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Abstract

This note outlines the Life Abstract Machine (LAM), an abstract machine used as an inter-
mediate target for the efficient compilation of LIFE. LAM focuses primarily on the efficient
implementation of matching, residuation, and currying of functions. Although the topicis not
discussed in this note, LAM & so implements lazy unification.

LAM should be viewed as an intermediate target for compiling LIFE to a native instruction set
for a genera purpose processor. Thus, this note presents LAM as an abstract machine along
with its instructions. However, we aso discuss how LAM would be realized in terms of data
structures and basic routines. This should facilitate the implementation of both a LIFE-to-LAM
compiler and a LAM-to-native-code compiler.
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An Abstract Machine to Implement Functions in LIFE 1

1 Introduction

1.1 Overview

This note outlines the Life Abstract Machine (LAM), an abstract machine used as an inter-
mediate target for the efficient compilation of LIFE. LAM focuses primarily on the efficient
implementation of matching, residuation, and currying of functions. Although the topicis not
discussed in this note, LAM & so implements lazy unification.

LAM should be viewed as an intermediate target for compiling LIFE to a native instruction set
for a genera purpose processor. Thus, this note presents LAM as an abstract machine along
with its instructions. However, we aso discuss how LAM would be realized in terms of data
structures and basic routines. This should facilitate the implementation of both a LIFE-to-LAM
compiler and a LAM-to-native-code compiler.

While this document is intended to be self-contained, it is assumed that the reader is familiar
with at least theinformal partsof [2]. After presenting the basic properties of ¢-termswegivea
brief of description of matching, residuation, and currying in Section 2. Section 3 explainshow
function definitions are decomposed into constraint trees. In Section 4 we present an overview
of the data structures used for describing the algorithms that implement the functionality of
LAM. The mechanics of currying and residuation, in particular for the equality constraint, are
described in Section 5. In Section 6 the actual register set and instructionsof LAM are described
in detail. Thisisfollowed with some example LAM code in Section 7. Finaly, the nitty gritty
details of the implementation are described in Section 10.

1.2 -terms

A -termisageneralization of record-likedatastructuresintraditional programming languages.
Itisan extension of first-order termsto include sorts and features. For acoherent and complete
discussion of ¥-termsthe reader can see [2]. Here | will briefly outline the notation.

A -term (or OSF-term in normal form) is of the form ¢» = X : (01 = ¥1,...,6n = ¥n)
where

e thereisat most one occurrence of avariable Y in «» such that Y isthe root variable of a
non-trivial OSF-term (i.e,, differentthan 'Y : T);

e sisanon-bottomsortin §;

e /1,..., 0 areparwisedistinct featuresin 7, n > O;

e 1,..., 1y aenormal OSF-terms.

The sortsof ay-termlivein alattice. Theleast sortisbottom (L), the highest (or most general)
istop (T). If asort, a, is below another sort, b, then we say that a implies b, a entails b, a
is more specific than b, or equally, that a is subsumed by b®. Thus, all sorts are subsumed by
T and L implies every sort. Intersection of sorts is carried out by the greatest lower bound

1The details of sort implication and in particular how they relate to function invocation in LIFE can befound in

(1]
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2 Seth Copen Goldstein

name "fred"

Figure 1: Graphical representation of a -term. The nodes represent sorts, and the arcs
features. The capital letters in the nodes correspond to the variables used in the textual
representation of the ¢»-term.

operator, written, A.

P-terms can be represented in many ways. The first two considered here are the textual and
graphical representations. For example, the ¢-term

X: person(name = F :“fred”,
spouse = S: person(name=- M:“mary”,
spouse = X))

Can also be represented by the directed graph in Figure 1. The graphical representation does
not actually need the variable names, used in the textual representation to capture equality
constraints.  However, to aid in referencing the nodes and arcs we will keep them. An
aternative representation of -termsis the OSF-clause. An OSF-clause is a conjunction of a
OSF-congtraints. An OSF-constraintisoneof (1) X : s, (2) X = X/, or (3) X.£ = X/, where X
and X" arevariablesin V, sisasort in S, and ¢ isafeaturein F. An OSF-clause is either an
OSF-constraint or of theform ¢ & ¢’ where ¢ and ¢’ are OSF-clauses. Wecanread X : sas“X
liesinsorts’, X = X' as“Xisequd to X", and X.£ = X’ as“X' isthefeature ¢ of X

We can awaysassociatewithan OSF-term ¢ = X : s(f1 = 1, .. ., £n = 1n) acorresponding
OSF-clause ¢(1)) asfollows:

p(P) = X:S& Xy =X, & ... & Xln =X,
& oY1) & ...& ¢(¥n)

where X}, ..., X}, are theroots of 11, . . ., ¥n, respectively. We say that ¢(v>) is obtained from
dissolving the OSF-term <. For example, the »-term in Figure 1 could be represented by four
sort constraints, X: person, F:“fred”, S: person, and M :“mary”, and three feature constraints,
X.name = F, X.spouse = S, Shame = M, and Sspouse = X. While an OSF-clause is just
a conjunction of the primitive constraints, it can aso be represented by a tree which shows
how the individual constraints are related to each other. Figure 2 shows the above -term’'s
constraint tree. In LIFE the function call is represented by a 1)-term, where the sort of the
P-term is the name of the function being invoked, and the arguments to the function are -
terms connected to theroot by features that label them as arguments. For instance, the function
cal append([ 1, 2,3], [4,5]) isredly shorthand for append(1 =1[1,2,3], 2

December 1992 Digital PRL



An Abstract Machine to Implement Functions in LIFE 3

X.spouse=S

Figure 2: The Constraint Tree representation of the dissolved -term.

= [ 4, 5] ) . Aswill be seen later, representing the function calls and function definitions as
constraint trees leads to anatural and efficient compilation strategy.

2 Matching

2.1 Definition

Function invocation in LIFE isaccomplished with matching. Asaresult the rulesfor invoking
functionsin LIFE follow the rules of implication, which meansthere are three cases that need to
be considered when implementing function invocation: (1) when the actua argumentsimply
(i.e, entail) the formal arguments, (2) when the actuals imply the negation of the formals
(i.e, they disentail the formals), and (3) when the actuals neither entail nor disentail the
formals. In thelast case we say that the function invocation has residuated on its arguments.
The requirements for an implementation of function invocation in LIFE are that a function
invocation either fire or fail as soon as the actuals either entail or disentail the formals and
that no changes be made to the arguments unless and until the function fires?. Finally, the
implementation must maintain the church-Rosser property of functions. Themain chalengeto
the implementor is to perform the smallest possible number of checks. This section describes
an efficient implementation which will perform each check only once regardless of the number
of times a function residuates or its arguments are lowered. There are two components to
thisimplementation: an abstract machine and a compilation strategy. Most important, it will
also handle the most common cases, that of direct entailment or disentailment, with surprising
efficiency.

2.2 Examples

In order to point out some of the difficulties in implementing functions, let's assume the
definitions below and the sort hierarchy in Figure 3.

2A formal treatment of functionsin LIFE can be found in [1].

Technical Note No. 18 December 1992



4 Seth Copen Goldstein

Figure 3: A sample sort hierarchy.

incr(Xint) — X+1.
incr(X string) — "increment".
i nsurance( P: person(spouse = S:tenp)) — 1.
i nsurance( P: person(spouse = S:person)) — 2.
i sspouse( P: person(spouse = S), S:person(spouse = P)) — true.
If i ncr iscaled with an integer or string argument we get aresult. For example (the answer

produced followsthe~-):
A=incr(5)? ~  A=6
A=incr("hello")? ~ A="increnent"

In addition to these obvious results, if an argument to i ncr is incompatible with the formal
definitions, then it will result in failure.

A=i ncr (person)? ~ failure

The interesting case is where the argument in the function call is under-specified, i.e, its sort
is neither incompatible nor a subsort of the formal argument. For example,

Asincr( X @? ~ A=@ X=@
X=real ? ~  A=@ X=real
X=77 ~  A=8, X=7

In thisexample, X starts off being the top sort (represented by the character * @), so thefunction
i ncr residuates on itsargument. When Xislowered to the sort real, the function is awvakened
and (because the sort of Xistill to general) again residuated. When Xisfinally lowered to the
integer 7, the function is reactivated and fires.

December 1992 Digital PRL



An Abstract Machine to Implement Functions in LIFE 5

The function i nsur ance, likei ncr, has two clauses in its definition. But it differs from
i ncr inthat theformal argument in the second clause is not incomparablewith that in the first
clause. Instead, it ismore general than the onein the first clause.

A=i nsur ance( X: person) ? ~ A=@ X=person
X=person(boss = "joe")? ~ A=@

X=per son(boss = "joe")
X=per son(spouse = Y:person)? ~ A=@

X=person(boss = "joe",
spouse =Y),
Y=per son

In this example, the function residuates not because the root sort of the argument is under-
specified, but rather because the argument is missing a feature term. Notice that when the
argument X islowered by adding the feature boss it does not affect the residuation. When it
islowered again, by adding the feature spouse, the function remains residuated even though
the second clause is satisfied. This brings out the point that before the next clause istried the
current clause must be completely disentailed.

To continue this example,

Y=i ntern? ~  A=2,
X=per son(boss = "joe",
spouse =Y)
Y=intern

We see that once the first clause is disentailed, because intern A temp = 1, the second clause
is checked and in this case fires. This example also shows how equality constraints must be
considered in disentailment.

A=i sspouse( X: person, Y:person)? ~ A=@

X=per son,

Y=per son
Z=person(boss = "joe"), X=person(spouse = 2)7?

~ A=@

X=per son(spouse = 27),

Y=per son,

Z=per son(boss = "joe")
Y=person(boss = "fred")? ~ failure

Up until thelast query Z, the spouse of X, was unifiablewith Y. However, in thelast step Z and
Y became incompatibleand thus the original query had to result in failure.

Although the arguments to a function call cannot be modified in the matching process, infor-
mation needs to be propagated in the -term between constraints. For example, assume the
sort hierarchy in Figure 4 and the following function definition: t heSame( X, X, X) —
1. Thecdl theSane(A:a, B:b, C c)? mustfal immediately. Thisis because the
P-terms A, B, and C can never unify.

Technical Note No. 18 December 1992



6 Seth Copen Goldstein

Figure 4: A sample sort hierarchy.

2.3 Introduction to Currying

The find difficulty in implementing functions in LIFE is that function calls can curry. If a
function call does not have all its arguments specified in the function definition, then executing
the function returns a «-term that is a curried function call. It does not return a >-term that
stands for the result of the function call. This curried function call is a first-class object. If
the rest of the arguments are added to the curried function call, then the function will execute.
Thus, any unification performed on the v-term representing the curried function will not affect
the result of the function call, but rather will add arguments to the call. For example,

A=i ncr

A=@ X=@

A=@extra =2), X=@
A=6(extra =2), X=5

A=i ncr?

A@1l =X @7
A=@extra =2)?
X=57?

¢ ¢ 9

In this series of queries, A isfirst set equal to the curried function i ncr, then the first and
only argument is unified with A and then A becomes the result of the function call, which has
residuated on X. An extra feature is then added to the result of the function call. Findly, Xis
lowered and the function completes. Notice that the order of the second and third line cannot
be changed, because in the second query A represents the call and in the third it represents the
result!

3 Representing Function Definitions as Constraint Trees

In order to obtain the behavior described above, thisnote proposes acompilation scheme based
on decomposing function definitions into function trees, where each clause of the function is
represented by a constraint tree®.

3Theidea of using executable constraints was found in [4]

December 1992 Digital PRL



An Abstract Machine to Implement Functions in LIFE 7

§ Clause Tree

; ; Argument
Arity Constraint &Tr o

(rnrguments)

\

Figure 5: Tree representing an m-clause n-ary function definition.

Each function is defined by a (possibly unit) series of clauses. Each clauseistried in turn until
either all are disentailed or oneisentailed. If aparticular clause residuates, thenitisonly when
it is disentailed that the remaining clauses are tested.

Each function head, or clause, iscompiled into aseriesof constraints. Inthisnote, theindividual
clauses arejoined together into acompl etefunction definition in the most basi c way—serial ly—
through the use of the failure mechanism. It is expected that optimization techniques can be
performed on the individual clauses to create a more efficient conglomeration. One way to
view afunction definition isas atree. Theroot of the tree will hold an arity constraint; which
succeeds iff the actual function call has the same number of arguments as in the definition.
The function represented in the tree in Figure 5 is an n-ary function. The children of the arity
constraint node represent each clause in the function definition. The clauses are ordered from
left to right. Each clause then has n children, representing the constraint tree needed to do the
matching for each of the n arguments of the function. These constraint trees are created by
dissolving the ¥>-termsthat represent each argument in the clause. It is similar to the constraint
tree in Figure 2. When a failure is detected, then control is transferred to the next clause
node in the tree. The advantagesin viewing a function definition thisway are many. First, the
wavefront algorithm [4, 6, 5] asimplemented in thisnotetreats the constraints on the arguments
asif they were arranged in atree. Second, one can classify the arcs and nodes in such away as
to guide optimizations. For instance, in Figure 5, the solid arcs can be rearranged in any order,
while the dashed arcs are fixed. It is also worth noticing that since the arity constraint is the
samefor al the clauses of a definition, it might beinlined into the calling code, so that ¢-terms
don’t have to be built for function calls.

Technical Note No. 18 December 1992



8 Seth Copen Goldstein

4 Data Structures
This section gives an overview of the data structures used in describing the LAM instruction set.

The basis of the machineisthe representation of ¢-terms. The classPsi t er mdefined hereis
used to express the parts of a ¢)-term that concern matching.

December 1992 Digital PRL



An Abstract Machine to Implement Functions in LIFE 9

class Psiterm

{
Sor t sort; /!l the sort for this Psiterm
Feat ur es feat ures; /1l the features
Resi duat i on rlist; /1 residuations for this Psiterm
Psi t er nt ref; /!l the dereference chain |link

}s

sort isthesort that the v>-term currently has. Thefield f eat ur es pointsto all the features
inthe-term. Itsinternal representation doesnot concern ushere. Any collection that supports
fetching, adding, and testing the existence of afeaturewill suffice. Themost interesting fieldin
termsof matchingisther | i st field; it pointsto aResi duat i on whichisdescribed below.
Ther ef field isused to implement dereference chains. If itisnot NULL, then the ¢>-term has
been unified to the ¢-term pointed to by r ef .

Every function invocation is associated with aFr ane. The relevant parts are
cl ass Frame

{
int residCounter; [/ counts nunber of residuated variables
Code body; [/ address of body of function
Code fail; /1 the address to goto if a constraint fails
Psiternt result; /1 result of the function gets put here

}s

Missing from the abovedefinitionisany information about |ocal variablesand soforth that every
function frame will hold. Thisdefinition isjust sufficient for describing the matching process.
Ther esi dCount er isinitialized on entry to zero and every residuated goal increments this
counter. Theinstruction resid? checks thisfield. If it is zero, then the function body, pointed
to by the field body, is executed. Thef ai | isa pointer to the next clause in the function
definition to be executed if any of the constraints in the current clause tree fail. If the current
clause tree is the last, then this will point to code that will invoke the general backtracking
routine. Thev-termthat isreturned by the functionispointed to by ther esul t field. Whena
constraint residuatesit creates (if necessary) aResi duat i on which isattached to the «-term
that caused the residuation.

cl ass Resi duati on

{
Fr ane* parent; /1l frame of function to be activated
Sor t sort; /!l the best known sort for this term
/1 (i.e. the glb of the formal and the
/] actual)
Resi duat i on* next; /1l next residuation for this var
Resi dI nf o* i nfo; /1 info about each resid for this parent
}s

Each i-term can have only one Resi duat i on per frame in which it has residuated. Each
constraint that it residuates on is pointed to by thei nf o field of the Resi duat i on. Sort
constraints, feature constraints, and initialized constraints all create Resi dl nf o instances.
Equality constraintscreate aninstanceof EqResi dl nf 0. Inadditiontoitsusefor residuation,
Resi dlI nf o isalso used when functions curry.

class Residlnfo

{

Technical Note No. 18 December 1992
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Psiterm Resi duati on Franme
sort par ent resi dCount er
feature set sort body
rlist next fail
r ef info resul t
Resi dl nfo > EqResi dI nf o
addr ess /’ addr ess
next — | next

ot her

Figure 6: Representation of the basic data structures.

Code addr ess; /! address of constraint to re-execute
Resi dl nfo next ; /1 next Residinfo for this frame if it
/] exists, else NULL
}s
cl ass EqResidlnfo: public Residlnfo
{
Resi duati on ot her; /1 Residuation for the other psiterm
/] used in = constraint
s

In what follows we will represent the data structures by schematic diagrams. The diagrams
will not name the fields of the data structures, but will just stack the fields upon each other as
in Figure 6.

5 The Mechanism Behind the Machine

5.1 The Phases of a Function Call

The execution of afunction has several phases. Thefirst isuponinitial entry tothefunction. In
this phase the arity constraint (see Section 6.3) isexecuted. If the arity constraint succeeds, the
¥-term representing the function call is deconstructed and the execution of the function passes
into the matching phase; otherwise the function call is curried and immediately returns. The
deconstruction of a i-term isjust placing the arguments into registers by tracing the features
from the original function -term.

When the function has passed into the matching phase aframewill be allocated to the function.
Every function will have frames with at |east the structure described above for class Fr ane.
In addition the frames, will have fields for any variables that are manipulated in the function.

In the matching phase, the constraints that result from the function definition are executed
in order to find the clause of the function definition. If any constraint fails, then the next
clause is tried, until no clauses remain, at which point the function invocation fails. If any

December 1992 Digital PRL
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Frane
| resi dCouner
body *—
siterm fail ;
. Mat chi ng Code
Argument : sort resul t For the
Functi on
feature set constraint
> it constraint
eLerm Body code
Resul t: @ for the
Functigon
Ld
L]
Resi duati on
— ——
best sort

P

Gesidlnfo Resi dI nfo
¢

addr ess r > addr ess
*—

Figure 7: Schematic representation of a »-term with two residuations attached for the same
function invocation.

clause compl etes with success and none of the constraints have residuated, then the clause that
matched enters the execution phase and executes the body of the function.

If a constraint residuates during the matching phase, a Resi duat i on is created which is
attached to the v»-term involved. The remaining constraints—the ones below the residuating
constraint in the tree—will be skipped. If al of the executed constraints either succeed or
residuate the function becomes quiescent and returnsto the caller.

If any of the ¢-termsthat have residuationsare later modified, then the residuationswill resume
execution to recheck the constraint that caused the residuation during the matching phase. This
is called the resumption phase.

5.2 Residuation

When a constraint in the head of a function definition residuates, a series of objectsis created
and attached to the >-term that caused the constraint to residuate. The objects created have two
primary functions: first, to force disentailment if necessary, and second, to alow the constraint
to be resumed if the ¢-term is modified.

In order to keep the amount of information stored in each residuation to a minimum, the
residuation structureis broken down into two objects: aResi duat i on object, which records
the information about the frame on which the -termisresiduated, and aResi dl nf o object,
which recordsthe particul ar constraint that residuated. Inthisway, if asingley-termisinvolved
in multiple residuated constrains for a particular frame, only multiple Residinfo objects need
to be created. See Figure 7 for an example of aframe with a «-term that has residuated twice.

Before the residuation is created, the sort of the ¢ -term is also compared to the sort field in
the Residuation structure. If they are incompatible then the function definition is disentailed.

Technical Note No. 18 December 1992



12 Seth Copen Goldstein

In this manner, information about equality between the actual arguments is maintained even
though the arguments themsel ves cannot be modified during the matching phase®.

The three simple constraints (subsort, feature existence, initialized) each creasteaResi dl nf o
which is attached to the corresponding Residuation object for the ¢>-term and frame involved.
The equality constraint, on the other hand, must create a structure so that if either object in the
constraint is modified, then the constraint will be re-executed. Further, if either of the ¢ -terms
involved in the equality constraint contains subparts that cannot be unified, then the constraint
must generate afailure.

This added complexity is handled by having the constraint traverse both i-terms, adding
EqResi dI nf o objectstoall common children. For example, in Figure 8 the > -termsattached
to the featuresin common to A and V must each be checked to seeif possible conflict (yielding
failure) or possible unification (yielding more EqResidInfo structures) results (also see the
example on Page 47). Notice how each pair of corresponding -terms involved records the
sort of their intersection. Further, if anew feature is added to a ¢-term involved in an equality
residuation, additional work will occur only if there is a corresponding -term involved (i.e.,
it already has an EqResidInfo attached).

Thus, for each frame inwhich a-term has any residuations, therewill be oneResi duat i on
structure attached to the «-term. For each constraint (in the same frame) on which the -
term residuated there will be either aResi dl nf o or aEqResi dI nf o structurelinked to the
Resi duat i on structure. For example, if n-termswereinvolvedinn—1equality constraints,
all of which residuated, there would be n Resi duat i on structures—each attached to one of
the n ¢»-terms. In addition, there would be (n — 1) pairs of EqResi dI nf o structures—one for
each constraint—{inking up the >-terms that were involved in the n — 1 equality constraints.

5.3 Resumption

When a-term ismodified the unification routine will check to seeif there are any residuations
depending on the modified -term. If there are, then each residuation is executed in turn. If
any of the functions becomes satisfied, then it in turn continuesto execute.

In other words, if during unification of a ¢)-term, a function that was residuated on the >-term
is enabled, it will be executed immediately. Thus, the enabled function runs (and either fails
or completes) before continuing with the code that caused the unification to happen in the first
place.

5.4 Currying

If an attempt is made to execute a function without all of its arguments, then the function will
curry and return. At a later time the extra arguments may be unified with the function call
and then the function will execute. As currying is not a common occurrence, we strove to

41t was recently noted that storing the sort, in and of itself, is not sufficient to provide complete disentailment.
For instance, assume the function definition: f (s(a), s(b)) -> 1.. IfaAbis L, thenthecal f (X, X)
should fail. However, since our model only comparesthe sorts of residuated y-terms, it will not causefailure. This
can befixed by following the model of the equality constraint.

December 1992 Digital PRL
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third
t

The EgResidInfo structures that would be created by executing the equality constraint on
w-termsAand V.

Figure 8: The additional structures that would be added if the third feature were added to
P-termA.
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siterm

"a function"
-

.\

siterm> Resi duati on

@

@

handl eCurry

Figure 9: Thisfigure shows the result of executing the arity constraint when the function needs
to be curried.

allow currying without increasing the cost of doing general operations like unification. Thisis
achieved by treating currying like residuation.

If afunction curries, a new -term, called a curry term, will be created with sort top and
no features. The curry term will have an attached Residinfo which has a pointer to the
handl eCur ry routine (see Figure 9). Further, the original i>-term will be “unified” with the
newly created curry term in the sense that dereferencing the origina -term will return the
new curry term. Furthermore, when the newly created -term is unified with the special curry
term, the old v-term will will have its arguments copied into the new term. This alows the
curry term to represent a closure and be used as many times as the curried function is applied.
Thus, if extra arguments are added to the origina function call the unification procedure will
unify the extra arguments with the curry term. Since the curry term has no features and is of
sort top the unification will always succeed, invoking the residuation attached to the curry term
in the process. The residuation function invoked will aways bethe handl eCur r y routine.

Thehandl eCur ry routinewill first break the dereference link between the original function
and itscurry term. It will then copy the original term to the curry term and then it will then try
to unify the curry term with the ¢»-term representing the original functioncall. If the unification
succeeds, it will retry the function. Otherwise the unification will fail in the normal way. Thus,
the mechanism for residuation handles currying without any extra overhead.

6 LAM: The Life Abstract Machine

The LAM is an abstract machine used as the intermediate target for the compilation of LIFE
programs. It includes mechanismsthat directly facilitatethe compilation of LIFE features. This
section describes the registers and instruction set of LAM. While a complete abstract machine
would have to implement all LIFE functionality (i.e., residuation, unification, choice-point
handline, etc.), LaM—and this document—focus primarily on the mechanisms needed to handle
function calls and residuation.
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PC  Program Counter
SP Stack Pointer

Rn  Genera purposeregister Rn  There are an unlimited number of general purpose
registers. They can each hold a pointer to a -
term, an integer, or any other basic data type.
They are denoted as the letter R followed by a
number, eg. R8.

CFA  Current Fail Address The CFA register holds the code address to jump
to if aunification operation fails.

CF  Current Frame The CF register contains a pointer to the frame of
the function currently executing.

CPT  Current ¢-term The CPT register by convention pointsto the root
of the >-term being operated on.

RR  Result Register The RR register points to the i»-term that the last
function returned. Itisonly used when arguments
are passed in registers.

Table 1: The LAM register set.

6.1 The LAM Register Set

In addition to general-purpose registers, LAM includes registers used to control the process of
unification and matching. All of these additional registers are used as pointersto datastructures
in memory. They are not special except that their use is predetermined, so that we can more
easily describe theinstruction set. By having them implicit in the instructionswe are a so able
to pack more information into each instruction.

LAM makes no assumptions about the number of registersin the machine. It is assumed that
the mapping from LAM to the machine language of ageneral purpose computer would map the
LAM registers as efficiently as possible. LAM also assumesthat no tags are availablein memory
or intheregisters. Figure 1 listsall theregistersin LAM important to this document.

6.2 The LAM Instruction Set

This section describes the instructionsin the LAM instruction set. It focuses on the instructions
needed to do matching. Theinstruction setisspecified at ahighlevel soastoadlow latitudeinthe

Technical Note No. 18 December 1992



16 Seth Copen Goldstein

LAM—to—native-instruction-set mapping. For instance, it does not specify how heap-allocated
structures are managed. It does not take a position on the actual representation of integersin
their boxed or unboxed form. Its primarily addressesthe functionality of matching, residuation,
failure, and unification. It ignores the handling of choice-points and the implementation of
built-in operations.

In the instruction descriptions below operand names that begin with R denote any register. X
is used to denote a memory location. Italicized names ending in adr refer to addresses in the
code space; otherwise an italic name is a generic label. Feature names are represented by /,
and sort names are represented by s. Each instruction is followed by an informal description
and pseudo-codethat describesitsfunction. The pseudo-code will often refer to datastructures
and routines defined in Sections 4 and 10.

Whenever an instruction operates on a i-term, it is assumed that the v)-term has aready been
dereferenced at the time it is fetched. In the descriptions of the instructions the phrase “the
w-term Y” (or, if the context is clear, just Y) is understood to mean “the i-term that is at the
end of the reference chain from the ¢>-term pointed to by Y.”

AsLAM instructionsare aready fairly high-level noreal constraintsare placed ontheaddressing
modes that the operands may use, unless otherwise specified. The three basic modes used here
and in the examples are register, register + offset, and memory. The register + offset mode
is represented by writing R—offset. Notice that thisis distinct from R.£, which retrieves the
1-term reached by following the ¢ feature from the »-term pointed to by R.

The instructions are broken down into two categories: head instruction and body instruction.
The head instructions are those instructions that can only appear in function heads. The
distinction between head and body instructions are between those that modify -terms and
those that do not. Head instructions do not modify the value of >-terms, they only check there
contents and sometime cause residuati ons to be associated with them. Body instruction, on the
other hand, cause the i>-terms they operate on to change value. The one exception to thisis
deref which can be used in either section. It islisted in the body instruction section.

We will use afour part format to describe all theinstructions. First the name and syntax of the
instruction will appear asfollows.

INSITUCEIONTOrMAL | . . o e ettt e e e e e e e e instruction name

After theinstruction format will be a description of each operand, then atextual description of
the function, and, finally, a pseudo-code description of theinstruction’s functionality.

6.3 Head Instructions

Each head instructionis a constraint that checks its operand, the actual argument to the
function, against the function definition. The constraints are different from the body
instructionsin that they don’t modify the operands and in that they can create residuations.
Thus, while body constraint instructionswill either succeed or fail, head constraints will
either succeed, residuate, or fail.

All the head instructions have an implicit form, and some of them have an explicit form. The
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implicit form, to work correctly, requires the CF register and certain of the fields of the current
frame to have been initialized for residuation and failure. On the other hand, the explicit
version will transfer control to an explicitly named address if either residuation or failure
occurs, so that nothing needs to have been preset in the current frame.

The implicit versions of the instructionswill invoke the macro headfail if afailure occurs.
This macro will check cF—fail. If cF—fail is nonzero, then control will be transferred to
cr—fail; otherwise control will be transferred to the addressin cra. Thisisthe mechanism
used to handle multiplerulesin afunction definition. The pseudo-code for the macro
headfail is

headfail:
if cF—fail # 0 then
PC = cr—~falil
dse
PC = CFA
endif
RXCS e Subsort Constraint

RxCs recheckadr
RxCs failadr, residadr

Rx Rx must pointsto a -term.

S s isasort defined in the sort hierarchy.

recheckadr recheckadr isthe address of the re-evaluation routine.

failadr failadr isthe next addressthat will be executed if the constraint fails.

residadr residadr isthe next address that will be executed if the constraint
residuates.

The Qubsort Constraint instruction determinesif the sort of Rx isasubsort of s. There are
three possible outcomes for this instruction: success, failure, or residuation. If Rx—sort is
subsumed by s, then this constraint succeeds. If the Rx—sort A sis L, then theinstruction
fails. If neither of these occur, or, in other words, Rx—sort neither entails or disentails s, then
the instruction residuates. See Figure 10 for the various possibilities.

The Subsort Constraint instruction has an implicit and explicit version. Theimplicit versionis
RxCs recheckadr. If recheckadr isnot specified, then it is set to the current pC. The explicit
version isRxCs failadr, residadr. Both theimplicit and explicit versions check to see if the
sort of Rx iscompatible with s without altering Rx in any way. If it is compatible, then the
next instruction executed is the subsequent one in the function definition.

The two versions differ in how they handle residuation and failure. If the instruction
residuates, the implicit version will create a sort residuation which will be attached to Rx and
will resume at recheckadr. The explicit version will transfer control to residadr. It will not
create any residuation structures, nor will it increment the residCount in the current frame.
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Figure 10: Different regions of sort intersection.
If the sort of Rx and s are incompatible, then the implicit version will execute the headfail
macro. The explicit version will transfer control to failadr.

Description of RxCs recheckadr:

s'= glb(Rx—sort, s)

switch (5)
case | :
headfail
otherwise:
if (§< s) then
pc=pPCc+1
dse
Create aresiduation and attach it to Rx
Rx— tryAddSimple(cF, s/, recheckadr)
endif
endswitch
pc=pPCc+1

Description of RxCs failadr, residadr:

s'= glb(Rx—sort, s)
switch (5)
case | :
pC = failadr constraint fails

otherwise:
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if (< ) then
PcC=pPCc+1 constraint succeeds
ese
PC — residadr constraint residuates
endif
endswitch
RXA 2 e Feature Existence

Rx.£? residadr
Rx.£? residadr, recheckadr

Rx Rx must pointsto a -term.
[ | isafeature name.
residadr residadr isthe next address that will be executed if the constraint

residuates. If residadr isnot present in the instruction, then its value
defaults to the subsequent instruction in the program text.

recheckadr recheckadr isthe address of there-evaluation routine. If recheckadr is not
present its value defaults to the current PcC.

The Feature Existence instruction tests for the existence of afeature £ inthe ¢-termin Rx. If
the feature exists, then the instruction succeeds and the next instruction is executed. If the
feature does not exist, then the instruction residuates and continues execution at residadr. The
residuation created will restart execution at recheckadr if Rx isever modified.

A possibly more optimized LAM would have a more complex feature existence constraint.
Instead of creating asimpleresiduation which will be run when any feature (or sort) of the
P-term is changed, it could be creste a residuation which will only be executed when the
particular feature mentioned in the constraint is added the the -term. | have ruled out this
more efficient instruction in LAM to keep the residuation structures smaller and more concise.
It is not clear whether having the specialized feature residuations would improve efficiency,
since whenever afeature isadded it would still be necessary to check whether the added
feature participatesin aresiduation.

If LAM is oriented to more efficiency in the case of feature constraints it might, instead, be
better to investigate the possibility of actually adding the feature when the constraint is
executed. The added feature could point to a >-term which has sort top and has a residuation
attached that would have to perform a specia check related to currying of the original >-term.
If unification is performed on the original ¢»-term no problems are introduced. However, if
matching is performed on the »-term, some special mechanism would have to be used to
ensure that the “ghost” feature added by the constraint was not matched—since, if it were,
curried functions would not behave correctly.

I chosethe simpleroute, and instead have feature constraints residuate on the top level -term.

if Rx—s hasFeature(l) then
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Pc=pPC+1
else
Rx— tryAddSimple(cF, recheckadr)
PC = residadr
endif
RX = RY? Equality Constraint
Rx = Ry? recheckadr
Rx Rx pointsto a-term.
Ry Ry pointsto a-term.
recheckadr recheckadr isthe address of the re-evaluation routine. If not present in the

instruction it defaults to the current pPC.

The Equality Constraint instruction checks to see if Rx and Ry are the same dereferenced
pointer to a-term. In other words, it succeeds if Rx and Ry have been unified. If they are the
same 1»-term, then the constraint succeeds and the next instruction is executed. If they could
become the same «>-term, in other words, if they could be unified, then the constraint
residuates and the next instruction is executed. If they are inconsistent, then the headfail
macro is executed. All of thereal work performed by thisinstruction is contained in the
canUnify routine (see Section 10.2.3), which will either create a residuation and return or
execute the headfail macro.

The cF register and cF—fail must be set before this instruction can be executed.

if Rx# Rythen

canUnify(Rx, Ry, recheckadr)
endif
PC=PC+1

X Initialized Constraint
X? residadr, recheckadr

residadr residadr isthe next addressthat will <be executed if the constraint
residuates. If residadr isnot present in the instruction, then itsvalue
defaults to the current Pc+ 2.

recheckadr recheckadr isthe address of there-evaluation routine. If recheckadr is not
present its value defaults to the current pc.

The Initialized Constraint instruction determines whether amemory location pointsto a
-term or isuninitiaized. Thisinstruction will either succeed or residuate. It isused to make
sure that a variable has been defined before it isused. For instance, if avariableisinitialized
in part of a constraint tree that could have been skipped (because a feature constraint
residuated, i.e., the 1>-term in question was missing a feature), then an equality constraint
depending on the skipped variable will have to be skipped until the variableisinitialized.
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Figure 11: A constraint tree for the one-argument, one-clause function definition. This tree
has been augmented with the Initialized Constraint L.

In generd, this constraint will be immediately followed by an equality constraint. Since the
equality constraint can only be executed if this constraint succeeds, the default addressto
jump to if the constraint residuates is the one following the next instruction, i.e., the pc+ 2.

For example, the function definition (of one clause with one argument)

spouseName(X: person(name=> | :id(first = F,
last = L),
spouse = S:person(name=- id(last = L)))) — body.

creates a constraint tree, asin Figure 11, with an equality constraint between the -terms at
the end of the last features. Notice that if either the name feature of X or the last feature of | is
not present, then the Equality Constraint instruction M = L?in Figure 11 has no meaning.
Thus, we introduce the Initialized Constraint instruction L? into the tree in Figure 11 If it
residuates, theM = L Equaity Constraint will be skipped.

if X == 0then
X— tryAddSimple(cF, recheckadr)
PC = residadr
else
Pc=pPC+1
endif
RXA, £y ol e Arity Constraint
Rx Rx must point to a y>-term.
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by, b, -, Ln l1,4o,-- -, £y isaset of argument names (or features).

The Arity Constraint instruction succeeds iff the Rx has the features ¢4, /5, - - -, £ and no
others. It isused here as away of specifying the number and names of the argumentsto a
function. If afunction call does not have al the arguments specified in the definition, then the
function call becomes curried.

If the Arity Constraint succeeds, then the function call represented by the -term Rx will be
executed. If Rx isnot aclosure (i.e, it has never curried before), then a new -term will be
created and assigned to register RR. This-term will become the result of the function. If Rx
has previoudly curried, then aresult ¢»-term will aready have been created, and it is now
assigned to RR.

If Rx contains features that are not present inthe set {¢1, {5, - - -, £}, then the Arity Constraint
fails. This should probably also signal some kind of exception, since thiskind of failureis not
expected. Another implementation of LAM might, instead, pass features not in the set of
argument names to the result ¢ -term. It is not apparent how such alenient approach could be
implemented efficiently.

If, on the other hand, the features in Rx are a subset of {1, £, - - -, £n}, then theinstruction
will curry Rx and return to the caller. A -termiscurried by creating areference link between
Rx and anew -term with sort top. A specia residuation, called a handleCurry residuation,
will then be attached to the new -term.

In genera the Arity Constraint is thefirst constraint executed at the head the matching code
for afunction. It isused to handle the case when the compiler cannot figure out what function
will be invoked at compiletime and instead must build a compl ete >-term before the function
can beinvoked. Following the arity constraint will be code that will deconstruct the -term,
placing argumentsin registers, etc. (see Section 5.1). If, on the other hand, the compiler can
determine the function being called, then it can place the argumentsinto registers (as specified
by some mapping of features to registers) and start execution of the function after the Arity
Constraint and the deconstruction code.

if Rx— features — {{1, (2, - - -, {n} # () then
headfail Rx hastoo many arguments

ese
if (Rx— featuresn {4, lo, -+, ¢n}) == @ then
constraint succeeds , setup result -term
if Rx—ref # Othen
Thisfunction had previously curried
RR = Rx—ref
Rx—ref =0
ese
RR = new Psi
endif
Now execute function body
PC=PC+1

December 1992 Digital PRL



An Abstract Machine to Implement Functions in LIFE 23

ese
Must curry thisfunction call
C =new Ps
C— addCurryResid(Rx, PC)
ref Rx,C see the ref instruction

ret
endif
endif

FESIA? Residuation Check
resid? residadr

residadr residadr isthe next addressthat will be executed if the frame has any
residuations.

The Residuation Check instruction checks to see if cF—residCount is zero or not. If itiszero,
then the next instruction is executed. If it is not zero then the implicit version, resid?,will
execute aret instruction and the explicit version, resid? residadr, will transfer control to
residadr.

While both theimplicit and explicit versions require that the CF register and cF—residCount
beinitialized, the explicit version gives the user a chance to perform any clean-up that might
be required if the function has residuated.

Pseudo-code for theimplicit version is

if cF—residCount > 0 then
ret

dse
PC=pPCc+1

endif

Pseudo-code for the explicit version is

if cF—residCount > 0 then
PC = residadr

ese
PC=pPCc+1

endif

6.4 Body Instructions

The instructions described in this section can appear in either the head or the body of a
function or a predicate definition. Theseinstructionsinclude both constraints and
genera -purpose instructions.
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0 P Unify with Sort
Rx Rx must point to a >-term.
S sisasort defined in the sort hierarchy.

Theinstruction Rx:s will succeed if it can set the sort of the ¢-term Rx to glb(Rx—sort, s);
otherwiseit will fail. If the sort of Rx islowered it will cause any residuations attached to Rx
to fire.

s = glb(Rx—sort , s)
switch (s')
case L :

PC = CFA
otherwise:

Rx—sort = ¢

if Rx—rlist then

Rx— lower ()
endif
endswitch
PC=pPC+1
RX = RY . | e Fetch Feature
Ry Ry pointsto a-term.
l { isafeature name.

The Fetch Feature instruction stores the i-term at Ry.{ in register Rx. It does a destructive
store into register Rx. If Ry does not have the feature 7, then it will add the feature ¢ to Ry and
atach it to anew -term of sort T. The act of adding a new feature will cause any
residuations attached to Ry to fire.

if not Ry— hasFeature(?) then

Ry — addFeature(/, new Psi)
if Ry—rlist then
Ry — lower ()
endif
endif
Rx = Ry./
PC=pPC+1
addfeature RX, £, RY | .ottt e Feature Creation
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Rx Rx isa-term without feature £.
l ¢ isafeature name.
Ry Ry isthe t-term that will be pointed to by /.

The Feature Creation instruction adds a new feature to ¢-term Rx. Thisinstructionisonly
valid when it is known that Rx does not have feature ¢ and when Rx has no residuations. In
other words, it is used to construct new -terms. After thisinstruction has been executed,
Rx.£? will aways succeed, and the sequence Rz «+— Rx.f & Rz = Ry? will always succeed.

Rx— addFesture(¢, Ry)

Pc=pPC+1
RX = RY |ttt General Unify
unify Rx, Ry
Rx Rx pointsto a-term.
Ry Ry pointsto a-term.

The General Unify instruction unifies the ¢)-terms Rx and Ry. If the unification succeeds, then
one of Rx and Ry will be modified so that its dereference link pointsto the other. In general,
the younger variable should be modified to point to the older to minimizetrailing. If the
unification fails then control will be transferred to the addressin the CFA register.

if unify (Rx, Ry) then

PC=pPC+1
ese
PC = CFA
endif
FEf RX, RY |-t ettt e Create Reference Link
Rx Rx pointsto a-term.
Ry Ry pointsto a-term.

The Create Reference Link instruction sets the reference field of the Rx -term to point to Ry.
After thisinstruction has executed Rx = Ry? would succeed.

Rx—ref =Ry
PC=PC+1
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deref RX, RY | e Retrieve a Dereferenced -term
Rx Rx pointsto the >-term to be dereferenced.
Ry Ry the dereferenced v-term isreturned here.

Thisinstruction will trace down the reference links starting with the y»-term in Rx. 1t will put
the ¢-term at the end of the chain into Ry. Asashorthand, “deref Rx, Ry” will often be
written “Ry= Rx". In other words, the code presented here will not draw a clear distinction
between the case where an assignment is sufficient and the case where aderef is necessary.
The compiler can make all assignmentsderef s, or, if agood optimizer is available, can
eliminate some deref operationsin favor of simpler moves.

Ry = Rx
whileRy—ref #£0
Ry = Ry—ref

endwhile

Pc=PC+1
VAl RX e Evaluate by Normalization
evalfunc Rx
evalpsi Rx
Rx Rx pointsto a-term.

The evaluation instructions cause a i-term to be made consistent. If the »-term isafunction
call or aclosure, then the evaluation instruction will attempt to evaluate the >-term by
executing the function based on the y-term’s sort. If the sort of the ¢»-term is not afunction,
then the evaluation instruction will enforce the sort definition on the -term. If there isno sort
definition, then the instructionis a nop.

Thisinstructionisafull fledged interpreter and as such isvery costly. It ishoped that after
compilation there are few instances of thisinstruction and that instead, the unification,
matching, and normalization that it implies has been encoded with by the other instructions
presented here.

The genera eval instruction makes no assumption about whether Rx is a function or asort.
evalfunc assumesthat Rx pointsto a -term with afunction sort. evalpsi assumes that Rx
pointsto anormal -term.

adr = lookupSort(Rx— sort )
call adr
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new PsSi Heap Allocation
new Psi(s)

new Frame(name)

new SortResid(recheckadr, Rx, Ry)

S S isasort.

name name isthe name of afunction.

recheckadr recheckadr isthe address of the re-evaluation routine.
Ry Ry isthe i-term that residuated.

The Heap Allocation instructions allocate storage from the heap. new Psi(s) will allocate a
new -term with sort sand no features. If sisnot present it defaultsto top. new Frame(name)
allocates anew frame for the function name. It will also set every slotintheframeto 0. Itis
assumed that the compilation process will create aroutine for allocating a new function frame
for each function. It isthisroutine that will beinvoked when the new Frame() routineis
executed. A more general way of looking at this would be to say that for every sort aroutine
is created that will handle its alocation and initialization. For genera sortsthiswill alocate
some space and set the sort to top. (One could imaginethat if a sort definition were present
for the sort then this routine would a so execute the code in the definition.) For sorts that
represent functions, this code would allocate the frame and initiaizeit.

new SortResid(recheckadr, Rx, Ry) alocates a new sort residuation which will resume at
recheckadr. The residuation will be for the frame pointed to in Rx, and it will be attached to
the i -term Ry.

6.5 Obvious instructions

The following instructions are used in the examples and should be obvious.

frEE RX |ttt Free Heap Allocated Storage
01U T G P Push onto the Stack
[SP] = Rx
s;P=sP+1
010 I Pop from the Stack
=sr-1
Rx = [SP]
= P Return from Subroutine
sP=sp—-1
PC = [SP
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Call destadr |. . ...ttt Call Subroutine

[sP] = PC
sP=sP+1
PC = destadr

JMp destadr | .. ..o e Unconditional Branch
PC = destadr

7 Example LAM Code

This section illustrates how LIFE functions are compiled for the LAM. 1t uses append as an
example function. First it presents a simple, ¥»-term based function definition. Next it
optimizesthe code to use registers for the recursive call. Finally it explores how the explicit
versions of certain instructions can substantially reduce overhead. We will first explore an
example using the append function in Section 8. Then in Section 9 we will show how the
mechanism of resumption works.

8 The Append Function

append([], L) — L.
append([H T], L) — [ H| append(T, L) ].

In genera an n-rule functionin LIFE iscompiled into 2n + 2 sections. Thefirst section isthe
¥-term entrance to the function. It consists of an arity instruction followed by the instructions
to deconstruct the »-term into registers. The next section is the frame building section. It
allocates aframe and stores necessary information into the frame. Finally, for each rule a
head section is followed by a body section.

In the following non-optimized version of append thefirst section starts at the label append,
which contains the arity constraint and the deconstruction instructions. The frame building
section begins at the label reg_append. Thefirst clause's head is only two instruction long.
They areright before the label isNil. The body of thefirst clause isthe 5 instructions
following isNil. The second clause’'s head starts at maybeL ist and its body startsat isList. In
this version of append no special attempt is made to use registers; instead it builds a 1>-term
for therecursive call to itself.

The frame definition for append is as follows.
class Append : public Frane

{

Psi t er nt argl; [l pointer to argunent 1
Psi t er nt L; [/ pointer to argunent 2
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append: cpr.{1,2}

R1 « cPT.1
R2 « cPT.2
ref cpT, RR

reg_append: push CF

CF = new Frame(append)
CF—body = isNil

cF—fail = maybelist
CF—result = RR
CF—argl = R1

C—L =R2

R1C[] zero

resid?
isNil: Ccr—fail =0

unify crF—result, cF—L

free cF
pop CF
ret

zero: cPTC([]
ret

one: cPTCList
ret

two: CPT.car?
ret

three: cpr.cdr?
ret

maybeList: cF—body = isList
cF—fail =0

R1 = cF—argl
Ri1CList one
Rl.car? $+ 1, two
Rl.cdr? $+ 1,three

Technical Note No. 18

Check that caller has two arguments.
Thisisthe v-term entrance section.

Any reference to the function will now

point to the result of the function.
Thisis the register interface entry. Al-

|ocate anew frame.

Setup for executing thefirst rule.
If thefirst rule fails, try the second one.

Isthefirst rule ok?

Any failure now is a genera failure.
Since we don’'t know if there is aready
aresult, we must assumethereisand do
agenera unification.

Clean up and return.

Recheck sort constraint from rule 1.
Recheck subsort constraint from rule 2.
Recheck existence constraint.

Recheck existence constraint.

First rule failed, so setup for executing

second rule. _
If thisrule fails, the whole function call

fails.
Begin checking head of second rule.
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isList:

resid?
CPT = new Psi(append)

addfeature cpT,1, (CF—argl).cdr
addfeature cpPT, 2, CF—L
evalfunc cpr

R2 = new Psi(List)

addfeature R2, car, (CF—argl).car
addfeature R2,cdr,RR

evalps R2

unify cr—result, R2
free cF

pop CF
ret

Executing second rule, so call append
recursively.

Perform actua function call.

Build cons cdll.

Make it theresult.

Clean up and return.

We can optimize append in two ways. First, compiler analysis should let us check the
function definition to seeif the function call we are performing satisfies the arity constraint. 1f
it does, we can eliminate building the ¥>-term. In the case of append, the recursive call in the
second clause can use registers instead of constructing a >-term. Further, compiler analysis
can also check sort definitionsto seeif a -term being built will not violate itstheory. (In the
trivial case this happens when the sort has no attached theory.) For append, thisresultsin the
following optimizations applied to the second clause body:

isList:

R1= (CF—argl).cdr

R2 = c—L
RR = new Psi
call reg_append

R2 = new Psi(List)
addfeature R2, car, (CF—argl).car
addfeature R2, cdr,RR

unify cr—result, R2
free cF

pop CF
ret
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R1 will get first arg to append.
Caller must establish the result «-term.

Execute recursive call and then the rest
isthe same.
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The above versions of append use only the implicit versions of the instructions. While the
implicit versions are more compact they also require more setup, which meansthat for the
simple case here moreinstructions are executed to establish a context than there are
instructionsin the head or body of the function. Another defect with this code is that the
common case, the second rule, isthe slowest case. To alleviate this problem, the explicit
subsort and residuation check instructions can be used.

Since the explicit instructions make no assumptions about what is in the current frame,
nothing in the frame needs to be set up before executing the head of the function. Thus, if the
function does not residuate, no extrawork will be performed in setting up the body, fail, or
result fields of the frame. Notice aso that more registers are used as aresult of this
compilation approach. The extraoverhead involved when afunction residuatesis smaller than
it appears here because on aRISC processor everything would have to be loaded into registers
anyway. Furthermore, some of the work that is made explicit here was actually happening
behind the scenes in the definitions of the implicit instructions.

append: cpr.{1,2}
R1+ cpT.1
R2 « cPT.2
ref cpT, RR
reg_append: push CF
CF = new Frame(append)
R1C[] maybelist, residNil

isNil1: unify RR, R2

free cF
pop CF
ret
isNil: RR = cF—result

R2 = cF—L
jmp isNill

checkNil:  cpPTC[]
ret

resdList: CcF—body = isListl

Technical Note No. 18

1-term entrance to function.

Save current value of CF.
Create a new frame. All values are set
to O by alocator.

Explicit subsort constraint will only
continue to next instruction if it suc-

ceeds. Sonoresid? isneeded.
We can assume everything needed isin

aregister and cF—fail is aready set to
0.

Entry point for body if came back from
aresiduation. Must setup registers.

Recheck sort constraint from rule 1.

If rule 2 residuates on the first pass we
end here to fixup the frame.
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residNil:

stash:

one:
two:

three:

maybeL istl:

maybeL ist:

isList:

cr—fail =0
jmp stash

CF—fail = maybeListl

CF—body = isNil
CF—residCount++

R1—-tryAddSimple(cF, [ ], checkNil)

CcF—result = RR
C—1=R1
C—L =R2

ret

cPTCList
ret
CPT.car?
ret
cpr.cdr?
ret

R1 = cF—1
R2 = cF—L
C—fail =0

CF—body = isListl
R1CList one

Ri.car? $41,two
Ri.cdr? $4 1, three
resid? residList

C—1=R1

C—result = RR

R1 = Ri.cdr
RR = new Psi
call reg_append

December 1992

If rule 1 residuates on the first pass we
end up here to fixup the frame and to
create theresiduation. Sincerule 1 uses
an explicit form of the subsort instruc-
tion we must create the residuation our-
selves.

Recheck subsort constraint for rule 2.

Entry point if rule 1 resumes after resid-
uating and then fails.

Entry pointif rule1failsonthefirst pass.
Everything needed is in a register and
the current frame may be uninitialized.

Since the frame may be uninitialized,
we must do somework before returning
to caler if we are to residuate.

We did not residuate, but we may never
have stored anything in the frame, so
save what we need to.
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R2 = new Psi(List)
addfeature R2, car, (CF—1).car
addfeature R2, cdr, RR

unify cr—result, R2

free cF
pop CF
ret

isListl: Rl =crF—1 Entry point if we succeed after residu-
ating.
R2 = cF—L
jmp isList

This version of append is significantly harder to read than the previous versions for two
reasons. First, the code isorganized so that the most common case requires the fewest jumps.
Thus, al the interesting (but hopefully rare) cases involve many jumps. Second, one must
keep in mind the different states that the frame can be in to determine which code is executed.
In genera the compiler will need to provide code for two different states: initial entry and
resumed entry.

For instance, in this code the second clause can be entered in one of three ways: failure of the
first clausein thefirst pass, failure of thefirst clause after it residuated, or residuation of the
second clause. In thefirst case, the flow of control passes though reg_append and then to
maybeL ist viathe explicit subsort constraint. In this case none of the frame has been
established. In the second case, the flow of control passes through reg_append, residNil
(because the explicit subsort residuated), checkNil (when the frame was resumed),

maybel ist1 (because the constraint in checkNil failed and the fail of the field was set to
maybeListl in residNil). In the second case the frame has aready beeninitiaized. In the
third case the frame also has been initialized. The flow of control is: reg_append, maybel ist,
residList, one of the resumed labels (one, two, or three), and then, finally, isList1.

9 The Plus Function

In order to clarify the mechanisms used for residuation and resumption we will examine the
flow of control for the following contrived segment of LIFE code.

A=@ B=@ C=A+B, D=C+5, A=4, B=5

We will assumethat + isnot a built-in function, but rather is defined by the one clause LIFE
code:

+(Arint, Biint) -> intplus(A B).

Technical Note No. 18 December 1992
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Wherei nt pl us( A, B) treatsthe sortsof A and B asintegers and returns a a >-term with
the sort that is an integer—that is their sum.

The frame definition and compiled LAM code for thisfunction are as follows.
class Plus : public Frane

{

Psi t er n¥ argl;
Psi t er n¥ argz;

plus:

reg-plus:

body:

residFirst:

stash:

cpT.{1,2}

R1 « cPT.1
R2 « cPT.2
ref cpT, RR

RiCint fail, residFirst

R2Cint fail, residSecond
R3 = intPlus(R1, R2)

unify RR, R3

ret

push cr

CF = new Frame(append)
R1—-tryAddSimple(cF, int, checkPlus)
R2Cint

CF—body = doPlus

CF—residCount++
CF—one = R1
CF—one = R2
pop CF

ret

residSecond: push CcF

CF = new Frame(append)
R2—tryAddSimple(cF, int, checkPlus)

jmp stash

December 1992

Check that caller has two arguments.
Thisisthe -term entrance section.

Any reference to the function will now

point to the result of the function.
Explicit subsort constraint will execute

genera fail routine if this constraint
fails, since this definition has only one
clause.

Execute the add primitive and put the
result, a-term, into R3

Unify the resulting number with the re-
sult ¥-term. Compiler analysis should
do better here, sincewe know intPlusre-
turns a -term that has no features and
RRisanull ¥-term.

Save current value of CF.

Since the frame is now all set and we
know we are residuating already, use
animplicitsubsort constraint for second
argument.
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checkPlus: cprCint Recheck sort constraint
ret
doPlus: R1 = CF—one
R2 = CF—two
RR = CF—result
R3 = intPlus(R1, R2) Execute the add primitive and put the
result, a -term, into R3
unify RR, R3 Unify the resulting number with the re-
sult ¢-term.
pop CF
ret

The above function has two additional places for optimizationsthan the append function.
First, both arguments have the same sort constraint, so only one resumption address is needed,
checkPlus. Second, in the case that no residuations occur, which is the common case, no
frame needs to be created either. Thus, we see that the CF register is not pushed nor isaframe
created unless a residuation occurs (see label s residFirst or residSecond).

Armed with the above definition for plus, lets see what happens for our example LIFE code.
A=@ B=@ C=A+B, D=C+5, A=4, B=5

The compiled version of this code is as follows (We assume that none of these variables has
been seen before.).

start: A= new PS(@) Create anew psi term for A
B = new Psi(@) Create anew psi term for A
R1=A Get ready for afunction call
R2=B
RR = new Psi(@) Create the result term
call reg_plus
C=RR
aterOnes. R1='Y Put sort for theinteger 5inR1for second
call
R2 = RR
RR = new Psi(@) Create the result term
call reg_plus
after'Two:. D =RR
lowerA: A4 Unify A with the integer 4
lowerB: B:'S Unify B with the integer 4

After the execution of thefirst call, from the labd start until theinstruction before label
after One, three ¢-terms, one frame, and two residuations will have been created. Thisis
pictured in Figure 12. When the second call finishes (right before the label after Two, another
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Psiterm

A\ .
@ ~ Toplevel
Frame
Resi duati on \\
.\\* o | \\\\
i nt .
First Frame
2
i doPlus
(bResi dlnfo NULL
checkPlus
R2 Psiterm . \\ i
T e — - 1
-_— /S \

-

Resi duatio
.\\f o |

i nt

/ ) /
- QReSi dinfo /
checkPlus | .
Psiterm -

@

Figure 12: The structures created by executing thefirst seven instructions of the example code.
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Psiterm
-
@
Resi duati on
.\ PR
int
/
<;f%sidlnfo
checkPlus
Psiterm
@ o
Residuatio
\» .\
i nt
/
QResi dl nfo
checkPlus
_Psiterm
@ ¢
Resi duati on
.\\ PR
i nt
/.
QResi dl nfo
checkPlus
RR Psiterm
D @

Toplevel
Frame

First Frame

> . ) ‘5

2
doPlus
NULL

———o \

Second Frame
1

doPlus R1

NULL

. N Psiterm

Figure 13: The structures created after the second call to the plus.
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Psiterm
-
141
Psiterm
@ o
Resi duatio
.\\> o— |
i nt
QResi dl nfo
checkPlus
_Psiterm
@ ¢
Resi duati on
R\» PR
i nt
/'
QResi dl nfo
checkPlus
RR Psiterm
D @

Toplevel
Frame

First Frame
1
doPlus
NULL

S TN

Second Frame
1

doPlus

R1

NULL

SPsiterm

Figure 14: After A has been lowered and its residuation removed.
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Psiterm
bt
g
Psiterm .
‘5 ~

Psiterm
‘9’ —

Resi duati on

.\\> o1
int
/
(‘Resi dl nfo
checkPlus
Psiterm
@

First Frame

0

doPlus

NULL

— °

e

Second Frame

1

doPlus

NULL

STACK

4/ * ™ Toplevel

Frame

wPsiterm

‘g

Figure 15: The structures and stack after the first frame has fired, but before the second one

has fired.

Technical Note No. 18

December 1992



40 Seth Copen Goldstein

P-term, frame, and residuation will be created (see Figure 13). Note that in executing the
second call, the first subsort constraint succeeds, but the second one (testing the sort of C)
residuates. At this point, both result terms have sort top, and neither of the functions have
fired. Next, the >-term A will be lowered to the integer 4. This causes the residuation
attached to A to fire. Theresult isthat the current Frame is pushed on the stack, the cpT
register isset to A, and the code at checkPlus is executed. After thisreturns, the residuation
attached to A will be removed and the the residCount attached to the first frame will be
lowered to one (See Figure 14).

Finally, B islowered. Thiswill cause checkPlus to be executed with CcF pointing to the first
frame. All the residuationswill have been removed and thus, theexecut e() function (See
Page 52) will invokethefirst frame.

When thefirst frame executes, it will unify the sorts between RR, which is top, and R3 which
containsa‘9’. Theresult isalowering of RR, which is aso the ¢-term D, causing another
residuation to fire. Again the CF register is pushed, checkPlus executed (See Figure 15 for the
state of the machine just before checkPlusis called), and the intPlus routine finally called,
putting a 14 in D as expected. The second frame returns, popping the cr for the first frame.
The first frame returns, popping the top level cr, and then the code continues.

This exampleis contrived and given the above code a peephol e optimizer should be able to
rearrange this so no residuations occur.

10 Detailed Data Structures and Routines

This section describes the structure of the basic constraints needed to execute matching. It
defines the data structures, auxiliary routines, and abstract machine structure necessary to
understand the execution of the constraints. The definitions are presented in an object-oriented
fashion. It is hoped that the definitions presented here can be turned into executable C++ code.

10.1 The Three Basic Data Structures

10.1.1 The Psiterm

// This class defines the basic data structure used in the system, that of the psiterm.
/I Each psiterm has a sort, aset of features, and a potentialy null list of residuations
/I attached toit.

class Psiterm

{
Sort sort;
Feat ur es f eat ures;
Resi duati on rlist;
public:

[l return sort of this psiterm
Sort sort();
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s

/I Return residuation for frame f; if it doesn't exist create it.
Resi duat i on* findResi d( Frane *f);

/I'1f siscompatible with best known sort for this psiterm, then add asimple
/l residuation that will continue at label for framef.
bool ean tryAddSi npl e(Frane *f, Sort s, Code |abel);

/I Return athe list of features that isthe intersection between fset and this
/I psitermsfeatures list.
Feat ur es i ntersect (Features fset);

// Add feature | with attached psi-term p.
voi d addFeat ure(Feature |, Psiternt p);

/I return true if this psiterm has the feature .
bool ean hasFeat ure(Feature 1);

/I get the psiterm that is pointed to by featuref.
Psiterm& get (Feature f);

/I this Psiterm has been lowered, so if it has any residuations, they must be
/I executed.
voi d [ ower () ;

// Add aresiduation that will invoke the handleCurry routineif anything is ever

/ unified to thispsiterm. The original function call psiterm is specified by orig.

// The function to beinvoked isfunc.

voi d addCurryResi d(Psiterm& ori g, Code func);

/I return true if X and Y are unifiable. Also set up the structures that will ensure
/l they remain compatible or afailuretakes place.
friend boolean canUnify(Psiterm& X, Psitern& Y);

10.1.2 The Frame

The name for this class was chosen to evoke the image of a stack frame used to execute a
function. However, since residuations can cause functionsto execute in anon-stacklike
manner, they cannot be allocated on a sequential stack. Everything that the function
references across suspension, or residuation points, is kept in the frame. The classframe
describes the common structure that every frame must have. Each function will create a new
subclass of frame, which will add all the variables needed in order to execute the function.

/I The class Frame describes the minimum structure that every function will create when

/it is executed. Each particular function will define its own additional fields (i.e.,

/I variables needed to execute the function) and inherit all of the class Frame's

/I variables and methods.

cl ass Frame

{
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i nt resi dCount er; Il counts number of residuated variables.

Code body; // address of body of function

Code fail; [/l the addressto goto if afail isexecuted.

Psi t er nmt result; Il result of function gets put here
public:

/lincrement and decrement the residuation counter

voi d i ncr Resi duation();

voi d decr Resi duati on();

/I returns residCounter to indicate whether or not thisframe has any residuations
// attached to it.
voi d hasResi ds();

/I when thisfunctioniscaled, then al residuations have been checked and the
// function isready to go.
voi d execute();

h

/I An example frame definition. It inherits from Frame and defines two of its own
[ variables.

cl ass SoneFunction : class Franme
{

Psi t er nr \VO;

Psi t er nr Vi;

}
10.1.3 The Residuation

/I A residuation is a structure containing all the information about functions that

/I depend on psiterms on which they are residuated. A residuation identifiesthe function
// depending on the psiterm, the best known sort for the psiterm (i.e., theglb of al the

[/l formals in the function definition that this psiterm is participating in), and alist

/I of addresses that should be executed if the psiterm is ever changed.

cl ass Residuation

{
Fr ame* par ent ; /I frame of function to be activated
Sor t sort; /I the best known sort for thisterm (i.e. the glb of
[/ dl formals and al actuals linked by equality
/I contraints)
Resi duat i on* next; /I next residuation for thisvar
Resi dI nf o* i nfo; /' info about each resid for this parent
public:

/I Compare the sort in this residuation and s. If they are incompatible, then
/ execute FAIL. Otherwise, set sort to glb(sort, ).
bool ean conpati bl eWth(Sort s);
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/I creste a Residinfo and attach it to the list of already created residinfo’sfor
[/ this psiterm.
voi d addSi npl eResi d( Code | abel);

/I return best known sort, i.e. return sort field.
Sort sort();

/I set the sort field to s. If sis different than the current value of the sort,

/I then the best known sort for this psiterm has been changed and we should pretend
/I the psiterm has been lowered.

voi d set Sort(sort s);

I/l returnstrueif y has an equality residuation in frame f with the receiver;
[ otherwiseit returnsfal se.
bool ean hasEqResi dWth(Psiterm& y, Frame *f);

/I adds an equality residuation between the this psiterm and x.
voi d addEqResi dWt h(Psiterm& x, Code | abel);

/I Indicates that the psiterm connected that thisresiduation is attached to has
/I been lowered, so we should activate this residuation.
voi d [ ower () ;

/I Add a ResidInfo to thisresiduation that should resume at labdl.
voi d addSi npl eResi d( Code | abel);

b

/I these two classes hold the address of the code chunk to be executed if the psiterm
/I pointing to these is ever lowered.

class Residlnfo

{
Code addr ess; // address of constraint to re-execute
Resi dI nf o* next; I/l next Residinfo for thisframe if it exists, else
/INULL
public:
/I Thisfunction calls the routine at address. CPT and CF have already been set up.
virtual void resune();
1
cl ass EqResid: Residlnfo
{
Psiterm ot her; I psiterm used in = constraint
public:
/I This function executes the equality constraint between the psiterm in CPT and the
/I Psiterm in other. If it succeeds, then the routine at address is executed.
virtual void resune();
1
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10.1.4 The Sort

I/l The class sort represents the sortsin the system. The choice of representation
/I should be made with efficiency of taking the glbin mind.

cl ass Sort

{
public:
/I Return TRUE isthisis bottom sort, otherwise FALSE.
Bool ean i sBotton(void);

I/ return the greatest lower bound of the sorts defined by a and b.
friend Sort glb(Sort& a, Sorté& b);

10.2 The Head Instructions

In this section the C++ code for the basic head instructionslisted in Section 6.3 is presented.
Each constraint islisted using the data structures and routines presented above. |n some sense
this code represents the macros that would be inlined into aLAM function definition. The code
uses three macros to guide the flow of control in the abstract machine: CONTI NUE, FAI L, and
SKI P_TQO. The CONTI NUE macro has essentially the same meaning aspc = pC + 1inthe
pseudo-code presented in Section 6.3. In these macros it means execute the code after the end
of the current macro. The FAI L macro islikethe headfail macro. Finaly, SKI P_TQ( ski p)
means to restart execution at the instruction labeled ski p. These macrosimply a certain
compilation regime, that the entire function head will be encapsulated in a single C function.
Thus, both the SKI P_TOand CONTI NUE macros, becomeloca gotos, and the FAI L macro
becomes areturn statement. If the function returns the address of the next ¢ function to
execute, then on failure afail routines address can be returned, on success, the next LIFE
function routine's address can be returned.

10.2.1 Sort Constraint
See Page 17 for the pseudo-code definition of this constraint.

voi d
subsort (Psiterm& r, /I psiterm that we are testing
Sort s, /l the sort it must agree with
Code | abel) [l address of codeto resume if thisresiduates
{
Sort o;
g = glb(r.sort(), s);
if (g.isBotton()) FAIL; /I 'if it is bottom, then FAIL
if (g <= s) CONTINUE /I if itisunder s, succeed.
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/I we must residuate. so create aresiduation for the current frame which will have
/I a sort compatible with g and will continue at *label’ when the psiterm is lowered.
/1'1f tryAddSimple can’t creste the residuation (because g isincompatible with the
/I sort aready inthis psiterm’sresiduation for the current frame) then it will

/I execute the FAIL macro.

r.tryAddSi npl e(CF, g, |abel);

CONTI NUE;
}

10.2.2 Feature Constraint

See Page 19 for the pseudo-code definition of this constraint.

voi d
f eat ureExi stence(Psiterm &r, [/l The psiterm that we are testing.

Feature |, /I The feature we want to check for.

Code | abel, /l The address to resume to.

Code ski p) I/l The place to continue if this constraint residuates.
{

/I Doesr have thefeature|? If so succeed.
if (r.hasFeature(l)) CONTI NUE;
/I OK, guess we have to residuate
r.tryAddSi npl e(CF, g, |abel);
/I Continue execution at ' skip’

SKI P_TQ( ski p) ;
}

10.2.3 Equality Constraint
See Page 20 for the pseudo-code definition of this constraint.

voi d

equal ity(Psiterm& rO0, /I The psiterm we check to be equal withrl.
Psiterm& r1, I/ The psiterm we check to be equa withr0.
Code | abel) /l The address to continue at on resumption.

{

/111 r0 and r1 both point to same psiterm, we're golden.
if (r0 == r1) CONTINUE;
/I All thereal work happensin

canUni fy(r0, r1);
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//'1f we get here then the psiterms can be unified, so

CONTI NUE;
1

/I The heart of the equdity constraint isthe canUnify routine. It checks to see that
/ two psiterms can be unified. Thisisan expensive procedure that not only checks the
/I sorts of itstwo arguments, but all features of each term that could be unified.

voi d
canUni fy(Psiternm& x, Psiterm& y)
{
Resi duati on* rx; /Il The x’sresiduation for this frame.
Resi duati on* ry; I/l They’sresiduation for this frame.
rx = x.findResid(CF); /I Get (and if necessary create) x’s residuation for the
/I current frame.
if (rx->hasEgqResi dWth(y, CF))
{
/l'f x and y are dready involved in an equality constraint, then we have
/Il already checked to see that they (and all the psiterms reached through their
/I features) are compatible, so we just return. Thisisin essence the mark that
/l'is used to stop infinite loops from happening in this canUnify routine.
return;
}

/I x and y haven’t been checked yet, so create aresid fory
ry = y.findResi d(CF);

I/ Get the glb of the BEST KNOWN sortsof x and y.

g = glb(rx->sort(), ry->sort());

if (g.isBotton()) FAIL;

/I Force both x’sand y’s best known sort to be their glb. The setsort procedure
/I will also invoke any residuationsthat might already be attached tox and y.

rx->setsort(g);
ry->setsort(g);

/I Add an equality residuation to each of rx and ry.

rx- >addEqResi dWt h(y, [ abel);
ry->addEqResi dWt h(x, [ abel);

/I Now each of the features that are in common between x and y must be checked to
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/I see if they can unify.

foreach (f, x.intersect(y.features()))

{
}

/l'if we madeit thisfar then x and y can unify

canUni fy(x.get(f), y.get(f));

}

The complexity of the equality constraint and in particular the canUni f y procedure
described above is due to catching disentailment caused by argument unification. To see how
the above code works we will work out an example based on the sort hierarchy in Figure 4,
the function definition

theSame(X, X, X) — 1.

and the call
theSame(@x = a), b(x = b, y = b), c(x = c))?

First note that the LAM code produced for the function definition will include the following
segment:

R1 = R2?
R2 = R3?

We assume that the registers have been loaded with the first, second and third arguments
respectively. Upon execution of thefirst constraint the «-terms and their associated
residuationswill be as shownin Figure 16. First, note that thebest sort field of the
residuationsfor the ¢-term in R1is set to b. Second, note that there are no residuations
attached to the 1-term attached to R1—y.

When the second constraint is executed, the canUni f y routinewill beinvoked on the ¢-terms
pointed to by registers two and three. r x will point to the residuation for R2 in Figure 16. The
test hasEgResi dW t h will fail, since no equality constraint yet exists between the second
two -terms. Next, anew residuation will be created, attached to the R3 v-term, and assigned
tory. The best known sort computed for these ¢ -termswill be bc. However, when the

set sort routineisexecuted for r x, it will find another residuation aready attached, thusit
will check al the attached residuations to make sure that the new sort, bc, does not cause any
disentailment. The structures that result at this point in the execution are shown in Figure 17.

After the new EqResi dI nf o structures have been added canUni fy iscalled recursively on
each pair of 1-term that can be reached by the features in common to both of the original
¥-terms. In this case the only common feature isx. Since there is no equality constraint (for
this frame) between R2—x and R3—x the best sort will be computed, in thiscase, it resultsin
failure, since ab N cisbottom.
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Figure 16: «-terms and their associated residuations after the execution of the first equality
constraint. Double lines represent features. Single lines pointers. Dotted lines pointers from
one EgResidInfo to another.

December 1992

Digital PRL



An Abstract Machine to Implement Functions in LIFE

49

Psiterm
R1: @
2
p
Resi duati on
—®  ptrtoframe J%
bc
EqResi dI nf o
[Resume Address
P
Psiterm
a

feature set

Resi duati on
—™_ ptrto frame [,
ab
EqResi dI nf o

Resume Address

Psiterm

R2: b

Resi duati on

ptrto frame | "
AAAAAAAAAAAA bc
"
y
EgResi dI nf o EgResi dI nf o
Resume Address Resume Address
- @ @
Psiterm .
Psiterm
b
b

feature set

Resi duati on

feature set

ptr to frame

ab

Pl

EgResi dI nf o

iResume Address

Psiterm

R3: c

Resi duati on

—t ptrtoframe
bc
/.
EgResi dl nf o
Resume Address
.l
Psiterm
b

feature set

Figure 17: The intermediate structures built during the execution of the second constraint.
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10.2.4 Initialized Constraint
See Page 20 for the pseudo-code definition of this constraint.

voi d

initialized(Psiterm&r, /I psiterm we want are checking
Code | abel, // address to goto on resumption
Code ski p) [l address to continue at on residuation

{

/I Thisisafunny constraint which isinserted by the compiler so that equality

/I constraints can be cleaner. It is called with a pointer to apsiterm in the frame.
/1'1f the frame dlot has not been filled in, because a subtree was never executed due
/[ to some other constraint residuating, then the slot will be NULL. If thedlotis

/I NULL, then we creste a psiterm in the slot with TOP asits sort and residuate.

if (r) CONTINUE;

// Create a new dummy psiterm. It will get unified with the psiterm inserted into
/I the frame g ot which will kick off this computation.

r = new Psitern(TOP);
r.tryAddSi npl e(CF, TOP, | abel);
SKI P_TQ( ski p) ;

}

10.2.5 Check Residuation Count Instruction

See Page 23 for the pseudo-code definition of this constraint.
voi d

resi dQ(void)

{

/I Check to seeif thisframe has any residuation. If it does, then we return from
I/ thisframe's context and continue at the point after the call to thisfunction was
{/ made.

i f (CF->hasResids()) RETURN,

/I Let’s execute the function.

CF- >execut e();

}

10.3 Auxiliary Functions and Class Implementations

voi d

Psiterm :tryAddSi npl e( Frame *f,
Sort s,
Code | abel)

{
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Resi duati on* resid;

resid = findResi d(CF); /I Get the residuation for the current frame (CF). It
[/l will be crested if necessary.

/l Make sure that the residuation that is already attached to this psiterm doesn’t
/I have asort conflicting with s. Also update the sort in the residuation to reflect
[/ the fact that this psiterm will finally end up with asort whichis<=tos.

if (!resid->conpatibleWth(s)) FAIL;

/I everything is ok so far, so add 'label’ to thelist of addresses to be resumed
/I when the psiterm is lowered.

resi d- >addSi npl eResi d( | abel ) ;
}

/I lower is called only if there are any residuations attached to this Psiterm and the
/I Psiterm has been "lowered".

voi d
Psiterm: | ower()
{
Resi duati on* r;
/I save current environment on stack

push( CPT) ;
push(CF);

/I match down rlist, invoking every Residinfo that we encounter.

CPT = this; /I set the CPT register to point to this Psiterm.
foreach (r, rlist)
{
r->l ower();
}
/I restore current environment
pop( CF) ;
pop( CPT) ;

}

/I The lower() routinefor class Residuation will activate al therinfo’sfor the frame
/I of thisresiduation. It assumes that the CPT register has been setup.

voi d

Resi duati on: : | ower ()

{

Technical Note No. 18 December 1992



52 Seth Copen Goldstein

Resi dI nf o* t odo;

CF = parent; /I establish the current frame
foreach (t, todo)
{
t->resume(); /I execute this Residinfo
}

/I now lets see if we can execute the function?

if (!CF->hasResids()) CF->execute();
}

voi d
Resi dI nfo: : resune()

{
}

voi d
EgResi d: : resune()

SKI P_-TQ( addr ess) ;

if (CPT == other)

{
CF- >decr Resi duat i on();
SKI P_TQ( addr ess) ;
}
el se
/l'just likeacall to canUnify, but the book-keeping is different, in that it
// doesn't re-create the toplevel residuations, since they already exist.
canReUni fy( CPT, other);
}
}
voi d Frane::execute()
{

/I This functionisonly called when there are no residuated terms.
assert(resi dCounter == 0);

/I we have committed to a particular definition of the function. A failure now
/I resorts to the general failure/trailing mechanism.
fail = NULL;

/] establish the result psiterm
RR = result;

/] start execution!
SKI P_TQ( body) ;
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11 Conclusion

Although compiling LIFE, avery rich and powerful language, into native machine code
appears daunting, LAM is alever which makesthe task feasible. Thisnote outlinesLAam and
the mechanisms which give LAM the power to operate on LIFE structures easily and efficiently.

It has been our experience that getting the architecture correct with respect to residuation and
entailment has not been difficult. However, getting disentailment to work correctly has proved
elusive. In particular, equality constraints pose a hard problem. LAM handles the case of an
equality constraint in the function head with minimal overhead. However, we need to extend
the model dlightly to handle special cases of equality introduced by the function call.

In spite of thisshortcoming, LAM hasled to valuable insights about LIFE. It has pointed the
way towards the correct handling of lazy unification of order-sorted-feature terms[3]. In
addition, by showing a possible approach to successfully compiling away the overhead of
matching and residuation in LIFE, it should be a good starting point to the creation of the
actual LIFE compiler.
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A Instruction Summary

RXCS e Subsort Constraint
RxCs recheckadr

RxCs failadr, residadr

RX.A 2 Feature Existence
Rx.£? residadr

Rx.£? residadr, recheckadr

RX = RY? Equality Constraint
Rx = Ry? recheckadr

X Initialized Constraint
X? residadr, recheckadr

R T I o Arity Constraint
1= o 1 Residuation Check
resid? residadr

0 Unify with Sort
RX 4 RY. e Fetch Feature
addfeature RX, £, RY . .ottt Feature Creation
RX = RY it General Unify
unify Rx, Ry

T RX, RY . .ttt e e Create Reference Link
deref RX, RY ..ottt Retrieve a Dereferenced «-term
VAl RX Evaluate by Normalization
evalfunc Rx

evalpsi Rx

new PSi Heap Allocation
new Psi(s)

new Frame(name)
new SortResid(recheckadr, Rx, Ry)
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