
Debian New Maintainers’ Guide i

Debian New Maintainers’ Guide

Debian New Maintainers’ Guide ii

Copyright © 1998-2002 Josip Rodin

Copyright © 2005-2015 Osamu Aoki

Copyright © 2010 Craig Small

Copyright © 2010 Raphaël Hertzog

This document may be used under the terms the GNU General Public License version 2 or higher.

This document was made using these two documents as examples:

• Making a Debian Package (AKA the Debmake Manual), copyright © 1997 Jaldhar Vyas.

• The New-Maintainer’s Debian Packaging Howto, copyright © 1997 Will Lowe.

Debian New Maintainers’ Guide iii

COLLABORATORS

TITLE :

Debian New Maintainers’ Guide

ACTION NAME DATE SIGNATURE

WRITTEN BY Josip Rodin and
Osamu Aoki

June 9, 2015

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Debian New Maintainers’ Guide iv

Contents

1 Getting started The Right Way 1

1.1 Social dynamics of Debian . 1

1.2 Programs needed for development . 3

1.3 Documentation needed for development . 4

1.4 Where to ask for help . 4

2 First steps 6

2.1 Debian package building workflow . 6

2.2 Choose your program . 7

2.3 Get the program, and try it out . 9

2.4 Simple build systems . 10

2.5 Popular portable build systems . 10

2.6 Package name and version . 11

2.7 Setting up dh_make . 11

2.8 Initial non-native Debian package . 12

3 Modifying the source 13

3.1 Setting up quilt . 13

3.2 Fixing upstream bugs . 13

3.3 Installation of files to their destination . 14

3.4 Differing libraries . 16

4 Required files under the debian directory 17

4.1 control . 17

4.2 copyright . 21

4.3 changelog . 22

4.4 rules . 23

4.4.1 Targets of the rules file . 23

4.4.2 Default rules file . 24

4.4.3 Customization of rules file . 26

Debian New Maintainers’ Guide v

5 Other files under the debian directory 29

5.1 README.Debian . 29

5.2 compat . 30

5.3 conffiles . 30

5.4 package.cron.* . 30

5.5 dirs . 31

5.6 package.doc-base . 31

5.7 docs . 31

5.8 emacsen-* . 31

5.9 package.examples . 32

5.10 package.init and package.default . 32

5.11 install . 32

5.12 package.info . 32

5.13 package.links . 33

5.14 {package.,source/}lintian-overrides . 33

5.15 manpage.* . 33

5.15.1 manpage.1.ex . 33

5.15.2 manpage.sgml.ex . 34

5.15.3 manpage.xml.ex . 34

5.16 package.manpages . 34

5.17 menu . 34

5.18 NEWS . 35

5.19 {pre,post}{inst,rm} . 35

5.20 package.symbols . 36

5.21 TODO . 36

5.22 watch . 36

5.23 source/format . 36

5.24 source/local-options . 37

5.25 source/options . 37

5.26 patches/* . 37

6 Building the package 39

6.1 Complete (re)build . 39

6.2 Autobuilder . 40

6.3 debuild command . 41

6.4 pbuilder package . 41

6.5 git-buildpackage command and similars . 43

6.6 Quick rebuild . 43

6.7 Command hierarchy . 44

Debian New Maintainers’ Guide vi

7 Checking the package for errors 45

7.1 Suspicious changes . 45

7.2 Verifying a package’s installation . 45

7.3 Verifying a package’s maintainer scripts . 45

7.4 Using lintian . 46

7.5 The debc command . 47

7.6 The debdiff command . 47

7.7 The interdiff command . 47

7.8 The mc command . 47

8 Updating the package 48

8.1 New Debian revision . 48

8.2 Inspection of the new upstream release . 49

8.3 New upstream release . 49

8.4 Updating the packaging style . 50

8.5 UTF-8 conversion . 51

8.6 Reminders for updating packages . 51

9 Uploading the package 52

9.1 Uploading to the Debian archive . 52

9.2 Including orig.tar.gz for upload . 53

9.3 Skipped uploads . 53

A Advanced packaging 54

A.1 Shared libraries . 54

A.2 Managing debian/package.symbols . 55

A.3 Multiarch . 56

A.4 Building a shared library package . 57

A.5 Native Debian package . 58

Debian New Maintainers’ Guide 1 / 58

Chapter 1

Getting started The Right Way

This document tries to describe the building of a Debian package to ordinary Debian users and prospective developers. It uses
fairly non-technical language, and it’s well covered with working examples. There is an old Latin saying: Longum iter est per
praecepta, breve et efficax per exempla (It’s a long way by the rules, but short and efficient with examples).

This document has been updated for the Debian jessie release. 1

One of the things that makes Debian such a top-notch distribution is its package system. While there is a vast quantity of software
already in the Debian format, sometimes you need to install software that isn’t. You may be wondering how you can make your
own packages; and perhaps you think it is a very difficult task. Well, if you are a real novice on Linux, it is hard, but if you were
a rookie, you wouldn’t be reading this document now :-) You do need to know a little about Unix programming but you certainly
don’t need to be a wizard. 2

One thing is certain, though: to properly create and maintain Debian packages takes many hours. Make no mistake, for our
system to work the maintainers need to be both technically competent and diligent.

If you need some help on packaging, please read Section 1.4.

Newer versions of this document should always be available online at http://www.debian.org/doc/maint-guide/ and in themaint-
guide package. The translations may be available in packages such as maint-guide-es. Please note that this documentation
may be slightly outdated.

Since this is a tutorial, I choose to explain each detailed step for some important topics. Some of them may look irrelevant to you.
Please be patient. I have also intentionally skipped some corner cases and provided only pointers to keep this document simple.

1.1 Social dynamics of Debian

Here are some observations of Debian’s social dynamics, presented in the hope that it will prepare you for interactions with
Debian:

• We all are volunteers.

– You cannot impose on others what to do.
– You should be motivated to do things by yourself.

• Friendly cooperation is the driving force.

– Your contribution should not overstrain others.
1 The document assumes you are using a jessie or newer system. If you need to follow this text in an older system (including an older Ubuntu system

etc.), you must install backported dpkg and debhelper packages, at least.

2 You can learn about the basic handling of a Debian system from the Debian Reference (http://www.debian.org/doc/manuals/debian-reference/) . It contains
some pointers to learn about Unix programming, too.

http://www.debian.org/doc/maint-guide/
http://www.debian.org/doc/manuals/debian-reference/
http://www.debian.org/doc/manuals/debian-reference/

Debian New Maintainers’ Guide 2 / 58

– Your contribution is valuable only when others appreciate it.

• Debian is not your school where you get automatic attention of teachers.

– You should be able to learn many things by yourself.
– Attention from other volunteers is a very scarce resource.

• Debian is constantly improving.

– You are expected to make high quality packages.
– You should adapt yourself to change.

There are several types of people interacting around Debian with different roles:

• upstream author: the person who made the original program.

• upstream maintainer: the person who currently maintains the program.

• maintainer: the person making the Debian package of the program.

• sponsor: a person who helps maintainers to upload packages to the official Debian package archive (after checking their
contents).

• mentor: a person who helps novice maintainers with packaging etc.

• Debian Developer (DD): a member of the Debian project with full upload rights to the official Debian package archive.

• Debian Maintainer (DM): a person with limited upload rights to the official Debian package archive.

Please note that you cannot become an official Debian Developer (DD) overnight, because it takes more than technical skill.
Please do not be discouraged by this. If it is useful to others, you can still upload your package either as a maintainer through a
sponsor or as a Debian Maintainer.

Please note that you do not need to create any new package to become an official Debian Developer. Contributing to the existing
packages can provide a path to becoming an official Debian Developer too. There are many packages waiting for good maintainers
(see Section 2.2).

Since we focus only on technical aspects of packaging in this document, please refer to the following to learn how Debian functions
and how you can get involved:

• Debian: 17 years of Free Software, ”do-ocracy”, and democracy (http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf) (In-
troductory slides)

• How can you help Debian? (http://www.debian.org/intro/help) (official)

• The Debian GNU/Linux FAQ, Chapter 13 - ”Contributing to the Debian Project” (http://www.debian.org/doc/FAQ/ch-contributing)
(semi-official)

• Debian Wiki, HelpDebian (http://wiki.debian.org/HelpDebian) (supplemental)

• Debian New Member site (https://nm.debian.org/) (official)

• Debian Mentors FAQ (http://wiki.debian.org/DebianMentorsFaq) (supplemental)

http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf
http://upsilon.cc/~zack/talks/2011/20110321-taipei.pdf
http://www.debian.org/intro/help
http://www.debian.org/intro/help
http://www.debian.org/doc/FAQ/ch-contributing
http://www.debian.org/doc/FAQ/ch-contributing
http://wiki.debian.org/HelpDebian
http://wiki.debian.org/HelpDebian
https://nm.debian.org/
https://nm.debian.org/
http://wiki.debian.org/DebianMentorsFaq
http://wiki.debian.org/DebianMentorsFaq

Debian New Maintainers’ Guide 3 / 58

1.2 Programs needed for development

Before you start anything, you should make sure that you have properly installed some additional packages needed for devel-
opment. Note that the list doesn’t contain any packages marked essential or required - we expect that you have those
installed already.

The following packages come with the standard Debian installation, so you probably have them already (along with any additional
packages they depend on). Still, you should check it with aptitude show package or with dpkg -s package.

The most important package to install on your development system is the build-essential package. Once you try to install
that, it will pull in other packages required to have a basic build environment.

For some types of packages, that is all you will require; however, there is another set of packages that while not essential for all
package builds are useful to have installed or may be required by your package:

• autoconf, automake, and autotools-dev - many newer programs use configure scripts and Makefile files prepro-
cessed with the help of programs like these (see info autoconf, info automake). autotools-dev keeps up-to-date
versions of certain auto files and has documentation about the best way to use those files.

• debhelper and dh-make - dh-make is necessary to create the skeleton of our example package, and it will use some of
the debhelper tools for creating packages. They are not essential for this purpose, but are highly recommended for new
maintainers. It makes the whole process very much easier to start, and to control afterwards. (See dh_make(8), debhelper(1).)
3

The new debmake may be used as the alternative to the standard dh-make. It does more and comes with HTML documen-
tation with extensive packaging examples.

• devscripts - this package contains some useful scripts that can be helpful for maintainers, but they are also not necessary
for building packages. Packages recommended and suggested by this package are worth looking into. (See /usr/share/
doc/devscripts/README.gz.)

• fakeroot - this utility lets you emulate being root which is necessary for some parts of the build process. (See fakeroot(1).)

• file - this handy program can determine what type a file is. (See file(1).)

• gfortran - the GNU Fortran 95 compiler, necessary if your program is written in Fortran. (See gfortran(1).)

• git - this package provides a popular version control system designed to handle very large projects with speed and efficiency;
it is used for many high profile open source projects, most notably the Linux kernel. (See git(1), git Manual (/usr/share/
doc/git-doc/index.html).)

• gnupg - a tool that enables you to digitally sign packages. This is especially important if you want to distribute it to other
people, and you will certainly be doing that when your work gets included in the Debian distribution. (See gpg(1).)

• gpc - the GNU Pascal compiler, necessary if your program is written in Pascal. Worthy of note here is fp-compiler, the
Free Pascal Compiler, which is also good at this task. (See gpc(1), ppc386(1).)

• lintian - this is the Debian package checker, which can let you know of any common mistakes after you build the package,
and explains the errors found. (See lintian(1), Lintian User’s Manual (/usr/share/doc/lintian/lintian.html/index.html) .)

• patch - this very useful utility will take a file containing a difference listing (produced by the diff program) and apply it to
the original file, producing a patched version. (See patch(1).)

• patchutils - this package contains some utilities to work with patches such as the lsdiff, interdiff and filterdiff commands.

• pbuilder - this package contains programs which are used for creating and maintaining chroot environment. Building Debian
package in this chroot environment verifies the proper build dependency and avoid FTBFS (Fails To Build From Source) bugs.
(see pbuilder(8) and pdebuild(1))

• perl - Perl is one of the most used interpreted scripting languages on today’s Unix-like systems, often referred to as Unix’s
Swiss Army Chainsaw. (See perl(1).)

3 There are also some more specialized but similar packages such as dh-make-perl, dh-make-php, etc.

/usr/share/doc/lintian/lintian.html/index.html
/usr/share/doc/lintian/lintian.html/index.html

Debian New Maintainers’ Guide 4 / 58

• python - Python is another of the most used interpreted scripting languages on the Debian system, combining remarkable
power with very clear syntax. (See python(1).)

• quilt - this package helps you to manage large numbers of patches by keeping track of the changes each patch makes. Patches
can be applied, un-applied, refreshed, and more. (See quilt(1), and /usr/share/doc/quilt/quilt.pdf.gz.)

• xutils-dev - some programs, usually those made for X11, also use these programs to generate Makefile files from sets
of macro functions. (See imake(1), xmkmf(1).)

The short descriptions that are given above only serve to introduce you to what each package does. Before continuing please read
the documentation of each relevant program including ones installed through the package dependency such as make, at least, for
the standard usage. It may seem like heavy going now, but later on you’ll be very glad you read it. If you have specific questions
later, I would suggest re-reading the documents mentioned above.

1.3 Documentation needed for development

The following is the very important documentation which you should read along with this document:

• debian-policy - the Debian Policy Manual (http://www.debian.org/doc/devel-manuals#policy) includes explanations of
the structure and contents of the Debian archive, several OS design issues, the Filesystem Hierarchy Standard (http://www.debian.org/-
doc/packaging-manuals/fhs/fhs-2.3.html) (FHS, which says where each file and directory should be), etc. For you, the most
important thing is that it describes requirements that each package must satisfy to be included in the distribution. (See the lo-
cal copies of /usr/share/doc/debian-policy/policy.pdf.gz and /usr/share/doc/debian-policy/
fhs/fhs-2.3.pdf.gz.)

• developers-reference - the Debian Developer’s Reference (http://www.debian.org/doc/devel-manuals#devref) describes
all matters not specifically about the technical details of packaging, like the structure of the archive, how to rename, orphan,
or adopt packages, how to do NMUs, how to manage bugs, best packaging practices, when and where to upload etc. (See the
local copy of /usr/share/doc/developers-reference/developers-reference.pdf.)

The following is the important documentation which you should read along with this document:

• Autotools Tutorial (http://www.lrde.epita.fr/~adl/autotools.html) provides a very good tutorial for the GNU Build System
known as the GNU Autotools whose most important components are Autoconf, Automake, Libtool, and gettext.

• gnu-standards - this package contains two pieces of documentation from the GNU project: GNU Coding Standards
(http://www.gnu.org/prep/standards/html_node/index.html) , and Information for Maintainers of GNU Software (http://www.gnu.org/-
prep/maintain/html_node/index.html) . Although Debian does not require these to be followed, these are still helpful as
guidelines and common sense. (See the local copies of /usr/share/doc/gnu-standards/standards.pdf.gz
and /usr/share/doc/gnu-standards/maintain.pdf.gz.)

If this document contradicts any of the documents mentioned above, they are correct. Please file a bug report on the maint-
guide package using reportbug.

The following is an alternative tutorial documentation which you may read along with this document:

• Debian Packaging Tutorial (http://www.debian.org/doc/packaging-manuals/packaging-tutorial/packaging-tutorial)

1.4 Where to ask for help

Before you decide to ask your question in some public place, please read the fine documentation:

• files in /usr/share/doc/package for all pertinent packages

http://www.debian.org/doc/devel-manuals#policy
http://www.debian.org/doc/devel-manuals#policy
http://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html
http://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html
http://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html
http://www.debian.org/doc/devel-manuals#devref
http://www.debian.org/doc/devel-manuals#devref
http://www.lrde.epita.fr/~adl/autotools.html
http://www.lrde.epita.fr/~adl/autotools.html
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/GNU_build_system
http://www.gnu.org/prep/standards/html_node/index.html
http://www.gnu.org/prep/standards/html_node/index.html
http://www.gnu.org/prep/maintain/html_node/index.html
http://www.gnu.org/prep/maintain/html_node/index.html
http://www.gnu.org/prep/maintain/html_node/index.html
http://www.debian.org/doc/packaging-manuals/packaging-tutorial/packaging-tutorial
http://www.debian.org/doc/packaging-manuals/packaging-tutorial/packaging-tutorial

Debian New Maintainers’ Guide 5 / 58

• contents of man command for all pertinent commands

• contents of info command for all pertinent commands

• contents of debian-mentors@lists.debian.org mailing list archive (http://lists.debian.org/debian-mentors/)

• contents of debian-devel@lists.debian.org mailing list archive (http://lists.debian.org/debian-devel/)

You can use web search engines more effectively by including search strings such as site:lists.debian.org to limit the
domain.

Making a small test package is a good way to learn details of packaging. Inspecting existing well maintained packages is the best
way to learn how other people make packages.

If you still have questions about packaging that you couldn’t find answers to in the available documentation and web resources,
you can ask them interactively:

• debian-mentors@lists.debian.org mailing list (http://lists.debian.org/debian-mentors/) . (This mailing list is for the novice.)

• debian-devel@lists.debian.org mailing list (http://lists.debian.org/debian-devel/) . (This mailing list is for the expert.)

• IRC (http://www.debian.org/support#irc) such as #debian-mentors.

• Teams focusing on a specific set of packages. (Full list at https://wiki.debian.org/Teams (https://wiki.debian.org/Teams))

• Language-specific mailing lists such as debian-devel-{french,italian,portuguese,spanish}@lists.debian.org or debian-devel@debian.or.jp.
(Full listing at https://lists.debian.org/devel.html (https://lists.debian.org/devel.html) and https://lists.debian.org/users.html (https://lists.debian.org/-
users.html))

The more experienced Debian developers will gladly help you, if you ask properly after making your required efforts.

When you receive a bug report (yes, actual bug reports!), you will know that it is time for you to dig into the Debian Bug Tracking
System (http://www.debian.org/Bugs/) and read the documentation there, to be able to deal with the reports efficiently. I highly
recommend reading the Debian Developer’s Reference, 5.8. ”Handling bugs” (http://www.debian.org/doc/manuals/developers-
reference/pkgs.html#bug-handling) .

Even if it all worked well, it’s time to start praying. Why? Because in just a few hours (or days) users from all around the world
will start to use your package, and if you made some critical error you’ll get mailbombed by numerous angry Debian users... Just
kidding. :-)

Relax and be ready for bug reports, because there is a lot more work to be done before your package will be fully in line with
Debian policies and its best practice guidelines (once again, read the real documentation for details). Good luck!

http://lists.debian.org/debian-mentors/
http://lists.debian.org/debian-mentors/
http://lists.debian.org/debian-devel/
http://lists.debian.org/debian-devel/
http://lists.debian.org/debian-mentors/
http://lists.debian.org/debian-mentors/
http://lists.debian.org/debian-devel/
http://lists.debian.org/debian-devel/
http://www.debian.org/support#irc
http://www.debian.org/support#irc
https://wiki.debian.org/Teams
https://wiki.debian.org/Teams
https://lists.debian.org/devel.html
https://lists.debian.org/devel.html
https://lists.debian.org/users.html
https://lists.debian.org/users.html
https://lists.debian.org/users.html
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#bug-handling

Debian New Maintainers’ Guide 6 / 58

Chapter 2

First steps

Let’s start by creating a package of your own (or, even better, adopting an existing one).

2.1 Debian package building workflow

If you are making a Debian package with an upstream program, the typical workflow of Debian package building involves
generating several specifically named files for each step as follows:

• Get a copy of the upstream software, usually in a compressed tar format.

– package-version.tar.gz

• Add Debian-specific packaging modifications to the upstream program under the debian directory, and create a non-native
source package (that is, the set of input files used for Debian package building) in 3.0 (quilt) format.

– package_version.orig.tar.gz

– package_version-revision.debian.tar.gz1

– package_version-revision.dsc

• Build Debian binary packages, which are ordinary installable package files in .deb format (or .udeb format, used by the
Debian Installer) from the Debian source package.

– package_version-revision_arch.deb

Please note that the character separating package and version was changed from - (hyphen) in the tarball name to _ (under-
score) in the Debian package filenames.

In the file names above, replace the package part with the package name, the version part with the upstream version, the
revision part with the Debian revision, and the arch part with the package architecture, as defined in the Debian Policy
Manual. 2

Each step of this outline is explained with detailed examples in later sections.
1 For the older style of non-native Debian source packages in 1.0 format, package_version-revision.diff.gz is used instead.
2 See 5.6.1 ”Source” (http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Source) , 5.6.7 ”Package” (http://www.debian.org/doc/debian-

policy/ch-controlfields.html#s-f-Package) , and 5.6.12 ”Version” (http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Version) . The package
architecture follows the Debian Policy Manual, 5.6.8 ”Architecture” (http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Architecture) and is
automatically assigned by the package build process.

http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Source
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Source
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Package
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Package
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Package
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Version
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Version
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Architecture
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Architecture

Debian New Maintainers’ Guide 7 / 58

2.2 Choose your program

You have probably chosen the package you want to create. The first thing you need to do is check if the package is in the
distribution archive already by using the following:

• the aptitude command

• the Debian packages (http://www.debian.org/distrib/packages) web page

• the Debian Package Tracking System (http://packages.qa.debian.org/common/index.html) web page

If the package already exists, well, install it! :-) If it happens to be orphaned (that is, if its maintainer is set to Debian QA Group
(http://qa.debian.org/)), you may be able to pick it up if it’s still available. You may also adopt a package whose maintainer has
filed a Request for Adoption (RFA).3

There are several package ownership status resources:

• The wnpp-alert command from the devscripts package

• Work-Needing and Prospective Packages (http://www.debian.org/devel/wnpp/)

• Debian Bug report logs: Bugs in pseudo-package wnpp in unstable (http://bugs.debian.org/wnpp)

• Debian Packages that Need Lovin’ (http://wnpp.debian.net/)

• Browse wnpp bugs based on debtags (http://wnpp-by-tags.debian.net/)

As a side note, it’s important to point out that Debian already has packages for most kinds of programs, and the number of packages
already in the Debian archive is much larger than that of contributors with upload rights. Thus, contributions to packages already
in the archive are far more appreciated (and more likely to receive sponsorship) by other developers 4. You can contribute in
various ways:

• taking over orphaned, yet actively used, packages

• joining packaging teams (http://wiki.debian.org/Teams)

• triaging bugs of very popular packages

• preparing QA or NMU uploads (http://www.debian.org/doc/developers-reference/pkgs.html#nmu-qa-upload)

If you are able to adopt the package, get the sources (with something like apt-get source packagename) and exam-
ine them. This document unfortunately doesn’t include comprehensive information about adopting packages. Thankfully you
shouldn’t have a hard time figuring out how the package works since someone has already done the initial setup for you. Keep
reading, though; a lot of the advice below will still be applicable for your case.

If the package is new, and you decide you’d like to see it in Debian, proceed as follows:

• First, you must know that the program works, and have tried it for some time to confirm its usefulness.

• You must check that no one else is already working on the package on the Work-Needing and Prospective Packages (http://www.debian.org/-
devel/wnpp/) site. If no one else is working on it, file an ITP (Intent To Package) bug report to the wnpp pseudo-package using
reportbug. If someone’s already on it, contact them if you feel you need to. If not - find another interesting program that
nobody is maintaining.

• The software must have a license.
3 See Debian Developer’s Reference 5.9.5. ”Adopting a package” (http://www.debian.org/doc/manuals/developers-reference/pkgs.html#adopting) .
4 Having said that, there will of course always be new programs that are worth packaging.

http://www.debian.org/distrib/packages
http://www.debian.org/distrib/packages
http://packages.qa.debian.org/common/index.html
http://packages.qa.debian.org/common/index.html
http://qa.debian.org/
http://qa.debian.org/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://bugs.debian.org/wnpp
http://bugs.debian.org/wnpp
http://wnpp.debian.net/
http://wnpp.debian.net/
http://wnpp-by-tags.debian.net/
http://wnpp-by-tags.debian.net/
http://wiki.debian.org/Teams
http://wiki.debian.org/Teams
http://www.debian.org/doc/developers-reference/pkgs.html#nmu-qa-upload
http://www.debian.org/doc/developers-reference/pkgs.html#nmu-qa-upload
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#adopting
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#adopting

Debian New Maintainers’ Guide 8 / 58

– For the main section, Debian Policy requires it to be fully compliant with the Debian Free Software Guidelines (DFSG
(http://www.debian.org/social_contract#guidelines)) and not to require a package outside of main for compilation or
execution. This is the desired case.

– For the contrib section, it must comply with the DFSG but it may require a package outside of main for compilation or
execution.

– For the non-free section, it may be non-compliant with the DFSG but it must be distributable.
– If you are unsure about where it should go, post the license text on debian-legal@lists.debian.org (http://lists.debian.org/-

debian-legal/) and ask for advice.

• The program should not introduce security and maintenance concerns to the Debian system.

– The program should be well documented and its code needs to be understandable (i.e. not obfuscated).
– You should contact the program’s author(s) to check if they agree with packaging it and are amicable to Debian. It is important

to be able to consult with the author(s) in case of any problems with the program, so don’t try to package unmaintained
software.

– The program certainly should not run setuid root, or even better, it shouldn’t need to be setuid or setgid to anything.
– The program should not be a daemon, or go in an */sbin directory, or open a port as root.

Of course, the last one is just a safety measures, and intended to save you from enraging users if you do something wrong in some
setuid daemon... When you gain more experience in packaging, you’ll be able to package such software.

As a new maintainer, you are encouraged to get some experience in packaging with easier packages and discouraged from creating
complicated packages.

• Simple packages

– single binary package, arch = all (collection of data such as wallpaper graphics)
– single binary package, arch = all (executables written in an interpreted language such as POSIX shell)

• Intermediate complexity packages

– single binary package, arch = any (ELF binary executables compiled from languages such as C and C++)
– multiple binary packages, arch = any + all (packages for ELF binary executables + documentation)
– upstream source in a format other than tar.gz or tar.bz2
– upstream source containing undistributable contents

• High complexity packages

– interpreter module package used by other packages
– generic ELF library package used by other packages
– multiple binary packages including an ELF library package
– source package with multiple upstream sources
– kernel module packages
– kernel patch packages
– any package with non-trivial maintainer scripts

Packaging high complexity packages is not too hard, but it requires a bit more knowledge. You should seek specific guidance for
every complex feature. For example, some languages have their own sub-policy documents:

• Perl policy (http://www.debian.org/doc/packaging-manuals/perl-policy/)

• Python policy (http://www.debian.org/doc/packaging-manuals/python-policy/)

• Java policy (http://www.debian.org/doc/packaging-manuals/java-policy/)

http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://lists.debian.org/debian-legal/
http://lists.debian.org/debian-legal/
http://lists.debian.org/debian-legal/
http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/python-policy/
http://www.debian.org/doc/packaging-manuals/python-policy/
http://www.debian.org/doc/packaging-manuals/java-policy/
http://www.debian.org/doc/packaging-manuals/java-policy/

Debian New Maintainers’ Guide 9 / 58

There is another old Latin saying: fabricando fit faber (practice makes perfect). It is highly recommended to practice and ex-
periment with all the steps of Debian packaging with simple packages while reading this tutorial. A trivial upstream tarball
hello-sh-1.0.tar.gz created as followings may offer a good starting point:5

$ mkdir -p hello-sh/hello-sh-1.0; cd hello-sh/hello-sh-1.0
$ cat > hello <<EOF
#!/bin/sh
(C) 2011 Foo Bar, GPL2+
echo ”Hello!”
EOF
$ chmod 755 hello
$ cd ..
$ tar -cvzf hello-sh-1.0.tar.gz hello-sh-1.0

2.3 Get the program, and try it out

So the first thing to do is to find and download the original source code. Presumably you already have the source file that
you picked up at the author’s homepage. Sources for free Unix programs usually come in tar+gzip format with the extension
.tar.gz, tar+bzip2 format with the extension .tar.bz2, or tar+xz format with the extension .tar.xz. These usually
contain a directory called package-version with all the sources inside.

If the latest version of the source is available through a VCS such as Git, Subversion, or CVS, you need to get it with git
clone, svn co, or cvs co and repack it into tar+gzip format yourself by using the --exclude-vcs option.

If your program’s source comes as some other sort of archive (for instance, the filename ends in .Z or .zip6), you should also
unpack it with the appropriate tools and repack it.

If your program’s source comes with some contents which do not comply with DFSG, you should also unpack it to remove such
contents and repack it with a modified upstream version containing dfsg.

As an example, I’ll use a program called gentoo, a GTK+ file manager. 7

Create a subdirectory under your home directory named debian or deb or anything you find appropriate (e.g. just ~/gentoo
would do fine in this case). Place the downloaded archive in it, and extract it (with tar xzf gentoo-0.9.12.tar.gz).
Make sure there are no warning messages, even irrelevant ones, because other people’s unpacking tools may or may not ignore
these anomalies, so they may have problems unpacking them. Your shell command line may look something like this:

$ mkdir ~/gentoo ; cd ~/gentoo
$ wget http://www.example.org/gentoo-0.9.12.tar.gz
$ tar xvzf gentoo-0.9.12.tar.gz
$ ls -F
gentoo-0.9.12/
gentoo-0.9.12.tar.gz

Now you have another subdirectory, called gentoo-0.9.12. Change to that directory and thoroughly read the provided
documentation. Usually there are files named README*, INSTALL*, *.lsm or *.html. You must find instructions on how
to compile and install the program (most probably they’ll assume you want to install to the /usr/local/bin directory; you
won’t be doing that, but more on that later in Section 3.3).

You should start packaging with a completely clean (pristine) source directory, or simply with freshly unpacked sources.
5 Do not worry about the missing Makefile. You can install the hello command by simply using debhelper as in Section 5.11, or by modifying the

upstream source to add a new Makefile with the install target as in Chapter 3.
6 You can identify the archive format using the file command when the file extension is not enough.
7 This program is already packaged. The current version (http://packages.qa.debian.org/g/gentoo.html) uses Autotools as its build structure and is substantially

different from the following examples, which were based on version 0.9.12.

http://packages.qa.debian.org/g/gentoo.html
http://packages.qa.debian.org/g/gentoo.html

Debian New Maintainers’ Guide 10 / 58

2.4 Simple build systems

Simple programs usually come with a Makefile and can be compiled just by invoking make.8 Some of them support make
check, which runs included self-tests. Installation to the destination directories is usually done with make install.

Now try to compile and run your program, to make sure it works properly and doesn’t break something else while it’s installing
or running.

Also, you can usually run make clean (or better make distclean) to clean up the build directory. Sometimes there’s even
a make uninstall which can be used to remove all the installed files.

2.5 Popular portable build systems

A lot of free software programs are written in the C and C++ languages. Many of these use Autotools or CMake to make them
portable across different platforms. These build tools need to be used to generate the Makefile and other required source files
first. Then, such programs are built using the usual make;make install.

Autotools is the GNU build system comprising Autoconf, Automake, Libtool, and gettext. You can recognize such sources by
the configure.ac, Makefile.am, and Makefile.in files. 9

The first step of the Autotools workflow is usually that upstream runs autoreconf -i -f in the source directory and dis-
tributes the generated files along with the source.

configure.ac-----+-> autoreconf -+-> configure
Makefile.am -----+ | +-> Makefile.in
src/Makefile.am -+ | +-> src/Makefile.in

| +-> config.h.in
automake
aclocal
aclocal.m4
autoheader

Editing configure.ac and Makefile.am files requires some knowledge of autoconf and automake. See info autoc
onf and info automake.

The second step of the Autotools workflow is usually that the user obtains this distributed source and runs ./configure &&
make in the source directory to compile the program into an executable command binary.

Makefile.in -----+ +-> Makefile -----+-> make -> binary
src/Makefile.in -+-> ./configure -+-> src/Makefile -+
config.h.in -----+ +-> config.h -----+

|
config.status -+
config.guess --+

You can change many things in the Makefile; for instance you can change the default location for file installation using the
option ./configure --prefix=/usr.

Although it is not required, updating the configure and other files with autoreconf -i -fmay improve the compatibility
of the source. 10

CMake is an alternative build system. You can recognize such sources by the CMakeLists.txt file.
8 Many modern programs come with a script configure which when executed creates a Makefile customized for your system.
9 Autotools is too big to deal in this small tutorial. This section is meant to provide keywords and references only. Please make sure to read the Autotools

Tutorial (http://www.lrde.epita.fr/~adl/autotools.html) and the local copy of /usr/share/doc/autotools-dev/README.Debian.gz, if you need to
use it.

10 You can automate this by using dh-autoreconf package. See Section 4.4.3.

http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/Autoconf
http://en.wikipedia.org/wiki/Automake
http://en.wikipedia.org/wiki/GNU_Libtool
http://en.wikipedia.org/wiki/GNU_gettext
http://en.wikipedia.org/wiki/CMake
http://www.lrde.epita.fr/~adl/autotools.html
http://www.lrde.epita.fr/~adl/autotools.html
http://www.lrde.epita.fr/~adl/autotools.html

Debian New Maintainers’ Guide 11 / 58

2.6 Package name and version

If the upstream source comes as gentoo-0.9.12.tar.gz, you can take gentoo as the (source) package name and 0.9.
12 as the upstream version. These are used in the debian/changelog file described later in Section 4.3, too.

Although this simple approach works most of the times, you may need to adjust package name and upstream version by
renaming the upstream source to follow Debian Policy and existing convention.

You must choose the package name to consist only of lower case letters (a-z), digits (0-9), plus (+) and minus (-) signs, and
periods (.). It must be at least two characters long, must start with an alphanumeric character, and must not be the same as
existing ones. It is a good idea to keep its length within 30 characters. 11

If upstream uses some generic term such as test-suite for its name, it is a good idea to rename it to identify its contents
explicitly and avoid namespace pollution. 12

You should choose the upstream version to consist only of alphanumerics (0-9A-Za-z), plus (+), tildes (~), and periods (.).
It must start with a digit (0-9). 13 It is good idea to keep its length within 8 characters if possible. 14

If upstream does not use a normal versioning scheme such as 2.30.32 but uses some kind of date such as 11Apr29, a random
codename string, or a VCS hash value as part of the version, make sure to remove them from the upstream version. Such
information can be recorded in the debian/changelog file. If you need to invent a version string, use the YYYYMMDD format
such as 20110429 as upstream version. This ensures that dpkg interprets later versions correctly as upgrades. If you need to
ensure smooth transition to the normal version scheme such as 0.1 in future, use the 0~YYMMDD format such as 0~110429 as
upstream version, instead.

Version strings 15 can be compared using dpkg(1) as follows:

$ dpkg --compare-versions ver1 op ver2

The version comparison rule can be summarized as:

• Strings are compared from the head to the tail.

• Letters are larger than digits.

• Numbers are compared as integers.

• Letters are compared in ASCII code order.

• There are special rules for period (.), plus (+), and tilde (~) characters, as follows:
0.0 < 0.5 < 0.10 < 0.99 < 1 < 1.0~rc1 < 1.0 < 1.0+b1 < 1.0+nmu1 < 1.1 < 2.0

One tricky case occurs when upstream releases gentoo-0.9.12-ReleaseCandidate-99.tar.gz as the pre-release
of gentoo-0.9.12.tar.gz. You need to make sure that the upgrade works properly by renaming the upstream source to
gentoo-0.9.12~rc99.tar.gz.

2.7 Setting up dh_make

Set up the shell environment variables $DEBEMAIL and $DEBFULLNAME so that various Debian maintenance tools recognize
your email address and name to use for packages. 16

11 The default package name field length of aptitude is 30. For more than 90% of packages, the package name is less than 24 characters.
12 If you follow the Debian Developer’s Reference 5.1. ”New packages” (http://www.debian.org/doc/developers-reference/pkgs.html#newpackage) , the ITP

process will usually catch this kind of issues.
13 This stricter rule should help you avoid confusing file names.
14 The default version field length of aptitude is 10. The Debian revision with preceding hyphen usually consumes 2. For more than 80% of packages, the

upstream version is less than 8 characters and the Debian revision is less than 2 characters. For more than 90% of packages, the upstream version is less than 10
characters and the Debian revision is less than 3 characters.

15 Version strings may be upstream version (version), Debian revision (revision), or version (version-revision). See Section 8.1 for
how the Debian revision is incremented.

16 The following text assumes you are using Bash as your login shell. If you use some other login shell such as Z shell, use their corresponding configuration
files instead of ~/.bashrc.

http://www.debian.org/doc/developers-reference/pkgs.html#newpackage
http://www.debian.org/doc/developers-reference/pkgs.html#newpackage

Debian New Maintainers’ Guide 12 / 58

$ cat >>~/.bashrc <<EOF
DEBEMAIL=”your.email.address@example.org”
DEBFULLNAME=”Firstname Lastname”
export DEBEMAIL DEBFULLNAME
EOF
$. ~/.bashrc

2.8 Initial non-native Debian package

Normal Debian packages are non-native Debian packages made from upstream programs. If you wish to create a non-native
Debian package of an upstream source gentoo-0.9.12.tar.gz, you can create an initial non-native Debian package for it
by issuing the dh_make command as follows:

$ cd ~/gentoo
$ wget http://example.org/gentoo-0.9.12.tar.gz
$ tar -xvzf gentoo-0.9.12.tar.gz
$ cd gentoo-0.9.12
$ dh_make -f ../gentoo-0.9.12.tar.gz

Of course, replace the filename with the name of your original source archive. 17 See dh_make(8) for details.

You should see some output asking you what sort of package you want to create. Gentoo is a single binary package - it creates
only one binary package, i.e, one .deb file - so we will select the first option (with the s key), check the information on the
screen, and confirm by pressing ENTER. 18

This execution of dh_make creates a copy of the upstream tarball as gentoo_0.9.12.orig.tar.gz in the parent directory
to accommodate the creation of the non-native Debian source package with the name debian.tar.gz later:

$ cd ~/gentoo ; ls -F
gentoo-0.9.12/
gentoo-0.9.12.tar.gz
gentoo_0.9.12.orig.tar.gz

Please note two key features of this filename gentoo_0.9.12.orig.tar.gz:

• Package name and version are separated by the character _ (underscore).

• The string .orig is inserted before the .tar.gz.

You should also notice that many template files are created in the source under the debian directory. These will be explained
in Chapter 4 and Chapter 5. You should also understand that packaging cannot be a fully automated process. You will need
to modify the upstream source for Debian (see Chapter 3). After this, you need to use the proper methods for building Debian
packages (Chapter 6), testing them (Chapter 7), and uploading them (Chapter 9). All the steps will be explained.

If you accidentally erased some template files while working on them, you can recover them by running dh_make with the --
addmissing option again in a Debian package source tree.

Updating an existing package may get complicated since it may be using older techniques. While learning the basics, please stick
to creating a fresh package; further explanations are given in Chapter 8.

Please note that the source file does not need to contain any build system discussed in Section 2.4 and Section 2.5. It could be
just a collection of graphical data etc. Installation of files may be carried out using only debhelper configuration files such as
debian/install (see Section 5.11).

17 If the upstream source provides the debian directory and its contents, run the dh_make command with the extra option --addmissing. The new
source 3.0 (quilt) format is robust enough not to break even for these packages. You may need to update the contents provided by the upstream for your
Debian package.

18 There are several choices here: s for Single binary package, i for arch-Independent package, m for Multiple binary packages, l for Library package, k
for Kernel module package, n for kernel patch package, and b for cdbs package. This document focuses on the use of the dh command (from the package
debhelper) to create a single binary package, but also touches on how to use it for arch-independent or multiple binary packages. The package cdbs offers
an alternative packaging script infrastructure to the dh command and is outside the scope of this document.

Debian New Maintainers’ Guide 13 / 58

Chapter 3

Modifying the source

Please note that there isn’t space here to go into all the details of fixing upstream sources, but here are some basic steps and
problems people often run across.

3.1 Setting up quilt

The program quilt offers a basic method for recording modifications to the upstream source for Debian packaging. It’s useful
to have a slightly customized default, so let’s create an alias dquilt for Debian packaging by adding the following lines to ~/
.bashrc. The second line provides the same shell completion feature of the quilt command to the dquilt command:

alias dquilt=”quilt --quiltrc=${HOME}/.quiltrc-dpkg”
complete -F _quilt_completion $_quilt_complete_opt dquilt

Then let’s create ~/.quiltrc-dpkg as follows:

d=. ; while [! -d $d/debian -a ‘readlink -e $d‘ != /]; do d=$d/..; done
if [-d $d/debian] && [-z $QUILT_PATCHES]; then

if in Debian packaging tree with unset $QUILT_PATCHES
QUILT_PATCHES=”debian/patches”
QUILT_PATCH_OPTS=”--reject-format=unified”
QUILT_DIFF_ARGS=”-p ab --no-timestamps --no-index --color=auto”
QUILT_REFRESH_ARGS=”-p ab --no-timestamps --no-index”
QUILT_COLORS=”diff_hdr=1;32:diff_add=1;34:diff_rem=1;31:diff_hunk=1;33:diff_ctx=35: ←↩

diff_cctx=33”
if ! [-d $d/debian/patches]; then mkdir $d/debian/patches; fi

fi

See quilt(1) and /usr/share/doc/quilt/quilt.pdf.gz on how to use quilt.

3.2 Fixing upstream bugs

Let’s assume you find an error in the upstream Makefile as follows where install:gentoo should have been install:
gentoo-target.

install: gentoo
install ./gentoo $(BIN)
install icons/* $(ICONS)
install gentoorc-example $(HOME)/.gentoorc

Debian New Maintainers’ Guide 14 / 58

Let’s fix this and record it with the dquilt command as fix-gentoo-target.patch: 1

$ mkdir debian/patches
$ dquilt new fix-gentoo-target.patch
$ dquilt add Makefile

You change the Makefile file as follows:

install: gentoo-target
install ./gentoo $(BIN)
install icons/* $(ICONS)
install gentoorc-example $(HOME)/.gentoorc

Ask dquilt to generate the patch to create debian/patches/fix-gentoo-target.patch and add its description fol-
lowing DEP-3: Patch Tagging Guidelines (http://dep.debian.net/deps/dep3/) :

$ dquilt refresh
$ dquilt header -e
... describe patch

3.3 Installation of files to their destination

Most third-party software installs itself in the /usr/local directory hierarchy. On Debian this is reserved for private use
by the system administrator, so packages must not use directories such as /usr/local/bin but should instead use system
directories such as /usr/bin, obeying the Filesystem Hierarchy Standard (http://www.debian.org/doc/packaging-manuals/-
fhs/fhs-2.3.html) (FHS).

Normally, make(1) is used to automate building the program, and executing make install installs programs directly to the
desired destination (following the install target in the Makefile). In order for Debian to provide pre-built installable
packages, it modifies the build system to install programs into a file tree image created under a temporary directory instead of the
actual destination.

These two differences between normal program installation on one hand and the Debian packaging system on the other can be
transparently addressed by the debhelper package through the dh_auto_configure and dh_auto_install commands if the
following conditions are met:

• The Makefile must follow GNU conventions and support the $(DESTDIR) variable. 2

• The source must follow the Filesystem Hierarchy Standard (FHS).

Programs that use GNU autoconf follow the GNU conventions automatically, so they can be trivial to package. On the basis of
this and other heuristics, it is estimated that the debhelper package will work for about 90% of packages without making any
intrusive changes to their build system. So packaging is not as complicated as it may seem.

If you need to make changes in the Makefile, you should be careful to support the $(DESTDIR) variable. Although it is unset
by default, the $(DESTDIR) variable is prepended to each file path used for the program installation. The packaging script will
set $(DESTDIR) to the temporary directory.

For a source package generating a single binary package, the temporary directory used by the dh_auto_install command will be
set to debian/package. 3 Everything that is contained in the temporary directory will be installed on users’ systems when

1 The debian/patches directory should exist now if you ran dh_make as described before. This example operation creates it just in case you are updating
an existing package.

2 See GNU Coding Standards: 7.2.4 DESTDIR: Support for Staged Installs (http://www.gnu.org/prep/standards/html_node/DESTDIR.html#DESTDIR) .
3 For a source package generating multiple binary packages, the dh_auto_install command uses debian/tmp as the temporary directory while the

dh_install command with the help of debian/package-1.install and debian/package-2.install files will split the contents of debian/
tmp into debian/package-1 and debian/package-2 temporary directories, to create package-1_*.deb and package-2_*.deb binary
packages.

http://dep.debian.net/deps/dep3/
http://dep.debian.net/deps/dep3/
http://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html
http://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html
http://www.debian.org/doc/packaging-manuals/fhs/fhs-2.3.html
http://www.gnu.org/prep/standards/html_node/DESTDIR.html#DESTDIR
http://www.gnu.org/prep/standards/html_node/DESTDIR.html#DESTDIR

Debian New Maintainers’ Guide 15 / 58

they install your package; the only difference is that dpkg will be installing the files to paths relative to the root directory rather
than your working directory.

Bear in mind that even though your program installs in debian/package, it still needs to behave correctly when installed from
the .deb package under the root directory. So you must not allow the build system to hardcode strings like /home/me/deb/
package-version/usr/share/package into files in the package.

Here’s the relevant part of gentoo’s Makefile4:

Where to put executable commands on ’make install’?
BIN = /usr/local/bin
Where to put icons on ’make install’?
ICONS = /usr/local/share/gentoo

We see that the files are set to install under /usr/local. As explained above, that directory hierarchy is reserved for local use
on Debian, so change those paths to:

Where to put executable commands on ’make install’?
BIN = $(DESTDIR)/usr/bin
Where to put icons on ’make install’?
ICONS = $(DESTDIR)/usr/share/gentoo

The exact locations that should be used for binaries, icons, documentation, etc. are specified in the Filesystem Hierarchy Standard
(FHS). You should browse through it and read the sections relevant to your package.

So, we should install executable commands in /usr/bin instead of /usr/local/bin, the manual page in /usr/share/
man/man1 instead of /usr/local/man/man1, and so on. Notice how there’s no manual page mentioned in gentoo’s
Makefile, but since Debian Policy requires that every program has one, we’ll make one later and install it in /usr/share/
man/man1.

Some programs don’t use Makefile variables to define paths such as these. This means you might have to edit some real C
sources in order to fix them to use the right locations. But where to search, and exactly what for? You can find this out by issuing:

$ grep -nr --include=’*.[c|h]’ -e ’usr/local/lib’ .

grep will run recursively through the source tree and tell you the filename and the line number for all matches.

Edit those files and in those lines replace usr/local/lib with usr/lib. This can be done automatically as follows:

$ sed -i -e ’s#usr/local/lib#usr/lib#g’ \
$(find . -type f -name ’*.[c|h]’)

If you want to confirm each substitution instead, this can be done interactively as follows:

$ vim ’+argdo %s#usr/local/lib#usr/lib#gce|update’ +q \
$(find . -type f -name ’*.[c|h]’)

Next you should find the install target (searching for the line that starts with install: will usually work) and rename all
references to directories other than ones defined at the top of the Makefile.

Originally, gentoo’s install target said:

install: gentoo-target
install ./gentoo $(BIN)
install icons/* $(ICONS)
install gentoorc-example $(HOME)/.gentoorc

Let’s fix this upstream bug and record it with the dquilt command as debian/patches/install.patch.

$ dquilt new install.patch
$ dquilt add Makefile

4 This is just an example to show what a Makefile should look like. If the Makefile is created by the ./configure command, the correct way to fix this
kind of Makefile is to execute ./configure from the dh_auto_configure command with default options including --prefix=/usr.

Debian New Maintainers’ Guide 16 / 58

In your editor, change this for the Debian package as follows:

install: gentoo-target
install -d $(BIN) $(ICONS) $(DESTDIR)/etc
install ./gentoo $(BIN)
install -m644 icons/* $(ICONS)
install -m644 gentoorc-example $(DESTDIR)/etc/gentoorc

You’ll have noticed that there’s now an install -d command before the other commands in the rule. The original Makefile
didn’t have it because usually /usr/local/bin and other directories already exist on the system where you are running make
install. However, since we will be installing into a newly created private directory tree, we will have to create each and every
one of those directories.

We can also add in other things at the end of the rule, like the installation of additional documentation that the upstream authors
sometimes omit:

install -d $(DESTDIR)/usr/share/doc/gentoo/html
cp -a docs/* $(DESTDIR)/usr/share/doc/gentoo/html

Check carefully, and if everything is okay, ask dquilt to generate the patch to create debian/patches/install.patch
and add its description:

$ dquilt refresh
$ dquilt header -e
... describe patch

Now you have a series of patches.

1. Upstream bug fix: debian/patches/fix-gentoo-target.patch

2. Debian specific packaging modification: debian/patches/install.patch

Whenever you make changes that are not specific to the Debian package such asdebian/patches/fix-gentoo-target.
patch, be sure to send them to the upstream maintainer so they can be included in the next version of the program and be useful
to everyone else. Also remember to avoid making your fixes specific to Debian or Linux - or even Unix! Make them portable.
This will make your fixes much easier to apply.

Note that you don’t have to send the debian/* files upstream.

3.4 Differing libraries

There is one other common problem: libraries are often different from platform to platform. For example, a Makefile can
contain a reference to a library which doesn’t exist on the Debian system. In that case, we need to change it to a library which
does exist in Debian, and serves the same purpose.

Let’s assume a line in your program’s Makefile (or Makefile.in) as the following.

LIBS = -lfoo -lbar

If your program doesn’t compile since the foo library doesn’t exist and its equivalent is provided by the foo2 library on the
Debian system, you can fix this build problem as debian/patches/foo2.patch by changing foo into foo2:5

$ dquilt new foo2.patch
$ dquilt add Makefile
$ sed -i -e ’s/-lfoo/-lfoo2/g’ Makefile
$ dquilt refresh
$ dquilt header -e
... describe patch

5 If there are API changes from the foo library to the foo2 library, required changes to the source code need to be made to match the new API.

Debian New Maintainers’ Guide 17 / 58

Chapter 4

Required files under the debian directory

There is a new subdirectory under the program’s source directory, called debian. There are a number of files in this directory
that we should edit in order to customize the behavior of the package. The most important of them are control, changelog,
copyright, and rules, which are required for all packages. 1

4.1 control

This file contains various values which dpkg, dselect, apt-get, apt-cache, aptitude, and other package management tools will
use to manage the package. It is defined by the Debian Policy Manual, 5 ”Control files and their fields” (http://www.debian.org/-
doc/debian-policy/ch-controlfields.html) .

Here is the control file dh_make created for us:

1 Source: gentoo
2 Section: unknown
3 Priority: extra
4 Maintainer: Josip Rodin <joy-mg@debian.org>
5 Build-Depends: debhelper (>=9)
6 Standards-Version: 3.9.4
7 Homepage: <insert the upstream URL, if relevant>
8
9 Package: gentoo
10 Architecture: any
11 Depends: ${shlibs:Depends}, ${misc:Depends}
12 Description: <insert up to 60 chars description>
13 <insert long description, indented with spaces>

(I’ve added the line numbers.)

Lines 1-7 are the control information for the source package. Lines 9-13 are the control information for the binary package.

Line 1 is the name of the source package.

Line 2 is the section of the distribution the source package goes into.

As you may have noticed, the Debian archive is divided into multiple areas: main (the free software), non-free (the not
really free software) and contrib (free software that depends on non-free software). Each of these is divided into sections that
classify packages into rough categories. So we have admin for administrator-only programs, devel for programmer tools, doc
for documentation, libs for libraries, mail for email readers and daemons, net for network apps and daemons, x11 for X11
programs that don’t fit anywhere else, and many more. 2

1 In this chapter, files in the debian directory are referred to without the leading debian/ for simplicity whenever the meaning is obvious.

2 See Debian Policy Manual, 2.4 ”Sections” (http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections) and List of sections in sid
(http://packages.debian.org/unstable/) .

http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://packages.debian.org/unstable/
http://packages.debian.org/unstable/

Debian New Maintainers’ Guide 18 / 58

Let’s change it then to x11. (A main/ prefix is implied so we can omit it.)

Line 3 describes how important it is that the user installs this package. 3

• The optional priority will usually work for new packages that do not conflict with others claiming required, import
ant, or standard priority.

• The extra priority will usually work for new packages that conflict with others with non-extra priorities.

Section and priority are used by front-ends like aptitude when they sort packages and select defaults. Once you upload the
package to Debian, the value of these two fields can be overridden by the archive maintainers, in which case you will be notified
by email.

As this is a normal priority package and doesn’t conflict with anything else, we will change the priority to optional.

Line 4 is the name and email address of the maintainer. Make sure that this field includes a valid To header for email, because after
you upload it, the bug tracking system will use it to deliver bug emails to you. Avoid using commas, ampersands, or parentheses.

Line 5 includes the list of packages required to build your package as the Build-Depends field. You can also have the Build-
Depends-Indep field as an additional line, here. 4 Some packages like gcc and make which are required by the build-
essential package are implied. If you need to have other tools to build your package, you should add them to these fields.
Multiple entries are separated with commas; read on for the explanation of binary package dependencies to find out more about
the syntax of these lines.

• For all packages packaged with the dh command in the debian/rules file, you must have debhelper (>=9) in the
Build-Depends field to satisfy the Debian Policy requirement for the clean target.

• Source packages which have binary packages with Architecture:any are rebuilt by the autobuilder. Since this autobuilder
procedure installs only the packages listed in the Build-Depends field before running debian/rules build (see Sec-
tion 6.2), the Build-Depends field needs to list practically all the required packages and Build-Depends-Indep is
rarely used.

• For source packages with binary packages all of which are Architecture:all, the Build-Depends-Indep field
may list all the required packages unless they are already listed in the Build-Depends field to satisfy the Debian Policy
requirement for the clean target.

If you are not sure which one should be used, use the Build-Depends field to be on the safe side. 5

To find out what packages your package needs to be built run the command:

$ dpkg-depcheck -d ./configure

To manually find exact build dependencies for /usr/bin/foo, execute

$ objdump -p /usr/bin/foo | grep NEEDED

and for each library listed, e.g., libfoo.so.6, execute

$ dpkg -S libfoo.so.6

Then just take the -dev version of every package as a Build-Depends entry. If you use ldd for this purpose, it will report
indirect lib dependencies as well, resulting in the problem of excessive build dependencies.

gentoo also happens to require xlibs-dev, libgtk1.2-dev and libglib1.2-dev to build, so we’ll add them here
next to debhelper.

3 See Debian Policy Manual, 2.5 ”Priorities” (http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities) .

4 See Debian Policy Manual, 7.7 ”Relationships between source and binary packages - Build-Depends, Build-Depends-Indep, Build-Conflicts, Build-
Conflicts-Indep” (http://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps) .

5 This somewhat strange situation is a feature well documented in the Debian Policy Manual, Footnotes 55 (http://www.debian.org/doc/debian-policy/-
footnotes.html#f55) . This is not due to the use of the dh command in the debian/rules file but due to how the dpkg-buildpackage works. The same
situation applies to the auto build system for Ubuntu (https://bugs.launchpad.net/launchpad-buildd/+bug/238141) .

http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities
http://www.debian.org/doc/debian-policy/ch-archive.html#s-priorities
http://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps
http://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps
http://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps
http://www.debian.org/doc/debian-policy/footnotes.html#f55
http://www.debian.org/doc/debian-policy/footnotes.html#f55
http://www.debian.org/doc/debian-policy/footnotes.html#f55
https://bugs.launchpad.net/launchpad-buildd/+bug/238141
https://bugs.launchpad.net/launchpad-buildd/+bug/238141

Debian New Maintainers’ Guide 19 / 58

Line 6 is the version of the Debian Policy Manual (http://www.debian.org/doc/devel-manuals#policy) standards this package
follows, the one you read while making your package.

On line 7 you can put the URL of the software’s upstream homepage.

Line 9 is the name of the binary package. This is usually the same as the name of the source package, but it doesn’t necessarily
have to be that way.

Line 10 describes the architectures the binary package can be compiled for. This value is usually one of the following depending
on the type of the binary package: 6

• Architecture:any

– The generated binary package is an architecture dependent one usually in a compiled language.

• Architecture:all

– The generated binary package is an architecture independent one usually consisting of text, images, or scripts in an interpreted
language.

We leave line 10 as is since this is written in C. dpkg-gencontrol(1) will fill in the appropriate architecture value for any machine
this source package gets compiled on.

If your package is architecture independent (for example, a shell or Perl script, or a document), change this to all, and read later
in Section 4.4 about using the binary-indep rule instead of binary-arch for building the package.

Line 11 shows one of the most powerful features of the Debian packaging system. Packages can relate to each other in various
ways. Apart from Depends, other relationship fields areRecommends, Suggests, Pre-Depends, Breaks, Conflicts,
Provides, and Replaces.

The package management tools usually behave the same way when dealing with these relations; if not, it will be explained. (See
dpkg(8), dselect(8), apt(8), aptitude(1), etc.)

Here is a simplified description of package relationships: 7

• Depends

The package will not be installed unless the packages it depends on are installed. Use this if your program absolutely will not
run (or will cause severe breakage) unless a particular package is present.

• Recommends

Use this for packages that are not strictly necessary but are typically used with your program. When a user installs your program,
all front-ends will probably prompt them to install the recommended packages. aptitude and apt-get install recommended
packages along with your package by default (but the user can disable this behavior). dpkg will ignore this field.

• Suggests

Use this for packages which will work nicely with your program but are not at all necessary. When a user installs your program,
they will probably not be prompted to install suggested packages. aptitude can be configured to install suggested packages
along with your package but this is not its default. dpkg and apt-get will ignore this field.

• Pre-Depends

This is stronger than Depends. The package will not be installed unless the packages it pre-depends on are installed and cor-
rectly configured. Use this very sparingly and only after discussing it on the debian-devel@lists.debian.org (http://lists.debian.org/-
debian-devel/) mailing list. Read: don’t use it at all. :-)

• Conflicts

The package will not be installed until all the packages it conflicts with have been removed. Use this if your program absolutely
will not run or will cause severe problems if a particular package is present.

6 See Debian Policy Manual, 5.6.8 ”Architecture” (http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Architecture) for exact details.

7 See Debian Policy Manual, 7 ”Declaring relationships between packages” (http://www.debian.org/doc/debian-policy/ch-relationships.html) .

http://www.debian.org/doc/devel-manuals#policy
http://www.debian.org/doc/devel-manuals#policy
http://lists.debian.org/debian-devel/
http://lists.debian.org/debian-devel/
http://lists.debian.org/debian-devel/
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Architecture
http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Architecture
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html

Debian New Maintainers’ Guide 20 / 58

• Breaks

When installed the package will break all the listed packages. Normally a Breaks entry specifies that it applies to versions
earlier than a certain value. The resolution is generally to use higher-level package management tools to upgrade the listed
packages.

• Provides

For some types of packages where there are multiple alternatives virtual names have been defined. You can get the full list in
the virtual-package-names-list.txt.gz (http://www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt) file. Use
this if your program provides a function of an existing virtual package.

• Replaces

Use this when your program replaces files from another package, or completely replaces another package (used in conjunction
with Conflicts). Files from the named packages will be overwritten with the files from your package.

All these fields have uniform syntax. They are a list of package names separated by commas. These package names may also be
lists of alternative package names, separated by vertical bar symbols | (pipe symbols).

The fields may restrict their applicability to particular versions of each named package. The restriction of each individual package
is listed in parentheses after its name, and should contain a relation from the list below followed by a version number value. The
relations allowed are: <<, <=, =, >=, and >> for strictly lower, lower or equal, exactly equal, greater or equal, and strictly greater,
respectively. For example,

Depends: foo (>= 1.2), libbar1 (= 1.3.4)
Conflicts: baz
Recommends: libbaz4 (>> 4.0.7)
Suggests: quux
Replaces: quux (<< 5), quux-foo (<= 7.6)

The last feature you need to know about is ${shlibs:Depends}, ${perl:Depends}, ${misc:Depends}, etc.

dh_shlibdeps(1) calculates shared library dependencies for binary packages. It generates a list of ELF executables and shared
libraries it has found for each binary package. This list is used for substituting ${shlibs:Depends}.

dh_perl(1) calculates Perl dependencies. It generates a list of a dependencies on perl or perlapi for each binary package.
This list is used for substituting ${perl:Depends}.

Some debhelper commands may cause the generated package to depend on some additional packages. All such commands
generate a list of required packages for each binary package. This list is used for substituting ${misc:Depends}.

dh_gencontrol(1) generatesDEBIAN/control for each binary package while substituting${shlibs:Depends}, ${perl:
Depends}, ${misc:Depends}, etc.

Having said all that, we can leave the Depends field exactly as it is now, and insert another line after it saying Suggests:
file, because gentoo can use some features provided by the file package.

Line 9 is the Homepage URL. Let’s assume this to be at http://www.obsession.se/gentoo/.

Line 12 is the short description. Terminals are conventionally 80 columns wide so this shouldn’t be longer than about 60 characters.
I’ll change it to fully GUI-configurable, two-pane X file manager.

Line 13 is where the long description goes. This should be a paragraph which gives more details about the package. Column 1
of each line should be empty. There must be no blank lines, but you can put a single . (dot) in a column to simulate that. Also,
there must be no more than one blank line after the long description. 8

We can insert Vcs-* fields to document the Version Control System (VCS) location between lines 6 and 7. 9 Let’s assume that
the gentoo package has its VCS located in the Debian Alioth Git Service at git://git.debian.org/git/collab-
maint/gentoo.git.

Finally, here is the updated control file:
8 These descriptions are in English. Translations of these descriptions are provided by The Debian Description Translation Project - DDTP

(http://www.debian.org/intl/l10n/ddtp) .
9 See Debian Developer’s Reference, 6.2.5. ”Version Control System location” (http://www.debian.org/doc/manuals/developers-reference/best-pkging-

practices.html#bpp-vcs) .

http://www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt
http://www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://www.obsession.se/gentoo/
http://www.debian.org/intl/l10n/ddtp
http://www.debian.org/intl/l10n/ddtp
http://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-vcs
http://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-vcs
http://www.debian.org/doc/manuals/developers-reference/best-pkging-practices.html#bpp-vcs

Debian New Maintainers’ Guide 21 / 58

1 Source: gentoo
2 Section: x11
3 Priority: optional
4 Maintainer: Josip Rodin <joy-mg@debian.org>
5 Build-Depends: debhelper (>=9), xlibs-dev, libgtk1.2-dev, libglib1.2-dev
6 Standards-Version: 3.9.4
7 Vcs-Git: git://git.debian.org/git/collab-maint/gentoo.git
8 Vcs-browser: http://git.debian.org/?p=collab-maint/gentoo.git
9 Homepage: http://www.obsession.se/gentoo/
10
11 Package: gentoo
12 Architecture: any
13 Depends: ${shlibs:Depends}, ${misc:Depends}
14 Suggests: file
15 Description: fully GUI-configurable, two-pane X file manager
16 gentoo is a two-pane file manager for the X Window System. gentoo lets the
17 user do (almost) all of the configuration and customizing from within the
18 program itself. If you still prefer to hand-edit configuration files,
19 they’re fairly easy to work with since they are written in an XML format.
20 .
21 gentoo features a fairly complex and powerful file identification system,
22 coupled to an object-oriented style system, which together give you a lot
23 of control over how files of different types are displayed and acted upon.
24 Additionally, over a hundred pixmap images are available for use in file
25 type descriptions.
26 .
29 gentoo was written from scratch in ANSI C, and it utilizes the GTK+ toolkit
30 for its interface.

(I’ve added the line numbers.)

4.2 copyright

This file contains information about the copyright and license of the upstream sources. Debian Policy Manual, 12.5 ”Copyright
information” (http://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile) dictates its content and DEP-5: Machine-
parseable debian/copyright (http://dep.debian.net/deps/dep5/) provides guidelines for its format.

dh_make can give you a template copyright file. Let’s use the --copyright gpl2 option here to get a template file for
the gentoo package released under GPL-2.

You must fill in missing information to complete this file, such as the place you got the package from, the actual copyright
notice, and the license. For certain common free software licenses (GNU GPL-1, GNU GPL-2, GNU GPL-3, LGPL-2, LGPL-
2.1, LGPL-3, GNU FDL-1.2, GNU FDL-1.3, Apache-2.0, or the Artistic license), you can just refer to the appropriate file in the
/usr/share/common-licenses/ directory that exists on every Debian system. Otherwise, you must include the complete
license.

In short, here’s what gentoo’s copyright file should look like:

1 Format-Specification: http://svn.debian.org/wsvn/dep/web/deps/dep5.mdwn?op=file&rev=135
2 Name: gentoo
3 Maintainer: Josip Rodin <joy-mg@debian.org>
4 Source: http://sourceforge.net/projects/gentoo/files/
5
6 Copyright: 1998-2010 Emil Brink <emil@obsession.se>
7 License: GPL-2+
8
9 Files: icons/*
10 Copyright: 1998 Johan Hanson <johan@tiq.com>
11 License: GPL-2+

http://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
http://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
http://www.debian.org/doc/debian-policy/ch-docs.html#s-copyrightfile
http://dep.debian.net/deps/dep5/
http://dep.debian.net/deps/dep5/
http://dep.debian.net/deps/dep5/

Debian New Maintainers’ Guide 22 / 58

12
13 Files: debian/*
14 Copyright: 1998-2010 Josip Rodin <joy-mg@debian.org>
15 License: GPL-2+
16
17 License: GPL-2+
18 This program is free software; you can redistribute it and/or modify
19 it under the terms of the GNU General Public License as published by
20 the Free Software Foundation; either version 2 of the License, or
21 (at your option) any later version.
22 .
23 This program is distributed in the hope that it will be useful,
24 but WITHOUT ANY WARRANTY; without even the implied warranty of
25 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 GNU General Public License for more details.
27 .
28 You should have received a copy of the GNU General Public License along
29 with this program; if not, write to the Free Software Foundation, Inc.,
30 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
31 .
32 On Debian systems, the full text of the GNU General Public
33 License version 2 can be found in the file
34 ‘/usr/share/common-licenses/GPL-2’.

(I’ve added the line numbers.)

Please follow the HOWTO provided by the ftpmasters and sent to debian-devel-announce: http://lists.debian.org/debian-devel-
announce/2006/03/msg00023.html.

4.3 changelog

This is a required file, which has a special format described in Debian Policy Manual, 4.4 ”debian/changelog” (http://www.debian.org/-
doc/debian-policy/ch-source.html#s-dpkgchangelog) . This format is used by dpkg and other programs to obtain the version
number, revision, distribution, and urgency of your package.

For you, it is also important, since it is good to have documented all changes you have done. It will help people downloading
your package to see whether there are issues with the package that they should know about. It will be saved as /usr/share/
doc/gentoo/changelog.Debian.gz in the binary package.

dh_make created a default one, and this is what it looks like:

1 gentoo (0.9.12-1) unstable; urgency=low
2
3 * Initial release (Closes: #nnnn) <nnnn is the bug number of your ITP>
4
5 -- Josip Rodin <joy-mg@debian.org> Mon, 22 Mar 2010 00:37:31 +0100
6

(I’ve added the line numbers.)

Line 1 is the package name, version, distribution, and urgency. The name must match the source package name; distribution
should be unstable, and urgency shouldn’t be changed to anything higher than low. :-)

Lines 3-5 are a log entry, where you document changes made in this package revision (not the upstream changes - there is a
special file for that purpose, created by the upstream authors, which you will later install as /usr/share/doc/gentoo/
changelog.gz). Let’s assume your ITP (Intent To Package) bug report number was 12345. New lines must be inserted just
below the uppermost line that begins with * (asterisk). You can do it with dch(1), or manually with a text editor.

In order to prevent a package being accidentally uploaded before completing the package, it is good idea to change the distribution
value to an invalid distribution value UNRELEASED.

You will end up with something like this:

http://lists.debian.org/debian-devel-announce/2006/03/msg00023.html
http://lists.debian.org/debian-devel-announce/2006/03/msg00023.html
http://www.debian.org/doc/debian-policy/ch-source.html#s-dpkgchangelog
http://www.debian.org/doc/debian-policy/ch-source.html#s-dpkgchangelog
http://www.debian.org/doc/debian-policy/ch-source.html#s-dpkgchangelog

Debian New Maintainers’ Guide 23 / 58

1 gentoo (0.9.12-1) UNRELEASED; urgency=low
2
3 * Initial Release. Closes: #12345
4 * This is my first Debian package.
5 * Adjusted the Makefile to fix $(DESTDIR) problems.
6
7 -- Josip Rodin <joy-mg@debian.org> Mon, 22 Mar 2010 00:37:31 +0100
8

(I’ve added the line numbers.)

Once you are satisfied with all the changes and documented them in changelog, you should change the distribution value from
UNRELEASED to the target distribution value unstable (or even experimental). 10

You can read more about updating the changelog file later in Chapter 8.

4.4 rules

Now we need to take a look at the exact rules which dpkg-buildpackage(1) will use to actually create the package. This file is in
fact another Makefile, but different from the one(s) in the upstream source. Unlike other files in debian, this one is marked
as executable.

4.4.1 Targets of the rules file

Every rules file, like any other Makefile, consists of several rules, each of which defines a target and how it is carried out.
11 A new rule begins with its target declaration in the first column. The following lines beginning with the TAB code (ASCII 9)
specify the recipe for carrying out that target. Empty lines and lines beginning with # (hash) are treated as comments and ignored.
12

A rule that you want to execute is invoked by its target name as a command line argument. For example, debian/rules
build and fakeroot make -f debian/rules binary execute rules for build and binary targets respectively.

Here is a simplified explanation of the targets:

• clean target: to clean all compiled, generated, and useless files in the build-tree. (Required)

• build target: to build the source into compiled programs and formatted documents in the build-tree. (Required)

• build-arch target: to build the source into arch-dependent compiled programs in the build-tree. (Required)

• build-indep target: to build the source into arch-independent formatted documents in the build-tree. (Required)

• install target: to install files into a file tree for each binary package under the debian directory. If defined, binary*
targets effectively depend on this target. (Optional)

• binary target: to create all binary packages (effectively a combination of binary-arch and binary-indep targets).
(Required)13

• binary-arch target: to create arch-dependent (Architecture:any) binary packages in the parent directory. (Re-
quired)14

10 If you use the dch -r command to make this last change, please make sure to save the changelog file explicitly by the editor.
11 You can start learning how to write Makefile from Debian Reference, 12.2. ”Make” (http://www.debian.org/doc/manuals/debian-reference/ch12#_make)

. The full documentation is available as http://www.gnu.org/software/make/manual/html_node/index.html or as the make-doc package in the non-free
archive area.

12 Debian Policy Manual, 4.9 ”Main building script: debian/rules” (http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules) explains the
details.

13 This target is used by dpkg-buildpackage as in Section 6.1.
14 This target is used by dpkg-buildpackage -B as in Section 6.2.

http://www.debian.org/doc/manuals/debian-reference/ch12#_make
http://www.debian.org/doc/manuals/debian-reference/ch12#_make
http://www.gnu.org/software/make/manual/html_node/index.html
http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules
http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules

Debian New Maintainers’ Guide 24 / 58

• binary-indep target: to create arch-independent (Architecture:all) binary packages in the parent directory. (Re-
quired)15

• get-orig-source target: to obtain the most recent version of the original source package from an upstream archive.
(Optional)

You are probably overwhelmed by now, but things are much simpler upon examination of the rules file that dh_make gives us
as a default.

4.4.2 Default rules file

Newer dh_make generates a very simple but powerful default rules file using the dh command:

1 #!/usr/bin/make -f
2 # See debhelper(7) (uncomment to enable)
3 # output every command that modifies files on the build system.
4 #DH_VERBOSE = 1
5
6 # see EXAMPLES in dpkg-buildflags(1) and read /usr/share/dpkg/*
7 DPKG_EXPORT_BUILDFLAGS = 1
8 include /usr/share/dpkg/default.mk
9
10 # see FEATURE AREAS in dpkg-buildflags(1)
11 #export DEB_BUILD_MAINT_OPTIONS = hardening=+all
12
13 # see ENVIRONMENT in dpkg-buildflags(1)
14 # package maintainers to append CFLAGS
15 #export DEB_CFLAGS_MAINT_APPEND = -Wall -pedantic
16 # package maintainers to append LDFLAGS
17 #export DEB_LDFLAGS_MAINT_APPEND = -Wl,--as-needed
18
19 # main packaging script based on dh7 syntax
20 %:
21 dh $@

(I’ve added the line numbers and trimmed some comments. In the actual rules file, the leading spaces are a TAB code.)

You are probably familiar with lines like line 1 from shell and Perl scripts. It tells the operating system that this file is to be
processed with /usr/bin/make.

Line 4 can be uncommented to set the DH_VERBOSE variable to 1, so that the dh command outputs which dh_* commands it
is executing. You can also add a line export DH_OPTIONS=-v here, so that each dh_* command outputs which commands
it is executing. This helps you to understand exactly what is going on behind this simple rules file and to debug its problems.
This new dh is designed to form a core part of the debhelper tools, and not to hide anything from you.

Lines 20 and 21 are where all the work is done with an implicit rule using the pattern rule. The percent sign means ”any targets”,
which then call a single program, dh, with the target name. 16 The dh command is a wrapper script which runs appropriate
sequences of dh_* programs depending on its argument. 17

• debian/rules clean runs dh clean, which in turn runs the following:

dh_testdir
dh_auto_clean
dh_clean

15 This target is used by dpkg-buildpackage -A.
16 This uses the new debhelper v7+ features. Its design concepts are explained in Not Your Grandpa’s Debhelper (http://joey.kitenet.net/talks/debhelper/-

debhelper-slides.pdf) presented at DebConf9 by the debhelper upstream. Under lenny, dh_make created a much more complicated rules file with explicit
rules and many dh_* scripts listed for each one, most of which are now unnecessary (and show the package’s age). The new dh command is simpler and frees us
from doing the routine work ”manually”. You still have full power to customize the process with override_dh_* targets. See Section 4.4.3. It is based only
on the debhelper package and does not obfuscate the package building process as the cdbs package tends to.

17 You can verify the actual sequences of dh_* programs invoked for a given target without really running them by invoking dh --no-act target
or debian/rules --’--no-act target’.

http://joey.kitenet.net/talks/debhelper/debhelper-slides.pdf
http://joey.kitenet.net/talks/debhelper/debhelper-slides.pdf
http://joey.kitenet.net/talks/debhelper/debhelper-slides.pdf

Debian New Maintainers’ Guide 25 / 58

• debian/rules build runs dh build; which in turn runs the following:

dh_testdir
dh_auto_configure
dh_auto_build
dh_auto_test

• fakeroot debian/rules binary runs fakeroot dh binary; which in turn runs the following18:

dh_testroot
dh_prep
dh_installdirs
dh_auto_install
dh_install
dh_installdocs
dh_installchangelogs
dh_installexamples
dh_installman
dh_installcatalogs
dh_installcron
dh_installdebconf
dh_installemacsen
dh_installifupdown
dh_installinfo
dh_installinit
dh_installmenu
dh_installmime
dh_installmodules
dh_installlogcheck
dh_installlogrotate
dh_installpam
dh_installppp
dh_installudev
dh_installwm
dh_installxfonts
dh_bugfiles
dh_lintian
dh_gconf
dh_icons
dh_perl
dh_usrlocal
dh_link
dh_compress
dh_fixperms
dh_strip
dh_makeshlibs
dh_shlibdeps
dh_installdeb
dh_gencontrol
dh_md5sums
dh_builddeb

• fakeroot debian/rules binary-arch runsfakeroot dh binary-arch; which in turn runs the same sequence
as fakeroot dh binary but with the -a option appended for each command.

• fakeroot debian/rules binary-indep runs fakeroot dh binary-indep; which in turn runs almost the
same sequence as fakeroot dh binary but excluding dh_strip, dh_makeshlibs, and dh_shlibdeps with the -i option
appended for each remaining command.

18 The following example assumes your debian/compat has a value equal or more than 9 to avoid invoking any python support commands automatically.

Debian New Maintainers’ Guide 26 / 58

The functions of dh_* commands are largely self-evident from their names. 19 There are a few notable ones that are worth giving
(over)simplified explanations here assuming a typical build environment based on a Makefile: 20

• dh_auto_clean usually executes the following if a Makefile exists with the distclean target. 21

make distclean

• dh_auto_configure usually executes the following if ./configure exists (arguments abbreviated for readability).

./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var ...

• dh_auto_build usually executes the following to execute the first target of Makefile if it exists.

make

• dh_auto_test usually executes the following if a Makefile exists with the test target. 22

make test

• dh_auto_install usually executes the following if a Makefile exists with the install target (line folded for readability).

make install \
DESTDIR=/path/to/package_version-revision/debian/package

All targets which require the fakeroot command will contain dh_testroot, which exits with an error if you are not using this
command to pretend to be root.

The important part to know about the rules file created by dh_make is that it is just a suggestion. It will work for most packages
but for more complicated ones, don’t be afraid to customize it to fit your needs.

Although install is not a required target, it is supported. fakeroot dh install behaves like fakeroot dh binary
but stops after dh_fixperms.

4.4.3 Customization of rules file

There are many ways to customize the rules file created with the new dh command.

The dh $@ command can be customized as follows: 23

• Add support for the dh_python2 command. (The best choice for Python.) 24

– Include the python package in Build-Depends.
– Use dh $@--with python2.
– This handles Python modules using the python framework.

• Add support for the dh_pysupport command. (deprecated)

– Include the python-support package in Build-Depends.
– Use dh $@--with pysupport.

19 For complete information on what all these dh_* scripts do exactly, and what their other options are, please read their respective manual pages and the
debhelper documentation.

20 These commands support other build environments such as setup.pywhich can be listed by executing dh_auto_build --list in a package source
directory.

21 It actually looks for the first available target in the Makefile out of distclean, realclean, or clean, and executes that.

22 It actually looks for the first available target in the Makefile out of test or check, and executes that.
23 If a package installs the /usr/share/perl5/Debian/Debhelper/Sequence/custom_name.pm file, you should activate its customization

function by dh $@--with custom-name.
24 Use of the dh_python2 command is preferred over use of dh_pysupport or dh_pycentral commands. Do not use the dh_python command.

Debian New Maintainers’ Guide 27 / 58

– This handles Python modules using the python-support framework.

• Add support for the dh_pycentral command. (deprecated)

– Include the python-central package in Build-Depends.
– Use dh $@--with python-central instead.
– This also deactivates the dh_pysupport command.
– This handles Python modules using the python-central framework.

• Add support for the dh_installtex command.

– Include the tex-common package in Build-Depends.
– Use dh $@--with tex instead.
– This registers Type 1 fonts, hyphenation patterns, and formats with TeX.

• Add support for the dh_quilt_patch and dh_quilt_unpatch commands.

– Include the quilt package in Build-Depends.
– Use dh $@--with quilt instead.
– This applies and un-applies patches to the upstream source from files in the debian/patches directory for a source

package in the 1.0 format.
– This is not needed if you use the new 3.0 (quilt) source package format.

• Add support for the dh_dkms command.

– Include the dkms package in Build-Depends.
– Use dh $@--with dkms instead.
– This correctly handles DKMS usage by kernel module packages.

• Add support for the dh_autotools-dev_updateconfig and dh_autotools-dev_restoreconfig commands.

– Include the autotools-dev package in Build-Depends.
– Use dh $@--with autotools-dev instead.
– This updates and restores config.sub and config.guess.

• Add support for the dh_autoreconf and dh_autoreconf_clean commands.

– Include the dh-autoreconf package in Build-Depends.
– Use dh $@--with autoreconf instead.
– This updates the GNU Build System files and restores them after the build.

• Add support for the dh_girepository command.

– Includes the gobject-introspection package in Build-Depends.
– Use dh $@--with gir instead.
– This computes dependencies for packages shipping GObject introspection data and generates the ${gir:Depends} sub-

stitution variable for the package dependency.

• Add support for the bash completion feature.

– Includes the bash-completion package in Build-Depends.
– Use dh $@--with bash-completion instead.
– This installs bash completions using a configuration file at debian/package.bash-completion.

Debian New Maintainers’ Guide 28 / 58

Many dh_* commands invoked by the new dh command can be customized by the corresponding configuration files in the
debian directory. See Chapter 5 and the manpage of each command for the customization of such features.

You may need to run dh_* commands invoked via the new dh with added arguments, or to run additional commands with
them, or to skip them. For such cases, you create an override_dh_foo target with its rule in the rules file defining an
override_dh_foo target for the dh_foo command you want to change. It basically says run me instead. 25

Please note that the dh_auto_* commands tend to do more than what has been discussed in this (over)simplified explanation to
take care of all the corner cases. It is a bad idea to use override_dh_* targets to substitute simplified equivalent commands
(except for the override_dh_auto_clean target) since it may bypass such smart debhelper features.

So, for instance, if you want to store system configuration data in the /etc/gentoo directory instead of the usual /etc
directory for the recent gentoo package using Autotools, you can override the default --sysconfig=/etc argument given
by the dh_auto_configure command to the ./configure command by the following:

override_dh_auto_configure:
dh_auto_configure -- --sysconfig=/etc/gentoo

The arguments given after -- are appended to the default arguments of the auto-executed program to override them. Using the
dh_auto_configure command is better than directly invoking the ./configure command here since it will only override the --
sysconfig argument and retains any other, benign arguments to the ./configure command.

If the Makefile in the source for gentoo requires you to specify build as its target to build it 26, you create an override
_dh_auto_build target to enable this.

override_dh_auto_build:
dh_auto_build -- build

This ensures $(MAKE) is run with all the default arguments given by the dh_auto_build command plus the build argument.

If the Makefile in the source for gentoo requires you to specify the packageclean target to clean it for the Debian package
instead of using distclean or clean targets, you can create an override_dh_auto_clean target to enable it.

override_dh_auto_clean:
$(MAKE) packageclean

If the Makefile in the source for gentoo contains a test target which you do not want to run for the Debian package building
process, you can use an empty override_dh_auto_test target to skip it.

override_dh_auto_test:

If gentoo has an unusual upstream changelog file called FIXES, dh_installchangelogs will not install that file by default. The
dh_installchangelogs command requires FIXES as its argument to install it. 27

override_dh_installchangelogs:
dh_installchangelogs FIXES

When you use the new dh command, use of explicit targets such as the ones listed in Section 4.4.1, other than the get-orig-
source target, may make it difficult to understand their exact effects. Please limit explicit targets to override_dh_* targets
and completely independent ones, if possible.

25 Under lenny, if you wanted to change the behavior of a dh_* script you found the relevant line in the rules file and adjusted it.
26 dh_auto_build without any arguments will execute the first target in the Makefile.
27 The debian/changelog and debian/NEWS files are always automatically installed. The upstream changelog is found by converting filenames to

lower case and matching them against changelog, changes, changelog.txt, and changes.txt.

Debian New Maintainers’ Guide 29 / 58

Chapter 5

Other files under the debian directory

To control most of what debhelper does while building the package, you put optional configuration files under the debian
directory. This chapter will provide an overview of what each of these does and its format. Please read the Debian Pol-
icy Manual (http://www.debian.org/doc/devel-manuals#policy) and Debian Developer’s Reference (http://www.debian.org/doc/-
devel-manuals#devref) for guidelines for packaging.

The dh_make command will create some template configuration files under the debian directory. Most of them come with
filenames suffixed by .ex. Some of them come with filenames prefixed by the binary package name such as package. Take a
look at all of them. 1

Some template configuration files for debhelper may not be created by the dh_make command. In such cases, you need to
create them with an editor.

If you wish or need to activate any of these, please do the following:

• rename template files by removing the .ex or .EX suffix if they have one;

• rename the configuration files to use the actual binary package name in place of package;

• modify template file contents to suit your needs;

• remove template files which you do not need;

• modify the control file (see Section 4.1), if necessary;

• modify the rules file (see Section 4.4), if necessary.

Any debhelper configuration files without a package prefix, such as install, apply to the first binary package. When
there are many binary packages, their configurations can be specified by prefixing their name to their configuration filenames
such as package-1.install, package-2.install, etc.

5.1 README.Debian

Any extra details or discrepancies between the original package and your Debian version should be documented here.

dh_make created a default one; this is what it looks like:

gentoo for Debian

<possible notes regarding this package - if none, delete this file>
-- Josip Rodin <joy-mg@debian.org>, Wed, 11 Nov 1998 21:02:14 +0100

If you have nothing to be documented, remove this file. See dh_installdocs(1).
1 In this chapter, files in the debian directory are referred to without the leading debian/ for simplicity whenever the meaning is obvious.

http://www.debian.org/doc/devel-manuals#policy
http://www.debian.org/doc/devel-manuals#policy
http://www.debian.org/doc/devel-manuals#policy
http://www.debian.org/doc/devel-manuals#devref
http://www.debian.org/doc/devel-manuals#devref
http://www.debian.org/doc/devel-manuals#devref

Debian New Maintainers’ Guide 30 / 58

5.2 compat

The compat file defines the debhelper compatibility level. Currently, you should set it to the debhelper v9 as follows:

$ echo 9 > debian/compat

5.3 conffiles

One of the most annoying things about software is when you spend a great deal of time and effort customizing a program, only
to have an upgrade stomp all over your changes. Debian solves this problem by marking such configuration files as conffiles. 2

When you upgrade a package, you’ll be asked whether you want to keep your old configuration files or not.

dh_installdeb(1) automatically flags any files under the /etc directory as conffiles, so if your program only has conffiles there
you do not need to specify them in this file. For most package types, the only place conffiles should ever be is under /etc, and
so this file doesn’t need to exist.

If your program uses configuration files but also rewrites them on its own, it’s best not to make them conffiles because dpkg will
then prompt users to verify the changes all the time.

If the program you’re packaging requires every user to modify the configuration files in the /etc directory, there are two popular
ways to arrange for them to not be conffiles, keeping dpkg quiet:

• Create a symlink under the /etc directory pointing to a file under the /var directory generated by the maintainer scripts.

• Create a file generated by the maintainer scripts under the /etc directory.

For information on maintainer scripts, see Section 5.19.

5.4 package.cron.*

If your package requires regularly scheduled tasks to operate properly, you can use these files to set that up. You can set up regular
tasks that either happen hourly, daily, weekly, or monthly, or alternatively happen at any other time that you wish. The filenames
are:

• package.cron.hourly - Installed as /etc/cron.hourly/package; run once an hour.

• package.cron.daily - Installed as /etc/cron.daily/package; run once a day.

• package.cron.weekly - Installed as /etc/cron.weekly/package; run once a week.

• package.cron.monthly - Installed as /etc/cron.monthly/package: run once a month.

• package.cron.d - Installed as /etc/cron.d/package: for any other time.

Most of these files are shell scripts, with the exception of package.cron.d which follows the format of crontab(5).

No explicit cron.* file is needed to set up log rotation; for that, see dh_installlogrotate(1) and logrotate(8).
2 See dpkg(1) and Debian Policy Manual, ”D.2.5 Conffiles” (http://www.debian.org/doc/debian-policy/ap-pkg-controlfields.html#s-pkg-f-Conffiles) .

http://www.debian.org/doc/debian-policy/ap-pkg-controlfields.html#s-pkg-f-Conffiles
http://www.debian.org/doc/debian-policy/ap-pkg-controlfields.html#s-pkg-f-Conffiles

Debian New Maintainers’ Guide 31 / 58

5.5 dirs

This file specifies any directories which we need but which are not created by the normal installation procedure (make install
DESTDIR=... invoked by dh_auto_install). This generally means there is a problem with the Makefile.

Files listed in an install file don’t need their directories created first. See Section 5.11.

It is best to try to run the installation first and only use this if you run into trouble. There is no preceding slash on the directory
names listed in the dirs file.

5.6 package.doc-base

If your package has documentation other than manual and info pages, you should use the doc-base file to register it, so the
user can find it with e.g. dhelp(1), dwww(1), or doccentral(1).

This usually includes HTML, PS and PDF files, shipped in /usr/share/doc/packagename/.

This is what gentoo’s doc-base file gentoo.doc-base looks like:

Document: gentoo
Title: Gentoo Manual
Author: Emil Brink
Abstract: This manual describes what Gentoo is, and how it can be used.
Section: File Management
Format: HTML
Index: /usr/share/doc/gentoo/html/index.html
Files: /usr/share/doc/gentoo/html/*.html

For information on the file format, see install-docs(8) and the Debian doc-basemanual at the local copy /usr/share/doc/
doc-base/doc-base.html/index.html provided by the doc-base package.

For more details on installing additional documentation, look in Section 3.3.

5.7 docs

This file specifies the file names of documentation files we can have dh_installdocs(1) install into the temporary directory for us.

By default, it will include all existing files in the top-level source directory that are called BUGS, README*, TODO etc.

For gentoo, some other files are also included:

BUGS
CONFIG-CHANGES
CREDITS
NEWS
README
README.gtkrc
TODO

5.8 emacsen-*

If your package supplies Emacs files that can be bytecompiled at package installation time, you can use these files to set it up.

They are installed into the temporary directory by dh_installemacsen(1).

If you don’t need these, remove them.

Debian New Maintainers’ Guide 32 / 58

5.9 package.examples

The dh_installexamples(1) command installs files and directories listed in this file as example files.

5.10 package.init and package.default

If your package is a daemon that needs to be run at system start-up, you’ve obviously disregarded my initial recommendation,
haven’t you? :-)

The package.init file is installed as the /etc/init.d/package script which starts and stops the daemon. Its fairly
generic skeleton template is provided by the dh_make command as init.d.ex. You’ll likely have to rename and edit it,
a lot, while making sure to provide Linux Standard Base (http://www.linuxfoundation.org/collaborate/workgroups/lsb) (LSB)
compliant headers. It gets installed into the temporary directory by dh_installinit(1).

The package.default file will be installed as /etc/default/package. This file sets defaults that are sourced by the init
script. This package.default file is most often used to disable running a daemon, or to set some default flags or timeouts.
If your init script has certain configurable features, you can set them in the package.default file, instead of in the init script
itself.

If your upstream program provides a file for the init script, you can either use it or not. If you don’t use their init script then create
a new one in package.init. However if the upstream init script looks fine and installs in the right place you still need to set
up the rc* symlinks. To do this you will need to override dh_installinit in the rules file with the following lines:

override_dh_installinit:
dh_installinit --onlyscripts

If you don’t need this, remove the files.

5.11 install

If there are files that need to be installed into your package but your standard make install won’t do it, put the filenames
and destinations into this install file. They are installed by dh_install(1).3 You should first check there is not a more specific
tool to use. For example, documents should be in the docs file and not in this one.

This install file has one line per file installed, with the name of the file (relative to the top build directory) then a space
then the installation directory (relative to the install directory). One example of where this is used is if a binary src/bar is left
uninstalled; the install file might look like:

src/bar usr/bin

This means when this package is installed, there will be an executable command /usr/bin/bar.

Alternatively, this install can have the name of the file only without the installation directory when the relative directory path
does not change. This format is usually used for a large package that splits the output of its build into multiple binary packages
using package-1.install, package-2.install, etc.

The dh_install command will fall back to looking in debian/tmp for files, if it doesn’t find them in the current directory (or
wherever you’ve told it to look using --sourcedir).

5.12 package.info

If your package has info pages, you should install them using dh_installinfo(1) by listing them in a package.info file.
3 This replaces the deprecated dh_movefiles(1) command which is configured by the files file.

http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://www.linuxfoundation.org/collaborate/workgroups/lsb

Debian New Maintainers’ Guide 33 / 58

5.13 package.links

If you need to create additional symlinks in package build directories as package maintainer, you should install them using
dh_link(1) by listing their full paths of source and destination files in a package.links file.

5.14 {package.,source/}lintian-overrides

If lintian reports an erroneous diagnostic for a case where Debian policy allows exceptions to some rule, you can use
package.lintian-overrides or source/lintian-overrides to quieten it. Please read Lintian User’s Manual
(/usr/share/doc/lintian/lintian.html/index.html) and refrain from abusing this.

package.lintian-overrides is for the binary package named package and is installed into usr/share/lintian/
overrides/package by the dh_lintian command.

source/lintian-overrides is for the source package. This is not installed.

5.15 manpage.*

Your program(s) should have a manual page. If they don’t, you should create them. The dh_make command creates some
template files for manual pages. These need to be copied and edited for each command missing its manual page. Please make
sure to remove unused templates.

5.15.1 manpage.1.ex

Manual pages are normally written in nroff(1). The manpage.1.ex template is written in nroff, too. See the man(7) manual
page for a brief description of how to edit such a file.

The final manual page file name should give the name of the program it is documenting, so we will rename it from manpage
to gentoo. The file name also includes .1 as the first suffix, which means it’s a manual page for a user command. Be sure to
verify that this section is indeed the correct one. Here’s a short list of manual page sections:

Section Description Notes
1 User commands Executable commands or scripts
2 System calls Functions provided by the kernel
3 Library calls Functions within system libraries
4 Special files Usually found in /dev
5 File formats E.g. /etc/passwd’s format
6 Games Games or other frivolous programs
7 Macro packages Such as man macros
8 System administration Programs typically only run by root
9 Kernel routines Non-standard calls and internals

So gentoo’s man page should be called gentoo.1. If there was no gentoo.1 man page in the original source, you should
create it by renaming the manpage.1.ex template to gentoo.1 and editing it using information from the example and from
the upstream docs.

You can use the help2man command to generate a man page out of the --help and --version output of each program, too.
4

4 Note that help2man’s placeholder man page will claim that more detailed documentation is available in the info system. If the command is missing an info
page, you should manually edit the man page created by the help2man command.

Debian New Maintainers’ Guide 34 / 58

5.15.2 manpage.sgml.ex

If on the other hand you prefer writing SGML instead of nroff, you can use the manpage.sgml.ex template. If you do this,
you have to:

• rename the file to something like gentoo.sgml.

• install the docbook-to-man package

• add docbook-to-man to the Build-Depends line in the control file

• add an override_dh_auto_build target to your rules file:

override_dh_auto_build:
docbook-to-man debian/gentoo.sgml > debian/gentoo.1
dh_auto_build

5.15.3 manpage.xml.ex

If you prefer XML over SGML, you can use the manpage.xml.ex template. If you do this, you have to:

• rename the source file to something like gentoo.1.xml

• install the docbook-xsl package and an XSLT processor like xsltproc (recommended)

• add the docbook-xsl, docbook-xml, and xsltproc packages to the Build-Depends line in the control file

• add an override_dh_auto_build target to your rules file:

override_dh_auto_build:
xsltproc --nonet \
--param make.year.ranges 1 \
--param make.single.year.ranges 1 \
--param man.charmap.use.subset 0 \
-o debian/ \

http://docbook.sourceforge.net/release/xsl/current/manpages/docbook.xsl\
debian/gentoo.1.xml
dh_auto_build

5.16 package.manpages

If your package has manual pages, you should install them using dh_installman(1) by listing them in a package.manpages
file.

To install docs/gentoo.1 as a manpage for the gentoo package, create a gentoo.manpages file as follows:

docs/gentoo.1

5.17 menu

X Window System users usually have a window manager with a menu that can be customized to launch programs. If they have
installed the Debian menu package, a set of menus for every program on the system will be created for them.

Here’s the default menu.ex file that dh_make created:

Debian New Maintainers’ Guide 35 / 58

?package(gentoo):needs=X11|text|vc|wm \
section=Applications/see-menu-manual\
title=gentoo command=/usr/bin/gentoo

The first field after the colon character is needs, and it specifies what kind of interface the program needs. Change this to one
of the listed alternatives, e.g. text or X11.

The next is the section that the menu and submenu entry should appear in. 5

The title field is the name of the program. You can start this one in uppercase if you like. Just keep it short.

Finally, the command field is the command that runs the program.

Let’s change the file name to menu and change the menu entry to this:

?package(gentoo): needs=X11 \
section=Applications/Tools \
title=Gentoo command=gentoo

You can also add other fields like longtitle, icon, hints etc. See dh_installmenu(1), menufile(5), update-menus(1), and
The Debian Menu sub-policy (http://www.debian.org/doc/packaging-manuals/menu-policy/) for more information.

5.18 NEWS

The dh_installchangelogs(1) command installs this.

5.19 {pre,post}{inst,rm}

These postinst, preinst, postrm, and prerm files 6 are called maintainer scripts. They are scripts which are put in the
control area of the package and run by dpkg when your package is installed, upgraded, or removed.

As a novice maintainer, you should avoid any manual editing of maintainer scripts because they are problematic. For more
information refer to the Debian Policy Manual, 6 ”Package maintainer scripts and installation procedure” (http://www.debian.org/-
doc/debian-policy/ch-maintainerscripts.html) , and take a look at the example files provided by dh_make.

If you did not listen to me and have created custom maintainer scripts for a package, you should make sure to test them not only
for install and upgrade but also for remove and purge.

Upgrades to the new version should be silent and non-intrusive (existing users should not notice the upgrade except by discovering
that old bugs have been fixed and perhaps that there are new features).

When the upgrade is necessarily intrusive (eg., config files scattered through various home directories with totally different
structure), you may consider as the last resort switching the package to a safe fallback state (e.g., disabling a service) and providing
the proper documentation required by policy (README.Debian andNEWS.Debian). Don’t bother the user with debconf notes
invoked from these maintainer scripts for upgrades.

The ucf package provides a conffile-like handling infrastructure to preserve user changes for files that may not be labeled as
conffiles such as those managed by the maintainer scripts. This should minimize issues associated with them.

These maintainer scripts are among the Debian enhancements that explain why people choose Debian. You must be very careful
not to turn them into a source of annoyance.

5 The current list of sections is in The Debian Menu sub-policy, 2.1 ”Preferred menu structure” (http://www.debian.org/doc/packaging-manuals/menu-policy/-
ch2.html#s2.1) . There was a major reorganization of menu structure for squeeze.

6 Despite this use of the bash shorthand expression {pre,post}{inst,rm} to indicate these filenames, you should use pure POSIX syntax for these
maintainer scripts for compatibility with dash as the system shell.

http://www.debian.org/doc/packaging-manuals/menu-policy/
http://www.debian.org/doc/packaging-manuals/menu-policy/
http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html
http://www.debian.org/doc/packaging-manuals/menu-policy/ch2.html#s2.1
http://www.debian.org/doc/packaging-manuals/menu-policy/ch2.html#s2.1
http://www.debian.org/doc/packaging-manuals/menu-policy/ch2.html#s2.1

Debian New Maintainers’ Guide 36 / 58

5.20 package.symbols

Packaging of library is not easy for a novice maintainer and should be avoided. Having said it, if your package has libraries, you
should have debian/package.symbols files. See Section A.2.

5.21 TODO

The dh_installdocs(1) command installs this.

5.22 watch

The watch file format is documented in the uscan(1) manpage. The watch file configures the uscan program (in the devs
cripts package) to watch the site where you originally got the source from. This is also used by the Debian External Health
Status (DEHS) (http://wiki.debian.org/DEHS) service.

Here are its contents:

watch control file for uscan
version=3
http://sf.net/gentoo/gentoo-(.+)\.tar\.gz debian uupdate

Normally with a watch file, the URL at http://sf.net/gentoo is downloaded and searched for links of the form . The basename (just the part after the final /) of each linked URL is compared against the Perl regular expression
pattern (see perlre(1)) gentoo-(.+)\.tar\.gz. Out of the files that match, the one with the greatest version number is
downloaded and the uupdate program is run to create an updated source tree.

Although this is true for other sites, the SourceForge download service at http://sf.net is an exception. When the watch file has
an URL matching the Perl regexp ˆhttp://sf\.net/, the uscan program replaces it with http://qa.debian.org/
watch/sf.php/ and then applies this rule. The URL redirector service at http://qa.debian.org/ is designed to offer a stable
redirect service to the desired file for any watch pattern of the form http://sf.net/project/tar-name-(.+)\.tar\
.gz. This solves issues related to periodically changing SourceForge URLs.

If the upstream offers the cryptographic signature of the tarball, it is recommended to verify its authenticity using the pgpsigu
rlmangle option as described in uscan(1).

5.23 source/format

In the debian/source/format file, there should be a single line indicating the desired format for the source package (check
dpkg-source(1) for an exhaustive list). After squeeze, it should say either:

• 3.0 (native) for native Debian packages or

• 3.0 (quilt) for everything else.

The newer 3.0 (quilt) source format records modifications in a quilt patch series within debian/patches. Those
changes are then automatically applied during extraction of the source package. 7 The Debian modifications are simply stored
in a debian.tar.gz archive containing all files under the debian directory. This new format supports inclusion of binary
files such as PNG icons by the package maintainer without requiring tricks. 8

When dpkg-source extracts a source package in 3.0 (quilt) source format, it automatically applies all patches listed in
debian/patches/series. You can avoid applying patches at the end of the extraction with the --skip-patches option.

7 See DebSrc3.0 (http://wiki.debian.org/Projects/DebSrc3.0) for a summary on the switch to the new 3.0 (quilt) and 3.0 (native) source formats.
8 Actually, this new format also supports multiple upstream tarballs and more compression methods. These are beyond the scope of this document.

http://wiki.debian.org/DEHS
http://wiki.debian.org/DEHS
http://wiki.debian.org/DEHS
http://sf.net
http://qa.debian.org/
http://wiki.debian.org/Projects/DebSrc3.0
http://wiki.debian.org/Projects/DebSrc3.0

Debian New Maintainers’ Guide 37 / 58

5.24 source/local-options

When you want to manage Debian packaging activities under a VCS, you typically create one branch (e.g. upstream) tracking
the upstream source and another branch (e.g. typically master for Git) tracking the Debian package. For the latter, you usually
want to have unpatched upstream source with yourdebian/* files for the Debian packaging to ease merging of the new upstream
source.

After you build a package, the source is normally left patched. You need to unpatch it manually by running dquilt pop -a
before committing to the master branch. You can automate this by adding the optional debian/source/local-options
file containing unapply-patches. This file is not included in the generated source package and changes the local build
behavior only. This file may contain abort-on-upstream-changes, too (see dpkg-source(1)).

unapply-patches
abort-on-upstream-changes

5.25 source/options

The autogenerated files in the source tree can be quite annoying for packaging since they generate meaningless large patch files.
There are custom modules such as dh_autoreconf to ease this problem as described in Section 4.4.3.

You can provide a Perl regular expression to the --extend-diff-ignore option argument of dpkg-source(1) to ignore
changes made to the autogenerated files while creating the source package.

As a general solution to address this problem of the autogenerated files, you can store such a dpkg-source option argument in
the source/options file of the source package. The following will skip creating patch files for config.sub, config.
guess, and Makefile.

extend-diff-ignore = ”(^|/)(config\.sub|config\.guess|Makefile)$”

5.26 patches/*

The old 1.0 source format created a single large diff.gz file containing package maintenance files in debian and patch files
for the source. Such a package is a bit cumbersome to inspect and understand for each source tree modification later. This is not
so nice.

The newer 3.0 (quilt) source format stores patches in debian/patches/* files using the quilt command. These patches
and other package data which are all contained under the debian directory are packaged as the debian.tar.gz file. Since
the dpkg-source command can handle quilt formatted patch data in the 3.0 (quilt) source without the quilt package, it
does not need a Build-Depends on quilt. 9

The quilt command is explained in quilt(1). It records modifications to the source as a stack of -p1 patch files in the debian/
patches directory and the source tree is untouched outside of the debian directory. The order of these patches is recorded in
the debian/patches/series file. You can apply (=push), un-apply (=pop), and refresh patches easily. 10

For Chapter 3, we created three patches in debian/patches.

Since Debian patches are located in debian/patches, please make sure to set up the dquilt command properly as described
in Section 3.1.

When anyone (including yourself) provides a patch foo.patch to the source later, modifying a 3.0 (quilt) source package
is quite simple:

9 Several methods of patch set maintenance have been proposed and are in use for Debian packages. The quilt system is the preferred maintenance system
in use. Others include dpatch, dbs, and cdbs. Many of these keep such patches as debian/patches/* files.

10 If you are asking a sponsor to upload your package, this kind of clear separation and documentation of your changes is very important to expedite the
package review by your sponsor.

Debian New Maintainers’ Guide 38 / 58

$ dpkg-source -x gentoo_0.9.12.dsc
$ cd gentoo-0.9.12
$ dquilt import ../foo.patch
$ dquilt push
$ dquilt refresh
$ dquilt header -e
... describe patch

The patches stored in the newer 3.0 (quilt) source format must be fuzz free. You can ensure this with dquilt pop -a;
while dquilt push;do dquilt refresh;done.

Debian New Maintainers’ Guide 39 / 58

Chapter 6

Building the package

We should now be ready to build the package.

6.1 Complete (re)build

In order to perform a complete (re)build of a package properly, you need to make sure you have installed

• the build-essential package,

• packages listed in the Build-Depends field (see Section 4.1), and

• packages listed in the Build-Depends-indep field (see Section 4.1).

Then you issue the following command in the source directory:

$ dpkg-buildpackage -us -uc

This will do everything to make full binary and source packages for you. It will:

• clean the source tree (debian/rules clean)

• build the source package (dpkg-source -b)

• build the program (debian/rules build)

• build binary packages (fakeroot debian/rules binary)

• make the .dsc file

• make the .changes file, using dpkg-genchanges

If the build result is satisfactory one, sign the .dsc and .changes files with your private GPG key using the debsign command.
You need to enter your secret pass phrase, twice. 1

For a non-native Debian package, e.g., gentoo, you will see the following files in the parent directory (~/gentoo) after
building packages:

1 This GPG key must be signed by a Debian developer to get connected to the web of trust and must be registered to the Debian keyring
(http://keyring.debian.org) . This enables your uploaded packages to be accepted to the Debian archives. See Creating a new GPG key (http://keyring.debian.org/-
creating-key.html) and Debian Wiki on Keysigning (http://wiki.debian.org/Keysigning) .

http://keyring.debian.org
http://keyring.debian.org
http://keyring.debian.org/creating-key.html
http://keyring.debian.org/creating-key.html
http://keyring.debian.org/creating-key.html
http://wiki.debian.org/Keysigning
http://wiki.debian.org/Keysigning

Debian New Maintainers’ Guide 40 / 58

• gentoo_0.9.12.orig.tar.gz

This is the original upstream source code tarball, merely renamed to the above so that it adheres to the Debian standard. Note
that this was created initially by the dh_make -f ../gentoo-0.9.12.tar.gz.

• gentoo_0.9.12-1.dsc

This is a summary of the contents of the source code. The file is generated from yourcontrol file, and is used when unpacking
the source with dpkg-source(1).

• gentoo_0.9.12-1.debian.tar.gz

This compressed tarball contains your debian directory contents. Each and every addition you made to the original source
code is stored as a quilt patch in debian/patches.
If someone else wants to re-create your package from scratch, they can easily do so using the above three files. The extraction
procedure is trivial: just copy the three files somewhere else and run dpkg-source -x gentoo_0.9.12-1.dsc. 2

• gentoo_0.9.12-1_i386.deb

This is your completed binary package. You can use dpkg to install and remove this just like any other package.

• gentoo_0.9.12-1_i386.changes

This file describes all the changes made in the current package revision; it is used by the Debian FTP archive maintenance
programs to install the binary and source packages. It is partly generated from the changelog file and the .dsc file.
As you keep working on the package, its behavior will change and new features will be added. People downloading your
package can look at this file and quickly see what has changed. Debian archive maintenance programs will also post the
contents of this file to the debian-devel-changes@lists.debian.org (http://lists.debian.org/debian-devel-changes/) mailing list.

The gentoo_0.9.12-1.dsc and gentoo_0.9.12-1_i386.changes files must be signed using the debsign command
with your private GPG key in the ~/.gnupg/ directory, before uploading them to the Debian FTP archive. The GPG signature
provides the proof that these files are really yours using your public GPG key.

The debsign command can be made to sign with your specified secret GPG key ID (good for sponsoring packages) with the
following in the ~/.devscripts:

DEBSIGN_KEYID=Your_GPG_keyID

The long strings of numbers in the .dsc and .changes files are SHA1/SHA256 checksums for the files mentioned. Anyone
downloading your files can test them with sha1sum(1) or sha256sum(1) and if the numbers don’t match, they’ll know the file is
corrupt or has been tampered with.

6.2 Autobuilder

Debian supports many ports (http://www.debian.org/ports/) with the autobuilder network (http://www.debian.org/devel/buildd/)
running buildd daemons on computers of many different architectures. Although you do not need to do this yourself, you should
be aware of what will happen to your packages. Let’s look into roughly how they rebuild your packages for multiple architectures.
3

For Architecture:any packages, the autobuilder system performs a rebuild. It ensures the installation of

• the build-essential package, and

• packages listed in the Build-Depends field (see Section 4.1).

Then it issues the following command in the source directory:
2 You can avoid applying quilt patches in the 3.0 (quilt) source format at the end of the extraction with the --skip-patches option. Alternatively,

you can run dquilt pop -a after normal operation.
3 The actual autobuilder system involves much more complicated schemes than the one documented here. Such details are beyond the scope of this document.

http://lists.debian.org/debian-devel-changes/
http://lists.debian.org/debian-devel-changes/
http://www.debian.org/ports/
http://www.debian.org/ports/
http://www.debian.org/devel/buildd/
http://www.debian.org/devel/buildd/

Debian New Maintainers’ Guide 41 / 58

$ dpkg-buildpackage -B

This will do everything to make architecture dependent binary packages on another architecture. It will:

• clean the source tree (debian/rules clean)

• build the program (debian/rules build)

• build architecture dependent binary packages (fakeroot debian/rules binary-arch)

• sign the source .dsc file, using gpg

• create and sign the upload .changes file, using dpkg-genchanges and gpg

This is why you see your package for other architectures.

Although packages listed in the Build-Depends-Indep field are required to be installed for our normal packaging work
(see Section 6.1), they are not required to be installed for the autobuilder system since it builds only architecture dependent
binary packages. 4 This distinction between normal packaging and autobuilding procedures is what dictates whether you should
record such required packages in the Build-Depends or Build-Depends-Indep fields of the debian/control file
(see Section 4.1).

6.3 debuild command

You can automate the build activity around executing the dpkg-buildpackage command package further with the debuild com-
mand. See debuild(1).

The dbuild command executes the lintian command to make the static check after building the Debian package. The lintian
command can be customized with the following in the ~/.devscripts:

DEBUILD_DPKG_BUILDPACKAGE_OPTS=”-us -uc -I -i”
DEBUILD_LINTIAN_OPTS=”-i -I --show-overrides”

Cleaning the source and rebuilding the package from your user account is as simple as:

$ debuild

You can clean the source tree as simply as:

$ debuild clean

6.4 pbuilder package

For a clean room (chroot) build environment to verify the build dependencies, the pbuilder package is very useful. 5 This
ensures a clean build from the source under the sid auto-builder for different architectures and avoids a severity serious FTBFS
(Fails To Build From Source) bug which is always in the RC (release critical) category. 6

Let’s customize the pbuilder package as follows:

• setting the /var/cache/pbuilder/result directory writable by your user account.
4 Unlike under the pbuilder package, the chroot environment under the sbuild package used by the autobuilder system does not enforce the use of a

minimal system and may have many leftover packages installed.
5 Since the pbuilder package is still evolving, you should check the actual configuration situation by consulting the latest official documentation.
6 See http://buildd.debian.org/ for more on Debian package auto-building.

http://buildd.debian.org/

Debian New Maintainers’ Guide 42 / 58

• creating a directory, e.g. /var/cache/pbuilder/hooks, writable by the user, to place hook scripts in.

• configuring ~/.pbuilderrc or /etc/pbuilderrc to include the following.

AUTO_DEBSIGN=${AUTO_DEBSIGN:-no}
HOOKDIR=/var/cache/pbuilder/hooks

First let’s initialize the local pbuilder chroot system as follows:

$ sudo pbuilder create

If you already have a completed source package, issue the following commands in the directory where the foo.orig.tar.gz,
foo.debian.tar.gz, and foo.dsc files exist to update the local pbuilder chroot system and to build binary packages
in it:

$ sudo pbuilder --update
$ sudo pbuilder --build foo_version.dsc

The newly built packages without the GPG signatures will be located in /var/cache/pbuilder/result/ with non-root
ownership.

The GPG signatures on the .dsc file and the .changes file can be generated as:

$ cd /var/cache/pbuilder/result/
$ debsign foo_version_arch.changes

If you have an updated source tree but have not generated the matching source package, issue the following commands in the
source directory where the debian directory exists, instead:

$ sudo pbuilder --update
$ pdebuild

You can log into its chroot environment with the pbuilder --login --save-after-login command and configure
it as you wish. This environment can be saved by leaving its shell prompt with ˆD (Control-D).

The latest version of the lintian command can be executed in the chroot environment using the hook script /var/cache/
pbuilder/hooks/B90lintian configured as follows: 7

#!/bin/sh
set -e
install_packages() {

apt-get -y --force-yes install ”$@”
}

install_packages lintian
echo ”+++ lintian output +++”
su -c ”lintian -i -I --show-overrides /tmp/buildd/*.changes” - pbuilder
use this version if you don’t want lintian to fail the build
#su -c ”lintian -i -I --show-overrides /tmp/buildd/*.changes; :” - pbuilder
echo ”+++ end of lintian output +++”

You need to have access to the latest sid environment to build packages properly for sid. In practice, sidmay be experiencing
issues which makes it undesirable for you to migrate your whole system. The pbuilder package can help you to cope with this
kind of situation.

You may need to update your stable packages after their release for stable-proposed-updates, stable/updates,
etc. 8 For such occasions, the fact you may be running a sid system is not a good enough excuse for failing to update them
promptly. The pbuilder package can help you to access environments of almost any Debian derivative distribution of the same
architecture.

See http://www.netfort.gr.jp/~dancer/software/pbuilder.html, pdebuild(1), pbuilderrc(5), and pbuilder(8).
7 This assumes HOOKDIR=/var/cache/pbuilder/hooks. You can find many examples of hook scripts in the /usr/share/doc/pbuilder/

examples directory.
8 There are some restrictions for such updates of your stable package.

http://www.netfort.gr.jp/~dancer/software/pbuilder.html

Debian New Maintainers’ Guide 43 / 58

6.5 git-buildpackage command and similars

If your upstream uses a source code management system (VCS) 9 to maintain their code, you should consider using it as well.
This makes merging and cherry-picking upstream patches much easier. There are several specialized wrapper script packages for
Debian package building for each VCS.

• git-buildpackage: a suite to help with Debian packages in Git repositories.

• svn-buildpackage: helper programs to maintain Debian packages with Subversion.

• cvs-buildpackage: a set of Debian package scripts for CVS source trees.

Use of git-buildpackage is becoming quite popular for Debian Developers to manage Debian packages with the Git server
on alioth.debian.org (http://alioth.debian.org/) . 10 This package offers many commands to automate packaging activities:

• git-import-dsc(1): import a previous Debian package to a Git repository.

• git-import-orig(1): import a new upstream tar to a Git repository.

• git-dch(1): generate the Debian changelog from Git commit messages.

• git-buildpackage(1): build Debian packages from a Git repository.

• git-pbuilder(1): build Debian packages from a Git repository using pbuilder/cowbuilder.

These commands use 3 branches to track packaging activity:

• main for Debian package source tree.

• upstream for upstream source tree.

• pristine-tar for upstream tarball generated by the --pristine-tar option.11

You can configure git-buildpackage with ~/.gbp.conf. See gbp.conf(5). 12

6.6 Quick rebuild

With a large package, you may not want to rebuild from scratch every time while you’re tuning details in debian/rules. For
testing purposes, you can make a .deb file without rebuilding the upstream sources like this13:

$ fakeroot debian/rules binary

Or simply do the following to see if it builds or not:

$ fakeroot debian/rules build

Once you are finished with your tuning, remember to rebuild following the proper procedure. You may not be able to upload
correctly if you try to upload .deb files built this way.

9 See Version control systems (http://www.debian.org/doc/manuals/debian-reference/ch10#_version_control_systems) for more.
10 Debian wiki Alioth (http://wiki.debian.org/Alioth) documents how to use the alioth.debian.org (http://alioth.debian.org/) service.
11 The --pristine-tar option invokes the pristine-tar command which can regenerate an exact copy of a pristine upstream tarball using only a small

binary delta file and the contents of the tarball, which are typically kept in an upstream branch in the VCS.
12 Here are some web resources available for advanced audiences.

• Building Debian Packages with git-buildpackage (/usr/share/doc/git-buildpackage/manual-html/gbp.html)
• debian packages in git (https://honk.sigxcpu.org/piki/development/debian_packages_in_git/)
• Using Git for Debian Packaging (http://www.eyrie.org/~eagle/notes/debian/git.html)
• git-dpm: Debian packages in Git manager (http://git-dpm.alioth.debian.org/)
• Using TopGit to generate quilt series for Debian packaging (http://git.debian.org/?p=collab-maint/topgit.git;a=blob_plain;f=debian/HOWTO-

tg2quilt;hb=HEAD)

13 Environment variables which are normally configured to proper values are not set by this method. Never create real packages to be uploaded using this
quick method.

http://alioth.debian.org/
http://alioth.debian.org/
http://www.debian.org/doc/manuals/debian-reference/ch10#_version_control_systems
http://www.debian.org/doc/manuals/debian-reference/ch10#_version_control_systems
http://wiki.debian.org/Alioth
http://wiki.debian.org/Alioth
http://alioth.debian.org/
http://alioth.debian.org/
https://honk.sigxcpu.org/piki/development/debian_packages_in_git/
https://honk.sigxcpu.org/piki/development/debian_packages_in_git/
http://www.eyrie.org/~eagle/notes/debian/git.html
http://www.eyrie.org/~eagle/notes/debian/git.html
http://git-dpm.alioth.debian.org/
http://git-dpm.alioth.debian.org/
http://git.debian.org/?p=collab-maint/topgit.git;a=blob_plain;f=debian/HOWTO-tg2quilt;hb=HEAD
http://git.debian.org/?p=collab-maint/topgit.git;a=blob_plain;f=debian/HOWTO-tg2quilt;hb=HEAD
http://git.debian.org/?p=collab-maint/topgit.git;a=blob_plain;f=debian/HOWTO-tg2quilt;hb=HEAD

Debian New Maintainers’ Guide 44 / 58

6.7 Command hierarchy

Here is a quick summary of how many commands to build packages fit together in the command hierarchy. There are many ways
to do the same thing.

• debian/rules = maintainer script for the package building

• dpkg-buildpackage = core of the package building tool

• debuild = dpkg-buildpackage + lintian (build under the sanitized environment variables)

• pbuilder = core of the Debian chroot environment tool

• pdebuild = pbuilder + dpkg-buildpackage (build in the chroot)

• cowbuilder = speed up the pbuilder execution

• git-pbuilder = the easy-to-use commandline syntax for pdebuild (used by gbp buildpackage)

• gbp = manage the Debian source under the git repo

• gbp buildpackage = pbuilder + dpkg-buildpackage + gbp

Although use of higher level commands such as gbp buildpackage and pbuilder ensures the perfect package building environ-
ment, it is essential to understand how lower level commands such as debian/rules and dpkg-buildpackage are executed
under them.

Debian New Maintainers’ Guide 45 / 58

Chapter 7

Checking the package for errors

There are some techniques you should know for checking a package for errors before uploading it to the public archives.

It’s also a good idea to carry out testing on a machine other than your own. You must watch closely for any warnings or errors
for all the tests described here.

7.1 Suspicious changes

If you find a new autogenerated patch file such as debian-changes-* in the debian/patches directory after building
your non-native Debian package in 3.0 (quilt) format, chances are you changed some files by accident or the build script
modified the upstream source. If it is your mistake, fix it. If it is caused by the build script, fix the root cause with dh-autoreconf
as in Section 4.4.3 or work around it with source/options as in Section 5.25.

7.2 Verifying a package’s installation

You must test your package for whether it installs without problem. The debi(1) command helps you to test installing all the
generated binary packages.

$ sudo debi gentoo_0.9.12-1_i386.changes

To prevent installation problem on different systems, you must make sure that there are no filenames conflicting with other
existing packages, using the Contents-i386 file downloaded from the Debian archive. The apt-file command may be handy
for this task. If there are collisions, please take action to avoid this real problem, whether by renaming the file, moving a common
file to a separate package that multiple packages can depend on, using the alternatives mechanism (see update-alternatives(1)) in
coordination with the maintainers of other affected packages, or declaring a Conflicts relationship in the debian/control
file.

7.3 Verifying a package’s maintainer scripts

All maintainer scripts (that is, preinst, prerm, postinst, and postrm files) are hard to write correctly unless they are
auto-generated by the debhelper programs. So do not use them if you are a novice maintainer (see Section 5.19).

If the package makes use of these non-trivial maintainer scripts, be sure to test not only for install but also for remove, purge,
and upgrade processes. Many maintainer script bugs show up when packages are removed or purged. Use the dpkg command as
follows to test them:

$ sudo dpkg -r gentoo
$ sudo dpkg -P gentoo
$ sudo dpkg -i gentoo_version-revision_i386.deb

Debian New Maintainers’ Guide 46 / 58

This should be done with sequences such as the following:

• install the previous version (if needed).

• upgrade it from the previous version.

• downgrade it back to the previous version (optional).

• purge it.

• install the new package.

• remove it.

• install it again.

• purge it.

If this is your first package, you should create dummy packages with different versions to test your package in advance to prevent
future problems.

Bear in mind that if your package has previously been released in Debian, people will often be upgrading to your package from
the version that was in the last Debian release. Remember to test upgrades from that version too.

Although downgrading is not officially supported, supporting it is a friendly gesture.

7.4 Using lintian

Run lintian(1) on your .changes file. The lintian command runs many test scripts to check for many common packaging
errors. 1

$ lintian -i -I --show-overrides gentoo_0.9.12-1_i386.changes

Of course, replace the filename with the name of the .changes file generated for your package. The output of the lintian
command uses the following flags:

• E: for error; a sure policy violation or packaging error.

• W: for warning; a possible policy violation or packaging error.

• I: for info; information on certain aspects of packaging.

• N: for note; a detailed message to help your debugging.

• O: for overridden; a message overridden by the lintian-overrides files but displayed by the --show-overrides
option.

When you see warnings, tune the package to avoid them or verify that the warnings are spurious. If spurious, set uplintian-overrides
files as described in Section 5.14.

Note that you can build the package with dpkg-buildpackage and run lintian on it in one command, if you use debuild(1) or
pdebuild(1).

1 You do not need to provide the lintian option -i -I --show-overrides if you customized /etc/devscripts.conf or ~/.devscripts as
described in Section 6.3.

Debian New Maintainers’ Guide 47 / 58

7.5 The debc command

You can list files in the binary Debian package with the debc(1) command.

$ debc package.changes

7.6 The debdiff command

You can compare file contents in two source Debian packages with the debdiff(1) command.

$ debdiff old-package.dsc new-package.dsc

You can also compare file lists in two sets of binary Debian packages with the debdiff(1) command.

$ debdiff old-package.changes new-package.changes

These are useful to identify what has been changed in the source packages and to check for inadvertent changes made when
updating binary packages, such as unintentionally misplacing or removing files.

7.7 The interdiff command

You can compare two diff.gz files with the interdiff(1) command. This is useful for verifying that no inadvertent changes
were made to the source by the maintainer when updating packages in the old 1.0 source format.

$ interdiff -z old-package.diff.gz new-package.diff.gz

The new 3.0 source format stores changes in multiple patch files as described in Section 5.26. You can trace changes of each
debian/patches/* file using interdiff, too.

7.8 The mc command

Many of these file inspection operations can be made into an intuitive process by using a file manager like mc(1) which will
let you browse not only the contents of *.deb package files but also *.udeb, *.debian.tar.gz, *.diff.gz, and *.
orig.tar.gz files.

Be on the lookout for extra unneeded files or zero length files, both in the binary and source package. Often cruft doesn’t get
cleaned up properly; adjust your rules file to compensate for this.

Debian New Maintainers’ Guide 48 / 58

Chapter 8

Updating the package

After you release a package, you will soon need to update it.

8.1 New Debian revision

Let’s say that a bug report was filed against your package as #654321, and it describes a problem that you can solve. Here’s
what you need to do to create a new Debian revision of the package:

• If this is to be recorded as a new patch, do the following:

– dquilt new bugname.patch to set the patch name;
– dquilt add buggy-file to declare the file to be modified;
– Correct the problem in the package source for the upstream bug;
– dquilt refresh to record it to bugname.patch;
– dquilt header -e to add its description;

• If this is to update an existing patch, do the following:

– dquilt pop foo.patch to recall the existing foo.patch;
– Correct the problem in the old foo.patch;
– dquilt refresh to update foo.patch;
– dquilt header -e to update its description;
– while dquilt push;do dquilt refresh;done to apply all patches while removing fuzz;

• Add a new revision at the top of the Debian changelog file, for example with dch -i, or explicitly with dch -v vers
ion-revision and then insert the comments using your preferred editor. 1

• Include a short description of the bug and the solution in the changelog entry, followed by Closes:#654321. That way, the
bug report will be automagically closed by the archive maintenance software the moment your package gets accepted into the
Debian archive.

• Repeat what you did in the above to fix more bugs while updating the Debian changelog file with dch as needed.

• Repeat what you did in Section 6.1 and Chapter 7.
1 To get the date in the required format, use LANG=C date -R.

Debian New Maintainers’ Guide 49 / 58

• Once you are satisfied, you should change the distribution value in changelog from UNRELEASED to the target distribution
value unstable (or even experimental).2

• Upload the package as Chapter 9. The difference is that this time, the original source archive won’t be included, as it hasn’t
been changed and it already exists in the Debian archive.

One tricky case can occur when you make a local package to experiment with the packaging before uploading the normal version
to the official archive, e.g., 1.0.1-1. For smoother upgrades, it is a good idea to create a changelog entry with a version
string as 1.0.1-1~rc1. You may unclutter changelog by consolidating such local change entries into a single entry for the
official package. See Section 2.6 for the order of version strings.

8.2 Inspection of the new upstream release

When preparing packages of a new upstream release for the Debian archive, you must check the new upstream release, first.

Start by reading the upstream changelog, NEWS, and whatever other documentation they may have released with the new
version.

You can then inspect changes between the old and new upstream sources as follows, watching out for anything suspicious:

$ diff -urN foo-oldversion foo-newversion

Changes to some auto-generated files by Autotools such as missing, aclocal.m4, config.guess, config.h.in,
config.sub, configure, depcomp, install-sh, ltmain.sh, and Makefile.in may be ignored. You may delete
them before running diff on the source for inspection.

8.3 New upstream release

If a package foo is properly packaged in the newer 3.0 (native) or 3.0 (quilt) formats, packaging a new upstream
version is essentially moving the old debian directory to the new source. This can be done by running tar xvzf /path/
to/foo_oldversion.debian.tar.gz in the new extracted source. 3 Of course, you need to do some obvious chores:

• Create a copy of the upstream source as the foo_newversion.orig.tar.gz file.

• Update the Debian changelog file with dch -v newversion-1.

– Add an entry with New upstream release.
– Describe concisely the changes in the new upstream release that fix reported bugs and close those bugs by adding Closes:
#bug_number.

– Describe concisely the changes to the new upstream release by the maintainer that fix reported bugs and close those bugs by
adding Closes:#bug_number.

• while dquilt push;do dquilt refresh;done to apply all patches while removing fuzz.

If the patch/merge did not apply cleanly, inspect the situation (clues are left in .rej files).

• If a patch you applied to the source was integrated into the upstream source,

– dquilt delete to remove it.

• If a patch you applied to the source conflicted with new changes in the upstream source,
2 If you use the dch -r command to make this last change, please make sure to save the changelog file explicitly by the editor.
3 If a package foo is packaged in the old 1.0 format, this can be done by running zcat /path/to/foo_oldversion.diff.gz|patch -p1

in the new extracted source, instead.

Debian New Maintainers’ Guide 50 / 58

– dquilt push -f to apply old patches while forcing rejects as baz.rej.
– Edit the baz file manually to bring about the intended effect of baz.rej.
– dquilt refresh to update the patch.

• Continue as usual with while dquilt push;do dquilt refresh;done.

This process can be automated using the uupdate(1) command as follows:

$ apt-get source foo
...
dpkg-source: info: extracting foo in foo-oldversion
dpkg-source: info: unpacking foo_oldversion.orig.tar.gz
dpkg-source: info: applying foo_oldversion-1.debian.tar.gz
$ ls -F
foo-oldversion/
foo_oldversion-1.debian.tar.gz
foo_oldversion-1.dsc
foo_oldversion.orig.tar.gz
$ wget http://example.org/foo/foo-newversion.tar.gz
$ cd foo-oldversion
$ uupdate -v newversion ../foo-newversion.tar.gz
$ cd ../foo-newversion
$ while dquilt push; do dquilt refresh; done
$ dch
... document changes made

If you set up a debian/watch file as described in Section 5.22, you can skip thewget command. You simply run uscan(1) in the
foo-oldversion directory instead of the uupdate command. This will automagically look for the updated source, download
it, and run the uupdate command. 4

You can release this updated source by repeating what you did in Section 6.1, Chapter 7, and Chapter 9.

8.4 Updating the packaging style

Updating the package style is not a required activity for the update of a package. However, doing so lets you use the full capabilities
of the modern debhelper system and the 3.0 source format. 5

• If you need to recreate deleted template files for any reason, you can run dh_make again in the same Debian package source
tree with the --addmissing option. Then edit them appropriately.

• If the package has not been updated to use the debhelper v7+ dh syntax for the debian/rules file, update it to use dh.
Update the debian/control file accordingly.

• If you want to update the rules file created with the Makefile inclusion mechanism of the Common Debian Build System
(cdbs) to the dh syntax, see the following to understand its DEB_* configuration variables.

– local copy of /usr/share/doc/cdbs/cdbs-doc.pdf.gz
– The Common Debian Build System (CDBS), FOSDEM 2009 (http://meetings-archive.debian.net/pub/debian-meetings/-

2009/fosdem/slides/The_Common_Debian_Build_System_CDBS/)

• If you have a 1.0 source package without the foo.diff.gz file, you can update it to the newer 3.0 (native) source
format by creating debian/source/format with 3.0 (native). The rest of the debian/* files can just be copied.

4 If the uscan command downloads the updated source but it does not run the uupdate command, you should correct the debian/watch file to have
debian uupdate at the end of the URL.

5 If your sponsor or other maintainers object to updating the existing packaging style, don’t bother arguing. There are more important things to do.

http://meetings-archive.debian.net/pub/debian-meetings/2009/fosdem/slides/The_Common_Debian_Build_System_CDBS/
http://meetings-archive.debian.net/pub/debian-meetings/2009/fosdem/slides/The_Common_Debian_Build_System_CDBS/
http://meetings-archive.debian.net/pub/debian-meetings/2009/fosdem/slides/The_Common_Debian_Build_System_CDBS/

Debian New Maintainers’ Guide 51 / 58

• If you have a 1.0 source package with the foo.diff.gz file, you can update it to the newer 3.0 (quilt) source format
by creating debian/source/format with 3.0 (quilt). The rest of the debian/* files can just be copied. Import
the big.diff file generated by the command filterdiff -z -x ’*/debian/*’ foo.diff.gz > big.diff
to your quilt system, if needed. 6

• If it was packaged using another patch system such as dpatch, dbs, or cdbs with -p0, -p1, or -p2, convert it to quilt
using deb3 at http://bugs.debian.org/581186.

• If it was packaged with the dh command with the --with quilt option or with the dh_quilt_patch and dh_quilt_unpatch
commands, remove these and make it use the newer 3.0 (quilt) source format.

You should check DEP - Debian Enhancement Proposals (http://dep.debian.net/) and adopt ACCEPTED proposals.

You need to do the other tasks described in Section 8.3, too.

8.5 UTF-8 conversion

If upstream documents are encoded in old encoding schemes, converting them to UTF-8 is a good idea.

• Use iconv(1) to convert encodings of plain text files.

iconv -f latin1 -t utf8 foo_in.txt > foo_out.txt

• Use w3m(1) to convert from HTML files to UTF-8 plain text files. When you do this, make sure to execute it under UTF-8
locale.

LC_ALL=en_US.UTF-8 w3m -o display_charset=UTF-8 \
-cols 70 -dump -no-graph -T text/html \
< foo_in.html > foo_out.txt

8.6 Reminders for updating packages

Here are few reminders for updating packages:

• Preserve old changelog entries (sounds obvious, but there have been cases of people typing dch when they should have
typed dch -i.)

• Existing Debian changes need to be reevaluated; throw away stuff that upstream has incorporated (in one form or another) and
remember to keep stuff that hasn’t been incorporated by upstream, unless there is a compelling reason not to.

• If any changes were made to the build system (hopefully you’d know from inspecting upstream changes) then update the
debian/rules and debian/control build dependencies if necessary.

• Check the Debian Bug Tracking System (BTS) (http://www.debian.org/Bugs/) to see if someone has provided patches to bugs
that are currently open.

• Check the contents of the .changes file to make sure you are uploading to the correct distribution, the proper bug closures
are listed in the Closes field, the Maintainer and Changed-By fields match, the file is GPG-signed, etc.

6 You can split big.diff into many small incremental patches using the splitdiff command.

http://bugs.debian.org/581186
http://dep.debian.net/
http://dep.debian.net/
http://en.wikipedia.org/wiki/UTF-8
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/

Debian New Maintainers’ Guide 52 / 58

Chapter 9

Uploading the package

Now that you have tested your new package thoroughly, you want to release it to a public archive to share it.

9.1 Uploading to the Debian archive

Once you become an official developer, 1 you can upload the package to the Debian archive. 2 You can do this manually, but it’s
easier to use the existing automated tools, like dupload(1) or dput(1). We’ll describe how it’s done with dupload. 3

First you have to set up dupload’s config file. You can either edit the system-wide /etc/dupload.conf file, or have your
own ~/.dupload.conf file override the few things you want to change.

You can read the dupload.conf(5) manual page to understand what each of these options means.

The $default_host option determines which of the upload queues will be used by default. anonymous-ftp-master is
the primary one, but it’s possible that you will want to use another one. 4

While connected to the Internet, you can upload your package as follows:

$ dupload gentoo_0.9.12-1_i386.changes

dupload checks that the SHA1/SHA256 file checksums match those listed in the .changes file. If they do not match, it will
warn you to rebuild it as described in Section 6.1 so it can be properly uploaded.

If you encounter an upload problem at ftp://ftp.upload.debian.org/pub/UploadQueue/, you can fix this by manually uploading a
GPG-signed *.commands file to there with ftp. 5 For example, using hello.commands:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Uploader: Foo Bar <Foo.Bar@example.org>
Commands:
rm hello_1.0-1_i386.deb
mv hello_1.0-1.dsx hello_1.0-1.dsc
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)

1 See Section 1.1.

2 There are publicly accessible archives such as http://mentors.debian.net/ which work almost the same way as the Debian archive and provide an upload area
for non-DDs. You can set up an equivalent archive by yourself using the tools listed at http://wiki.debian.org/HowToSetupADebianRepository. So this section is
useful for non-DDs, too.

3 The dput package seems to come with more features and to be becoming more popular than the dupload package. It uses the file /etc/dput for its
global configuration and the file ~/.dput.cf for per-user configuration. It supports Ubuntu-related services out-of-the-box, too.

4 See Debian Developer’s Reference 5.6. ”Uploading a package” (http://www.debian.org/doc/manuals/developers-reference/pkgs.html#upload) .
5 See ftp://ftp.upload.debian.org/pub/UploadQueue/README. Alternatively, you can use the dcut command from the dput package.

ftp://ftp.upload.debian.org/pub/UploadQueue/
http://mentors.debian.net/
http://wiki.debian.org/HowToSetupADebianRepository
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#upload
http://www.debian.org/doc/manuals/developers-reference/pkgs.html#upload
ftp://ftp.upload.debian.org/pub/UploadQueue/README

Debian New Maintainers’ Guide 53 / 58

[...]
-----END PGP SIGNATURE-----

9.2 Including orig.tar.gz for upload

When you first upload the package to the archive, you need to include the original orig.tar.gz source, too. If the Debian
revision number of this package is neither 1 nor 0, you must provide the dpkg-buildpackage option -sa.

For the dpkg-buildpackage command:

$ dpkg-buildpackage -sa

For the debuild command:

$ debuild -sa

For the pdebuild command:

$ pdebuild --debbuildopts -sa

On the other hand, the -sd option will force the exclusion of the original orig.tar.gz source.

9.3 Skipped uploads

If you created multiple entries in debian/changelog by skipping uploads, you must create a proper *_.changes file which
includes all changes since the last upload. This can be done by specifying the dpkg-buildpackage option -v with the version,
e.g., 1.2.

For the dpkg-buildpackage command:

$ dpkg-buildpackage -v1.2

For the debuild command:

$ debuild -v1.2

For the pdebuild command:

$ pdebuild --debbuildopts ”-v1.2”

Debian New Maintainers’ Guide 54 / 58

Appendix A

Advanced packaging

Here are some hints and pointers for advanced packaging topics which you are most likely to deal with. You are strongly advised
to read all the references suggested here.

You may need to manually edit the packaging template files generated by the dh_make command to address topics covered in
this chapter. The newer debmake command should address these topics better.

A.1 Shared libraries

Before packaging shared libraries, you should read the following primary references in detail:

• Debian Policy Manual, 8 ”Shared libraries” (http://www.debian.org/doc/debian-policy/ch-sharedlibs.html)

• Debian Policy Manual, 9.1.1 ”File System Structure” (http://www.debian.org/doc/debian-policy/ch-opersys.html#s-fhs)

• Debian Policy Manual, 10.2 ”Libraries” (http://www.debian.org/doc/debian-policy/ch-files.html#s-libraries)

Here are some oversimplified hints for you to get started:

• Shared libraries are ELF object files containing compiled code.

• Shared libraries are distributed as *.so files. (Neither *.a files nor *.la files)

• Shared libraries are mainly used to share common codes among multiple executables with the ld mechanism.

• Shared libraries are sometimes used to provide multiple plugins to an executable with the dlopen mechanism.

• Shared libraries export symbols which represent compiled objects such as variables, functions, and classes; and enables access
to them from the linked executables.

• The SONAME of a shared library libfoo.so.1: objdump -p libfoo.so.1 | grep SONAME 1

• The SONAME of a shared library usually matches the library file name (but not always).

• The SONAME of shared libraries linked to /usr/bin/foo: objdump -p /usr/bin/foo | grep NEEDED 2

• libfoo1: the library package for the shared library libfoo.so.1 with the SONAME ABI version 1.3

• The package maintainer scripts of the library package must call ldconfig under the specific circumstances to create the necessary
symbolic links for the SONAME.4

1 Alternatively: readelf -d libfoo.so.1 | grep SONAME
2 Alternatively: readelf -d libfoo.so.1 | grep NEEDED
3 See Debian Policy Manual, 8.1 ”Run-time shared libraries” (http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-runtime) .
4 See Debian Policy Manual, 8.1.1 ”ldconfig” (http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-ldconfig) .

http://en.wikipedia.org/wiki/Library_(computing)
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html
http://www.debian.org/doc/debian-policy/ch-opersys.html#s-fhs
http://www.debian.org/doc/debian-policy/ch-opersys.html#s-fhs
http://www.debian.org/doc/debian-policy/ch-files.html#s-libraries
http://www.debian.org/doc/debian-policy/ch-files.html#s-libraries
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Symbol_(programming)
http://en.wikipedia.org/wiki/Soname
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-runtime
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-runtime
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-ldconfig
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-ldconfig

Debian New Maintainers’ Guide 55 / 58

• libfoo1-dbg: the debugging symbols package which contains the debugging symbols for the shared library packagelibfoo1.

• libfoo-dev: the development package which contains the header files etc. for the shared library libfoo.so.1.5

• Debian package should not contain *.la Libtool archive files in general.6

• Debian package should not use RPATH in general.7

• Although it is somewhat outdated and is only a secondary reference, Debian Library Packaging Guide (http://www.netfort.gr.jp/-
~dancer/column/libpkg-guide/libpkg-guide.html) may still be useful.

A.2 Managing debian/package.symbols

When you package a shared library, you should create debian/package.symbols file to manage the minimal version asso-
ciated to each symbol for backward-compatible ABI changes under the same SONAME of the library for the same shared library
package name.8 You should read the following primary references in detail:

• Debian Policy Manual, 8.6.3 ”The symbols system” (http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-
symbols) 9

• dh_makeshlibs(1)

• dpkg-gensymbols(1)

• dpkg-shlibdeps(1)

• deb-symbols(5)

Here is a rough example to create the libfoo1 package to the upstream version 1.3 with the proper debian/libfoo1.
symbols file:

• Prepare the skeleton debianized source tree using the upstream libfoo-1.3.tar.gz file.

– If this is the first packaging of the libfoo1 package, create the debian/libfoo1.symbols file with empty content.
– If the previous upstream version1.2was packaged as thelibfoo1 package with the properdebian/libfoo1.symbols

in its source package, use it again.
– If the previous upstream version 1.2was not packaged with the debian/libfoo1.symbols, create it as the symbols

file from all available binary packages of the same shared library package name containing the same SONAME of the library,
for example, versions 1.1-1 and 1.2-1. 10

$ dpkg-deb -x libfoo1_1.1-1.deb libfoo1_1.1-1
$ dpkg-deb -x libfoo1_1.2-1.deb libfoo1_1.2-1
$: > symbols
$ dpkg-gensymbols -v1.1 -plibfoo1 -Plibfoo1_1.1-1 -Osymbols
$ dpkg-gensymbols -v1.2 -plibfoo1 -Plibfoo1_1.2-1 -Osymbols

• Make trial builds of the source tree with tools such as debuild and pdebuild. (If this fails due to missing symbols etc., there
were some backward-incompatible ABI changes which require you to bump the shared library package name to something like
libfoo1a and you should start over again.)

5 See Debian Policy Manual, 8.3 ”Static libraries” (http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-static) and Debian Policy Man-
ual, 8.4 ”Development files” (http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-dev) .

6 See Debian wiki ReleaseGoals/LAFileRemoval (http://wiki.debian.org/ReleaseGoals/LAFileRemoval) .
7 See Debian wiki RpathIssue (http://wiki.debian.org/RpathIssue) .
8 Backward-incompatible ABI changes normally require you to update the SONAME of the library and the shared library package name to new ones.
9 For C++ libraries and other cases where tracking individual symbols is too difficult, follow Debian Policy Manual, 8.6.4 ”The shlibs system”

(http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-shlibdeps) , instead.
10 All previous versions of Debian packages are available at http://snapshot.debian.org/ (http://snapshot.debian.org/) . The Debian revision is dropped from

the version to make it easier to backport the package: 1.1 << 1.1-1~bpo70+1 << 1.1-1 and 1.2 << 1.2-1~bpo70+1 << 1.2-1

http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-symbols
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-symbols
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-symbols
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-static
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-static
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-dev
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-dev
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-dev
http://wiki.debian.org/ReleaseGoals/LAFileRemoval
http://wiki.debian.org/ReleaseGoals/LAFileRemoval
http://wiki.debian.org/RpathIssue
http://wiki.debian.org/RpathIssue
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-shlibdeps
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-shlibdeps
http://snapshot.debian.org/
http://snapshot.debian.org/

Debian New Maintainers’ Guide 56 / 58

$ cd libfoo-1.3
$ debuild
...
dpkg-gensymbols: warning: some new symbols appeared in the symbols file: ...
see diff output below
--- debian/libfoo1.symbols (libfoo1_1.3-1_amd64)
+++ dpkg-gensymbolsFE5gzx 2012-11-11 02:24:53.609667389 +0900
@@ -127,6 +127,7 @@
foo_get_name@Base 1.1
foo_get_longname@Base 1.2
foo_get_type@Base 1.1

+ foo_get_longtype@Base 1.3-1
foo_get_symbol@Base 1.1
foo_get_rank@Base 1.1
foo_new@Base 1.1

...

• If you see the diff printed by the dpkg-gensymbols as above, extract the updated proper symbols file from the generated
binary package of the shared library. 11

$ cd ..
$ dpkg-deb -R libfoo1_1.3_amd64.deb libfoo1-tmp
$ sed -e ’s/1\.3-1/1\.3/’ libfoo1-tmp/DEBIAN/symbols \

>libfoo-1.3/debian/libfoo1.symbols

• Build release packages with tools such as debuild and pdebuild.

$ cd libfoo-1.3
$ debuild clean
$ debuild
...

In addition to the above examples, we need to check the ABI compatibility further and bump versions for some symbols manually
as needed. 12

Although it is only a secondary reference, Debian wiki UsingSymbolsFiles (http://wiki.debian.org/UsingSymbolsFiles) and its
linked web pages may be useful.

A.3 Multiarch

The multiarch feature introduced to Debian wheezy integrates support for cross-architecture installation of binary packages (par-
ticularly i386<->amd64, but also other combinations) in dpkg and apt. You should read the following references in detail:

• Ubuntu wiki MultiarchSpec (https://wiki.ubuntu.com/MultiarchSpec) (upstream)

• Debian wiki Multiarch/Implementation (http://wiki.debian.org/Multiarch/Implementation) (Debian situation)

It uses the triplet such as i386-linux-gnu and x86_64-linux-gnu for the install path of shared libraries. The actual
triplet path is dynamically set into the $(DEB_HOST_MULTIARCH) variable using the dpkg-architecture(1) command for each
binary package build. For example, the path to install multiarch libraries are changed as follows:13

11 The Debian revision is dropped from the version to make it easier to backport the package: 1.3 << 1.3-1~bpo70+1 << 1.3-1
12 See Debian Policy Manual, 8.6.2 ”Shared library ABI changes” (http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-updates) .

13 Old special purpose library paths such as /lib32/ and /lib64/ are not used any more.

http://wiki.debian.org/UsingSymbolsFiles
http://wiki.debian.org/UsingSymbolsFiles
https://wiki.ubuntu.com/MultiarchSpec
https://wiki.ubuntu.com/MultiarchSpec
http://wiki.debian.org/Multiarch/Implementation
http://wiki.debian.org/Multiarch/Implementation
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-updates
http://www.debian.org/doc/debian-policy/ch-sharedlibs.html#s-sharedlibs-updates

Debian New Maintainers’ Guide 57 / 58

Old path i386 multiarch path amd64 multiarch path
/lib/ /lib/i386-linux-gnu/ /lib/x86_64-linux-gnu/
/usr/lib/ /usr/lib/i386-linux-gnu/ /usr/lib/x86_64-linux-gnu/

Here are some typical multiarch package split scenario examples for the followings:

• a library source libfoo-1.tar.gz

• a tool source bar-1.tar.gz written in a compiled language

• a tool source baz-1.tar.gz written in an interpreted language

Package Architecture: Multi-Arch: Package content
libfoo1 any same the shared library, co-installable
libfoo1-dbg any same the shared library debug symbols, co-installable
libfoo-dev any same the shared library header files etc., co-installable
libfoo-tools any foreign the run-time support programs, not co-installable
libfoo-doc all foreign the shared library documentation files
bar any foreign the compiled program files, not co-installable
bar-doc all foreign the documentation files for the program
baz all foreign the interpreted program files

Please note that the development package should contain a symlink for the associated shared library without a version number.
E.g.: /usr/lib/x86_64-linux-gnu/libfoo.so -> libfoo.so.1

A.4 Building a shared library package

You can build a Debian library package enabling the multiarch support using dh(1) as follows:

• Update debian/control.

– Add Build-Depends:debhelper (>=9) for the source package section.
– Add Pre-Depends:${misc:Pre-Depends} for each shared library binary package.
– Add Multi-Arch: stanza for each binary package section.

• Set debian/compat to ”9”.

• Adjust the path from the normal /usr/lib/ to the multiarch /usr/lib/$(DEB_HOST_MULTIARCH)/ for all packaging
scripts.

– CallDEB_HOST_MULTIARCH ?=$(shell dpkg-architecture -qDEB_HOST_MULTIARCH) indebian/rules
to set DEB_HOST_MULTIARCH variable, first.

– Replace /usr/lib/ with /usr/lib/$(DEB_HOST_MULTIARCH)/ in debian/rules.
– If ./configure is used in the part of override_dh_auto_configure target in debian/rules, make sure to

replace it with dh_auto_configure --. 14

– Replace all occurrences of /usr/lib/ with /usr/lib/*/ in debian/foo.install files.
– Generate files like debian/foo.links from debian/foo.links.in dynamically by adding a script to override
_dh_auto_configure target in debian/rules.

14 Alternatively, you can add --libdir=\$${prefix}/lib/$(DEB_HOST_MULTIARCH) and --libexecdir=\$${prefix}/lib/$(DEB_
HOST_MULTIARCH) arguments to ./configure. Please note that --libexecdir specifies the default path to install executable programs run by other
programs rather than by users. Its Autotools default is /usr/libexec/ but its Debian default is /usr/lib/.

Debian New Maintainers’ Guide 58 / 58

override_dh_auto_configure:
dh_auto_configure
sed ’s/@DEB_HOST_MULTIARCH@/$(DEB_HOST_MULTIARCH)/g’ \

debian/foo.links.in > debian/foo.links

Please make sure to verify that the shared library package contains only the expected files, and that your -dev package still works.

All files installed simultaneously as the multiarch package to the same file path should have exactly the same file content. You
must be careful on differences generated by the data byte order and by the compression algorithm.

A.5 Native Debian package

If a package is maintained only for Debian or possibly only for local use, its source may contain all the debian/* files in it.
There are 2 ways to package it.

You can make the upstream tarball by excluding the debian/* files and package it as the non-native Debian package as in
Section 2.1. This is the normal way which some people encourage to use.

The alternative is the workflow of the native Debian package.

• Create a native Debian source package in the 3.0 (native) format using a single compressed tar file in which all files are
included.

– package_version.tar.gz

– package_version.dsc

• Build Debian binary packages from the native Debian source package.

– package_version_arch.deb

For example, if you have source files in ~/mypackage-1.0 without the debian/* files, you can create a native Debian
package for it by issuing the dh_make command as follows:

$ cd ~/mypackage-1.0
$ dh_make --native

Then the debian directory and its contents are created just like Section 2.8. This does not create a tarball since this is a native
Debian package. But that is the only difference. The rest of the packaging activities are practically the same.

After execution of the dpkg-buildpackage command, you will see the following files in the parent directory:

• mypackage_1.0.tar.gz

This is the source code tarball created from the mypackage-1.0 directory by the dpkg-source command. (Its suffix is not
orig.tar.gz.)

• mypackage_1.0.dsc

This is a summary of the contents of the source code as in the non-native Debian package. (There is no Debian revision.)

• mypackage_1.0_i386.deb

This is your completed binary package as in the non-native Debian package. (There is no Debian revision.)

• mypackage_1.0_i386.changes

This file describes all the changes made in the current package version as in the non-native Debian package. (There is no Debian
revision.)

	Getting started The Right Way
	Social dynamics of Debian
	Programs needed for development
	Documentation needed for development
	Where to ask for help

	First steps
	Debian package building workflow
	Choose your program
	Get the program, and try it out
	Simple build systems
	Popular portable build systems
	Package name and version
	Setting up dh_make
	Initial non-native Debian package

	Modifying the source
	Setting up quilt
	Fixing upstream bugs
	Installation of files to their destination
	Differing libraries

	Required files under the debian directory
	control
	copyright
	changelog
	rules
	Targets of the rules file
	Default rules file
	Customization of rules file

	Other files under the debian directory
	README.Debian
	compat
	conffiles
	package.cron.*
	dirs
	package.doc-base
	docs
	emacsen-*
	package.examples
	package.init and package.default
	install
	package.info
	package.links
	{package.,source/}lintian-overrides
	manpage.*
	manpage.1.ex
	manpage.sgml.ex
	manpage.xml.ex

	package.manpages
	menu
	NEWS
	{pre,post}{inst,rm}
	package.symbols
	TODO
	watch
	source/format
	source/local-options
	source/options
	patches/*

	Building the package
	Complete (re)build
	Autobuilder
	debuild command
	pbuilder package
	git-buildpackage command and similars
	Quick rebuild
	Command hierarchy

	Checking the package for errors
	Suspicious changes
	Verifying a package's installation
	Verifying a package's maintainer scripts
	Using lintian
	The debc command
	The debdiff command
	The interdiff command
	The mc command

	Updating the package
	New Debian revision
	Inspection of the new upstream release
	New upstream release
	Updating the packaging style
	UTF-8 conversion
	Reminders for updating packages

	Uploading the package
	Uploading to the Debian archive
	Including orig.tar.gz for upload
	Skipped uploads

	Advanced packaging
	Shared libraries
	Managing debian/package.symbols
	Multiarch
	Building a shared library package
	Native Debian package

