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Abstract 
This paper describes a compiler and algorithms 

for simulation and fault diagnosis of computer hard- 
ware modeled in VHSIC Hardware Description Lan- 
guage(VHDL). Given a VHDL description, the com- 
piler creates an internal representation. For simula- 
tion, a discrete-event based compiled code simulation 
algorithm is used. For fault diagnosis, a hierarchical 
approach using the stuck-at fault model a t  the first 
level and the arbitrary failure model at the second 
level, is used. The diagnosis algorithm reasons from 
first principles using constraint suspension. 

1. Introduction 

VHDL has already become a standard language for 
specification and simulation of computer hardware 
[1,2,3,4]. I t  is a rich language that permits design 
description at  several levels of abstraction - behav- 
ioral level, RTL level, and gate level. It also permits 
structural hierarchy to  be described. 

For simulation and other CAD applications, it is 
necessary to  compile VHDL descriptions into an in- 
ternal representation. The internal representation 
may be meant to support interpretive or compiled 
code approach. For runtime efficiency we have chosen 
the compiled code approach [5]. Specifically the in- 
ternal representation we have chosen is executable C 
code. We have chosen a subset of VHDL for our pur- 
poses, and have developed a VHDL to C Code Gen- 
erator (VCCG). Given a VHDL description, VCCG 
produces equivalent C code and C data structures 
that capture connectivity information. This combi- 
nation of C code and C data structures constitutes 
our design database.  The design database contains 
enough pointers to  facilitate forward and backward 
tracing of the design. VCCG is different from exist- 
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ing compilers; the internal representation it produces 
is useful not only for simulation but for other CAD 
application tools such as fault diagnosis and test gen- 
eration as well. 

The currently available VHDL simulators use a 
discrete-event based simulation algorithm. We have 
developed a VHDL simulator (VSIM), which uses a 
discrete-event based compiled code simulation algo- 
rithm. 

The concept of fault diagnosis of computer hard- 
ware is not new. There are many AI-based and non- 
AI-based approaches. Within AI, there are two ap- 
proaches for fault diagnosis. The first approach uses 
“rules”. Each rule specifies a symptom/fault pair- 
ing [6,7,8,9]. Such rules are created for each design. 
Given a set of symptoms, these rules give a set of pos- 
sible faults for a particular design. As the complexity 
of VLSI designs increases, the rule-based approach 
becomes impractical [10,11]. The second approach 
uses the concept of reasoning from first principles. I t  
uses the structure and behavior of the given design 
for fault diagnosis [10,11]. The reasoning from first 
principles is time consuming. Some modifications of 
these algorithms have been suggested to improve ef- 
ficiency [ 121. 

Some AI-based algorithms for fault diagnosis con- 
sider only stuck-at fault model [7], while some con- 
sider hierarchy of fault models [ 10,11]. Although 
stuck-at faults accouiit for most of the faults in the 
circuits, they are not the only type of faults which can 
cause misbehavior [ll]. Hence, diagnosis algorithms 
using only stuck-at fault model fail to  diagnose the 
design if it has faults other than stuck-at faults [ll]. 

Suppose we have a VHDL description for a given 
hardware design. The hardware consists of physical 
devices which are subject to failure. This failure can 
lead to  a misbehavior of the hardware. As the de- 
scription is in VHDL, design engineers might want 
to  locate the portion of the VHDL description whose 
implementation in the hardware is causing the ob- 
served misbehavior. This requires fault diagnosis of 
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VlIDL descriptions. 

So far no tools have been available to do fault di- 
agnosis on VHDL descriptions. We have developed a 
VHDL Fault DiagnosisTool (VFDT). Given a VHDL 
design description and a set of test cases, VFDT in- 
telligently tries to isolate the fault to one or more 
VHDL constructs., VFDT assumes a single point of 
failure and uses ’both the stuck-at fault model and 
the arbitrary fault model. The diagnosis is performed 
hierarchically using constraint suspension. The fault 
diagnosis approach we have developed for VFDT is 
a modified version of Davis’s [ll] approach. 

VSIM and VFDT are capable of handling both 
combinational and sequential circuits. However, 
VFDT requires that latches be controllable and ob- 
servable; input vectors and observed outputs are 
stated in terms of latches as well as primary inputs 
(PI’S) and primary outputs (PO’s). 

2. VCCG - The VHDL Compiler 

We have chosen a subset of VHDL for fault diag- 
nosis and simulation. The subset is large enough to 
represent any digital system. The main features of 
this subset are: (a) concurrent statements, (b) se- 
quential statements, except wait statement, (c) com- 
ponent instantiation and configuration specification 
statement, and (d) libraries. The details of this sub- 
set are given in [13]. 

VCCG represents each concurrent VHDL state- 
ment and any of its instances as a C structure in the 
design database. Memory is allocated to represent 
this structure. This way, each instance of a concur- 
rent VHDL statement has memory to store the data 
values associated with it. For example, consider the 
I-bit adder shown in Fig. 1 and its corresponding 
description in VHDL in Fig. 2. In this example, the 
architecture body of the adder uses two instances X1 
and X2 of the entity xor. The VHDL description of 
the xor gate is given in Fig. 3. For such cases, the en- 
tity informations related to X1 and X2 are stored in 
separate memory areas. Similarly, the architecture 
informations related to X1 and X2 are also stored 
in separate memory locations. Similarly, all other 
concurrent statements and their instances are repre- 
sented as C structures. This methodology facilitates 
implementation of multiple instances of any concur- 
rent VHDL statement. 

The computations associated with a VHDL con- 
current statement (process statement, concurrent 
signal assignment statement, etc) are transformed by 
VCCG into a sequence of C statements and stored as 
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Figure 1: A 1-bit adder 
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Figure 1: A 1-bit adder 

C subroutines. Even if there are multiple instances 
of a concurrent statement (by virtue of multiple com- 
ponent instances) only one copy of the correspond- 
ing C code will exist. However, as mentioned before 
there will be a separate data area for each instance. 
Thus different instances of a concurrent statement 
will share C subroutines to process a set of data val- 
ues associated with them. 

We define a 9-process (“generalized process”) to be 
a process statement or any concurrent VHDL state- 
ment which can be mapped to an equivalent VNDL 
process statement. Given any VHDL description, we 
will represent it as a network of g-processes. For the 
1-bit adder described in Fig. 2, we have a g-process 
corresponding to each concurrent statement as seen 
in Fig. 4. X1 and X2, the xor gate instantiations 
each have 3 concurrent signal assignment statements 
as seen from Fig. 3, contributing g-processes gpl-gp3 
and gp4-gp6 respectively. The two concurrent signal 
assignment statements in the architecture body of 
the adder contribute g-processes gp7 and gp8. The 
process statement P contributes g-process gp9. This 
network of g-processes is used by the simulation and 
the fault diagnosis tools. 

A g-process is an atomic construct for the siniula- 
tion and the fault diagnosis tools. Each g-process is 
represented as C subroutines as described previously. 
The VHDL description is simulated by executing the 
C subroutines associated with its g-processes. For 
fault diagnosis using the arbitrary fault model, the 
diagnostic resolution is limited to a g-process. 
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-the entity description for a 1 bit adder 
entity adder is 

port(A, B, Cin : in bit; 
Sum, Cout: out bit); 

end adder ; 

-an architecture description for a 1 bit adder 
architecture mixed of adder is 

component xor-gate port ( X, Y: in bit; 

for X1, X2: xor-gate 

port map(In1 + X ,  In2 3 Y, Out =+ Z); 
signal L, M, N : bit ; 

X1: xor-gate port map (A, B, L); 
X2: xor-gate port map (L, Cin, Sum); 
M e L and C ; 
N + A a n d B ;  
P: process(M, N)  
begin 

end process ; 

Z : out bit) ; 

use entity gates.xor(xorarch) ; 

begin 

Carry e M or N ; 

end mixed; 

Figure 2: VHDL description of a 1-bit adder 

3. VSIM - The VHDL Simulator 

We have developed a simulator [13] for simulating 
circuits described in VHDL. VSIM is capable of sim- 
ulating the chosen subset of VHDL. It handles high 
level as well as hierarchical designs in VHDL. 

The elaboration of a design hierarchy produces a 
model which is a network of g-processes. Given the 
VHDL description (Fig. 2) of the adder in Fig. 1, 
the components in the top level design entity are 
instantiated and a network of g-processes, as seen 
in  Fig. 4, is created. This is done by VLINK - 
the VHDL Linker. Simulation involves execution of 
these interacting g-processes. VSIM’s kernel coordi- 
nates the activity of the g-processes during a simu- 
lation. It propagates and updates signal values. It 
is also responsible for detecting events that  occur, 
and for causing appropriate g-processes to execute 
in response to these events. 

VSIM is an event driven simulator. It maintains 
a driver for each signal of each g-process. Each 
driver of a signal is a source of values for that  signal. 
Transactions (signal changes) that are created by a 
g-process for a signal are put in the driver queue of 

-the entity description for the XOR gate 
entity xor is 

port(In1,  In2 : in bit; Out: out bit); 
end xor; 

-an architecture for the above XOR gate 
architecture xor-arch of xor is 

begin 
signal S1, S2 : bit; 

S1 G (not In l )  and In2; 
S2 e In1 and (not In2); 
Out S l  or S2; 

end xor-arch; 

Figure 3: VHDL description of an xor gate 

that signal of that  g-process. Obviously, if a signal 
is shared by several g-processes, it  will have multi- 
ple drivers, one per g-process. This implementation 
facilitates the use of resolved signals - signals that  
have more than one source. 

VHDL has a two-stage model of time referred to 
as the simulation cycle. It is based on a generalized 
model of the stimulus and response behavior of digi- 
tal hardware. The g-processes respond to  activity on 
their inputs with a response on their outputs. Dur- 
ing the first stage of the simulation cycle new values 
scheduled to take effect at that  time are assigned to  
signals and are propagated to their sinks. All the 
signals scheduled to  obtain new values at the current 
simulation time are updated. Changes in the values 
of these signals could cause some g-processes to be- 
come sensitized. During the second stage of the sim- 
ulation cycle, the sensitized g-processes are executed 
till they are suspended. Execution of a g-process 
may create transactions on signals which are put on 
the corresponding driver queues. At the completion 
of the simulation cycle, the simulation clock is set 
to  the time-stamp of the earliest transaction that is 
scheduled to  occur. Then the cycle is repeated. 

4. Fault Diagnosis by Constraint Suspension 

Constraint suspension is a way of diagnosing faults 
by reasoning from first principles using knowledge of 
the structure and behavior of the circuit. The diag- 
nosis is performed hierarchically by gradually relax- 
ing the assumptions about the failure modes of the 
circuit. 

Based on an engineer’s notion of- things that can 
go wrong, categories of failure are defined. Amongst 
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Figure 4: Network of g-processes corresponding to 
the 1-bit adder 

these failure categories, some are encountered more 
frequently than others. These categories of failure 
can be ordered based on the above metric with the 
more commonly occurring category of failure preced- 
ing the less commonly occurring one. For example 
we could have the following ordering of failure cate- 
gories: 

0 stuck-at faults (for level 1 diagnosis) 

0 change in behavior of g-processes (for level 2 di- 
agnosis) 

etc 

Candidates ,  faults which can explain the misbe- 
havior of the circuit, are first generated for the stuck- 
a t  fault category. We assume initially that the com- 
ponents behave correctly. Only if this assumption 
fails to give us a candidate which explains the ob- 
served misbehavior, would we move on to the next 
category of faults and perform diagnosis under this 
new model. 

We use transit ive fan in  of a signal or a g-process 
to denote the set of all signals and g-processes from 
which it is reachable. Similarly, transit ive fanov t  of 
a signal or a g-process denotes the set of all signals 
that are reachable from it. 

The two central issues to this method of fault di- 
agnosis are discrepancy detection and constraint sus- 
pension. For a given set of primary inputs, if any 
observed primary output is different from the cor- 
responding good machine (predicted) PO, only the 
signals and g-processes in the transitive fanin of this 

erroneous PO can possibly be responsible for the in- 
correct behavior. This defines a set of potential can- 
didates. The candidates are in the context of the 
domain of the fault category being considered; that 
is, they may be signals or g-processes. This is called 
discrepancy detection. 

Once a set of potential candidates has been gener- 
ated we apply constraint suspension to  them to de- 
termine if they are consistent - that  is if they could 
explain the observed behavior. In general, a signal 
or a g-process imposes a relation (or constraints) be- 
tween its inputs and outputs. When we do constraint 
suspension for a candidate, we disable the constraints 
associated with it. This amounts to disconnecting 
the candidate’s outputs from the candidate so that 
these outputs, which are now pseudo-PI’S, are free 
to assume any value necessary to cause the observed 
values on the PO’s. Procedurally, we assign the given 
primary input values to thePI’s and the observed pri- 
mary output values t o  the PO’s. Then we determine 
if there is an assignment of values to  the pseudo-PI’S 
that will cause the circuit to reach a consistent state. 
If there is such an assignment, the candidate con- 
tinues to remain a candidate; otherwise we conclude 
that the candidate cannot account for the symptoms. 

Clearly, this approach differs from traditional fault 
diagnosis methods in that it reasons from first princi- 
ples and is general enough to permit arbitrary failure 
of a g-process. The algorithm presented in this pa- 
per is essentially the same as that  of [ll]; however i t  
differs from [ll] in the following ways: 

it introduces VHDL specific concepts and tech- 
niques into the algorithm 

it uses simulation oriented, but efficient, meth- 
ods for inferencing thereby making use of the 
compiled code generated for simulation for in- 
ferencing as well 

5. VFDT - The VHDL Fault Diagnosis Tool 

We have developed a fault diagnosis tool [14] im- 
plementing a modified constraint suspension algo- 
rithm, which will intelligently try to diagnose the 
fault to  one or more signals or g-processes. In an 
actual hardware implementation there need not be a 
one-bone correspondence between g-processes and 
hardware units. When the fault is diagnosed to a 
g-process gp, the physical meaning is that the fault 
lies somewhere within the set of hardware units which 
together contain gp. 

VFDT accepts the following as input: 
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0 a design description in VHDL 

test data - applied test vectors and the observed 
responses of the circuit 

It will return a set of either signals or g-processes or 
both which could consistently explain the erroneous 
behavior of the circuit. 

In general the test data  available to  VFDT may 
contain many test vectors. Ideally VFDT should 
be able to  resolve the fault location to  a signal or 
a g-process. In general diagnostic resolution will in- 
crease with the number of test cases. VFDT itself 
will not generate tests t o  narrow the set of candi- 
dates. 

VFDT deals with single point of failure fault mod- 
els and performs fault diagnosis hierarchically. First 
it tries to locate the fault assuming the stuck-at fault 
model. Failing this, it relaxes the assumption that 
the g-processes are behaving correctly and allows 
them to fail in any arbitrary way - that  is, their 
truth table may change in any way. Hence, the sec- 
ond level fault model is called the arbitrary-failure 
model. This takes into account the fact that  the 
module may fail in any arbitrary way. This is a very 
comprehensive model and would cover most of the 
faults in the circuit. 

There are three broad steps in the algorithm. We 
will discuss each of them individually. 

5.1 Test case selection 

From the fault diagnosis point of view, a test case 
(i.e. an input test vector and the corresponding ob- 
served output) is useful, if any of the observed and 
expected PO’s are different. The test case selection 
module takes each given test case and simulates it 
using VSIM. If the observed output is not identical 
to the simulated (good machine) output, VFDT ac- 
cepts the test case; otherwise VFDT rejects the test 
case. If a test case is accepted, the good machine 
simulation values at each signal are saved for future 
use. 

An interesting point to  note about the test cases 
is that it is not necessary to  specify all PI’S and all 
PO’s. It is possible to leave some of them unspec- 
ified. This is particularly useful when dealing with 
sequential circuits. 

5.2 Topological candidate generation 

The next phase in fault diagnosis is topological can- 
didate  generai ion.  Initially the set S of candidates 

includes all the signals or all the g-processes in the 
circuit. After a test case is accepted by the test case 
selection module, the PO’s which have a discrepancy 
between the observed and the predicted values are 
identified. For each of these erroneous PO’s, the set 
SNEW of signals or g-processes that are in its tran- 
sitive fanin is computed. The intersection of S and 
SNEW is placed in S. The modified set S contains the 
current candidates. Since we are assuming a single 
point of failure, the candidates thus generated should 
be in the transitive fanin of all of the erroneous PO’s. 

The sets S and SNEW are not computed explicitly, 
nor is the intersection performed explicitly. To save 
processing time, we use a counter COUNT for each 
stuck-at fault (for level 1 diagnosis) or g-process (for 
level 2 diagnosis) to indicate whether that  fault is 
a candidate. If X is a candidate and X is in the 
transitive fanin of the next erroneous PO, then we 
increment the COUNT of X by 1. This constitutes a 
transit ive f a n i n  check. We record in a global variable 
CUR-COUNT the total number of transitive fanin 
checks performed so far. If COUNT of a candidate 
X equals CUR-COUNT, then X continues to be a 
candidate. 

While dealing with the stuck-at fault model we can 
take advantage of the fact that  if a fault F is a s-a- i  
(stuck-at-i) fault and the good machine value at the 
fault site is i ,  the misbehavior could not have been 
caused by F. Hence F can be removed from the set S. 
This would further reduce the number of candidates 
which could explain the error. 

5.3 Candidate consistency check 

After doing topological candidate generation with a 
new test case, we compute the percentage decrease 
in the cardinality of set S due to  the past k test cases. 
If the computed value is less than an empirically de- 
termined threshold, we stop the topological candi- 
date generation phase and move on to  checking for 
consistency of each candidate. This is the candidate 
consistency check phase. 

Candidate consistency check is performed dif- 
ferently for the stuck-at fault model and for the 
arbitrary-failure model. For the stuck-at fault model 
we know that the signals could misbehave in either 
of two ways - they could either be s-a-0 or s-a-1. 
Candidate consistency check for this fault model is 
performed by fault simulation. Procedurally, we take 
a test case and retrieve the good machine simulation 
values at all signals for it. Then we pick a candidate, 
inject the corresponding fault in the circuit ( that  is, 
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create a transaction representing this fault) and per- 
form event-driven simulation. If the simulated out- 
puts are identical to the observed outputs for this test 
case, the candidate continues to remain a candidate; 
otherwise it is dropped from the set of candidates. 
We then repeat the above steps for the remaining 
candidates and the remaining test cases. 

For the arbitrary-failure model, we need to use a 
different strategy as we have no information as to how 
a g-process might have failed. For a chosen candi- 
date, we do constraint suspension i.e. we disconnect 
the candidate from its outputs to create pseudo-PI’S 
and try to determine an assignment to these pseudo- 
PI’s which is consistent with the values observed at  
the PO’s. This involves inferencing for which we use 
one of the following two strategies: 

e Full forward Simulation (FFS) 

e Backward inference with forward simulation 
(BIFS) 

We use a heuristic figure of meri t  (FOM) to 
choose between these two strategies. FOM is com- 
puted based on the number of unspecified outputs of 
the candidate g-process (that is, number of unspec- 
ified pseudo-PI’S) and the distance of the candidate 
g-process from the PO’s. Obviously all pseudo-PI’S 
will be initially unspecified. However, as explained 
later, FOM is also used to switch to FFS after having 
done some BIFS. 

FFS is used when the candidate is either close 
to the PO’s or the number of pseudo-PI’S is small 
(that is, FOM is less than an empirically determined 
threshold). For a test case, we retrieve the good ma- 
chine simulation values on all signals, assign a value 
to the pseudo-PI’S (that is, create transactions with 
the assigned values) and simulate the network for 
this assignment in an event-driven mode. Only those 
signals that are in the transitive fanout of the can- 
didate are affected by this simulation; other signals 
retain their good machine values. If the simulated 
values at the PO’s are identical to the observed val- 
ues, we have found a consistent assignment at  the 
pseudo-PI’s; otherwise we assign different values to 
the pseudo-PI’S and repeat the above process. 

BIFS is the other inferencing strategy used. It is 
selected when FFS is not chosen. As in FFS, we 
disconnect the candidate from its outputs. Then we 
do the following: 

1 .  Assign the given input values to the PI’s and the 
observed output values to the PO’s of the circuit. 

For all other signals, we retrieve the good ma- 
chine simulation values for this test case. Mark 
all signals in the transitive fanout of the candi- 
date, except the PO’s, as unspecified. 

SNJ-procs are defined as g-processes that have 
one or more output signals specified but are not 
justified. We can now define an SNJ-frontier 
which is initialized as follows. If a g-process gp 
has an output that is an erroneous PO, then 
gp is put in the SNJ-frontier. Clearly such 
a gp is an SNJ-proc. As the algorithm pro- 
ceeds, SNJfrontier will always be the frontier of 
SNJ-procs that have been reached by backward 
inferencing from the erroneous PO’s. 

If the SNJfrontier is empty goto 8; else heuris- 
tically pick a gp from the SNJ-frontier. This 
heuristic depends on ratio of the number of spec- 
ified inputs and outputs to the total number of 
inputs and outputs of gp, as well as the complex- 
ity of gp. 

Find an assignment at  the inputs of gp which 
satisfies the values on the outputs of gp. This 
involves assigning different values, one by one, to 
the inputs of gp and simulating it; repeat this till 
the simulated and existing values at the outputs 
of the gp are consistent. If all assignments are 
exhausted unsuccessfully, goto 8. 

5 .  Implicate, both forward and backward, the val- 
ues assigned to signals in the previous step. Here 
we use another heuristic to decide whether we 
should implicate forward through a g-process. 
This heuristic is based on the ratio of speci- 
fied inputs of the g-process to the total num- 
ber of inputs of the g-process. We implicate 
through those g-processes for which this ra- 
tio is greater than an empirically determined 
threshold. Backward implication propagates 
values from sink signals to source signals. Any 
g-process feeding such a source signal will be 
added to the SNJfrontier if it is not already 
there. 

6. If implication reveals an inconsistency, back- 
track on the signal last assigned a value, 
make an alternate consistent assignment, mod- 
ify SNJfrontier and perform implication. 

7. If FOM for the candidate g-process is now 
less than an empirically determined threshold, 
switch from BIFS to FFS to find an assignment 
for the remaining unspecified pseudo-PI’S of the 
candidate. 
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8. If a consistent assignment has been found for the 
pseudo-PI’S, the candidate continues to  remain 
a candidate; otherwise it is removed from the set 
of candidates. 

There is a third strategy for doing inferencing 
which is similar to BIFS except that  forward simula- 
tion is not used in step 4 of the above algorithm. In- 
stead, inferencing is done inside the g-process. This 
strategy is not implemented currently because we are 
using the compiled code generated for simulation pur- 
poses also for fault diagnosis. If we use an interpre- 
tive approach for simulation, the parse trees of VHDL 

[3] D. R. Coelho, The  V H D L  Handbook, Kluwer 
Academic Publishers, Norwell, MA , 1989. 

[4] J .  R. Armstrong, Chip-Level Modeling with 
Prentice Hall, Englewood Cliffs, NJ, V H D L ,  

1989. 

151 M. A.Breuer, Design Automat ion  of Digital  Sys-  
t e m s ,  Prentice Hall, Englewood Cliffs, NJ, 
1972. 

[6] R.  T. Hartley, “CRIB: Computer Fault Finding 
Through Knowledge Engineering”, I E E E  Com- 
pu ter ,  pages 76-83, March 1984. 

statements that  are interpreted by the simulator can 
be used by the fault diagnosis tool as well for infer- 
encing inside a g-process. 

[7] L. Apfelbaum, “An Expert System for In-circuit 
Fault Diagnosis”, Proceedings of Internat ional  
Test  Conference,  pp. 868-874, 1985. 

6. Results and Conclusions 

We have developed algorithms for, and imple- 
mented a suite of tools to  aid in designing digi- 
tal circuits using VHDL. Currently simulation (logic 
and timing) and fault diagnosis are supported. The 
database permits other tools to be added in the fu- 
ture. The approach that we have followed for fault 
diagnosis is not specific to  any hardware; it can di- 
agnose faults in any hardware described in VHDL. 
The diagnosis tool is very powerful; it is not limited 
to stuck-at faults. 

It is obvious that fault simulation capability is 
built into the fault diagnosis tool. It would be a rel- 
atively simple matter to build an explicit fault sim- 
ulator ou t  of it. 
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