
WIENER, Plein & Baus GmbH 1 www.wiener-d.com

MDGG-8

User Manual

Firmware revision 0100

WIENER, Plein & Baus GmbH 2 www.wiener-d.com

General Remarks

The only purpose of this manual is a description of the product. It must not be interpreted
a declaration of conformity for this product including the product and software.
W-Ie-Ne-R revises this product and manual without notice. Differences of the
description in manual and product are possible.
W-Ie-Ne-R excludes completely any liability for loss of profits, loss of business, loss of
use or data, interrupt of business, or for indirect, special incidental, or consequential
damages of any kind, even if W-Ie-Ne-R has been advises of the possibility of such
damages arising from any defect or error in this manual or product.
Any use of the product which may influence health of human beings requires the express
written permission of W-Ie-Ne-R.
Products mentioned in this manual are mentioned for identification purposes only.
Product names appearing in this manual may or may not be registered trademarks or
copyrights of their respective companies.
No part of this product, including the product and the software may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in
any form by any means with the express written permission of W-Ie-Ne-R.

MDGG-8 is designed by JTEC Instruments.

WIENER, Plein & Baus GmbH 3 www.wiener-d.com

Table of contents:

1 General Description ...5
1.1 Hardware features ..5
1.2 Release firmware features (preliminary)...6

2 VME Interface...8
2.1 VME Base Address..8
2.2 Firmware programming ...8
2.3 VME Register Map..9

2.3.1 Firmware ID Register [% +0x000, RO] ..9
2.3.2 Global Register [% +0x004 RW]..9
2.3.3 Auxiliary Register [% +0x008, RW]...10
2.3.4 Delay FGG [% +0x040 + 8 * channel, RW] ...10
2.3.5 Gate FGG [% +0x044 + 8 * channel, RW] ...11
2.3.6 Action Register [% +0x080, WO]...11
2.3.7 FGG Configuration [% +0x084, RW]...12
2.3.8 Scaler Configuration [% +0x088, RW]...12
2.3.9 FGG Input Selector Registers [% +0x08C, 0x090, RW]13
2.3.10 NIM Output Selector Registers [% +0x08C, 0x090, RW].......................14
2.3.11 FGG Stop Selector Registers [% +0x094, 0x098, RW]14
2.3.12 Scaler Input Selector Registers [% +0x0A4, 0x0A8, RW]15
2.3.13 Combination Gate Mask Registers [% +0x0AC, 0x0B0, RW]15
2.3.14 Scaler Data Registers [% +0x100 + 4 * channel, RO].............................16
2.3.15 Scaler Multiplicity Registers [% +0x120 + 4 * channel, RO]..................16
2.3.16 Coincidence Register [% +0x120 + 4 * channel, RO]16

3 Register Comparison MDGG8 vs. MDGG-16..17
4 Software Support ...19

4.1 Microsoft Windows Support ..19
4.2 Linux Support ..19
4.3 MDGG-8 Library...19

4.3.1 CMDGG ..19
4.3.2 getFirmware ...20
4.3.3 getGlobalRegister...20
4.3.4 setGlobalRegister ...20
4.3.5 setGate ...21
4.3.6 getGate...21
4.3.7 setDelay ...22
4.3.8 getDelay...22
4.3.9 setActionRegister ...23
4.3.10 setFGGConfiguration ...23
4.3.11 getFGGConfiguration...23
4.3.12 setScalerConfiguration ...24
4.3.13 getScalerConfiguration...24
4.3.14 setFGGInputSelector..25
4.3.15 getFGGInputSelector..25

WIENER, Plein & Baus GmbH 4 www.wiener-d.com

4.3.16 setNIMOutputSelector..25
4.3.17 getNIMOutputSelector ...26
4.3.18 setFGGStopSelector ...26
4.3.19 getFGGStopSelector...27
4.3.20 setScalerInputSelector ..27
4.3.21 getScalerInputSelector..28
4.3.22 setLogicalMask ..28
4.3.23 getLogicalMask..29
4.3.24 getScalerData ...29
4.3.25 getScalerMulitplicity ..29
4.3.26 getCoincidenceRegister ..30

5 Firmware Upgrade Procedure ..31

WIENER, Plein & Baus GmbH 5 www.wiener-d.com

1 GENERAL DESCRIPTION

The MDGG-8 is a single width VME module performing multifunction gate and delay
generator and logic functions. Most firmware revisions will allow users to create delay
and gate generators, count triggers, perform logic AND’s, and digital FAN-IN / FAN-
OUT. This manual will strive to describe the functionality of the of the latest firmware
revision. Details about how particular firmware revisions differ can be found in the
appendix for that specific revision.

1.1 Hardware features
Although the functionality of the MDGG-8 is determined by the firmware that is loaded,
the firmware capabilities must fall within the parameters of the hardware. The MDGG-8
is based on an XCS3S400 XLINX FPGA running with a 125MHz clock. The module
consists of:

INPUTS: 8 channel inputs + 1 common (LEMO 00)
OUTPUTS: 8 channel outputs (LEMO 00)
LEDS: 12 Diagnostic LED’s, driven by signal stretchers
FIRMWARE: Programmed via VME
INTERFACE: VME A24 D32, base address via jumpers.
VME IRQ: Capable of asserting VME IRQ, level selected via jumper
POWER: 5V, 1A

WIENER, Plein & Baus GmbH 6 www.wiener-d.com

1.2 Release firmware features (preliminary)
The MDGG-8 can hold two separate firmware revisions in memory. The user selects
which firmware will load at startup via a jumper of the PCB. The latest firmware
revsions can be found at http://www.wiener-d.com. Because of the open architecture of
the module, users are invited to develop custom firmware.

As of this writing, the MDGG-8 ships with firmware revision 7930 0100. This firmware
provides:

8-Flexible Gate and Delay Generators (FGG)
Up to eight FGG’s are individually configurable logic signals with
flexible gates and delays. They are programmable as non-triggerable
delay and gate generators (DGG), delay and retriggerable gate
(RDGG), set-resest gates (SRG) or pulse generators (PG).
Alternatively, the FGG’s can be set as1/n (PSG) or 1-1/n (CPSG)
prescaler gates. The gates and delays are set with 8ns granularity up to
34s each.

8-Scaler Devices
The eight scaler devices can be configured as either a gated scaler or a
latched scaler. Gated scalers (GSC) provide 32-bits of storage for each
channel. The latched scalers (LSC) provide each have a 1kx32-bit
FIFO for storing the scaler data.

Coincidence Register
There is one 8-bit coincidence register to do something. This register
will record input coincidences.

4-Combined Gates
There are up to four combined gates (CG) available for two-fold Ors
or eight-fold ANDs of the module inputs. This allows the user to build
complex triggers.

Output Mulitplexing
The eight outputs can be multiplexed to have any one of 20 signals,
choosing from the 8 FGGs output signals, trailing edge of the 8 FGG
signals, or the 4 combined gates.

Diagnostic LEDs
LED 1: FPGA status:

ON- FPGA not configured
Flashing- flash memory being configured
OFF- MDGG-8 configured

LED 2: DTACK, Indicates VME access
LED 3:Indicates signal on COMMON input

WIENER, Plein & Baus GmbH 7 www.wiener-d.com

LED 4: Indicates signal on one or more of I1-I8
LED 5-12: Indicates signal on the corresponding output

VETO/Reset input
The common input can be configured as a VETO signal to block any
of the eight regular inputs or as a reset, to clear or latch the internal
scalers.

VME Resets and Triggering
The internal scaler devices can be reset via VME. Additionally, the
FGGs can be triggered or SRG can be reset through the VME
interface.

VME Interrupts
VME interrupt support, features depend on firmware

WIENER, Plein & Baus GmbH 8 www.wiener-d.com

2 VME INTERFACE

The MDGG-8 is access via the VME bus using A24D32 read/writes or BLT reads.

2.1 VME Base Address
The 24 bit MDGG-8 base address is set via jumpers on the PCB. A jumper that is
inserted counts as a 1 in the base address bit pattern.

A23 A22 A21 A20 A19 A18 A17 A16
SN4 SN3 SN2 SN1 SN0 0 0 0

The factory default setting is with SN1=1 and a corresponding MDGG-8 base address of
0x10 0000 (A24).

2.2 Firmware programming
The firmware can be changed via VME. Jumper 25 should be in Normal / RUN position
(right) for standard use. To program a new firmware please set this jumper to the
PROGRAM position (left).
Please see chapter 5 for firmware upgrade instructions .

WIENER, Plein & Baus GmbH 9 www.wiener-d.com

2.3 VME Register Map
Offset Register Access Type
0x000 Firmware ID Read only
0x004 Global Register Read/write
0x008 Auxiliary Register Read/write

0x040 + channel * 8 Delay FGG (channel) Read/write
0x044 + channel * 8 Gate FGG (channel) Read/write

0x080 Action Register Write only
0x084 FGG Configuration Read/write
0x088 Scaler Configuration Read/write
0x08C FGG Input Selector A Read/write
0x090 FGG Input Selector B Read/write
0x094 NIM Output Selector A Read/write
0x098 NIM Output Selector B Read/write
0x09C FGG Stop Selector A Read/write
0x0A0 FGG Stop Selector B Read/write
0x0A4 Scaler Input Selector A Read/write
0x0A8 Scaler Input Selector B Read/write
0x0AC Combination Gate Mask A Read/write
0x0B0 Combination Gate Mask B Read/write

0x100 + channel * 4 Scaler Data (channel) Read only
0x120 + channel * 4 Scaler Latch Multiplicity (channel) Read only

0x140 Coincidence Register Read only

2.3.1 Firmware ID Register [% +0x000, RO]
The Firmware ID register holds the firmware revision identifier.

2.3.2 Global Register [% +0x004 RW]
The Global register stores information for the global signals that affect all different
devices that the MDGG-8 is capable of providing.

Bits 24 – 28 Bits 16 - 20 Bits 8 – 12 Bits 0 – 4
SelMReset SelSclrLatch SelSclrGa SelFGGVeto

SelFGG VETO: This value specifies which signal or input will be used to VETO
all FGGs that are configured to be susceptible to VETOs.

SelSclrGa: This value specifies which signal or input will be used as the gate for
internal scalers that are configured as gated scalers.

SelSclrLatch: This value specifies which signal or input will be used as the
latching signal for internal scalers that are configured as latched scalers.

WIENER, Plein & Baus GmbH 10 www.wiener-d.com

SelMReset: This value specifies which signal or input will be used as the master
reset used to reset SRG, scaler, and the coincidence registers.

The valid signals for each of the settings in the Global Register are represented by a 5-bit
code. These codes are shown in the table below.

Values Signal Comments
0 None selected No signal will perform that function
1-8 I1-I8 1-8 corresponds to I1-I8 respectively
9-16 FGG1-FGG8 9-16 corresponds to FGG1-FGG8 respectively
17-20 CG1-CG4 17-20 corresponds to CG1-CG4 respectively
21 Common Input The common input will serve the function

2.3.3 Auxiliary Register [% +0x008, RW]
The Auxiliary Register determines which FGGs are cleared upon a master reset signal,
which signal is used to clear the coincidence register, and whether the coincidence
register is cleared upon a master reset signal.

Bits 13 Bits 8 - 12 Bits 0 – 7
CRegMResetMask SelCRegGa FGGMResetMask

FGGMResetMask: This 8-bit mask determines which FGG channels will be
reset by a master reset signal

SelCRegGa: This value specifies which signal or input will be used to clear the
coincidence register. Valid values are:
Code Signal
0-7 I1-I8
8-15 FGG1-FGG8
16-19 CG1-CG-4
20 Common Input

CRegMResetMask: If this bit is set, the coincidence register will be reset upon a
master reset signal being received.

2.3.4 Delay FGG [% +0x040 + 8 * channel, RW]
The Delay FGG registers store the 32-bit delay between receiving a trigger and the start
of the gate. There are eight Delay FGG registers, each corresponding to one of eight
FGG Gate registers. The delay can be set with 8ns granularity with a maximum of 34s.

For a given delay time, tdelay, the register value, rvalue, can be calculated by:

WIENER, Plein & Baus GmbH 11 www.wiener-d.com

910*8
delay

value

t
r

For given register value, rvalue, the delay time, tdelay, can be calculated by:
910*8*valuegate rt

2.3.5 Gate FGG [% +0x044 + 8 * channel, RW]
The Gate FGG registers store the 32-bit gate length. There are eight Gate FGG registers,
each corresponding to one of eight FGG Delay registers. The Gate can be set with 8ns
granularity with a maximum of 34s.

For a given gate length, tgate, the register value, rvalue, can be calculated by:

910*8
gate

value

t
r

For given register value, rvalue, the gate length, tgate, can be calculated by:
910*8*valuegate rt

2.3.6 Action Register [% +0x080, WO]
The Action Register allows the user to trigger FGGs, reset SRGs, reset scalers, and/or
reset the coincidence register. The action register automatically clears all bits 16ns, after
they are set.

Bit 24 Bits 16 - 23 Bits 8 - 15 Bits 0 - 7
ResCREG TrigFGG1-8 ResSclr1-8 ResFGG1-8

ResFGG1-8: Bits 0-7 correspond to FGG1-FGG-8 respectively. Writing “1” to
the bit corresponding to a given FGG channel will reset that SRG.

ResSclr1-8: Bits 8-15 correspond to SCL1-SCL-8 respectively. Writing “1” to
the bit corresponding to a given scaler channel, will reset that scaler.

ResFGG1-8: Bits 16-23 correspond to FGG1-FGG-8 respectively. Writing “1”
to the bit corresponding to a given FGG channel will trigger that FGG.

ResCReg: Writing “1” to bit 24 of the Action Register will reset the Coincidence
register.

WIENER, Plein & Baus GmbH 12 www.wiener-d.com

2.3.7 FGG Configuration [% +0x084, RW]
The eight FGG devices can be configured as a non-retriggerable DGG, a set-reset gate, a
pulser, a retriggable DGG, a 1/n prescaler, or a complimentary 1-1/n prescaler.
Additionally, each FGG can be configured to be blocked via the VETO signal. The
settings for each FGG is stored in the FGG Configuration register.

The settings for each FGG is set in a 4-bit configuration word.
3 Bits 0-2

VETO Behavior

Valid values for the Behavior bits are:
Value Behavior Description

0 FGG off FGG will not respond to triggers
1 DGG FGG will act as a standard DGG that retriggers every time a trigger

is received.
2 SRG FGG will start the gate. The gate will stay set until the reset signal

is received.
3 PG FGG will act as a pulser, with the period equal to gate + delay.
4 RDGG FGG will act as a retriggable DGG. The gate will be extended by

the gate length if a new trigger arrives while the gate is still active.
5 PSG FGG will act as a 1/n prescaler. I need to research how exactly

this will work.
6 CPSG FGG will act as a 1-1/n prescaler. This will make more sense after

figuring out the PSG.

If bit-3 of the configuration word is set, the FGG will not respond to triggers while a
VETO signal is present.

The configuration words for each FGG are combined in the FGG configuration register.
28-31 24-27 20-23 16-19 12-15 8-11 4-7 Bits 0-3
FGG8 FGG7 FGG6 FGG5 FGG4 FGG3 FGG2 FGG1

2.3.8 Scaler Configuration [% +0x088, RW]
The Scaler Configuration allows the user to set each scaler as a gated, latched, or gated-
latched scaler.

The settings for each scaler are set via a 4-bit configuration word.
3 Bits 0-2

MReset Behavior

Valid values for the Behavior bits are:
Value Behavior Description

0 Scaler Off Scaler will not count

WIENER, Plein & Baus GmbH 13 www.wiener-d.com

1 Gated Scaler Scaler will count triggers anytime the gated is active and will
suspend counting when the gate is inactive. The count is
stored in a 32-bit register.

2 Latched Scaler Scaler will count until a latch signal is received. The count
will be placed in 1kx32-bit FIFO and a new count will begin.

3 Gated –
Latched Scaler

Scaler will act as a latched scaler but will suspend count
counting when the gate is inactive.

If bit-3 of the configuration word is set, the scaler count will be reset via a master reset
trigger.

The configuration words for each scaler are combined in the scaler configuration register.
28-31 24-27 20-23 16-19 12-15 8-11 4-7 Bits 0-3

SCLR8 SCLR7 SCLR6 SCLR5 SCLR4 SCLR3 SCLR2 SCLR1

2.3.9 FGG Input Selector Registers [% +0x08C, 0x090, RW]
There are two FGG Input Selector Registers which are used to determine which signal
triggers the start of a FGG. Each FGG Input Selector Register sets the input trigger for 4
FGGs.

The input for each FGG is specified by a 5-bit configuration word which specifies which
input or signal will be used to trigger the gate. The table below shows the valid values
for the configuration word and which correspond to each triggerable signal.

Code Trigger Signal
0-7 I1-I8
8-15 FGG1-FGG8
16-19 CG1-CG-4
20 Common Input

The FGG input selection configuration words are combined into the two FGG input
selector registers.

FGG Input Selector A [% +0x08C, RW]
Bits24-28 Bits 16 – 20 Bits 8 – 12 Bits 0 - 4

TrigSelFGG4 TrigSelFGG3 TrigSelFGG2 TrigSelFGG1

FGG Input Selector B [% +0x090, RW]
Bits24-28 Bits 16 – 20 Bits 8 – 12 Bits 0 - 4

TrigSelFGG8 TrigSelFGG7 TrigSelFGG6 TrigSelFGG5

WIENER, Plein & Baus GmbH 14 www.wiener-d.com

2.3.10 NIM Output Selector Registers [% +0x08C, 0x090, RW]
There are two NIM output Selector Registers which are used to determine what signal is
present on each of the NIM outputs, O1-O8. Each NIM Ouput Selector Register sets 4
outputs.

The signal for each NIM output is specified by a 5-bit configuration word which specifies
which signal will be present on the NIM connector. The table below shows the valid
values for the configuration word and which code corresponds to each available signal.

Code Output Signal Comments
0-7 FGG1-FGG8 The output will be a FGG signal
8-15 TrEdg1-TrEdg8 The output will be a signal on the trailing edge of

FGG1-FGG8
16-19 CG1-CG-4 The output will be one of the combined gates, CG1-

CG2

The NIM output selection configuration words are combined into the two NIM output
selector registers.

NIM Output Selector A [% +0x094, RW]
Bits24-28 Bits 16 – 20 Bits 8 – 12 Bits 0 - 4

NIMOutSel 4 NIMOutSel 3 NIMOutSel 2 NIMOutSel1

NIM Output Selector B [% +0x098, RW]
Bits24-28 Bits 16 – 20 Bits 8 – 12 Bits 0 - 4

NIMOutSel 8 NIMOutSel 7 NIMOutSel 6 NIMOutSel 5

2.3.11 FGG Stop Selector Registers [% +0x094, 0x098, RW]
There are two Stop Selector Registers which are used to determine what signal resets an
FGG that is set as set-reset gate (SRG). A FGG set as a SRG will start the gate upon a
trigger signal (as set in the FGG Input selector registers). That gate will remain active
until a stop signal is received. The stop signal can come from a master reset (subject to
the FGGMResetMask in the Auxiliary Register), a VME reset via the Action Register, or
from a signal specified in the FGG Stop Selector Register.

The reset for each FGG is specified by a 5-bit configuration word which specifies which
signal will reset a given SRG. The table below shows the valid values for the
configuration word and which code corresponds to each available signal.

Code Reset Signal Comments
0-7 I1-I2 The reset will be performed upon a signal in the

corresponding input.
8-15 TrEdg1-TrEdg8 The reset be performed on the trailing edge of

FGG1-FGG8.
16-19 CG1-CG-4 The reset will be performed upon signal from one

of the combined gates, CG1-CG2.

WIENER, Plein & Baus GmbH 15 www.wiener-d.com

20 Common Input The rest will performed upon signal from the
common input.

The FGG Stop selection configuration words are combined into the two FGG Stop
selector registers.

FGG Stop Selector A [% +0x09C, RW]
Bits24-28 Bits 16 – 20 Bits 8 – 12 Bits 0 - 4

NIMOutSel 4 NIMOutSel 3 NIMOutSel 2 NIMOutSel1

FGG Stop Selector B [% +0x0A0, RW]
Bits24-28 Bits 16 – 20 Bits 8 – 12 Bits 0 - 4

NIMOutSel 8 NIMOutSel 7 NIMOutSel 6 NIMOutSel 5

2.3.12 Scaler Input Selector Registers [% +0x0A4, 0x0A8, RW]
There are two Scaler Input Selector Registers which are used to determine which trigger
signal is counted by a particular scaler. Each FGG Input Selector Register sets the input
trigger for 4 FGGs.

The input for each scaler is specified by a 5-bit configuration word which specifies which
input or signal will be counted. The table below shows the valid values for the
configuration word and which corresponds to each countable signal.

Code Trigger Signal
0-7 I1-I8
8-15 FGG1-FGG8
16-19 CG1-CG-4
20 Common Input

The FGG input selection configuration words are combined into the two FGG input
selector registers.

Scaler Input Selector A [% +0x0A4, RW]
Bits24-28 Bits 16 - 20 Bits 8 – 12 Bits 0 - 4

SclrInSel 4 SclrInSel 3 SclrInSel 2 SclrInSel 1

Scaler Input Selector B [% +0x0A8, RW]
Bits24-28 Bits 16 – 20 Bits 8 – 12 Bits 0 - 4

NIMOutSel 8 NIMOutSel 7 NIMOutSel 6 NIMOutSel 5

2.3.13 Combination Gate Mask Registers [% +0x0AC, 0x0B0, RW]
There are two Combination Gate Mask Registers which are used to setup the 4-
combination gates (CG) in the MDGG-8. The combination gates allow the user to trigger
a gate based on a combination of logic ANDs and Ors of the input signals (I1-I8). Each

WIENER, Plein & Baus GmbH 16 www.wiener-d.com

CG has two 8-bit mask words that ware used to determine whether to trigger the gate
using the following logic equation:

CGn = {[AMASK(n,1) AND NIM}OR {[AMASK(n,2) AND NIM]}

where NIM is an 8-bit word representing the status of the 8 NIM inputs.
The mask words for two CGs are combined in each Combination Gate Mask Register.

Combination Gate Mask A [% +0x0AC, RW]
Bits24-31 Bits 16 - 23 Bits 8 – 15 Bits 0 – 7

AMASK(2,2) AMASK(2,1) AMASK(1,2) AMASK(1,1)

Combination Gate Mask A [% +0x0B0, RW]
Bits24-31 Bits 16 - 23 Bits 8 – 15 Bits 0 – 7

AMASK(4,2) AMASK(4,1) AMASK(3,2) AMASK(3,1)

2.3.14 Scaler Data Registers [% +0x100 + 4 * channel, RO]
For each scaler, a 1kx32-bit FIFO exists to store the scaler data. The data is read via a
VME call to the Scaler data registers. The depth of the FIFO (number values in the
FIFO) for each scaler channel can be read from the corresponding Scaler Latch
Multiplicity Register. For scalers operated only in gated mode, the depth of the FIFO is
always 1. Gated scalers must be reset before being able to accept a subsequent gate.

The Scaler Data Register can be read out via VME block transfers (BLT).

2.3.15 Scaler Multiplicity Registers [% +0x120 + 4 * channel, RO]
The scaler multiplicity register stores the depth (number of 32-bit words) that are stored
in the Scaler Data FIFO for each scaler.

2.3.16 Coincidence Register [% +0x120 + 4 * channel, RO]
The Coincidence register shows the coincidence pattern of I1-I8 during a gate. This
pattern can be read out via VME and must be cleared before it will accept the next gate.

WIENER, Plein & Baus GmbH 17 www.wiener-d.com

3 REGISTER COMPARISON MDGG8 VS. MDGG-16

Offset MDGG-8 Register MDGG-16 Register Access Type
0x000 Firmware ID Firmware ID Read only
0x004 Global Register Global Register Read/write
0x008 Auxiliary Register Auxiliary Register Read/write
0x010 Delay DGG9 Read/write
0x014 Gate DGG9 Read/write
0x018 Delay DGG10 Read/write
0x01C Gate DGG10 Read/write
0x020 Delay DGG11 Read/write
0x024 Gate DGG11 Read/write
0x028 Delay DGG12 Read/write
0x02C Gate DGG12 Read/write
0x030 Delay DGG13 Read/write
0x034 Gate DGG13 Read/write
0x038 Delay DGG14 Read/write
0x03C Gate DGG14 Read/write
0x040 Delay FGG1 Delay FGG1 Read/write
0x044 Gate FGG1 Gate FGG1 Read/write
0x048 Delay FGG2 Delay FGG2 Read/write
0x04C Gate FGG2 Gate FGG2 Read/write
0x050 Delay FGG3 Delay FGG3 Read/write
0x054 Gate FGG3 Gate FGG3 Read/write
0x058 Delay FGG4 Delay FGG4 Read/write
0x05C Gate FGG4 Gate FGG4 Read/write
0x060 Delay FGG5 Delay FGG5 Read/write
0x064 Gate FGG5 Gate FGG5 Read/write
0x068 Delay FGG6 Delay FGG6 Read/write
0x06C Gate FGG6 Gate FGG6 Read/write
0x070 Delay FGG7 Delay FGG7 Read/write
0x074 Gate FGG7 Gate FGG7 Read/write
0x078 Delay FGG8 Delay FGG8 Read/write
0x07C Gate FGG8 Gate FGG8 Read/write
0x080 Action Register Action Register Write only
0x084 FGG Configuration FGG Configuration Read/write
0x088 Scaler Configuration Scaler Configuration Read/write
0x08C FGG Input Selector A FGG Input Selector A Read/write
0x090 FGG Input Selector B FGG Input Selector B Read/write
0x094 NIM Output Selector A NIM Output Selector A Read/write
0x098 NIM Output Selector B NIM Output Selector B Read/write
0x09C FGG Stop Selector A FGG Stop Selector A Read/write
0x0A0 FGG Stop Selector B FGG Stop Selector B Read/write
0x0A4 Scaler Input Selector A Scaler Input Selector A Read/write
0x0A8 Scaler Input Selector B Scaler Input Selector B Read/write
0x0AC Combination Gate Mask A Logical AND Mask A Read/write
0x0B0 Combination Gate Mask B Logical AND Mask B Read/write
0x0B4 IRQ Read/write

WIENER, Plein & Baus GmbH 18 www.wiener-d.com

0x0C0 Delay DGG15 Read/write
0x0C4 Gate DGG15 Read/write
0x0C8 Delay DGG16 Read/write
0x0CC Gate DGG16 Read/write
0x0D0 LED/NIM Select Read/write
0x100 Scaler Data 1 Scaler Data 1 Read only
0x104 Scaler Data 2 Scaler Data 2 Read only
0x108 Scaler Data 3 Scaler Data 3 Read only
0x10C Scaler Data 4 Scaler Data 4 Read only
0x110 Scaler Data 5 Scaler Data 5 Read only
0x114 Scaler Data 6 Scaler Data 6 Read only
0x118 Scaler Data 7 Scaler Data 7 Read only
0x11C Scaler Data 8 Scaler Data 8 Read only
0x120 Scaler Latch Multiplicity 1 Scaler Latch Multiplicity 1 Read only
0x124 Scaler Latch Multiplicity 2 Scaler Latch Multiplicity 2 Read only
0x128 Scaler Latch Multiplicity 3 Scaler Latch Multiplicity 3 Read only
0x12C Scaler Latch Multiplicity 4 Scaler Latch Multiplicity 4 Read only
0x130 Scaler Latch Multiplicity 5 Scaler Latch Multiplicity 5 Read only
0x134 Scaler Latch Multiplicity 6 Scaler Latch Multiplicity 6 Read only
0x138 Scaler Latch Multiplicity 7 Scaler Latch Multiplicity 7 Read only
0x13C Scaler Latch Multiplicity 8 Scaler Latch Multiplicity 8 Read only
0x140 Coincidence Register Coincidence Register Read only

WIENER, Plein & Baus GmbH 19 www.wiener-d.com

4 SOFTWARE SUPPORT
WIENER supplies software support for the MDGG-8 when it is used in combination with
the VM-USB, VME crate controller.

4.1 Microsoft Windows Support
WIENER support of the MDGG-8 under Microsoft Windows comes in two forms. The
first is an open source C++ DLL which will provide an easy way to develop custom
applications for the MDGG-8 and VM-USB. Additionally, a prepackaged executable is
available for setting up and reading the MDGG-8. This executable is an extension of the
XXUSBwin program shipped with the VM-USB.

4.2 Linux Support
WIENER supports Linux users by providing an open source C++ library to allow for
easy setup and readout of the MDGG-8 when used in combination with the WIENER
VM-USB.

4.3 MDGG-8 Library
The WIENER supplied open source library has the same structure for both Windows and
Linux users. While the library is designed to work with the WIENER VM-USB, users
should be able to modify to work with their VME crate controller as well since the source
code is available.

The CMDGG-8 library provides the CMDGG-8 class for performing all of the necessary
tasks for setting up and reading an MDGG-8 module.

4.3.1 CMDGG
The CMDGG is the constructor of the MDGG-8 class. It creates a CMDGG object that
all the member function will act upon.

CMDGG{
usb_dev_handle *hdev,
unsigned long base

};

Parameters
*hdev

[in] Pointer to the VM-USB device handle. (Returned by xx_usb_device_open
from the xx_usb library.)

Base

WIENER, Plein & Baus GmbH 20 www.wiener-d.com

[in] Base address of the MDGG-8 you wish to control.

Return Value
Returns a MDGG object.

Remarks

4.3.2 getFirmware
The getFirmware function will return the contents of the MDGG-8 firmware revision
register.

unsigned long getFirmware{
};

Parameters:

Return Value
On success, the content of the MDGG-8 firmware revision register is returned.
Otherwise, the return value is 0.

Remarks

4.3.3 getGlobalRegister
The getGlobalRegister function will return the content of the MDGG-8 global register.

unsigned long getGlobalRegister{
};

Parameters:

Return Value
On success, the content of the MDGG-8 global register is returned. Otherwise, the return
value is 0.

Remarks

4.3.4 setGlobalRegister
The setGlobalRegister function will write value into the global register of the MDGG-8.

int setGlobalRegister{
unsigned long value

WIENER, Plein & Baus GmbH 21 www.wiener-d.com

};

Parameters:
value

[in] value that will be written to the MDGG-8 global register.

Return Value
On success, the return value will be > 0. Otherwise the value will be <1.

Remarks

4.3.5 setGate
The setGate function writes a gate value to the specified FGG gate register.

int setGate{
int channel,
unsigned long gate

};

Parameters:
channel

[in] the FGG channel whose gate should be set (valid values 1-8)
gate

[in] the length to which the gate should be set in terms of 8ns steps.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.6 getGate
The getGate function returns the gate of the specified FGG gate register.

unsigned long getGate{
int channel

};

Parameters:
channel

[in] the FGG channel for which you wish to return the gate value.

Return Value

WIENER, Plein & Baus GmbH 22 www.wiener-d.com

On success, the value of the specified gate register is returned. Otherwise, the return
value is 0.

Remarks
The gate value is returned as it is stored in the gate register. To obtain the gate length,
multiply the non-zero return value by 8ns.

4.3.7 setDelay
The setDelay function writes a delay value to the specified FGG delay register.

int setDelay{
int channel,
unsigned long delay

};

Parameters:
channel

[in] the FGG channel whose gate should be set (valid values 1-8)
delay

[in] the length to which the delay should be set in terms of 8ns steps.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.8 getDelay
The getDelay function returns the delay of the specified FGG delay register.

unsigned long getDelay{
int channel

};

Parameters:
channel

[in] the FGG channel for which you wish to return the delay value.

Return Value
On success, the value of the specified delay register is returned. Otherwise, the return
value is 0.

Remarks

WIENER, Plein & Baus GmbH 23 www.wiener-d.com

The delay value is returned as it is stored in the delay register. To obtain the delay
length, multiply the non-zero return value by 8ns.

4.3.9 setActionRegister
The setActionRegister function writes a specified value to the action register.

int setActionRegister {
unsigned long value

};

Parameters:
value

[in] the value to write to the action register.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks
The action register acts as a momentary switch, when a value written to the register, some
action is performed and the register is cleared in the next FPGA cycle.

4.3.10 setFGGConfiguration
The setFGGConfiguration function writes a specified value to the FGG configuration
register.

int setFGGConfiguration {
unsigned long value

};

Parameters:
value

[in] the value to write to the FGG configuration. Register.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.11 getFGGConfiguration
The getFGGConfiguration function returns the value in the FGG Configuration register.

WIENER, Plein & Baus GmbH 24 www.wiener-d.com

unsigned long getFGGConfiguration{
};

Parameters:

Return Value
On success, the value of the FGG Configuration register is returned. Otherwise, the
return value is 0.

Remarks

4.3.12 setScalerConfiguration
The setScalerConfiguration function writes a specified value to the Scaler configuration
register.

int setScalerConfiguration {
unsigned long value

};

Parameters:
value

[in] the value to write to the Scaler configuration register.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.13 getScalerConfiguration
The getFGGConfiguration function returns the value in the FGG Configuration register.

unsigned long getScalerConfiguration{
};

Parameters:

Return Value
On success, the value of the ScalerConfiguration register is returned. Otherwise, the
return value is 0.

Remarks

WIENER, Plein & Baus GmbH 25 www.wiener-d.com

4.3.14 setFGGInputSelector
The setFGGInputSelector function writes a given value to the specified
FGGInputSelector register.

int setFGGInputSelector {
int reg,
unsigned long value

};

Parameters:
Reg

[in] which FGGInputSelector register to write (1 or 2).
value

[in] the value to write to the FGGInputSelector register.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.15 getFGGInputSelector
The getFGGInputSelector function returns the value of the specified FGGInputSelector
register.

unsigned long getFGGInputSelector{
int reg,

};

Parameters:
Reg

[in] which FGGInputSelector register to read (1 or 2).

Return Value
On success, the value of the specified FGGInputSelector register is returned. Otherwise,
the return value is 0.

Remarks

4.3.16 setNIMOutputSelector
The setNIMOutputSelector function writes a given value to the specified
NIMOutputSelector register.

int setNIMOutputSelector {

WIENER, Plein & Baus GmbH 26 www.wiener-d.com

int reg,
unsigned long value

};

Parameters:
Reg

[in] which NIMOutputSelector register to write (1 or 2).
value

[in] the value to write to the NIM Output Selector register.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.17 getNIMOutputSelector
The getNIMOutputSelector function returns the value of the specified
NIMOutputSelector register.

unsigned long getNIMOutputSelector{
int reg,

};

Parameters:
Reg

[in] which NIMOutputSelector register to read (1 or 2).

Return Value
On success, the value of the specified NIMOutputSelector register is returned.
Otherwise, the return value is 0.

Remarks

4.3.18 setFGGStopSelector
The setFGGStopSelector function writes a given value to the specified FGGStopSelector
register.

int setFGGStopSelector {
int reg,
unsigned long value

};

WIENER, Plein & Baus GmbH 27 www.wiener-d.com

Parameters:
Reg

[in] which FGGStopSelector register to write (1 or 2).
value

[in] the value to write to the FGGStopSelector register.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.19 getFGGStopSelector
The getFGGStopSelector function returns the value of the specified FGGStopSelector
register.

unsigned long getFGGStopSelector{
int reg,

};

Parameters:
Reg

[in] which FGGStopSelector register to read (1 or 2).

Return Value
On success, the value of the specified FGGStopSelector register is returned. Otherwise,
the return value is 0.

Remarks

4.3.20 setScalerInputSelector
The setScalerInputSelector function writes a given value to the specified
ScalerInputSelector register.

int setScalerInputSelector {
int reg,
unsigned long value

};

Parameters:
Reg

[in] which ScalerInputSelector register to write (1 or 2).
value

[in] the value to write to the ScalerInputSelector register.

WIENER, Plein & Baus GmbH 28 www.wiener-d.com

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

4.3.21 getScalerInputSelector
The getScalerInputSelector function returns the value of the specified ScalerInputSelector
register.

unsigned long getScalerInputSelector{
int reg,

};

Parameters:
Reg

[in] which ScalerInputSelector register to read (1 or 2).

Return Value
On success, the value of the specified ScalerInputSelector register is returned.
Otherwise, the return value is 0.

Remarks

4.3.22 setLogicalMask
The setLogicalMask function writes a given value to the specified LogicalMask register.

int setLogicalMask {
int reg,
unsigned long value

};

Parameters:
Reg

[in] which LogicalMask register to write (1 or 2).
value

[in] the value to write to the LogicalMask register.

Return Value
On Success, the return value will be >0. Otherwise the return value will be <1.

Remarks

WIENER, Plein & Baus GmbH 29 www.wiener-d.com

4.3.23 getLogicalMask
The getLogicalMask function returns the value of the specified LogicalMask register.

unsigned long getLogicalMask{
int reg,

};

Parameters:
Reg

[in] which LogicalMask register to read (1 or 2).

Return Value
On success, the value of the specified LogicalMask register is returned. Otherwise, the
return value is 0.

Remarks

4.3.24 getScalerData
The getScalerData function returns the scaler value currently stored for a specified
channel. The number of values currently stored for a given channel can be read via the
getScalerMultiplicity function

unsigned long getScalerData{
int channel,

};

Parameters:
channel

[in] which which scaler to read (1-8)

Return Value
On success, the scaler value is returned. Otherwise, the return value is 0.

Remarks

4.3.25 getScalerMulitplicity
The getScalerMulitplicity function returns the depth of the scaler FIFO for a specified
channel.

unsigned long getScalerMulitplicity{
int channel,

WIENER, Plein & Baus GmbH 30 www.wiener-d.com

};

Parameters:
channel

[in] which scaler multiplicity to read (1-8)

Return Value
On success, the scaler multiplicity is returned. Otherwise, the return value is 0.

Remarks

4.3.26 getCoincidenceRegister
The getCoincidenceRegister function returns the current value of the coincidence
register.

unsigned long getCoincidenceRegister{
};

Parameters:

Return Value
On success, the coincidence register is returned. Otherwise, the return value is 0.

Remarks

WIENER, Plein & Baus GmbH 31 www.wiener-d.com

5 FIRMWARE UPGRADE PROCEDURE

Hardware needed: VM-USB
Software: XXUSBWinAppli.exe

1. Check Base address of MDGG-16 (following example shown for factory default
bade address 0x100000)

2. Check current Firmware Version with XXUSBWinAppli.exe:
Leave Jumper JP 25 in right (RUN) position, Power VME crate,
Run XXUSBWinAppli.exe
Read A24 from Address 0x100000 (hex) should return firmware ID

 Response: 5C40 0100

3. Program new Firmware
Set Jumper 25 into left (Programm Position)
Run XXUSBWinAppli.exe
Start Go to “Flash ROM Operations” tab
Select MDGGE

WIENER, Plein & Baus GmbH 32 www.wiener-d.com

Type in value for Base Address (bits 19 to 23), is 2 for factory default!!!
Click on program and select the right firmware file

When programming the red F LED will flash and the red V LED will be flashing very
fast / be nearly on (VME bus activitity).

4. Check new Firmware Version with XXUSBWinAppli.exe:

WIENER, Plein & Baus GmbH 33 www.wiener-d.com

Return Jumper JP 25 into right (RUN) position, Power VME crate,
Run XXUSBWinAppli.exe
Read A24 from Address 100000 (hex) should return firmware ID
Compare with original version

