

PSZ 19:16 (Pind.1/07)

UNIVERSITI TEKNOLOGI MALAY
DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

 Author’s full name : TING KUAN NEAN

 Date of birth : 8 JULY 1987

Title : DEVELOPMENT OF VITAL SIGN MONITORING APPLICATION

 USING PDA

Academic Session : 2009/2010

I declare that this thesis is classified as:

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows :

1. The thesis is the property of Universiti Teknologi Malaysia.

2. The Library of Universiti Teknologi Malaysia has the right to make copies for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic

exchange.

 Certified by :

 SIGNATURE SIGNATURE OF SUPERVISOR

 870708085011 EN. CAMALLIL BIN OMAR

(NEW IC NO. /PASSPORT NO.) NAME OF SUPERVISOR

Date: Date:

 Date: 25 APRIL 2010 Date : 25 APRIL 2010

Date: 7 MAY 2009 Date : 7

MAY 2009

√

CONFIDENTIAL (Contains confidential information under the Official Secret

Act 1972)*

RESTRICTED (Contains restricted information as specified by the

organisation where research was done)*

OPEN ACCESS I agree that my thesis to be published as online open access

(full text)

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the

 letter from the organisation with period and reasons for

 confidentiality or restriction.

i

“I hereby certify that I have assessed this thesis and in my opinion

it is suitable in terms of scope and quality for the purpose of

awarding a Bachelor’s degree in Electrical Engineering”.

Signature : ……………………………

Supervisor : En. Camallil Bin Omar

Date : ……………………………

Signature : ……………………………

Co-supervisor : Associate Professor IR. DR. Ing. Eko Supriyanto

Date : …………………………....

ii

DEVELOPMENT OF VITAL SIGN MONITORING APPLICATION USING

PDA

TING KUAN NEAN

A thesis is submitted in fulfillment of the requirements for

 the award of the degree of Bachelor of Engineering (Electrical-Electronics)

Faculty of Electrical Engineering

University Teknologi Malaysia

APRIL, 2010

iii

“I declared that this thesis entitled “DEVELOPMENT OF VITAL SIGN

MONITORING APPLICATION USING PDA” is the result of my own

research except as cited in references. The thesis has not been accepted for

any degree and is not concurrently submitted in candidature of any degree”.

Signature : …………………………

Name of Candidate : TING KUAN NEAN

Date : …………………………

iv

Specially dedicated to

my beloved family and those people

who have guided and inspired me throughout my journey of education…

v

ACKNOWLEDGEMENT

 I am heartily thankful to my supervisor, En. Camallil bin Omar, whose

encouragement, guidance and the support that enabled me to develop an

understanding of this subject.

 Besides, I wish to thank my co-supervisors, Associate Professor IR. DR. Ing.

Eko Supriyanto, Mr. Haikal and Mr. Indra for their patient, advice, and

encouragement in completing this project.

 Lastly, I offer my regards and blessings to all of those who supported me in

any respect during the development of this project.

vi

ABSTRACT

Cardiovascular disease remains the number one killer in Malaysia, with

hypertension topping the list according to Friday, Jul 18,2008 The New Straits Times.

Electrocardiography (ECG) has been studies as the most frequently used indicator for

diagnosing cardiovascular diseases. Due to the increasing number of people with

cardiovascular diseases, a real time ECG monitoring system has been developed. In

order to achieve this goal in an economic way, a real-time monitoring system using

PDA has been developed. This PDA application is capable of plotting real-time

patient’s ECG signal and at the same time display the heart rate pulse value. The

developed system is consisted of a transmitter, wireless converter, computer and

PDA phone. The transmitter stores information of the patient’s heart condition and

send to the wireless converter using ZigBee wireless communication technology. At

the same time, the computer receives that signal and transmits to PDA using

Bluetooth wireless communication technology. For the test result, PDA application

successfully plot the acceptable ECG signal based on certain BPM of ECG simulator

and display heart rate pulse value. Besides, this application has been tested to plot

ECG signal continuously until one of the connected devices has been disconnected.

Summing up, a PDA application that is capable of storing the ECG signal and heart

rate pulse values is needed for future development.

Keywords- Android Personal Digital Assistant, Zigbee, ECG, and Bluetooth.

vii

ABSTRAK

Penyakit “cardiovascular” masih menjadi pembunuh utama di Malaysia

dengan penyakit darah tinggi mencatat tertinggi mengikut “The New Straits Times”

surat khabar, Jumaat,18 Julai 2008. Mengikut kajian, ECG telah menjadi satu

penunjuk untuk mengubati penyakit ini. Dengan bertambahnya pesakit

“cardiovascular”, sistem pengamatan ECG telah dieksploitasikan dan PDA telah

menjadi alat pengamatan untuk menjimatkan kos. Aplikasi PDA ini dapat

mengplotkan ECG dan mempamerkan denyutan jantung pesakit. Sistem pengamatan

ini terdiri daripada satu pemancar, radio penukar, computer dan PDA. Pemancar

menyimpan ECG data pesakit and hantar data tersebut kepada radio penukar dengan

menggunakan “ZigBee” radio komunikasi teknologi. Pada masa yang sama,

computer akan menerima data tersebut dan menghantar data lagi ke PDA dengan

menggunakan “Bluetooth” radio komunikasi teknologi. Aplikasi PDA ini telah

berjaya mengplotkan ECG bagi sesetengah BPM dariapada ECG simulator.

Seterusnya, aplikasi ini dapat mengplotkan ECG sehingga antara satu daripada

peralatan telah terputus hubungan. Sebagai kesimpulan, aplikasi PDA yang

berkeupayaan menyimpan ECG dan denyutan jantung pesakit perlu untuk kajian

seterusnya.

Kata Kunci- “Android” PDA, Zigbee, ECG dan Bluetooth.

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF FIGURES xii

LIST OF TABLES xiv

LIST OF ABBREVIATIONS xv

LIST OF APPENDICES xvii

1 INTRODUCTION 1

1.1 Problem background 1

1.2 Alternative solution 2

1.3 Objective and scope 4

1.4 Methodology 5

1.4.1 Work flow 5

1.4.2 Block diagram 6

1.4.3 Gantt chart 7

1.4.4 Resource 8

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Introduce android 12

2.3 Eclipse Galileo 13

ix

2.4 Electrocardiography 14

2.4.1 Electricity of the heart 15

2.4.2 Electrocardiography signal 16

2.5 Bluetooth wireless communication technology 17

2.6 ZigBee wireless communication technology 18

2.7 Wireless Medical Interface 19

2.8 Solution comparison 21

3 DESIGN AND IMPLEMENTATION 23

3.1 Design specification 23

3.1.1 GUI for video recording, Wi-Fi and Bluetooth 23

applications

3.1.2 Video recording application 23

3.1.3 Wi-Fi application 24

3.1.4 Bluetooth application 24

3.1.4.1 PDA Bluetooth application 24

3.1.4.2 Computer Bluetooth application 24

3.1.5 Plotting ECG and display heart rate 25

3.2 Algorithm structure for connecting MDIz, MDIzb, 25

computer and PDA

3.3 Main flow chart 26

3.4 Sub flow charts and explanation 27

3.4.1 Develop GUI for video recording, Wi-Fi and 27

Bluetooth application

3.4.2 Develop video recording application 27

3.4.3 Develop Wi-Fi application 28

3.4.4 Develop Bluetooth application 28

3.4.5 Plot ECG and display heart rate pulse value 29

3.5 Source code structure 31

3.6 Detail source code and explanation 32

3.6.1 Declaring layout 32

3.6.2 The AndroidManifest.xml file 32

3.6.3 Source code detail 33

3.6.3.1 Implement Android button 33

x

3.6.3.2 Implement Android spinner 34

3.6.3.3 Implement video recording application 35

3.6.3.4 Implement Wi-Fi application 35

3.6.3.5 Implement Bluetooth application 37

3.6.3.6 Plot ECG and display heart rate pulse 38

value

3.7 Casing photos 40

3.8 System photo 41

3.9 User Manual 42

3.9.1 PDA application 42

3.9.2 Computer Bluetooth application 48

4 TEST RESULT AND ANALYSIS 52

4.1 Objective and scope of testing 52

4.2 Functional testing 52

4.3 Performance testing 53

4.4 Reliability testing 56

5 CONCLUSION AND RECOMMENDATION 58

REFERENCES 60

APPENDIX A 63

APPENDIX B 64

APPENDIX C 66

APPENDIX D 70

APPENDIX E 73

APPENDIX F 75

APPENDIX G 79

APPENDIX H 81

APPENDIX I 83

APPENDIX J 84

APPENDIX K 85

APPENDIX L 86

APPENDIX M 87

xi

APPENDIX N 88

APPENDIX O 89

APPENDIX P 91

xii

LIST OF FIGURES

FIGURE No. TITLE PAGE

1.1 Work Flow (flow chart) 5

1.2 Block diagram 6

1.3.1 Gantt chart for Semester 1 7

1.3.2 Gantt chart for Semester 2 8

1.4 Characteristics of MDIz 9

1.5 Characteristics of MDIzb 9

2.1 Eclipse Galileo Interface 13

2.2 Handset Emulator Interface 14

2.3.1 Cardiac conduction system 15

2.3.2 Points and elements of ECG signal 16

2.4 Block diagram of MDIz 19

2.5 Frame of MDIz 19

2.6 Block diagram of MDIzb 20

2.7 Frame of MDIzb 20

3.1 Algorithm structure for connecting MDIZ, 25

MDIZB, computer and PDA

3.2 Main flow chart 26

3.3 Definition of data stream sent by the module 30

3.4 Example of a received data stream at the host side 30

3.5 Source code structure 31

3.6 Casing photos 40

3.7 System photo 41

3.8 Main GUI 42

3.9 Second Layout 43

xiii

3.10 Spinner 43

3.11 GUI for Wi-Fi application 1 44

3.12 GUI for Wi-Fi application 2 44

3.13 GUI for Wi-Fi application 3 45

3.14 Connected WiFi GUI 46

3.15 GUI for video recording application 46

3.16 GUI for ECG plot 47

3.17 BlueSoleil 6.0 Interface 1 48

3.18 BlueSoleil 6.0 Interface 2 48

3.19 GUI for computer Bluetooth application 1 49

3.20 GUI for computer Bluetooth application 2 50

3.21 GUI for computer Bluetooth application 3 50

3.22 GUI for computer Bluetooth application 4 51

4.1 ECG plot for 240 BPM 53

4.2 ECG plot for 180 BPM 54

4.3 ECG plot for 120 BPM 55

4.4 ECG plot for 60 BPM 55

4.5 ECG plot for 30 BPM 56

4.6 ECG plot for 60 BPM 57

xiv

LIST OF TABLES

TABLE No. TITLE PAGE

1 Comparison between HTC MAGIC and 21

 HP IPAQ H3970 PDA

xv

LIST OF ABBREVIATION

AD - Analog to Digital

ADT - Android Development Tools

AP - Access Point

API - Application Programming Interface

AV - Atrioventricular

BPM - Beats per minutes

BSS - Basic Service Set

DS - Distribution System

ECG - Electrocardiography

ESS - Extended Service Set

FFD - Full-function Device

GUI - Graphical User Interface

IBSS - Independent Basic Service Set

IDE - Integrated Development Environment

IEC - International Electrical Commission

IEEE - Institute of Electrical and Electronic Engineers

IP - Internet Protocol

LAN - Local Area Network

LR-WPAN - Low Rate Wireless Personal Area Network

MAC - Media Access Control

MDIz - Medical Data Interface ZigBee

MDIzb - Medical Data Interface ZigBee Bluetooth

Mhz - Megahertz

MOLEC - Monitorización On-Line de Enfermos del Corazón

(On-Line Monitoring for Heart Patients).

Mp4 - MPEG Layer-4 Audio

xvi

PCMCIA - Personal Computer Memory Card International Association

PDA - Personal Digital Assistant

POS - Personal Operating Space

RAM - Random Access Memory

ROM - Read Only Memory

RFCOMM - Radio Frequency Communication

RFD - Reduced-function Device

SA - Sinoatrial

SD - Secure Digital

SDK - Software Development Kit

SDP - Service Discovery Protocol

SSID - Service Set Identifier

USA - United States of America

UTM - Universiti Teknologi Malaysia

UUID - Universal Unique Identifier

WBAN - Wireless Body Area Network

Wi-Fi - Wireless Fidelity

WPAN - Wireless Personal Area Network

XML - Extensible Markup Language

xvii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Source code for androidone.java 63

B Source code for Activity2.java 64

C Source code for newgraph.java 66

D Source code for GrapView.java 70

E Source code for WiFi.java 73

F Source code for HelloAndroid.java 75

G Source code for VideoRecording.java 79

H Source code for CamcorderPreview.java 81

I Source code for main.xml 83

J Source code for second.xml 84

K Source code for third.xml 85

L Source code for fourth.xml 86

M Source code for fifth.xml 87

N Source code for arrays.xml and strings.xml 88

O Source code for AndroidManifest.xml 89

P Source code for computer Bluetooth application 91

1

CHAPTER 1

INTRODUCTION

1.1 Problem background

 With the advancement of medical technologies and living standard, the span

of human life has been extended and the population of living alone elders have

increased. Due to this situation, a portable intensive monitoring system help in

assisting the elders’ life is becoming important. By measuring both the biosignals

and activity signals at the same time can help to improve the quality of life by

maintaining and managing healthy life. Biosignal like ECG has been studies as the

most frequently used indicator for diagnosing cardiovascular diseases and a system

has been developed to measure individuals’ health condition through intensive

monitoring of ECG[1].

 The holters system is among the first group to stand out for developing real

time ECG monitoring system[2]. This system is utilized by placing electrodes on the

patient’s chest and these electrodes are attached to the holter. A tape will be

implemented to record a continuous ECG for 24 or 48 hours after the patient is sent

home and goes back to normal life. After that time, the holter is removed and the

tape is analyzed. A physician will see each of the patient’s hearts beats and if

abnormal beats or rhythms occurred during that period, they would be identified by

the physician.

2

Medtronic Reveal Insertable Loop Recorder is also a sophisticated device

which allows up for 14 months recording of ECG episodes[3]. With that device, in

case the user experiences a fainting episode, for example, after waking, the user can

activate a button in a hand held device and a physician can analyze the stored

information a posteriori and determine whether the fainting episode was caused by

an abnormal heart rhythm.

Besides, there is also other system developed that gives warning in case the

heart has a problem such as arrhythmic pulse [4]. This system is capable of

monitoring patient’s heart condition continuously and in case happening an event, it

sends a warning to the doctor in a remote place. When that event happen, this

equipment can send a message immediately to the doctor in a remote place by using

wireless personal area communication technology and GPRS mobile phone

communication technology.

While the Jovanov proposed a health monitoring system using WBAN for

monitoring biosignals and activity signals [5]. This system was designed to monitor

biosignals and activity signal while the subject is moving. The system uses two

acceleration sensors to measure activity signal, and has a 1 channel bioamplifier to

measure the patient’s heart condition.

In comparison, my developed system measures ECG signal using 3 lead

cardiac monitoring system in order to get more accurate information on the patient’s

heart condition.

1.2 Alternative solution

Among the novel applications that can be supported by the new capabilities

of mobile handsets, those related with health care and telemedicine are gathering a

3

growing expectation, because of their social relevance and the huge potential market

represented by the ageing population of developed countries[6].

Among the PDAs used in the research as a monitoring device, J.M. Cano-

Carcia proposed using the Linux operating system as application framework for the

PDA and Desktop/Server computer [7]. She choose HP IPAQ H3970 PDA phone as

her portable monitoring device. However, this system required the PCMCIA data

acquisition card be connected to a PDA to build her portable data acquisition system

and the PCMCIA acquisition cards are expensive for mass production. Again, the

biosignal sensor device in this system is required to connect to PDA.

 Besides, Jimena Rodriguez, Alfredo Goni, and Arantza Illarramendi proposed

the IPAQ Pocket PC (using MOLEC architecture) [8]. This is due to the MOLEC

architecture is not only capable of storing the ECG signal, but also it is an embedded

real-time system that captures, process, detects, analyzes and notifies possible

dangerous abnormalities. Furthermore, the research shows that MOLEC has the

lowest error of 3.581% in classifying beats and it also classifies rhythms.

 Martin Ekstrom in his thesis entitled Small wireless ECG with Bluetooth

communication to a PDA recommend the PDA running the window mobile 5.0 and

at the same time be able to run LabView 8.0 for pocket PC[9]. LabView 8.0 is a

platform developed by National Instrument for graphical programming for

instrument communication. Besides, this PDA must support Bluetooth, Virtual Serial

Port Support and WIDCOMM Bluetooth driver (BTW-CE 1.4).

However, the PDA used in this project is based on Android operating system.

The reason to choose Android as the mobile operating system to develop this

application is the existence of an expanding collection of free development tools

such as a debugger, libraries, a handset emulator, documentation, sample code,

tutorials, support libraries and open source projects. Besides, the phone features also

include camera, Wi-Fi and Bluetooth which suite in this project. By using the

Bluetooth and ZigBee wireless communication technology, we can transfer data

easily between transmitter, wireless converter, computer and PDA which made the

whole system more mobility. Furthermore, the Android phones are becoming more

4

popularity and compete against the Apple iPhone in the US market and the market

analyst have predicted Android would overtake the iPhone in sales by 2012[10].

Currently, there is no research carry out on developing an application in Android

PDA phone in order to plot ECG signal and display heart rate pulse value and

becoming one of the innovation of this project.

1.3 Objective and scope

The objective of this project is to develop an application in Android PDA

phone in order to plot real-time ECG signal and display heart rate pulse value using

Bluetooth wireless communication technology. From this application, a real time

ECG signal and heart rate pulse value will be displayed.

While the scopes of this project are using the 3 lead cardiac monitoring

system, Android PDA phone as a monitoring device and Bluetooth serves as data

transferring protocol between computer and PDA.

 For the expected result, a line graph is implemented to connect all the ECG

data points in order to plot the ECG signal. Besides, an integer will be located at

center of the PDA screen to display the heart rate pulse value.

5

1.4 Methodology

1.4.1 Work flow

The work flow of the project had been divided into several stages. The

implementation and work flow of the project are summarized into the flow chart as

shown in Figure 1.1.

 Figure 1.1 Work Flow

6

1.4.2 Block diagram

Figure 1.2 Block diagram

Figure 1.2 shows the developed system is consisted of 4 main parts. The

MDIzb which act as a transmitter to send the ECG data to MDIzb. MDIzb acts as

wireless converter to convert the ZigBee ECG data to Bluetooth ECG data. At the

same time, computer will acts on receive the Bluetooth ECG data and transfer those

data to PDA. The computer is used as a medium to communicate between MDIzb

and PDA due to the pairing problem in MDIzb. MDIzb does not require any pairing

code for paring purpose. However, PDA did require pairing code before data

transferring is allowed. After receiving ECG data from computer, the PDA

application will plot ECG signal and display heart rate pulse value.

7

1.4.3 Gantt chart

Figure 1.3.1 Gantt chart for Semester 1

Figure 1.3.1 shows the Gantt chart for 1
st
 semester. During that time, I study

some information regarding available PDA phones in the market suitable for working

with Bluetooth data transferring, compatible with the developed monitoring system,

available tools and necessary APIs to develop an application in PDA phone. Finally,

the Android PDA phone (HTC Magic) is choose as a monitoring device. In order to

develop an application in this PDA phone, Java programming language is needed and

I started to learn this programming language. After knowing some basic of Java

programming language, I begin to learn to program simple applications by using

Eclipse Galileo software. This software allows me to test application on emulator

without the need to test on real PDA phone. Then I started to develop video

recording application. I successfully developed this application and the recorded

video is saved in the SD card.

8

Figure 1.3.2 Gantt chart for Semester 2

Figure 1.3.2 shows the Gantt chart for 2
nd

 semester. During 2
nd

 semester, I

started to develop Wi-Fi application. This application works on enable the Wi-Fi

without going through the setting. Again, this application can connect to the previous

remembered hotspot automatically. After finishing Wi-Fi application, I started to

work on Bluetooth application. This application required pairing the MDIzb before

trying to connect on each other for the data transferring. Due to the primitive

Bluetooth used in MDIzb, this device does not provide pairing code and lead to the

pairing problem. So, a computer is choose as a medium to connect the MDIzb and

PDA via Bluetooth. A program has been developed to solve this problem on data

transferring between these 2 devices. Finally, all the applications which had been

developed beforehand are integrate into single application for user friendly purpose.

1.4.4 Resource

The main system is consisted of 4 main parts which are MDIz, MDIzb,

computer and Android PDA phone. The MDIz is using the 3 lead cardiac monitoring

system. This 3 lead system is based on Einthoven triangle. There are 3 skin

electrodes used in this system and the color codes are based on IEC. The red

electrode is for the right arm, yellow electrode is for the left arm and the black

9

electrode is for the right leg and thus forming a triangle. Figure 1.4 shows the

characteristics of MDIz.

Figure 1.4 Characteristics of MDIz

 The MDIzb acts on convert the ZigBee ECG data to Bluetooth ECG data.

The Bluetooth interface build in this device does not required paring code and lead to

low security that allow anyone to access the data. Figure 1.5 shows the

characteristics of MDIzb.

Figure 1.5 Characteristics of MDIzb

10

Besides, the Android PDA phone is equipped with a Qualcomm MSM7200A,

528 Mhz processor, 288MB RAM and 512 ROM and coming with firmware version

1.6. This firmware version does not allow the developers to develop Bluetooth

application. Due to this problem, the firmware has been upgraded to unofficially

Éclair version 2.1. Although this firmware version allow the developers to develop

their Bluetooth application, but this firmware is not stable as compare to version 1.6

and officially new firmware version 2.1 is estimated to release in mid of 2010. Again,

this PDA phone has the general features such as camera, Wi-Fi and Bluetooth which

suite in this project.

The computer acts as a medium to communicate MDIzb and PDA. The

software used to communicate between these 2 devices is BlueSoleil 6.0 trial version

and the computer must support Bluetooth. BlueSoleil 6.0 trial version enables the

user to connect more than 2 Bluetooth devices at the same time.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 Due to the advancement of technology in the field of mobile communications,

it lead to the deployment of packet data services over cellular mobile systems and

giving support for the deployment of new applications. At the same time, the

increase of the number of subscribers to mobile telephony systems has lead to the

proliferation of a wide range of wireless handsets. An increasing effort has been

devoted to the development of low power and high performance embedded

microprocessors with multimedia capabilities due to the popularization of such

devices has promoted a growing interest to continuously improve their features and

performance. Similarly, a significant enhancement of the development tools and

software support for these platform has been achieved. As a result. PDA and

Smartphone delivering capabilities comparable to those exhibited by desktop

computers including wireless internet access and multimedia support. These

handheld devices are provided with an operating system to support application

software and make it easy for the development. This framework opens the door to the

emergence of a wide range of innovative applications that can be supported by

current PDAs and Smartphone, devices which are becoming more and more popular

and familiar for standard users[7].

12

 Due to the new capabilities and features of mobile handsets, it becoming

more popular in the field of health care and telemedicine. For example, J.M. Cano-

Carcia proposed using the Linux operating system as application framework for the

PDA and Desktop/Server computer [7]. She choose HP IPAQ H3970 PDA phone as

her portable monitoring device. However, this project choose Android PDA phone as

a portable monitoring device.

2.2 Introduce Android

Android is a mobile operating system that uses a modified version of the

Linux kernel. It was initially developed by Android Incorporated, a firm later

purchased by Google, and lately by the Open Handset Alliance. It allows developers

to write managed code in the Java programming language.

 The Android SDK provides the tools and APIs to start developing

applications on the Android platform. Besides, it also includes a comprehensive set

of development tools such as debugger, libraries, a handset emulator, documentation,

sample code, and tutorials.

Furthermore, Android offers developers to develop extremely rich and

innovative applications by providing an open development platform. Developers are

free to take advantage of the device hardware, access location information, run

background services, set alarms, add notifications to the status bar, and others.

Besides, developers can gain full access to the same framework APIs used by

the core applications. This application architecture is designed to simplify the reuse

of components. For example, any application can publish its capabilities and any

other application may then make use of those capabilities.

13

2.3 Eclipse Galileo

Eclipse is a multi-language software development environment consist an

IDE and an extensible plug-in system. The primarily written language is Java and

can be used to develop Java application. By means of the available plug-ins, it also

can be written in different programming language such as C, C++, COBOL, Python,

Perl, PHP, and others.

Furthermore, Eclipse employs plug-ins in order to provide all of its

functionality on top of the runtime system as compare to some other applications

where functionality is typically hard coded.

Figure 2.1 Eclipse Galileo Interface

14

Figure 2.2 Handset Emulator Interface

2.4 ECG

ECG is a very important means for non-invasive diagnosis. It is one of bio-

potential signals, with amplitude of several mV and frequency less than 250Hz. In

the early 1960s in the U.S.A, the research on ECG system design and signal

processing had started. Starting from that time, there have been researches on

designing hardware such as multi-channel ECG for automatic diagnosis, Holter ECG

that monitors patients with cardiac disorder for 24 hours a day, stress ECG that

diagnose cardiac disorders under exercise stress, and developing accurate

algorithms[11].

15

2.4.1 Electricity of the heart

The electrodes attached to the surface of the body can detect the contraction

of any muscle. Basically, the heart has four chambers. But from the electrical point

of view, it can be thought of having only two due to the two atria contract together

and then the two ventricles contract together. Figure 2.3.1 shows cardiac conduction

system.

Figure 2.3.1 Cardiac conduction system

The electrical activity of the heart originates in the SA node, located in the

wall of the right atrium. Then, the impulse is increasingly spreads through the right

atrium to the AV node. After some time at AV node, the impulse spreads slowly

through the bundle of his, the bundle branches, the Purkinje network, and finally the

ventricular muscle. The first area of the ventricular muscle to be activated is the

inter-ventricular septum, which activates from left to right. Lastly, the impulse

divides into the Purkinje network of fibers that proceed vertically to the surface of

the heart [12].

16

Figure 2.3.2 Points and elements of ECG signal

2.4.2 Electrocardiography Signals

The ECG waveform is divided into P, Q, R, S, T and U elements [13]. The P

wave corresponds to atrial depolarization that shows contraction of both left and

right atria. Normal duration of P wave is between 0.06 to 0.12 seconds. The QRS

complex represents depolarization of the ventricles. The duration of the QRS

complex shows how long excitation takes to spread through the ventricles and must

less than 0.1 seconds for normal ventricles contraction. The T wave represents

ventricles repolarization which setting up the cardiac muscle for another contraction.

Sometimes it will follow by U wave that represents the purkinje fibers repolarization.

The PR interval is the conduction time required for an electrical impulse to be

conducted from the atria to the ventricles. The duration is normally 0.12 to 0.20

seconds and it is important to indicate heart block problems. The QT interval is

measured from the beginning of the QRS complex to the end of the T wave. A

normal QT interval is about 0.40 seconds. The ST segment connects the QRS

complex and the T wave. It represents the measured time between ventricular

17

depolarization and the beginning of ventricular repolarization which normally last

about 0.08 seconds. The normal period of one cardiac cycle is between 0.6 seconds

to 1.0 seconds, which it represents the heart rate or the number of heart BPM. Thus,

the heart rate for normal rhythm is between 60 to 100 BPM. The ECG strips is best

interpreted from lead II or lead V1 which the lead shows the most clearly rhythm of

the heart according to Einthoven’s Triangle [14]. Figure 2.3.2 shows normal ECG

signal from the standard lead II.

2.5 Bluetooth wireless communication technology

Bluetooth, also known as the IEEE 802.15.1 standard is based on a wireless

radio system designed for short-range and cheap devices. This range of applications

is known as WPAN. The two connectivity topologies defined in Bluetooth are

piconet and scatternet. A piconet is a WPAN formed by a Bluetooth device serving

as a master in the piconet and one or more Bluetooth devices serving as slaves. A

frequency-hopping channel based on the address of the master defines each piconet.

All devices participating in communications in a given piconet are synchronized

using the clock of the master. Slaves communicate only with their master in a point-

to-point fashion under the control of the master. The master's transmissions may be

either point-to-point or point-to-multipoint. Besides in an active mode, a slave device

can be in the parked or standby modes so as to reduce power consumptions. A

scatternet is a collection of operational Bluetooth piconets overlapping in time and

space. Two piconets can be connected to form a scatternet. A Bluetooth device may

participate in several piconets at the same time, thus allowing for the possibility that

information could flow beyond the coverage area of the single piconet. A device in a

scatternet could be a slave in several piconets, but master in only one of them[17].

The maximum signal rate for the Bluetooth is 1Mb/s and the nominal range for

detecting the Bluetooth is 10m.

18

2.6 ZigBee wireless communication technology

ZigBee also known as IEEE 802.15.4 defines specifications for LR-WPAN

for supporting simple devices that consume minimal power and typically operate in

the POS of 10m. ZigBee provides self-organized, multi-hop, and reliable mesh

networking with long battery lifetime [15,16]. Two different device types can

participate in an LR-WPAN network: a FFD and a RFD. The FFD can operate in

three modes serving as a PAN coordinator, a coordinator, or a device. An FFD can

talk to RFDs or other FFDs, while an RFD can talk only to an FFD. An RFD is

intended for applications that are extremely simple, such as a light switch or a

passive infrared sensor. They do not need to send large amounts of data and only

associate with a single FFD at a time. Consequently, the RFD can be implemented

using minimal resources and memory capacity. After an FFD is activated for the first

time, it may establish its own network and become the PAN coordinator. All star

networks operate independently from all other star networks currently in operation.

This is achieved by choosing a PAN identifier, which is not currently used by any

other network within the radio sphere of influence. Once the PAN identifier is

chosen, the PAN coordinator can allow other devices to join its network. An RFD

may connect to a cluster tree network as a leave node at the end of a branch, because

it may only associate with one FFD at a time. Any of the FFDs may act as a

coordinator and provide synchronization services to other devices or other

coordinators. Only one of these coordinators can be the overall PAN coordinator,

which may have greater computational resources than any other device in the

PAN[17]. The maximum signal rate for the ZigBee is 250kb/s and the nominal range

for detecting the ZigBee is from 10m till 100m.

19

2.7 Wireless Medical Interface

 There are 2 kinds of wireless medical interface which has been discussed in

this project; MDIz and MDIzb. MDIz is a device which acquires data from medical

device and transmits it out through Zigbee network. For the MDIzb, it coordinates

the Zigbee network as well as communicates with Medical Data Assistant through

Bluetooth network[19].

Figure 2.4 Block diagram of MDIz

Figure 2.5 Frame of MDIz

 Figure 2.4 shows the block diagram of MDIz. Analog signal from medical

sensor is conditioned, digitized and processed by a processor. The data from

processor is converted to Zigbee and then transmitted out. The data is arranged in a

frame as shown in Figure 2.5. It consists of device ID, status, length of process, data

and checksum. The Zigbee module is bidirectional and MDIz can receive the

command through Zigbee module.

20

Figure 2.6 Block diagram of MDIzb

Figure 2.7 Frame of MDIzb

 MDIzb coordinates the Zigbee network. It decides which medical device will

communicate to in that time and give them priority based their status. Figure 2.6

shows block diagram of MDIzb. It consists of Zigbee module, two processors, D-

latch, SRAM, and Bluetooth module. Data from MDIz is received by Zigbee module

and processed by processor 1. Delay may ignore the data. To overcome this matter, a

256kb SRAM is added as a data buffer. The data is then sent to processor 2 to add a

frame as shown in Figure 2.7 before transmitted out by Bluetooth module. Bluetooth

data is acquired by mobile data assistant. The Bluetooth module is bidirectional and

MDIzb can receive the command through Bluetooth module.

21

2.8 Solution comparison

Features HTC Magic HP IPAQ H3970 PDA

1. Portability PDA connected wireless via

MDIzb, MDIz and

computer.

 PDA connected physically to

PCMCIA data acquisition

card and biosignal sensors.

2. External Support Computer is required as a

medium to communicate

MDIzb and PDA.

PCMCIA data acquisition

card and PDA require

PCMCIA expansion sleeve.

3. Mobile operating

system

Android operating system.

(open source project)

Linux operating system.

(open source project)

4. Tools ADT Plug-in for Eclipse COMEDI (support data

acquisition)

Table 1 Comparison between HTC Magic and HP IPAQ H3970 PDA

 Table 1 shows the solution comparison between HTC Magic and HP IPAQ

H3970 PDA. For the HP IPAQ PDA, this project is based on J.M. Cano-Garcia team

project entitled “A PDA based portable wireless ECG monitor for medical personal

area networks”[7]. In term of portability, all the devices are connected wirelessly to

each other in my project while the J.M. Cano–Garcia team project required PCMICA

data acquisition connected physically to the device as well as biosignal sensors.

Although in my project all the connected devices are connected wirelessly, but this

system limit to the home and hospital usage and limit the mobility as compare to J.M.

Cano-Garcia team project.

Besides, for the external support, computer is required to be one of the

element in my project and lead to the immobility. However for the J.M. Cano-Garcia

team project, the PDA need to have PCMCIA expansion sleeve in order to connect

PCMCIA data acquisition card. This card is expensive for the purpose of mass

production.

Next, HTC Magic support android operating system while the HP IPAQ

H3970 PDA support Linux operating system and both of this operating system is

22

open source project. Furthermore, ADT is a plug-in for the Eclipse IDE that is

designed to give a powerful, integrated environment in which to build Android

applications. At the same time, ADT also extends the capabilities of Eclipse to let the

developers quickly set up new Android projects, create an application UI, add

components based on the Android Framework API, debug applications using the

Android SDK tools and even signed APKs in order to distribute application. As

compare with J.M. Cano–Garcia team project, COMEDI is a tools that comprises a

collection of drivers for a variety of common data acquisition boards, as long as a

development library which offers a common programming interface to grant

acquisition hardware interchangeability[7].

23

CHAPTER 3

DESIGN AND IMPLEMENTATION

3.1 Design specification

3.1.1 GUI for video recording, Wi-Fi and Bluetooth applications

The main layout for GUI shows UTM logo and a button. By clicking the

button, it will load to the second layout. For the second layout, it has a spinner which

enable the user to choose a connection either video recording, Wi-Fi or Bluetooth

applications. By choosing the desired selection, the user need to click a button to

proceed each application.

3.1.2 Video Recording application

In order to start recording video, the user need to touch the screen and stop

recording by touch again the screen. The recorded video file format is mp4 and save

in SD card.

24

3.1.3 Wi-Fi application

The check box widget is used to enable the Wi-Fi by checking the check box.

After enabling the Wi-Fi, it will automatically connected to the remember hotspot.

3.1.4 Bluetooth application

3.1.4.1 PDA Bluetooth application

User need to active their Bluetooth setting to enable Bluetooth. The limitation

of this application is the user need to hardcoded their computer Bluetooth MAC

address into application in order to communicate with each others.

3.1.4.2 Computer Bluetooth application

In order to communicate between PDA and MDIzb, BlueSoleil 6.0 trial

version is used to connect these 2 devices via computer. After connecting to the

computer, they are connected to the different COM port instead of the same COM

port. So, a program that is capable of transferring data from one COM port to

different COM port is needed to communicate these 2 devices.

25

3.1.5 Plotting ECG and display heart rate

In order to plot the ECG signal, a line graph is used to connect the ECG data

points. For each transmission of ECG data, it will redraw itself and at the same time

keep the previous ECG data. The heart rate pulse values are coming along with ECG

data. A draw text function will be used to display the real time heart rate pulse value

at the center of the view.

3.2 Algorithm structure for connecting MDIz, MDIzb, computer and PDA

Figure 3.1 Algorithm structure for connecting MDIz, MDIzb, computer and PDA

Figure 3.1 shows the algorithm structure for connecting MDIz, MDIzb,

computer and PDA. Firstly, the ECG simulator is connected to the MDIz. The ECG

simulator acts as replacement for the human body in order to get the accurate result

for plotting and display heart rate pulse value. Secondly, switch on both the MDIz

and MDIzb devices. Next, connect the MDIzb and PDA via BlueSoleil 6.0. They are

26

connecting to each other when you notice each of the device connected by a dotted

line shows in BlueSoleil interface. Again, the computer Bluetooth application is

activated by clicking the “start” button and the ECG data values will be shown in a

text box. This is to ensure that the MDIzb is sending the data to PDA. Lastly, start

the PDA Bluetooth application and the ECG data will be plotted and heart rate pulse

value will be displayed.

3.3 Main Flow chart

Figure 3.2 Main flow chart

Figure 3.2 shows the main flow chart. First of all, the GUI for the video

recording, Wi-Fi and Bluetooth applications are developed to give an overview of the

application structure. Next, the video recording application is developed. This

application works on touch the screen to start recording and touch again to stop

recording. The recorded video is saved in the SD card. While the Wi-Fi application

allows the user to enable the Wi-Fi within application and connect to the hotspot

automatically. For the Bluetooth application, there are 2 parts which are on the PDA

and computer. The PDA Bluetooth application work on communicate with the

27

computer to receive ECG data from MDIzb while the computer Bluetooth

application work as transferring data from one COM port to the other COM port. In

order to plot ECG, a line graph is used to connect all the ECG data points.

3.4 Sub flow charts and explanation

3.4.1 Develop GUI for video recording, Wi-Fi and Bluetooth application

The main layout is designed as putting a UTM logo, a “start” button and

some texts such as PDA intensive monitoring and welcome. The button is used to

load the second layout.

After the user click on the start button, the second layout appeared. There will

be a spinner and a “click on setting” button. The spinner create a list of connection

such as Bluetooth, Wi-Fi, and Video Recording. When the user click on the spinner,

it will display the list to allow the user to select their desired connection. After the

user has choose their desired connection, they need to click on “click on setting”

button to proceed desired application.

3.4.2 Develop video recording application

When the user select video recording application, there will display a new

layout with a square surface and 4 radio buttons. The square surface is for the video

recording while the 4 radio buttons are implemented for future usage such as for

sending the particular video to doctor. When the user touch on the square surface, the

28

video recording activity will be started. In order to stop recording, the user need to

touch again the square surface and at the same time, the recorded video will be save

in the SD card.

3.4.3 Develop Wi-Fi application

When the user select Wi-Fi application, there will be a check box and a

button. The check box is used to enable or disable the Wi-Fi while the “Next” button

is used to load the next layout. After user click on the button, a new layout appeared

by a “Refresh” button. By clicking on the “Refresh” button, it will automatically

connected to the remember hotspot. After connecting the hotspot, there will be 2

texts which display the IP address and SSID for the connected hotspot.

3.4.4 Develop Bluetooth application

The Bluetooth require pairing with the remote devices before connecting on

each others. For PDA Bluetooth application, the user need to manually enable and

pairing the Bluetooth device before starting to communicate with computer. The

MAC address for the computer is hardcoded into the PDA Bluetooth application. If

PDA and computer already pairing with each others, they will automatically

connecting each other when this application is launched.

While for the computer Bluetooth application, when the MDIzb and PDA are

connected to the computer, they are connected to the different COM port. Different

COM port does not allow transferring data between these two devices. An

application has been developed to solve this problem by allowing specific COM port

29

to write to different COM port. The GUI shows 2 buttons, one is “start” button and

the other one is “stop” button. When MDIzb and PDA are connected to computer, by

clicking the “start button” allow transferring of ECG data from one COM port to

other COM port and “stop” button for stopping transferring of data. This program is

developed using C sharp programming language and visual studio 2008.

3.4.5 Plot ECG and display heart rate pulse value

A new class will be implemented for plotting ECG signal. An ECG simulator

will be used as replacement for the human body in order to get accurate result. The

ECG wave sample points are transmitted continuously with 50, 100 or 300 bytes per

second, according to the user’s last command. The curve sample points lie between 0

and 246.

For every single transmission of ECG data, a handler will be implemented to

handle the message and pass the ECG data to GraphView class and invalidate

function for redrawing the view. GraphView class is implemented as a layout for

plotting the ECG data. This class is being called for every single transmission of

ECG data.

A drawline function is used to plot the ECG signal. In order to draw a line,

there must be at least 2 points and this function have four arguments, starting x y

point and ending x y point. After plotting from the first point to second point, the

second point need to be save as the starting point and third point as the ending point

and continuously.

For the heart rate pulse value, it values are integrated along with the ECG

data. The values which are higher than 246 (0xF6) are used for marking the

following byte as a new data values according to the following definition in figure

3.3. Besides, example of data stream received shows in figure 3.4.

30

Figure 3.3 Definition of data stream sent by the module

Figure 3.4 Example of a received data stream at the host side

31

3.5 Source code structure

Figure 3.5 Source code structure

Figure 3.3 shows the source code structure for the PDA application. The

androidone class is for the main layout class. After the user click on the “start”

button, the application will load to the Activity2 class which is the second layout.

This layout implement a spinner which have a list of 3 connections. When the user

select on the Bluetooth, it will load the newgraph class for the Bluetooth application.

The newgraph class has a handler to handle the ECG data and pass the data to

GraphView class to plot the graph. The GraphView class serves as a layout for the

newgraph class. However, if the user select on WiFi from the list, it will load the

WiFi class. This class serves enabling or disabling the WiFi. After clicking on the

“Next” button, it will continue to load HelloAndroid class. This class acts on

connecting the remember hotspot automatically by clicking on the “Refresh” button.

androidone class

Activity2 class

newgraph class

GraphView class

WiFi class

HelloAndroid class

VideoRecording
class

CamcorderPreview
class

32

Besides, if the user select VideoRecording, it will load VideoRecording class. This

class acts as starting or stopping video recording and implement the

CamcorderPreview class as the layout.

3.6 Detail source code and explanation

3.6.1 Declaring Layout

The layout is the architecture for the user interface in an Activity. It defines

the layout structure and holds all the elements that appear to the user. There are two

ways of declaring the layout. First, declare user interface elements in XML. From

this, Android provides a straightforward XML vocabulary that corresponds to the

View classes and subclasses, such as for those widgets and layouts. The second

method is instantiate layout elements at runtime. The application using this type of

layout can create View and ViewGroup objects and manipulate their properties

programmatically[17].

3.6.2 The AndroidManifest.xml file

Every single Android application must have an AndroidManifest.xml file in

its root directory. This manifest presents an essential information about the

application to the Android system, information the system must have before it can

run any of the application’s code. The android manifest files does the following

things[18].

33

1. It names the Java package for the application. The package name serves as a

unique identifier for the application.

2. It describe the components of the application such as activities, services,

broadcast receivers, and content providers that the application is composed of.

It names the classes that implement each of the components and publishes

their capabilities. These declarations let the Android system know what the

components are and under what conditions they can be launched.

3. It determines which processes will host application components.

4. It declares which permissions the application must have in order to access

protected parts of the API and interact with other applications.

5. It also declares the permissions that others are required to have in order to

interact with the application's components.

6. It lists the Instrumentation classes that provide profiling and other

information as the application is running. These declarations are present in

the manifest only while the application is being developed and tested; they're

removed before the application is published.

7. It declares the minimum level of the Android API that the application

requires.

3.6.3 Source code detail

3.6.3.1 Implement Android button

Button next = (Button) findViewById(R.id.Next);

 next.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

Intent myIntent = new Intent(view.getContext(),Activity.class);

 startActivityForResult(myIntent, 0);

 }

http://developer.android.com/reference/android/app/Instrumentation.html

34

 });

The android widget button is declared in xml layout and it id is “Next”. When

the user click on the button, it will move to Activity class.

3.6.3.2 Implement Android spinner

final Spinner spinner1 = (Spinner) findViewById(R.id.spinner);

 ArrayAdapter adapter = ArrayAdapter.createFromResource(

 this, R.array.connection, android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropd

own_item);

 spinner1.setAdapter(adapter);

//create array in res/value/arrays.xml

<resources>

 <string-array name="connection">

 <item>Bluetooth</item>

 <item>WiFi</item>

 <item>VideoRecording</item>

 </string-array>

</resources>

The first line declare the spinner by it id spinner. The createFromResource()

method then creates a new ArrayAdapter, which binds each item in the string array to

the initial appearance for the Spinner. The R.array.connection ID references the

string-array defined above and the android.R.layout.simple_spinner_item ID

references a layout for the standard spinner appearance, defined by the platform.

Then setDropDownViewResource(int) is called to define the appearance for each

item when the widget is opened (simple_spinner_dropdown_item is another standard

layout defined by the platform). Finally, the ArrayAdapter is set to associate all of its

items with the Spinner by calling setAdapter(T).

http://developer.android.com/reference/android/widget/ArrayAdapter.html#createFromResource%28android.content.Context,%20int,%20int%29
http://developer.android.com/reference/android/widget/ArrayAdapter.html
http://developer.android.com/reference/android/widget/Spinner.html
http://developer.android.com/reference/android/widget/ArrayAdapter.html#setDropDownViewResource%28int%29
http://developer.android.com/reference/android/widget/ArrayAdapter.html
http://developer.android.com/reference/android/widget/Spinner.html
http://developer.android.com/reference/android/widget/AdapterView.html#setAdapter%28T%29

35

3.6.3.3 Implement video recording application (refer to Appendix G and H)

mSurfaceView = (CamcorderPreview) findViewById(R.id.surface_camera);

mSurfaceView.setOnTouchListener(new OnTouchListener() {

 public boolean onTouch(View view, MotionEvent event) {

 if (event.getAction() == MotionEvent.ACTION_DOWN) {

 if (recording) {

 mSurfaceView.getRecorder().stop();

 mSurfaceView.getRecorder().release();

 onStop();

 onDestroy();

 } else {

 recording = true;

 mSurfaceView.getRecorder().start();

 }

 return true;

 }

 return false;

 }

 });

The video recording class implement the CamcorderPreview class as the

surface to record video. The default value for the recording is false. When the user

touch the screen, it will start video recording and touch again to stop video recording.

For the onDestroy() call method is to destroy the video recording activity.

3.6.3.4 Implement Wi-Fi application (refer to Appendix E and F)

mWm = (WifiManager) this.getSystemService(Context.WIFI_SERVICE);

if (mWm.isWifiEnabled()) {

 cb.setChecked(true);

36

 cb.setText("Wifi is : enabled");

 } else {

 cb.setChecked(false);

 cb.setText("Wifi is : disabled");

 }

public void onCheckedChanged(CompoundButton buttonView, boolean

isChecked) {

if (isChecked) {

 if (mWm.setWifiEnabled(true))

 cb.setText("Wifi is : enabled");

 else {

 cb.setChecked(false);

 cb.setText("Attempt to enable failed");

 }

 } else {

 if ((mWm.setWifiEnabled(false)))

 cb.setText("Wifi is : disabled");

 else {

 cb.setChecked(true);

 cb.setText("Attempt to disable failed");

 }

 }

}

The WiFi class act as enable or disable the Wi-Fi service. The first line shows

the mWm is registered with Wi-Fi service. The first if statement is to check whether

the Wi-Fi is already enable or disable and set the check box to true or false

accordingly. At the same time, the text view will shows whether the Wi-Fi is enable

or disable. The second if statement implement if the check box is checked, it will

enable the Wi-Fi and vice versa.

37

3.6.3.5 Implement Bluetooth application (refer to Appendix C)

public void connect()

 {

 mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

BluetoothDevice device =

mBluetoothAdapter.getRemoteDevice(address);

 BluetoothSocket tmp = null;

 // Get a BluetoothSocket for a connection with the

 // given BluetoothDevice

 try {

 tmp = device.createRfcommSocketToServiceRecord(MY_UUID);

 } catch (IOException e) {

 }

 BluetoothSocket mmSocket = tmp;

 mBluetoothAdapter.cancelDiscovery();

 // Make a connection to the BluetoothSocket

 try {

 // This is a blocking call and will only return on a

 // successful connection or an exception

 mmSocket.connect();

 } catch (IOException e) {

 try {

 mmSocket.close();

 } catch (IOException e2) {

 }

 }

 }

In order to initiate a connection with a remote device(a device holding an

open server socket), the BluetoothDevice object representing remote device must be

38

obtain first. By using the BluetoothDevice, the BluetoothSocket can be obtain by

calling createRfcommSocketToServiceRecord (UUID). This will initializes a

BluetoothSocket that will connect to the BluetoothDevice. The UUID passed here

must match the UUID used by the server device. The connection can be initiate by

calling the connect(). By calling this, the system will perform an SDP lookup on the

remote device to match the UUID. if the lookup is successful and the remote device

accepts the connection, it will share the RFCOMM channel to use during the

connection.

3.6.3.6 Plot ECG and display heart rate pulse value(refer to Appendix C and D)

for (; m <= secondsLeft ; m++){

 rat[m] = (readint123-128)/diff;

 h[m] = graphheight *rat[m];

 lasth[m] = h[m];

 }

 for (int j=0 ; j <= secondsLeft; j++) {

canvas.drawLine(((j) * colwidth) + (horstart + 1) + halfcol, (border - lasth[j])

+ graphheight, ((j+1) * colwidth) + (horstart + 1) + halfcol, (border - h[j+1])

+ graphheight, paint);

 lasth[j] = h[j];

 }

In order to plot ECG graph, drawLine() is called. The drawLine() has four

arguments, starting from initial x y point to end x y point. A line can only be draw if

at least 2 points exist to form a line. The variable m is used for counting how many

points being pass by or counting on how many time the onDraw() was called.

However, the secondsLeft variable state for each single transmission of ECG data.

By doing looping on drawLine(), every single data pass by will enable the current

and pass point values being plotted continuously.

39

Handler myViewUpdateHandler = new Handler(){

 /** Gets called on every message that is received */

 @Override

 public void handleMessage(Message msg) {

 switch (msg.what) {

 case newgraph.MESSAGE_READ:

 byte[] bytes = (byte[]) msg.obj;

 String readMessage123 = new String(bytes);

 int readint = Integer.parseInt(readMessage123.trim());

 if (readint !=0 && readint <= 246){

 mySecondsPassed++;

 myView.updateSecondsPassed1(readint);

 myView.updateSecondsPassed(mySecondsPassed);

 }

 if (mySecondsPassed > 350){

 mySecondsPassed=0;

 }

 myView.invalidate();

 break;

 }

 super.handleMessage(msg);

 }

 };

Since the GUI need to be redraw for every single transmission of ECG data ,

a thread is needed to handle the data. The transmission data is in byte format and by

calling the Integer.parseInt() to change the data format to integer in order to plot the

graph. The ECG plotting points is within 0 and 246. This value need to be constantly

pass to the GraphView class to redraw the plot.

40

3.7 Casing photos

Figure 3.6 Casing photos

laptop
 HTC Magic

41

3.8 System photo

Figure 3.7 System photo

42

3.9 User Manual

3.9.1 PDA application

 Before starting the PDA application, the user is asked to active the Bluetooth

setting. After being activated, user can start this application. Below shows the GUI

obtain from this application.

Figure 3.8 Main GUI

Figure 3.8 shows the main GUI for this application. User click on the

“START” button to proceed to next layout.

43

Figure 3.9 Second layout

Figure 3.9 shows the second layout for this application. There is a spinner and

two buttons. By clicking on the spinner, you may obtain the result as shows in

Figure 3.10.

Figure 3.10 Spinner

44

Figure 3.11 GUI for WiFi application 1

When the user select WiFi from the spinner list and click on “Click on setting”

button, it will go to new GUI as shows in figure 3.11. When the user check the check

box, it will enable the Wi-Fi and the next GUI will be shows in figure 3.12.

Figure 3.12 GUI for WiFi application 2

45

After the user click on “Next” button, it will go to the next GUI as shows in

figure 3.13.

Figure 3.13 GUI for WiFi application 3

In order to connect Wi-Fi hotspot, user is asked to click on “Refresh” button.

It will start to automatically connected to the remember hotspot. If the connection

had been obtain, the next GUI shows the connected Wi-Fi application in figure 3.14.

46

Figure 3.14 Connected WiFi GUI

Figure 3.14 also shows the IP and SSID address for the connected Wi-Fi

hotspot. However, when the user select VideoRecording from the spinner list and

click on “Click on setting” button, it will go to next GUI as shows in figure 3.15.

Figure 3.15 GUI for video recording application

The video recording is started by touching the screen and stopped recording

by touching again the screen. The recorded video is saved in the SD card.

47

Figure 3.15 also shows four radio buttons. These radio buttons are

implemented for future usage like sending the respective video for different doctor.

However, when the user select on Bluetooth from spinner list, it will go to next GUI

as shows in figure 3.16.

Figure 3.16 GUI for ECG plot

This GUI straight away will starting to plot the ECG signal and display heart

rate pulse value if all the connected device is ready to transfer data. The center of the

view shows an integer for heart rate pulse value. This ECG signal is based on 240

BPM.

48

3.9.2 Computer Bluetooth application

Figure 3.17 BlueSoleil 6.0 Interface 1

Figure 3.17 shows the GUI for BlueSoleil 6.0 interface. Initially, the user

need to active their computer Bluetooth module by clicking on the center “Ball”

shape button and searching for the Bluetooth devices. After searching for the remote

devices, it will shows the next GUI as in figure 3.18.

Figure 3.18 BlueSoleil 6.0 Interface 2

49

The next step required the user to do pairing before they can actually

connecting to each other. It will pop up a message asking user to key in a paring code

for the Android phone and the computer. The paring code enter must be the same for

each of these devices before they can started to connect each others. The figure also

shows the dotted line being connected to HTC Magic and MDIzb. This dotted line is

to ensure that they are currently connecting on each other. Now is it the time to run

the program developed using C sharp programming language.

Figure 3.19 GUI for computer Bluetooth application 1

Figure 3.19 shows the GUI for computer Bluetooth application. The user is

asked to click on the “Start” button in order to start transferring data for one COM

port to the other COM port.

50

Figure 3.20 GUI for computer Bluetooth application 2

 Figure 3.20 shows the GUI for successfully data transferring between 2

COM port devices. The text boss shows the data transferring values. This is to ensure

data is transferring between 2 COM ports. The “Stop” button is used to stop data

transferring between 2 COM port devices.

Figure 3.21 GUI for computer Bluetooth application 3

51

Figure 3.22 GUI for computer Bluetooth application 4

In case the user fail to do data transferring between 2 devices, this may due to

the COM port problem. Figure 3.21 and figure 3.22 show the common problem faced

for the COM port error. The COM port in this application is hardcoded. The user

may need to change the COM port if find that the COM port didn’t mapped to your

computer and Android phone COM ports.

52

CHAPTER 4

TEST RESULT AND ANALYSIS

4.1 Objective and scope of testing

 The objective of the testing is to test whether the PDA application capable of

performing real time monitoring.

While the scope of testing is to test how long PDA application can perform

real time monitoring and plotting based on different BMP set by ECG simulator.

4.2 Functional testing

 In order to plot real time ECG signal and display heart rate pulse value, firstly,

connect ECG simulator to MDIz and set it to 240 BPM. Secondly, switch on the

power of both these devices. After that, start the BlueSoleil 6.0 application and do

paring for the Android PDA phone with computer. Before that Android PDA phone

must active it Bluetooth module to let the BlueSoleil search for it device. MDIzb can

start to connect to computer without pairing. Now BlueSoleil interface will shows

53

both of these devices connected to the center of the view via dotted line. Next, start

on the computer Bluetooth applcition and clicking on the “Start” button to do data

transferring between one COM port to other COM port. Finally, launch the PDA

application and select the Bluetooth from the spinner list and figure 4.1 shows the

test result for 240 BPM.

Figure 4.1 ECG plot for 240 BPM

The orange color integer in the figure shows the heart rate pulse value. From

this figure, it may note that some spikes occurred below the “128” value. This graph

value is being set in order to obtain an acceptable ECG signal. Due to the limitation

of the PDA phone screen size, “128” value is being set as a starting point for the y

axis.

4.3 Performance testing

 For the resolution, the direct AD converter values (0 to 255) for the y-axis

while the number of sample points send per second for the x-axis (Hz). For the

54

medium amplification stage (A1), the zero line of the ECG is at the middle of the AD

range (128). 1mV is equal to 100 steps. For example, “228” received as sample value

would equal to 1mV in the positive direction, “28” would be equal to 1mV in the

negative direction. For the high amplification stage (A2), this resolution is doubled.

For example, 228 related to 0.5mV while for the low amplification stage (A0), the

resolution is half. For example, 228 relates to 2mV.

 Besides, tests have been carry out according to different BPM set by ECG

simulator. The result are obtained as show in the following figures.

Figure 4.2 ECG plot for 180 BPM

55

Figure 4.3 ECG plot for 120 BPM

Figure 4.4 ECG plot for 60 BPM

56

Figure 4.5 ECG plot for 30 BPM

 When the MDIz and MDIzb are activated at the same with the computer

Bluetooth application, the PDA application can immediately receive the data and plot

accordingly.

4.4 Reliability testing

 For this testing, the PDA application is left to plot continuously without a

specific time period. This is due to the application most of the just can manage to

plot within 1 till 5 minutes and then stop accordingly. This problem occurred most of

the time because of the BlueSoleil 6.0 is trial version. When the ECG signal plotting,

at the same time may noticed that either MDIzb or Android PDA phone already

disconnected and the computer Bluetooth application stop transferring data between

2 COM ports and lead to error. For example, when carry out testing for 60 BPM, the

PDA application stop plotting when either MDIzb or Android PDA phone

disconnected unexpectedly. This can be illustrated by the figure 4.6.

57

Figure 4.6 ECG plot for 60 BPM

So, for the recommendation, a fully compatible Bluetooth application is

needed in order to test the performance more accurately.

58

CHAPTER 5

CONCLUSION AND RECOMMENDATION

Summing up, the video recording, Wi-Fi and Bluetooth applications are

successfully developed. The recording video can be save in the SD card, Wi-Fi

application enable the user to enable Wi-Fi and connect to remember hotspot

automatically. While the Bluetooth application is able to receive ECG data from

MDIzb and plot the ECG signal and display the heart rate pulse value. Android PDA

phone has successfully implement this application as compare to other solution using

HP IPAQ PDA phone developed by J. M. Cano-García team project and become one

of the novelty of this project .

From this single application, it manages to perform 3 tasks as compare to

other projects normally just performing real time monitoring or real time

classification of ECG signal. Furthermore, Bluetooth application performs well

without much delay to plot ECG signal. Android PDA phones have becoming more

popularity as compare to the Apple iPhone which is one the favorite mobile phone in

the market. So, by developing application in this PDA phones, it adds more market

value as compare to other PDA phones. Besides, Android PDA phones also have

common features which can be further utilized to add more functionality to the

application.

However, here are some recommendations which will made the application

more user friendly and provide more functionality. For the Wi-Fi application, it will

59

be more user friendly if the application can search for available hotspot and display it

in spinner or list view. Again, by using the Wi-Fi wireless communication

technology, the Android PDA phone can act like a server to transfer ECG data from

one PDA to other PDAs and computers. This is called as Wi-Fi ad hoc network.

From this, it can add more functionality to the Wi-Fi application instead just

connected to the Wi-Fi hotspot. Besides, for the Bluetooth application, it is

recommended that the ECG plot can be save continuously instead just plotting it. The

ECG plot later can be used as a tool for doctor to analyze the patient heart conditions.

A fully compatible Bluetooth software is required in order to provide maximize

operating time for the PDA application.

60

REFERENCES

[1] S.J. Jose J, C.F. David, S.P. Luis, A. Mateo, “A microcontroller-based portable

electrocardiograph recorder”, IEEE Transactions on Biomedical Engineering, Sep

2004, pp.1686-1690.

[2] P. Farreras and C. Rozman, Medicina Interna, 13rd ed. New York: Elsevier,

Oct. 2001, ch. 3, pp. 395–523. CD-ROM edition.

[3] The World’s First Implantable Diagnostic Device Medtronic Reveal Insertable

Loop Recorder [Online]. Available: www.medtronic.com

[4] R. Fensli, E. Gunnarson, O. Hejlesen, “A wireless ECG system for continuous

event recording and communication to a clinical alarm station”, Proceedings of the

26th Annual International Conference of the IEEE EMBS, San Francisco, Sep 1-5

2004, pp. 2208-2211.

[5] E. Jovanov, A. Milenkovic, C. Otto, P. De Groen, B. Johnson, S. Warren, G.

Taibi, “A WBAN System for Ambulatory Monitoring of Physical Activity and

Health Status: Applications and Challenges”, Proceedings of the 27
th

 Annual

International Conference of the IEEE EMBS: Shanghai, Sep 1-4 2005, pp. 3810-

3813.

[6] P. E. Ross, “Managing care through the air,” IEEE Spectrum, vol. 41, no. 12, pp.

14–19, December 2004.

61

[7] J. M. Cano-García, E. González-Parada, V. Alarcón-Collantes and E. Casilari-

Pérez.” A PDA-based portable wireless ECG monitor for medical personal area

networks” IEEE MELECON 2006, May 16-19, Benalmadena (Malaga), Spain.

[8] Jimena Rodríguez, Alfredo Goñi, and Arantza Illarramendi, “Real-Time

Classification of ECGs on a PDA”, IEEE TRANSACTIONS ON INFORMATION

TECHNOLOGY IN BIOMEDICINE, VOL. 9, NO. 1, MARCH 2005.

[9] Martin Ekström,” Small wireless ECG with Bluetooth™ communication to PDA”,

A Master of Science thesis in electronic sciences performed at The Department of

Computer Science and Electronics, Mälardalen University,2006.

[10] http://androidandme.com/2010/01/news/android-to-overtake-iphone-os-in-us-

smartphone-traffic-this-year/

[11] Man Sun Kim, HyungJeong Yang, “A Study of ECG Characteristics by Using

Wavelet and Neural Networks”, Department of Computer Science, Chonnam

National University, 1-4244-1031-2/07/$25.00©2007 IEEE

[12] E.Braunwald and L.Goldman, Primary Cardiology 2nd Edition, Elsevier

Science, USA, 2003.

[13] J.R.Hampton, The ECG Made Easy, Churchill Livingstone, Nottingham, UK,

1997.

[14] Bronzino, D. Joseph, The Biomedical Engineering Handbook, IEEE Press, 2002.

[15] J. S. Lee, "Performance evaluation of IEEE 802.15.4 for low-rate wireless

personal area networks," IEEE Trans. Consumer Electron., vol.52, no. 3, pp. 742-749,

Aug. 2006.

[16] J. S. Lee and Y. C. Huang, "ITRI ZBnode: A ZigBee/IEEE 802.15.4 platform

for wireless sensor networks," in Proc. IEEE Int. Conf Systems, Man & Cybernetics,

Taipei, Taiwan, Oct. 2006, pp. 1462-1467.

http://androidandme.com/2010/01/news/android-to-overtake-iphone-os-in-us-smartphone-traffic-this-year/
http://androidandme.com/2010/01/news/android-to-overtake-iphone-os-in-us-smartphone-traffic-this-year/

62

[17] http://developer.android.com/guide/topics/ui/declaring-layout.html

[18] http://developer.android.com/guide/topics/manifest/manifest-intro.html

[19] E. Supriyanto, H. Satria, I.H. Mulyadi and E.H. Putra, “A NOVEL LOW COST

TELEMEDICINE SYSTEM USING WIRELESS MESH NETWORK” Faculty of

Biomedical Engineering and Health Science, Faculty of Electrical Engineering

Universiti Teknologi Malaysia.

http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

63

APPENDIX A

 Source code for androidone.java

package com.example.androidone;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.content.Intent;

import android.widget.Button;

public class androidone extends Activity {

 /** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button button1 = (Button)findViewById(R.id.Start); button1.setOnClickListener(new

View.OnClickListener()

{

 public void onClick(View view)

 {

 Intent myIntent = new Intent(view.getContext(), Activity2.class);

 startActivityForResult(myIntent, 0);

 }

 });

 }

}

64

APPENDIX B

Source code for Activity2.java

package com.example.androidone;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.Spinner;

public class Activity2 extends Activity {

/** Called when the activity is first created. */

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.second);

final Spinner spinner1 = (Spinner) findViewById(R.id.spinner);

 ArrayAdapter adapter = ArrayAdapter.createFromResource(

 this, R.array.connection, android.R.layout.simple_spinner_item);

 adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

spinner1.setAdapter(adapter);

Button setting = (Button) findViewById(R.id.setting);

 setting.setOnClickListener(new View.OnClickListener(

public void onClick(View view) {

String spinner2 = (String) spinner1.getSelectedItem(

String string1 = "Bluetooth";

String string2 = "WiFi";

String string3 = "VideoRecording";

if (spinner2.equals(string1)){

Intent myIntent1 = new Intent(view.getContext(), newgraph.class);

startActivityForResult(myIntent1, 0);

 } else if (spinner2.equals(string2)){

 Intent myIntent2 = new Intent(view.getContext(), WiFi.class);

 startActivityForResult(myIntent2, 0);

 } else if (spinner2.equals(string3)) {

 Intent myIntent3 = new Intent(view.getContext(), VideoRecording.class);

 startActivityForResult(myIntent3, 0);

65

 }

 }

 });

 }

}

66

APPENDIX C

 Source code for newgraph.java

package com.example.androidone;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.UUID;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.bluetooth.BluetoothSocket;

import android.content.Intent;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

import android.widget.TextView;

public class newgraph extends Activity {

private static final UUID MY_UUID = UUID.fromString("00001101-0000-1000-8000-

00805F9B34FB");

 private BluetoothAdapter mBluetoothAdapter = null;

 // Name for the SDP record when creating server socket

private String address = "00:15:83:C5:29:92";

public static final int MESSAGE_READ = 2;

protected int mySecondsPassed = 0;

protected int readint;

protected int heart_rate;

protected byte NextStatus;;

private static final byte HEARTRATE = 2;

private static final byte NOTDATA = 1;

private static final byte ISDATA = 0;

GraphView myView = null;

 /* The Handler that receives the messages

 * sent out by myRefreshThread every second */

 Handler myViewUpdateHandler = new Handler(){

 /** Gets called on every message that is received */

 @Override

 public void handleMessage(Message msg) {

67

 switch (msg.what) {

 case newgraph.MESSAGE_READ:

 byte[] bytes = (byte[]) msg.obj;

 String readMessage123 = new String(bytes);

 int readint = Integer.parseInt(readMessage123.trim());

 if (readint !=0 && readint <= 246){

 mySecondsPassed++;

 myView.updateSecondsPassed1(readint);

 myView.updateSecondsPassed(mySecondsPassed);

 }

 if (NextStatus == HEARTRATE)

 {

 heart_rate = readint;

 myView.updateSecondsPassed2(heart_rate);

 NextStatus = ISDATA;

 }

 if (NextStatus == NOTDATA)

 {

 NextStatus = ISDATA;

 }

 if (readint == 250)

 {

 NextStatus = HEARTRATE;

 }

 if (readint == 249 || readint == 251)

 {

 NextStatus = NOTDATA;

 }

 if (mySecondsPassed > 350)

 {

 mySecondsPassed=0;

 }

 myView.invalidate();

 break;

 }

 super.handleMessage(msg);

 }

 };

68

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 this.myView = new GraphView(this);

 setContentView(this.myView);

 mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

 connect();

 }

 public void connect()

 {

 mBluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

 BluetoothDevice device = mBluetoothAdapter.getRemoteDevice(address);

 BluetoothSocket tmp = null;

 // Get a BluetoothSocket for a connection with the

 // given BluetoothDevice

 try {

 tmp = device.createRfcommSocketToServiceRecord(MY_UUID);

 } catch (IOException e) {

 }

 BluetoothSocket mmSocket = tmp;

 mBluetoothAdapter.cancelDiscovery();

 // Make a connection to the BluetoothSocket

 try {

 // This is a blocking call and will only return on a

 // successful connection or an exception

 mmSocket.connect();

 } catch (IOException e) {

 try {

 mmSocket.close();

 } catch (IOException e2) {

 }

 }

 // Start the thread to manage the connection and perform transmissions

 ConnectedThread mConnectedThread = new ConnectedThread(mmSocket);

 mConnectedThread.start();

 }

 /**

 * This thread runs during a connection with a remote device.

69

 * It handles all incoming and outgoing transmissions.

 */

 private class ConnectedThread extends Thread {

 private final BluetoothSocket mmSocket;

 private final InputStream mmInStream;

 private final OutputStream mmOutStream;

 public ConnectedThread(BluetoothSocket socket) {

 mmSocket = socket;

 InputStream tmpIn = null;

 OutputStream tmpOut = null;

 // Get the BluetoothSocket input and output streams

 try {

 tmpIn = socket.getInputStream();

 tmpOut = socket.getOutputStream();

 } catch (IOException e) {

 }

 mmInStream = tmpIn;

 mmOutStream = tmpOut;

 }

 public void run() {

 byte[] buffer = new byte[1024];

 int bytes;

 // Keep listening to the InputStream while connected

 while (true) {

 try {

 // Read from the InputStream

 bytes = mmInStream.read(buffer);

 // Send the obtained bytes to the UI Activity

 Message msg = new Message();

 msg.obj = buffer;

 msg.what = newgraph.MESSAGE_READ;

 newgraph.this.myViewUpdateHandler.sendMessage(msg);

 } catch (IOException e) {

 break;

 }

 }

 } } }

70

APPENDIX D

 Source code for GraphView.java

package com.example.androidone;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.Paint;

import android.graphics.Paint.Align;

import android.view.View;

public class GraphView extends View {

public static boolean LINE = true;

private Paint paint;

private String[] horlabels;

private String[] verlabels;

private String title;

private int m=0;

 protected int mySecondsPassed = 0;

protected int readint;

protected int heart_rate;

protected final Paint myCountDownTextPaint = new Paint();

protected final Paint myArcSecondPaint = new Paint();

private float[] rat = new float[400];

private float[] h = new float[400];

private float[] lasth = new float[400];

public GraphView(Context context) {

super(context);

this.myCountDownTextPaint.setARGB(255, 255, 60, 10);

this.myCountDownTextPaint.setTextSize(110);

this.myCountDownTextPaint.setFakeBoldText(true);

this.myArcSecondPaint.setColor(-256);

 this.title = "ECG Monitoring Graph";

 String[] horlabels = new String[] {};

 if (horlabels == null)

 this.horlabels = new String[0];

 else

 this.horlabels = horlabels;

71

 String[] verlabels = new String[] { "248" , "128"};

 if (verlabels == null)

 this.verlabels = new String[0];

 else

 this.verlabels = verlabels;

 paint = new Paint();

 }

 @Override

public void onDraw(Canvas canvas) {

float border = 30;

float horstart = 30;

float height = getHeight();

float width = getWidth() - 1;

float max = 120;

float min = 0;

float diff = max - min;

float graphheight = height - (3 * border);

float graphwidth = width - (2 * border);

final int secondsLeft = this.mySecondsPassed;

final int readint123 = this.readint;

final int heart_rate123 = this.heart_rate;

paint.setTextAlign(Align.LEFT);

int vers = verlabels.length - 1;

for (int i = 0; i < verlabels.length; i++) {

paint.setColor(Color.DKGRAY);

float y = ((graphheight / vers) * i) + border ;

canvas.drawLine(horstart, y, width, y, paint);

paint.setColor(Color.WHITE);

canvas.drawText(verlabels[i], 0, y, paint);

}

int hors = horlabels.length - 1;

for (int i = 0; i < horlabels.length; i++) {

paint.setColor(Color.DKGRAY);

float x = ((graphwidth / hors) * i) + horstart;

canvas.drawLine(x, height - border, x, border, paint);

paint.setTextAlign(Align.CENTER);

if (i==horlabels.length-1)

paint.setTextAlign(Align.RIGHT);

72

if (i==0)

paint.setTextAlign(Align.LEFT);

paint.setColor(Color.WHITE);

canvas.drawText(horlabels[i], x, height - 4, paint);

}

paint.setTextAlign(Align.CENTER);

canvas.drawText(title, (graphwidth / 2) + horstart, border - 4, paint);

paint.setColor(Color.LTGRAY);

float datalength = 350;

float colwidth = (width - (2 * border)) / datalength;

float halfcol = colwidth / 2;

for (; m <= secondsLeft ; m++){

 rat[m] = (readint123-128)/diff;

 h[m] = graphheight *rat[m];

 lasth[m] = h[m];

 }

 String timeDisplayString2;

timeDisplayString2 = ""+ heart_rate123 ;

canvas.drawText(timeDisplayString2,this.getWidth() / 2 - (30 *

timeDisplayString2.length()),

 this.getHeight()/ 2 + 30,this.myCountDownTextPaint);

 for (int j=0 ; j <= secondsLeft; j++) {

canvas.drawLine(((j) * colwidth) + (horstart + 1) + halfcol, (border - lasth[j]) + graphheight,

((j+1) * colwidth) + (horstart + 1) + halfcol, (border - h[j+1]) + graphheight, paint);

 lasth[j] = h[j];

 }

 }

 public void updateSecondsPassed(int someSeconds){

 this.mySecondsPassed = someSeconds;

}

public void updateSecondsPassed1(int someSeconds1){

 this.readint = someSeconds1;

}

 public void updateSecondsPassed2(int someSeconds2){

this.heart_rate = someSeconds2; } }

73

APPENDIX E

Source code for WiFi.java

package com.example.androidone;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.net.wifi.WifiManager;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.CheckBox;

import android.widget.CompoundButton;

import android.widget.LinearLayout;

public class WiFi extends Activity implements

CompoundButton.OnCheckedChangeListener {

 private CheckBox cb;

 private WifiManager mWm;

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.fourth);

mWm = (WifiManager) this.getSystemService(Context.WIFI_SERVICE);

 LinearLayout mainView = (LinearLayout) findViewById(R.id.top);

 cb = (CheckBox) findViewById(R.id.check);

 cb.setOnCheckedChangeListener(this);

 if (mWm.isWifiEnabled()) {

 cb.setChecked(true);

 cb.setText("Wifi is : enabled");

 } else {

 cb.setChecked(false);

 cb.setText("Wifi is : disabled");

 }

 }

public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {

 if (isChecked) {

74

 if (mWm.setWifiEnabled(true))

 cb.setText("Wifi is : enabled");

 else {

 cb.setChecked(false);

 cb.setText("Attempt to enable failed");

 }

 } else {

 if ((mWm.setWifiEnabled(false)))

 cb.setText("Wifi is : disabled");

 else {

 cb.setChecked(true);

 cb.setText("Attempt to disable failed");

 }

 }

 Button next = (Button) findViewById(R.id.test);

 next.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

Intent myIntent = new Intent(view.getContext(), HelloAndroid.class);

 startActivityForResult(myIntent, 0);

 }

 });

 }

}

75

APPENDIX F

 Source code for HelloAndroid.java

package com.example.androidone;

import android.app.Activity;

import android.os.Bundle;

import android.widget.TextView;

import android.widget.Toast;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.net.DhcpInfo;

import android.net.wifi.ScanResult;

import android.net.wifi.WifiManager;

import android.net.wifi.WifiConfiguration;

import android.net.wifi.WifiInfo;

import java.util.List;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

public class HelloAndroid extends Activity implements OnClickListener {

 /** Called when the activity is first created. */

 private WifiManager wifiManager;

 private int globalCounter=0;

 private static final String CHOSEN_HOTSPOT = "myhotspot";

 private TextView showtext;

 private TextView showtext1;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.fifth);

 Button button = (Button)findViewById(R.id.ok);

 button.setOnClickListener(this);

 showtext = (TextView) findViewById(R.id.text);

 showtext.setText("Not connected. Click on Refresh button.");

 showtext1 = (TextView) findViewById(R.id.text1);

76

 showtext1.setText("Not connected. Click on Refresh button.");

 wifiManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);

 // register the broadcast receiver for wifi state events

 IntentFilter filter = new IntentFilter();

filter.addAction(WifiManager.NETWORK_IDS_CHANGED_ACTION);

 filter.addAction(WifiManager.NETWORK_STATE_CHANGED_ACTION);

filter.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION);

filter.addAction(WifiManager.SUPPLICANT_CONNECTION_CHANGE_ACTION);

 filter.addAction(WifiManager.SUPPLICANT_STATE_CHANGED_ACTION);

filter.addAction(WifiManager.EXTRA_SUPPLICANT_ERROR);

filter.addAction(WifiManager.WIFI_STATE_CHANGED_ACTION);

filter.addAction(WifiManager.RSSI_CHANGED_ACTION);

registerReceiver(wifiEventReceiver, filter);

}

 public void onClick(View v) {

 wifiManager.startScan();

Toast.makeText(this.getApplicationContext(),"Scan Started: "+"MsgCount:

"+(++globalCounter),Toast.LENGTH_LONG).show();

 }

 public static String intToIp(int i) {

 return ((i >> 24) & 0xFF) + "." +

 ((i >> 16) & 0xFF) + "." +

 ((i >> 8) & 0xFF) + "." +

 (i & 0xFF);

 }

 private BroadcastReceiver wifiEventReceiver = new BroadcastReceiver() {

 private boolean enabled = false;

 private String realIP;

 @Override

 public void onReceive(Context context, Intent intent) {

if(intent.getAction().equals(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION)) {

 if(enabled) return;

 List<ScanResult> hotspots = wifiManager.getScanResults();

 StringBuffer ssids = new StringBuffer();

 for(ScanResult hotSpot: hotspots) {

 String hotSpotSsid = hotSpot.SSID;

77

 String hotSpotBssid = hotSpot.BSSID;

 StringBuffer sBuf = new StringBuffer("\"");

 sBuf.append(hotSpotSsid+"\"");

 hotSpotSsid = sBuf.toString();

 ssids.append(hotSpotSsid+"..");

 if(hotSpotSsid.indexOf(CHOSEN_HOTSPOT)> 0) {

 List<WifiConfiguration> networks = wifiManager.getConfiguredNetworks();

Toast.makeText(context,"NUmber of confiuredNetworks:

"+networks.size(),Toast.LENGTH_LONG).show();

 WifiConfiguration wifiConfiguration = new WifiConfiguration();

 wifiConfiguration.SSID = hotSpotSsid;

 wifiConfiguration.BSSID = hotSpotBssid;

 wifiConfiguration.hiddenSSID = false;

 wifiConfiguration.priority = 100000;

 // add this to the configured networks

 int inetId = wifiManager.addNetwork(wifiConfiguration);

 if(inetId < 0) {

Toast.makeText(context,"Unable to add

SSID:"+hotSpotSsid,Toast.LENGTH_LONG).show();

 return;

 }

 else {

 Toast.makeText(context,"Successfully added SSID:"+hotSpotSsid+" Inet Id:

"+inetId,Toast.LENGTH_LONG).show();

 }

 boolean successConnected = wifiManager.enableNetwork(inetId, true);

 if(successConnected) {

Toast.makeText(context,"Connected to SSID:"+hotSpotSsid+" Inet Id:

"+inetId,Toast.LENGTH_LONG).show();

 enabled = true;

 break;

 }

 else {

 return;

 }

 }

 }

 Toast.makeText(context,ssids+"Msg

Count:"+(++globalCounter),Toast.LENGTH_LONG).show();

 }

78

 else

 if(intent.getAction().equals(WifiManager.NETWORK_STATE_CHANGED

_ACTION)) {

 WifiInfo wifiInfo = wifiManager.getConnectionInfo();

 WifiManager wifiManager = (WifiManager)getSystemService(WIFI_SERVICE);

 DhcpInfo dhcpInfo = wifiManager.getDhcpInfo();

 String[] dhcpInfos = dhcpInfo.toString().split(" ");

 int i = 0;

 while (i < dhcpInfos.length) {

 if (dhcpInfos[i].equals("ipaddr")) {

 realIP = dhcpInfos[i+1];

 break;

 }

 i++;

 }

 showtext.setText("IP address for connection: "+realIP);

 Intent wifiEstablishedIntent = new Intent("WiFi");

 wifiEstablishedIntent.putExtra("Connection", "Connection established:

"+wifiInfo.getSSID());

 sendBroadcast(wifiEstablishedIntent);

Toast.makeText(context,"Connected:"+(++globalCounter),Toast.LENGTH_LONG).show();

 showtext1.setText("SSID for connection: "+wifiInfo.getSSID());

 }

else

 if(intent.getAction().equals(WifiManager.SUPPLICANT_STATE_CHANGED_ACTION))

{

intent.getBooleanExtra(WifiManager.EXTRA_SUPPLICANT_CONNECTED, false);

 }

 else

if(intent.getAction().equals(WifiManager.SUPPLICANT_CONNECTION_CHANGE_ACTI

ON))

 {

 intent.getBooleanExtra(WifiManager.EXTRA_SUPPLICANT_CONNECTED,

false);

 }

 }

 };

}

79

APPENDIX G

Source code VideoRecording.java

package com.example.androidone;

import android.app.Activity;

import android.content.pm.ActivityInfo;

import android.os.Bundle;

import android.view.MotionEvent;

import android.view.View;

import android.view.Window;

import android.view.View.OnTouchListener;

public class VideoRecording extends Activity {

private CamcorderPreview mSurfaceView;

private boolean recording = false;

@Override

/** Called when the activity is first created. */

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);

setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 setContentView(R.layout.third);

 }

 @Override

 public void onStart() {

 super.onStart();

 setup123();

 }

 @Override

 public synchronized void onResume() {

 super.onResume();

 private void setup123(){

 mSurfaceView = (CamcorderPreview) findViewById(R.id.surface_camera);

 mSurfaceView.setOnTouchListener(new OnTouchListener() {

 public boolean onTouch(View view, MotionEvent event) {

 if (event.getAction() == MotionEvent.ACTION_DOWN) {

 if (recording) {

 mSurfaceView.getRecorder().stop();

80

 mSurfaceView.getRecorder().release();

 finish();

 onDestroy();

 } else {

 recording = true;

 mSurfaceView.getRecorder().start();

 }

 return true;

 }

 return false;

 }

 });

 }

@Override

 public void onDestroy() {

 super.onDestroy();

 try{

 }

 catch(Exception ex){}

 }

}

81

APPENDIX H

 Source code for CamcorderPreview.java

package com.example.androidone;

import java.io.IOException;

import android.content.Context;

import android.media.MediaRecorder;

import android.util.AttributeSet;

import android.util.Log;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

public class CamcorderPreview extends SurfaceView implements SurfaceHolder.Callback {

MediaRecorder recorder;

SurfaceHolder holder;

public CamcorderPreview(Context context, AttributeSet attrs) {

super(context, attrs);

holder = getHolder();

holder.addCallback(this);

holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

recorder = new MediaRecorder();

recorder.setVideoSource(MediaRecorder.VideoSource.DEFAULT);

recorder.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);

recorder.setVideoEncoder(MediaRecorder.VideoEncoder.MPEG_4_SP);

}

@Override

public void surfaceChanged(SurfaceHolder holder, int format, int width,

int height) {

}

@Override

public void surfaceCreated(SurfaceHolder holder) {

recorder.setOutputFile("/sdcard/test.mp4");

recorder.setPreviewDisplay(holder.getSurface());

if (recorder != null) {

 try {

 recorder.prepare();

 } catch (IllegalStateException e) {

 Log.e("IllegalStateException", e.toString());

82

 } catch (IOException e) {

 Log.e("IOException", e.toString());

 }

}

}

@Override

public void surfaceDestroyed(SurfaceHolder holder) {

}

public MediaRecorder getRecorder() {

return recorder;

}

}

83

APPENDIX I

Source code for main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:background="#FFFFFF"

 android:layout_width="fill_parent" android:layout_height="fill_parent">

<TextView android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:id="@+id/title"

 android:gravity="center"

 android:layout_gravity="center"

 android:text="PDA Intensive Monitoring" android:layout_marginTop="10px"

 android:textSize="25px" android:layout_marginBottom="18px">

 </TextView>

 <ImageView android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:src="@drawable/utmlogo" android:layout_gravity="center"

android:id="@+id/utmlogo" android:layout_marginBottom="18px">

 </ImageView>

<TextView android:layout_width="wrap_content" android:layout_height="wrap_content"

android:id="@+id/Welcome" android:text="Welcome" android:layout_gravity="center"

android:layout_marginBottom="100px" android:textSize="25px">

</TextView>

<Button android:text="START" android:id="@+id/Start"

android:layout_gravity="center" android:layout_height="60px"

android:layout_width="280px">

</Button>

</LinearLayout>

84

APPENDIX J

Source code for second.xml

<?xml version="1.0" encoding="utf-8"?>

<AbsoluteLayout

 android:id="@+id/AbsoluteLayout01"

 android:background="#FFFFFF"

 android:layout_width="fill_parent" android:layout_height="fill_parent"

 xmlns:android="http://schemas.android.com/apk/res/android">

<Spinner android:layout_height="wrap_content"

 android:layout_width="260px" android:layout_x="35dip"

 android:layout_y="250dip" android:id="@+id/spinner"

 android:prompt="@string/connection_prompt">

 </Spinner>

<TextView android:layout_width="wrap_content" android:id="@+id/TextView01"

 android:textSize="15px" android:layout_height="wrap_content"

 android:layout_x="60dip" android:layout_y="220dip"

 android:text="Please choose a connection:">

 </TextView>

<Button android:layout_height="wrap_content" android:layout_y="305dip"

 android:layout_width="260px" android:layout_x="35dip"

 android:text="Click on setting" android:id="@+id/setting">

 </Button>

<SurfaceView android:id="@+id/surface_camera"

 android:layout_height="190px" android:layout_width="210px"

 android:layout_x="55dip" android:layout_y="15dip">

</SurfaceView>

<Button android:layout_height="wrap_content" android:layout_y="360dip"

 android:layout_x="35dip" android:text="Camera" android:id="@+id/camera1"

 android:layout_width="260px">

 </Button>

</AbsoluteLayout>

85

APPENDIX K

 Source code for third.xml

<?xml version="1.0" encoding="utf-8"?>

<AbsoluteLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent" android:layout_height="fill_parent"

 android:orientation="vertical">

<com.example.androidone.CamcorderPreview android:id="@+id/surface_camera"

 android:layout_y="10dip" android:layout_x="15dip"

 android:layout_width="300dip" android:layout_height="300dip"/>

<RadioGroup android:layout_width="fill_parent" android:orientation="vertical"

 android:layout_height="wrap_content" android:layout_x="340dip"

 android:layout_y="50dip">

<RadioButton android:layout_width="wrap_content"

 android:id="@+id/RadioButton01" android:layout_height="wrap_content"

 android:text="Doctor1" android:layout_y="20dip" android:layout_x="340dip">

 </RadioButton>

<RadioButton android:layout_width="wrap_content"

 android:layout_height="wrap_content" android:id="@+id/RadioButton02"

 android:text="Doctor2" android:layout_x="340dip" android:layout_y="130dip">

</RadioButton>

<RadioButton android:layout_width="wrap_content"

 android:layout_height="wrap_content" android:id="@+id/RadioButton03"

 android:text="Doctor3" android:layout_x="340dip" android:layout_y="190dip">

</RadioButton>

<RadioButton android:layout_width="wrap_content" android:layout_height="wrap_content"

 android:id="@+id/RadioButton04" android:text="Doctor4"

 android:layout_x="340dip" android:layout_y="250dip">

</RadioButton>

</RadioGroup>

</AbsoluteLayout>

86

APPENDIX L

 Source code for fourth.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical" android:layout_width="fill_parent"

 android:layout_height="fill_parent">

<TextView

 android:layout_width="fill_parent" android:layout_height="wrap_content"

 android:textSize="20dip" android:text="Please check the CheckBox!!!!!!"/>

<LinearLayout android:layout_width="wrap_content"

 android:layout_height="wrap_content" android:id="@+id/top">

</LinearLayout>

<CheckBox android:text="@+id/CheckBox01" android:id="@+id/check"

 android:layout_height="100dip" android:layout_width="fill_parent">

</CheckBox>

<TextView android:layout_width="wrap_content" android:layout_height="wrap_content"

 android:textSize="20dip" android:text="Click Next to Connect Available Wifi"

 android:id="@+id/text">

</TextView>

<Button android:id="@+id/test" android:text="Next"

 android:layout_height="fill_parent" android:layout_width="fill_parent">

</Button>

</LinearLayout>

87

APPENDIX M

Source code for fifth.xml

<?xml version="1.0" encoding="utf-8"?>

<AbsoluteLayout android:id="@+id/AbsoluteLayout01"

 android:layout_width="fill_parent" android:layout_height="fill_parent"

 xmlns:android="http://schemas.android.com/apk/res/android">

<TextView android:layout_height="wrap_content"

 android:id="@+id/TextView01" android:layout_width="wrap_content"

 android:text="This application enable the WiFi to be connected automatically. If still cant be

connected, please click on button below to refresh."

 android:layout_x="0dip" android:layout_y="20dip" android:textSize="20dip">

</TextView>

<Button android:text="Refresh"

 android:layout_width="fill_parent"

 android:layout_x="0dip" android:layout_height="50dip"

 android:id="@+id/ok" android:layout_y="250dip">

</Button>

<TextView android:text="@+id/TextView02"

 android:layout_y="140dip" android:layout_width="300dip"

 android:id="@+id/text" android:layout_x="10dip"

 android:layout_height="30dip" android:textSize="15dip">

</TextView>

<TextView android:text="@+id/TextView02" android:layout_width="300dip"

 android:layout_x="10dip" android:layout_y="180dip"

 android:layout_height="30dip" android:id="@+id/text1"

 android:textSize="15dip">

</TextView>

</AbsoluteLayout>

88

APPENDIX N

Source code for arrays.xml and strings.xml

1. arrays.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string-array name="connection">

 <item>Bluetooth</item>

 <item>WiFi</item>

 <item>VideoRecording</item>

 </string-array>

</resources>

2. strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">4UTM</string>

 <string name="connection_prompt">Choose a connection

 </string>

</resources>

89

APPENDIX O

 Source code for AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.androidone"

 android:versionCode="1"

 android:versionName="1.0">

 <application android:icon="@drawable/icon" android:label="@string/app_name"

 android:debuggable="true">

 <activity android:name=".androidone"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".Activity2"

 android:screenOrientation="portrait">

<intent-filter>

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".newgraph"

 android:screenOrientation="landscape">

 </activity>

 <activity android:name=".WiFi">

 </activity>

 <activity android:name=".HelloAndroid">

 </activity>

 <activity android:name=".VideoRecording">

 <intent-filter>

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

 <uses-sdk android:minSdkVersion="7" />

 <uses-permission android:name="android.permission.CAMERA"/>

90

 <uses-feature android:name="android.hardware.camera" />

 <uses-feature android:name="android.hardware.camera.autofocus" />

 <uses-permission android:name="android.permission.RECORD_AUDIO">

 </uses-permission>

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE">

 </uses-permission>

 <uses-permission android:name="android.permission.CHANGE_WIFI_STATE">

 </uses-permission>

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE">

 </uses-permission>

 <uses-permission android:name="android.permission.CHANGE_NETWORK_STATE">

 </uses-permission>

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.BLUETOOTH">

 </uses-permission>

 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN">

 </uses-permission>

 </manifest>

91

APPENDIX P

 Source code for computer Bluetooth application

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO.Ports;

namespace haikaltest

{

 public partial class Form1 : Form

 {

 private bool bEnable;

 private byte[] buffer;

 public Form1()

 {

 InitializeComponent();

SerialDataReceivedEventHandler(Port_DataReceived);

 spANDROID = new SerialPort("COM8");

 spANDROID.RtsEnable = true;

 spANDROID.BaudRate = 115200;

 spANDROID.StopBits = StopBits.One;

 spANDROID.Parity = Parity.None;

 spANDROID.DataBits = 8;

 spANDROID.Handshake = Handshake.None;

 bEnable = false;

 buffer = new byte[10];

 }

 private void button1_Click(object sender, EventArgs e)

 {

 bEnable = Open();

 timer1.Start();

 }

 public bool Open()

92

 {

 bool bOpend = false;

 try

 {

 if(!spMDB.IsOpen)

 spMDB.Open();

 if (!spANDROID.IsOpen)

 spANDROID.Open();

 bOpend = true;

 }

 catch (Exception e)

 {

 textBox1.Text = e.Message;

 bOpend = false;

 }

 return bOpend;

 }

 //delegate is used to write to a UI control from a non-UI thread

 private delegate void SetTextDeleg(string text);

 private void si_DataReceived(string data)

 {

 textBox1.Text = textBox1.Text + " " + data;

 }

 private void button2_Click(object sender, EventArgs e)

 {

 if (spMDB.IsOpen)

 spMDB.Close();

 if (spANDROID.IsOpen)

 spANDROID.Close();

 timer1.Stop();

 }

 private void timer1_Tick(object sender, EventArgs e)

 {

 if (!bEnable)

 return;

 int incoming = spMDB.ReadByte();

 textBox1.Text = textBox1.Text + " " + incoming;

 spANDROID.Write(Convert.ToString(incoming));

 }

 } }

93

