
Elixir Repertoire Server Manual

Release 7.3

Elixir Technology Pte Ltd

Elixir Repertoire Server Manual: Release 7.3
Elixir Technology Pte Ltd

Published 2008
Copyright © 2008 Elixir Technology Pte Ltd

All rights reserved.

Solaris, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. Microsoft and Windows
are trademarks of Microsoft Corporation. All other trademarks are registered under their respective owners.

Table of Contents
1. Elixir Repertoire Server .. 1

Overview .. 1
Features ... 1

2. Getting Started ... 2
Hardware Requirements .. 2
Software Requirements ... 2
Downloading and installing Elixir Repertoire Server ... 2
Starting the Server .. 3
Testing the Server .. 3
Stopping the Server .. 3
Running the Server as a System Service ... 4

3. Overview .. 5
Introduction .. 5
Main Directories .. 5
Core Components .. 6

4. Configuration ... 7
Configuration Overview. ... 7
Java Virtual Machine Configuration ... 7
Elixir Repertoire Server configuration. ... 8

Server Log Control ... 8
Administration of Core Services ... 9

Configuring the Elixir Repertoire Server. .. 9
LDAP Secondary Authentication ... 10
SMTP Server ... 11
Configuring the Logging .. 11
Secure Mode ... 12

Targets and User Access .. 13
Target (and MIME type) Configurations Moved to Database 13
New Target Parameter Resolution Mechanism .. 13
Roles ... 13

5. Security .. 14
Overview .. 14
Preparation .. 14
Connections and Firewalls ... 14
Protecting Sensitive Information .. 14

Access Rights .. 15
JavaScript Permissions .. 16

6. Web Interface ... 17
Overview .. 17
Repertoire ... 17
User ... 18

System ... 18
Password .. 18

Remote ... 18
Administration ... 19

Server .. 19
Scheduler .. 20
Users ... 20
Groups ... 21
FileSystems ... 21
Targets ... 22
Logs .. 32

Help .. 32
Logout ... 32

7. Elixir Repertoire Server Client ... 33

iii

Introduction .. 33
Java Standalone Clients ... 33

Elixir Repertoire Server Client .. 33
Using the APIs .. 33
Code example .. 34

Java Client usage examples .. 37
Non-Java Client Connection Library ... 37
Elixir Repertoire Server Command Client ... 37

8. Server API ... 38
Overview .. 38
REST ... 38
Calling HTTP .. 39
JavaScript Extensions .. 46

9. Troubleshooting and Common Errors .. 48
Introduction .. 48
Server Troubleshooting .. 48

System Requirements .. 48
Port Availability ... 48
Logs .. 48
Running as a Windows Service ... 49

Client Troubleshooting .. 49
JVM Versions .. 49
Consistent Connection Information .. 49

Client-Server Troubleshooting .. 49
Network Access ... 49

Common Errors ... 49
Client Errors .. 49
Report Errors ... 50
Datasource Errors ... 50
Printing Errors ... 50

iv

Elixir Repertoire Server Manual

List of Figures
2.1. Elixir Repertoire Server Logon ... 3
5.1. Access Rights Configuration through Web Interface .. 15
5.2. Access Rights Configuration through Remote Designer ... 16
6.1. Create a Anonymous User ID .. 21
6.2. File Target ... 24
6.3. JDBC Target .. 25
6.4. JMS Target .. 26
6.5. Mail Target .. 27
6.6. Repository Target ... 28
6.7. Repository User Home Target ... 28
6.8. SFTP Target .. 29
6.9. Split Target .. 31

v

List of Tables
4.1. Elixir Repertoire Server Configuration details .. 10

vi

List of Examples
7.1. Listing the file systems in a server repository. .. 34
7.2. Listing the reports deployed in a file system. .. 34
7.3. Generating a report ... 35
7.4. Request for Data listing. ... 35
7.5. Trigger for Data Store process. .. 36
7.6. Using IJobInfo interface to extract job information. ... 36

vii

Chapter 1
Elixir Repertoire Server

Overview
Elixir Repertoire Server provides a scalable reporting (Elixir Report Designer) and Enterprise Trans-
formation and Loading (Elixir Data Designer) solution that grows with your business needs. It scales
from small departmental workgroups to enterprise portal deployments. It may be deployed on small
single departmental servers run on lower cost Linux, Windows Servers to large enterprise server such
multi-processors boxes. It's unique architecture allows you to configure and tune the usage of server
resources.

It is written in Java language to provide cross platform functionality and will run on a Java 5 (or later)
compliant machine. The server provides a web interface, support for the Elixir Repertoire Remote
Designer and an HTTP-based API so that you can build applications in the programming language of
your choice and call the server for scheduling, reports, data and dashboard functionality.

Elixir Repertoire Server supports repository-based storage and provides secure access to the datasources,
reports and dashboards that it manages.

Features
Cross platform: Elixir Repertoire Server run on all hardware platforms that supports Java J2SE platform
(>=5) e.g. Windows, Linux, Solaris etc.

Browser interface: For administration, dashboards and report generation and archiving

Multi-threaded: The rendering of the report can be executed concurrently within the same Java Virtual
Machine.

Integrated Repository: This allows authenticated access to all resources, datasources, reports and
dashboards.

Failover and load balancing capable: Elixir Repertoire Server is based on HTTP, so any HTTP load-
balancers, proxies and portal / redirection tools can be used.

Extensible: Given HTTP is language neutral, you are free to implement a custom solution in the
language of your choice - Java, C#, Ruby, Python and others.

Scheduling: Elixir Repertoire allows you to schedule your jobs. Elixir Schedule Designer, part of the
Elixir Repertoire Remote tool, allows you to remotely connect to the server to schedule your job.
Details on scheduling functionality may be found in the Schedule Designer documentation.

1

Chapter 2
Getting Started

Hardware Requirements
Elixir Repertoire Server will run on any hardware platform that supports Java 2 Standard Edition
version 5 or later. As a general rule-of-thumb, any online type of application that needs low turn around
time will typically require two or more high-end processors.

The minimum RAM required for installation of Elixir Repertoire Server is 256 MB but the recommended
hardware memory is at least 512 MB. The amount depends largely on the data volume, load (i.e.
concurrent report generation) and desired turn-around time.

A proper system requirement study is recommended to estimate the proper hardware (CPU), JVM
configuration and memory size. You may email the support team at Elixir Technology for information
on this.

A total of 100 MB disk space is recommended. This consists of the following:

• 15MB for the Elixir Repertoire Server application

• 35MB for the samples

• 50MB for the Java Virtual Machine (depending on the version)

Features such as report, data caching will require additional disk space.

Software Requirements
Elixir Repertoire Server is supported on all Java 2 Standard Edition compliant operating system
platforms such as Windows and Unixes such as AIX, Linux and Sun Solaris. The minimum Java
Virtual Machine version should be J2SE 5. Please refer to the respective vendors for any specific
installation details for the JVM on their platform.

Downloading and installing Elixir Repertoire
Server

Elixir Repertoire Server is available for download as either .zip, or .tar.gz files. The software is the
same regardless of download package, so obtain whichever flavor is most convenient for the platform
you are running on. Once it is downloaded, unpack the archive to a suitable location on your machine.
It should all unpack into a single directory named RepertoireServer. You must have Java 5 or later
installed on your system before running the server.

A license key is required before you are able to run the server. An evaluation license is available when
you download the evaluation copy of our server. A registered user license will be sent to you once you
have purchased the product. You will need a specific license to enable Report, Dashboard and ETL
features - the evaluation license provides all three for a limited time period. Please contact Elixir Sales
if you need further assistance in this area.

2

The license key is a text file which you can deploy by copying the license key to the home directory
of the user who will be running the server.

Note

If you are using a Unix-based machine, it is advisable to create a new account for running
the server. This provides more security as it limits the files that the server can access. Therefore,
on a Unix-based machine, if you create a new account repertoire you will put the license
text file in /home/repertoire. You should never run the server as root.

Starting the Server
The first step is to start the server. You will find the startup script in the bin directory inside the
RepertoireServer directory. To run the server for Windows, use the startServer.bat, for Unix-like
operating systems you should use startServer.sh. You should then see log messages from Elixir
Repertoire Server components as they are deployed in the server log file (look in the log directory for
server.log).

The first time the server runs, it wil establish a default database in the db subdirectory. This may take
a few minutes. If in future you upgrade your server, the db directory will not be overwritten, so settings
their will be preserved. If you want to reset your server to it's original installed condition, simply stop
the server and delete the db directory. A new db directory will be generated when the server is restarted.

Testing the Server
By default, the server is configured to run on port 8080. You can edit this in the config file
config/ERS2.xml if that port is already in use.

Connect to the server by pointing your web browser to http://localhost:8080/.

Note

You should substitute the server name for localhost, if the server is running on a different
machine. Throughout this document we will refer to localhost, but you should use the actual
machine name if your server is not on the same machine as your browser.

You should see in the browser the logon screen as shown in Figure 2.1, “Elixir Repertoire Server
Logon”. The default administrator name is admin with password sa. Use these credentials to logon
and then you should go to the User menu option to change the default password.

Figure 2.1. Elixir Repertoire Server Logon

Stopping the Server
To stop the server, you can use the Shutdown button on the Administration/Server page in your browser.
Alternatively, you can type Ctrl-c at the console where the server is running, or you can run the stop

3

Getting Started

script in the bin directory (stopServer.bat or stopServer.sh). If you use the script, you must supply the
admin username and password, eg.

stopServer --user admin --pass sa

Running the Server as a System Service
In a live deployment you would not usually want to stop and start Elixir Repertoire Server manually
but will want it to run in the background as a service or daemon when the machine is booted up. The
details of how to do this will vary between platforms and will require some system administration
knowledge and root privileges.

On Linux or other Unix like systems, you have to modify the startServer.sh file to specific to the Unix
platform. On a Windows system, you can use a utility such as the Java Service Wrapper to deploy the
server as a Window server service. The bin directory contains an example script. Please read window-
service-readme.txt. You may refer to http://wrapper.tanukisoftware.org/ for in-depth discussion of this
product.

Note

Specific details for running the server as a system service are described on the web at
http://www.elixirtech.com/. Choose the Support menu option and check for your specific
platform in the online documentation.

4

Getting Started

http://wrapper.tanukisoftware.org/

Chapter 3
Overview

Introduction
Now that you have installed Elixir Repertoire Server and have run the server for the first time, the next
thing you will need to know is how the installation is laid out and what goes where. The overview
covers the core components of the server, server directory structure, location of the key configuration
files, log files, deployment and so on. It is worth familiarizing yourself with the layout at this stage as
it will help you understand the server architecture so that you will be able to find your way around
when it comes to deploying your own reports, data sources and their support libraries.

Main Directories
The distribution unpacks into a top-level RepertoireServer directory. There are thirteen core
sub-directories immediately below this:

• bin: contains startup and shutdown and other system-specific scripts. We have already seen the
run script which starts the server.

• clients: contains the client side supporting libraries and application for connecting to the server to
generate report and list report templates deployed on the server. The clients/lib sub directory
contains Java client core libraries (RepertoireClient.jar). The sub directory clients/bin contains
some scripts to test the server and provide a direct invocation examples via command line, this
useful for integrating report generation with a operating system like cron job.

• config: contains the server configuration files. These are discussed in Chapter 4, Configuration.

• db: this directory only exists after the server has run for the first time.

• docs: contains the server documentations and the APIs used for the server client connection.

• ext: is the location to place any third party java libraries such as JDBC drivers or custom Java
classes. These will be loaded into the classpath of the server for use by dashboards, data sources
and reports.

• lib: JAR files which are needed to run the Elixir Repertoire Server. You should not add any of your
own JAR files here.

• license: Elixir Repertoire Server depends on a number of excellent open source libraries. Licenses
for those libraries, along with the Elixir license are included here.

• log: contains all the server generated log files.

• output: The folder1 and folder2 subdirectories are used as sample targets in the config file
ERS2Config.xml.

• samples: contains default set of sample report and data source for testing the server.

• web-pages: The web pages used to present the browser interface. These often have dynamic content.

• web-resources: The web resources used to present the browser interface. These are static content.

5

Core Components
The Elixir Repertoire Server is made of six main components: the server core, logging, repository for
storage of the report templates and data sources, administration and security (access control). The Java
Management Service manages part of these services and provides a common access via the management
console. None of the changes made through the console are persistent. The original configuration will
be reloaded when you restart the server.

The server core is responsible for managing the rendering of reports and controlling the number of
report within a queue. It interfaces with the report clients to provide basic services to end users
application as repository listing, file object i.e. report template listing and generating of the reports in
various format. Communication between the server and client uses a socket-based protocol.

The logging mechanism, based on Log4j, provides both an audit trail of report generation and
information about the health of the server. The level of logging may set in the log configuration file
to provide fine grain control over the log. This is particularly useful for debugging purposes.

The scheduling mechanism, manages the scheduling of job for triggering report or processing data.

Elixir Repository manages the storage of all report resources, such as templates, images and data source
definition. A repository can contain many file systems. Each file system identifies a physical location
where the resources are actually stored. Several kinds of filesystem are supported. The most commonly
used filesystems are Local File System and Jar archived File System.

The browser interface provides functionality to manage the repository and additional functions may
be access via other JMX beans (like shutting down the server, mentioned earlier).

Elixir Repertoire Server has an enhanced security model based on Java 2 security infrastructure. Users
can still make use of their application's single logon mechanism if needed.

The server provides both an HTTP and a Java client API for integration into software solutions. The
Java client provides the ability to generate data and reports and simple repository browsing. The HTTP
interface, new from version 7.0 provides a much more extensive range of capabilities, including the
ability to add, update and delete files in the repository, add, edit and delete users and groups, render
reports, generate data, trigger jobs etc. Virtually the full server capabilities are accessible directly
through HTTP, which can be called from a wide variety of programming languages and tools.

6

Overview

Chapter 4
Configuration

Configuration Overview.
In the previous chapter, we have seen the overview of the server components. We can now look into
the various of configuring the server. Most configurable elements of the servers are located in the
configuration directory (./config) except Java Virtual machine (JVM) configuration which is part of
the server launch script. All configuration are stored in plain text or in XML format, making it easy
to update and version them using a simple text editor.

Java Virtual Machine Configuration
Knowing how to configure the JVM is the most important aspect of configuring Elixir Repertoire
Server. This has significant impact on the performance and memory load. It is critial if the server is
going have a heavy load or be deployed in a 24 by 7 environment. The parameters are specified in
runnable server script as startServer.bat for Windows or startServer.sh for Unixes.

The default setting of the server are:

java -mx512M
 -Djava.security.auth.login.config=../config/auth.conf
 -Djava.security.policy=../config/java2.policy
 RepertoireServer-Launcher.jar

where java is the JVM executable. The actual configuration may differ between vendor and JVM
version. User are advised to be familiar with all these settings. This information is shipped as part of
the JVM documentation.

• Java Heap Memory: The Java heap memory limits the amount of memory that is available to the
server. The setting -mx[XXX]M determines the maximum memory that the server could use for
reporting where -mx is the maximum memory size, XXX is the actual memory size and M is the
unit of measurement in Megabytes. Additional parameters -ms can be added predetermine the
startup JVM memory size.

The default configuration ,-mx512M. Generally 256 megabytes of memory is good enough for
most small ,medium report generation load. The most common indicator when there is insufficient
memory to generate the report is that the VM will throws OutOfMemory exceptions. In this situation,
the memory can increase accordingly. Load testing is needed to determine the actual setting. It is
recommended that 512 MB or more of both heap and ram memory for production server. The
optimal maximum heap memory should be set at 75% to 85% range or lesser of the hardware RAM
memory. This is to allow enough memory to be reserved for the operating system and other
applications.

• Java 2 security model: Java System Parameters, -Djava.security.auth.login.config set the URL
pointing to the login configuration file (auth.conf) and the -Djava.security.policy URL pointing
policy file that handles Principal-based queries, and the default policy implementation supports
Principal-based grant entries. Thus, access control can now be based not just on what code is
running, but also on who is running it.

7

Additional JVM settings can be applied. For JVM shipped by Sun additional parameters as -server for
server side hotspot optimization and -Djava.awt.headless where it can run without the Window Frame
Buffer for Unix platform.The -Duser.home system property determines the location of the license keys
location. This may be added to the VM setting to modify the location.

Fine tuning of the Garbage Collection (GC) for performance and load is useful. Different JVM from
vendors may provides various setting for optimizing GC like Parallel Throughput Garbage Collector
which is useful with large young generation heaps, and lots of CPUs. While a batch report may use
Mark-Sweep Garbage Collector. A search in the web may provide the white papers on the various
discussion in this area. This optimization schema may vary vendor to vendor of the JVM and version.

Elixir Repertoire Server specific JVM configuration:

• Server root directory (-Delixir.home): This setting is optional.

• Server configuration directory (-Delixir.config): determines where all the configuration files are
stored. This setting is optional. The default value is elixir.home/config.

• Server log configuration (-Delixir.log): determines the log4j configuration file.This setting is
optional. The default value is elixir.home/config/log-config.xml.

• Server db configuration (-Delixir.db): determines the database location. This setting is optional.
The default value is elixir.home/db.

Elixir Repertoire Server configuration.
Elixir Repertoire server configuration files are located in the server configuration directory(./config).
The files are

• Server configuration, ERS2.xml : determines loading of the core report server functionality as
MBeans. There is also an ERS2-sample.xml, which is a backup file, in case you need to recover
from any edits.

• Server log control, log-config.xml: setup the log configuration of the server.

• Report Engine configuration, EREngine-config.xml: determines the setup of the rendering parameters
for the report engine and the PDF font mapping location.

• Other config files are for internal use or debugging purposes.

Server Log Control
The administrator can set log-config.xml found in the /RepertoireServer/log to display logs from one
or more particular users. In order to do that, the administrator will need to add in the following set of
codes into log-config.xml. The actions of the user(s) will all be captured in a log file named activity-
user.log.

<appender name="Activity-User"
 class="org.apache.log4j.RollingFileAppender">
 <param name="File" value="../log/activity-user.log"/>
 <param name="Append" value="false"/>
 <param name="Encoding" value="UTF-8"/>
 <param name="MaxBackupIndex" value="5"/>
 <param name="MaxFileSize" value="500KB"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="%d{ISO8601},%-5p,%-10X{username}, %m%n"/>

8

Configuration

 </layout>
 <filter class="com.elixirtech.arch.log.UserNameFilter">
 <param name="UserName" value="userABC" />
 <param name="AcceptOnMatch" value="true" />
 </filter>
 <filter class="org.apache.log4j.varia.DenyAllFilter"/>
</appender>

If the value set for UserName is userABC, the logs will be only of userABC. If the administrator
wants to capture more than one particular user, the administrator will need to have additional filter
tags with UserName and AcceptOnMatch attributes.

If the administrator do not want any logs from specified user(s), the administrator will only need to
edit the true value to false in AcceptOnMatch attribute and remove the following line from the config
file :

<filter class="org.apache.log4j.varia.DenyAllFilter"/>

In order for any changes to take effect, Repertoire Server will need to be restarted.

Administration of Core Services

Configuring the Elixir Repertoire Server.
The initial server configuration can be done by editing the config file ERS2.xml. All day-to-day
administration can be conducted through the web interface or the Remote Designer.

9

Configuration

Table 4.1. Elixir Repertoire Server Configuration details

DescriptionElement nameName

By default, Elixir Repertoire Server accepts requests on all local IP
addresses. If you wish to restrict the listener to a single IP address (eg.
you have multiple network cards), you need to set the desired IP address
in dotted-byte format (eg. 192.168.1.1). Requests will now only be
accepted if sent to this specific local IP.

Jetty HostServer
Listener IP

Elixir Repertoire Server Listener handles all the incoming request from
the clients. The default port number is set to 8080.

Jetty PortServer
Listener
Port

Elixir Repertoire Server can allow or refuse connections based on IP
address. The Accept value is a regular expression that will be tested
against the dotted-byte IP string of the client. Only those clients with
accepted IP addresses will be allowed to connect. By default, this
parameter is disabled, so that all clients can connect.

Note that this value is a regular expression, so any dots (.) may need
to be escaped. For example "192\.168\.1\.1" identifies the client at
"192.168.1.1". You can include IP ranges using "192\.168\..*" - the
final ".*" means any characters (in this case dots and digits) are allowed.
This will allow connection from "192.168.5.20", "192.168.80.1" etc.
whatever the value of the last two dotted bytes. You can also enumerate
values, for example: "192\.168\.1\.1|192\.168\.1\.5" will allow
connections only from the .1 and .5 clients.

Jetty AcceptAllowed
Clients

This parameter controls the number of report generation requests that
can be processed concurrently. The set size will not exceed what is
specified in the license. When the requests is exceeded the count, the
requests will wait in the queue.

The size dependent on the hardware, shared load with other application,
operating system and its capacity. Proper sizing of the hardware is
required to determine the optimal size. The general thumb rule for
every one unit of CPU, the size can be incremented by 2 to 3 unit i.e.
a two CPU system can handles 4 to 6 concurrent report generations at
any one time.

MaxRenderCountMaximum
Concurrent
Report
Render
Count

This parameter controls the number of report generation requests that
can be kept in the queue. This set size will not exceed the value
specified in the license. When the number of requests exceed the
maximum queue size, incoming requests will be rejected.

MaxQueueCountMaximum
Queue
Count

When set to true, all data packets sent between the client and server
are encrypted. Allowed values: true or false. The default is false. Note
that ERSClient must be configured with setSecure(true) if this option
is enabled.

For more details on configuring secure mode (which requires generation
of a server certificate) see the section called “Secure Mode”.

SecureEncrypted
connection
to client

LDAP Secondary Authentication
In order to enable LDAP secondary authentication, the administrator will have to edit ERS2.xml with
the necessary LDAP details before starting Elixir Repertoire Server.

During normal logon, the user's user name and password is checked against Elixir user's record. With
LDAP secondary authentication, a user with user name or password not found in Elixir user record
will be checked using LDAP to verify the user name and password entered. If this user is valid in the

10

Configuration

LDAP server, Elixir user and group records will be updated according to the values accepted by the
LDAP server. If no such user name was found, a new user will be created. New groups may be created
dynamically to match those that the user was assigned to in the LDAP server. After a successful
secondary authentication, subsequent logons will be as per normal as the records are already stored in
Elixir records. If it still fails, the user will be unable to logon.

The web interface for users to change their password is disabled when LDAP secondary authentication
is enabled. This will avoid any confusion as any subsequent entry error will result in the resetting of
password back to the LDAP password.

If the LDAP password is changed, the user can logon immediately with the new password due to
secondary authentication. However, the user can still keep to the old password until a RESET forces
the user to use the new password.

An Administrator is required to log in to trigger the Reset function. In order to reset, in the Web
interface, go to Administration, Users. Click on the Reset LDAP Users button.

Alternatively, you can reset the LDAP server using the REST action. Simply paste the following URL
in the address bar :

http://localhost:8080/tool/admin/users.html?action=ResetLDAPUsers

This action will then apply the changes done to the user's password.

To verify that the LDAP user can no longer log in with the old password, go to Elixir Repertoire Server
Web interface log in page and enter the LDAP username and the old password. The log in will fail.
When the user tries logging in with the LDAP username and new password, the user will be able to
log in successfully.

SMTP Server
Elixir Repertoire Server includes an SMTP server named elixir.aspirin. The configuration of
this server is in ERS2.xml.

You may add additional external SMTP servers and remove the default one too, if required. External
SMTP servers require additional information like this:

<ers:mbean name="ERS2:name=GmailSMTPServer"
 class="com.elixirtech.ers2.mail.SMTPServer">
 <ers:property name="Host">smtp.gmail.com</ers:property>
 <ers:property name="Port">465</ers:property>
 <ers:property name="User">[user]@gmail.com</ers:property>
 <ers:property name="Password">password</ers:property>
 <ers:property name="ConnectionTimeout">30000</ers:property>
 <ers:property name="TLSEnabled">false</ers:property>
 <ers:property name="SSLEnabled">true</ers:property>
 <ers:property name="Debug">false</ers:property>
</ers:mbean>

Note that the mbean name (ERS2:name=GmailSMTPServer in this case) must be unique within
ERS2.xml. Once the SMTP server is configured, you can reference it by name from a Mail Target (see
Figure 6.5, “Mail Target” below, or from a Job (see the Elixir Schedule Designer manual).

Configuring the Logging
Log4j is used for Elixir Repertoire Server logging mechanism. If you're not familiar with the log4j
package, you can read the full detail about it at the Jakarta web site. (http://jakarta.apache.org/log4j/).

11

Configuration

http://jakarta.apache.org/log4j/

Logging is controlled from a central log configuration file (config/log-config.xml). This file defines
a set of appenders, specifying the log files, what categories of messages should go there, the message
format and the level of filtering. By default, Elixir Repertoire Server produces a log file called server.log
in the log directory).

There are 4 basic log levels used: DEBUG, INFO, WARN and ERROR. The logging threshold is
INFO, which means that you will see informational messages, warning messages and error messages
but not general debug messages.

The default server log is set to rotate the log every 500KB and the file is overwritten every time the
server is restarted, up to five server logs are generated before the same file name is reused.

Secure Mode
Elixir Repertoire Server provides an HTTP interface. This uses the http:// URL prefix. If you wish to
run a secure protocol, then you will need to switch to https://. The secure protocol is configured by
following these steps:

1. Edit ERS2.xml to uncomment these lines:

<!--ers:property name="Secure">true</ers:property>
<ers:property name="Port">8443</ers:property>
<ers:property name="Password">secret</ers:property -->

2. Edit ERS2.xml to comment out the plain mode alternatives immediately below the secure version.

3. Create a new directory ssl inside the config directory. You now have to set up a "keystore"
that contains a digital certificate. The server uses this to authenticate itself to the clients.

4. Open a command prompt in the new ssl directory and enter:

keytool -keystore keystore -alias jetty -genkey -keyalg RSA

You will be prompted first for a password. Enter something memorable. Now you need to answer
a number of questions. Most are optional, the only question that you must answer is the first one:
"What is your first and last name?". Enter the name by which users will access the server, for
example www.example.com. You should not include any prefix, eg. https. You can ignore the
other questions if you like. Finally you will be asked for a key password. Just press enter to use
the same password entered at the start.

5. You now have a file called keystore in config/ssl. Go back to ERS2.xml and enter the password
you chose into the password property. Start the server and you should now be able to connect to
the server with https://localhost:8443/ as your new URL (substitute your machine name as
appropriate).

When you connect for the first time over https to the server, your browser will ask you if you want to
accept the server certificate. You should look at the contents and ensure they match the certificate you
created. If you accept, the browser will remember the server, so that you can connect directly in future.

The steps that have just been described, show you how to create a self-signed certificate. If you are
intending to allow external users to connect to the server, you may wish to purchase an SSL certificate
from a trusted Certification Authority (CA). When connecting to a trusted server, you will not need
to accept the certificate the first time the browser connects. There are further implications for using
https with a self-signed certificate, which are discussed in Chapter 8, Server API.

If you don't want to store the plain text password in the configuration file, you can encrypt it using the
encrypt utility in the server /bin directory. Open a command prompt at the bin directory and run the
encrypt program with a single parameter - the string you wish to encrypt. The encrypted value will be

12

Configuration

returned. If your string contains spaces or special characters, be sure to quote it "like this" to
ensure the encrypt routine sees the whole string as one value.

It is essential to ensure your configuration is working first, before you encrypt the password. Once
you have the encrypted value, paste it into the configuration file and mark the property encrypted, like
this:

<ers:property name="Password"
 encrypted="true">FrRMRoVI36lj3o3drUGqNA==</ers:property>

(this example is wrapped to fit on the page - you must not insert spaces and newlines in the encrypted
string). You can encrypt any mbean property values in ERS2.xml using the same approach.

Targets and User Access
A target is a destination to which the server can direct output. Targets include physical file locations,
either on the local or remote machines, and email addresses.

Users and groups can be granted access to different targets. You can use parameter substitutions, eg.
${dir} in target parameters, so that users can set the values by passing parameters while rendering.
This allows the same mail target to be used to send to different recipients, for example.

Target (and MIME type) Configurations Moved to
Database

Prior to 7.3 release, target configurations are saved in ERS2-Config.xml. Moving the targets to the
database provides the following benefits:

• Any updates to the target configuration can take effect without restarting Repertoire server.

• Target configuration in database can be shared by multiple instances of Repertoire server. This
enable us to cluster Repertoire servers in future.

After this change, the ERS2-Config.xml file is deprecated. All Targets are configured through the
browser interface and saved in database.

New Target Parameter Resolution Mechanism
Each target can be configured via a set of properties. Administrators can define parameters in target
configuration through the browser interface, if some parameters are to be provided by end users.

Roles
Users and groups are defined and maintained using the server's web administration interface. See
Chapter 6, Web Interface for more details.

You may want to restrict certain users or groups from using certain targets - for example, you don't
want everyone to be able to email confidential reports. Using the section called “Targets”, you can
define which users and groups should have access to which targets.

13

Configuration

Chapter 5
Security

Overview
In this chapter we will review security features and recommend best practices to ensure Elixir Repertoire
Server is used securely.

Preparation
It is recommended that you create a new user account and use that to run the server. This ensures you
can limit access by the server to any restricted files and programs. You should not run the server using
a root or administrator account, as this will typically give the program (and depending on your security
configuration, all user scripts) full access to the machine.

If your server is running on an Intranet, then you can use the default http: protocol. User names and
passwords are sent to the server using HTTP Basic Authentication, which is obfuscated, but not
encrypted. It is possible, using packet snooping tools, to extract the user name and password from this
data stream. On an intranet, these packets will not be accessible outside your network. However, when
running over the Internet, these packets will be visible to external programs. Therefore, if your server
is running on the Internet, you should consider switching to https: protocol (secure mode), which will
encrypt all data, including the HTTP Basic Authentication user name and password. See the section
called “Secure Mode” for details on how to configure secure mode.

Connections and Firewalls
Elixir Repertoire Server uses one of two ports by default. Either port 8080 is used, for regular http:
connections, or port 8443 is used, for secure mode https: connections. You should ensure that your
clients are allowed access by permitting TCP connections to the desired port to pass through your
firewall. You can change the operating port by editing the server configuration file config/ERS2.xml.
If your client program is unable to connect to the server, try using your browser to connect instead, by
entering the server URL, something like http://myserver:8080/. If the browser can't establish a connection
either, then probably there is a firewall preventing connections.

You can further restrict access to the server by entering the allowed client IP addresses in the Accept
regular expression in config/ERS2.xml. See the section called “Administration of Core Services” for
more details.

Protecting Sensitive Information
When connecting to databases you often need to supply a user name and password. There are a few
ways that you can protect this information. Of course, the ultimate protection is to not store the password
and instead require the user to enter it each time the database is accessed. This can be done with dynamic
parameters. More commonly though, the password is entered into the the datasource file. It is protected
from casual view by showing marks such as ***** instead of the actual password characters.

However, by opening the .ds file (an XML file) with a text editor, all of the information is available
in plain text (This is a good thing - Elixir does not lock you in to proprietary binary file formats). There
are a few ways to prevent the file being read. Firstly, the last page of each datasource wizard lets you

14

hide the datasource details. The user and password fields will no longer appear on the GUI. Next, you
can encrypt the datasource - this prevents the password being read using text editors. By selecting Hide
Details and Encrypted you have protected this sensitive information. Note that you must remember
the password you used when encrypting the file if you ever need to unencrypt it again.

Often several datasources read from the same database. Rather than enter the password in each one,
you can define a Connection Pool to hold the common connection information. In this case, you only
need to apply Hide Details and Encryption to the connection pool. The individual datasources will
delegate to the connection pool and do not hold any sensitive information.

A final alternative is to use Elixir Safe. With this approach, all sensitive information, for datasources,
reports, dashboards and jobs, can be kept in a single file and read by supplying the encryption key.
This can be a dynamic parameter that the user must enter in order to access the file. Full details on
Elixir Safe, along with sample code fragments are provided in the Elixir Repertoire User Manual.

Access Rights
Access rights configurations are based on Unix Users and administrators will have the priviledge to
set the access rights to directories, provided they have the necessary permissions to do so.

The access rights can be configured in two ways. The first way will be configuring through the web
interface. By clicking on the icon on the right of the directory in Repertoire page, the page for
configuring the access rights for the particular folder will load, as shown in Figure 5.1, “Access Rights
Configuration through Web Interface”, allowing configurations to be done.

Figure 5.1. Access Rights Configuration through Web Interface

The second way will be doing it using Remote Designer. By right-clicking on the filesystem, select
Edit File Properties... and select Security tab. The page for setting the configurations,
as seen in Figure 5.2, “Access Rights Configuration through Remote Designer”, is similar to the one
setting through the Web Interface.

15

Security

Figure 5.2. Access Rights Configuration through Remote Designer

JavaScript Permissions
When Elixir Repertoire Server is running, it is often executing JavaScript code on behalf of the user.
It is important that this code is prevented from performing any dangerous operations, such as reading
sensitive files or maliciously deleting information. In order to do this, the Server restricts the operations
that can be performed through JavaScript, for example unrestricted access to files. By default the server
restricts potentially unsafe operations. You can relax the constraints if necessary by modifying the
security policy file. For more details please see the JavaScript chapter in the Elixir Report Designer
Manual.

16

Security

Chapter 6
Web Interface

Overview
Elixir Repertoire Server provides a web interface that allows authenticated users to generate data,
render reports, view dashboards and run jobs as well as viewing archived information, such as PDF
reports and Excel files. In addition, the web interface provides a set of administration tools that handle
the day-to-day administration requirements: creating users, reviewing logs, backing up the database,
etc.

Once you have logged on to the server, by pointing your browser at the server location (eg.
http://localhost:8080/), you will see a menu bar of options and the list of current filesystems below, if
you want to start immediately navigating the repository. The server web pages have been designed so
that you can make full use of your browser. You can open links in new tabs, you can bookmark all
links - including those within the repository - and can reopen them at any time (provided you are
authenticated). The only exception to this is individual views within a dashboard, the entire dashboard
needs to remain together in order for views to update each other. However, the dashboard can be
launched separately from the main menu and bookmarked directly, as described previously.

Note

Advanced administrators can even modify the web pages themselves - adding new links,
adding styles and company logos etc.

The rest of this chapter describes the individual pages of the web interface.

Repertoire
The Repertoire page lists the repository filesystems. Clicking on a filesystem and subsequent folders
and files allows you to navigate through viewing of datasources, templates, dashboard and executing
jobs. Other files such as pdf, text file, xml files etc can also be viewed through here. The structure of
the repository is left entirely to the administrator, archived reports could be placed in separate filesystem
from the report templates used to generate them, so that access rights can be easily administered.

If you click on a datasource, you will be prompted for any parameters the datasource requires and the
data will then be generated into the browser. If no parameters are needed, then the data will be generated
directly upon choosing the datasource file.

If you click on a report, you will be prompted for any parameters the report requires and also will be
asked to choose the output type for the report. The default output type is HTML, which will show
directly in your browser. Other formats, such as Glint, PDF and Excel are also available. Some of these
may appear in your browser (depending on installed plugins), or you may be prompted to download
the file. The Simple HTML option produces just a single streamed HTML output, rather than the paged
output you get from the default HTML choice. This produces only a single file, with no dependencies.
Therefore, this format is only suitable for reports that have no generated images (it is ok to include
images that are accessible by URL).

17

If you click on a dashboard, you will be prompted for any parameters the dashboard requires and the
dashboard view will then be generated into the browser. If no parameters are needed, then the dashboard
will be generated directly upon choosing the dashboard PML file.

For other file types, the data will be sent to the browser. How the browser handles the data depends
on how it has been configured and what plugins are available. For example, with Adobe Acrobat
installed on Windows, choosing a PDF file from the repository will open it directly in your browser.
However, if you don't have Adobe Acrobat, you will be prompted to save the file instead.

User

System
The filesystem structure is cached for efficiency. If a file has been recently added, it may be necessary
to refresh the filesystem to see the changes. Users can also refresh all the filesystems in the repository
at one go, to ensure all new files will be listed.

The dashboard views remember their state, for example what rows are selected, even if you switch to
do something else. If you return to the dashboard within the same logon session, you can continue
from where you left off. There is an option on the System page to force the dashboard to reset the
views to their initial conditions. Note that only the latest dashboard state is remembered to save server
memory. If you switch to a different dashboard, then the previous dashboard state is automatically
reclaimed.

Password
User can change their own password. The existing password is required, followed by new password,
which must then be re-entered for confirmation. If the existing password is correct and both the newly
entered passwords match, then the change is accepted. The new password will be required next time
the user logs on.

Remote
In addition to the stand-alone Repertoire Designer, there is a Repertoire Remote Designer, that provides
a client GUI, but the repository, rendering and generation remains on the server. This menu option
takes you to a page where you can launch the Remote Designer, using Java WebStart. You must have
Java version 5 or later installed on your client machine in order to use this feature.

Note

Once the Remote tool has been downloaded, which might take a minute or two the first time,
depending on the speed of your network connection, it will be cached on your local machine,
so subsequent launches will be much faster. If the Remote tool is updated on the server, then
a new version will be automatically downloaded to your client next time it is executed.

Launching of the Remote tool depends on the availability of RepertoireRemote.jar, which is placed
in web-resources/jnlp. To speed downloading the jar is compressed using Sun's pack200 format, so
the file is actually called RepertoireRemote.jar.pack.gz. You can uncompress it manually by running

unpack200 RepertoireRemote.jar.pack.gz RepertoireRemote.jar

The unpack200 program is in your Java bin directory. You don't need to uncompress the file for use
with WebStart, but you can unpack and copy this jar to the client and launch it directly from there. In
this case, you won't benefit from the WebStart functionality of automatically downloading updates.
To launch the jar directly, either double-click on the jar (assuming the jar file type is registered by
Java) or by running:

18

Web Interface

java -jar RepertoireRemote.jar

When the Remote tool is launched from the Server by an authenticated user, it immediately opens a
connection to the server. However, if the tool is accessed by an unauthenticated user, or run directly
from the client machine, the user will be prompted for their user name, password and server details
before being allowed to access the server resources.

When you launch the tool through WebStart, you are connecting the the URL /remote/remote.jnlp on
your server. The response is constructed from remote.jnlp.template in the config directory. You can
customize this to control advanced WebStart settings. Certain parameters can be passed to the remote
URL and will be embedded in the jnlp response.

initialFile Determines the initial file to load when the Remote tool opens.

maxWorkspace If set to true, this option maximizes the workspace by collapsing the repository
panel.

You can craft specific URLs to launch Remote with these parameters. For example,

/remote/remote.jnlp
 ?initialFile=/ElixirSamples/Dashboard/Tutorial/
 dashboard/SampleDashboard.pml
 &maxWorkspace=true

(all on one line) will load the SampleDashboard and maximize the workspace.

Note

The initialFile parameter will only work if the user is already authenticated with the server.

Administration
This option is only available to the admin user, or users belonging to the admin group. The administrator
can perform day-to-day configuration, maintenance and monitoring through, this interface.

Server
The Server screen is classified into different sections as described below:

Configuration The server configuration details, such as the Java version used, the Elixir directory
structure and also the processor information. The directory locations are
controlled by command line options, such as -Delixir.home which are disccused
in the section called “Java Virtual Machine Configuration”.

License The server license indicates what options the server will support. The license is
typically stored in the user home directory. If the license file is changed then the
server will need to be restarted to read the new settings.

Classpath The classpath shows all directories and jar files which are usable by the server.
The list includes checksums for the jars for easy version comparison, which also
aids in determining whether the Elixir Repertoire Server has been modified, or
is using inconsistent or mismatched resources. Some server functionality, for
example JDBC access, is dependent on having the right 3rd party jar files installed
for your specific database. Often the database vendors produce several variants
of the jar, often with the same name, which can make it tricky to troubleshoot
JDBC drivers errors.

19

Web Interface

Database Elixir Repertoire Server contains a database which holds user and group
information, along with filesystem support. You can backup the database without
stopping the server by choosing the backup option and identifying a directory
where the backup should be stored. It is not possible to restore the database
without stopping the server, as this could affect ongoing requests. In order to
restore the database, you need to stop the server and copy the backup directory
to the elixir.db directory (which is shown in the Configuration section at the top
of this web page). Note that if you want to reset to a default database, you can
stop the server and delete the elixir.db directory (which is called db by default)
and a fresh database will be created next time the server is started.

Scheduler
The status of the system scheduler is shown on this web page. In particular, you can view any jobs
that are in progress. You can also review what triggers are loaded by the scheduler and when they last
fired and will next fire. You can also force the scheduler to reload the triggers, though this is only
necessary if the trigger files have been manually edited. If you have edited the trigger files using the
Schedule Designer (which is included in the Remote Designer package) then the triggers will be
automatically reloaded by the scheduler when you save them.

Users
Every user of Elixir Repertoire Server should have a unique logon name and password. This gives
access to the Server via the web interface (through a browser), through Elixir Repertoire Remote and
through the variety of client tools that Elixir provides. Use of specific filesystems and files is granted
based on user name and/or group.

To create new user, click on the Create User at the bottom of the Elixir Repertoire Users list. User
name and password are required in order to create a Repertoire user successfully. You should usually
also assign the user to one or more groups. You can edit a user by clicking on the user name in the list.
You can change the name, password, groups etc. If you leave the password field blank, then the
password will not be altered. You cannot change a name that would result in duplicate names. You
can change the name of the admin user to anything you like, and even then change another user to be
called admin. However, internally all users and groups are identified by id, and user id = 1 is the admin
user, regardless of the actual user name. For this reason, you can delete any user, except user id = 1.

Repertoire also supports anonymous login where no login authentication is required.

• Go to RepertoireServer->Config directory and open the jetty.xml file.

• From the code anonymous enabled="false" user="public" pass="anonymous",
change the "false" to "true" to enable anonymous login.

• Create the user id through the browser interface as shown. "User" and "Password" parameters must
be in sync with your choice of logon parameters in the jetty.xml.

20

Web Interface

Figure 6.1. Create a Anonymous User ID

• Log off from the browser interface and close the Repertoire Remote Designer and "startServer"
file if they are running.

• Launch the "startServer" file again from RepertoireServer->Bin directory.

• Start a browser and connect to your Repertoire Server web interface. You will be able to access
with no prompt to enter a user id unless you explicitly visit the logon page.

Groups
Rather than assign access rights at the user level, it is often more convenient to combine users into
groups and assign rights to the group. Each user can belong to any number of groups. Any user who
is assigned to the admin group will have the ability to administrate the server. Just like with users,
group names can be changed, so group id = 1 is the admin group, regardless of what the group is
actually called. For this reason, you can't delete group id = 1.

There is another special internal group "*" which has id = 2. This group is used to represent all users.
Every user created automatically belong to this group. When describing access rights, for example in
filesystems or secure .access files (described in the next section) you can use an asterisk (*) rather than
enumerate every single user and/or group. The "*" group cannot be viewed or edited directly as it is
managed by the system.

FileSystems
A filesystem is a collections of files such as datasource, report templates and dashboards that users
can view over the web. An administrator has the option to create, edit, compact and delete filesystems,
and also to grant access to certain groups. Compact will clean up the directory by removing all the
backup files.

To create a filesystem, select the Create filesystem link at the bottom of the Repertoire
Filesystem list. Display Name and Configuration are required. Every filesystems on the Elixir Repertoire
Server must have unique name. Administrator can assign the group(s) to have access to the filesystem.

There are five types of filesystem available: Dbfs, Jar, Jdbc, Local and Secure.

Dbfs The Database filesystem (Dbfs) stores files in an SQL database within the server. The files
in Dbfs support properties and you can manage user access to individual files or folders.
The files and folders have three sets of permissions, for the owner, the owning group, and
others. Each permission set may contain Read (r) and/or Write (w). When a file or folder
is created it will inherit the access rights of the parent.

The configuration field contains the name of the store to use as store=[name] i.e. store=local.
The configuration can be left empty, in which case the default store is local. A Dbfs /User

21

Web Interface

filesystem is automatically created when the server is first initialized and is given appropriate
permissions for each user to store their personal files. You can create additional filesystems
of type Dbfs as necessary.

Jar A Jar filesystem stores all files and folders in a Java archive format, that is typically a file
with a .jar or .zip extension. Files in a jar filesystem are read-only, so this is a useful way
of deploying reports and dashboards so that you are certain they cannot be modified. The
configuration field for a Jar filetype should provide the full path to the archive file.
Remember this file must be on the server, so it is a server path name you are providing.

Jdbc The Jdbc filesystem is deprecated in 7.2 as it is replaced by Dbfs, which has additional
access rights control. You can still access the files stored in any Jdbc filesystem but will
no longer be able to create new filesystems of this type.

Local A Local filesystem stores all files in a directory tree on the server. This is often the easiest
filesystem to use for single-server solutions as the storage mechanism is completely trans-
parent. You can use all your regular file-handling tools for manipulating the directory tree.
The configuration field for a Local filesystem should provide the full path to the root of
the directory tree. Remember this tree must be on the server, so it is a server path name
you are providing. Also, ensure you are running the server with a restricted set of permis-
sions, (eg. by creating a new user called repertoire and running the server from that user
account) to prevent access to the entire server filesystem.

Secure A Secure filesystem is an extension to the local filesystem and used when the file access
needs to be limited access to specific users and groups. A secure filesystem required a
special file called .access to be placed inside each restricted directory of the filesystem,
which allows the administrator to give different access privileges to named users and
groups.

A .access file has this format:

#This is a comment
read:finance,sales
write:elixir
write:admin

Each file can have multiple read and write statements, one per line, in any order. Granting
write access automatically grants read access. You can use either user names or group
names and access is only allowed if explicitly granted. You can also use the special group
"*" to allow access to everyone.

Targets

Target Constants

If you find yourself typing a string repetitively when configuring targets, you can define that string as
a constant. Then you can refer to that constant in target property values like ${constant-name}. Target
constants can be enabled/disabled. Only enabled constants can be used in target configurations and
they will not appear in Repertoire Remote Designer. You can define multiple constants with the same
name, but only one of them can be enabled at any time.

Target List

• Target Creation/Update/Deletion
All manipulations can be done through the browser interface, under Administration->Targets. For
most of the targets, configuration is simple. You need to provide a name, enable the target and
provide values for required target properties.

22

Web Interface

• Status
Targets can also be enabled/disabled. Only enabled targets can be used in RenderReport task. You
can define multiple targets with the same name, but only one of them can be enabled. If you make
one target enabled, the rest targets with the same name will be disabled automatically.

• Target Properties and Parameters
Each target requires certain properties such as name of the report, mime-type of the report (A list
of mime-types can be found through the browser interface under Administration->MIME Types),
etc.

When editing a target, the web page lists all required properties for the target. An administrator
has several options when configuring those property values:

• Provision of an exact string value for some properties.

• Reference to target constants.

• Definition of parameters in some properties if they should be provided by end users. For
example, the parameter in property "filename" can be defined as "${file#report}_${date}".
End users should provide values for those parameters when invoking targets.

Create New Target

When you create a new target, you will notice that all the properties are filled automatically with
parameters. If you don't change them, those parameters should be provided by end users. In addition,
nested parameters are not supported. For example, you cannot specify a parameter like
${file##${reportname}}.

The following are the individual targets configuration. Under "Properties", it shows the parameters
entered through the web browser. The accompanying image is a screenshot of the Repertoire Remote
Designer that shows the result of your configuration.

File Target

A File Target represents a directory on the server where reports can be stored. You can define as many
file targets as you need.

Properties

ValueName

${output.dir}/${folder##filetarget}dir

trueoverwrite

${file##Pet_Store_User_Accounts_Report}filename

${mime-type##application/pdf}mime-type

${output.dir} is the target constant created and it will not appear in the Repertoire Remote
Designer.

23

Web Interface

Figure 6.2. File Target

JDBC Target

A JDBC Target allows reports to be written directly into a database. This is useful if you have some
subsequent program to pick them up or otherwise act on them - for example a document management
system. Each report is written as a record into a specific table in the database. The report data itself is
stored as a BLOB. Before you can use the JDBC target, you need to set up a database with a table that
has the correct schema to accept a report file. An example as shown:

CREATE TABLE JOBOUTPUT (
 id INTEGER NOT NULL GENERATED ALWAYS AS
 IDENTITY (START WITH 1, INCREMENT BY 1),
 name VARCHAR(256) NOT NULL,
 lastModified BIGINT NOT NULL,
 content BLOB NOT NULL,
 CONSTRAINT JOBOUTPUT_PK PRIMARY KEY(id))

Once the database is setup, Figure 6.3, “JDBC Target” shows an example of the configuration through
the browser interface that will write into a table called JobOutput in the Derby database that is built
into the Elixir Repertoire Server:

Properties

ValueName

trueoverwrite

${filename##Job_Output_Report}name

org.apache.derby.jdbc.EmbeddedDriverdriver

${update table##JobOutput}table

falsequery-id

${password##Enter your password}password

${userid##Enter your userid}user

${mime-type##application/pdf}mime-type

jdbc:derby:/home/ers/jdbctargeturl

24

Web Interface

Figure 6.3. JDBC Target

• user The user name to use when logging on to the database.

• password The password to use when logging on to the database.

• query-id A special property to indicate how to retrieve identifiers from the database. If this is not
included, or set to "false", then the JDBC driver will be asked to return generated keys. This doesn't
work on Oracle, which doesn't support this JDBC feature. If query-ids is set to "true" then a slightly
slower creation process is used, which queries the table to get the new identifier. This approach
should be used if your database does not fully implement this aspect of JDBC.

JMS Target

A JMS Target can be used for asynchronous messaging. JMS applications can use job messages as a
form of managed request/response processing, to give remote feedback to the users on the outcome
of their send operations and the fate of their messages. Examples of job messages are Exception,
Expiration, Confirm on arrival (COA), Confirm on delivery (COD), etc.

You need to provide settings of the JNDI server. According to JMS specification, all JMS connection
factory and destinations are hosted on a JNDI server and clients need to know how to connect to the
server before it can connect to the JMS broker. You need to configure setting in ERS2.xml as you need
to trigger job execution by sending messages to JMS brokers. Uncomment the block of codes for
mbean name="ERS2:name=JMSTrigger" and edit the values that fit your JNDI provider and
JMS broker configuration.

For most of the JNDI servers, you need to provide property values like:

• java.naming.provider.url, which is the URL for JNDI server.

• java.naming.factory.initial, which is the context factory implementation provided by the JNDI
server.

Different JNDI servers may also require some customized property values. You need to check JNDI
servers documentation to find out what properties they support.

Configuration also needs to be done through the browser interface.

Properties

ValueName

${reply success pattern##^.*OK.*$}jms.reply.success.pattern

${reply success keyword##OK}jms.reply.success.keyword

${password##Enter your password}jms.password

ConnectionFactoryjms.connection.factory

truejms.reply.required

25

Web Interface

${file##Pet_Store_User_Accounts_Report}filename

${userid##Enter your userid}jms.user

${mime-type##application/pdf}mime-type

${reply timeout in secs##30}jms.reply.timeout.seconds

RQueuejms.destination

JNDI Properties

ValueName

RQueuequeue.name

org.apache.activemq.jndi.ActiveMQInitialContext-
Factory

java.naming.factory.initial

tcp://localhost:61616java.naming.provider.url

Figure 6.4. JMS Target

Mail Target

A Mail Target allows the output to be sent by email. Before using this, ensure that the appropriate
SMTP Server is configured in ERS2.xml. The default SMTP server elixir.aspirin is built in to Elixir
Repertoire Server, so you only need to change it if you wish to use an external SMTP Server. The
smtp.host parameter can either be the name of the SMTP Server mbean (we used
ERS2:name=GmailSMTPServer when we discussed this in the section called “SMTP Server”
) or the matching smtp.host value from the mbean that reference to other SMTP Server of your choice.

There are a number of parameters to specify, but remember that you can use substitutions to avoid
hard-coding those that you decide need to be flexible. The report will be sent as an attachment by
email, so you can choose the render format you prefer.

Properties

ValueName

${message##Your report is attached.}message

${to##sam@elixirtech.com}to

${subject##Pet Store User Accounts Report From
Elixir Server}

subject

elixir.aspirinsmtp.host

${file##Pet_Store_User_Accounts_Report}filename

${from##susan@elixirtech.com}from

${mime-type##application/pdf}mime-type

${cc##bob@elixirtech.com}cc

26

Web Interface

Figure 6.5. Mail Target

Print Target

A Print Target allows you to send a report to a named printer. The only option is the name of the
printer. If you have multiple alternate printers, you could use a separate target for each printer so that
you could control access by different groups. In most cases, the printer names will be fixed and not
include substitutions. You can also leave the printer name blank as it will route automatically to the
default printers defined in the invoking users' computers.

Properties

ValueName

Canon iR C3220 PCL5cprinter-name

Repository Target

A Repository Target writes the report to the filesystems in the Repertoire Remote Designer. You can
identify a target folder in the repository and provided it is writable, files will be written there. This
works regardless of whether the target filesystem is of type local, secure or db. You should use
Repository Targets when you want to allow users to view the reports through their browser as the
repository will automatically update to show the latest files. If you use a File Target where the report
is written to a target filesystem not in the Repertoire Remote Designer, users will not be able to access
the report output using the Repertoire interface.

During the configuration, the "folder" property must refer the "dir##" parameter to an existing target
filesystem in the repository. The "folder##" parameter need not as it will create a new folder after its
name if it is not found in the repository.

Properties

ValueName

${dir##ElixirSamples}/${folder##repository}folder

trueoverwrite

${file##Pet_Store_User_Accounts_Report}filename

${mime-type##application/pdf}mime-type

27

Web Interface

Figure 6.6. Repository Target

Repository User Home Target

A Repository User Home Target writes the report to the invoking user's folder in the repository. Users
can share jobs and they can keep separate output without overwriting one another. In the example,
once the user "Jon" signs in to the repository and runs the job, the report will be written to
/User/Jon/Pet_Store.

Properties

ValueName

${folder##Pet_Store}folder

trueoverwrite

${file##Pet_Store_User_Accounts_Report}filename

${mime-type##application/pdf}mime-type

Figure 6.7. Repository User Home Target

SFTP Target

A SFTP Target allows the report to be transferred to a user's secured FTP Server. The available
parameters are user, password, host, port, dir and filename. The port is optional and will default to 22,
which is the default SFTP port, if not specified.

The parameter in "dir" property must be an existing directory found in the target ftp server.

28

Web Interface

Properties

ValueName

${port##22}port

${sftp host##domain_name.com}host

${dir##dept1}/${folder##Pet_Store}dir

${file##Pet_Store_User_Accounts_Report}filename

${password##Enter password to access sftp client}password

${userid##Enter userid to access sftp client}user

${mime-type##application/pdf}mime-type

Figure 6.8. SFTP Target

Socket Target

A Socket Target sends the report to a program which is listening, typically on another machine. For
example, a program can be written that listens on a company.com port 6000 and writes any data it
receives to a database, or to a fax etc. It is up to the receiving program what it does with the data. The
server opens a connection to the listening program, using the host and port information required by
the socket target and streams the data across the network to the listening socket.

Properties

ValueName

6000port

company.comhost

Split Target

A Split Target allows you to split a single report into different sets of pages (sometimes called "Report
Bursting"), you can configure a split target to describe how the report will be split and which pages
will be forwarded to which targets.

You need to setup the report in the repository first, in order to run the job. An example as shown :

• Create a report template with four Sections of different contents.

• Make sure the Render Sequence table includes all four Sections.

• Go to the Section Header of each Section and choose Table of Contents from the property sheet.

• For Section 1, enter a literal string: first. Section 2 as second. Same applies for the third and fourth
section. Make sure the TOC Enabled checkbox is ticked.

Please note that the TOC doesn't need to be four different sections, it could be four groupings of data
(group header-details-group footer) in a single section itself.

29

Web Interface

Once the report is setup, proceed with the configuration from the browser interface.

When the "split" property is indicated as "1", it means to break at the top level splits. You might choose
to break at any tree depth.

For each split condition, you need to configure a patten match string that matches certain title in table
of contents. When a match happens, the matching portion of the report is sent to the targets configured
in the split condition.

You can provide parameter values for the targets referred in split conditions. For example, you may
want to send a portion of a report to "printer" target and the target required one parameter "file". So
you can provide value for the "file" parameter as "${0}.glint". Note that the string contains another
parameter ${0}, which is provided by Repertoire automatically when the split condition matches title
of a report. (If you are familiar with regular expression, the parameter ${0}, ${1}, etc..actually refers
to groups in the result of string pattern matching.)

Although the UI allows you to add more than one targets to a split condition, the matching report is
only sent to the first target if the condition matches.

Properties

ValueName

1split

30

Web Interface

Figure 6.9. Split Target

Target Access Control

• User Access Contol
There is access control support on targets. For each user/group, administrators can specify which
target he can access. For example, if a job is run under privilege of user "Jon", the reports rendered
in the job can only be sent to targets that Jon can access. Note that there is a wild card "*" that
represents any user/group/target. So you can specify access control rules for all users easily.

31

Web Interface

Import Target Configuration

If you upgrade Repertoire server from a previous release, you need to manually import your target
configurations from a ERS2-Config.xml file. You can do this task through the browser interface, under
Administration->Targets ->Import target configuration.

During the import process, there are some migration work for each target to make them backward
compatible with current job configuration.

For example, a FileTarget requires "filename" property, and that property may be provided in previous
releases. To make this work after the target is imported to database, the parameter for "filename"
property needs to be changed to ${filename##default-file-name}. So if a parameter for "filename" is
provided in RenderReport panel, that parameter will be used. Otherwise, the default parameter in
"filename" property will be used.

Logs
All logs from the server log directory are listed and can be inspected through the browser interface.
The primary log is the activity log, which lists all session activities (logon and logoff) as well as
generating and rendering actions. More detail is provided in the server log; this provides a fine-grain
view of the system, which is primarily for debugging. The jetty log file lists all file accesses.

Help
The Help menu option provides links to all Elixir Repertoire documentation (including this one).
Documentation shown over the web is in HTML format, but you will also find the PDF version of this
document in the server docs directory. PDF versions of the designer manuals are included with the
Elixir Repertoire Designer release.

Logout
User session is terminated when Logout is selected and the browser returns to the logon page.

32

Web Interface

Chapter 7
Elixir Repertoire Server Client

Introduction
Elixir Repertoire server provides a set of Java standalone client APIs for connection to the server. This
API allows you to trigger all the report-related or ETL functionalities. Access to the functionality is
controlled by the Server license. The report-related functionality allows listing of reports deployed on
the server repository, extracting dynamic parameters in the report and generating reports. The ETL
functionality allow you to access data generation and DataStore functions. This client library may be
deployed as part of a J2EE solution. The detailed version of the Java API documentation is shipped
with the server.

The alternative to the Java Client API is the Server API described in Chapter 8, Server API. This is a
much more powerful and complete API, that is independent of programming languages, but requires
more programming ability and doesn't provide the same high level of abstraction. Therefore, you need
to choose between the simplicity of the Java Client API and the power of the Server API. If you are
using Java and can accomplish your tasks within the simple API provided, stick to the Client API
described in this chapter, otherwise continue on to the next chapter where the Server API is explored.

Java Standalone Clients
The ERSClient is a Java class that provides the core API for all reporting-related functions. It is used
with Java applications like servlets, JSP or even a simple standalone Java client. The ERSClient-
Command is a wrapper class of ERSClient, this provides script based integration for command line
invocation of reports.

The supporting Java libraries are placed in the RepertoireServer\clients\lib directory. RepertoireClient.jar
is the core library containing the API. The other support libraries are log4j for logging mechanism and
Glint.jar for ui components.

Elixir Repertoire Server Client
Elixir Repertoire Server Client provides a light weight interface to connect to the Repertoire Server.
The basic features are listing file system, querying reports deployed in the report server repository,
querying dynamics parameters in the report and generating report.

Using the APIs
The full list of the APIs for RepertoireClient is found in RepertoireServer\web-resources\help\api The
basic steps to make use of the functions are as follows:

• Determine the Report server IP or host name, Port number, user name and password.

• Create a new instance of com.elixirtech.ers2.client.ERSClient class. If the server has been configured
in secure mode, setSecure(true) must be called on the ERSClient instance. Failure to set this to
match the server mode will result in encryption/decryption errors.

• Select the API to use to generate report, list filesystem etc. These basic functions are:

33

// retrieve the list of file systems in the repository.
String[] getFileSystems();

// retrieve a file system from the repository.
IFileSystem getFileSystem(String filesystemName);

// retrieve the list of the reports in a filesystem.
String[] getReports(String filesystemName);

// retrieve the list of the parameters in a report.
Parameter[] getParameters(String report);

// generate a report into an output stream.
IJobInfo renderReport(String report, String mimeType,
 OutputStream os, Properties properties);

Code example
Below are some code examples to interface with the report server from a java client.

Example 7.1. Listing the file systems in a server repository.

File systems are used for storage. They could be file directories or jar files the implementation is
transparent to the user. The getFileSystems API will list the file systems.

import com.elixirtech.report2.runtime.IFileSystem;
public void listReports()
{
 String[] filesystem = client.getFileSystems();
}

Example 7.2. Listing the reports deployed in a file system.

Once you have obtained the file system name (String), you can list the report names in that file system.

public void listReports()
{
 ERSClient client = new
 ERSClient(localhost,8080, username, MyPassword);

 String[] reports = client.getReports("myfilesystemname");
}

34

Elixir Repertoire Server Client

Example 7.3. Generating a report

This illustrates report generation where "outputstream" is the java io stream that the report output will
be written to. Job Information can be retrieve via the interface IJobInfo.

import java.io.OutputStream;
import com.elixirtech.ers2.client.ERSClient;
import com.elixirtech.report2.runtime.IJobInfo;
...
public void generateReport(OutputStream outputstream)
{
 ERSClient client = new
 ERSClient(localhost,8080, username, MyPassword);

 IJobInfo job = client.renderReport(
 "/myrepository/myreport.rml",
 "application/pdf",
 outputstream,
 properties);
}

Example 7.4. Request for Data listing.

This illustrates how you can query for the data source for a list of records. The output will be written
on the stream. Depending on the mime type, the format of returning dataset may in the format of excel
(application/vnd.ms-excel), comma separated file (text/csv) or default data source xml format (text/xml).

public void generateDataSource()
{
 String dsFS = "/ElixirSamples/DataSource/ChartData.ds";
 File f = new File("ChartData.ds");
 if (f.exists())
 f.delete();
 FileOutputStream fos = null;
 try
 {
 fos = new FileOutputStream(f);
 Properties properties = new Properties();
 //mime-type format needed to return the data
 properties.put("mime-type", "text/xml");
 m_ERSClient.generateData(dsFS, fos,properties);
 if (fos != null)
 try
 {
 fos.close();
 } catch (IOException e)
 {
 }
 } catch (Exception ex)
 {
 System.err.println("Error: " + ex.toString());
 }
 }

35

Elixir Repertoire Server Client

Example 7.5. Trigger for Data Store process.

Data Store allows the user to trigger a section of actions to process data and finally load the final dataset
to specific location i.e. Database table, file etc. The API ,generateData, is used but add parameter key
"datastore" and the datastore name is needed to identify which data store to activate.

public void generate_DataStore()
{
 String dstoreFS="/ElixirSamples/DataSource/CompositeEmployee.ds";
 try
 {
 Properties properties = new Properties();
 //datastore property requirement to identify which
 // data store to push the data to.
 properties.put("datastore", "CSV");
 m_ERSClient.generateData(dstoreFS, outputstream, properties);
 }
 catch (Exception ex)
 {
 // ...
 }
}

Example 7.6. Using IJobInfo interface to extract job information.

When rendering reports or generating data, the methods return an IJobInfo interface. You can use this
interface to extract information about a particular job. An example is as listed below:

import com.elixirtech.report2.runtime.IJobInfo;

...

private static double diffSecs(double start, double end)
{
 return (end-start)/1000d;
}

public void displayReportGenerateJobInfo(IJobInfo myJob)
{
 SimpleDateFormat df = new SimpleDateFormat("yyyyMMdd-Hmm");
 m_DateFormat = df.format(new Date());

 long timeReceived = job.getLong(IJobInfo.JOB_RECEIVED);
 long timeStarted = job.getLong(IJobInfo.JOB_STARTED);
 long timeEnded = job.getLong(IJobInfo.JOB_ENDED);

 double totalQueueTime = diffSecs(timeReceived,timeStarted);
 double totalJobProcessTime = diffSecs(timeStarted,timeEnded);
 double totalJobTime = diffSecs(timeReceived,timeEnded);

 int pageCount = job.getInteger(IJobInfo.PAGE_COUNT);
 int recordCount = job.getInteger(IJobInfo.RECORD_COUNT);
 String mimeType = job.getString(IJobInfo.MIME_TYPE);
 long sizeBytes = job.getLong(IJobInfo.BYTE_SIZE);

 // display or log these values as you choose
}

36

Elixir Repertoire Server Client

Java Client usage examples
In the RepertoireServer\clients\demo\JavaClientApp directory, there a Java Client demo with source
code provided to show the how a Java Swing Client view can be built with the Server Client's API.
The full demonstration of a web based report application is now available from our web site.

Non-Java Client Connection Library
Non-Java Clients should use the Server API, which is described in Chapter 8, Server API. The Server
API is also applicable to Java users who want more comprehensive functionality.

Elixir Repertoire Server Command Client
Elixir Repertoire Server Command client allows you to integrate report generation with a script based
command line invocation. This can be use with a system scheduler like a cron job as a batch script.

Here is an example of the script,

java
 -classpath RepertoireClient.jar
 com.elixirtech.ers2.client.ERSClientCommand --host localhost
 --port 8080 --report "/Reports/myreporttemplate.rml" --mimetype
 application/pdf --output "./myreports/Test.pdf" --user user
 -password pass

where request is submitted to the server to return a pdf formatted report name Test.pdf of the name
"/Reports/myreporttemplate.rml". For an updated list of parameters to be used with the command
interface, please use

java -classpath RepertoireClient.jar
 com.elixirtech.ers2.client.ERSClientCommand --help.

37

Elixir Repertoire Server Client

Chapter 8
Server API

Overview
Elixir Repertoire Server is accessible and manageable through the Hypertext Transport Protocol
(HTTP), the kind of network connection used by a browser when accessing an http: or https: web site.
We've already seen the browser interface provided by the server in Chapter 6, Web Interface, in this
chapter we will look at how the server URLs can be used to interact with the tool through programs.

The HTTP protocol specifies Uniform Resource Locators, like http://www.elixirtech.com/ and operations
GET, POST, PUT and DELETE. Browsers typically use GET for reading web pages and POST for
submitting data, such as entry forms. Each operation has characteristics defined by the HTTP standard,
so that all software that uses HTTP can follow the same rules.

GET Getting a resource can be performed at any time, and as many times as necessary. It has
no side-effects, so calling GET again is perfectly safe - just like keep hitting refresh on
your browser. It is like coding PRINT X. X won't change, however many times you call
it. Many tools have a limit on the size of a URL, so a GET with a long parameter string
can occasionally cause an error. Therefore some Report and Data services that should
logically be GET services are also provided as POST services because POST has no artificial
limit on parameter size. These services will be noted below as "GET or POST" - you will
find the GET version simpler to test from a browser, but might need to use the POST
version in the rare case that the total size of your parameters exceeds a few kB.

POST Posting should be used with care as these methods do have side-effects. For example on a
website when you book a flight, you shouldn't submit (POST) twice, or you will probably
get billed twice. It is like coding X = X + 1. Every time you call it X ends up with a different
value.

PUT Putting a resource can be performed at any time. This method created or updates the value
of a resource. You can repeat the operation and there are no side-effects. It is like saying
X = 5. You can say it as many times as you want. After the first time, it has no extra effect.

DELETE Deleting a resource can be performed at any time. You can repeat the operation and there
are no side-effects. This is because you can safely delete something that isn't there - it isn't
an error, the result is, it still isn't there. Following our coding analogy, this is like coding
X = NULL.

HTTP provides the basic data interchange protocols, but there are a variety of mechanisms used on
top of these four primitive operations. Elixir Repertoire Server uses Representational State Transfer
(REST).

REST
The key concept in REST is the idea that each resource should have a unique global identifier and that
operations can be applied to the resource through a set of well-defined operations (GET,POST,PUT
and DELETE). In Elixir Repertoire, this means that each repository file and folder, user, group, report,
datasource, target, even log, all have distinct identifiers - URLs - that allow direct interaction. For
example, creating a new user called bill can be done through the Web Interface with your browser, as
described previously, but can just as easily be done by sending a PUT request to the URL /user/bill.

38

Similarly, accessing a server log is as simple as sending a GET request to /log/file/server.log. You can
integrate that log into a portal if you choose, or maybe write a utility to scan the log for specific tasks
you are monitoring.

Calling HTTP
HTTP was chosen as the underlying protocol because there are many libraries written for many different
programming languages that can use it. It is beyond the scope of this manual to teach you how to
program in all of these languages, but examples in common languages, such as Java, C#, Ruby and
Python are provided as resources on the Elixir Technology web site. However, as a short example,
here's how to call the query mime-types service (described in the reference below) using Ruby:

require 'net/http'

Net::HTTP.start('localhost',8080){
|http|
 req = Net::HTTP::Get.new('/query/mime-types')
 req.basic_auth 'admin', 'sa'
 response = http.request(req)
 print response.body
}

That wasn't so hard, was it? Every language will vary, but through use of the right abstractions and
libraries (eg. HttpClient for Java) you can write true Service-Oriented Applications (SOA) that utilise
all of the services that Elixir Repertoire Server provides. As an example, Elixir Repertoire Remote is
written using exactly the same network API that is exposed to you.

Logon
Service: POST /logon.html

• Parameter: username

• Parameter: password

• Parameter: return (optional)

Explicit logon to the server, just like a user with a browser would do. API users should probably use
the BASIC AUTH method of connection instead as this means the credentials are associated with each
request and there will be no chance of a session timeout. A timeout would result in a redirect to the
logon page, just like in the browser. Use return=SomeURL to redirect to a specific page if successful.

Service: GET /logout.html

Calling this URL invalidates the current session. Even if you don't explicitly logout, your session will
expire within a fixed interval (default 100 mins). You will need to logon or supply BASIC AUTH
credentials to continue using services.

Service: GET /authenticate-session

• Parameter: session

• Parameter: return (optional)

This URL supports the Single Sign-On (SSO) mechanism. The controlling server should logon to the
Elixir Server using either /logon.html or BASIC AUTH and obtain a session cookie. The controlling
server then redirects the user to this service, passing in the session id as a parameter. If the session id
is valid, the authentication details will be cloned into a new session cookie returned directly to the
user. The user may now continue to use the services without the intervention of the controlling server.

39

Server API

If the controlling server logs off (/logout.html) providing the original session id, then any user session
that was authenticated based on that session id will also be terminated.

Repository
Service: GET /repository

• Parameter: mode (optional)

Provides a repository browser if no mode is supplied. The browser shows a single level of the tree
with the ability to navigate through the children or return to the parent folder. Selecting a file will
"open" the file - that means if it is text, html or pdf it will probably be streamed to your browser. If it
is an rml, ds or pml you will probably be prompted to save it. Note that this provides access to the raw
files - you can't render or generate from here. Other services provide that ability. If mode is "xml" then
the filesystems are returned as XML. If mode is "tree" then the entire repository tree is returned in
XML. The modified attributes indicate the last modified times of the files represented as the difference,
measured in milliseconds, between the file time and midnight, January 1, 1970 UTC.

Response:

<!-- output when mode=xml -->
<filesystems>
 <filesystem displayName="ElixirSamples"/>
 <filesystem displayName="Scheduler"/>
</filesystems>

<!-- output when mode=tree -->
<repository>
 <folder name="ElixirSamples"
 modified="1179946379812" access="rw">
 <folder name="Dashboard"
 modified="1179946365312" access="rw">
 <folder name="Border Catalog"
 modified="1180009266296" access="rw">
 <file name="All Borders.ds"
 modified="1179946257296" access="rw"/>
 <file name="All Borders.rml"
 modified="1179946300875" access="rw"/>
 ...

Service: GET /repository/ElixirSamples/Report

• Parameter: mode (optional)

This is a continuation of the previous service, as you navigate through the HTML, the service URL
changes to mirror the repository file structure. You can use the same mode options, "xml" and "tree",
which give you the corresponding output, but rooted on the repository path identified in the URL.

Service: GET /repository/ElixirSamples/Report/CustomerListing.rml

This is a continuation of the previous two services and illustrates the retrieval of a file. In this case,
mode is not used as the file will always be returned using its original mime-type. Again note that this
will download the CustomerListing report template, it won't render the report. See the Report and
Target services below for rendering options.

Service: PUT /repository/ElixirSamples/Report/CustomerListing.rml

Set the file contents. If the name doesn't exist, then a new file will be created, or a new folder if the
pathname ends with '/'.

40

Server API

Service: DELETE /repository/ElixirSamples/Report/CustomerListing.rml

Delete the file or folder (along with any child files and folder).

Service: POST /repository/ElixirSamples/Report/CustomerListing.rml

• Parameter: action

• Parameter: to (optional)

This service provides utility options for repository management. When the path points to a file or
folder and the action is "rename" and to is another filename, the file or folder will be renamed (retaining
the same parent). When the path points to a filesystem and the action is "refresh", then that filesystem
is refreshed. When the path points to /repository and the action is "refresh" then all filesystems are
refreshed.

Query
Service: GET /query/alive

Tests if the server is alive and responding to requests.

Response:

200 (Ok) if the server is alive

Service: GET /query/mime-types

Get the mime-types supported for rendering.

Response:

<mime-types>
 <mime-type name="application/pdf"/>
 <mime-type name="application/postscript"/>
 <mime-type name="application/rtf"/>
 ..

Service: GET /query/targets

Get the available targets for rendering to, along with the default target properties that you can override.

Response:

<targets>
 <target name="mail">
 <property name="message">Your report is attached.</property>
 <property name="to">elided...alice@example.com</property>
 <property name="subject">Report from Elixir Server</property>
 <property name="smtp.host">elixir.aspirin</property>
 <property name="filename">report</property>
 <property name="from">tom@example.com</property>
 <property name="cc">elided...susan@example.com</property>
 </target>
 <target name="db">
 <property name="overwrite">yes</property>
 <property name="driver">elided...EmbeddedDriver</property>
 <property name="table">JobOutput</property>
 <property name="url">jdbc:derby:C:/Temp/elxdb/fs</property>

41

Server API

 </target>
 ...

Service: GET /query/filesystems

Get the filesystems visible to the user.

Response:

<filesystems>
 <filesystem display-name="ElixirSamples"
 configuration="C:\RepertoireServer\samples"
 read-only="false" type="local"/>
 <filesystem display-name="Scheduler"
 configuration="Scheduler"
 read-only="false" type="jdbc"/>
</filesystems>

Service: GET /query/jdbc-drivers

Get the JDBC drivers available on the server. This service will only return available known drivers -
ie. those with known classnames that are provided by the GUI as suggestions and marked with a green
icon indicating they are available.

Response:

<drivers>
 <driver name="Derby Embedded"
 class="org.apache.derby.jdbc.EmbeddedDriver"
 url="jdbc:derby:database"/>
 <driver name="JDBC/ODBC_Bridge (Sun JVM)"
 class="sun.jdbc.odbc.JdbcOdbcDriver"
 url="jdbc:odbc:Sample"/>
 <driver name="MySQL (com.mysql)"
 class="com.mysql.jdbc.Driver"
 url="jdbc:mysql://<host>/dbname"/>
 <driver name="MySQL (mm.mysql)"
 class="org.gjt.mm.mysql.Driver"
 url="jdbc:mysql://<host>/dbname"/>
</drivers>

Service: GET /query/repository/ElixirSamples/Report/CustomerListing.rml?mode=params

Gets the parameters for reports, datasources, dashboards and jobs

Response:

<!-- in this case there aren't any -->
<parameters report="/ElixirSamples/Report/CustomerListing.rml"/>

<!-- in this case there are -->
<parameters report="/ElixirSamples/Report/NewsToday.rml">
 <parameter>
 <key>Language</key>
 <type>choice(Mixed,Korean,Tamil,Arabic)</type>
 <value>Mixed</value>
 </parameter>
</parameters>

42

Server API

Service: GET /query/user

Get the current user information (id, name, groups).

Response:

<user name="admin" id="1" is-admin="Yes">
 <group id="1" name="admin"/>
 <group id="2" name="*"/>
</user>

Tool
Service: GET /tool/repository

Get the clickable repository tree (breadcrumbs flat HTML) that will open chosen files. This is different
from the /repository URL in that it will launch the right engine to handle the Elixir file types - for
example selecting a report will render it, selecting a datasource will generate the data and selecting a
dashboard will open it for viewing. This is the URL that the shows below the menu bar when you log
on to the Web Interface.

Remote
Service: GET /remote/license

Get the Remote license for the current (logged on) user. This license indicates what features of the
Remote tool the user has access to.

Report
Service: GET or POST /report/ElixirSamples/Report/CustomerListing.rml

• Parameter: mime-type

• Parameter: any report parameters (optional)

Render the report into the requested mime-type. The report will be streamed back to the client. Because
this is a simple GET method, you can try this directly from your browser or embed a link into any web
page. The data will be streamed back to your browser, which will show it directly if you choose a
mime-type application/x-html-zip, or text/html etc. that is understood by your browser. (Actually
application/x-html-zip is not understood by the browser, but the zip is disassembled on the server so
the browser sees the text/html pages contained within.) The POST version should be used if sending
more than about 4kB of parameters.

Data
Service: GET or POST /data/ElixirSamples/DataSource/CustomerListing.ds

• Parameter: mime-type

• Parameter: any data source parameters (optional)

• Parameter: xslt=respository:/some/file.xslt (optional)

Generate the data into the requested mime-type. The available mime-types are: application/vnd.ms-
excel (Excel), text/xml (XML) and text/csv (CSV). If you choose XML mode, you may also pass an
xslt parameter which names a stylesheet in the repository (full repository url required) which will be

43

Server API

used to transform the XML while generating. In all cases, the resulting data will be streamed back to
the client. The POST version should be used if sending more than about 4kB of parameters.

Service: POST /data/ElixirSamples/DataSource/CustomerListing.ds

• Parameter: datastore

• Parameter: any data source parameters (optional)

Generate the data from the Composite DataSource into the named datastore. Note that this service is
a POST, unlike the GET version above, because the server is modified by this operation - the data is
written onto the server instead of being streamed back to the client. You will recall from the earlier
discussion that POST operations may have side-effects - for example the datastore may append records
to a JDBC database. You wouldn't want the same records appended twice! The GET version above is
stateless, because the data is returned to the user - the server state doesn't change.

Glint
Service: GET /glint/ElixirSamples/Resources/sample.glint

• Parameter: page (optional)

• Parameter: mode (optional)

Returns the specified page of the glint, or the first page if no page parameter is supplied. If the mode
value is "page-count" then a plain text number is returned indicating the number of pages available.

Job
Service: POST /job/ElixirSamples/Job/JobSample.job

• Parameter: any job parameters (optional)

Executes the job and returns the job log as a text stream.

Target
Service: POST /target/TargetName

Renders a report to the named target (TargetName). This service requires an XML structure to be sent
as the request, detailing the specific report along with any rendering and target parameters that are
required. You should always provide the mime-type target parameter unless the target is a PrintTarget.
Other target parameters can be identified from the /query/targets service.

Request:

<request report="/ElixirSamples/Report/CustomerListing.rml">
 <report-parameters>
 <param name="paramName">value</param>
 </report-parameters>
 <render-details> <!-- optional -->
 </render-details>
 <target-parameters>
 <param name="mime-type">application/pdf</param>
 </target-parameters>
</request>

44

Server API

Log
Service: GET /log/file/activity.log

(Admin only)

Returns the contents of any log file from the server /log directory. Substitute activity.log for any other
log name to have it streamed back as plain text.

User
Service: GET /user

(Admin only)

Lists all users and their groups

Response:

<users>
 <user id="1" name="admin" enabled="yes">
 <group id="1" name="admin"/>
 </user>
 <user id="2" name="scheduler" enabled="yes">
 <group id="3" name="scheduler"/>
 </user>
 <user id="3" name="user" enabled="yes">
 </user>
</users>

Service: GET /user/bill

(Admin only)

Lists a named user and their groups

Response:

<user id="1" name="admin" enabled="yes">
<group id="1" name="admin"/>
</user>

Service: PUT /user/bill

(Admin only)

Adds or edits user bill. When creating, don't specify the name attribute, because it is part of the URL.
The enabled state defaults to true if not specified. You can specify a name while editing to rename the
user. When editing, leaving out the name, password or enabled attributes indicates that those values
are unchanged. Similarly, leaving out the group children indicates that the groups remain unchanged.
If you want to remove all groups, you should specify a single child group with no id (this overrides
the no groups means no change inference).

Request:

<user name="bill" password="XXX" enabled="yes">
 <group id="1">
 <group id="2">
</user>

45

Server API

Service: DELETE /user/bill

(Admin only)

Deletes the named user

Group
Service: GET /group

(Admin only)

Lists all groups and their users

Response:

Service: GET /group/scheduler

(Admin only)

Lists the group called scheduler and its users

Response:

<group id="3" name="scheduler">
 <user id="2" name="scheduler"/>
</group>

Service: PUT /group/testing

(Admin only)

Adds or edits the group called testing. When creating, don't specify the name attribute as it is part of
the URL. You can specify a name while editing to rename the group. Leaving out the user children
indicates that the users remain unchanged. If you want to remove all users from the group, you should
specify a single child user with no id (this overrides the no users means no change inference).

Request:

<group name="testing"><user id="1"><user id="2"></group

Service: DELETE /group/testing

(Admin only)

Deletes the named group

JavaScript Extensions
One additional object is accessible through JavaScript or substitution when running on the Server. It
provides a few utility functions related to user access, for example so you can include the name of the
user who generated a report as part of the report itself.

The object is called Server and provides the following functions:

int getUserId() Returns the unique id of the current user

46

Server API

String getUserName() Returns the name of the current user

int[] getGroupIds() Returns the ids of the groups to which the current user belongs

String[] getGroupNames() Returns the names of the groups to which the current user
belongs

boolean isAdmin() Returns true if the current user belongs to the admin group

String getRepositoryUserHome() Returns the name of the current user's repository home directory

The Server object can be used in any server-side JavaScript codes but will be undefined if used in the
standalone Designer. Substitutions can use the Server object by invoking JavaScript through an "="
prefix. For example

${=Server.getUserName()}

will insert the current user name into the output.

47

Server API

Chapter 9
Troubleshooting and Common
Errors

Introduction
When the Repertoire Server and Client components appear unable to function together, there are a few
things you can try to diagnose the problem. This chapter describes some ways to check the system is
running correctly and some errors that you might encounter.

Server Troubleshooting

System Requirements
Ensure your system meets the minimum requirements for running Elixir Repertoire Server. In particular,
check the available RAM and ensure that the memory allocated to the server (defined by startServer.bat
and startServer.sh) does not exceed the available RAM. The default values are 512MB, set using the
option -mx512M.

Port Availability
Ensure that port 8080 is not used by other software. These values are set in the config file ERS2.xml,
so you can change them in case of any conflict. Of course, if you change the values, clients must
connect to the modified port numbers. By default the server will exit automatically with a message if
the client connection port is not available.

Logs
The log directory contains a server.log file that will indicate any errors that occurred while the server
was running. By default you will see info messages as well as warn and error messages. You can
control the level of messages output by editing log-config.xml in the config directory. Look down the
file for a <root> element and change the priority value "info" to "debug" for more information, or
"warn" or "error" for less information. For optimization, when the server is working properly, you can
set it to warn or error.

<root>
 <!-- note this value affects minimum job logging level
 error, info or debug. Increase message logged
 default should keep to info.
 -->
 <priority value="info"/>
 <appender-ref ref="Server" />
 <appender-ref ref="STDOUT_ERROR" />
</root>

48

Running as a Windows Service
When a program runs as a Windows service, it has no access to user environment variables. You should
also avoid assuming a current directory and use absolute paths. Before attempting to run the server as
a Windows Service you should ensure it runs as a standalone server. Once this has been verified, you
can start as a service and review the Windows Event Viewer and the server log directory for any error
messages.

Client Troubleshooting

JVM Versions
For testing it is advisable to ensure that both client and server are running the same JVM version. The
client and server are likely to operate correctly with mixed versions, but fixing on one reduces the
chance of errors.

Consistent Connection Information
The default Repertoire Server port is 8080. If you have changed this, then you need to ensure the client
connects on the modified port. Similarly, if you have configured the server in secure mode (the default
is false), then clients connecting to the server must also connect in secure mode (usually over a different
port).

Client-Server Troubleshooting

Network Access
If the client is unable to connect to the server, try running a browser on the client machine if that fails,
on the server machine. If your server doesn't have a GUI, you can use a tool like wget to read a web
page from a command line interface.

If you are able to connect to the server from the same machine, then there is probably a firewall
preventing access to the server port from your original client machine. If you are not able to access
the server from the same machine, then you will need to review the server logs for likely causes.

Common Errors

Client Errors
There are three categories of client-side error:

Communication Communication errors occur because the client is unable to
connect to the server, either due to firewall restrictions, the
server port not being available, the server not being ready to
accept connections, or due to protocol differences - one side is
running secure mode, and the other side plain.

Authorization After successfully connecting, the client attempts to authenticate
itself with the server. If your client program fails to connect,
then try to connect using a browser and check that you can
authenticate manually. Review the activity and server logs for
information about logon failures.

49

Troubleshooting and Common Errors

Timeout or Connection Lost This error occurs if the server fails to respond to the client within
a meaningful time, or the connection is broken. Check the server
log to identify the cause of any timeout, or check the network
to resolve why the connection was terminated. This error may
be due to a server failure - for example if the server doesn't have
enough memory to complete the set of tasks it is currently
handling. You might choose the reduce the number of concurrent
tasks that you allow the server to perform by editing ERS2.xml.

Report Errors
Report errors are often due to missing information. For example, the report template and all necessary
datasources (and any data files) are not deployed to the server, or are not deployed in a consistent
location (remember in particular that the Repository is case-sensitive). You should also check that the
dynamic parameters passed in to the render engine are correct. It is usually advisable to include default
values for the parameters, so that it is easy to verify the report by not including any explicit dynamic
parameters.

After rendering a template for the first time or after any change, you should check the server log for
any JavaScript errors while running the report, to ensure that all information is rendered correctly and
efficiently.

Datasource Errors
Datasource errors are different for each kind of DataSource:

JDBC ClassNotFound: Missing JDBC driver. You need to put the
correct JDBC driver jar file from your database vendor into the
server ext directory and restart the server, so that it will be
loaded. You should ask your database vendor for the appropriate
jar file for your chosen database and version.

ARFF,Properties,Text,XLS,XML These datasources depend on external data files, so these need
to be available on the server. It is usually best to place these
data files within the repository and refer to them with repository:
URLs so that if the repository moves in future the files will still
be accessible. Further, each data file needs to conform to the
correct format - an invalid XML file cannot be parsed by the
XML datasource, for example.

Composite, Ref These datasources depend on other datasource files, so these
need to be available in the server repository.

Object Object datasources need access to the class files or jar files that
contain the compiled Java code for the classes that are used by
the object datasource. If you use the classpath functionality
within the object datasource, then you need to ensure that the
same classpath applies on the server. You might want to use
repository: URLs for your classpath, so the jars get deployed
onto the server at the same time as the datasources that use them.

Printing Errors
Once the report has been spooled to the operating system, Repertoire Server has no more control over
the printing process. Therefore, you need to look at the print queue management software provided
by your operating system to see how print errors are reported and resolved.

50

Troubleshooting and Common Errors

	Elixir Repertoire Server Manual
	Table of Contents
	Chapter 1. Elixir Repertoire Server
	Overview
	Features

	Chapter 2. Getting Started
	Hardware Requirements
	Software Requirements
	Downloading and installing Elixir Repertoire Server
	Starting the Server
	Testing the Server
	Stopping the Server
	Running the Server as a System Service

	Chapter 3. Overview
	Introduction
	Main Directories
	Core Components

	Chapter 4. Configuration
	Configuration Overview.
	Java Virtual Machine Configuration
	Elixir Repertoire Server configuration.
	Server Log Control

	Administration of Core Services
	Configuring the Elixir Repertoire Server.
	LDAP Secondary Authentication
	SMTP Server
	Configuring the Logging
	Secure Mode

	Targets and User Access
	Target (and MIME type) Configurations Moved to Database
	New Target Parameter Resolution Mechanism
	Roles

	Chapter 5. Security
	Overview
	Preparation
	Connections and Firewalls
	Protecting Sensitive Information
	Access Rights

	JavaScript Permissions

	Chapter 6. Web Interface
	Overview
	Repertoire
	User
	System
	Password

	Remote
	Administration
	Server
	Scheduler
	Users
	Groups
	FileSystems
	Targets
	Target Constants
	Target List
	Create New Target
	File Target
	JDBC Target
	JMS Target
	Mail Target
	Print Target
	Repository Target
	Repository User Home Target
	SFTP Target
	Socket Target
	Split Target

	Target Access Control
	Import Target Configuration

	Logs

	Help
	Logout

	Chapter 7. Elixir Repertoire Server Client
	Introduction
	Java Standalone Clients
	Elixir Repertoire Server Client
	Using the APIs
	Code example

	Java Client usage examples
	Non-Java Client Connection Library
	Elixir Repertoire Server Command Client

	Chapter 8. Server API
	Overview
	REST
	Calling HTTP
	Logon
	Service: POST /logon.html
	Service: GET /logout.html
	Service: GET /authenticate-session

	Repository
	Service: GET /repository
	Service: GET /repository/ElixirSamples/Report
	Service: GET /repository/ElixirSamples/Report/CustomerListing.rml
	Service: PUT /repository/ElixirSamples/Report/CustomerListing.rml
	Service: DELETE /repository/ElixirSamples/Report/CustomerListing.rml
	Service: POST /repository/ElixirSamples/Report/CustomerListing.rml

	Query
	Service: GET /query/alive
	Service: GET /query/mime-types
	Service: GET /query/targets
	Service: GET /query/filesystems
	Service: GET /query/jdbc-drivers
	Service: GET /query/repository/ElixirSamples/Report/CustomerListing.rml?mode=params
	Service: GET /query/user

	Tool
	Service: GET /tool/repository

	Remote
	Service: GET /remote/license

	Report
	Service: GET or POST /report/ElixirSamples/Report/CustomerListing.rml

	Data
	Service: GET or POST /data/ElixirSamples/DataSource/CustomerListing.ds
	Service: POST /data/ElixirSamples/DataSource/CustomerListing.ds

	Glint
	Service: GET /glint/ElixirSamples/Resources/sample.glint

	Job
	Service: POST /job/ElixirSamples/Job/JobSample.job

	Target
	Service: POST /target/TargetName

	Log
	Service: GET /log/file/activity.log

	User
	Service: GET /user
	Service: GET /user/bill
	Service: PUT /user/bill
	Service: DELETE /user/bill

	Group
	Service: GET /group
	Service: GET /group/scheduler
	Service: PUT /group/testing
	Service: DELETE /group/testing

	JavaScript Extensions

	Chapter 9. Troubleshooting and Common Errors
	Introduction
	Server Troubleshooting
	System Requirements
	Port Availability
	Logs
	Running as a Windows Service

	Client Troubleshooting
	JVM Versions
	Consistent Connection Information

	Client-Server Troubleshooting
	Network Access

	Common Errors
	Client Errors
	Report Errors
	Datasource Errors
	Printing Errors

