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Abstract

We present the hybrid ASP solvelingcon combining the simple modeling language and the high
performance Boolean solving capacities of Answer Set Rrogring (ASP) with techniques for
using non-Boolean constraints from the area of Constraiog@mming (CP). The newlingcon
system features an extended syntax supporting globalredamistand optimize statements for con-
straint variables. The major technical innovation impmotree interaction between ASP and CP solver
through elaborated learning techniques basedrreducible inconsistent set#\ broad empirical
evaluation shows that these techniques yield a performamzevement of an order of magnitude.
To appear in Theory and Practice of Logic Programming.

1 Introduction

clingconis a hybrid solver for Answer Set Programming (ASP;_(Bard&3)), combin-
ing the simple modeling language and the high performancddan solving capacities of
ASP with techniques for using non-Boolean constraints ftbenarea of Constraint Pro-
gramming (CP). Althouglklingcoris solving components follow the approach of modern
Satisfiability Modulo Theories (SMT_(Biere et al. 2009, @ker 26)) solvers when com-
bining the ASP solveclasp with the CP solveigecode(gecodg)clingcon furthermore
adheres to the tradition of ASP in supporting a correspandindeling language by ap-
peal to the ASP groundgringo. Although in the current implementation the theory solver
is instantiated with the CP solvgecode the principal design oflingconalong with the
corresponding interfaces are conceived in a generic wayngiat arbitrary theory solvers.

The underlying formal framework, defining syntax and sencandf constraint logic
programs, and the principal algorithms, were presente@é@béer et al. 2009). This initial
clingconsystem 0.1.0 was based olingo 2.0.2 andgecode2.2.0. Unlike this, the new
version ofclingconis based ortlingo 3.0.4 andyecodel3.7.1. Apart from major refactor-
ing, it features an extended syntax supporting global caimts and optimize statements
for constraint variables. Also, it allows for more fine-grad configurations of constraint-
based lookahead, optimization, and propagation delayseMer, the major technical in-
novation improves the interaction between ASP and CP sttveugh elaborated learning
techniques. We introduce filtering methods for conflicts srasons based dmmeducible
inconsistent setA broad empirical evaluation shows that these techniqiedd @ perfor-
mance improvement of an order of magnitude.
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2 Theclingcon approach

The input language aflingconextends the one ajringo (Gebser et al.) by CP-specific
operators marked with a precedifigsymbol (cf. Sectiofil4). After grounding, a propo-
sitional program is then composed of regular and constedorhs, denoted byl andC,
respectively. The set of constraint atoms induces an orglicenstraint satisfaction prob-
lem (CSP)(V, D,C), whereV is a set of variables with common domaih andC' is

a set of constraints. This CSP is to be addressed by the pondmg CP solver. As de-
tailed in (Gebser et al. 2009), the semantics of such canstaaic programs is defined
by appeal to a two-step reduction. For this purpose, we densi regular Boolean as-
signment ovetd U C (in other words, an interpretation) and an assignmen ab D
(for interpreting the variable¥” in the underlying CSP). In the first step, the constraint
logic program is reduced to a regular logic program by ewalgats constraint atoms. To
this end, the constraints ifi associated with the program’s constraint atahesre eval-
uated w.r.t. the assignment bfto D. In the second step, the common Gelfond-Lifschitz
reduct [(Gelfond and Lifschitz 1991) is performed to detemmivhether the Boolean as-
signment is an answer set of the obtained regular logic progif this is the case, the
two assignments constitute a (hybrid) constraint answesfdte original constraint logic
program.

In what follows, we rely upon the following terminology. Weeisigned literals of form
Ta andFa to express that an atadnis assignedr or F, respectively. That isTa andFa
stand for the Boolean assignments» T anda — F, respectively. We denote the com-
plement of such a literal by /. That is, Ta = Fa andFa = Ta. We represent a Boolean
assignment simply by a set of signed literals. Sometimessa#eict such an assignmest
to its regular or constraint atoms by writitdj 4 or A|c, respectively. For instance, given
the regular atomger son( adam) ' and the constraint atonwor k( adam $> 4’, we
may form the Boolean assignmefifper son( adam) , Fwor k(adan) $> 4}.

We identify constraint atoms ié with constraints iV, D, C) via a functiornry : C —

C. Provided that each constraint C has a complememtc C, like 'z =y ="'z # ¥/
or‘z <y =‘z >y and vice versa, we extengto signed constraint atoms ower
¢ if£="Tc
W)_{ ¢ if¢=Fc
For instance, we gety(Fwork(adam $> 4) = work(adam) < 4, where
wor k(adam € V is a constraint variable andvork(adam) < 4) € C'is a constraint.
An assignment satisfying the last constrainfisork(adam) — 3}.

Following (Gebser et al. 2007), we represent Boolean caimirissuing from a logic
program under ASP semantics in termsiofoodgDechter 2003). This allows us to view
inferences in ASP as unit propagation on nogoodsio§oodis a set{o1,...,0,,} of
signed literals, expressing that any assignment continin. . . , o,,, is unintended. Ac-
cordingly, a total assignmem is a solutionfor a setA of nogoods ifé ¢ A for all
0 € A. Whenevep C A, the nogood is said to beconflictingwith A. For instance, given
atomsa, b, the total assignmertT'a, Fb} is a solution for the set of nogoods containing
{Ta, Tb} and{Fa,Fb}. Likewise, {Fa, Th} is another solution. Importantly, nogoods
provide us with reasons explaining why entries must (ndrmgeto a solution, and look-
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Fig. 1: Architecture otlingcon

back techniques can be used to analyze and recombine inheasons for conflicts. We
referto (Gebser et al. 2007) on how logic programs are tatedinto nogoods within ASP.

3 The clingcon Architecture

Although clingcoris solving components follow the approach of modern SMT eV
when combining the ASP solvetaspwith the CP solvegecode clingconfurthermore
adheres to the tradition of ASP in supporting a correspandiondeling language based
on the ASP groundegringo. The resulting tripartite architecture dingconis depicted in
Figure[d. Although in the current implementation the theswiyer is instantiated with the
CP solvergecodethe principal design aflingconalong with the corresponding interfaces
are conceived in a generic way, aiming at arbitrary theolyess.

Following the workflow in Figur¢ll, the first extension contethe input language of
gringo with theory-specific language constructs. Just as withleegtioms, the grounding
capabilities ofgringo can be used for dealing with constraint atoms containingdirder
variables. As regards the currasiingconsystem, the language extensions allow for ex-
pressing constraints over integer variables. As we detafldctior[ 4, this involves arith-
metic constraints as well as global constraints and opétitin statements. These con-
straints are treated as atoms and passedia&pvia the standardringo-claspinterface,
also used irclingo, the monolithic combination ofiringo and clasp Information about
these constraints is furthermore directly shared with tie®tty propagator and in turn the
theory solver, vizgecodeln the new version oflingcon the theory propagator is imple-
mented as a post propagator, as furnishedlbgpll Theory propagation is done in the
theory solver until a fixpoint is reached. In doing so, dedidenstraint atoms are trans-
ferred to the theory solver, and conversely constraintssehuth values are determined
by the theory solver are sent backdlaspusing a corresponding nogood. Note that theory
propagation is not only invoked when propagating partialggsnents but also whenever
a total Boolean assignment is found. Whenever the theomesaletects a conflict, the
theory propagator is in charge of conflict analysis. Apastrfrreverting the state of the
theory solver upon backjumping, this involves the cruciekt of determining a conflict
nogood (which is usually not provided by theory solversahe case offecodé. This is
elaborated upon in Sectibh 5. Similarly, the theory propaga in charge of enumerating
constraint variable assignments, whenever needed. fimadlnote that the theory propa-
gator is informed whenever constraint atoms are decided.allows for updating watches

1 Post propagators provide an abstraction easlaggs extensibility with more elaborate propagation mecha-
nisms. To this end;laspmaintains a list of post propagators that are consecutmelgessed after unit propa-
gation. Also, lookahead and unfounded-set checking aré&emmgnted irclaspas post propagators.
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Listing 1: Example of a constraint logic program

1 $donmi n(0..10).

2 person(adamsmith;|ea;john).

3 1{tean(A B) : person(B) : B!= A}l :- person(A), A == adam
4  {friday}.

6 work(A) $+ work(B) $> 6 :- tean(A B).

7 work(B) $- work(adam) $== 1 :- friday, tean{adam B).

8 :- teanm(adam|lea), not work(lea) $== work(adam).

9 work(B) $== 0 :- person(B), not tean(adamB), B != adam

11 $count[ work(A) $== 8 : person(A)] $== fulltime.

13 $maxi m ze{work(4) : person(A)}.

for constraint literals, even before propagation is lawttciThis is implemented bslasps
call-back routines, another new featurectd#spsupporting theory solving.

4 The clingcon Language

We explain the syntax of our constraint logic programs vie &ample in Listind11.
Suppose Adam wants to do house renovation with the help eétfiiends. We encode
the problem as follows. In Liniel 1 we restrict all constraiatigbles to the domaift), 10]
as nobody wants to work more than 10 hours a day. In [ine 3 westhteams. They
agreed that each team has to work more than six hours a das{@)iwithin this line we
show the syntax of linear constraints. They can be used ihdhd or body of a rdﬁa We
use the$ sign in front of every relation and function symbol refegito the underlying
CSP. In this newclingconversion this also applies to arithmetic operators to betpa-
rate them frongringo operators. Many standard arithmetical operators are stgghdike
plus@), times§) and absolute(s). We use the grounding capabilitiesgringoto create
the constraint variables. Grounding Lide 6 yields:

work (adam) $+ work(smith) $> 6 :- tean{adamsmith).

work(adam) $+ work(lea) $> 6 :- tean{adamlea).

work(adam) $+ work(john) $> 6 :- tean{adamjohn).
We created three ground rules containing three differensttaints, using four different
constraint variables. Note that the constraint variablegmot been defined beforehand.
All variables occurring in a constraint are automaticaliystraint variables. On Fridays,
Adam has to pick up his daughter from sports and therefor&swone hour less than his
partner (Lind¥). Furthermore Lea and Adam are a couple anidlele to have an equal
work load if they are in the same team (Linke 8). Finally, Lin@r@vents persons from
working if they are not teammates.

With this little constraint logic program, we want to showwhfor example quanti-
ties can be easily expressed. Constraints and constraiabies fit naturally into the logic
program. Not representing quantities explicitly with posjtional variables eases the mod-
elling of problems and also decreases the size of the gragiclprogram.

Global ConstraintsIn Line[I1 we use a global constraint. This is a new feature of
clingcon Global constraints capture relations between a non-fixedher of variables. As

2 Constraint atoms in the head are shifted to the negative. body
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with aggregates igringo, we can use conditional literals (Syrjarien) to represeesé
sets of variables. In the example we can seeuntconstraint. Grounding this yields:
$count [ work (adam) $== 8, work(smith) $== 8,
work(lea) $== 8, work(john) $== 8] $== fulltime.

It constrains the number of variables{mor k( adan) , wor k(sm t h) ,wor k(| ea),
wor k(j ohn) } that are equal t®3, to be equal tof ul | ti ne. Constraint variable
ful | time counts how many persons are working full time. Global caists do have a
similar syntax to propositional aggregates. Also their @efics is similar tacountaggre-
gates in ASP (cfL(Schulte et al. 2012)). But global constsadnly constrain the values of
constraint variables, not propositional ones.

Clingconalso supports the global constradfistinct, where

$di stinct{work(A) : person(A)}.

means that all persons should have a different workload.ihall values assigned to con-
straint variables ifwor k( adamn) ,wor k( smi t h) ,wor k(| ea) ,wor k(j ohn) } have
to be distinct from each other. This constraint could als@xgressed using a quadratic
number of inequalities. Using a single dedicated constrainsually much more efficient
in terms of memory consumption and runtime.

As global constraints are usually not supported in a nedatedin a CP solver, we have
the syntactic restriction that all global constraints mhestome facts during grounding and
therefore may only occur in the head of rules. Further glaoaistraints can easily be
integrated into this generic framework.

A valid solution to our constraint logic program in Listild cbntains the regular
literal Tt eam(adam smi t h), but also constraint literals lik&'wor k(| ea) $==0,
Twor k(j ohn) $==0 and Twor k( adan) $+wor k(smni t h) $>6. The solution also
contains assignments to constraint variables izkek ( adanj —8,wor k( smi t h) —3,
wor k(| ea) —0,wor k(j ohn) —0andful | ti ne—1.

Optimization In Line [I3 we give a maximize statement over constraint -vari
ables. This is also a new feature ofingcon We maximize the sum over a set
of variables and/or expressions. In this case, we try to mie wor k(adan) $+
work(sm th) $+ work(lea) $+ work(john). For optimization statements
over constraint variables, we also rely on the syntaxgdhgo’s propositional op-
timization statements. We support minimization/maxirtia and multi-level opti-
mization. To distinguish propositional and constrainttesteents, we precede the lat-
ter with a $ sign. One optimal solution to the problem contains the psepo
tional literal Tt eanm( adam j ohn), and the constraint literal@wor k(| ea) $==0,
Twor k( smi t h) $==0, andTwor k( adam $+wor k(j ohn) $>6. To maximize work
load, the constraint variables are assignvemt k( adan) —10, wor k(smi t h) —0,
wor k(| ea) —0,wor k(j ohn) —210 andf ul | ti me—0.

To find a constraint optimal solution, we have to combine theneeration techniques
of claspwith the ones from the CP solver. Therefore, when we first entay a full propo-
sitional assignment, we search for an optimal (w.r.t. toojpmize statement) assignment
of the constraint variables using the search engine of theaB#er. Let us explain this with
the following constraint logic program.

$donmai n( 1. .100).
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a - x $ x $< 25.

$mi ni mi ze{x}.
Assumeclasphas computed the full assignmefffx $* x $< 25 Fa}. Afterwards,
we search for the constraint optimal solution to the comstnaariablex which yields
{x — 5}. Given this optimal assignment, a constraint can be addeHetdCP solver
that all further solutions shall be below/above this optim{x $<5). This constraint will
now restrict all further solutions to be “better”. We enuaterfurther solutions, using the
enumeration techniques dfasp So the next assignment{&x $* x $< 25,Ta} and
the CP solver finds the optimal constraint variable assigrife— 1}. Each new solution
restricts the set of further solutions, so our constrairthianged toX$<1) which then
allows no further solutions to be found.

5 Conflict Filtering in clingcon

The development of Conflict Driven Clause Learning (CDCLpasithms was a
major breakthrough in the area of SAT. Also, CDCL is crucial $MT solving
(cf. (Nieuwenhuis et al. 2006)). A prerequisite to combir@&2CL-based SAT solver with
a theory solver is the possibility to generate good conflictd reasons originating in the
underlying theory. Therefore, modern SMT solvers use their specialized theory propa-
gators that can produce such witnes§#mgconinstead uses a black-box approach regard-
ing theory solving. In fact, off-the-shelf CP solvers, ltfecodedo usually not provide any
reason for their underlying inference. As a consequenag]icband reason information
was so far only crudely approximateddtingcon We address this shortcoming by devel-
oping mechanisms for extracting minimal reasons and cesfiiom any CP solver using
monotone propagators. We assume that the reader has basitekige on CDCL-based
ASP solving, and direct the interested reader to (Gebsér20@y).

Whenever the CP solver finds out that the set of constrairite@nsistent under the
current assignmem, a conflicting nogoodV must be generated, which can then be used
by the ASP solver in its conflict analysis. Thienpleversion of generating the conflicting
nogoodXN, is just to take the entire assignment of constraint ligerhd this way, all yet
decided constraint atoms constitife= {¢ | ¢ € A|¢}. In this case, the corresponding list
of inconsistent constraints is

I=[~(0)]£e Al 1
In order to reduce this list of inconsistent constraints &nfihd the real cause of the con-
flict, we apply anirreducible Inconsistent S€tlS) algorithm. The term IIS was coined
in (van Loon 1981) for describing inconsistent sets of a@ists having consistent sub-
sets only. We use the concept of an IIS to find the minimal cafiseconflict. With this
technique, it is actually possible to drastically reducehsexhaustive sets of inconsistent
constraints as in{1) and to create a much smaller conflicoodglt is now possible to
apply an IS algorithm to every conflicting set of constraiim order to providelaspwith
smaller nogoods. This enhances the information contertiefdarnt nogood and hope-
fully speeds up the search process by better pruning thetsspaceClingconnow fea-
tures several alternatives to reduce such conflicts. Teetids we build upon the approach
of (Chinneck and Dravinieks 1991) who propose differenbethms for computing 11Ss,
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Algorithm 1: DELETION_FILTERING

Input : Aninconsistent list of constrainfs= [c1, . . ., ¢,].
Output: An irreducible inconsistent list of constraints.

1141
2 while ¢ < |I| do
3 if I\ ¢; is inconsistenthen
4 | I+ 1I\g
else
| ii+1

o

7 return |

among them the so-callddeletion Filteringalgorithm. In what follows, we first present
the original idea oDeletion Filteringand afterwards propose several refinements that can
then be used to reduce inconsistent lists of constrainteicdntext of ASP modulo CSP.

Deletion Filtering Given an inconsistent list of constraints= [c1,...,c,] as in [1)
theDeletion FilteringAlgorithm[d reduces it to an irreducible list. We test forleage I
whetherl \ ¢; is inconsistent or not. If it is inconsistent we can restagetwhole algorithm
with the list] \ ¢; continuing with the next.

The result of this simple approach is a minimal inconsistétt as we can see
in the following example. Suppose we branch @hean{adam | ea). Unit prop-
agation implies the literalf'wor k(| ea) $==wor k( adan) , Twor k(j ohn) $==0,
Twor k(smi t h) $==0, andTwor k( adan) $+wor k(| ea) $>6. At this point we can-
not do any constraint propagaﬂﬁ)and make another choic&f r i day, and some unit
propagation, resulting iwor k(| ea) $- wor k( adam) $==1. As unit propagation is
at fixpoint, the CP solver checks the constraints in the glaasignmentl|. for consis-
tency. As it is inconsistent, simpleconflicting nogood would b&/ = {¢ | £ € A|¢}. To
minimize this nogood, we now appDQeletion Filteringto the listI as defined in[{1):

I=[(0)[€e Al
= [work(lea) = work(adam), work(john) = 0, work(smith) = 0]
o [work(adam) + work(lea) > 6, work(lea) — work(adam) = 1]

Fori = 1, we testiwork(john) = 0,work(smith) = 0, work(adam) + work(lea) >

6, work(lea) — work(adam) = 1], but it does not lead to inconsistency (Lide 3). Next list
to test isfwork(lea) = work(adam), work(smith) = 0, work(adam) + work(lea) >

6, work(lea) — work(adam) = 1] which restricts the domains efor k( adam and
wor k(| ea) to (). As this is inconsistent, we remousrk(john) = 0 from I and go on,
also removinguork(smith) = 0 andwork(adam) + work(lea) > 6. We end up with
the irreducible listl = [work(lea) = work(adam), work(lea) — work(adam) = 1],
and can now build a much smaller conflicting nogadd = {y~!(c) | ¢ € I} =

3 w.l.o.g. we assume arc consistency (Mohr and Hendersor) 1986
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Algorithm 2: FORWARD_FILTERING

Input : Aninconsistent list of constrainfs= [c1, . . ., ¢,].
Output: An irreducible inconsistent list of constraints

11«

2 while I’ is consistentlo

3 T+ I

4 i+ 1

5 while T is consistentio
6 T+ To C;

7 L 11+ 1

8 I/ <— I/ 0o C;

9 return I’

{Twor k(| ea) $==wor k( adam) , Twor k(| ea) $- wor k( adam) $==1} as this re-
ally describes the cause of the inconsistency.

In most CP solvers, propagation is done in a constraint sfgdde space contains the
constraints and the variables of the problem. After doirappgation, the domains of the
variables are restricted. Normally in CP solvers lgecodethis effect cannot be undone.
As long as we add further constraints to the constraint sifasés no problem, as another
constraint restricts the domain of the variables even nibne want to remove a constraint
from a constraint space we have to create a new space cowgtainly the constraints we
want to apply. Then we have to redo all the propagation. Ehighy we identified Lin€}4
in Algorithm [T as an efficiency bottleneck. To address thisbfgm, we propose some
derivatives of the algorithm.

Forward Filtering. Algorithm[2 is designed to avoid resetting the search spéattee CP
solver. It incrementally adds constraints to a testingllisstarting from the first assigned
constraint to the last one (lines 5 ddd 6). Remember thagimentally adding constraints
is easy for a CP solver as it can only further restrict the domédf our test listl” becomes
inconsistent we add the currently tested constraint to ésalt!’ (lines[3 andB). If this
result is inconsistent (Link€l 2), we have found a minimal difinconsistent constraints.
Otherwise, we start again, this time adding all yet foundst@intsl’ to our testing list"
(Line[d). Now we have to create a new constraint space. Bunhéngimentally increasing
the testing list, we already reduced the number of potecaiadlidates that contribute to the
IIS, as we never have to check a constraint beyond the lastdacishstraint. We illustrate
this again on our example. We start Algorithin 2 with= I’ = [ and

I = [work(lea) = work(adam), work(john) = 0, work(smith) = 0]
o [work(adam) + work(lea) > 6, work(lea) — work(adam) = 1]

in Line[3. We addwork(lea) = work(adam) to T', as this constraint alone is consis-
tent, we loop and add constraints ufffil= 7. As this list is inconsistent, we add the last
constraintwork(lea) — work(adam) = 1to I’ in Line[d. We can do so, as we know
that the last constraint is indispensable for the incoesist. AsI’ is consistent we restart
the whole procedure, but this time settiig= I’ = [work(lea) — work(adam) = 1]
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Algorithm 3: RANGE_FILTERING

Input : Aninconsistent list of constrainfs= [c1, . . ., ¢,].
Output: A (possibly smaller) inconsistent list of constraitts

11+

2414 mn

3 while I’ is consistentlo
4 \;I/(—I/OCZ'

5 14—1—1

6 return I’

in Line[3. Please note that, evenlifwould contain further constraints, we would never
have to check a constraint behinebrk(lea) — work(adam) = 1. Our testing list
already contained an inconsistent set of constraints,ezprently we can restrict our-
self to this subset. Now we start the loop again, addingk(lea) = work(adam)

to T'. On their own, these two constraints are inconsistent, asthxists no valid pair
of values for the variables. So we ad@rk(lea) = work(adam) to I’, resulting in

I' = [work(lea) — work(adam) = 1,work(lea) = work(adam)]. This is then our
reduced list of constraints and the same IIS as we got witlb#ietion Filteringmethod
(as it is the only IIS of the example). But this time we only dee one reset of the con-
straint space (Linkl3) instead of five.

Backward Filtering The basic idea of this algorithm is the same as in Algorithmd
this time, we reverse the order of the inconsistent comgtiait. Therefore, we first test
the last assigned constraint and iterate to the first. Inthiswe want to accommodate the
fact, that one of the literals that was decided on the cudteaision level has to be included
in the conflicting nogood. Otherwise we would have recogihibe conflict before.

Range Filtering This algorithm does not aim at computing an irreduciblediscon-
straints, but tries to approximate a smaller one to find a tnazteoff between reduction of
size and runtime of the algorithm. Therefore, as shown iroAtgm[3, we move through
the reversed list of constrainfsand add constraints to the resiltuntil it becomes incon-
sistent. In our example we cannot reduce the inconsistraiymore, as the first and the
last constraint is needed in the 1IS.

Connected Components Filteringlgorithm[4 tries to make use of the structure of the
constraints. Therefore, it does not go forward or backwhardugh the list of constraints
but follows their used constraint variables. We start wititializing our result/’ and the
test listT and set our set of observed constraint variablés the variables inside the last
assigned constraint of our ligt(lines[2 td4). Then we start our main loop, remembering
how many variables we have seen so far ([[ihe 6). We go oveevarsed list of constraints
I (Line[8). If we find a constraint that contains some of theadseinspected variables
(Line[), we add it to our testing list' and extend the set of already seen variahles
We then continue iterating until our testing liEtbecomes inconsistent (Lihe]13). In this
case we add the last tested constraint to our resulf’lifitine [I4). If this list is already
inconsistent (Lingl5), we return a minimal list of consttai(Line[19). If not, we restart the
loop. But this time the set of already seen variables isiotstt to the set of variables in the
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Algorithm 4: CONNECTED.COMPONENTFILTERING

Input : Aninconsistent list of constrainfs= [c1, . . ., ¢,].
Output: An irreducible inconsistent list of constraints

1 if size(I) = 0 then return ()
2 I'+ ]

3T« ]

4 w <+ vars(cy)

5 while I’ is consistentlo
6 count + |w|

7 1+ size(I)

8 while T is consistent and > 0 do
9 if wNwars(c;) # @ then

10 L T+ Tocg

w <+ wUwvars(c;)

12 14—1—1

f T is inconsistenthen

13

14 I'—T'og

15 w <+ {y | y € vars(z) wherez in I'}
16 I + remove(T, ¢;)

17 T+ I

18 if count = |w|thenw < {y | y € vars(z) wherezin I}
19 return I’

constraints inl’. Furthermore, we only iterate over the constraints fromtéiselist (Line
[18), as this possibly shorter list is also an inconsistestdf constraints. If at one point
we have not found any non tested constraint that has commaabies with the tested
ones (this can be the case if the last constraint of our irgut lis not contained in the
minimal list of constraints), we simply add all variables.tdn Line[18 so that we do not
miss any constraint in the next iteration. With this aldurit we want to take account of
the internal structure of the constraints. For our exanthle,means we start with the last
constraintwork(lea) — work(adam) = 1 and completely ignoreork(john) = 0 and
work(smith) = 0 as their variables do not occur anywhere in the other canssraNe
end up with the same IS as witforward Filtering without checking all constraints that
do not have common variables with the constraints from t8e I

Connected Components Range Filterifidpis algorithm is a combination of th@on-
nected Components Filteringnd theRange Filteringalgorithms. That is why it does
not compute an irreducible list of constraints. We move digiothe list] like in Al-
gorithm[4 and once our test li§t becomes inconsistent we simply return it. This shall
combine the advantages of using the structure of the camtstia theConnected Compo-
nents Filteringand the simplicity of thé&kange Filtering We ignorework(john) = 0 and
work(smith) = 0and end up with” = {work(lea) —work(adam) = 1, work(adam)+
work(lea) > 6,work(lea) = work(adam)}.
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6 Reason Filtering inclingcon

Up to now we only considered reducing an inconsistent listafstraints to reduce
the size of a conflicting nogood. But we can do even more. If Gfe solver propa-
gates the literal, a simplereason nogood i&v = {¢ | ¢ € Alc} U {I}. If we have
for exampled|c = {Twor k(j ohn) $==0, Twor k(| ea) - wor k( adan) $==1}, the
CP solver propagates the liter&wor k(| ea) $==wor k( adam . To use the pro-
posed algorithms to reduce a reason nogood we first have &decemn inconsistent
list of constraints. AsJ = [y(¢) | ¢ € Alc] implies (1), this inconsistent list is
I = Jo[y()] = [work(john) = 0,work(lea) — work(adam) = 1, work(lea) =
work(adam)]. So we can now use these various filtering methods also to re-
duce reasons generated by the CP solver. In this case thecededreason is
{Twor k(| ea) - wor k( adam $==1, Twor k(| ea) $==wor k( adam) }. Smaller rea-
sons reduce the size of conflicts even more, as they are ootestrusing unit resolution.
These two new features aflingcon are available via the command line parame-
ters:- - csp-reduce-conflict=Xand--csp-reduce-reason=X whereX =
{si mpl e, f orwar d, backwar d, r ange, cc, ccr ange}.

7 Theclingcon System

The new filtering methods enhance the learning capabitifieingcon However, the new
version also featurdasitial LookaheadOptimizationandPropagation DelayWe will now
present these in more detail.

Initial Lookahead As shown in [(Yuand Malik 2006), initial lookahead on con-
straints can be very helpful in the context of SMT. It makesplioit knowl-
edge (stored in the propagators of the theory solver) efpli@available to the
propositional solver. Ourdnitial Lookahead which can be enabled using the op-
tion --csp-initial -1 ookahead=<true/ f al se>, is restricted to constraint lit-
erals. As a preprocessing step, all of them are separatélyosgue and constraint
propagation is done. In this way, binary relations betweenstraints become ex-
plicitly available to the ASP solver. For exampl&wor k(smi t h) $==0 implies
Fwor k(sm t h) - wor k( adam) $==1 whereasT'wor k(| ea) $==wor k( adan) im-
pliesFwor k(| ea) - wor k( adan) $==1. These are then directly translated into a no-
good. Or more formal: all constraintamplied by a constraint literel’/ w.r.t. the theory
are added talaspas the respective binary nogod®¢,v—1(c)}.

Optimization As shown in Sectiofil4clingconnow supports optimization statements
over constraint variables. The optioncsp- opt - val expects a comma-separated list of
values, similar to thelaspl.3 option- - opt - val . With this option a value for every con-
straint optimization statement can be given. The solvdithgn start the search using these
values. This is especially useful in combination with théap- - csp- opt - al | ,thatis
used to compute all models that are less or equal to the lastifoound. It forms the logical
equivalent to theclasp 1.3 option- - opt - al | . To compute all constraint-optimal solu-
tions, one first computes one optimal solution. Afterwagigen the optimum value, the
same encoding can be used with the optionssp- opt - val and- - csp-opt-al |
to compute all optimal solutions.
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Propagation DelayWith Propagation Delaywe have a new experimental feature that
balances the interplay between the ASP and the CSP parttr@ongropagation can
be expensive, especially in combination with the filterieghniques from Sectidd 5. It
might be beneficial to give more attention to the ASP solvlisTan be done by skip-
ping constraint propagations. Whenever we can propagatestraint atom or encounter
a conflict with the CP solver, filtering methods can be appliede therefore skip con-
straint propagation and only do it evemsth time, clasphas the chance to find more con-
flicts. If we learn less from the CSP side, we learn more fromAlSP side. The option
- - csp- prop- del ay=n wheren € INJ can be used to set the propagation delay:

e n = 1 does constraint propagation every time, similar to thectiltycon
e n > 1 does constraint propagation only everth time and
e n = 0 does constraint propagation only on a full propositionalgrament.

Whenever we do constraint propagation we have to catch upeomissed propagation.

8 Experiments

We collected various benchmarks from different categdnesvaluate the effects of our
new features on a broad range of problems. All of them can pesgged using a mixed
representation of Boolean and non-Boolean variables. Weiceourself to classes where
the ASP and the CSP part interact tightly to solve the probssmve focus on the learning
capabilities between the two systems. For encodings wherdoanot have an ASP or a
CSP part, we will not see any effect of our new features. We p@gent our benchmark
classes with a short description of the used encodings.n&lbeings and instances can be
found online at/(clingcan).

BenchmarksGiven a set of squares, tiRackingproblem is to pack all squares into a
rectangular area with fixed dimension. This problem is diyeaken from the 2011 ASP
Competition [([ASP 2011). The position of the corners of theasgs can be represented
using integer variables. and are guessed by the CP solvéhinASP we only have to
check whether two squares overlap.

Incremental Scheduling a problem variant of the well-known job shop scheduling
problem which requires rescheduling and ordering of jolhstHermore, all jobs have a
deadline, and, if a job finishes after its deadline, the diffiee is taken as “tardiness” of
the job. This tardiness multiplied by the importance of thejesults in a penalty. The task
is to find a solution where the sum of all penalties is belowaigmaximum. The problem
is also taken from the 2011 ASP Competition. We use constvaiiables to denote the
starting times of the jobs and also to compute the tardinedpanalties.

Taken from the 2011 ASP Competition, tiéeighted Tre@roblem is inspired by cost-
based “join-order” optimization of SQL queries in datatsadéhe problem is to find a full
binary tree withn leaves such that its leaves are pairs (weight, cardinadityhtegers,
the right child of an inner node is a leaf, where its color thei green, red, or blue, and
there arel,...,n — 1 inner nodes such that node— 1 is a root node and inner node
i — 1 is the left child of inner nodé for i = 2,...,n — 1. The weights of inner nodes
are computed recursively based on their colors, and thehtseand cardinalities of their
children. We use constraint variables to represent theireaity and the weight of the
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nodes. We furthermore extended the problem to an optinizgtioblem that tries to find
the “cheapest” tree by minimizing the sum of the leaf weiglttsording to the structure of
the tree. For this we use the new optimization statement awestraint variables. In our
benchmarks, an instance is solved if we have found and prtneeoptimal solution.

Given ann x n board, placing numbers in the randg, ..., n} such that there are
no two equal numbers in the same row/column is calfeahsi Groupproblem. For our
benchmarks, we let = 20. We assign random numberse- 80 percent of the fields.

To increase the spectrum of benchmarks, we conceived a ngtoan of benchmarks
which make use of the CP solver to do tiafounded Set Check (US&@¥ some normal
logic programs. Therefore, we reify (Gebser et al. 2011;6ebt al.) logic programs (in
our case we tak&abyrinth — the problem of guiding an avatar through a dynamically
changing labyrinth to certain fields (ASP 201HashiwoKakero- a logic puzzle game
andHamiltonianCyclg. Using this reified program we can reason about the streatir
the program. In particular, we can add an encoding that deasrtfounded set check using
level-mapping as proposed in (Niemela 2008). We assigrehiie every atom in a strongly
connected component and use the CP solver to find a valid mgdpsing this translation,
we can solve any non-tight logic program using the CP solwethfe unfounded set check.

Settings We run our benchmarks single-threaded on a cluster ¥tk 8 cores with
2.27GHz each. We restricted each run to use 4GB RAM. In allbemchmarks we used
the standard configuration ofingcon unless stated otherwise. We now evaluate the new
features otlingcon

Global ConstraintsWe want to check whether the use of global constraints spepd
the computation. Therefore we have chosenQuasi Groupproblem, as it can be easily
expressed using the global constraiitinct We compare two different encodings for
Quasi Group The first one uses ortlistinctconstraint for every row and every column. The
second one uses a cubic number of inequality constraintse$tied 78 randomly generated
instances of siz20 x 20. While the first encoding using the global constraints rtssalan
average runtime of 220 seconds and 18 timeouts over alhostathe decomposed version
was much slower. It used 391 seconds on average and had 2utsr@ingconconfirms,
that global constraints are handled more efficiently thair #xplicit decomposition.

Initial Lookahead In Sectior[ ¥, we presenteditial Lookaheadover constraints as a
new feature otlingcon We now want to study in which cases this technique can beiusef
in terms of runtime. We run all our benchmarks once with anthexitInitial Lookahead
In Table[d, the first column shows the problem class and itsburof instances. The sec-
ond and the third column show the average runtime in seciatisstused with and without
Initial Lookahead (I.L.) Timeouts are shown in parenthesis. The last two columng sho
the average runtime of the lookahead algorithm and the nuoflmgoods that have been
produced on average per instance. As we can see for the preBéecking Quasi Group
andWeighted Tregdirect relations between constraints can be detectecharal/erall run-
time can therefore be reduced. But this technique does ndt@voall benchmark classes.
ForIncremental Schedulingelations between constraints are found but the additional
goods seem to deteriorate the performance of the solverelndse of th&nfounded Set
Check nearly no relations have been found, so no difference itimacan be detected.

Conflict and Reason Filtering/Ve want to analyze how much the different conflict and
reason filtering methods presented in Sedtlon 5 differ ia sizconflicts and average run-
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instances time time time| nogoods
(#number) (timeouts) withI.L | of LL.| fromI.L
Packind50) 888(49)] 882(49) 5 7970
Inc. Sched50) 30(01) 40(02) 0 73
Quasi Grouif78) 390(28)] 355(24) 9| 105367
Weighted Tre30) 484(07) 312(04) 0 1520
uUsQq132) 721(104) 719(103) 3 1

Table 1: Initial Lookahead {.)

o|l=|o|=|o|w

(a) Packing (b) Inc. Shed. (c) Quasi Group (d) Weighted Tree (e)usC

Fig. 2: Average conflict size

time. As conflicts and reasons are strongly interacting&n@BbCL framework, we test the
combination of all our proposed algorithms. We denote therfiilg algorithms with the
following shortcuts: s$implg, b(Backward Filtering, f(Forward Filtering), c(Connected
Component Filterinyj r(Range Filtering and oConnected Component Range Filtefing
We name the filtering algorithm for reasons first, separayed slash from the algorithm
used to filter conflicts. To denote the configuration udRange Filteringfor reasons and
Forward Filtering for conflicts, we simply write r/f. The original configuratipwhich can
be seen as the “oldélingconis therefore denoted s/s. We start by showing the impact
on average conflict size of all configurations using a heat mdggure[2. It shows the
reduction of the conflict size in percentage relative to tlesivconfiguration. The rows
represent the used algorithms for reason filtering, thersourepresent the algorithms for
filtering conflicts. So the worst configuration is represdritg a totally black square and a
configuration that reduces the average conflict size by siglfay. A completely white field
would mean that the conflict size has been reduced to zero. eAswsee in Figuid 2, the
average conflict size is reduced by all combinations of filtgalgorithms. Furthermore,
we see that the first row and column, respectively, is usukhiker than the others, which
indicates that filtering either only conflicts or only reasdsmnot enough. Also we see that
for theUnfounded Set Check (US®@ filtering of reasons does not have any effect. This
is due the encoding of the problem. As nearly no propagatiked place, no reasons are
computed at all. The shades on tRange Filteringrows/columns (denoted by r) clearly
show that théRange Filteringproduces larger conflicts. But this is improved by incorpora
ing structure to the filtering algorithm usit@pnnected Component Range FilteriiNgxt,
we want to see if the reduction of the average conflict size@dgs off in terms of runtime.
Therefore Figur&€]3 shows the heat map for average runtiméaeklsquare denotes the
slowest configuration, while a gray one is twice as fast. Acar clearly see, the reduc-
tion of runtime coincides with the reduction of conflict simenost cases. Furthermore, we
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(a) Packing (b) Inc. Sched. (c) Quasi Group (d) Weighted Tree (e)usC

Fig. 3: Average time in seconds

Instances time time| acs| acs
(#number) sls o/b| s/s| olb
Packind50) 888(49) 63(0)| 293| 40
Inc. Sched50) 30(01) 3(0) 15 5

Quasi Grou§78) | 390(28)  12(0)| 480| 56
Weighted Tre@@0)|  484(07)| 574(18)| 31| 31
USq132) 721(104)  92(1)| 454| 13

Table 2: Average time in s(timeouts), average conflict s

can see a clear speedup for all benchmark classes eieggited Tre@ising the filtering
algorithms. Tablg]l2 compares tBampleversion s/s without using any filtering algorithms,
with the configuration o/b (reducing reasons usannected Component Range Filtering
and reducing conflicts usingackward Filtering, as it has the lowest number of timeouts.
We can see a speedup of around one order of magnitude on alifbanks excepieighted
Tree The same picture is given for the reduction of conflict se@whenever it is possible
to reduce the average conflict size, this also pays off ingerhnuntime.

Propagation Delay As the filtering of conflicts and reasons takes a lot of timg (e
configuration o/b use$3% of the runtime for filtering), we want to reduce the calls te th
filtering algorithms. Therefore, witRropagation Delaywe can do less propagation with
the CP solver and it will produce less conflicts and reasamsetully reducing the number
of calls. We therefore take the yet best configuration o/bcamapare different propagation
delaysn € {1,10,0} (normal, every ten steps, only on model). TdBle 3 shows theage
number of calls to a filtering algorithm for configuration a¥ith different delays. We see
a reduction of the number of calls on all benchmarks exceghoremental Scheduling
where it doubled. This is clearly due to a loss of informatibat is necessary for the
search. If the CP solver has less influence on the search,3Repart gets more control.
But the missing knowledge from the CSP part has to be compsthgg pure search in

n 1 10 0 n 1 10 0
Packing 31534 14897 8463 Packing 63| 75| 571
Inc. Sched. 3505| 3240 6660 Inc. Sched. 3 6 11
Quasi Group 4245 1535 1726 Quasi Group 12 9 19
Weighted Tre¢ 6868k| 1168k| 1042k Weighted Tre¢ 574| 559| 546
uscC 2007 2118 1768 uscC 92| 91| 82

Table 3: Calls to filtering algorithms o/b Table 4: Times of configuration o/b
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the ASP part. Therefore, Tallé 4 shows that some benchmiligk8\kighted Treeand
Unfounded Set Chedan relinquish some propagation power gaining additiope¢dup.
On others likePackingthis propagation is urgently needed to drive the search andat
be compensated. This feature has to be investigated fudlgain benefits for practical
usage.

9 Related Work

In the quite young field of ASP modulo CSP a lot of research lentzlone in the last
years. The approaches can be separated roughly into tweeslaistegration and trans-
lation. The integrated approaches liIKRASP (Baselice et al. 2005) and ADSolver/AC-
Solver (Mellarkod and Gelfond 2008; Mellarkod et al. 20082 aimilar to theclingcon
system. However, no learning is used in the approachesgastistraint solver just checks
the assignment of constraints. Latéer, (Balduccini 2008y&d how to use ASP as a spec-
ification language, where each answer set represents a IC8#s bpproach no coupling
between the systems was possible and therefore learniititidaavere not used. After-
wards GASP[(Dal Palu et al. 2009) presented a bottom up apprahere the logic pro-
gram was grounded on the fly. With Dindo (Janhunen et al. |28 was translated to
difference logic using level mapping for the unfounded $etak. An SMT solver is used
to solve the translated problem. Nowadays, more and manslational approaches arise
in the area of SMTSugar(Tamura et al. 2008) is a very successful solver which tedasl
the various supported theories to SAT. Also,[in_(Dreschdr\&alsh 2010) it was shown
how to translate constraints into ASP during solving. Theseslational approaches have
the strongest coupling and therefore the highest learrapgtuilities. The reason gener-
ation and conflict handling is directly done by the undedyBAT solver and therefore
very efficient. On the other hand, they do have problems todindmpact representation
of the constraints without losing propagation strengthingcontherefore tries to catch
up, improving the learning facilities and still preservithg advantages of integrated ap-
proaches like compact representation of constraint prajoag; Furthermorelingconis a
ASP modulo Theory solver that aims at taking advantage afrark theories in the long
run, eg description logics. Such a variety can only be suppdyy a black box approach.
Similar results regarding the filtering methods have beéoduced in[(Junker 2001) but
have not been applied to an SMT framework.

10 Discussion

We extended and improwdingconin various ways. At first, the input language was ex-
panded to suppoftlobal Constraintsand Optimization Statementsver constraint vari-
ables. As the input language is a big advantage over pure Sf$t€ras, complex hybrid
problems can now easily be expressed as constraint logigrgrs. We have shown that
Initial Lookaheadcan give advantages in terms of speedup on some problemseWgée d
opedFiltering methods for conflicts and reasons that can be applied to @oyytisolver.
This enables the ASP solver to learn about the structureeothtbory, even if the theory
solver does not give any information about it (black box eyst). We furthermore show
that while applying these filtering methods, that knowledgaiscovered that is valuable
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for the overall search process and can therefore speed ge#ineh by orders of magni-
tude. Unfortunately, a direct comparison with existing S8blvers is inapplicable in view
of different input formats. However, we want to conduct atfiiect comparison by translat-
ing ASPmMCSP problems to SMT following the line bf (Janhunieal.€2011), using a level
mapping for the unfounded set check. This allows us to compar approach to SMT
solvers that do not use a black-box CP solver but do propagatther with dedicated al-
gorithms (eg.[(Bofill et al. 2008)) or a translation of CP toTSj&f. (Tamura et al. 2008)).
Such solvers have complete control over reason and condlictrgtion and can therefore
use extra knowledge to create better conflicts. VWitbpagation Delaywe developed a
method to control the impact of the interaction among bo#tesys to the search. To bal-
ance thd’ropagation Delaydynamically during search will be topic of additional resema
Our work leaves the burden of choosing the right reason anélicogeneration strategy
to the user. Although for our benchmark set the optimal filggiconfiguration was o/b,
this may vary on other benchmark classes. This can be cdatéeiced by an adaption of
the claspfolio(Gebser et al. 2011) system ¢bngconin order to automatically derive an
optimal configuration o€lingconfrom the features of problem instances. In the future we
still want to focus on learning capacities and increase dlpling of the two systems, such
that the CP solver also benefits from the elaborated leatagitiques.
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