The iINFUZE Bundle

Contents

Introduction 4
Quick Reference 5
Banner 6
Introduction And Usage 6
Code Description 6
Benchmarks 9
Introduction And Usage 9
Code Description 10
Chessica 11
Introduction And Usage 11
Circles 11
Introduction And Usage 11
Lines 12
Introduction And Usage 12
Code Description 12
Luna 14
Introduction And Usage 14
Life 14
Introduction And Usage 14
Beep 15
Introduction And Usage 15
How To Play the Flute 15

How To Play Tunes 15

How Beep Works
How pitch> works.

How the Audio Hardware Works.
Brikky
Introduction And Usage

TJoy

Introduction And Usage

Slides
Introduction And Usage
Producing and loading FIGgy Images
How does The SlideShow Work?
MiniRace
Introduction And Usage
How MiniRace Works
Joggle
Introduction And Usage
How Joggle Works
Mazes
Introduction And Usage
How It Works
Mini Oxo
Introduction And Usage
Strategy
Full Screen Oxo
Introduction And Usage
Graphics

Strategy

16
17
18
19
19
20
20
21
21
21
22
22
23
23
25
25
25
27
27
27
28
28
28
29
30
30
31

FigTris
Introduction And Usage
Snake
Introduction And Usage
Locals
Introduction And Usage
Explanation
Turtles and TurtleCrypt
Introduction And Usage
How To Use The Turtle Graphics
Blitz
Introduction And Usage
Zoo
Introduction And Usage
Inside The Program
GDem
Introduction And Usage
Inside GDem
Nyan Race
Introduction And Usage
Primes
Introduction And Usage
Cal
Introduction And Usage
Technical Details

Multiple Languages

32
33
34
34
34
34
34
37
38
38
40
40
40
41
42
46
46
46
48
48
49
49
50
50
51

51

Debugger 52

Introduction And Usage 52
EEProm 54
Introduction And Usage 54
They are used to provide these operations in block 258: 54
Technical Details 55
Image Loader 55
Introduction And Usage 55
Using The Autosaver / Autoloader 56
Logger 57
Introduction And Usage 57
Layout 57
Making a Log 57
Control Region 58
Logging Region 58
Inside Logger 58

Introduction

FlGnition inFUZE comes with roughly 400Kb of Flash storage and 100Kb of it contains 32
demonstration programs to help you explore the kinds of things FIGnition can do.

You can try out the programs without understanding how to program FlGnition, but as you
learn more, they will help you to discover programming techniques. You will need to know
how to type on the keypad, this is covered in the build leaflet.

The programs themselves cover simple games: like Brikky, FIGtris and Luna; demonstrate
User defined graphics and high resolution graphics; show you how the blitter works; how
to generate audio, load data in and out of the Flash chip; sense time; read the keypad;
manipulate strings; perform calculations; measure the performance and connect to the
outside world.

All the programs make use of the latest features in the firmware.

Quick Reference

The table below lists all the available programs, the flash blocks they occupy and which
block to load to run each program.

Program Blk(s) Load Program Blk(s) Load
Banner 100 100 Chessica 104-107 107
Benchmarks 101-103 | 103 Circles 108-109 109
Line 110-112 | 110/112 | Luna 113-119 119
Life 120-130 | 130 Beep 131, 132, 133 | All
Brikky 134-140 | 140 TJoy 141 141
SlideShow 142-163 | 142 MiniRace 164-165 165
Joggle 166-167 | 167 Mazes 168-170 170
miniOxo 171-173 | 173 Oxo 174-189 189
FIGtris 190-207 | 207 Snake 208-211 211
Locals 212 212 Turtles/TurtleCrypt | 213-216-218 | 216/218
Blitz 219-224 | 224 Zoo 225-228 228
GDemo 230-233 | 233 NyanRace 234-238 238
Primes 239-240 | 239/240 | Calendar 241-242 242
Debugger 244-253 | 253 12C 254-256 256
EEProm 257-258 | 257/258 | Image Loader 259, 260, 261 | All
Debugger (Auto) | 262-266 | 262 logger 270-290 290

Introduction And Usage

banner allows you to display enlarged messages, 4x the size of normal messages across
the FIGnition screen. You load banner by typing 100 load <exe>. You can use it by typ-
ing banner <exe> or by creating messages which you can display enlarged, for exam-
ple:

create msg " Hello!" <exe>
msg big" <exe>

xp and yp control the current pixel coordinates; where 0 xp ! 0 yp ! isthe top, left-
hand corner.

chr cBig displays a single character at the current banner coordinates.

Code Description

Command(s) | Code Explanation

chrset 0 kern const chrset 0 kern returns the memory address
of the character set, which we define
as the constant chrset.

Xp ,yp 0 var xp 0 var yp xp and yp are simple variables we
use to hold the coordinates for the
next banner character on the screen.

Command(s)

Code

Explanation

bigRow

: bigRow (n x y --)
swap 7 + swap

8 0 do

rot dup 1 and 1+ pen

rot rot 2dup plot

swap 1- swap

loop
drop drop drop

n x y bigRow displays 8 pixels of
a row of a character n based on the
current coordinates x vy . Pixels are
displayed right to left, so we first add
7 to the x coordinate. Thenthe 8 0
do loop loops once for each of the 8
pixels.

We calculate the color of the pixel;
we obtain the pixel value (rot), ob-
tain the bottom bit (dup 1 and) O for
white, 1 for black and add 1 (1+) to
get the pen mode: 1 for plot, 2 for
unplot.

We then shift the pixels down one
pixel; obtain the coordinates (rot
rot), duplicate them (2dup) and plot
the pixel.

We then decrement the x coordinate.

Loop round for another pixel and fi-
nally drop the row and coordinates.

Command(s) | Code Explanation
cBig : cBig (ch --) ch cBig displays a whole character
8 * chrset + (ch). It calculates the row address
where the character begins and then
8 0 do the 8 0 do loop loops once for each
of the 8 pixel rows.
dup c@ xp @ yp @ We duplicate and fetch (@) the cur-
bigRow 1 yp +! 1+ rent pixel row of the character; ap-
pend the coordinates and use bi-
gRow to display it. Then we incre-
ment yp for the next row (1 yp +!)
coordinate and increment the char-
acter row address..
loop Then we loop round for the next row.
xp @ 8 + dup 42 < if After the character is displayed we
8 yp +! update the x and y coordinates. The
else xp value is incremented by 8 (xp @
drop 0 8 +) and if the next character will fit
then on the screen (dup 42 <) we reset
xp ! drop yp back to the same initial row coor-
; dinate as before (-8 yp +!). Oth-
erwise, we resetto 0 (drop 0) and
finally store it in xp and then drop
the row address.
big" : big" (str --) str big" displays a whole string of

dup "len 0 do

dup c@ cBig 1+

loop
drop

characters at str. It obtains the
length of the string (dup "len) so
that the 0 do will loop once for each
character in the string.

In the loop we fetch the current
character from the string (dup c@);
display it using cBig and then in-
crement the string address to point
to the next character. (1+).

Finally we 1oop round and then
drop the string address.

Command(s) | Code Explanation
banner : banner banner uses big" interactively.
begin
tib @ dup query It gets the user to input a string into
the tib using query.
cls 0 xp ! 0 yp !
1+ dup big" Then the screen is cleared, the xp
and yp coordinates are reset to the
top left; the tib's first proper charac-
ter address is calculated (1+) and a
big version of the string is displayed (
big").
"len 0= until
. If the input string wasn't empty (
"len 0=) we repeat it all again (
until).
Benchmarks

Introduction And Usage

Benchmarks allow you to test the performance of FIGnition. There are 9 benchmark tests:

Test# | Time/s | Instructions KIPS Comment

1 1.340 100000 74.626 | Testsasimpledo .. loop.

2 0.52 90000 [173.076 | A count up loop using begin .. until.

3 2.7 690000 | 255.555 | Tests +, -, *, / arithmetic using the
stack.

4 2.8 690000 | 246.428 | Tests +, —, *, / arithmetic using literal
numbers.

5 3.08 710000 | 230.519 | Benchmark 4, but with a subroutine call /
return in each loop

6 3.86 790000 | 204.663 | Benchmark 5, but with a small do ...
loop (with 5 loops) in each begin ..
until loop.

7 7.72 1190000 | 154.145 | Benchmark 6, but copies the calculation
result to an element in the array m in-
dexed by do ... 1loop counter value.

Test# | Time/s

Instructions KIPS

Comment

3l 0.36

100000 | 277.777

Tests the simple arithmetic / logical op-
erations: +, neg, and , or , xor . Note:
the raw performance is 90000/(Test#3l
time - Test#1 Time) = 398.2KIPs.

19 1.1

99400 90.363

Tests plotting. The lo-res timing is given.
It can be run in hi-res mode by executing:
1 vmode cls time-bm bm1g key 0 vmode
which gives a value of 1.7s or
57.905KIPs (or a raw plotting speed of
24000/(1.1-(2.5*2+13.4)*0.024) = 36.4K
pixels/s in low-res mode and 19.1K
pixels/s in hi-res mode.

Code Description

Command(s)

code

Explanation

time-bm

: time-bm

find l1fa>cfa

0 pause
clock i@ swap exec

clock i@ swap -

time-bm bmx finds the execution
address of the following word (the
bmx) .

It waits for a video frame to complete
to make timings deterministic (0
pause), then gets the current clock
value (clock i@) executes the
benchmark (swap exec)

Afterwards it gets the new clock time
and substracts the old one. This time
is in frames, which is 50 frames per
second for PAL FIGnitions.

We convert this to milliseconds by
multiplying by 20 and display the re-
sult.

Hmu -mnm
(] |
L& nﬂ- | B |

W [

Chessica

AU SO0

Introduction And Usage

Chessica is a simple 2 player chess game. It generates a set of chess pieces; draws a

board and allows 2 players to move pieces around the board.

then <enter> . Typing a letter or digit

To use it, load the program (107 load <exe>) and then type chessica. Type a pair of
(which is technically illegal as a first move)

coordinates e.g. if you want to move F1 to F5
then type F, then 1, then <space>, then F then 5

always changes the value in the correct column, <space> always switches between the

from and to coordinates.

check for any illegal moves, nor can the computer play chess against you - that's for the

As you can see, it's pretty simple and only requires 547b, including graphics. It doesn't
future.

Circles

Introduction And Usage

Circles is a circle demonstration. It can draw circles in low res and hi res modes.

To run the demo it, load the program (109 load <exe>) and thentype hiCirc. It will
display and erase sets of concentric circles until you press <enter> .

circle uses a standard Bresenham circle-drawing algorithm. You can use circle by first set-
ting the pen mode (e.g. by typing 1 pen to plot white pixels); then executing e.g. : 24 24
24 circ <exe>. You can experiment with this easily in low res mode by just typing them
as commands. In hi-res mode you can't see what you're typing so it's easier to put it all in
a command and run it. For example:

: hiTest 1 vmode 40 50 20 circ key drop 0 vmode ;

Lines

Introduction And Usage

Line is command for drawing straight lines. It can draw circles in low res and hi res modes.
To load the program lines load the first block (110 load <exe>). You can then draw
lines by setting the pen (e.g. by typing 1 pen to plot white pixels); then executing, for ex-
ample:

20 20 17 19 1line

This starts a line at 20, 20 then draws a line 17 pixels right and 19 pixels down. To draw
lines to specific points you can use 1ineTo, SO:

20 20 49 36 lineTo

Will draw a line from (20,20) to (49,36). 1ine and 1ineTo work in hiRes mode. As for the
circles example, it's much easier to test hires code by putting it in a command, for exam-
ple:

: hiLine 1 vmode 5 5 90 120 line key drop 0 vmode ; <exe>

and then you can test it by typing hiLine <exe> .

A line drawing demo program is supplied on blocks 111 and 112. To load the line drawing

feature (and the demo) type 112 load <exe> andthentype cface <exe>torunit. It
shows a minute and second hand and does 50 pause between redrawing each second

hand, but you'll find it's a little slow, because the line drawing takes up a bit of time - how
do you think you might fix it?

Code Description

Command(s)

code

Explanation

sin30

16384 const sin30
28378 const cos30

These numbers are sin and cosine
values for sin(30°)=0.5, cos(30°)

cos30 3425 const siné z0.836 (the ar;glel;(?etw)eendea_cr(lfso)

number on a clock face) and sin
i 32588 t 6
siné const cos =0.1045, cos(6°)=0.9945 (the angle
6 moved by the second hand each

cos second). Because FIGnition can only
currently work with whole numbers
we scale them by 32768.

I* 2 1x I* multiplies these sin and cos 'frac-
m* 1 << swap 2 u* tions' by a whole number to give a
swap drop + whole number result. We need to do

; a bit of shifting to correct errors.

rotC : TotC (x y s ¢) You can rotate a coordinate by an
>r >r (Xxy : s c) angle by performing the following
2dup r 1% calculation:
swap r> 1%*
r> swap >r swap >r >r new_x = x*sin(angle)-y*cos(angle).
r 1*
swap r> 1* new_y = y*sin(angle)+x*cos(angle).
> - > +

) . S‘?rap.r That's all this code does.

I (-- X y)

hand : hand hand draws a hand of the clock. It
xp8xy scales down the coordinates by 256
>r >r 80 80 r> r> line then draws a line given those coor-

; dinates as a direction starting at 80,
80.
cface : cface cface draws the animated clock. It

1 vmode cls nums 3 pen
0 -12288

60 0 do
hand 0 -16384
60 0 do
hand 50 pause
hand

sin6 cos6 rotC
loop drop drop
hand sin6 cos6 rotC
loop drop drop
key drop 0 vmode

goes into hires mode and clears the
screen; uses an xor pen. There's an
outer loop for minutes: 60 0 do which
starts by placing the minute hand at
the top (0, -12288) and then an in-
ner loop for seconds which starts by
placing the second at the top (O,
-16384). These values are the true
coordinates scaled up by 256.

To erase and draw a hand we first
draw it, then wait 1s then draw over
it. Finally we rotate a hand by 6°.

Luna

Introduction And Usage

Luna is a simple interactive version of Lunar Lander. It's a bitmapped version of the game
using the blitter for moving sprites. Type 119 load <exe> to load the game. Type luna
<exe> to load the game.

"Your Lunar lander is heading for the moon as it drifts along; guide it down gently to the
landing pad by pressing . (SW?7) to provide thrust if necessary. Your Lunar lander will
crash if you hit the regolith or hit the landing pad at a velocity over 200! Be careful not to

Life

Introduction And Usage

'Life' is a simple artificial life simulation. A number of living cells are placed on a grid and
ecah cell obeys a few simple rules, yet the result generates complex patterns. On each
generation, each grid location is examined along with its neighbours. If less than 2 neigh-
bours are alive the current cell is said to die from starvation if it was alive. Or if more than 3
neighbours are alive, the current cell will die from over population. If there are 2 or 3 living
neighbours it will survive if it's alive and if there are exactly 3 and the cell is empty, a new
cell will be born.

Life was originally written by J H Conway in 1972, but versions exist for pretty much every
computer ever designed. Type 130 load <exe> to load the game and (for example)

49152 life <exe>

to start life. A new generation appears roughly every 1.9s and you can quit by pressing
<enter>. This version of life is as fast as it is, because the routine to calculate neighbour-
ing cells is tailored for different parts of the screen, which makes the program longer. The
cells are generated using 16 UDGs. Each UDG is divided into 2x2 grid locations (so there
are 4 grid locations in each UDG) and each grid location can be empty or contain a living
cell. This means 2x2x2x2 = 16 UDGs are required.

Beep

Introduction And Usage

Beep adds some audio commands (beep and pitch>); a command for playing simple,
tunes (play) ; an interactive £1ute and "Happy Birthday" tune demonstration (birth-

day). To use audio you need to connect a lead from the audio phono output to the Televi-
sion and adjust the volume.

To load the demonstration, type 133 load <exe>.Type: flute <exe> to play the flute.

How To Play the Flute

The flute is pitched so that middle C is on the letter 'a' and that notes go up one semitone
per letter as follows:

Oct Note: C|C#| D |(D#| E F|F#| G |G#| A | A#| B
1. . B - I
0 a C e f h] I
1 m H 0] H q r t v X
<space> stops the sound

2 y { Lo~
<enter> ends the flute

How To Play Tunes

Every tune is made up from sequence of pairs of bytes, where the first byte in a pair is the
pitch in semitones above middle C and the second byte in a pair is the duration of the note
in frames. The note 96 is silent (because its pitch is too high to be heard) and the se-
qguence is terminated by a pitch of 128.

In normal musical notation, each note symbol has a duration half that of the previous note
symbol, but you can create durations of 1.5 x as long by adding a dot after the symbol.
This means that natural note lengths are multiples of 3*a power of 2. Therefore if we have
a tempo of 125 beats per minute, we end up with pauses that can be easily divided into
standard note lengths:

breve semi- crotchet quaver semi- demi-
breve quaver semi-
quaver
duration 96 48 24 12 6 3
dotted du- | 144 72 36 18 9
ration

For NTSC FlGnitions, the most useful tempo is 112 beats per minute which gives a dura-

tion of 32 for a crotchet.

breve semi- crotchet quaver semi- demi-
breve quaver semi-
quaver
duration 128 64 32 16 8 4
dotted du- | 192 96 48 24 12 6
ration

Musical notation isn't quite this restrictive, you can add a second dot to produce a note
length 1.75 x the original and other note lengths are acheived by tying standard notes to-

gether.

You can load beep, pitch> and play without the demonstration block by typing: 131 2
loads <exe>.

How Beep Works

beep works by making use of a timer circuit inside the FIGnition's processor, the AVR. The
timer circuit is fairly simple (at least it is the way beep uses it). There is an internal 8-bit
counter, which increments every CPU clock cycle divided by either 1, 8, 64, 256 or 1024
(which is held in a 3-bit internal variable called the prescalar). There's also a match_value
which is just another internal 8-bit variable, called an output compare register. Finally, we
can configure the timer so that whenever its value reaches the match_value, it will switch

the voltage on port D6 (pin 12) from 5v to Ov or back to 5v and reset the timer.

If you put this together it means port D can be made to oscillate at:

20000000

2*match_value*prescalar

And it turns out we can pick match_values and prescalars which give sensible audio fre-
quencies. This is all that beep does; first you provide the prescalar and match_value. beep
turns off the timer, then configures the timer as described above, then we set the
match_value and prescalar value and setting the prescalar value starts the timer, which
generates a note.

To use beep you must first type aud <exe>, to the turn the audio on (it makes port D6 an
output). Then to make a beep, you type prescalar freq beep <exe>.However only
prescalar values in the range 3 to 5 are useful. For example if you type aud <exe> then:

4 100 beep <exe>
A note (near G on a piano) will start. Type 0 0 beep <exe>to end it.

beep (and pitch>) can be used by themselves, by typing 131 load <exe>.

How pitch> works.

To make tuneful music you need a fine control of the pitch. It's possible to set a wide range
of pitches using just different match_values, but as the match_values get lower, the jumps
in pitch get increasingly large. For example, if the match_value was 2 and you change it to
1, then the pitch will double, a jump of one octave! But if the match_value was 255 and
you change it to 254 then the pitch will jump by a small fraction of a semitone.

For tuneful music we therefore need to use large match_values. It turns out we can create
a useful range of about 2 octaves from match_values of about 64 to 255, and because the
prescalar shifts by 2 octaves at a time, we can obtain a continual musical range of about 8
octaves. The frequency calculations are given in the AVR datasheet as:

b Jelk 10
JOCnx = o N. (1+ OCRnx)

The standard concert pitch is A440, which is at 440Hz, so we need to find N and OCRnx to
match that: N.(1+OCROA) = fclk/fOCOA , which is 20x106/440 = 45,454, which means that
N (the prescalar value) must be about 256 so that OCRnx is <256. If N is 256, then
OCROA will be 88. Higher pitches are lower values, by successively dividing by 2(1/12),
Similarly, lower pitches are higher values, by successively multiplying by 20112, This gives
the following pitch table:

Low Oct D# E F# G G#
Values: 251 236 223 210 198 187
177 167 157 148 140 132
High Oct D# E F# G G#
Values: 125 118 111 105 99 93
A A# C C# D
88 83 78 74 70 66

n pitch> converts a semitone pitch of n in the range -128 to 127 into the correct presca-
lar and match_value (from the pitch table). It offsets n by the value in the variable trans-
pose so that by default a pitch of 0 is middle C on a piano. You can change the value of
transpose to change the key that pitch> works in.

You use pitch> and beep together to make musical notes. For example, if you have
typed aud <exe> to turn the audio on, then typing:

12 pitch> beep <exe>
Will play the C above middle 'C'. Type 0 0 beep <exe>toend it

pitch> comes with beep and is loaded by typing 131 load <exe>.

How the Audio Hardware Works.

The audio hardware on FlGnition is pretty simple and works for both audio input and out-
put. Audio is output from pin 12 of U1 as a simple square wave that flips from 0 to 5v ever
time the timer matches the match_value.

However, audio standards require voltages in the range -1v to +1v. To do this we connect a
pair of 10KQ resistors to the signal, one pulling the signal up to 5v and the other down to
Ov. WIth the audio turned off, this will balance the output to 2.5v.

We also need to filter the audio to around 10KHz to 20KHz. To do this we put a 100nF ca-
pacitor in line with the signals before it is sent to the phono itself.

.y R19

pin 12 | |
0 R18
A I Audio
Ov (GND — Phono

Introduction And Usage

Brikky is a simple breakout clone. It makes use of beep mentioned in the previous section.
In Brikky you have a wall on three sides and a bat at the bottom. A ball bounces down and
your objective is to bat it back up to the bricks which will disappear whenever they're hit by
the ball. The ball also changes direction when it hits a ball; and it also bounces off the
walls and the bat (at two different angles depending on where it hits the bat). If you man-
age to clear all the bricks on any level another level appears with bricks slightly lower and
the game plays a bit faster.

Brikky uses 8 UDGs for the bricks, but the ball, bat and walls are made up from FIGnition's
built-in graphics characters.

The design of Brikky is interesting in that it handles starting and stopping sounds in the
background, while the ball and bricks are still moving. It does this using a timeout routine
called audEnd which ends a sound whenever the clock reaches the current audStop time-
out value.

Enough of the description, let's play the game. Type 140 load <exe> .The game first
loads beep from block 131 and then proceeds to load the game itself. Brikky is just 7
pages of code just 1283b of RAM when loaded, slightly over 1Kb! You'll need to use SW1
(cursor left) to move the bat left and SW3 (cursor right) to move the bat right. To run the
game type:

5 brikky <exe>

The 5 represents the speed, lower values are faster. A speed of 2 or less is pretty unplay-
able, and a speed of 10 or more is fairly boring!

TJoy

SZ24

Introduction And Usage

TJoy is a joystick demo program. When FIGnition reads keypresses it scans the FIGgypad
contacts 100 times per second. You can read the raw contact values by defining this con-
stant:

sysvars 11 + const joy <exe>

And then executing joy ic@ . <exe> will display what keys are being pressed. joy is
much better for real games, because it keeps reading whatever is pressed as long as you
hold it and it can read multiple keys at the same time. Type 141 load <exe> then tJoy
<exe> (note the capital 'J').

The current keypresses are shown in the top, left hand corner and the block moves around
when you press up, down, left or right - it will even move diagonally if you hold down two
keys at the same time! The objective is to move the block over the '+' near the middle of
the screen. It's like a tiny version of snake, but with only one meal ;-) Not bad for a 169
byte program though!

tJoy also uses x y at> to obtain the screen address for the given coordinates, it's a
handy command for being able to determine what's on the screen at that location.

Slides

Introduction And Usage

Slides is a simple slideshow demo program. It displays a series of slides on the FIGnition
screen. The program itself is only 1 block long. You can download it as: 142 load <exe>
and start the default slideshow with:

200 143 3 slides

Which shows 3 slides at blocks 143, 150 and 157 for 4 seconds each, which look like this:

A full image takes about 0.5s to load, and as it does, a scrambled text version appears on
the screen before the proper bitmapped version appears. Press <enter> to quit.

Producing and loading FIGgy Images

FIGnition Images can be converted by the little Java utility FIGgylmg on this website.
Choose File:Open to open a suitable image (Jpeg or PNG) and then you can convert it to
a version suitable for FIGnition. FIGgylmg converts the image into a 1 bit-per-pixel image
and grey tones are simulated using a technique called dithering. When it's done that, it
stores the image as a set of 7 .hex files. You will need to copy them to the FIGnition.

To do this you'll need avrdude:

1. Set up a command line window on your desktop/laptop computer.

2. cd to the directory where your image's .hex files are.

3. In the command line window type, but don't press enter yet: avrdude -c usbasp -p
m328p -u -U eeprom:w:YourImageHexFile00.hex .

4. On the FlGnition side, unplug the FIGniton's USB power connector.

5. Hold down SW1 and plug in the FIGnition's USB power connector, the LED should start
flickering - you will need to keep SW1 held down until after step 6.

6. On your main computer, press Enter - avrdude should connect to the FIGnition and the
EEPROM should download. This will take about 2s or so.

7. Now you can let go of SW1, FIGnition should reboot.

8. type -1 destinationBlockNumber cp to copy the eeprom to the flash block you
want to start storing the image.

9. Repeat steps 4 to 8 for each hex file YourImageHexFile01l.hex to
YourImageHexFile06.hex and remember to add one to the destinationBlockNum-

ber each time.

How does The SlideShow Work?

FIGnition's hi-res mode can represent any bitmapped image up to 160x160 pixels, and the
bitmapped image is stored at SRAM addresses from -3200 to -1. For example, if you turn
on FIGnition and type:

1 vmode cls 85 -1520 c! key drop 0 vmode <exe>

You'll see 4 dots near the middle of the screen - that's because the binary pattern for the
number 85 is 01010101 and -1520 is the location half-way down the screen and half-way
across.

By copying raw bitmapped data to the screen memory an image will appear. It's possible
to copy Flash blocks to SRAM using blockNumber blk> drop so all we need to do is
read the blocks in, copying each one to the correct part of screen memory in turn. This is
what s1ide does.

There is one complication though, b1k> always copies a block first to internal text mode
video memory and then out to the address -512, which is also used for the high-res mode.
Therefore s1ide must copy the last two blocks in a different way to avoid them being
overwritten.

blk> and >blk are versatile commands you can use for copying data you've generated to
flash and back again. It's also used by the data logging program!

MiniRace

Introduction And Usage

MiniRace is a really simple racing game - it illustrates how simple games with UDGs can
be written. To load it, type 165 load <exe>.Torunittype 5 race <exe>.Aroad will
start appearing from the bottom of the screen and you have to press the left or right keys
(SW1 and SW3) to move the car to avoid the sides.

When you typed 5 race <exe>, the '5' was the speed as in the game brikky, lower numbers

make the game faster - 0 is completely unplayable!

How MiniRace Works

Forth programming is usually done 'bottom-up' which means that we start with the most
rudimentary parts of the program and gradually build it up until we can put the whole pro-
gram together. Many simple games have the following basic layout:

: aGame

initializeTheScreenAndPlayersAndObjects

drawTheInitialStateOfPlay

begin
getAKeyPress HandleTheKey
moveThePlayer moveTheObjects
UpdateTheScreen PauseUntilNextFrame

gameover until

! u* swap drop

Command(s) code Explanation
seed 5 var seed A simple random number generator
: rnd (range -- ran- with periOd 32768. seed is incre-
rnd dom) mented then multiplied by 75 to pro-
seed @ 1+ 75 * dup duced the next seed value. Repeat-
seed ing this operation has the effect of

'scrambling' the seed from a human
view; though in fact it's completely
predictable.

udg create udg $BAFE ,
SBA38 , $28AA , SFE82 ,

These hexadecimal numbers define
the bit pattern for the car.

udg vram 608 + 8 cmove

This line copies the udg data to UDG
1.S0, 1 emit <exe> will display it.

nupath 3 rnd 1- +

0 max 20 min

Creates a random displacement from
-1 to 1 adds it to the previous posi-
tion of the road and finally keeps it in
the range 0 to 20.

Command(s) code Explanation
hit? 2dup 25 Examines vram where the car will be
* + yram + ic@ hit ! next and stores the character code
found there in hit .
path 24 23 at cr Causes the screen to scroll
25 0 do Displays a line of the road. For each
i over < over x coordinate across the screen, dis-
4 + i < or 128 play a space if it's between the road
and 32 + emit offset and road offset+4 or an in-
loop verse space otherwise.
mv swap dup inkey dup Reads the keypad using inkey;

8 = swap

9 =1 and + +

0 max 24 min dup 12
hit?

at 1 emit swap

11 at 32 emit swap

decrements the car's position if you
press <left> [char 8]; increments it
if you press <right> [char 9] .
Keeps the car's position on the
screen. Checks to see if the car will
hit the edge of the road; then dis-
plays the car UDG at the new coor-
dinate and a space on the row
above.

sC var sc A variable to hold the score.

score sc +! Increments the score and displays it
0 0 at sc @ . at the top left hand corner.

race cls 12 10 0 sc ! Clears the screen; sets the car's po-

begin
nupath path
mv
score >r over
pause r>

hit @ 32 = 0= until

sition to 12 and the start of the road
to position 10 and zero's the score.

Generates a new path position and
displays the path; moves the car;

updates the score; then pauses ac-
cording to the speed you specified.

Finally, if hit? had set hit to any
character apart from a space; then
the game is over; otherwise we con-
tinue with the game.

Joggle

Introduction And Usage

Joggle, is a random word game similar to another game you may have heard of!

Load the program by typing 167 load <exe> andtype joggle <exe>.A 4x4 grid of
letters is shown. You have two minutes to come up with as many words as possible: start
at any location and step up/down/left/right or on any diagonal to get to the next letter. You
can't go over the same letter twice and only words >= 3 letters count. The person with the
most words wins!

| wrote this version because (a) me and my wife have been playing the similar game you
may have heard of, but the sand timer's broken :-(. Rather than just fixing it | thought I'd
write a computer program. To no avail - she still beats me!!! Now you too can share my
misery with your friends :-)

Joggle, the random letter game that requires a millionth of the computing power a face-
book version would ;-)

How Joggle Works

Command(s) code Explanation
dice create dice Creates a set of 16 x 12 character
"ABBOJO" strings; one for each Joggle dice.

Joggle uses the built-in command "
to enter strings. The start of any
string is calculated as: 12 * dice + .

seed & rnd This is described in miniRace.

Command(s)

code

Explanation

aud +]1 64 191 42 >port> drop Activates the output at port D6, to
> turn Audio on.
beep 0 69 ic! (soundXﬁ Given an input prescalar and fre-
0 110 ic! (no ints¥ +2 | quency,starts a beep.
66 68 ic! (ctc mode) ‘(/////s
71 ic! (pitch) 3
7 and 69 ic! (oct+on) . "
init cls dice Initializes the joggle grid. For each
16 0 do dice, it chooses a random face and
dup 6 rnd 2 * + c@ then keeps trying different random
0 joggle locations until it finds one
begin that's free, because it's vram location
drop 4 rnd 2 * is a space (code 32). Joggle uses
4 rnd 2 * at> the built-in command x y at>
dup ic@ 32 = until which returns the video address for
ic! 13 + the screen coordinate (x,y).
loop
drop
countdown 0 120 do Starts a 120 to 0 second countdown
0 9 at i 60 /mod loop. In each second it displays the
' . 3 spaces time as minute:second and then
50 pause waits for 1 second.
-1 +loop
4 200 beep 50 pause Finally it beeps at the end for 1s and
0 69 ic! then stops the beep.
joggle aud Turns on the audio then enters the
begin game loop. It initializes a joggle grid
init then performs the countdown. At the

countdown key
32 = until

end it reads a key and plays another
joggle game unless you press
<space>.

Mazes

Introduction And Usage

Mazes is a little program which can quickly generate mazes.

Load the program by typing 170 load <exe> andtype mazes <exe>. A new, random
maze appears every 10 seconds. However, you can skip to the next maze by pressing
<enter>; make it wait on the current maze by holding down a key; or end the maze gen-
erator by pressing <space> .

How It Works

Mazes is a brute-force random maze generator. There is a maze array which stores 128's
in empty locations and any other value represents a filled location in the maze. At each
step it just picks a random direction to go in and if it's empty it calculates the new location
and stores the direction in the new location in the maze. If it was filled it tries for the next
direction in a clockwise sequence and if it gets back to the first direction it backtracks.

Backtracking is pretty simply too: by storing the direction in each new location we visit, it
provides backtracking information, so to backtrack we simply retrieve the direction in the
current maze location and move in the opposite direction (by subtracting rather than add-
ing its displacement). Eventually we'll fill the entire screen with maze walls.

To set it up, we need to make sure the outer edges of the maze are no-go areas, which we
do by filling them with Os (not empty).

The clever part about FIGnition's algorithm is that we don't need special checks for when
we backtrack to the start, instead we simply define the direction at our starting position
(which is (1,1)) as 1 (=right) and then set maze[0] to empty. Then when we backtrack from
(1,1) we move left to (0,1) and do a search. The algorithm finds that to the right it's filled,
as is the bottom, as is the left (which corresponds to the top, right corner of the maze). But
then it finds that (0,0) is empty so it moves there and since the terminating

condition happens before the move is displayed, the maze generation stops.

Mini Oxo

Introduction And Usage

Mini Oxo is a minimal version of noughts and crosses (or Tic-tac-toe). The computer al-
ways plays first and cannot be beaten (though you can draw).

Load the program by typing 173 load <exe> and type oxo <exe> . A crude oxo grid
appears with the centre position already taken by the computer's first move and the other
positions marked with digits from 1 to 8.

Pick a digit from 1 to 8 and an O will be placed in the corresponding box. The computer
will then make another move and you both keep playing until you either draw, or it wins.

Strategy

In miniOxo, the strategy is controlled through a table of values called compMoves and the
command compPlay . Normally we would order an Oxo grid like a phone keypad (left im-
age). But here, the grid is ordered clockwise from the top left as on the right:

4[s]e e [x]e
HOD 7 [0l

The computer's strategy is to first play one square on from your first move. This will force
you to play opposite the computer to stop it from winning. If you do that and keep blocking
it, it then plays two squares on from its last move; then 3 squares on from its third move
and 6 squares on (=2 squares back) from its fourth move.

OEE CBE CDBE gBg
o x| Jlelx|xQolx|xolx]x
HOOd HOE BEE BER

So if you start on a corner and keep blocking the computer; it'll result in a draw. If you fail
to block it at any point then the computer plays the opposite side of the grid on its next
move and wins. If you play to a side square and then block the computer, it will create two
possible winning lines after its third move, and if you block the opposite corner it then plays
to one square back from its previous move and wins.

The computer can therefore reduce the complexity of an Oxo game to a table of 8 num-
bers and 3 simple rules by going first with an 'X' in the centre.

Full Screen Oxo

Introduction And Usage

It's amazing to see how an Oxo game can be played with such few rules, but playing the
game when only the computer can win quickly becomes tiring.

Full Screen Oxo is a more sophisticated version of noughts and crosses (or Tic-tac-toe). In
this version, you can choose whether to play first or let the computer play first and the
computer can sometimes be beaten. It takes more effort to write a game of Oxo that can
be beaten!

Load the program by typing 189 load <exe> and type oxo <exe>. The computer
asks for a skill level, a digit 1 to 9 and then 'y' if you want to play first or 'n' if you want the
computer to play first.

The flashing block is where you will place your piece. You move it to a free location using
the cursor keys and then press <enter> when you want to place your piece. The com-
puter then places its piece somewhere else on the board.

In this version it's possible for you to win, draw or lose.

Graphics

Full-screen Oxo needs to fill the screen with its Oxo grid. So, each grid cell is 6x6 charac-
ters. This means we'd normally need 2*6*6 = 72 UDGs to represent both an 'O' and an 'X'".
However, with a bit of careful thought it's possible to design them in as little as 14 UDGs.

UDG1 UDGO

Inverse | Inverse
UDG1 UDGO

A Large 'X' only requires 2 UDGs that divide the character on each diagonal line. They and
their inverse characters can be used to build up the whole of the 'X".

UDG2 UDG3

UDG6

Inverse/UD

Inverse UDG6

e

A Large 'O' requires 12 UDGs. Here, it's done by noticing that if we make the thickness of
an 'O' about a character, then the inner edge of the 'O’ is approximately like the inverse of
the outer edge. Therefore we can define 12 UDGs to represent the inner boundary of the

'O’ (three for each quadrant) and re-use their inverses on the outer edge.

The 'O' looks slightly odd because of this, but it's still passable.

Strategy

The first challenge for any Oxo game is to be able to test for winning lines (and potential
winning lines) on any edge and corner in any direction. There's quite a lot of combinations
there so to reduce them full-screen Oxo, like miniOxo, represents the grid clockwise
around the centre with the central square added as the last location. When we do this, we
find that there are only two cases we need to look at: an edge case (where squares +0, +1
and +2 are tested) and a centre case (where squares +0, +4 and the centre square are
tested).

Like miniOxo, compPlay executes the computer's strategy. It works by testing some 'rules
of thumb'! for playing Oxo: cornerPlay, centrePlay and edgePlay one after another.
As soon as one rule succeeds, the computer makes that move and doesn't check any fol-
lowing rules. If none of them succeed, the computer plays a random move using
rndPlay.

This version of Oxo is designed to lose sometimes; it does this by randomly failing a rule of
thumb, causing it to fall through to an inferior rule-of-thumb or even make a random move.
The variable skill determines how often full-screen Oxo will randomly fail.

Oxo doesn't require a lot of memory to represent the board. There are only 9 squares and
each of them can be empty, or contain 'O' or 'X'. Therefore each cell requires only 2 bits of
information; an entire grid consuming only 18 bits. By managing the grid as an 18-bit num-
ber, we can easily rotate the grid to test for various cases and test all the required posi-
tions on the grid simultaneously.

Full-screen Oxo employs rough heuristics as a strategy, there are many better computer
playing techniques starting with the minimax? algorithm.

FigTris

LCcome= to FIGTRIS.

1]
v
=N

0
™M
~0Q

02
)
M

J0
0~

-
=M
ma

J
0w
]
ic
n

=M
+ vwwQII[~2
Sl Tm
e
mao DT~
n ~

0

-
M

T
o
S
=
S
<
<
<

O Mg 0T
m I0QL =0
~

no
(i d'nd

(ITQ1T

X
Y]

1 Called "Heuristics" in Computer Science.

2 http://fen.wikipedia.org/wiki/Minimax

http://en.wikipedia.org/wiki/Minimax
http://en.wikipedia.org/wiki/Minimax

e s

Introduction And Usage

FIGTris is a fairly complete version of Tetris for FIGnition, it was written by David Bam-
brough and is about 3.6Kb long.

Load the program by typing 207 load <exe> and when it's loaded, type figtris
<exe> and the instructions appear. Press «J to start. A shape made from 4 blocks will fall
from the top of screen to the bottom, followed by another random shape made from 4
blocks. The objective is to fit them in so that you can make whole rows of blocks which
disappear causing the blocks above to fall down!

When your blocks reach the top of the screen, the game is over - FIGtris is simple, but ad-
dictive!

Use < to move a shape left, B> to move it right, V to drop the shape and . to rotate the
shape clockwise.

Snake

Introduction And Usage

Snake is a simple version of snake for FIGnition, it was also written by David Bambrough.

Load the program by typing 211 load <exe> and when it's loaded, type snake <exe> .
The objective is to guide your snake using the cursor keys: <€, B>, ¥V or A to eat the
mushrooms. Each time you eat one, the snake grows longer: be careful not to run into a
wall or into yourself!

Locals

Introduction And Usage

Locals is some demonstration code on how to use locals on FIGnition. It's really an ad-
vanced topic.

Load the block by typing 212 load <exe> and when it's loaded, type testLocal
<exe> . Keep pressing enter and you'll see the numbers: ?? 1234 5678 then 1234 anoth-
erNumber and 5678.

Explanation

Most computer languages support locals for passing parameters and maintaining sets of
temporary variables. Forth uses a data stack for handling parameters and calculations, but
beyond a few items it can get unwieldy. That's a deliberate design choice in FIGnition, to
motivate you keep stack operations relatively simple as this should lead to better factorisa-
tion (shorter definitions) and you think more about what your program is really doing.

Sometimes though it really is helpful to handle a set of local variables. For example, the
FIGnition ragged line editor uses about 32 bytes of storage, but they're needed only tem-

porarily. Moreover, on a FIGnition, putting them in external RAM means access will be
relatively slow. So, the editor uses locals to provide fast access to a set of temporary vari-
ables.

FIGnition Forth provides the following commands:

Stack Inputs Command Post-Command Stack Action
(: Parameter inputs Effect
Stack Inputs)
n locs Allocates n bytes on the stack frame.
: returnAddr loc; Deallocates the current stack frame and returns
from the current procedure.
I> value sflvalue] Fetches the item on the stack frame offset by value
bytes.
n > value Stores nin the item on the stack frame offset by
value bytes.
: Ret* to main
Ret* to main
=undefined
[a] = 100
Previous Rp,
A
sf
=undefined | sf
"
rp P

The main routine calls locTest

locTest allocates 4 bytes of locals and
sets local a to 100.

Ret” to main

[b]=6

[a] = 100

Previous Rp,
A

Ret" to
locTest

sf

p

locTest calls 1locSub, which still has access
to the same local variables.

With FIGnition's locals feature, the scope of locals persists through any number of nested
calls until new locals are defined. We can also define constants to represent the offsets for
each local and >1 and 1> will inline the actual constant values.

Turtles and TurtleCrypt

Introduction And Usage

Turtles is a two block library which provides some basic turtle graphics commands for hi-
res mode as used in the 80s language Logo. It's followed by a turtle graphics demonstra-
tion program.

Load the demo by typing 216 load <exe> and when it's loaded, type turtles <exe>.
A sequence of graphics demos are displayed with a 10s pause between each one. If you
keep pressing <enter> when each image pauses it will eventually take you back to FIGni-
tion.

You can load a shorter version of the same demo (without repeats) by typing 218 load
<exe> . Thentype d <exe>. This is the compact version of the TurtleLib demo originally

written by Ashley Fenilo. The only difference with the other one is that there, the turtle
commands are made more meaningful

How To Use The Turtle Graphics

To load Turtle graphics by themselves you would cold start FIGnition and then type 214
load <exe>. Turtle graphics provides a number of simple commands:

home - which puts FIGnition into bitmapped mode; clears the screen; puts the turtle in

Command(s) code Explanation
home home home puts FIGnition into bitmapped
1 vmode 1 pen cls mode; clears the screen; puts the
0 0 setPos 0 setH _turtle in the middle of the screen fac-
ing up.
turtleEnd : turtleEnd Is used to end turtle graphics and
00 at return to text mode.
" Press a key to end"
key 0 vmode
setH : setH (angle --) angle setH (set Heading) sets the
dup angle ! heading for the turtle, to one of 60
dup cos dy ! 'angles' starting at O (straight up)
45 + cos dx ! and going clockwise in 6° steps so
that 15 is right, 30 down and 45 left
etc.
fd : £fd (dist --) distance fd Moves the turtle
>r dx @ x @ y @ dy @ distance steps forward with the
r 0 do current heading, drawing a path as it
>r r + >r over + goes.
dup 8 >> r 8 >> plot
r> r>
loop
drop y ! x ! drop
r> drop
rt : rt (angle --) angle rt Turns the turtle's heading
angle @ + setH angle steps clockwise.
setPos : setPos (x y --) x y setPos moves the turtle's cur-
y fixPoint! rent position to (x,y) on the screen
x fixPoint! where (0,0) is the centre of the
screen.
jump : jump (dist --) distance Jjump moves the turtle
dup dx @ * x +! distance steps forward with the
dy € * y +! current heading, without drawing a
path.

FIGnition's turtle graphics commands differ from standard turtle graphics commands in

that normal turtle graphics don't have jump, instead they have penup and pendown com-
mands which cause fd to draw a path if the pen is down and to move without drawing a
path if the pen is up.

Blitz

Introduction And Usage

Blitz is a version of the classic VIC-20 game of the same name. It was written (largely) by
Carl Attril.

Load the program by typing 224 load <exe> and when it's loaded, type blitz <exe> .
"Your plane is running out of fuel while flying over a derelict city - you must bomb the build-

ings using the <space> key before you hit a building - and to avoid runaway explosions,
only one bomb can be dropped at a time!"

200

Trdnlnind
N>
MM
W0
-
M

Q0n
0
H

£HO0TH
QnoonT
o moom
noMx
EwComu
W ALD
.=
w200
= M=
L -
RN
TN W
=] -
“"4-.0‘-
I
N
JCT
up.m
)

I
-

w
0w

- N2
M

2]

AlEninmd
>
' MM
Nl =00
NES
[T]
\LCHD2
VAO"
iC
N\
JCT
up.m

Al

£<HO0TH
TrnQOnT
wx Moo
.o
OAATMm>
A QChmW
SJAWHs LD
JJn
AN W
Ol #~
3

v

Chimpanze<s

-
M

K
=

JCT
w el
~+J

NE
i

in
==
==
= s
==

RN P

MM
W =00
In

0 ~0nx
ET wCMW

2
Il

T h
P
o
oo
oo
mn?
Ir=
WO

M=
o Mad
D WA
ON JC~22
TJO Ny W
A0 2] A~

'\] ﬂl’-H-.O'-

0
Tw
O~
0
H
)

Introduction And Usage

Zoo is a FIGnition version of the animals program released with the ZX Spectrum on its
Horizons tape.

Load the program by typing 228 load <exe> and when it's loaded, type zoo <exe> .

Zoo is really a kind of 20 questions game where the computer builds up a database of
animals and then performs a binary search asking questions until it gets to the end of its
choices. If it got the animal right, it repeats the game asking for another animal, but if it got
it wrong it will ask you for a "question" to distinguish the animal then the name of the ani-
mal, after which it adds the question and answer to the database.

Inside The Program

Zoo is an interesting program because it demonstrates how FlGnition can be used to
process text and build data structures.

Conceptually, the 20 database is a binary tree containing a series of questions with the
names of animals at the leaf nodes:

Does it.. eat meat?

‘/\

bray? purr?

Rabbit

True responses take the right branch and false responses take the left one, until we arrive
at a leaf node.

Building Up A Zoo by Hand

Zoo is designed so that the binary tree can be built up programmatically as well as interac-
tively. The initial 'zoo' is built up that way; by starting with an initial animal, then adding
questions along with new animals that are distinguished by each new question:

eat meat?

eat meat?

G (D

We start the zoo by creating the name of the first animal like this:

create yourAnimal " yourAnimal"

Then we need to create a root node for the zoo, which starts at the current end of the dic-
tionary:

here dup animals ! 0 , yourAnimal , 0

Next we need to add a question and a new animal to the zoo; and also decide whether the
new animal should be on the false branch (0) or the true branch (1):

0 addZoo eat meat" rabbit"

This adds the question does it... "eat meat"? to the zoo and makes "rabbit" the false
answer. Finally we need to decide whether to follow the right branch of the binary tree
(rightzoo) or the left branch (leftzoo). Here we choose the right branch:

rightZoo

As we move to a new branch, the computer remembers the list of nodes. So far it has re-
membered the root node and the right node from the root node: [rootNode] [CatNode] is
remembered (on the data stack as it happens). We can add another node using addZoo.
By default it adds does it... "purr"? and puts "dog" on the false branch. However, we
could have done:

1 addZoo bark" dog"

Which would have added the question does it... "bark"? and set "dog" to the true branch
(putting "cat" on the false branch) for that question.

At this point there's still two nodes on the stack: [rootNode] [CatNode] . We could carry on
and add another node, but in the actual program we want to backtrack and then add a left
node. So we execute:

drop leftNode

Which drops [CatNode] and then appends a pointer to the [RabbitNode] on the data stack.
In this way we can traverse the original tree, adding nodes.

How Does Zoo Represent The Data Structure? (Advanced Topic)

FIGnition doesn't support the kinds of memory allocation features available on modern (or
basically any) operating system. This makes it harder to construct dynamic data struc-
tures, because all we can easily do is add to the end of the dictionary. The Zoo program
can add nodes, but it can't remove them. It's further complicated by the fact we need to
store both nodes and strings. The representation of each node is as follows. Initially
there's just the "Cat" string and a leaf node:

" Cat"

0 Cat? 0

Each node consists of three pointers. A leaf node begins with '0', is followed by a pointer to
the string for that animal and finishes with a dummy '0'. When we add the "eats meat"

"rabbit" item we get:

/ e \
IKeat meeV "Rabbit" \ »
/

s Rabbith 0 0 Cath 0

Now we have three nodes: the does it.. "Eat Meat" question node, and two leaf nodes. A
question node begins with a pointer to the string for its question and is followed by a
pointer to the left node, then a pointer to the right node. Each of these nodes are just leaf

nodes. Finally we add the "purr" "dog" item and get this:

/ ~ A\
I‘eal meat/ "Rabbit" \

Cat* 0

dog®

This time, the pink node has become the does it... "purr" question node. It begins with a
pointer to "purr" is followed by a pointer to the "dog" leaf node and then a pointer to a new

"cat" node.

In this way the correct data structure is maintained; without the program having to shift the
data around.

Zoo Commands:

Stack Inputs | Command | Post-Command | Stack Action
(: Return inputs Effect
Stack Inputs)
ab over aba Duplicates the second item on the stack to the top
of the stack.
a drop -- Removes the top item from the stack.
strA ">here dst ">here allocates space for string str* and copies it
to here, returning the address it was copied to.
animals The root pointer for the zoo.
gra"f addNode Adds a first leaf node with it's string containing a";
adds a second leaf node with it's string containing
g'N's string. If f=0, makes q'/s left and right pointers
point to the first then second nodes; otherwise,
makes them point to the second then first nodes.
yn f Waits for the user to type 'y' or 'n' and returns true if
'v' was pressed.

yesNo f Displays "? (y/n)" and then executes yn.

new" dst Interactively gets a string from the user and allo-
cates it to here.

old” newQ Adds a new Question (in the case where the com-
puter didn't get the right animal). Inputs the new
name of the animal and the question to distinguish
it along with whether the new animal is the true
answer. Adds a new item for that animal and ques-
tion.

old" f addZoo Question" Ani- Programmatically adds a new question. Adds the

mal" following (question) string from the command line

to here; followed by another (animal) string and
finally uses the old” and f to add a new item.

qh leftZoo a’ q[2]* Follows the left branch from the current node.

qh rightZoo g’ q[4]* Follows the right branch from the current node.

root guessing Given a root node; traverses the zoo; asking distin-
guishing questions and obtaining yes/no responses
until a leaf node is found.

Z00 Plays zoo. Asks the user to think of an animal; then
it tries to guess the animal, displaying "Woohoo |
got it right :-) " if it found it or prompting for a new
question and animal otherwise.

root tour Displays the graph of questions and animals be-
ginning at root.

cat cat" The root animal.

GDem

Introduction And Usage

Gdemo is a simple UDG demonstration.

Load the program by typing 233 load <exe> and when it's loaded, type 10 gdem
<exe>. 10 UDGs appear randomly on the screen; they could be a space invader, a pac-
man, a pacman ghost; a pair of musical notes; a rocketship; a mouse cursor; a man or a
dog. The UDGs move around randomly, either left, right up or down. At the top of the
screen the frames-per-second are shown along with the number of UDGs.

If you press <right> the number of UDGs will increase; and if you press <left> they'll de-
crease. As you increase the number of UDGs, the speed of movement will slow down (be-
cause it takes longer to move them around); slowing down to about 12 frames per second
with about 100 UDGs on the screen.

Inside GDem

GDem has the basic framework of a game: some UDGs are defined, the demo is initialized
and then it enters a loop where the udgs are moved; the keyboard is read and the status is
updated until the demo quits.

GDem is helpful for illustrating how simple UDGs can be moved on the screen. In udgmove
The old position of a UDG isread (i poz @ dup); the new position is calculated; a
space is placed over the old position (to erase it) and then the UDG's position is updated
with the new location.

Finally GDem shows a number of ways UDGs can be defined. In block 230 the first UDG is
defined in binary (the space invader); followed by a UDG in decimal; then one in hex and
finally 5 more UDGs are defined as pairs of hex bytes. For beginners, it's easiest to define
UDGs in binary, because that way they can be easily visualized, but it's not very efficient,
unlike the 5 UDGs defined as pairs of hex bytes.

Some useful aspects of Gem are:

dup clock i@ - 0< if

0 0 at ." Fps " drop
.0 " # .
clock i@ 49 +

then

r>

Command(s) code Explanation
udgs vram 600 + 64 We can copy udg data to the UDG
cmove area in internal RAM as immediate
commands; we don't have to insert it
into a program. This saves space.
tudgs 8 0 do tudgs displays the UDGs (for test-
i 256 + emit ing purposes). It runs through all the
loop character codes 0..7, but adds 256
before emitting them - that way emit
never treats the character as a con-
trol code (e.g. 13 emit displays a
<cr>, but 269 emit displays UDG 13).
range dup vram < if This wraps an address to between
600 + vram and vram+599. It's faster (in
then theory) than using /mod.
dup vram 599 + > if
600 -
then
vcalc 3 rnd 1- 25 * + 3 rnd 3 rnd 1- creates a random number,
1- + range one of: -1, 0 or 1. Here we use it for
generating a random one step direc-
tion for each object.
udgmove 0 do To update each object,
i poz @ dup we first get its old position; then du-
plicate it
vcalc (old new) and then calculate the new one. We
swap 32 swap ic! do this before updating the display in
i 7 and over ic! order to minimise flicker.
i poz !
loop We also make use of the stack to
hold the new object location before
storing it.
fps >r swap 1+ swap The fps displays the frames per sec-

ond in the top left. However, if the fps
is high, the action of displaying the
fps might slow it down significantly;
so we only display the fps every
second.

Command(s) code

Explanation

doKey >r r 9 = if doKey expects a key code on entry.
1+ maxAnim min When responding to key codes in a
then program you often have to test for
r 8 = if multiple keys and modify other items
1- 1 max on the stack based on whether they
then match. However, if the key code is
r> 32 = the top item on the stack all this time,
it gets clumsy. By shifting the key
code to the return stack (>r) we can
easily keep testing the key code
while having easy access to the data
on the stack we want to change.
gdem maxAnim initpos Puts it all together. It initializes all the

0 clock i@ 49 + rot positions, then sets the fps timeout
begin to 49 (+1) frames from now and then
dup udgmove fps enters a loop, moving each udg and
inkey doKey acting upon any inkey keypress until
until the user presses <space>. Finally it
drop drop drop quits, dropping all the value it's been
temporarily' using on the stack.

Nyan Race

Introduction And Usage
NyanRace is a simple blitter demonstration.

Load the program by typing 238 load <exe> and when it's loaded, type nyans <exe> .
10 cats appear randomly on the screen and on each frame they move forward by a ran-
dom number of pixels eventually getting to the bottom of the screen where they re-appear
at the top. At the top of the screen the number of cats are shown along with the frames-
per-second are shown.

If you press <right> the number of cats will increase; and if you press <left> they'll de-
crease. As you increase the number of cats, the speed of movement will slow down (be-
cause it takes longer to move them around); slowing down to about 11 to 12 frames per
second with about 50 cats on the screen.

Although the graphics rate appears to be half of that in the GDemo Demonstration, in fact
it is about 6x higher because each cat consists of the equivalent of 12 UDGs.

Because Using the Blitter is more complex than most of the other demos; further explana-
tion of Nyan race and the blitter can be found in the User guide.

Primes

o MO QOO AdMQHAD ddMOMND 1D
EQSM%S wﬁlemmlaﬂﬂ el MO0 40000 44000
Nd 400 dd OOd 0 OO 44000 NU40OND 40
M oon d4MO o Onm QaOOOn Odnere OdA40MN 0
AN Gd <m0 NS OO 0 OOOUH 44000 ddd0d0
NOd0d <00 QAon On dd OQOOOONE AU4O0N0 NAMON
MmN odADd Q0N Qam 0 MO QOOHEME O-4N000 DD
dh 0 dhd QDD O o 00 «Ad4OMe O«H0OMND 1
JNON ddd QM OO aaOnon MO0 ddh@d0 4400
NONAUD HJd0 UON 00 QamonG 4040 40N DA
dl) ddh Q0N dEn 0 O QOoOUOedNeNe ddd40
40 d0m ANO OGO QO MOQNe ddd4000 <d40MO
M MM AON AND 000 IO OO0 (Udd040 DO
di) dedl d0d Q0N 00 anam QOO0 04NN DM

aanrn M0 dd4hOne 440000
N OQ0OHAHOM0 NdNO-O -
Ocd QOONOANOND (dHOH0 D
MU OO00 400N 440000
arne OOenMe 40000 d40M
aarua OANEME NUdNEOO W

aonnd OAYere OdNENO 1
O OOpe-dN0 ddpe00 444000
0O MOOPEeNE Nd4000 LHOeM
Oef OOORHAO0M00 4000 WM

o MOOADd QDA O40 0
dAd OO <00 QrO Onm
gi A0 A0O QOO Orom
M OO0 A0 N OO
MO 00 Udm O0ON 0
NOG O «dnn o 00
OOOMN «0n Q0 NN
O AN 00 UG OO
O DN U4 000 0
U 0oOn | oM Gno

40 Primes=s

s loaded type primed <exe> . You can pause

Primes is a couple of versions of prime number generators - you can use them as a per-
However, with some minor rethinking it's possible to design a 32-bit prime number genera-

formance test or for investigating prime numbers.
primed at any time by holding down a key and quit by pressing <esc> (shift, <de1>). For

Primes is a brute force prime number generator with some optimisations. It can generate

loaded, for example type 1000 primes <exe>, which will display all the primes up to
primes up to about 32767.

Load the 16-bit prime number generator by typing 239 load <exe> and when it's
the number given.

Introduction And Usage

tor. Type 240 load <exe> and when it

example: 133213, 133241 and 133253 were the last 3 primes generated when | held down
a key.

The key optimisations are to only test for odd numbers (which doubles the performance)
and to only test for prime factors below the square root of the current number. Because

there's no square root function (and if we wrote one it'd be slow); we instead square the
maximum divisor and test it against the current prime number candidate.

primed is a double-number version of the same thing, except it's able to explore primes
all the way up to 2billion. Here we can't use a do loop, because they're only 16-bit loops.
So instead we use begin ... until loops. FIGnition's Forth has limited 32-bit number support,
but with careful planning we can make efficient use of them to execute the algorithm.
Again, we work out limits for testing primes by comparing the square of the current limit
with the next number we're testing.

Cal

(M
o
0
(-

gumpn Ce
o [

NoLe C3
4

ARNOO O
Nep
e
NGO T
(L] (1T
0RAMED

QNEpE

1
=2
=

Introduction And Usage

Cal is a calendar generator. It was originally written for the Jupiter Ace by Ricardo Lopez
and converted to FIGnition by Dave Bambrough.

You load calendar by typing 243 load <exe> and when it's loaded you can generate a
calendar month by typing year month <exe>.For example the screenshot at the start

was generating by typing:
2013 jun <exe>

And shows the calendar month for July 2013.

Technical Details

Cal works in quite a clever Forthy way, by creating a month defining command called
month that does all the work for you. All you have to do then is create a set of months
such as:

4 30 month apr
6 30 month jun

And month will calculate all the details - you don't even need to include all the months, nor
put them in order. Cal correctly calculates leapyears (including whether a century is divis-
ble by 4) and then handles the date conversions.

Multiple Languages

Because of the way cal works, it's possible for Cal to support multiple languages simulta-
neously. In this case, cal in French has been added; try typing:

2012 aout

o
w
I

nn
qopn Ce

-0
Orpy CC

4

QuMONI
UL]
ANORAD

TS

1
1
=

We

And you'll be able to see the calendar month for that year (the days are still presented in
English though!).

Debugger

Qww T
n
#
wup
0
u

0]
Ll

s
c

C

c
=
=1
E
©

g0 TIm

0
0
Op
0T

Introduction And Usage

Debugger is a debugger for FIGnition Forth, written in Forth itself. It demonstrates the
power of Forth and provides a means of stepping through Forth programs in order to de-
termine where mistakes have been made.

You load the debugger by typing 253 load <exe> . You then need to load the code you
want to debug. Typing in 254 load <exe> will load the example program to debug.

The debugger uses addresses -600 to -1 to store the screen background. If you are using
this area of RAM for other purposes, you'll need to move the background screen address.
You can do this by typing newSaveArea vback ! <exe>.

To start the debugger type debug memoryArea commandToDebug <exe> . The debug-
ger will then start showing the debugging screen which looks like:

IP : The address in the program currently being debugged.

CFAs: A Stack of debug addresses with the most current one at the top.
Data: The values on the stack.

Ret: The return stack.

The debugger has a few useful commands, <left> flips between the running screen and
the debugger screen; <right> steps to the next command; <down> steps out of the cur-
rent routine being debugged; <up> steps into the current command. 'q' Quits the debug-
ger, returning to the command line.

Command(s) code Explanation

traceDepth 16 const traceDepth The trace stack manages pending
traceDepth arr traces [breakpointinstructions. It has a
traces 0 var traceSp depth of 16, meaning it can debug
commands that use other commands
traceSp for a depth of 16.
dbCondStep | : dbcondstep (bp -- bp) condRef is the jump target address.
dup 1+ @ dup condRef ! condTrace is the cfa at the jump tar-
dup @ condTrace ! get address.
@condBp @ swap ! @condBp should point to condBp,
dup 3 + fallThru ! for the jump target address.

; fallThru is the address for a

bpUl : bpUT (bp -- bp key) User-interface for the debugger.

key dup 8 = if <left> switches the debugger
xchVram key drop video with the main video. <right>
xchVram Steps over the next command.

then <down> Steps into the next com-

dup 9 = if mand. 'f' Views the next 16 bytes of
drop dbOStep memory. 'b' Views the previous 16
13 bytes of memory.

then

dup 10 = if
drop
dbIStep 13

then

The way the tracestack works is that every time we step over an instruction, the following
instruction is patched to point to the breakpoint command. Also, on a jump instruction, the
jump target is patched and on breakpoint in instruction we push the target address onto
the stack. Then we return from the debugger and continue, which executes the next in-
struction and then calls the debugger.

When the debugger is entered (due to hitting a breakpoint); we unpatch the current in-
struction (replacing it with the word from the trace stack); and then enter the debugger Ul.

Some instructions are handled differently; when the true or false target of a conditional in-
struction is breakpointed we need to unpatch both. When a return instruction is encoun-
tered we un patch as normal, but stepping over a return instruction doesn't patch the fol-
lowing instruction.

EEProm

Introduction And Usage

EEProm provides some low-level routines for reading and writing the EEProm. You can
read and write individual bytes, individual integers; fill a region of the eeprom with a byte;
copy eeprom blocks to and from RAM.

You load the routines by typing 258 load <exe>. If you don't need the fill and copy rou-
tines, you can just load the primary byte and integer read/write routines by typing 257
load <exe>.

The following primary commands are provided.

Command(s) Usage Explanation

ec! val addr ec! Stores the byte val at EEProm loca-
tion addr.

el val addr e! Stores the integer at EEPRom loca-

tions addr and addr+1. The integer is
stored big-endian with the high byte

at addr.

ec@ addr ec@ Returns the byte at EEProm location
addr.

e@ addr e@ Returns the integer at EEPRom loca-

tions addr and addr+1. The integer is
read big-endian with the high byte at
addr.

They are used to provide these operations in block 258:

Command(s) Usage Explanation

>emove src dst len >emove Copies len bytes from address src in
SRAM to address dst in EEProm.
Writing to EEProm requires approxi-
matly 3.3ms per byte.

emove> src dst len emove> Copies len bytes from address src in
EEProm to address dst in SRAM.

efill addr len val efill Fills len bytes of the EEProm starting
at EEProm address addr with the
byte val. Filling the EEProm requires
approximatly 3.3ms per byte.

Technical Details

The EEPRom is documented in the AtMega328 user manual and is controlled via 3 regis-
ters: the EEProm Address register (eearh and eearl: 2 bytes), the EEProm data register
(eedr), and the EEProm Control Register (eecr).

Reading an EEPRom byte is pretty simple: you just write to the EEPRom address register
and then set bit 0 of the EEProm Control register (which just means executing 1 -2 eecr
>port>).

However, EEProm is one of the few internal AVR peripherals that can't be written to just
using Forth, because the write operation requires a sequence that must be executed
within 4 AVR clock cycles; namely setting bit 2, then setting bit 1 of eecr. The FIGnition
firmware provides that operation via the kernal vector 10 kern ; (which ec! accesses by
inserting [10 kern ,] intoits own code).

Transferring data from FIGnition to a Host Computer.

Using >emove , e! or ec! it's possible to transfer data from FlGnition to a host computer
via the EEPROM. For example,

100 blk> drop -512 0 512 >emove

Would copy the banner program to eeprom. Then switching to a host computer (with avr-
dude) and typing at a terminal:

cat > banner00.hex

avrdude -c usbasp -p m328p -u -U eeprom:r:banner@0.hex:i [But don't press re-
turn yet]

Then:

Unplug the FIGnition.

Hold down the xxx key and plug in the USB.

The LED should start flashing as it establishes communication with the host computer.
While keeping the xxx key held, press Return on the computer.

AN~

The whole of the eeprom would then be copied to banner00.hex as a .hex file.

Image Loader

Introduction And Usage

The Image Loader provides some low-level routines for copying blocks of memory to ex-
ternal flash and reading them back. It also supports an autoloader / autosaver so that you
can create programs which load quickly.

If you want just the block loading and saving routines, you can load them by typing 261
load <exe>. The following commands are provided:

Command(s)

Usage

Explanation

bload

dst blk len bload

Copies len bytes (rounded up to a
multiple of 512) from address dst to
Flash starting at block b1k.

bsave

dst blk len bsave

Copies len bytes (rounded up to a
multiple of 512) from Flash starting
at block b1k to address dst.

Using The Autosaver / Autoloader

The autosaver / autoloader allows you to save and load FIGnition programs very quickly

as ram images. To use them you must:

D0 RN~

Make sure the program is saved the normal way on external Flash memory.
Reset FIGnition.
Load the autoloader block by typing 259 load <exe>.

Load the program you want to autosave by typing yourProgBlk load <exe> .
Load the autosaver block by typing 260 load <exe> .

Decide where you want to the ram image to be saved, this should be a spare place on
the Flash, and not yourProgBIlk. Type autoSaveBlk autoSave firstAutoSaved-

Command <exe> and the program image will be autosaved.

To autoload the program, reset the FIGnition and type autoSaveBlk load <exe> :the

autoloader will load (taking 1s or so) and then the rest of the program will load very quickly.

Using the autoloader will use about 100b of RAM. The auto saver requires about another

100b of RAM.

You load the routines by typing 259 load <exe>. If you don't need the fill and copy rou-

tines, you can just load the primary byte and integer read/write routines by typing 257

load <exe>.

Logger

Introduction And Usage

Logger is a simple interactive analog logging program for FIGnition. It can use ports C4
and C5 for logging (the other ports C pins are used for the keypad). Using C4 will require
the FIGnition to be modified with the LED LK1 option. (Development)

You load the logger by typing 290 load <exe>.When the logger has loaded, you can
run it by typing: logger <exe>.

Layout

When logger runs you'll first see something like:

The screen is divided into a logging region and a control region. The bottom of the screen
is the control region and occupies 160x128 pixels (in hi-res mode) or 50x32 pixels (in lo-
res mode). At the bottom of the logging region is the sample scale and a 'v' or '"A' symbol to
let you know which region you're using.

Logger starts off in Monitor mode so that you can see analog readings as they take place,
and callibrate them. Ideally you should place a 100nF capacitor between AVCC and
ground as well as a 1 to 100KQ resistor inline with a 14pF capacitor between any channel
and Vcc/2. This is covered on sections 24.6.1 and 24.6.2 in the AtMega328 Manual.

Making a Log
To make a log you'd normally take the following steps:
1. Make sure the sensors are wired up correctly, with the correct capacitor between AVCC

and the ground and the correct analog connections made.
2. Put the logger into monitor mode so you can see the output (this is the default mode).

3. Set the sampling rate so that you can calibrate the sensor, a sampling rate of 10Hz
would be fine for this.

4. Decide how many samples you need to take. If it's only a few hundred then you might
want to switch to hi-res mode so that you can see the output in finer detail.

5. Set the zoom so that the full expected range for the sensor is visible.

6. Decide whether you need to save the logger output to flash or just keep it in RAM. If
you're using a USB battery pack (e.g. RS part # 775-7508) and you won't need to
power off the FIGnition before analysis then RAM will be OK. However, if you save to
flash, then you'll be limited to a maximum of 100Hz for sampling and there will be small
sampling gaps every 128 samples - every second or so at that rate.

You're finally ready to log your data. Press .. to start sampling and . again when you've
finished!

Control Region

At all times, the current control is highlighted. To change which control you're using, press
< or P>and to change the value of the control, press: A or V . The controls are as fol-
lows:

« Chn: There are 4 channel options: 4 (Ext),5 (Ext), 4+5Extand 8 (Int). Chan-
nel 8 uses an internal adc source and the others use an external adc source.

« Mon: There are 3 logging options: Mon, for realtime calibration and monitoring; Play for
playing back recorded logs and Rec for recoding logs.

+ Lo: There are two display modes; Lo for low resolution graphics and hi for high resolution
graphics. A higher resolution gives you more detail, but limits the amount of logging that
can take place as well as the maximum logging frequency. You can't change the display
mode if you're recording or playing back a previous log.

+ Rate: There are a number of logging rates from 400Hz to 400s; the default is 50Hz. Log-
ging rates above 100Hz won't be recorded on time.

« Zoom: This controls the vertical zoom; with a default zoom of 1:32.

« Save: This controls whether the logging is saved to Ram or to Flash. Saving to Flash al-
lows up to 64K samples to be saved, but the logging rate consistency may be reduced
(because the logger can't log when it's writing a block to Flash).

Logging Region
If you press «J then the 'v' turns into 'A' and you can pan and zoom around the graph when
in play mode. The cursor control keys pan left, right, up and down. Tapping €then a cur-

sor key zooms the display in (2, <) or out (2, B>) along the time axis or in (2,V) or out
(@, A) along the y-axis.

Inside Logger

Logger Data Format

Logger data is stored as an array of pairs of 16-bit numbers: an adc value followed by a
timestamp in the current timebase for the clock. If you're using Flash to store the data,
then the logs are stored from flash blocks 400 to 1399 (up to 256Kb of Flash can be used).
You can load in each block using n blk> <exe> and do further analysis on the data
without needing logger.

Logger data is stored with a timestamp in the current timebase. For sampling rates
<=50Hz, the timebase is the 50Hz (or 60Hz) frame counter clock and for sampling rates
above 50Hz the timebase is timer-counter 1, which operates at 2.5MHz.

