
Adeptia Developer’s  
Reference Guide

Version 1.0
Release Date Jan 18, 2012

343 West Erie, Suite 440 
Chicago, IL 60654, USA 

Phone: (312) 229-1727 x111 
Fax: (312) 229-1736



                                       
 
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           1                                       

Copyright  
 
Copyright © 2000-2007 Adeptia, Inc. All rights reserved. 

 

Trademarks 
 
The Adeptia logo and Manage, Automate and Optimize Business Processes are trademarks of 
Adeptia, Inc. 

 

Statement of Conditions 
 
Adeptia, Inc. provides this publication "as is" without warranty of any kind, either express or 
implied. In no event shall Adeptia be liable for any loss of profits, loss of business, loss of use 
or data, interruption of business, or for indirect, special, punitive, incidental, or consequential 
damages of any kind. 
 
No part of this work covered by copyright herein may be reproduced in any form or by any 
means—graphic, electronic or mechanical—including photocopying, recording, taping, or 
storage in an information retrieval system, without prior written permission of the copyright 
owner. 
 
This publication is subject to replacement by a later edition. To determine if a later edition 
exists, contact www.adeptia.com . 

 
 
Contact Information 
 
In case of any queries, please contact us at:  

 

Contact For Email ID 
Sales sales@adeptia.com
Support support@adeptia.com
  
For more information, you can visit us at www.adeptia.com

 

http://www.adeptia.com/
mailto:sales@adeptia.com
mailto:support@adeptia.com
http://www.adeptia.com/


                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           2            

Table of Contents 
 

Objective ........................................................................................... 4 

Pre-requisites............................................................................................................. 4 

Custom Java Development with Adeptia............................................ 5 

Adeptia Services That Can Be Extended For Custom Java 
Development .............................................................................................................. 5 

Using Adeptia Custom Plugin Service .......................................................... 5 
Interacting With the Service Variables and Predefined Methods .. 6 
Interacting With Streams.............................................................................. 6 
Interacting With Context Variables ........................................................... 9 
Data Handling and Transformation ......................................................... 11 
Calling External Java or Native Programs ............................................ 12 
Logging............................................................................................................... 14 
Exception Handling ........................................................................................ 14 
Dependency...................................................................................................... 15 
Examples ........................................................................................................... 15 

Custom API For Custom Java Development ..................................... 24 

Java API for Adeptia Product ......................................................................... 24 
Java APIs For Third Party Libraries ............................................................. 24 

JRE ....................................................................................................................... 25 
HSQLDB.............................................................................................................. 25 
Castor.................................................................................................................. 26 
Log4J ................................................................................................................... 26 
Jasper.................................................................................................................. 26 
VFS....................................................................................................................... 27 
Java Mail API .................................................................................................... 27 

Design patterns ............................................................................... 29 

Objective.................................................................................................................... 29 
Business Scenarios ................................................................................................ 29 

Developing Complex GUI for Human Workflow ..................................... 31 
Objective............................................................................................................ 31 
Requirements................................................................................................... 31 
Approaches ....................................................................................................... 31 
Use of custom JSP.......................................................................................... 31 

Working with Web Service Publisher .......................................................... 34 
Objective............................................................................................................ 34 
Tasks ................................................................................................................... 34 
Example ............................................................................................................. 34 
Appendix A (Input XML schema) ............................................................. 38 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           3            

Appendix B (Output XML schema) .......................................................... 39 
Using Database Event ...................................................................................... 40 

Objective............................................................................................................ 40 
Tasks For Using Database Event.............................................................. 40 
Creating Database Drivers and Database Info ................................... 40 
Creating Database Event............................................................................. 42 
Using SQL Query ............................................................................................ 42 
Advantages ....................................................................................................... 48 
Limitations......................................................................................................... 48 
Using SQL Trigger .......................................................................................... 48 
Database Name............................................................................................... 49 
Task ..................................................................................................................... 49 
Trigger Definition............................................................................................ 49 
Database Name............................................................................................... 50 
Trigger Definition............................................................................................ 50 
Reference .......................................................................................................... 50 
Advantages ....................................................................................................... 55 
Limitations......................................................................................................... 55 
Problem Scenarios where both SQL Query or SQL Trigger serve 
as solutions....................................................................................................... 55 
Appendix 1 ........................................................................................................ 55 

Using XSL Template for Padding in Mapping........................................... 56 
Objective............................................................................................................ 56 
Tasks ................................................................................................................... 56 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           4            

OBJECTIVE 
 
This document describes the scope and the topics covered in Technical Documentation for 
Developer. It acts as a reference guide for developers, while developing solutions using the 
Adeptia product. It is complementary to the User Guide.  
 
The current product documentation does not provide sufficient information to develop complex 
solutions using the product. Thus, there is need to provide:  
 

 Documentation for Custom Java development with Adeptia product 

 Adeptia services that can be extended for custom Java 
development 

 Custom API for Adeptia  

 Java API for Adeptia Product 

 Java API for Third Party Libraries 

 Example Code segments   

 Design patterns that cover the readymade solutions to standard business scenarios 
that a developer encounters while developing complex solutions. It guides the 
developer as in what to use for what situation and how to use it. 

 

PRE-REQUISITES 
Before reading this document, it is assumed that you have conformed to the following pre-
requisites: 
 

 Complete knowledge of Java 

 Familiarity with the Adeptia product 

 Undertaken a 2-day training of the Adeptia product (preferred) 

 Read the User Guide 

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           5            

CUSTOM JAVA DEVELOPMENT WITH ADEPTIA 
 
This section describes all the Adeptia features that can be extended using custom Java coding. 
It provides Java API reference that can be used for coding.  

ADEPTIA SERVICES THAT CAN BE EXTENDED FOR CUSTOM 
JAVA DEVELOPMENT 
 
The Adeptia services that can be enhanced for custom Java coding are outlined below: 
 

 Custom Plugin: You can develop Java code to create and execute customized 
services in a process flow.   

 Rec2Rec Transformer: You can develop customize services to process data individually 
record by record and add it in a process flow.  

 Java expression in decision node: You can develop Java conditional logic and use it as 
a Boolean condition in a decision node in a process flow.  

 Custom JSP: You can develop customized GUI with Java Server Pages (JSP) and 
incorporate it in the Adeptia GUI to develop its workflow GUI.  

 Java function support in Mapping: You can develop customized data processing rules 
in Java and use them in Adeptia’s Mapping feature.  

 Inbuilt Code segment and library: You can develop code segments that can be used 
for custom Java development. For example, you can develop a code segment for: 

 Get Connection from DBInfo 
 

 
In this version of document, only Custom Plugin is documented. We 
will document others later. 

 
 

USING ADEPTIA CUSTOM PLUGIN SERVICE 
 
A custom plugin service enables you to create customized services apart from the 
standard Adeptia server services. A developer can write custom java code to process the 
data as required.    

Writing a custom plugin service involves the following steps: 

1. Interacting with the service variables and predefined methods 

2. Interacting with streams 
 Input Stream 

 Output Stream 

3. Interacting with Context variables 
 Getting context variable 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           6            

 Setting context variable 

4. Data handling and Transformation 

5. Calling external native programs  

6. Logging  

7. Exception handling 

8. Dependency  

9. Examples 

Interacting With the Service Variables and Predefined Methods 

A custom plugin service provides an interface to write a java code.  The following 
variables/ methods will be available for the java code. Java code can directly access these 
variables by name. 
 
Variables 
 

 Context 

Context variables are variables whose values can be accessed in a Process Flow context 
for the purpose of using these values in conditional control flows, passing values as 
parameters to another activity, or in other Process Flow related functions. 
 

 Inputstream 

InputStream variables contain data streams that can be used in a custom plugin service. 
 

 Service  

Service refers to current custom plugin service instance. 
 
Methods 
 

 public void write(byte[] b, String streamName) throws IOException 

This method is used to write data to output streams. 
 
 public Logger getLogger() 

This method is used to obtain logger instance. 

 

 
The usage of these methods is covered in the following section. 

Interacting With Streams 

Like other services, custom plugin service can receive data from other service(s) and 
generate data to send to other service(s). 
 
While interacting with streams, you need to note the following points: 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           7            

 Custom plugin service can have 0 or more input streams 

 Custom plugin service can have 0 or more output streams 

 These streams can be set in the Process Designer applet. To know how to set these 
streams refer to the section Using Multiple Stream under Process Designer chapter of 
the User Guide. 

 For 0 input stream, the attribute “Consume Stream” for custom plugin service activity 
in Process Designer must be set to false. 

 For 0 output stream, the attribute “Generate Stream” for custom plugin service 
activity in Process Designer must be set to false. 

 By default, it generates one output stream and consumes no stream. 

 Streams are closed when current custom plugin service execution is completed. So 
you need not close the streams in java code. 

 
Interacting With Input Stream 
 
Input streams are the data streams that are passed from source activity to the current 
custom plugin service activity. Data from these streams can be parsed, transformed or 
transmitted to other activities. 
 
Default Stream 
 
Custom plugin service can have one or more input streams. The first stream which is 
connected to the custom plugin service activity is called default stream. To access the 
default stream, the variable “inputStream” can be used in java code. This variable will be 
instance of “java.io.InputStream”. Input streams other than default stream are accessed 
by their names. 
 
The following code snippet provides an example of how to access default input stream: 
 

int i=0; 
while ((i = inputStream.read()) != -1) { 
  //data manipulation 
 } 
Default stream can also be accessed using following code 
// imports  
import   com.adeptia.indigo.services.transform.ScriptedService; 
// type casting  “service”  to  ScriptedService instance 
ScriptedService scriptedService = (ScriptedService) service; 
//to get default stream , which is first stream as input  
InputStream default = scriptedService.getSourceStream(); 
int i=0; 
while ((i = default.read()) != -1)  
{ 
  //data manipulation 
} 

 
 
For more details, refer to the section Examples. 
 
Accessing Any Input Stream 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           8            

 
Since the input streams are assigned with a name to custom plugin service, so these can 
be accessed by name.  To check how many streams are assigned to custom plugin service, 
check “Source Stream” attribute for custom plugin service in PD. 
 
This attribute can take the value such as: 
 
ActivityName1: ActivityName2[stream2]: ActivityName3[mystream] 
 
Its parameters are outlined in the table below.  
 

Parameter Description 

Character ‘:’ Separates the different input streams 

ActivityName1 Name of source activity sending the default 
stream to custom plugin service 

ActivityName2 Name of source activity sending the stream2 
stream to custom plugin service 

ActivityName3  Name of source activity sending the mystream 
stream to custom plugin service 

 
 
The following code snippet provides an example of how to access these streams: 
 

// import  

import   com.adeptia.indigo.services.transform.ScriptedService; 

// type casting  “service”  to  ScriptedService instance 

ScriptedService scriptedService = (ScriptedService) service; 

// getting input streams 

// first stream is also default stream 

InputStream in1 = 
scriptedService.getSourceStream(“ActivityName1”); 

InputStream in2 = 
scriptedService.getSourceStream(“ActivityName2[stream2]”); 

InputStream in3 = 
scriptedService.getSourceStream(“ActivityName3[mystream]”); 

 
Interacting With Output Stream 
 
Output streams are the data streams, which are passed from current custom plugin 
service activity to target activities. Data can be written to any stream by following method 
exposed by custom plugin service: 
 
write(byte[] b, String streamName) 
 
Its parameters are outlined in the table below.  
 

Parameter Description 

‘b’ Byte Array 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           9            

streamName Name of output stream 

 
 

 
If no stream exists with name given above, then exception will be 
thrown.  

 
 
In PD, check the attribute “StreamNames” for custom plugin service activity. This attribute 
can take the value such as:     
 
Stream1:Stream2:Stream5 

 
Its parameters are outlined in the table below. 
 

Parameter Description 

Character ‘:’ Separates the different output streams 

Stream1 Name of the target stream sending data from 
custom plugin service to target activity. 

Stream2 Name of the target stream sending data from 
custom plugin service to target activity. 

Stream5 Name of the target stream sending data from 
custom plugin service to target activity. 

 

The following code snippet gives the information to access output stream. 
 
// imports  

import   com.adeptia.indigo.services.transform.ScriptedService; 

import   java.io.OutputStream; 

 

// type casting  “service”  to  ScriptedService instance 

ScriptedService myscriptedService = (ScriptedService) service; 

//to write data on stream “default” 

 myscriptedService.write(“data to send”.getBytes(),”Stream1”);                       

 

//alternative way to get outstream is  

OutputStream os = service.getOutputStream(“Stream1”); 

 

Interacting With Context Variables 

Context is process flow context. Process flow variables can be accessed/created through it. 
 
To get a Context Variable’s value from a Process Flow 
 

The following code snippet gives the information to access Process flow variables. 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           10            

//To get value of process flow variable “orderName” 

String     orderName  = context.get(“orderName”); 

 
 

//To get value of filePath attribute of FileSource activity after  

//its execution. Here “filesource1” is of FileSource type  

String     activity1_filePath  = 
context.get(“Service.filesource1.filePath”); 

 
The activity’s attribute can be accessed after its execution by following convention: 
 
      

Service.<ActivityName>.<AttributeName> 
 
Like Service.filesource1.filePath 
 
Its parameters are outlined in the table below. 
 
Parameter Description 

Service literal specifying the service 

filesource1 Name of the FileSource type activity. 

filePath Name of the attribute in the filePath 

 
The following code snippet gives the information to get the value of the Process flow 
variables ‘myMap’ and ‘FirstValue’. 
 

//To get value of process flow variables ‘myMap’ and ‘FirstValue’ 
import java.io.Map; 

import java.io.Hashtable; 

Map     map  = (java.io.Map) context.get(“myMap”); 
Hashtable ht= (Hashtable)context.get(“FirstValue”); 

 
To set a context variable’s value in process flow  
 
The following code snippet gives the information to set the context variable’s value in the 
process flow. 
 
//To set value in process flow variable “orderName” 

context.put(“orderName”,”purchaseOrder”); 

 

//To set value of filePath attribute of FileSource activity before its 
execution. Here “filesource1” is of FileSource type  

import java.io.Map; 

Map map= (Map)context.get(“filesource1.params”); 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           11            

map.put(“filePath”,“c:\mypath\myfile.txt”); 

context.put(“filesource1.params”,map); 

 

The activity’s attribute can be set before its execution by following convention:      
 

Map map= (Map)context.get(“<ActivityName>.params”); 

map.put(“<AttributeName>”,”c:\mypath\myfile.txt”); 

context.put(“<ActivityName>.params”,map); 
 
Its parameters are outlined in the table below. 
 
Parameter Description 

ActivityName Name of the activity like fileSource1 

AttributeName Name of the attribute like filePath 

 

The following code snippet gives the information to set the value in the process flow variable. 
 

//To set value in process flow variable 

import java.io.Map; 

import java.io.HashMap; 

Map     mymap  = new HashMap(); 
mymap.put(“customerName”,”John”); 
mymap.put(“customerId”,”34344”); 
context.put(“customerMap”,mymap); 

 

 
The created process flow variables may not be available in PD GUI. But 
these can be accessed through Put-Context-Variable.  

 
 

Data Handling and Transformation 

 
Custom plugin service can get two types of input streams: 
 
XML/Plain Streams  
 
An XML stream can be generated by schema type activity and can be passed to current 
custom plugin service.  It can also be generated by file source activity if the file source 
activity is pointing to an XML file. Data into XML stream are passed into XML format. 
 
For example: 

FileSource  TextSchema  ScriptedService  Target 
 
The Text Schema activity has the attribute TransfomerType, which has value Stream2XML. 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           12            

Plain stream can be generated by Source Type activity (except XML Source) and can be 
passed to current custom plugin service.  No transformation is done in Plain stream. 
 

For example:  

FileSource  ScriptedService  Target 
 
These streams are accessible by accessing input streams mentioned in section 2. 
 
Record Streams    
 
A record stream is a stream where records are written one by one. This stream can be 
accessed the same way as mentioned in section 2 but with minor changes. 
 
import com.adeptia.indigo.io.RecordStreamFactory; 
import com.adeptia.indigo.io.RecordInputStream; 
import com.adeptia.indigo.io.Record; 
 
// getting record stream by using RecordStreamFactory’s static 
method 
//public static RecordInputStream createInputStream(InputStream 
inputStream, Schema schema, String format) 
 
RecordInputStream ris=  
RecordStreamFactory.createInputStream(inputStream, null,  
RecordStreamFactory.NATIVE_FORMAT); 
 
Record rec= null; 
while( (rec=ris. ReadRecord())!=null) 
{ 
  
//code…… 
} 
 
For example  
Record stream can be generated by TextSchema. 
 
FileSource  TextSchema  ScriptedService  Target 
 
Here TextSchema activity has following attributes values  
Transformer Type  --   SchemaStream2IntermediateSchema 
Format  -                      Native 
 

 

Calling External Java or Native Programs 

Calling Java programs 
 
Java programs can be called directly from custom plugin service provided the class path 
has been set in Adeptia server environment. To know how to set the path in Adeptia 
Server environment refer to the section Dependency.  Custom plugin service also needs 
to add ‘import’ for the classes to be used in the custom plugin service.  
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           13            

Creating Java Packages 
 
Steps to create Java packages 
 

1. Create java packages to create classes in particular class hierarchy. For example, folders 
can be created in hierarchy samples/javaprograms. 

2. Create a java program. 

package samples.javaprogram; 
public class sampleJavaProgram  
{ 

public String hello(String name) 
{ 

  return “Hello ”+name+” !”  ;     
 } 
 } 
 

3. Create samples.jar of this class and put in folder ServerKernel/Samples. 

4. Set jar path in launcher.properties. Add line samples/samples.jar. 

5. Restart Adeptia Kernel server. 

 
Importing Java Packages into Custom plugin service 
 
The sample code used to import Java Packages is outlined below 
 

import samples.javaprogram.sampleJavaProgram; 
 
String username = (String) context.get("username"); 
try { 
sampleJavaProgram cjp= new sampleJavaProgram(); 
 String  greeting = cjp.hello (username); 
 System.out.println("Result ---> " +username); 
 context.put("result", username); 
} catch (Exception e) { 
 // customize exception message   
 throw new Exception(e); 
} 

 
Calling Native programs 
 
Native programs can be called by Custom plugin service using the following command:  

 
Runtime.getRuntime().exec("executable command") 

 
For more details, read java docs for java.lang.Runtime class.          
  
For example,  
 

Process Child = Runtime.getRuntime().exec("ADD.exe  44  56"); 
DataInputStream dis =new DataInputStream(child.getInputStream) 
String sum =dis.readline(); 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           14            

            

Here, executable file name is ADD.exe and arguments are 44 and 56. 
 

Logging 

 
Log instance is available with custom plugin service instance. This can be accessed by the 
following command:  

 
import com.adeptia.indigo.logging.Logger; 
 
//getting logger for the current custom plugin service 
Logger log= service.getLogger();  
 
//following type of message can be sent  
 
//debug message  
log.debug(msg); 

 
The debug message will not appear in log messages if log level is set to INFO or ERROR 

 
//info message 
 log.info(msg); 

 
Info message will not appear in log messages if log level is set to ERROR 

 
//error message 
log.error(msg); 

Exception Handling 

Custom plugin service can be written to have complex logic. There are two types of errors 
associated with java code: 
 
Compile Time Errors 
 
Compile time errors are those errors which are related to syntax of the code as well as 
handling of exception.  If there is any Compile time error in the java code, Custom plugin 
service is aborted on the first compilation. If there are checked exceptions (like 
FileNotFoundException), add them to handle in the code. 

 
Runtime Errors 
 
Runtime errors can be caught by java try catch block. But it is recommended to re-throw 
the error after adding customized message. 

 
try{ 
 
}catch(Exception e){ 

throw new Exception(message, e); 
      } 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           15            

Dependency 

If customized code has dependency upon external classes or jar files, then path of those 
classes or jar files needs to be set in the Adeptia Server environment. 
 
Steps to set the path in the Adeptia Server environment 
 

1. Open launcher.properties file from ../../AdeptiaServer4.6/serverkernel/etc folder. Here 
first two dots represent drive letter and second two dots represent the folder where 
Adeptia Server is installed. 

2. Add the absolute path or relative path (with respect to serverkernel folder) of the 
external class or the jar files. 

3. Save the file and close it. 

4. Restart the Adeptia Server kernel. 

 

Examples 

Example1: Sending Input Stream Data to two Output Streams  
 
Description 
 
Stream coming from File Source (zip file) and extracting two files and sending it two 
output streams. 
 
Setup  
 

1.   Custom plugin service should have one incoming input stream and two output streams. 

2. Check PD for current custom plugin service activity for attribute  Source Stream (for 
input) and Stream Names (for output) 

Code 
 

import java.io.BufferedInputStream; 
import java.util.zip.ZipInputStream; 
import java.util.zip.ZipEntry; 
  
  
ZipEntry ze = null; 
         
        //    Reading the input data 
        //    inputStream - represents the input data Stream, 
which is 
        //    implicitly available to Script 
        //     Any data processing logic 
  
        ZipInputStream zin = new ZipInputStream(new 
BufferedInputStream( 
                inputStream)); 
  



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           16            

        while ((ze = zin.getNextEntry()) != null) { 
            if (ze.getName().equals("FirstFile.txt")) { 
                //getting size 
                int filesize = (int)ze.getSize(); 
                byte[] bytes = new byte[ n]; 
                zin.read(bytes,0,n);  
                //     Writing output data to output stream read 
by another 
                // activity. 
                //    service - this is the "Custom plugin 
service" Service object, 
                //    which is also available implicitly to the 
script 
                service.write(bytes, "Stream1"); 
                //    Note- Stream1 should be output stream, 
this can be 
                //     checked in PD for current custom plugin 
service activity 
            } 
  
            if (ze.getName().equals("SecondFile.txt")) { 
                //    getting size 
                int filesize = (int)ze.getSize(); 
                byte[] bytes = new byte[ n]; 
                zin.read(bytes,0,n); 
                //     Writing output data to output stream read 
by another 
                // activity. 
                //    service - this is the "Custom plugin 
service" Service object, 
                //    which is also available implicitly to the 
script 
                service.write(bytes, "Stream2"); 
                //    Note- Stream2 should be output stream, 
this can be 
                //     checked in PD for current custom plugin 
service activity 
            } 
        } 
  
        zin.close(); 

 
 
Example 2:  Getting XML as input stream and sending the data to 
one output stream 
 
Description 
 
Stream coming from Schema type activity or File Source (XML File) activity and parsing 
and creating DOM parser object to do specific task and then sending data to output 
stream. 
 
Setup 

1.     Custom plugin service should have one incoming input stream and one output stream. 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           17            

2. Check PD for current custom plugin service activity for attribute Source Stream (for 
input) and Stream Names (for output) 

 
Code 

 
import javax.xml.parsers.DocumentBuilder; 
import javax.xml.parsers.DocumentBuilderFactory; 
  
import org.w3c.dom.Document; 
import org.w3c.dom.NamedNodeMap; 
import org.w3c.dom.Node; 
import org.w3c.dom.NodeList; 
 
//getting factory instance  
DocumentBuilderFactory factory =     
DocumentBuilderFactory.newInstance(); 
 
        //getting parser 
        DocumentBuilder parser = factory.newDocumentBuilder(); 
 
        //getting document 
        Document doc = parser.parse(inputStream); 
 
        //getting all employee nodes  
        NodeList nlist=doc.getElementsByTagName("Employee"); 
 
        int length=nlist.getLength(); 
        //getting employee name  
        for(int i=0;i<length;i++){ 
            Node node= nlist.item(i); 
            NamedNodeMap nodeMap= node.getAttributes(); 
            Node nameNode= nodeMap.getNamedItem("name"); 
            String name = nameNode.getNodeValue(); 
            //writing employee names   
            service.write(("Employee "+i+":"+ 
name+"\n").getBytes(),"stream1"); 
             
             
        } 

 
Input XML Data 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<Root xmlns:java="http://xml.apache.org/xslt/java"> 
<Record> 
 <Employee name="John" age="22" salary="6000" /> 
</Record> 
<Record> 
 <Employee name="Peter" age="35" salary="12000" /> 
</Record> 
<Record> 
 <Employee name="James" age="45" salary="8000" /> 
</Record> 
<Record> 
 <Employee name="Ricky" age="21" salary="10000" /> 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           18            

</Record> 
<Record> 
 <Employee name="Robert" age="25" salary="5000" /> 
</Record> 
<Record> 
 <Employee name="Nick" age="35" salary="6000" /> 
</Record> 
<Record> 
 <Employee name="Mike" age="42" salary="9000" /> 
</Record> 
</Root>     

 
Example 3:  Getting Records from input record stream and sending 
the data to output stream 
 
Description 
 
A Schema type activity can send record stream to custom plugin service. Attributes of 
Schema activity (check PD for schema activity) namely “Transformer Type” and “Format” 
can be set to   “SchemaStream2IntermediateTransformer” and “NATIVE” respectively. 
 
Setup 
 

1. Custom plugin service should have one incoming input stream and one output stream. 

2.  Check PD for current custom plugin service activity for attribute    

3. Source Stream (for input) and Stream Names (for output) 

4.  Record stream is coming from Text Schema having three fields name, age, and salary 
having format string, number, and number respectively. 

 
Record Format 
 
A record can have multiple fields and each field has a value. This value can be used to 
create  

java.lang.String, java.util.Date or java.lang.Double objects 

Generic method to get object  

Object obj= record.getObject(“field_name”); 
 
Code 
 

import com.adeptia.indigo.io.RecordStreamFactory; 
import com.adeptia.indigo.io.RecordInputStream; 
import com.adeptia.indigo.io.Record; 
import java.io.EOFException; 
 
/* 
* getting record stream by using RecordStreamFactory’s following 
static 
* method 
*  
* public static RecordInputStream createInputStream(InputStream 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           19            

* inputStream, Schema schema, String format) 
*/ 
 
RecordInputStream ris = RecordStreamFactory.createInputStream( 
                inputStream, null, 
RecordStreamFactory.NATIVE_FORMAT); 
  
        Record record = null; 
        try { 
            //header present  
            boolean headerRecordCheck=false; 
 
              //writing to output stream 
               service.write("Writing record \n".getBytes(), 
"Stream1"); 
 
            //reading record 
            while ((record = ris.readRecord()) != null) { 
              //check if header record is present    
              if(headerRecordCheck){ 
                 headerRecordCheck=false; 
                  continue; 
                } 
                
                //        getting field values 
                String name = (String)record.getObject("name"); 
                String age = (String)record.getObject("age"); 
                String salary =(String) 
record.getObject("salary"); 
  
                service.write((" Name:--" + name ).getBytes(), 
"Stream1"); 
                service.write((" Age:--" + age).getBytes(), 
"Stream1"); 
                service.write((" Salary:--" + 
salary).getBytes(), "Stream1"); 
                 // new line  
                service.write("\n".getBytes(), "Stream1"); 
 
            } 
        } catch (EOFException e) { 
            //end of record stream reached 
            service.write("End of records \n".getBytes(), 
"Stream1"); 
  
        } catch (Exception e) { 
  
            //error in stream handling 
            throw e; 
  
        } 

 
Example 4:  Getting Records from input record stream and sending 
the data to output stream as XML output 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           20            

Description 
 
A Schema type activity can send record stream to custom plugin service. Attributes of 
Schema activity (check PD for schema activity) namely “Transformer Type” and “Format” 
can be set to   “SchemaStream2IntermediateTransformer” and “NATIVE” respectively. 
Custom plugin service will read the record stream and it will convert it to XML stream. 
 
Setup 
 

1. Custom plugin service should have one incoming input stream and one output stream. 

2. Check PD for current custom plugin service activity for attribute    

3. Source Stream (for input) and Stream Names (for output) 

4. Record stream is coming from Text Schema having three fields name, age and salary 
having format string, number, and number respectively. 

 
Record Format 
 
A record can have multiple fields and each field has a value. This value can be used to 
create  
 

java.lang.String, java.util.Date or java.lang.Double objects 
 
Generic method to get object  
 

Object obj= record.getObject(“field_name”); 
Object obj= record.getObject(“field_name”); 

 
Code 
 
import com.adeptia.indigo.io.Record; 
import com.adeptia.indigo.io.RecordInputStream; 
import com.adeptia.indigo.io.RecordStreamFactory; 
import com.adeptia.indigo.io.XmlEncoder; 
import com.adeptia.indigo.services.transform.ScriptedService; 
 
//getting the current custom plugin service instance 
ScriptedService scriptedService = (ScriptedService) service; 
 
/* 
* getting record stream by using RecordStreamFactory?s following 
static 
* method  
* public static RecordInputStream createInputStream(InputStream 
* inputStream, Schema schema, String format) 
*/ 
        RecordInputStream ris = 
RecordStreamFactory.createInputStream( 
                inputStream, null, 
RecordStreamFactory.NATIVE_FORMAT); 
  
        Record record = null; 
  



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           21            

        XmlEncoder xme = null; 
        try { 
   /* 
   * creating instance of XmlEncoder to send XML data use 
constructor 
   * public XmlEncoder(OutputStream ostream, String 
   * characterSetEncoding) 
   */ 
  
 xme = new  XmlEncoder(scriptedService.getOutputStream("Stream1"),    
"ISO-8859-1"); 
  
            //        writing xml header 
            xme.writeProlog(); 
  
            //        reading record 
            while ((record = ris.readRecord()) != null) { 
                //        writing record 
                xme.writeRecord(record); 
            } 
        } catch (EOFException e) { 
            //end of record stream reached 
            xme.close(); 
  
        } catch (Exception e) { 
  
            //error in stream handling 
            throw e; 
  
        } 

 
Example 5:  Calling a native program and passing input 
parameters and getting result back 
 
Description 
 
A native program can be called from java program and result can be used back in 
program. 
 
Setup 
 

1. A native program .exe/.bat should accessible. 

2. Custom plugin service generates an output stream “Stream1” and consume no stream.  

 
Code 
 

import java.io.BufferedReader; 
import java.io.InputStreamReader; 
 
  
        //  store the result in string buffer 
        final StringBuffer result = new StringBuffer(); 
        final StringBuffer errorResult = new StringBuffer(); 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           22            

          
       String osName = System.getProperty("os.name"); 
       System.out.println("OS name "+ osName); 
 
        String commandStr = null; 
        /* for windows 2000 use "cmd" and for  windows 95 use 
"command" for   
            command shell 
       */ 
        if (osName.equalsIgnoreCase("WINDOWS 95")) { 
            commandStr = "command"; 
        } else if (osName.equalsIgnoreCase("WINDOWS 2000") 
                || osName.equalsIgnoreCase("WINDOWS NT") 
                || osName.equalsIgnoreCase("WINDOWS XP")) { 
            commandStr = "cmd"; 
        } 
  
        /* 
         * To get window directory command output 
         * creating command string 
         */ 
        String[] cmd = new String[4]; 
        cmd[0] = commandStr ; 
        cmd[1] = "/c"; //Carries out the command specified by 
string and then terminates 
        cmd[2] = "dir"; //Path to exe/bat file 
        cmd[3] = "c:\\"; //argument can be passed from context 
context.get(arg1); 
 
 
        // getting runtime object, for more detail see java docs 
for java.lang.Runtime 
        Runtime rt = Runtime.getRuntime(); 
        //        executing command 
        Process p = rt.exec(cmd); 
  
        //  starting error and outputstream streams in separate 
threads. 
        final BufferedReader outputStream = new BufferedReader( 
                new InputStreamReader(p.getInputStream())); 
        final BufferedReader errorStream = new BufferedReader( 
                new InputStreamReader(p.getErrorStream())); 
  
        Thread errorThread = new Thread(new Runnable() { 
            void run() { 
                try { 
                    String err_str = ""; 
                    while ((err_str = errorStream.readLine()) != 
null) { 
                        errorResult.append(err_str+"\n"); 
                    } 
                } catch (IOException e) { 
                    System.err.println(e); 
                } 
  
            } 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           23            

        }); 
        //     starting error thread 
        errorThread.start(); 
  
        Thread outputThread = new Thread(new Runnable() { 
            void run() { 
                try { 
                    String out_str = ""; 
                    //capturing process output 
                    while ((out_str = outputStream.readLine()) != 
null) { 
                        result.append(out_str+"\n"); 
                         
                    } 
                } catch (IOException e) { 
                    System.err.println(e); 
                } 
            } 
        }); 
  
        //        starting output thread 
        outputThread.start(); 
        //        waiting for process to end 
        int k = p.waitFor(); 
  
        System.out.println("Process status: " + k); 
        System.out.println("Process output:\n" + result); 
        System.out.println("Error Stream:\n" + errorResult); 
        System.out.println("End........."); 
 
        if (k > 0) { 
            /* 
             *      if process status is greater than zero , then 
this could be an 
             *      error depending upon the called application 
             */ 
             
            //throw exception if necessary  
             
            //throw new Exception(errorResult.toString()); 
        } 
        //setting result in context 
        context.put("result", result); 
        //writing to output stream  
       service.write(result.toString().getBytes(), "Stream1"); 

 
 

 

Some applications do not set process status to greater than zero in 
case of error occurs. 

Some applications do not send error to the error data streams but 
they send them to the output stream.  

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           24            

CUSTOM API FOR CUSTOM JAVA DEVELOPMENT 
 
Adeptia uses custom APIs for custom Java development. They can be categorized as: 
 

 Java API for Adeptia product 

 Java API for Third Party Libraries 

 
A few of these APIs are covered in this document. More APIs will be added in future 
versions.  

JAVA API FOR ADEPTIA PRODUCT 
 
Java APIs for the Adeptia product are available in a separate document (adeptiaAPI.zip) 
in a java doc format. Following APIs are included in this version: 
 
 com.adeptia.indigo.utils.MBeanUtils  

 com.adeptia.indigo.system.IndigoConfig  

 com.adeptia.indigo.system.Context  

 com.adeptia.indigo.storage.EntityManager  

 com.adeptia.indigo.storage.EntityManagerFactory  

 com.adeptia.indigo.storage.TypedEntityId  

 com.adeptia.indigo.logging.Logger  

 com.adeptia.indigo.utils.TransactionInformation 

 

JAVA APIS FOR THIRD PARTY LIBRARIES 
 
In addition to the inbuilt Java APIs, Adeptia supports certain external APIs for custom coding. 
These are outlined in the table below. 

Third Party API Version  Source Description 

JRE 1.5 Sun It is the Java runtime environment.  

HSQLDB 1.8 SourceForge It is used as an embedded database. It is a 
relational database management system 
written in Java. 

Castor 0.9.6 Codehaus It is used for Java-to-SQL persistence with 
JDO approach. It is an Open Source data 
binding framework for Java[tm]. It's the 
shortest path between Java objects, XML 
documents and relational tables. Castor 
provides Java-to-XML binding, Java-to-SQL 
persistence, and more. 

Log4J 1.2.8 Apache It is a Java-based logging utility and is used 
for logging. 

Jasper 4.0.4 SourceForge Jasper Reports is a powerful open source 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           25            

Java reporting tool that has the ability to 
deliver rich content onto the screen, to the 
printer or into PDF, HTML, XLS, CSV and 
XML files. 

VFS 1 Apache The Commons VFS provides a single API for 
accessing various different file systems.  

Java Mail API NA Sun This is the Java API for mail. 

 

JRE  

Jar Files Required 
 
No jar files are required for this API 
 
License Type 
 
http://www.java.com/en/download/license.jsp
 
Website  
 
http://www.java.com/en/download/manual.jsp
 
Download Link 
 
http://www.java.com/en/download/manual.jsp
 
 

HSQLDB  

Jar Files Required 
 

 hsqldb-1.7.1.jar 

 jtds-1.2.jar 

 
License Type 
 
Based on BSD License  
 
http://hsqldb.org/web/hsqlLicense.html
 
Website  
 
http://hsqldb.org/
 
Download Link 
 
http://sourceforge.net/project/showfiles.php?group_id=23316&release_id=339171
 
 

http://www.java.com/en/download/license.jsp
http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/manual.jsp
http://hsqldb.org/web/hsqlLicense.html
http://hsqldb.org/
http://sourceforge.net/project/showfiles.php?group_id=23316&release_id=339171


                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           26            

Castor  

Jar Files Required 
 

 castor-0.9.6.jar 

 
License Type 
 
Apache 2.0 License. 
 
http://www.apache.org/licenses/LICENSE-2.0
 
Website  
 
http://www.castor.org/index.html
 
Download Link 
 
http://www.castor.org/download.html
 
 

Log4J  

Jar Files Required 
 

 log4j-1.2.8.jar 
 log4j-jdbcplus.jar 

 
License Type 
 
Apache 2.0 License. 
 
http://www.apache.org/licenses/LICENSE-2.0
 
Website  
 
http://logging.apache.org/log4j/docs/index.html
 
Download Link 
 
http://logging.apache.org/log4j/docs/download.html
 
 

Jasper  

Jar Files Required 
 

 jasper-compiler-4.0.4.jar 

 jasper-runtime-4.0.4.jar 

 

http://www.apache.org/licenses/LICENSE-2.0
http://www.castor.org/index.html
http://www.castor.org/download.html
http://www.apache.org/licenses/LICENSE-2.0
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/download.html


                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           27            

Website  
 
http://jasperforge.org/
 
Download Link 
 
http://www.jasperforge.org/index.php?option=com_content&task=section&id=16&
Itemid=277
 
 

VFS  

Jar Files Required 
 

 commons-vfs-1.0-dev.jar 

 commons-httpclient-2.0.2.jar 

 commons-net-1.4.1.jar 

 jsch-0.1.5.jar 

 jakarta-slide-webdavlib-2.1.jar 

 jdom-1.0.jar 

 jdom-1.0b8.jar 

 jcifs-1.2.9.jar 

 
License Type 
 
Apache 2.0 License. 
 
http://www.apache.org/licenses/LICENSE-2.0
 
Website  
 
http://jakarta.apache.org/commons/vfs/
 
Download Link 
 
http://jakarta.apache.org/commons/vfs/download.html
 
 

Java Mail API  

Jar Files Required 
 

 mail.jar 

License Type 
 
http://www.java.com/en/download/license.jsp
 

http://jasperforge.org/
http://www.jasperforge.org/index.php?option=com_content&task=section&id=16&Itemid=277
http://www.jasperforge.org/index.php?option=com_content&task=section&id=16&Itemid=277
http://www.apache.org/licenses/LICENSE-2.0
http://jakarta.apache.org/commons/vfs/
http://jakarta.apache.org/commons/vfs/download.html
http://www.java.com/en/download/license.jsp


                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           28            

Website  
 
http://java.sun.com/products/javamail/
 
Download Link 
 
http://java.sun.com/products/javamail/downloads/index.html
 

http://java.sun.com/products/javamail/


                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           29            

 

DESIGN PATTERNS 
 
A design pattern offers readymade solutions to standard business scenarios, encountered 
while developing complex solutions.  
 

OBJECTIVE  
 Provide readymade solutions to standard problems 

 Identify which service to use in a business scenario 

 Provide guidelines on how to use a service in a business scenario 

 Provide comprehensive information associated with using a service 

BUSINESS SCENARIOS 
Business scenarios refer to the standard problems that are commonly encountered by a 
developer, while developing complex solutions. These can be divided into the different groups. 
A few scenarios are described in this version. More scenarios will be covered in future 
versions.  
The scenarios are divided into the following groups: 
 

 Developing complex GUI for Human workflow 

 Publishing a process flow as Web Service 

 Event Triggered Process Flows 

This section covers common problems that occur when triggering a process flow on an event.  
One such problem and its solution is described in this version. Others will be covered in future 
version. 

 
 Triggering a  process flow on database trigger (Database Event) 

 Triggering a  process flow on File Modified event on FTP (FTP Event)  

 Triggering a  process flow on File Modified event on local system (File 
Event) 

 Triggering a  process flow on email  

 Triggering a process flow on HTTP event 

 
 Mapping Complex scenarios   

Common problems that occur when mapping fields are outlined as: 
 

 Using XSL template for padding fields 

 JTA Rollback 

Common problems that occur when using JTA Rollback are outlined as: 
 

 Using same database related tables under Transaction 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           30            

 Using different database tables under Transaction 

 
 Stored Procedure 

Common problems that occur when using stored procedures are outlined as: 
 

 Using Stored procedure in Database source for SQL Server 

 
 Jasper report design and generation 

 
 Resubmitting erroneous records after correction  

 
  Usage of PutContextVar 

Common problems that occur when using PutContextVar are outlined as: 
 

 Dynamically overriding activity parameters 

 Dynamically overriding activity  

 
 Dynamically overriding activities in a process flow 

Common problems that occur when dynamically overriding activities in a process flow are   
outlined as: 

 Overriding schema to handle various data format 

 Overriding Source to decide data source at run time 

 Overriding target to decide data target at run time for dynamic content 
routing 

 Overriding Mapping to apply transformation as per incoming data format 

 
 Dynamically assigning a human workflow task to a user  

 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           31            

DEVELOPING COMPLEX GUI FOR HUMAN WORKFLOW 
 

Objective 

This document describes methods to create complex forms in Human Workflow. 

Requirements 

 To allow a user to review the data in a simple layout in the browser  

 To allow a user to update the data in Browse after review and send it back to the 
process  

 To allow a user to add new data fields in Browser, insert value in data fields and send 
it back to the process  

 To organize the data in two layouts: 

 Grid Layout  

 It supports Flat data  

 It supports Hierarchical data  

 Form Layout  

 Form layout supports navigation from one page to another 

 Form can have pre-populated values that comes from database 
based on parameters passed from process flow 

Approaches 

Most of the practical scenarios can not be addressed by dynamic HTML only. You require 
additional dynamic behavior of the web pages and interaction with server end to get the 
required information. Adeptia BPM platform supports this and allows a user to integrate the 
web application that user has created using JSP or AJAX using GWT outside the product in 
standard editor. 

Use of custom JSP 

This approach is described with the help of an example.  
 
Example scenario  
 
Case 
You have a business process that gets data in excel format. Data is validated and verified and 
the correct data is loaded into the database. The data records that are erroneous are to be 
reviewed and updated online and integrated as Human Workflow activity in the business 
process. 
 
Assumptions 
 

 A dummy table “ERROR_DATA” is created to capture the error records 

 All the error record is populated in table. 

 The table has additional column to store process flow domain ID (PID) 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           32            

 The PID is set in process flow context using Custom Plugin (scripted service). 

 
Example code  

 
import com.adeptia.indigo.system.*; 
ObjectAddress obj=(ObjectAddress)context.get("TransactionAddress"); 
String pid=obj.getTransactionPid(); 
context.put("PID",pid); 
 

Creating JSP 

1. Get the process flow Domain ID. This will be passed from process flow 

String PID= request.get(“PID”); 

2. Query the database to get all the error records for this PFID 

String dbInfoID= “12334455566677778” 

3. This is an ID of the “DatabaseInfo” activity that has been defined in the Adeptia Sever. It 
captures all the parameters to connect to database. 

4. Use Adeptia API to read all database connectivity parameter and write JDBC code to 
query database. 

Select * from ERROR_DATA where PFDID= PFID 

5. Render the result set in required layout for example grid. Keep all the values that can be 
updated as editable. 

6. Give user a submit button that he can use after review and update. 

7. The update data is pushed back to database using “Insert query” 

For example, you have created  “Review.jsp”. 
 
Integrating with Adeptia 

1. Deploy the JSP  by copying the jsp to: 

 “ServerKernel/web/”  repository 

2. Pass the information from process flow context to custom JSP (for example Review.jsp) 

 Define all the context variables that need to be passed to custom JSP in 
Human Workflow activity form. 

 Call the script function in HTML of Human Workflow activity. For example, 
in the given case you need to pass PID to custom JSP. You have already 
set PID value in context. 

3. Use the following HTML code 

 The Review.jsp is invoked through review link in java script function 

 Write a Java script function is mandatory because it will allow passing 
dynamic parameters to custom JSP through URL rewriting  

 PID is passed to custom JSP. You can pass any number of variables 

 
<link rel="stylesheet" href="css/ui.css" type="text/css" /> 
<table width="100%" border="0" background="images/top-streach.gif" 
cellspacing="0" cellpadding="0"> 
        <tr> 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           33            

          <td><img src=images/adeptia-logo.gif width="354"     
           height="37"></td> 
        </tr></table><br> 
        <table width="100%" border="0" cellspacing="0"   
         cellpadding="0"> 
         <tr> 
           <td h eight="18" class="headings">Template  
               Review</td></tr></table><br><br> 

       <a href='javascript:review();'> 
          <font color=blue>Review</font></a> 
          <table width='100%'  border=0><tr height='10'><td></tr><tr    
          ><td><form name=HTMLForm><TABLE><TR><td>Processflow  
          DomainId</td><td><input type=text name=PID  
          readOnly></TD></TR><TR><TD colspan=2><input type=button  
          name='partialSubmit' value='Save Task'><input type=button  
          name='fullSubmit' value='Complete  
          Task'></TD></TR></TABLE></form></td></tr></table> 
</Form> 
<script> 
function review() 
{ 
  var pid=document.HTMLForm.PID.value; 
  var vWinTrans=window.open("Review.jsp?PID="+pid     
,"_blank","toolbar=yes,location=no,directories=no,status=no,menubar=  
yes,scrollbars=yes,resizable=yes,copyhistory=no"); 
} 
</script> 

 
xe man Workflow 

hile executing the Human Workflow activity, a task will be added to user task. To execute 

n into Adeptia. 

er and execute the task. A basic page / Framework page is 

3.  

l back to 

E cution of Hu
  
W
this task: 

1. Logi

2. Go to the Task Manag
displayed (This page can be design quite well with HTML expertise).  

Invoke the custom jsp as a popup in a new window by clicking the URL on the page.

4. Once you have navigated through required custom pages, you can close them. 

5. To complete the Human Workflow activity, you need to take the contro
Framework page and click the “Complete Task” button. 

 
In complex Human Workflow activities where multiple forms are used, 
the Framework page can be treated as the Adeptia Home page (It is just 
one design best practice).  

 
nhancements in Adeptia 

 Allow session to pass the process flow domain ID to any custom JSP invoked from 

 ue for hidden variables so that it can be 

E
 

Human Workflow Html form. 

Allow Human Workflow Html form to keep val
passed to the custom JSP invoked from Human Workflow Html form. 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           34            

 

WORKING WITH WEB SERVICE PUBLISHER 
 
A business process can be treated as service and can be made available in Enterprise. The 
most interoperable way is to make it available as web service. Adeptia provides “WsProvider” 
to publish any business process as web service. 

Objective 

This document describes the method of publishing a business process as a web service.  

Tasks 

1. Creating a process flow 

2. Creating a security policy (optional) 

3. Creating a ‘WsProvider’ 

 

Example   

Case 
You have a business process that takes the Auto Insurance Policy application and returns back 
the Policy Quote.  You want to publish this process as a web service. 
 
Solution 
To publish the process as a web service, you need to design a process from perspective that it 
is similar to a function that takes input, processes it and generates output. While designing, 
you need to remember: 

 Web service always takes input as XML data.   

 Web service always generate output as XML data 

You need to define both XML data formats, the one that the web service will take as input and 
the format that the web service will generate as output. You can do this using the Adeptia XML 
schema activity. You need to define input and output XML schemas. 
 
Creating process flow 
 
Based on function analogy a process flow will have four parts:  

1. Defining input and output XML schemas 

2. Getting input data from client request  

3. Data processing logic 

4. Sending output back as response to client 

 
Defining Input and Output XML schema 
 
You need to use Adeptia XML schema activity to define XML schemas for input and output. To 
do that you need to define:   



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           35            

 The XSD for the input XML. For example, in given scenario you have an Auto 
Insurance “Policy application” as an input whose XML schema is defined in Appendix 
A.  

 The XSD for the output XML. For example, in given scenario the output generated is 
the “Policy Quote” .The output XML schema is defined in Appendix B. 

 
Getting Input Data from Client Request  
 
In the process flow you need to use “ContextSource” as activity. You need to define a 
“parameterName” in the “ContextSource” property. Web service client input data will be 
assigned to this parameter. The context source will read it from this “parameterName” and 
pass the data to any further activity for data processing. This is displayed in the Figure below.  
 

 
The “parameterName” user here will be used while defining the 
WsProvider activity as “input variable name” 

 

 
Figure: Adding context source activity and defining it in process flow 

 
Data Processing logic 
 
The input data is then processed to generate a required output. The data processing logic can 
include data transformation activity and other Adeptia activity or group of activities. To 
process the input data, it will use input XML schema activity. It will use output XML schema 
activity to generate output data in XML format. The output generated after processing the 
input data is set in the Process flow context through “contextTarget”. 
 
Sending Output back as response to client 
 
In the process flow, you need to use “ContextTarget” as activity. You need to define a 
“parameterName”. Web service client output data will be assigned to this “parameterName”. 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           36            

The “ContextTarget” will take data from the data processing activity and assign to the 
“parameterName” defined above. This is displayed in the Figure below. 
 

 

The “parameterName” user here will be used while defining the 
WsProvider activity as “output variable name” 

 

 
Figure: Adding “contextTarget” activity and defining it in process flow 

 
Once you connect all these activities in the process flow, you can publish the process flow.  
 
Creating Security Policy (Optional) 
 
Since Web Services expose crucial business information, Web services security is 
critically important. A Web service can be secured using Security Policy activity. If you 
want to secure the web service then you need to create an appropriate security policy 
before publishing the Web Service using the Web service provider. 
 

 

For details on creating Security Policy, refer to the Creating Security 
Policy Activity for Web Service section in the User Manual.  

 
Creating WsProvider 
 
Web Service Provider is used to publish a process flow that Web Service Client can access. 
Once a Web Service is published, it creates a WSDL and makes it available to the Adeptia 
Server users. You can use this WSDL to invoke the Web Service. The Web Service can be 
published in two modes: 

  Synchronous: In case the Web Service is published in synchronous mode the 
consumer waits for the completion of the process flow and hence for the output of the 
process flow. 

 Asynchronous: In case the Web Service is published in asynchronous mode the 
consumer does not wait for the process flow to be completed. Thus consumer gets 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           37            

only a Co-relation ID not the output of the process flow. Later on, using this Co-
relation ID, consumer can get the output. 

 
To create Web Service Provider: 

1. Enter the name and description of the new Web Service Provider activity in the Name and 
Description fields respectively.  

2. Uncheck the Asynchronous checkbox if you want to publish Web Service in Synchronous 
mode or else the Web Service will be published in asynchronous mode.  

3. Enter the request service name and response service name in the Request Service Name 
and Response Service Name respectively. The Web Service will be published with the 
respective service name given in Request/Response Service Name field. 

4. Select the process flow, which you want to publish as Web Service from the Process Flow 
Name drop-down list. (In this scenario, the process flow will be the above created 
Process flow). 

5. Select Input XML Schema from the Input XML Schema drop-down list. This XML Schema 
corresponds to the XML Input provided by Web Service consumer activity (In this 
scenario it will be the schema defined for Auto Insurance “Policy Application”). 

6. Select the Output XML Schema from the Output XML Schema drop-down list (In this 
scenario it will be the schema defined for “Policy Quote”). 

7. Enter the Input and Output Variables in the Input Variable and Output variable fields 
respectively (The variable name should be same as that of the “parameterName” value of 
context source and context target respectively). 

8. Select the Security Policy activity from the Security Policy drop-down list. 

 

The data entry is displayed in the Figure below.  

 
If any security policy is not selected, then the web service is published 
in anonymous mode, i.e., the web service published is not secure and 
any web service client can invoke the published Web service without any 
Adeptia authentication. 

 

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           38            

Figure: Creating WsProvider 
 
Execution of WsProvider 
 
Any Web service client can be used to invoke the Adeptia Process flow published as a Web 
service. To invoke the published web service the client requires the path where the WSDL is 
stored. The user can get the http path of the WSDL through the manage page of Web service 
Provider activity (see Figure below). 

 

 
Figure: Manage Web Service Provider 

 

The ViewDownload link can be used to know the WSDL path. User can save the WSDL in his 
local system and access the web service through that location. 

 
Adeptia server can also be used to invoke the published web service 
through the Web service Consumer activity. For details on creating Web 
Service Consumer activity, refer to the Creating Web Service Consumer 
Activity section in the User Manual.  

 

Appendix A (Input XML schema) 

 
Definition of input XML Schema is displayed in the Figure below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified" attributeFormDefault="unqualified"> 
 <xs:element name="Auto Insurance Policy"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="AgentName"/> 
    <xs:element name="AgentEmail"/> 
    <xs:element name="CustomerName"/> 
    <xs:element name="CustomerState"/> 
    <xs:element name="DriverRecord"/> 
    <xs:element name="VehicleType"/> 
    <xs:element name="VehicleModel"/> 
    <xs:element name="VINNumber"/> 
    <xs:element name="VehicleValue"/> 
    </xs:sequence> 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           39            

  </xs:complexType> 
 </xs:element> 
</xs:schema> 

 

Appendix B (Output XML schema) 

 
Definition of output XML Schema is displayed in the Figure below. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified" attributeFormDefault="unqualified"> 
 <xs:element name="Policy Quote"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="AgentName"/> 
    <xs:element name="AgentEmail"/> 
    <xs:element name="CustomerName"/> 
    <xs:element name="CustomerState"/> 
    <xs:element name="DriverRecord"/> 
    <xs:element name="VehicleType"/> 
    <xs:element name="VehicleModel"/> 
    <xs:element name="VINNumber"/> 
    <xs:element name="VehicleValue"/> 
    <xs:element name="Premium"/> 
    <xs:element/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
</xs:schema> 
 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           40            

 

USING DATABASE EVENT 
 
A Database event enables you to schedule a process flow to be triggered when a record is 
inserted, updated or deleted in a database table. 
 

Objective 

 To analyze the various methods of providing solutions when using Database event in 
business scenarios, on different database servers 

 To configure settings for different servers and their drivers to be used when using 
Database event 

 To identify the advantages and limitations of using a particular method to create 
Database event 

 

Tasks For Using Database Event 

The tasks involved in using a Database event are outlined as: 
 

 Creating Database Drivers and Database Info activities 

 Creating Database Event 

 Creating Process Flow 

 Registering Database Event 

 Activating Database Event 

 

Creating Database Drivers and Database Info  

The Database Driver and Database Info activities need to be created before creating the 
Database event.  
 
Database drivers that are used for a database event can be classified as: 
 

 Standard Type 4 Drivers 

 JDBC-ODBC Drivers 

Standard Type 4 Drivers 
 
“Type 4” drivers are pure Java drivers. They are database-specific, which implies that each 
database type has a separate dedicated “Type 4”driver. Some of these drivers are available for 
free on the web, whereas some need to be purchased under a commercial license. The free 
“Type 4” drivers that can be downloaded from the web are listed in the table below.  
 
A list of the standard Type 4 Drivers with their class name and jar files, and the Server URL 
required for Database Info, supported by a Database Event are outlined in the table below. 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           41            

 
 

Database Name Driver Main Class 
Name 

Driver Jar Files Server URL 

MSSQL com.microsoft.jdbc.sqls
erver.SQLServerDriver 

msbase.jar, 
mssqlserver.jar, 
msutil.jar  
 
(Bundled with 
Adeptia) 

jdbc:microsoft:sqlser
ver://<databaseServ
erName>:<portNumb
er>;DatabaseName=
< DatabaseName > 

SQL(using JTDS) net.sourceforge.jtds.jd
bc.Driver 

jtds-1.2.jar jdbc:jtds:sqlserver://<
databaseServerName>
: 
<portNumber>/Datab
aseName=< 
DatabaseName > 

 
Oracle 

oracle.jdbc.driver.Oracl
eDriver 

classes12.jar 
 
(Bundled with 
Adeptia) 

jdbc:oracle:thin:@<da
tabaseServerName>: 
<portNumber>:<datab
aseName> 
 

DB2 com.ibm.db2.jcc.DB2Dr
iver 

db2jcc.jar jdbc:db2://<database
ServerName>: 
<portNumber>/<data
baseName> 

HSQLDB Org.hsqldb.jdbcDriver hsqldb-1.8.0.1.jar 
(Bundled with 
Adeptia) 

jdbc:hsqldb:hsql://<da
tabaseServerName>:<
portNumber> 

Sybase com.sybase.jdbc2.jdbc.
SybDriver 
 

jconn2.jar 
 

jdbc:sybase:Tds:<ser
verName>:<portNum
ber>/?jconnect_versi
on=5 
 

 

 
In addition to the listed “Type 4” drivers, you can also use other “Type 
4” drivers that are available for these databases.  

JDBC-ODBC Drivers 
 
A JDBC-ODBC bridge driver enables a Java application to communicate with any ODBC 
complaint database. ODBC represents open database connectivity. Currently, mostly all 
databases are ODBC complaint.  
 
Pre-requisites 
 
Before creating a JDBC-ODBC Driver, you need to ensure that the following pre-requisites are 
conformed to: 
 

 The database and Adeptia product must be installed on the same machine.  

 The DSN must be created on the client machine.  

 
For details on creating a DSN, refer to Appendix 1.  



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           42            

 
A list of JDBC-ODBC Drivers with their class name and jar files, and the Server URL required 
for Database Info, supported by a Database event are outlined in the table below. 

 

Database Driver Driver Main Class Name Driver Jar 
Files 

Server URL 

MS Access sun.jdbc.odbc.JdbcOdbcDr
ivers 

NA  jdbc:odbc:<DSN name > 
 
jdbc:odbc:Driver={Microsoft 
Access Driver 
(*.mdb)};DBQ=<Microsoft 
Access DB filename (.mdb) 
with full path> 
 

MS Excel sun.jdbc.odbc.JdbcOdbcDr
ivers 

NA  jdbc:odbc:Driver={Microsoft 
Access Driver (*.xls)};DBQ 
=<Microsoft Excel filename 
(.xls) with full path> 

An example Server URL for each database is outlined in the table below. 
 

Database  Server URL 

MS Access Database jdbc:odbc:Driver={MicroSoft Access Driver (*.mdb)};DBQ
=\\dbserver\project1\project1.mdb 

MS Excel Database jdbc:odbc:Driver={MicroSoft Excel Driver (*.xls)};DBQ=\\ 
dbserver\project1\project1.xls 

 

There are a few limitations in accessing Excel data with JDBC-ODBC bridge drivers. These are 
outlined as: 

 You cannot update the data into target excel sheet. 

 
This driver is not recommended for production scenarios.  

 

 
If you are using paid drivers, you have to manually update the Driver 
Class Name and Server URL fields.  

 

Creating Database Event 

Database event can be created in two ways:- 
 

 Using SQL Query 

 Using SQL Trigger 

 

 
When creating a Database event, you need to ensure that the User ID 
and password must be defined with appropriate permissions. They 
should be assigned Read Only permission when using SQL Query and 
Read and Create permissions for SQL Trigger.   

 

Using SQL Query 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           43            

A SQL query is a command that is defined using a valid SQL statement. It is used to define 
trigger criteria in a process flow.  

When to use SQL Query 
 
There are certain scenarios in which you can use only the SQL Query method to define the 
Database event. These are outlined as: 
 

 Trigger Creation is not supported by the Database or by Adeptia 

At times, the database being used does not support trigger creation, or the database 
supports trigger creation but Adeptia may not have added support for it. In such cases, 
you need to create the Database event using the SQL Query option.  
 

 
For details on databases supported by Adeptia, refer to the SQL Trigger 
section.  

 
 

 Process record that matches the SQL ‘Where’ condition (Condition on column value)  

If you want to process an individual record when a certain column value is matching some 
criterion, then using SQL query is the only option. You cannot use SQL Trigger in this case, 
as it just notes that a record has been added, updated or deleted, but does not check its 
value.  
 
For example: 
 

 When a new order is added into the Order table, the business process shall 

process that order, generate invoice and send it. The SQL Query for adding the 

order is defined as: 

  Select * from Order where order_status=”new” 
 

 When a new order is added in the Order table, you want to process this order only 

if its value is higher than 500. You will define the SQL Query for this as: 

  Select * from Order where order_status=”new” and order_amount > 500 
 

 When you want to synchronize the processing of a record, such as inserting a new 

record into the table and processing them based on some business logic that will 

update the status of the record in the table, you define the SQL Query as: 

  Select * from synchronize where status= “ReadyToProcess” 
 

 
 Trigger process if the value from Aggregate () function in SQL Query satisfy the 

condition in event definition.  

 
Examples of such a scenario are outlined below: 

 
 You want to trigger a process flow whenever the count of people who have not 

paid their premium goes beyond 50.  For this, you define the SQL Query as:  



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           44            

If (Select Count (customer) where premium_status= “notPaid”) > 50 
 

 You want to trigger a process flow if the average Inventory level goes below the 

reorder level of 100. For this, you define the SQL Query as: 

If (Select Avg (Quantity) from Inventory) < 100 

How to use SQL Query 
 
Creating a SQL Query is a four step process: 
 

1. Defining the SQL Query 

2. Defining the Polling Frequency 

3. Triggering of Event 

4. Passing the information to the Process Flow 

 
Using a SQL Query varies based on the task to be performed. These tasks are outlined as: 
 

 Process Record that matches the SQL ‘Where’ condition (Condition on column value) 

 Trigger process if the value from Aggregate () function in SQL query satisfies the 
condition in event definition.  

 
 
Process Record that matches the SQL where condition (Condition on 
column value) 
 
Defining the SQL Query 

1. You need to select the SQL Query radio button. This activates the SQL Query field.  

2. Define a valid SQL Query that has ‘Where’ clause on one or more columns in the table.  

  
Defining the Poling Frequency 
 
You need to define a polling frequency. This is the frequency, on the basis of which the data in 
the table gets updated. If you think data is getting updated (on an average) every minute, 
then you can define the polling frequency as 1 minute. This implies that the select query will 
get executed every minute. 
 

 
The recommended minimum Polling Frequency is 30 seconds. The 
actual minimum Polling Frequency is 1 second. 

 
 
Triggering of Event 
 

1. On activating the Database Event, the event will execute the select query after each 
polling time interval.  



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           45            

2. If that query returns one or more records, the process flow bound to the Database Event 
will get triggered one or more times respectively, one time for each row, returned by the 
query.  In case no row is retuned, then the system will log the information, but will not 
trigger a process flow. 

 
Passing Information to the Process Flow 
 
Pre-requisite 
 

 The process flow registered to the Database Event must contain Adeptia Database 
Schema and Database Source activities.  

 The EventContextEnabled property of the Adeptia Database Source must be set to 
True. 

The passing of information to the Process Flow involves the following steps: 
 

1. When the Database event is triggered, the record for which the process flow is fired is set 
in the process flow context with the context variable ROW. The complete record is stored 
in the form of name and its value (Name (Value)), and it is set in this variable ROW.  

2. The values set in the context variable ROW are passed to the Database Source of the 
process flow. 

3. The Database Source does not execute the SQL Query defined in it. The record set in the 
context variable ROW gets assigned to the output result set of the SQL Query specified in 
the Database Source.  

4. This result set is converted into an XML record. This is generated as output by the 
Database Source activity and is sent to the process flow for further processing.  

 

 
You can also access the ROW context variable from the context variable 
option instead of the Database source in the process flow.  

For details on other values passed by the Database event, refer to 
Appendix 1.  

Example 
 
Case  
You have a table named Order in the database. When an order is placed, a new record gets 
added in this table. When a new record is inserted in the table, the order_status field is 
populated with the value of “new”.   
Your company has a business policy to process those orders which have the order amount 
higher than 10000. You want to automate the processing of the orders.  Additionally, you want 
that whenever a new order is placed, its processing should start within one minute.  
The database, in which the Order table exists, does not support SQL trigger.  
 
Solution 
In such a case, you need to create a Database event using a SQL query that will trigger a 
process flow, each time an order higher than an amount of 10000 is placed. The event will 
then pass this order to the process flow for processing. 
 
Defining Database Event 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           46            

For this, you define the SQL query by performing the following steps: 
 

1. Enter a select query (Select * from Order where order_status=’new’ and 
order_amount>10000) in the SQL Query field.  

2. Mark the Check Condition checkbox as unchecked. 

3. Select the polling frequency as 1 minute, from the Polling Frequency drop-down list.   

 
Defining Process flow 
 
Define a process flow for processing the record. Please ensure that the Database Source 
activity in the process flow should be created with the EventContextEnabled property selected 
as True.  
 
Registering Process Flow with Database Event 
  
Register the process flow with its corresponding Database Event using the Adeptia Event 
Registry. 
 
Activating the Database Event 
 
On activating the Database event, the select query is executed and the value of the first 
object obtained from the result is compared with the conditional value as per the relational 
operator selected. Hence the process flow gets triggered only once. If no row is returned, then 
the system logs the information but does not trigger a process flow. 
 
 
Trigger the process if the value from Aggregate ( ) function in SQL 
Query satisfies the condition in the Event definition.  
 
Defining the SQL Query 

1. You need to select the SQL Query radio button. This activates the SQL Query field.  

2. Define a valid SQL Query that uses the Aggregate ( ) function which always returns one 
value. 

3.  Mark the Check Condition checkbox as checked. 

4. Define the conditional value. 

 
Defining the Poling Frequency 
 
You need to define a polling frequency. This is the frequency, on the basis of which the data in 
the table gets updated. If you think data is getting updated (on an average) every minute, 
then you can define the polling frequency as 1 minute. This implies that the select query will 
get executed every minute. 
 
Triggering of Event 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           47            

1. On activating the Database Event, the event will execute the select query after each 
polling time interval.  

2. If that query returns a value that matches the conditional value specified in the Database 
Event activity, then the process flow gets triggered. Else, an error is logged and the 
process flow is not triggered.  

 
Passing the Information to the Process Flow 
 
In this case, no data is passed from the event to the process flow. It works like a plain trigger.  

Example 
 
Case  
You have a table named CustomerPolicy in the database.  This table maintains all policy 
information and also records information such as the status whether the customer has paid 
premium amount or not.  
Your company monitors the number of customers who have not paid their premium policy, at 
regular intervals. Each time this number exceeds 100, you need to notify the senior 
management and send all details of the customers. You need to do this, within one hour of 
this number reaching 100.  
The CustomerPolicy table exists in MSAccess database.  
 
Solution 
In such a case, you need to create a Database event using a SQL query that will trigger a 
process flow; each time the number of customers who have not paid their premium amount 
exceeds 100. The process flow will send an email to the senior management with the customer 
details. 
 
Defining Database Event 
 
 For this, you define the SQL query by performing the following steps: 

1. Enter a select query (Select Count (CustomerPolicy) where Premium_Status=”notPaid”)) 
in the SQL Query field. This query returns the total number of customers who have not 
paid their premium amount.  

2. Mark the Check Condition checkbox as checked. 

3. Select the Relational operator as Greater Than from the Operator drop-down list. 

4. Enter the conditional value as 100 in the Value field.  

5. Select the polling frequency as 60 minutes, from the Polling Frequency drop-down list.  

 
Defining Process flow 
 
Define a process flow for processing the record. Please ensure that the Database Source 
activity in the process flow should be created with the EventContextEnabled property selected 
as True.  
 
Registering Process Flow with Database Event 
  



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           48            

Register the process flow with its corresponding Database Event using the Adeptia Event 
Registry. 
 
Activating the Database Event 
 
On activating the Database event, the select query is executed and the value of the first 
object obtained from the result is compared with the conditional value as per the relational 
operator selected. Hence, the process flow gets triggered only once. If no row is returned, 
then the system logs the information but does not trigger a process flow. 
 

Advantages 

 It is easy to use as it is simple to write and implement.  

 It is supported by all databases.  

 It can be used to trigger the same process flow multiple times, depending upon the 
number of rows returned by the query. 

 

Limitations 

 When you use the SQL Query to match a conditional value, then it checks only the first 
value returned by the query.  For example, in the SQL query where:  

 
Select EmpID from EMP ;  which returns more than one row 
Check Condition checkbox is marked as checked 
Relational Operator is selected as Equal To 
Conditional value is entered as 10 

 
When the event is activated, then only the first value retuned by the query is matched 
with the conditional value. If it matches, then the process flow gets trigger otherwise 
not. 

 

Using SQL Trigger 

A SQL Trigger is a set of SQL statements that get executed when data in a table is changed 
due to any Insert/Update/Delete operation. 
 
If the database supports SQL Trigger creation, then it is recommended to use the SQL Trigger 
method to trigger a process flow whenever any DML (Insert/Update/Delete) operation is 
performed on a database table. 
 
Many databases support SQL Trigger creation, but Adeptia supports SQL Trigger creation for 
the listed databases: 
 

 Oracle 

 SQL Server 

 Sybase 

 
In the current release, Adeptia supports these databases. In future 
releases, it will support all databases that support SQL Trigger creation.  



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           49            

When to use SQL Trigger 
 
There are certain scenarios in which you can use only the SQL Trigger method to define the 
database event. These are outlined as: 
 

 DML Operation in a Database: You need to trigger a process flow whenever a record is 
inserted, updated or deleted in a table and process that record in the process flow. For 
example, you want to process an order whenever a new record is added into the Order 
table. But the database does not have any column like status or timestamp that 
enables you to identify if the record is new. 

 Process a record that matches the SQL ‘Where’ condition (condition on column value) 

 Trigger a process if the value from Aggregate () function in the SQL query satisfies the 
condition in event definition 

How to use SQL Trigger 
 
Using the SQL Trigger includes the following steps: 

1. Defining the SQL Trigger 

1. Triggering the Database Event  

2. Passing the information to the Process Flow 

 
Defining the SQL Trigger 
 
This step is performed by the developer.  
 
To define the SQL Trigger: 
 

1. Select the SQL Trigger option.  

 

A sample Trigger code is seen in the SQL Trigger field. The words present in anklet bracket (i.e., 
<WHERE CLAUSE>) of the Insert statement can only be replaced by a correct WHERE clause and 
rest of the Insert Statement should be as it is. In this scenario, we consider an EMP table, and we 
assume that a NAME column in it is unique or primary Key. 

This Name field is taken to identify the row for which the trigger is fired. This information is 
passed to process flow to make sure that process flow process the same record. 

 
A sample trigger for above-mentioned scenario is displayed below.  

Database Name Task Trigger Definition 

Oracle Add a new row in the 
trigger database table 
when a record is 
inserted, updated or 
deleted in the emp table. 
When a new row is 
added into the 
dbeventtrigger table, a 
process flow is triggered.  

CREATE OR REPLACE TRIGGER 
trig After insert or update or 
delete on emp 
for each row 
begin INSERT INTO 
dbeventtriggertable VALUES ( 
'Query = WHERE rowid 
='''||:new.rowid ||'''' ); END trig ; 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           50            

Sql Server  create trigger trigtest on emp for 
insert,update,delete 
as 
declare @empname varchar 
begin 
set @empname=(select 
empname from inserted);  
  
 INSERT INTO 
dbeventtriggertable VALUES 
('Query =WHERE empname='' 
+@empname+''');  
  
 END  ; 
 

Sybase  CREATE TRIGGER mytrig on 
EMP 

for insert, update 
as 
declare @name varchar 
begin 
set @name =(select NAME 

from inserted)   
 
 INSERT INTO 

dbeventtriggertable VALUES 
('Query = WHERE NAME='''  ||  
@name || '''' )  

  
 END 

 
 

When the trigger is fired the Where clause will be updated to Where NAME=‘Smith’ where 
Smith is the inserted value in the NAME field of the EMP table. 
 
The syntax of the trigger varies for each database. It is outlined in the table below.  
 

Database 
Name 

Trigger Definition Reference 

Oracle CREATE [OR REPLACE] 
TRIGGER <trigger_name> 
 
 {BEFORE|AFTER} 
{INSERT|DELETE|UPDATE} ON 
<table_name> 
 
[REFERENCING [NEW AS 
<new_row_name>] [OLD AS 
<old_row_name>]] 
 
 [FOR EACH ROW [WHEN 
(<trigger_condition>)]] 
 
    <trigger_body> 
End <<trigger_name>; 
 

http://infolab.stanford.edu/~ullman/fcdb/orac
le/or-
triggers.html#basic%20trigger%20syntax 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           51            

SQl Server CREATE TRIGGER 
trigger_name 
ON {table | view}  
[ WITH ENCRYPTION ] 
{ 
{ { FOR | AFTER | INSTEAD 
OF }  { [ INSERT ] [ , ] [ 
UPDATE ] [ , ] [ DELETE ] } 
[ WITH APPEND ]  
[ NOT FOR REPLICATION ] 
AS 
[ { IF UPDATE ( column )  
[ { AND | OR } UPDATE  
(column) ] 
[ …n ] 
[ IF ( COLUMNS_UPDATED  ( )  
{ bitwise_operator } 
updated_bitmask ) 
{ comparison_operator } 
column_bitmask  […n ] 
} ] 
sql_statement [ …n ] 
} 
} 
END 

http://www.devbuilder.org/asp/dev_article.as
p?aspid=16 
 

CREATE TRIGGER owner.
trigger_name 

ON owner. table_name 
{ FOR {INSERT, UPDATE, 
DELETE} AS 
SQL_statements | 
FOR {INSERT, UPDATE} AS 
IF UPDATE (column_name) 

{AND | OR} UPDATE 

(column_name) ... 
SQL_statements }  

  
 

http://manuals.sybase.com/onlinebooks/grou

p-

as/asg1250e/sqlug/@Generic__BookTextView

/48018;hf=0 

 

Sybase 

 
Triggering of Event 
 
Once the developer defines the SQL trigger, he executes it to trigger the Database event. A 
Process flow can be bound to the Database event using the Event Registry activity. 
The above Database event is triggered for each row inserted or updated in the EMP table and 
this executes the associated Process Flow.  
 
Passing the Information to the Process Flow 
 
Once the Database event is fired, the required information is passed to the process flow. This 
is done in the backend.  
The <where clause > which keeps the track of the NAME field (of EMP table) of the row 
inserted or updated is passed to the Process Flow context. For example in this case Where 
NAME=‘Smith’ is passed to the Process flow context. 
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           52            

Pre-requisites 
 The process flow registered to the Database event should contain an Adeptia Database 

Source activity. 

 The EventContextEnabled property of the Adeptia Database Source should be set to 
true. If the EventContextEnabled property is true then where clause of the 
Database Source gets overridden by the where clause of the Database Event set in the 
process flow context. 

In the current scenario the Where clause of the Database source gets overridden by Where 
NAME=‘Smith’ and this makes sure that the database source picks up the same record for 
which the event was triggered.  
 

 

If the database event is deactivated, then the system deletes the polling 
frequency value and the complete trigger.  

 

Examples 
 
Case 1 
You have a table named EMP in the Oracle database in your company. When a new employee 
joins your company, a new record gets added in this table.  When a new record is inserted in 
the table, you have to initiate a few transactions. 
 
Solution 
In such a case, you need to create a Database event using a SQL Trigger that will trigger a 
process flow, each time a new employee record is inserted in the EMP table. The event will 
then pass this Employee record to the process flow for processing. 
 
 Defining Database event 
 
For this, you define the SQL Trigger by performing the following steps: 

1. Enter the SQL Trigger as: 

 

CREATE OR REPLACE TRIGGER trig After insert or update on emp 
for each row 
begin  

INSERT INTO dbeventtriggertable VALUES ( 'Query = WHERE rowid 
='''||:new.rowid ||'''' );  
END trig ; 

 

 
The rowid field is used to identify the row, for which the trigger is fired. 
The information (Where rowid=<rowid of the inserted record>) is 
passed to the process flow to make sure that process flow processes the 
same record. This information overrides the Where clause of the 
Adeptia Database Source activity, if its EventContextenabled property is 
selected as True. 

If the database does not support rowid, then you can define any other 
column as the primary key.  

3. Select the polling frequency as 1minute, from the Polling Frequency drop-down list.  

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           53            

Defining Process flow 
 
Define a process flow for processing the record. Please ensure that the Database Source 
activity in the process flow should be created with the EventContextEnabled property selected 
as True.  
 
Registering Process flow with Database Event 
  
Register the process flow with its corresponding Database Event using the Adeptia Event 
Registry. 
 
Activating the Database Event 
 

1. If the trigger syntax is valid then the trigger is created in the backend database, else it 
throws an exception and the Database event is not activated. Once the Database event is 
activated the trigger is created in the database.  

2. If a new record is inserted in the table, the rowid of the inserted record is added in 
Adeptia’s temporary table called dbeventtriggertable. 

3. The Database event is triggered as per the polling frequency specified in the Database 
event activity. It triggers the bound process flow, if an entry corresponding to the 
Database event is found in the dbeventtriggertable.  

4. Different process flows are triggered for each entry in the dbeventtriggertable and the 
Where clause (Where rowid=<rowid of the inserted record) of the INSERT statement of 
the trigger body is set in the context. 

5. This information set in the context overrides the Where clause of the Database Source 
activity, if its EventContextenabled property is selected as True. 

 
Case 2 
You have a table named Order in the Oracle database in your company. When an order is 
placed, a new record gets added in this table. When a new record is inserted in the table, the 
order_status field is populated with the value of “new”.   
Your company has a business policy to process those orders which have the order amount 
higher than 10000. You want to automate the processing of the orders.  Additionally, you want 
that whenever a new order is placed, its processing should start within one minute.  
 
Solution 
In such as case, you need to create a Database event using a SQL Trigger that will trigger a 
process flow, each time an order higher than an amount of 10000 is placed. The event will 
then pass this order to the process flow for processing. 
 
Defining Database event 
 
For this, you define the SQL Trigger by performing the following steps: 

1. Enter the SQL Trigger as: 

 

CREATE OR REPLACE TRIGGER MYTRIG AFTER INSERT  
ON ORDERTABLE FOR EACH ROW 
BEGIN 

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           54            

 IF (:NEW. ORDER _STATUS='NEW' AND :NEW.AMOUNT>10000) THEN 
 

INSERT INTO DBEVENTTRIGGERTABLE VALUES ('QUERY = WHERE 
ROWID='''||:NEW.ROWID); 

 
 
     END IF; 
 
    END MYTRIG; 

 

 
The rowid  field is used to identify the row, for which the trigger is fired. 
The information (Where rowid=<rowid of the inserted record>) is 
passed to the process flow to make sure that process flow processes the 
same record. This information overrides the Where clause of the 
Adeptia Database Source activity, if its EventContextenabled property is 
selected as True. 

If the database does not support rowid, then you can define any other 
column as the primary key. 

 

4. Select the polling frequency as 1minute, from the Polling Frequency drop-down list.  

 
Defining Process flow 
 
Define a process flow for processing the record. Please ensure that the Database Source 
activity in the process flow should be created with the EventContextEnabled property selected 
as True.  
 
Registering Process flow with Database Event 
  
Register the process flow with its corresponding Database Event using the Adeptia Event 
Registry. 
 
Activating the Database Event 

1. If the trigger syntax is valid then the trigger is created in the backend database, else it 
throws an exception and the Database event is not activated. Once the Database event is 
activated the trigger is created in the database. 

2. If a new record is inserted in the table with order_status=”new” and amount >10000, the 
rowid of the inserted record is added in Adeptia’s temporary table called 
dbeventtriggertable. 

3.  The Database event is triggered as per the polling frequency specified in the Database 
Event activity. It triggers the bound process flow, if an entry corresponding to the 
Database Event is found in the dbeventtriggertable.  

4. Different process flows are triggered for each entry in the dbeventtriggertable and the 
Where Clause (Where rowid=<rowid of the inserted record>) of the INSERT statement of 
the trigger body is set in the context. 

5. This information set in the context overrides the Where clause of the Database source 
activity if its EventContextenabled property is selected as True. 

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           55            

Advantages 

 SQL Trigger enables you to keep a track of the data inserted, update or deleted from a 
table. 

Limitations 

 SQL Trigger creation is supported by limited databases only. These databases are 
outlined as: 

 Oracle 

 SQL Server 

 Sybase 

 

Problem Scenarios where both SQL Query or SQL Trigger serve as 

solutions 

In some problem scenarios, both the SQL Query or SQL Trigger methods can be used as 
solutions. A few such cases are described below.  
 

 Triggering the process per record bases and process that record in process flow 

In such a case, if the database and Adeptia support SQL Trigger creation, then it is 
recommended to use the SQL Trigger option.  
 

Appendix 1 

The Variables passed by the Event to the process flow context are listed below.  
 

Context Variable Name 

 

Context Value 

EventId Event Activity Id 

EventName Event Activity Name 

 

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           56            

 

USING XSL TEMPLATE FOR PADDING IN MAPPING 
 

Objective 

 
 To map fields from source schema to target schema where the length of the field of 

the target schema is fixed. If the field length of the source schema is lesser, then you 
need to pad the field using a padding character. You can define an XSL template for 
the padding.     

Tasks 

1. Creating XSL Template 

2. Using XSL Template 

 

Creating XSL Template 

To create an XSL template for padding a field: 
 

1. Enter the name of the template in the Name field.  

2. Define four parameters for the padding in the XSL template. These are outlined in the 
table below. 

 
Parameter Description 

Field Name to be padded Field name of source schema that is to be 
padded 

Padding Character Character used to pad the field. This can be 
a < ‘space character’>, ‘$’, ‘?’, ‘&’ or any 
other character.  

Target length of the field The target length that is to be achieved by 
the padding. This is the fixed length of the 
field of the target schema.  

Padding Side Direction in which the field is to be padded. 
It can be padded either in the left or right 
direction. However, you cannot pad a field in 
both directions at one time.  

3. Assign values to these parameters and define the XSL code for the padding. Enter the 
XSL code shown below in the XSL Template field. 

 

<xsl:template name="paddingTemplate"> 
  <xsl:param name="sourceParam" /> 
  <xsl:param name="padChar" /> 
  <xsl:param name="length" /> 
  <xsl:param name="paddingSide" /> 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           57            

     <xsl:choose> 
        <xsl:when test="$paddingSide ='left'"> 
           <xsl:choose> 
             <xsl:when test="string-length($sourceParam) &lt; $length"> 
                <xsl:call-template name="paddingTemplate"> 

           <xsl:with-param name="sourceParam"        
                   select="concat($padChar,$sourceParam)"/> 
                     <xsl:with-param name="padChar" select="$padChar"/> 
                     <xsl:with-param name="length" select="$length"/> 
                     <xsl:with-param name="paddingSide"  
                     select="$paddingSide"/> 
                </xsl:call-template> 
              </xsl:when> 
              <xsl:otherwise> 
                <xsl:value-of select="substring($sourceParam,string- 
                length($sourceParam) -$length + 1)"/> 
              </xsl:otherwise> 
           </xsl:choose> 
         </xsl:when> 
         <xsl:otherwise> 
           <xsl:if test="$paddingSide ='right'"> 
              <xsl:choose> 
                <xsl:when test="string-length($sourceParam) &lt;  
                $length"> 
                 <xsl:call-template name="paddingTemplate"> 
                    <xsl:with-param name="sourceParam"  
                    select="concat($sourceParam,$padChar)"/> 
                    <xsl:with-param name="padChar" select="$padChar"/> 
                    <xsl:with-param name="length"  
                     select="$length"/> 
                    <xsl:with-param name="paddingSide"  
                    select="$paddingSide"/> 
                 </xsl:call-template> 
                </xsl:when> 
                <xsl:otherwise> 
                   <xsl:value-of select="substring($sourceParam,string- 
                   length($sourceParam) -$length + 1)"/> 
                </xsl:otherwise> 
              </xsl:choose> 
          </xsl:if> 
        </xsl:otherwise> 
     </xsl:choose> 
</xsl:template> 

Figure: XSL Code 

4. Save the template.  

 
For details on creating an XSL Template, refer to Using XSL Template 
section in the User Guide.  

 

Using XSL Template 

Once you have created the XSL template, you need to use it to map the fields from the source 
schema to the target schema. The newly created template appears in the Parameters Panel.  
 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           58            

To use the XSL template to map the fields: 
 

1. Click the field that is to be mapped in the target schema. It appears in the Mapping 
Graph Area.  

2. Double-click the field to be mapped in the source schema. It appears in the Mapping 
Graph Area. 

3. Define three constants for creating the padding character, target length and padding side 
parameters. 

4. Click the newly created XSL template for the padding. It appears in the Mapping Graph 
Area.  

5. Map the source field and the constants to the XSL template and thereon to the target 
field, by dragging the fields and clicking the Apply Mapping button.  

 
 

Example 

Case 
You need to map the Name and Salary fields from Text schema (source) to Positional schema 
(target). The length of the Name field in the Text schema is 4 characters, whereas it is 25 
characters in the Positional schema. Similarly, the field length of Salary is 6 characters in the 
Text schema, whereas it is 10 characters in the Positional schema. Since the target schema is 
a Positional schema, the field length is fixed, and for mapping it requires the field in the source 
schema to be of the same length.  
 
Solution 
You need to pad the Name and Salary fields in the Text schema to increase their length to the 
desired length in the Positional schema. You can pad it with the space character. You can pad 
the Name field in the left direction and the Salary field in the right direction.   
 
Creating XSL Template 

1. Enter the details in the Manage XSL Template screen as shown in the figure below. 

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           59            

 
Figure: Creating XSL Template 

2. Click Save Template and then Close to save the template and return to the Data 
Mapper screen.  

 
Using XSL Template 

1. Click the Name field in the Target panel. It appears in the Mapping Graph Area.  

2. Double-click the Name field in the Source panel. It appears in the Mapping Graph Area. 

3. Define three constants for creating the parameters as: 

  
Constant Data Type 

‘< >’ String 
25 Number 
Left String 

 
 

4. Click paddingTemplate from the Parameters Panel. It appears in the Mapping Graph Area.  

5. Map the Name field (source) and the constants to the XSL template and thereon to the 
Name field (target) by dragging the fields and clicking the Apply Mapping button (see 
Figure below).  

 



                                       
 

 
Adeptia Developer’s Reference Guide Ver 1.0                                                           60            

 

 
Figure: Using XSL Template 

 

6. Similarly, pad the Salary field. The constants will be defined as outlined in the table 
below. 

  

Constant Data Type 
‘< >’ String 
10 Number 
right String 

 

 
You can test the mapping using Simulate tab.  

 
 
 


	 Objective 
	Pre-requisites 
	 Custom Java Development with Adeptia 
	Adeptia Services That Can Be Extended For Custom Java Development 
	Using Adeptia Custom Plugin Service 

	Interacting With the Service Variables and Predefined Methods 
	Interacting With Streams 
	Interacting With Context Variables 
	Data Handling and Transformation 
	Calling External Java or Native Programs 
	Logging 
	Exception Handling 
	Dependency 
	Examples 

	 Custom API For Custom Java Development 
	Java API for Adeptia Product 
	Java APIs For Third Party Libraries 

	JRE  
	HSQLDB  
	Castor  
	Log4J  
	Jasper  
	VFS  
	Java Mail API  

	Design patterns 
	Objective  
	Business Scenarios 
	 Developing Complex GUI for Human Workflow 

	Objective 
	Requirements 
	Approaches 
	Use of custom JSP 
	Working with Web Service Publisher 

	Objective 
	Tasks 

	Example   
	Appendix A (Input XML schema) 
	Appendix B (Output XML schema) 
	Objective 
	Tasks For Using Database Event 

	Creating Database Drivers and Database Info  
	Creating Database Event 
	Using SQL Query 
	Advantages 
	Limitations 
	Using SQL Trigger 
	Database Name
	Task
	Trigger Definition
	Database Name
	Trigger Definition
	Reference

	CREATE [OR REPLACE] TRIGGER <trigger_name> 
	 
	 {BEFORE|AFTER} {INSERT|DELETE|UPDATE} ON <table_name> 
	 
	[REFERENCING [NEW AS <new_row_name>] [OLD AS <old_row_name>]] 
	 
	 [FOR EACH ROW [WHEN (<trigger_condition>)]] 
	 
	    <trigger_body> 
	h
	Advantages 
	Limitations 
	Problem Scenarios where both SQL Query or SQL Trigger serve as solutions 
	Appendix 1 
	Using XSL Template for Padding in Mapping 

	Objective 
	Tasks 

	Creating XSL Template 
	Using XSL Template 
	Example 




