whenever it receives a signal from its antenna. We loaded the spin program onto one Boebot and the

listen program on another Boebot. We then placed the spin Boebot in various positions next to the listen

Boebot and watched the debug terminal to see how many times out of ten interference was caused in the

various positions. The two positions we chose were with the wheel and motor as close to the receiving

antenna as possible and with the wheel and motor next to the other Boebot. We repeated this test using

four different Boebots. We had each Boebot spin in both positions near each of the other Boebots with

the exception of the antenna-less Boebot, which only spun near the other Boebots but did not get to

listen since it did not have an antenna.

3.4.4 Solutions

In order to solve this problem, we designed several sets of insulation to stop the interference. Pink foam

was used to cover the receiver module. Silver insulation material, normally used to stop distortion in car

stereos, was used to wrap the servomotors. We then tested these insulations to find if they had an affect.

 - 24 -

Here are our results:

The following table shows the Boebot with the uninsulated motors and an antenna listening to each of

the other Boebots in different positions.

Boebot Motor next to antenna Motor next to wheel

Pink insulated 10 0

Silver insulated 10 10

Uninsulated antenna X X

No antenna 0 0

The next table shows the Boebot with the silver chassis and insulated motors listening to each of the

other Boebots in different positions.

Boebot Motor next to antenna Motor next to wheel

Pink insulated 13 0

Silver insulated X X

Uninsulated antenna 5 0

No antenna 0 0

The next table shows the Boebot with the pink chassis and insulated motors listening to each of the other

Boebots in different positions.

Boebot Motor next to antenna Motor next to wheel

Pink insulated X X

Silver insulated 0 0

Uninsulated antenna 0 0

No antenna 0 0

 - 25 -

This proves that there is RF interference since the listening Boebot is not spinning its wheels. It is

noteworthy that the Boebot with no antenna never produced any interference despite having no

insulation around its motors. This could indicate that the RF interference is not coming directly from the

motors themselves but from the transmit antenna of the Boebot with the wheels spinning. This could be

caused by an electric interference being sent to the transmitter when the wheels spin. It is also

noteworthy that the interference also seems to depend on the Boebot, which is receiving the interference.

This could be caused by the difference in sensitivity of the different antennas.

3.5 Conclusion

After exhausting all possible solutions to try and solve the servo problem, we decided to find a solution

that might not meet all of our objectives. We decided to keep the network as a prototype, but use the

search algorithm, along with a constant send on find. The robot would search for a while, then try to

detect a signal, and then search some more. If it found the light, it would transmit. If, during any of the

check times, the robot heard that someone had found the signal, it would enter the solved state.

This solved our problem of not being able to listen and move at the same time. The infinite transmit after

finding the solution allows the other robots to hear, whenever their respective listen times may be. It

does not, however, actually constitute a full network.

In conclusion, we have the following:

1. A working token based network that adds and removes nodes on an ad-hoc basis.

2. A working search routine that finds a point of light.

3. A non-working program that combines both

4. A program that finds a light and contacts other robots to tell them it found it.

 - 26 -

4. Proposal

4.1 Purpose

We request funds and advising from professor and teaching assistants in order to develop a wireless

communication network for multi-robot teams. This network will allow the robots to function as a

sensor array, in order to function to a singular purpose: the finding of an object. Specifically, the robots

will communicate using radio frequency, or RF.

4.2 Background

Many projects that involve the use of robots involve more than one robot. In order to do a job, these

robots must work in parallel. The need for these robots to be able to communicate with each other has

led to the development of sensor networks.

A sensor is a device that produces a measurable response to a change in a physical condition. A sensor

network is a series of robots that contain sensors, and use the results from these sensors, and

communication with each other, to achieve some shared goal.

Many times sensor networks are distributed, meaning that all of the robots share duties. Many network

communication are on a client server setup, where one side gives directives to another. A distributed is

communication among equals. There is no one single error that can take down the system. Any single

unit can be disabled, but the network itself will continue to function.

 - 27 -

Many applications benefit from such sensor networks. A network of robots can cover a large area, with

each robot going in a different direction. A faster solution can be found if more than one path is taken at

the same time, as with a sensor network. A groups of robots is also less prone to total failure, for if one

robot breaks down, the rest can still complete the objective. This makes sensor networks ideal for search

and retrieval missions, where their large coverage and constant communications mimic that of a human

search party.

There are also some problems with sensor networks. The largest hurdle is the requirement to be able to

constantly communicate with other, while mobile. This makes both line of site transmission systems,

like infrared, and wire based solutions unfeasible. This communication must also be set up on the fly, as

machines should able to enter and exit the communication process at any time.

The robots must also be cognizant of the other robots, and at least their relative position to it, in order to

be able to effectively share information about their surroundings. It is not enough to know that x robot

has found the objective. In order to use this information, it must know the location of the other robot.

Communication itself poses some challenges. If the robots are not in close contact with each other,

messages must be passed from one robot to another in order to route them to a specific robot. When we

add to this the fact that any one node can fail at any time, this leads to problems.

 - 28 -

4.3 Problem Statement

Develop a wireless communication network for multi-robot teams. This network, preferably made

with radio frequency transceivers, plus the on board sensors of the robots themselves, will form a

sensor network, in order to locate a light source.

This will require the following:

1. A wireless communication system for multiple small robot micro controllers.

2. Schematic diagrams, parts list and instructions to assemble the system.

3. Project documentation, as described in the course syllabus.

4. A live demonstration of the robot in action.

The system is the main part of the project. It includes the robots, network protocols, and software

running the robot. This should all be in both written form and on the robots themselves.

The schematics and instructions should be clear enough so that anyone who wanted to recreate the

project could so easily. It is meant as a

The documentation should cover the process of building the robot, as well as evaluations on process and

management style. It should include a copy of this proposal, a user’s manual for operating the robots,

and comments on the success or failure of the project.

The demonstration will be done at the end of the project, and will show the robots in action. This should

be somewhat visual, as people outside the class will be observing it.

 - 29 -

4.4 Design Constraints

The “wireless networks for multi-robot communications” project consists of requirements or goals that

either must be or should be followed. Constraints that must be strictly adhered to are listed under the

“must” category. Conditions that should be at least considered but are not deemed critical to the

application of the project are listed in the “should’s”.

4.4.1 This project must:

• Maneuver around obstacles. When an obstacle is encountered, the robot should take action to

avoid a dead stop. Solutions include but are not limited to infrared sensors, feeling whiskers,

object recognizing cameras, and ultrasonic radar.

• Be able to navigate independently of other robots. Each robot must have the ability to search

independently of the others. Also, it must have some sort of navigational protocol such as

random pattern, expanding circle, or straight lines until a barrier is encountered.

• Search for a user specified target such as a light. Each robot has to be able to search for and find

some predetermined target.

• Realize when it has found item or other robot. The robots must know when it is close enough to

the target or, if searching for a light, must determine when the brightness of the light is

satisfactory.

• Signal the other robots when the target is found. The discovering robot should send out a

broadcast that it discovered the target.

 - 30 -

• Search for the robot that signals it has found the target. At that point it must supply some sort of

tracking mechanism for the other robots to find its current location.

• Not all communicate simultaneously. A protocol must be developed which will allow the robots

to listen prior to broadcasting. When the airwaves are clear, the robot may speak. If multiple

robot attempt to speak at exactly the same time, the robots can wait for a random amount of time

and attempt to rebroadcast.

• Not interfere or be interfered with in terms of RF communications. Surrounding wireless

networks, telephones, and other electronic devices must be considered when choosing the

frequency of the RF transceivers.

4.4.2 This project should:

• Allow the designers to easily modify the system behavior. Because of the complexity involved

with communicating among multiple nodes, the designer should not get bogged down in the

detail of how to write to and modify a chip.

• Allow the designers to easily interface new sensor and communication devices. Because the

obvious need for additional sensors (possibly transceivers, cameras, ultrasonic sensors, infrared,

whiskers), designers should have ample I/O connections and ease of interfacing.

• Use parts and tools readily available. Because of the numbers of robots needed, the other various

parts should be “off the shelf” parts if possible. Also, when choosing parts and robots, the tools

needed should be considered.

• Sense obstacles to avoid contact. This could possibly allow the robots to save power by

preventing them from sporadically changing directions upon contact with an obstacle.

 - 31 -

• Consist of robots that will move reliably on the specified surface. The robot wheels should be

able to cope with the environment. Likely, a low pile carpet or tile floor will be used.

Consideration must be made for traction on tile.

• Allow for close enough distances so that the RF communications will not fail. If by chance the

RF communication link is extended beyond its usable distance, a search and rescue protocol

should be considered.

4.5 Metrics

The following metrics can be used in order to determine the validity of various solutions to the

networking robots problem.

4.6 Cost

The robots used in the project must be available for a minimum of cost. Sensor networks usually cover

tens or hundred of identical robots, each doing a small task. While our goal is not that lofty, in order to

develop a sensor network, we will have to have at least 3 or more robots, each with identical capabilities.

This will make minimizing the cost of each of the robots in the project a high priority of the project.

4.7 Stability

One of the greatest properties of a sensor network is how functions and data are distributed over the

network. Each robot only does a small part of the job, and combined, they do the task. Any sensor

network we design must have the ability to function whether or not all units are functional.

 - 32 -

4.8 Size

 In order to effectively design a sensor network project that can effectively exercise the sensor network’s

capabilities, one of two goals must be met. Either the area we test the sensor networks must be large

enough to require multiple robots to cover the area, or the robots must be small enough in respect to the

area of coverage. As making robots that will cover a large area will probably be cost prohibitive, the

robots that are in our project should be small enough to make a small area an effective test.

4.9 Adaptability

In order to do the various tasks of this project, whatever robot we use will have to be able to use a

variety of different inputs and outputs. More may be added, if we wish to expand the nature of the

program on a later date. One metric for any robot we use will be the ability to add on different sensors

and transmitters.

These items will allow the robot to both communicate with other robots, and search its surroundings,

both parts of the sensor network. The ability to add expand with additional inputs and outputs might also

be beneficial when debugging, where various events could cause the robot to light a light or ring a bell,

in order to show what was happening.

4.10 Work in this Field

Currently, there are several projects that have concentrated on sensor networks at various universities

and government agencies. Some of these have reached a prototype stage.

 - 33 -

One of the most notable is the DARPA (Defense Advanced Research Projects Agency) project for

sensor networks. They envision “smart dust”: a sensor network made up of thousands of tiny robots,

each communicating with each other, and relaying information about the battlefield. The objective is to

make the robots small and light enough to float in the wind, scattering them, and landing on all surfaces.

Part of the DARPA project uses an open source operating system and database known as TinyOS and

TinyDB, respectively. This operating system is a runtime environment designed embedded systems

which require concurrency operations while constrained by minimal hardware resources. Many different

universities are using this as a starting point for their own projects.

One of the largest examples of using TinyOS was a Habitat monitoring project on Great Duck Island.

Thirty-two units, or “motes”, were deployed in order to monitor environmental conditions on the island.

Each could display temperature, humidity, and other environmental data.

Another example using TinyOS was to connect a building with a hundred motes in various places. These

monitored temperature, electric and light conditions. They collated this data for the user, showing what

parts of the house used electricity. This allowed for more informed energy consumption.

Sensor networks could also have many non-military applications. One idea is that of “pervasive

computing”. This is where thousands of small computers are inside you, and on your body, forming a

“nervous system” of sorts, that gathers and collates data. It would allow different computers to

“recognize” you based on the computers on your body.

 - 34 -

One small step in this direction is RFID tags. Radio Frequency Identification tags are tiny microchips

that respond to radio frequencies with a transmission of their own. They are currently being tested in

many consumer goods, where the ability to identify individual goods quickly. Currently, each tag

transmits a 64 bit response to a radio signal, so they can have 18 thousand trillion different values.

One topic in computer science that predates the field of sensor networks is artificial life. Unlike artificial

intelligence, which tries to simulate a human mind, artificial life uses animal like behaviors in order to

achieve some goal. It uses small rule sets to produce complex behaviors. Each artificial life “creature”

only knows about its general area and makes decisions from what it can see. Several computer

simulations have had artificial life creatures simulate flocks of birds, and other pack animals. Some of

these are self evolving, changing their programs while running in order to produce better results.

Some less advanced sensor networks are used in factories. While traditionally networked, and with much

larger sized sensors, they still are effective. An example of this is the sensors in an automobile, that

record pressure and temperature values. These sensors are not mobile, but have some intelligence and

communication capabilities. They also report information back to a source.

4.11 Survey of possible robots

When considering what robot to purchase to start on our project, our team had several concerns. The top

priority was to find a robot that was somewhere in the two hundred to four hundred dollar range. Our

problem statement asks for a multi-robot team that is able to communicate with each other. We decided

 - 35 -

on purchasing five robots with the possibility of adding an additional five later on. To stay within a

reasonable budget, we had to keep the price of each robot down.

We took the five most promising robots and critiqued each. The first robot we looked at was the

AmigoBot by ActiveMedia. The AmigoBot comes with the standard physical characteristics and

capabilities. It is 28 cm long (~11 inches) and 33 cm wide (~13 inches). It comes with 1 MB of flash

memory and an indoor range of 100m and an outdoor range of 250m. ActiveMedia also comes with

wireless accessories like the Wirefree Radio Modem. This option would be very useful in our case since

it is full duplex and uses the standard RS232 serial port. The downfall of the AmigoBot is that it uses its

own operating system, AmigoOS and the price is currently at $1795 each.

The second robot we took into consideration is the Khepera II by K-Team. K-team’s product came with

more memory than the AmigoBot but less Flash memory. K-team fell short of our expectations in

several areas. The sensing whiskers that ship with the robot are only 10cm long. The payload for the

robot is only 250 grams and the RF products might stretch that limitation. The Khepera model also

comes with software that is not made specifically for its product. It ships with National Instrument’s

LabView and MatLab. The unit price of the Khepera is not listed on the website and the only way to

figure out the price is to send off an email and wait for a reply back.

The next robot we looked into was the Trilobot by Arrick Electronics. This robot measured 12” x 12” x

12” and weighed 11 pounds. The Trilobot is the heaviest of the robots that we took into consideration. It

also requires the most voltage at 12V. The main disadvantage of the Trilobot is the price. Each product

is $1900.00 which is out of our price range.

 - 36 -

The fourth robot on our list was the Hexapod by Lynxmotion. The Hexapod has the simplest and

straightforward design. We found the documentation to be very lacking though, and we were not ready

to gamble on whether the product would fit our needs or not. The Hexapod costs around $240. The

payload is also only 12 ounces, which again might not be enough to handle the additional RF Products.

The final robot that we surveyed was the Boebot by Parallax. It turned out to be the best candidate for

our project. It sells for around $230 a piece and comes with two helpful workbooks. Boebot comes with

whiskers and is constructed of an aluminum chassis. The Boebot has a smaller, yet strong frame so we

will not need a large testing area.

4.12 Design Validation

Each piece of the Boe-Bot can be tested individually and then tested again when everything is put

together. The servos, whiskers, photoresisters, and IR subsystem can each be tested individually as

outlined in the Boe-Bot manual. Then we must test the servos, whiskers, photoresisters, and IR

subsystem when all of them are working in unison. We need to implement and test a random search for

light using a single Boe-Bot. Then we need to implement and test patterned searches for the light using

a single Boe-Bot.

At the same time we can begin implementing and testing RF communication between two Boe-Bots.

Following successful communication between two Boe-Bots, we can develop, implement, and test a

communication protocol for an arbitrary number of Boe-Bots.

 - 37 -

Upon successful implementation of a multi-Boe-Bot communication protocol and the individual Boe-

Bot random and patter searches, we can combine the searches with the communication protocol to

implement multi-Boe-Bot random and pattern searches for light. This step will require an iterative series

of test as we determine which search is best, how close the Boe-Bots should get to each other before

changing direction, and try to develop a method for each Boe-Bot to determine where the other Boe-Bots

are at all times. We will then need to test this with various obstacles blocking the search for the light

and with removal and addition of Boe-Bots to the search.

4.13 Societal, Environment, and Safety Analysis

Use of small autonomous robots for different tasks stands to have great benefits for society. They will

allow for jobs to be done cheaply by many small robots instead of expensively by large ones. Sensor

networks will allow people the ability to monitor events over very large areas with ease.

There are some problems with sensor network technology. If sensor networks are so ubiquitous, it might

be very easy to have millions of them, monitoring everything in a given area. The privacy concerns are

significant. This should be minimal for our project, as it does not concern robots in any large number.

Neither do the Boe-Bots have any capacity for surveillance work.

The use of large amounts of Boe-Bots would have some environmental concerns. As the Boe-Bots are

small, and easily damaged, many might have to be thrown away. The electronic chips and plastic that are

used to create a Boe-Bot are not biodegradable and the chips may contain hazardous materials.

 - 38 -

Using five Boe-Bots may also cause other problems. Each robot requires four double A batteries.

Depending on how often these need changing, they might generate a large amount of somewhat

hazardous waste. Batteries become corrosive with time, so proper disposal of the batteries is necessary.

Using a Boe-Bot may have some advantages environmentally though. Five Boe-Bots may be able to do

the job of one larger robot. This robot could use more resources than the smaller robots, and must be

replaced if broken. Each of them also probably uses much less power than the larger robot, and probably

costs less.

Safety concerns are minimal for the BoeBot. They are quite small, and there is little chance that any

collision with a human or any other object will result in any damage. The amount of power they

consume is quite small, so any exposure to an open circuit will result in only a small electric charge. The

only real hazard the robot poses is the threat of when it breaks. If the robot is broken into small pieces,

there is a chance that they could be sharp and cut something or someone.

While the BoeBot poses little threat to outside elements, these elements may pose threats to it. It might

be easily stepped on, causing large amounts of damage to the robot. It could also be exposed to the

water, or other elements, also causing damage to it.

 - 39 -

4.14 Feasibility Study

Project Schedule – 13 weeks
 Team Meeting – 1/27/03
 Start Date – 1/27/03
 End Date – 5/5/03

*note: See Gantt chart for schedule details

Project Deliverables
 Bi-weekly Report – 2/17/03
 Critical Design Review – 3/3/03
 Bi-weekly Report – 3/26/03
 Bi-weekly Report – 4/09/03
 Bi-weekly Report – 4/23/03
 Final Report and Demo – 5/5/03

4.15 Objectives/Statement of Work

The objective of this study is to show that the proposed sensor network system is physically, technically,

and economically feasible in the time available. According to the initial budget plans, projects are

limited to $1000. Because of the number of robots needed to implement the minimal size of the

network, this number is flexible. The calculated budget of a little over a thousand is within reason.

Most of the technologies that are being implemented come with the robot. The whiskers, infrared, and

photocells have all been tested and used with Boe-Bots for various applications and can be easily added

with the serial interface. In the communication aspect, we are using a mature RF technology. Many

sample programs are available as guidelines. Work has been done at several universities with wireless

sensing networks.

 - 40 -

As seen in the Gant chart , we should have enough time to complete all design objectives. We should

also have some room for unexpected problems if any occur. The mistakes may come from trying to

integrate all of the different parts of the robot into a whole, but there should be enough time to do this.

4.16 Management

Team organization will be loosely based. Decisions will be made by group consensus, and then carried

out. Tasks will be delegated based on who can do the job effectively and quickly.

If there are design disagreements, we will either ask the profession for advising, or see if some form of

compromise can be made.

The project will be managed under a cycle type of qualifications. Each unit will be planned, designed,

and tested. Then, all units will be integrated, then the whole will be tested.

4.17 Scheduling

Our timetable looks like the following:

 - 41 -

Timeline

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Presentation

Testing

Integrate

RF Software

Integrate

Searching Software

Initial movement of Bots

Build Bots

Parts List

Proposal

Week

Figure 16: Gantt Chart.

As shown, there is plenty of time for both design and testing of different components in the system, as

well as testing of these various components. Each unit of the project has been checked for dependencies

with all of the others.

Most of our work units will take two weeks. There is some leeway in the testing, as it is an on going,

continuous process. It will be done as units are completed. The presentation itself will be done after the

software and hardware is finished.

There are several dependencies for various subunits of the process. The robots must be built before any

of the other work can be done. The IR, RF, whiskers, and photocells are all independent of each other. In

order to search for a light, the photocells, whiskers, and IR must be completed. Robots talking with each

other require the RF to be completed. Finally, both are required for the fully functional robot to be built.

 - 42 -

4.18 Budget

Our Budget will look like the following:

Table 3: Expected Budget.

Sensor Networks Budget

Product Quantity Price

Boe-Bot Full Kit 5 1145

w/shipping 1157.28

Transmitter (TWS-434) 5 38.25

Receiver (RWS-434) 5 38.25

433 MHz Antenna 5 45

w/shipping 130.84

Alkaline Batteries (AA) 100

Total Cost 1388.12

The total cost goes come to slightly above 13 hundred dollars, a reasonable amount for our project.

 - 43 -

Proposal Choose parts

Order parts

Connect servos to
robots

Build robots

Get robots
moving

Connect
whiskers

Write and implement
obstacle avoidance software

Connect
photocells

Write and implement
light sensing software

Connect RF
transmitter and

receiver

Write and
implement RF

software

Write and implement networking
protocol

Connect IR

Write and
implement IR

Write and implement
object searching

Write and implement
object tracking

Create team

(Optional – if time
permits) Search and

rescue lost robots

 - 44 -

5. Appendix

5.1 Code for Token ring network with searching integrated.

5.1.1 Init.bsp

'initializes new node or timed-out node
'node waits for any Rx, if none,
'starts a new token

'BYTE number 0 1 2 3 4 5
'Ram setup - ---------------------------------------
' |token|Found|NextNode|ID_taken|Invite|ID|
' ---------------------------------------

'{$STAMP BS2p, mainRoutine.bsp, RxRoutine.bsp, TxRoutine.bsp, Dance.bsp}

'----------init----------
 'run slot 2, Rx

token VAR BIT
time VAR WORD
ID VAR BYTE

token = 0
time = 0
ID = 0

'------------------- Initialize all global variables -----------------------
PUT 5, ID 'initialize ID to 0 and store in ram
PUT 4, 0
PUT 3, 0
PUT 2, 0
PUT 1, 0
PUT 0, 0

pollin 4,1 'poll for Rx
pollmode 3 'polled-run only
pollrun 2

TIMeOUT con 400 'may need something better

'---------main-----------
start:

 if time > TIMEOUT then start_token 'listen, if nothing, start new token
 DEBUG "I am counting ", DEC time, CR

 time = time + 1

goto start

start_token:
 DEBUG "Start up token", CR
 'token = 1 'give node the right to Tx
 ID = 1 'give node ID = 1
 'put 0, token 'save token and ID in RAM
 put 5, ID 'before calling new program
 put 3, %00000001 'initialize route table to empty

 run 3 'run transmit program

 - 45 -

5.1.2 main.bsp

'BYTE number 0 1 2 3 4 5
'Ram setup - ---------------------------------------
' |token|Found|NextNode|ID_taken|Invite|ID|
' ---------------------------------------

'{$STAMP BS2p}

 'run slot 1
token VAR BIT
PrevNode VAR BYTE
ID VAR BYTE
x VAR WORD
y VAR WORD
z VAR WORD
ID_taken VAR BYTE
IDShift VAR BYTE

pulse_count var byte
right_photo var word
left_photo var word
distance_mult var nib
avg_value var word
deadband var word
left_IR var bit
right_IR var bit

output 15
output 1

'PUT 2, NextNode
'PUT 1, ID
GET 0, token
GET 5, ID
debug ? token

pollin 4,1 'poll for Rx
pollmode 3 'polled-run only
pollrun 2

'--------------------main---------------
main:

'FIXME if ID = 0, then want to do a random backoff
for x = 1 to (ID+4) 'this is like a timeout that is based on ID
 'The lower ID should always start the token
 'could be some timing issues
 '8000 is about max b/c 8000*8=64000 ~ 2^16
 'may want smaller than 8000

 for y = 1 to 10

 '*********************************
 ' SEARCHING ALGORITHMS
 '*********************************

'SearchMain:
 Debug "searching", CR
 'Scan the values
 goto scan
decision:
 'Following commands used to experiment with values
 'If we find the right values, then stop
 if (left_photo < 50) and (right_photo < 50) then ende
 'Find an average values for use with the multiples
 avg_value = (left_photo + right_photo) / 2
 DEBUG "AVG ", DEC avg_value, CR
 deadband = 5 * SQR avg_value
 'Determine our deadband and distance values for the computer

 - 46 -

 if (avg_value > 1000) then high_multiple
 if (avg_value > 500) then mid_multiple
 if (avg_value > 300) then low_multiple

'Determine if something is in front of the bot, avoid
'it and turn and follow light
move:
 if left_IR = 0 and right_IR = 0 then uturn
 if left_IR = 0 then right_turn
 if right_IR = 0 then left_turn
 PulseNext:
 DEBUG "D", DEC deadband, CR, CR
 Debug "Maybe"
 if abs(right_photo-left_photo) < deadband then pulse_forward
 if left_photo > right_photo then pulse_right
 if right_photo > left_photo then pulse_left
 if right_photo = left_photo then pulse_forward
 BackFromPulse:

NEXT

 '*********************************

 if token = 1 then talk 'after searching for some time, then talk if have token

 debug CR,"twiddling thumbs", CR

next

'------------------- if timeout, remove previous node from list and fire up a token ------------

 GET 5, ID
 GET 3, ID_taken
 IDShift = %1
 GetPrevNode:
 if ID_taken=(IDShift<<(ID-1)) then ReturnToCall 'means that node is alone on network
 if ID=1 then Wrap
 for x = (ID-2) to 0
 if (ID_taken>>x) & %1 = 1 then SetPrev
 Next
 Wrap:
 for x = 7 to ID
 if (ID_taken>>x) & %1 = 1 then SetPrev
 Next

 Debug CR, "there was an error getting the next ID (main)", CR
 SetPrev:
 PrevNode=x+1
 ID_taken = ID_taken & ~(DCD (PrevNode-1))
 put 3, ID_taken
 ReturnToCall:
 RUN 3
'---
talk:

 RUN 3

ende:
 debug "ende", CR
 put 1,1
 high 8
 RUN 3

scan:
 'scan for IR
 freqout 1, 1, 12000
 right_IR = in0
 debug "RIR", DEC right_IR, CR
 'scan for light
 high 2
 pause 3
 rctime 2,1,right_photo
 right_photo = abs(right_photo)
 if right_photo <> 0 then regularright
 right_photo = 32000

 - 47 -

regularright:
 debug "R", DEC right_photo, CR
 freqout 15, 1, 12000
 left_IR = in14
 debug "LIR", DEC left_IR, CR
 high 11
 pause 3
 rctime 11,1,left_photo
 left_photo = abs(left_photo)
 if left_photo <> 0 then regularleft
 left_photo = 32000
regularleft:
 debug "L", DEC left_photo, CR, CR
 goto decision

left_turn:

 for pulse_count = 1 to 40
 pulsout 12, 750
 pulsout 13, 750
 pause 20
 next

 goto PulseNext

right_turn:

 for pulse_count = 1 to 40
 pulsout 12, 2500
 pulsout 13, 2500
 pause 20
 next

 goto PulseNext

pulse_left:
 'pollmode 0
 for pulse_count = 1 to (distance_mult / 2)
 pulsout 12, 750
 pulsout 13, 750
 pause 20
 next

 goto BackFromPulse

pulse_right:
 for pulse_count = 1 to (distance_mult / 2)
 pulsout 12, 2500
 pulsout 13, 2500
 pause 20
 next

 goto BackFromPulse

pulse_forward:

 for pulse_count = 1 to (distance_mult)
 debug "Forward HOOOOO", CR
 pulsout 12, 750
 pulsout 13, 2500
 pause 20
 next

 goto BackFromPulse

uturn:

 for pulse_count = 1 to 80
 pulsout 12, 2500
 pulsout 13, 2500
 pause 20
 next

 goto PulseNext

high_multiple:

 - 48 -

 distance_mult = 40
 'deadband = 9000
 goto move

mid_multiple:
 distance_mult = 20
 'deadband = 5000
 goto move

low_multiple:
 distance_mult = 4
 'deadband = 100
 goto move

 - 49 -

5.1.3 RxRoutine.bsp

'BYTE number 0 1 2 3 4 5
'Ram setup - ---------------------------------------
' |token|Found|NextNode|ID_taken|Invite|ID|
' ---------------------------------------

'{$STAMP BS2p}
pollmode 0

'---Set up Variables---
PacketCount VAR BYTE 'Packet Number and Data Value Count
PrevPacket VAR NIB 'Previous Packet Number
CRC VAR WORD 'Calculate CRC value
CRCL VAR CRC.LOWBYTE 'Low byte of calculated CRC value
CRCH VAR CRC.HIGHBYTE 'High byte of calculated CRC value
RcvdCRC VAR WORD 'Received CRC value
RcvdCRCL VAR RcvdCRC.LOWBYTE 'Low byte of received CRC value
RcvdCRCH VAR RcvdCRC.HIGHBYTE 'High byte of received CRC value
CValue VAR BYTE 'Temporary holder of value for CRC calculation
RcvdNextNode VAR BYTE
ID VAR BYTE
Found VAR BIT
Invite VAR BIT
ID_taken VAR BYTE 'list of ID's in use. Ex. 11010010 = ID 2,5,7,8.
 'Supports 8 nodes. See figure at bottom of page.
ErrorCount VAR NIB 'Number of Non-receives
CASE VAR NIB

'---Set up Constants---
Tx CON 5 'Transmit I/O pin number
Rx CON 4 'Receive I/O pin number
N9600 CON 18447 'Baud mode value for 9600 baud, 8,N,1

Initialize:

 LOW Tx 'Initialize transceiver interface
 DEBUG CR,"Action Packet# Invite Checksum Next Routes Status"
 DEBUG CR,"-------- ------- ------ -------- ---- ---------- ------"

GET 5,ID
ErrorCount = 0

'---------------------------------- Receiver Subroutines -----------------------------------
ReceiverMain:
 GOSUB Receive 'Call the receive routine
 IF PacketCount = 0 THEN DoOtherStuff

DoOtherStuff:
 'Here is where you should do other desired tasks
GOTO ReceiverMain

'---------------------------------- Packet Receive Subroutines ---------------------------------

Receive:

 if ErrorCount>4 then NORECEXIT 'If too many errors, then quit trying

 DEBUG CR,"Receive " 'Look for incoming data packet

 SERIN Rx,N9600,600,NoReceive,[WAIT("ABC"),RcvdNextNode,PacketCount,ID_Taken,RcvdCRCL,RcvdCRCH]

 DEBUG DEC2 PacketCount>>4,REP " "\8,DEC2 PacketCount&%1, REP " "\6, DEC1 Invite
 DEBUG DEC5 RcvdCRC,REP " "\6,DEC2 RcvdNextNode," ", BIN8 ID_taken, CR

'-------------------------------------- Calculate CRC --
 CRC = 0
 CValue = PacketCount>>4 'Data was received, so well prime the checksum
 if CValue = 0 THEN Error 'If Packet# = 0, error (illegal value)
 GOSUB CalcCRC

 - 50 -

 Found = PacketCount>>1 & %1
 CValue = Found 'Get Found Variable / calc CRC
 GOSUB CalcCRC
 Invite = PacketCount&%1
 CValue = Invite 'Get Invite Variable / calc CRC
 GOSUB CalcCRC
 CValue = RcvdNextNode 'Calc CRC with RcvdNextNode
 GOSUB CalcCRC
 CValue = ID_taken 'Calc CRC with ID_taken
 GOSUB CalcCRC

 IF CRC <> RcvdCRC THEN Error 'Is calculated Checksum same as Received Checksum?
 IF Found=1 then dance
 Debug CR, "BIGIF=", BIN8 (ID_taken & (DCD (ID-1))), CR
 Debug "DCDID=", BIN8 DCD(ID-1), CR
 Debug ? Found
 IF (ID_taken & DCD (ID-1) = 0) OR ID=0 then NoSetFlag
 SetFlag:
 Invite=0
 NoSetFlag:

'--------------------------- If invited to join ring ---
 if Invite=1 and (ID=0 OR (ID_taken & DCD (ID-1) = 0)) then GETID
 'Invitation packet so find an unused ID if you don't have hone

 ReturnGETID:
 DEBUG ? ID
 PUT 5, ID 'Set the ID
 'PUT 4, 1 'Set the invitation flag
 PUT 3, ID_taken 'PUT ID_taken to RAM for future additions
 'GOTO Accept 'Send ID with Ack message. Accepts invitation

 'FIXME: Change for invitation. If invite, then RcvdNextNode doesn't matter.
 'timing issues.
 if RcvdNextNode=ID OR Invite=1 then SendAck 'Packet was not for me and it was
 'not an invite packet,
 debug "Message not for me so I will exit", CR
 pause 2
 GOTO EXIT 'if not joining or token not for you,
 'then pause and exit.
 'so ignore it

 SendAck:
 DEBUG "Tx Ack",REP " "\27,DEC5 CRC,REP " "\25,"OK"
 PAUSE 1 'Give sender time to get ready to receive
 'acknowledgement
 'SEROUT Tx\TxFlow,N9600,[CRCL,CRCH] 'Yes! Send positive acknowledgement (the checksum)
 SEROUT Tx,N9600,["XYZ","ABC",Invite, CRCL,CRCH] 'Send invite flag piggy backed on ack
 IF PacketCount>>4 = PrevPacket THEN Duplicate 'If duplicate packet, we'll ignore it
 PrevPacket = PacketCount>>4 'Record previous packet number
 PUT 0, 1 'I now have the token
GOTO EXIT

NoReceive:
 DEBUG REP " "\45,"NO RECEIVE"
 PacketCount = 0 'Clear PacketCount to indicate no data received
 ErrorCount = ErrorCount+1
RETURN

'FIXME
'If error, need to escape to prog 1
'may want to allow this to happen once and then recheck

Error:
 DEBUG "Tx NAck",REP " "\26,DEC5 ~CRC,REP " "\22,"ERROR", CR
 'SEROUT Tx\TxFlow,N9600,[~CRCL,~CRCH] 'Error receiving, send negative acknowledgement
 '(Not Checksum)
 Invite = 0
 SEROUT Tx,N9600,["XYZ","ABC",Invite,~CRCL,~CRCH]
 put 0, 0 'Everyone relinquishes token
 RUN 1 'CRC error: assume multiple tokens
 '(interference) so reinit token
Duplicate:

 - 51 -

 DEBUG CR,"No Op", REP " "\28,DEC5 CRC,REP " "\25,"DUPLICATE"
 PacketCount = 0
 put 0, 1
GOTO EXIT 'Clear PacketCount to indicate no new data received

RETURN

'-------------------------------- CRC Checksum Calculation Routine ----------------------------
CalcCRC:
 CValue= CRCH^CValue>>4^(CRCH^CValue)
 CRC = CValue^(CValue<<5)^(CValue<<12)^(CRC << 8)
RETURN

NORECEXIT:
 put 0,0
GOTO EXIT

'FIXME
'do we need to store any data before leaving?
EXIT:
 RUN 1

'------------------------------------Get ID subroutine ---
'ID_taken format example

' 8 7 6 5 4 3 2 1
'--------------------------------
'| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1|
'--------------------------------

'This means that the ID's 1,2,4 are taken. 3,5,6,7,8 are free to take.
'1 starts as the LSB to prevent extra shifting calculations since you want
'to use the lowest numbers first
CASE = 15 'Set to 15 for default value

GETID:
 Debug CR, "Getting ID", CR
 LOOKDOWN
0,[ID_taken&%1,ID_taken>>1&%1,ID_taken>>2&%1,ID_taken>>3&%1,ID_taken>>4&%1,ID_taken>>5&%1,ID_taken>>6&%1,
ID_taken>>7&%1],CASE

 BRANCH CASE,[ID1,ID2,ID3,ID4,ID5,ID6,ID7,ID8]

 ID1: ID = 1
 ID_taken = ID_taken+1
 GOTO ReturnGETID
 ID2: ID = 2
 ID_taken = ID_taken+2
 GOTO ReturnGETID
 ID3: ID = 3
 ID_taken = ID_taken+4
 GOTO ReturnGETID
 ID4: ID = 4
 ID_taken = ID_taken+8
 GOTO ReturnGETID
 ID5: ID = 5
 ID_taken = ID_taken+16
 GOTO ReturnGETID
 ID6: ID = 6
 ID_taken = ID_taken+32
 GOTO ReturnGETID
 ID7: ID = 7
 ID_taken = ID_taken+64
 GOTO ReturnGETID
 ID8: ID = 8
 ID_taken = ID_taken+128
 GOTO ReturnGETID

dance:
debug CR, "Going to dance", CR
RUN 4

 - 52 -

5.1.4 TxRoutine.bsp

'BYTE number 0 1 2 3 4 5
'Ram setup - ---------------------------------------
' |token|Found|NextNode|ID_taken|Invite|ID|
' ---------------------------------------

'{$STAMP BS2p}

pollmode 0

'---Set up Variables---
Packet VAR NIB 'Packet Number
ErrNoAck VAR NIB 'Number of No Acknowledgement Errors
CRC VAR WORD 'Calculate CRC value
CRCL VAR CRC.LOWBYTE 'Low byte of calculated CRC value
CRCH VAR CRC.HIGHBYTE 'High byte of calculated CRC value
RcvdCRC VAR WORD 'Received CRC value
RcvdCRCL VAR RcvdCRC.LOWBYTE 'Low byte of received CRC value
RcvdCRCH VAR RcvdCRC.HIGHBYTE 'High byte of received CRC value
CValue VAR BYTE 'Temporary holder of value for CRC calculation
NextNode VAR BYTE 'Next node in route to pass the token to
Found VAR NIB 'Found bit (Nib for packing purposes), 1=Found Light,
 '0=Not found light
Invite VAR BIT 'Invitation bit, 1=Invite, 0=Normal Operation
ID_taken VAR BYTE 'list of ID's in use. Ex. 11010010 = ID 2,5,7,8.
Supports up to 8 nodes
InviteRec VAR BIT
NumGen VAR word 'Random number 16bits
RandInv VAR NIB 'Random num between 1&whatever is chosen
 'for invitation purposes
ID VAR BYTE
NextNodeID VAR BYTE
IDShift VAR BYTE
counter VAR NIB
x VAR NIB

'---Set up Constants---
Tx CON 5 'Transmit I/O pin number
Rx CON 4 'Receive I/O pin number
N9600 CON 18447 'Baud

Initialize:
 LOW Tx 'Initialize transceiver interface
 DEBUG CR,"Action Packet# Invite Checksum Next Routes Status"
 DEBUG CR,"-------- ------- ------ -------- ---- ---------- ------"

IDShift = %1
'GET 2,NextNode
GET 1,Found
GET 3,ID_taken
GET 5,ID
Invite = 1
NextNodeID = 0

'************************Invite*************************
'Decide whether the node should send out an invitation

if ID_taken & %1 = 0 then findLast1

for counter = 1 to 7
 if (ID_taken >> counter) & %1 = 0 then findPrev1
next

InviteCont:
'invite 1 out of 5 times on average or whenever Node is only one on route table
RANDOM NumGen
RandInv = NumGen // 10 min 1 'Get a rand # for invitation purposes
debug ? RandInv
if RandInv=1 OR RandInv=6 OR ID_taken=(IDShift<<(ID-1)) then Invitation

 - 53 -

NoInvite:
ErrNoAck = 0
Invite = 0 'Set invite flag to false
Debug CR, "not inviting", CR
GOSUB GetNextNode
NextNodeID = NextNode
'***

Invitation:

DEBUG CR
DEBUG ? invite, CR
DEBUG "ID_taken=", DEC ID_taken, CR
DEBUG ? ID, CR
'-- Tx Routine ---

'--------------Send Message-------------
SendMessage:
 'This routine reads the messages in the data table, constructs the packets and calls the transmit
routine
 Packet = Packet + 1 'Increment packet number (1-15)
 Packet = Packet MIN 1
 CRC = 0 'Initialize checksum
 CValue = Packet
 GOSUB CalcCRC
 CValue = Found
 GOSUB CalcCRC
 CValue = Invite
 GOSUB CalcCRC
 CValue = NextNodeID
 GOSUB CalcCRC
 CValue = ID_taken
 GOSUB CalcCRC
 GOSUB Transmit

'FixMe. Change if no ack
PUT 0,0 'change token to false
PUT 3,ID_taken
pause 8
RUN 1 'run search algorithm again

'--------------------------------------- Transmit Routine -------------------------------------

Transmit:

 if ErrNoAck>4 and ID_taken<>(IDShift<<(ID-1)) then PickNextID 'if No ack after 10 tries
 'send to next node in route table

 'This routine transmits the complete packet, verifies that the receiver received it properly and
 'resends the packet if necessary. This routine will not return until the receiver gets a good packet.
 Retransmit:
 DEBUG "Transmit ",DEC2 Packet,REP " "\5,DEC1 Invite,REP " "\7
 DEBUG DEC5 CRC,REP " "\5,DEC1 NextNodeID," "
 DEBUG BIN8 ID_taken, CR,"Receive",REP " "\25
 SEROUT Tx,N9600,["XYZ","ABC",NextNodeID,Packet<<4+(Found<<1)+Invite,ID_taken,CRCL,CRCH]
 if found=1 then retransmit
 SERIN Rx,N9600,600,NoAck,[WAIT("ABC"),InviteRec, RcvdCRCL,RcvdCRCH]
 'Wait up to 600 ms for an acknowlegement
 IF RcvdCRC <> CRC THEN AckError 'If bad acknowlegement, error!
 DEBUG DEC5 CRC,REP " "\25,"OK" 'Otherwise, we're okay
 If InviteRec <> 1 then NoFixRoute
 GOSUB FixRoute
NoFixRoute:
RETURN

FixRoute:
 NextNode = ID+1 // 9 min 1 'if ID=8 then NextNode=1
 ID_taken = ID_taken | (ID_taken>>(ID-1)+%1)<<(ID-1) 'updates the route table
 'ex. ID_taken = 00010111, ID = 3
 '00010111 | (00010+1)<<(3)
 '00010111 | (00011000) = 00011111
RETURN

 - 54 -

NoAck: 'No acknowlegement received
 DEBUG "---",REP " "\25,"NO ACK", CR
 ErrNoAck = ErrNoAck + 1
 RcvdCRCL = ErrNoAck 'Pause for small random amount (0-255ms)
 RANDOM RcvdCRCL 'to eliminate lockup possibility
 PAUSE RcvdCRCL
GOTO Transmit

'FIXME
'May want to allow this to occur more than once, then escape

AckError: 'Bad acknowlegement received
 DEBUG DEC5 RcvdCRC,REP " "\19,"ERROR"
 put 0,0 'Relinquish token
 Run 1 'Go back so token can be fired up by lowest ID
'GOTO Transmit

'-------------------------------- CRC Checksum Calculation Routine -----------------------------

CalcCRC:
 CValue= CRCH^CValue>>4^(CRCH^CValue)
 CRC = CValue^(CValue<<5)^(CValue<<12)^(CRC << 8)
RETURN

'---
findLast1:
 if NCD ID_taken = ID then InviteCont
 GOTO NoInvite

findPrev1:
 if ID=counter then InviteCont
 GOTO NoInvite

'FIXME: this has a bug. The line "there was and error..." should never print.
GetNextNode:
 if ID_taken=(IDShift<<(ID-1)) then ReturnToCall 'means that node is alone on network
 if ID=8 then Wrap
 for x = ID to 7
 if (ID_taken>>x) & %1 = 1 then SetNext
 Next
Wrap:
 for x = 0 to (ID-2)
 if (ID_taken>>x) & %1 = 1 then SetNext
 Next
 Debug CR, "there was an error getting the next ID(Tx)", CR
SetNext
 NextNode=x+1
ReturnToCall:
Return

'------------------------------------pick next ID-----------------------------
'Get next ID from table
PickNextID:
if invite = 1 then NoInvite

ID_taken = ID_taken & ~(IDShift<<(NextNode-1))
put 3, ID_taken
GOTO Initialize

5.1.5 Dance.bsp

'{$STAMP BS2p}
pollmode 0

pulse_count var byte
right_photo var word
left_photo var word
distance_mult var nib
avg_value var word
deadband var word

 - 55 -

left_IR var bit
right_IR var bit

output 15
output 1

main
 debug "Dancing"
 pulsout 12, 2500
 pulsout 13, 2500
 pause 10
GOTO main

 - 56 -

5.2 Code for final demo with limited network.

5.2.1 Main.bsp

'{$STAMP BS2p, Dance.bsp}

token VAR BIT
PrevNode VAR BYTE
ID VAR BYTE
x VAR WORD
y VAR WORD
z VAR WORD
ID_taken VAR BYTE
IDShift VAR BYTE
foundvar var bit

pulse_count var byte
right_photo var word
left_photo var word
distance_mult var nib
avg_value var word
deadband var word
left_IR var bit
right_IR var bit

output 15
output 1

debug ? token

'---Set up Constants---
Tx CON 5 'Transmit I/O pin number
Rx CON 4 'Receive I/O pin number
N9600 CON 18447 'Baud mode value for 9600 baud, 8,N,1

'--------------------main---------------
main:

 for y = 1 to 10

 '*********************************
 ' SEARCHING ALGORITHMS
 '*********************************

'SearchMain:
 Debug "searching", CR
 'Scan the values
 goto scan
decision:

 'Following commands used to experiment with values
 'pause 900
 'goto main
 'If we find the right values, then stop
 if (left_photo < 50) and (right_photo < 50) then ende

 'Find an average values for use with the multiples
 avg_value = (left_photo + right_photo) / 2
 DEBUG "AVG ", DEC avg_value, CR
 deadband = 5 * SQR avg_value

 'Determine our deadband and distance values for the computer
 if (avg_value > 1000) then high_multiple
 if (avg_value > 500) then mid_multiple
 if (avg_value > 300) then low_multiple

'Determine if something is in front of the bot, avoid
'it and turn and follow light
move:
 if left_IR = 0 and right_IR = 0 then uturn

 - 57 -

 if left_IR = 0 then right_turn
 if right_IR = 0 then left_turn

PulseNext:
 DEBUG "D", DEC deadband, CR, CR
 Debug "Maybe"
 if abs(right_photo-left_photo) < deadband then pulse_forward
 if left_photo > right_photo then pulse_right
 if right_photo > left_photo then pulse_left
 if right_photo = left_photo then pulse_forward
 BackFromPulse:

 'goto SearchMain
NEXT

5.2.2 Dance.bsp

'{$STAMP BS2p}
pollmode 0

pulse_count var byte
right_photo var word
left_photo var word
distance_mult var nib
avg_value var word
deadband var word
left_IR var bit
right_IR var bit

output 15
output 1

main
 debug "Dancing"
 pulsout 12, 2500
 pulsout 13, 2500
 pause 10
GOTO main

 - 58 -

5.3 Code for testing for RF interference.

5.3.1 Listen.bsp

'{$STAMP BS2p, display.bsp}
pollmode 0
pollin 4,1 'poll for Rx
pollmode 3 'polled-run only
pollrun 1

pulse_count var byte

start:
 for pulse_count = 1 to 40
 next
goto start

5.3.2 display.bsp

'{$STAMP BS2p}

pollmode 0
ID_taken VAR BYTE

'---Set up Constants---

Tx CON 5 'Transmit I/O pin number
Rx CON 4 'Receive I/O pin number
N9600 CON 18447 'Baud mode value for 9600 baud, 8,N,1

start:
 debug "OOPS!!!!", CR
 SERIN Rx,N9600,[ID_taken]
 debug BIN8 ID_taken,CR
 Run 0
goto start

5.3.3 spin.bsp

'{$STAMP BS2p}

x VAR WORD

pulse_forward:
for x = 1 to 10

 for pulse_count = 1 to 40
 debug bin8 x, CR
 pulsout 12, 750
 pulsout 13, 2500
 pause 20
 next
 pause 1000

next

 - 59 -

5.4 Code for testing electrical interference.

5.4.1 ServoTest.bsp

'{$STAMP BS2p, escape.bsp}

pulse_count var byte

pollin 4,1 'poll for Rx
pollmode 3 'polled-run only
pollrun 1

'--------------------main---------------
main:
gosub pulse_forward
gosub left_turn
gosub right_turn
goto main

pulse_forward:

 for pulse_count = 1 to (distance_mult)
 pulsout 12, 750
 pulsout 13, 2500
 pause 15
 next
 return

left_turn:
 for pulse_count = 1 to 40
 pulsout 12, 750
 pulsout 13, 750
 pause 15
 next
return

right_turn:
 for pulse_count = 1 to 40
 pulsout 12, 2500
 pulsout 13, 2500
 pause 15
 next
return

5.4.2 escape.bsp

'{$STAMP BS2p}

main:
debug "crap"
'flash led on and off
high 8
pause 40
low 8
pause 40
goto main

