

CSE Senior Design

Detail Design Specification

Department of Computer Science and Engineering

The University of Texas at Arlington

Team: BetaHomes

Project: Z-Wave Smart Home

Team Members:

Nicholas Earwood

Benjamin Frank

Andrei Patapau

Aerina Shrestha

Santosh Upadhyay

Last Updated: 7/27/12 11:15

Detailed Design Specification Z-Wave Smart Home

8/6/2012 2 of 54 BetaHomes

Table of Contents

Table of Contents ... 2

List of Figures .. 5

List of Tables ... 6

1. Z-Wave Smart Home Introduction ... 7

1.1 Document Overview .. 7

1.2 Product overview ... 7

2. Architecture Overview .. 10

2.1 Overview .. 10

2.2 Layer Descriptions ... 12

3. System Control Layer ... 13

3.1 Z-Wave Adapter Subsystem .. 14

3.2 Database Subsystem .. 14

3.3 Data Processor Subsystem ... 16

4. User Interface Layer ... 25

4.1 Web Server Subsystem .. 26

4.1.1 Functions Class Library Module ... 26

4.2 Web Interface Subsystem .. 27

5. Device Layer ... 35

5.1 Blind Controller Unit Subsystem ... 36

5.2 Electrical Socket & Light Switch Subsystem .. 40

6. Quality Assurance ... 44

6.1 Test Plans and Procedures ... 44

7. Requirements Traceability Matrix .. 48

7.1 Overview .. 48

Detailed Design Specification Z-Wave Smart Home

8/6/2012 3 of 54 BetaHomes

7.2 Mapping ... 48

7.3 Modules Requirements Mapping ... 49

7.4 Producer/Consumer Relationships ... 50

8. Acceptance Plan .. 53

8.1 Overview .. 53

8.2 Packaging and Installation ... 53

8.3 Acceptance Testing .. 53

8.4 Acceptance Criteria ... 53

9. Appendices ... 54

Detailed Design Specification Z-Wave Smart Home

8/6/2012 4 of 54 BetaHomes

Document Revision History

Revision

Number

Revision

Date
Description Rationale

0.1 6/29/12 First Rough Draft A rough draft is required.

0.2 7/3/12 Added several sections Added sections required for completeness.

0.3 7/9/12 Added more sections Added sections required for completeness.

0.4 7/10/12 Corrections made by peer review Peer review improved the document.

0.5 7/11/12 DDS gate review Complete document for gate review

0.6 7/26/12 DDS gate review Peer review improved the document.

0.7 7/27/12 Consistencies, spelling, grammar Peer review comments.

1.0 7/27/12 Baseline All requested corrections made.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 5 of 54 BetaHomes

List of Figures

Figure # Title Page #

1-1 Product visual concept 7

2-1 Architecture Overview

12

3-1 System Control Layer

15

3-2 Nodes Inspector Module 23

3-3 Z-Wave Server Module 25

4-1 User Interface Layer 27

5-1 Device Layer 34

Detailed Design Specification Z-Wave Smart Home

8/6/2012 6 of 54 BetaHomes

List of Tables

Table # Title Page #

2-1 Data Flows 13

7-1 Architecture Requirements Mapping 48

7-2 Module Requirements Mapping 50

7-3 Producer Consumer Relationship 52

Detailed Design Specification Z-Wave Smart Home

8/6/2012 7 of 54 BetaHomes

1. Z-Wave Smart Home Introduction

1.1 Document Overview

The Detailed Design Specifications will provide further detail based on the Architectural Design

Document. The ZSH (Z-Wave Smart Home) system was earlier divided into layers that contained

various subsystems. These subsystems are now decomposed into modules that provide minute details

including the pseudo code. The document also provides the relationship between the various modules

and the requirements traceability. Finally, Quality Assurance will cover the testing considerations and

Acceptance Plan will ensure that the product is consistent with the consumer’s expectations.

1.2 Product overview

This section provides an overview of the Z-Wave Smart Home (ZSH) product. The ZSH product is

designed to operate Z-Wave enabled devices by allowing the user to control these devices remotely or

via schedules/rules. ZSH is not a decision making product, the system cannot decide what it will and

won’t do. Control of the ZSH system is always in the hands of the user and the system will only operate

within the parameters defined by the user. The ZSH design is a step toward the future of home

independent automation but is still far from an Artificially Intelligent home. For product visual concept

see figure 2-1.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 8 of 54 BetaHomes

Figure 1-1: Product visual concept

1.2.1 ZSH Features/Components:

Linux Server – The main component of the ZSH product. The server will communicate with Internet

browsers as well as store schedules/rules as defined by the user. The server will command the Z-Wave

adapter. The server will host the web-interface.

Z-Wave adapter – Translates communications with all Z-Wave enabled devices and the server within a

minimum 17 meter radius. The adapter is either embedded or plugs into the server (typically via USB).

The adapter is controlled by the server.

Internet – The Internet will be required at all times to operate the ZSH product remotely. It is required

for communication between the smart phone controller and ZSH server.

Web Interface – The server will host the web-interface. The web-interface will be the main form of user

interaction with the ZSH product. The web-interface will be database driven, allowing the user to store

schedules and rules for the system to execute.

Router/Modem – Communication transition between the Internet and the ZSH server. This is needed by

the ZSH, but is not part of our product.

Z-Wave modules – Controlled through the server/adapter. The modules in this ZSH product will consist

of light switches, electrical sockets, and a Blinds Control Unit. These modules will communicate with

each other and the adapter.

Blinds Control Unit (BCU) – Communicates with the adapter and other Z-Wave modules. Used to open

and close household blinds via changes in blind’s slat angles. BCU uses rechargeable batteries to

operate. BCU uses solar panels to recharge batteries. BCU is wall mounted and designed to retrofit

many blind types.

Database – The database is maintained on the server. The database stores rules and schedules created via

user interaction with the web-interface.

User Interface (UI) – The UI will consist of computers and mobile devices. The UI will require Internet

access and the ability to communicate via HTTP. The UI will interact with the Web-Interface. This will

be the main form of user control over the ZSH system.

The ZSH product will consist of the server, adapter, Z-Wave modules, and Blinds Control Unit (BCU).

The server is a small, self-contained PC that plugs directly into a wall outlet, preferably close to Z-Wave

enabled devices and the router. The adapter is typically a USB Z-Wave adaptor, but some are embedded

in the PC itself. Either way, for our purposes the server and adapter can be thought of as a single

component. The Z-Wave modules can be any number of Z-Wave enabled devices but the ZSH product

will provide only a light switch, electrical socket, and BCU. The light switch and electrical socket would

replace a standard light switch or electrical socket and should be installed according to the directions

Detailed Design Specification Z-Wave Smart Home

8/6/2012 9 of 54 BetaHomes

found with the purchase of those items. The BCU is a device that is no larger than 30cm x 30cm x 15cm

and weigh no more than 1kg. The BCU is a wall mounted unit that the user would need to screw into the

wall near the rod that controls the angle of the blind’s slats. The rest of the components listed above are

separate from the ZSH product but are still required for its use.

1.2.2 Product purpose

The purpose of the Z-wave Smart Home (ZSH) product is to control electronic devices in the home

remotely and wirelessly. Using the ZSH product should make controlling electronic devices in the home

more convenient for the user. The ZSH product is not a replacement for appliance controllers such as

Television and DVD players but instead is a method for controlling the power on and off of such

devices. Typical use of the ZSH product would be using a smart phone with Internet connection to logon

to a web server. The web server then controls the Z-wave enabled devices in the House. The user is

expected to use this method of access to directly control appliances or create schedules/rules for

automated control.

1.2.3 Scope

The Z-Wave Smart Home (ZSH) product is designed to be a practical method of control for people who

would enjoy greater control and ease of use of household appliances. This includes persons with

appliances in normally hard to reach places. The ZSH product would also accommodate persons with

disabilities as they can control frequently used appliances without being physically near said appliances.

These appliances could include but are not limited to coffee makers and toasters. The ZSH device is web

enabled for easy access through a smart phone or personal computer both of which the intended

audience are required to own for access to all the features of the ZSH product.

1.2.4 Definitions and Terms

SH: Smart home

SHS: Smart home system

DDS: Detailed design specifications

ZSH: Z-Wave Smart Home

ADS: Architectural Design Specifications

DDS: Detailed Design Specifications

SRS: System Requirements Specification

API: Application Programming Interface

UI: User Interface

GUI: Graphical User Interface

BCU: Blinds Control Unit

OS: Operating System

Detailed Design Specification Z-Wave Smart Home

8/6/2012 10 of 54 BetaHomes

2. Architecture Overview

2.1 Overview

The system consists of three layers: System Control Layer, User Layer, and Device Layer. The System

Control Layer controls the major functionalities of the system. It is responsible for starting up the

system, connecting the system with the Z-Wave devices, managing the database, and establishing and

maintaining the communication of the system via internet/intranet. On the other hand, User Layer

creates the User interface for creating, setting, and controlling the Z-Wave devices within the system.

Device Layer is responsible for hardware setup of the Z-Wave devices such that they can interact with

System Control Layer and User Layer to control the Z-Wave devices.

Figure 2-1: Architecture Overview

Detailed Design Specification Z-Wave Smart Home

8/6/2012 11 of 54 BetaHomes

Data

E21lement

Description of Data Element

SC11 Broadcasted receiving RF frames including packaged commands

DL* Broadcasted transmitted RF signals consisting all the network ids

B-D Commands to raise/lower blinds, or tilt the slat, or check the status of battery.

B-HS Recent status on battery level, and motor count.

B-HR Request command on status of battery, and motors.

B-EH Processed data on status of blind and battery.

Bx/xB1 To Hardware Status: Motors’ count (integer).

To Motor: Request to get the motor count.

Bx/xB2 To Hardware Status: Battery voltage (float).

To Motor: Request to get the battery voltage.

UL2 Manual command to control the blinds

B3 Request to increment/decrement motors’ count.

UL3 Command to control the light switch

UL4 Command to control the socket

SC1 String type executive command

SC2 Serialized commands that needs to be carried to the Z-wave devices(action)

SC3 Formatted queries for appropriate commands

SC4 Formatted data results after running queries

SC5 Formatted queries for appropriate commands

SC6 Formatted data results after running queries

SC7 Resource requests from Operating System

SC8 Resource allocation

SC9 Resource requests from Operating System

SC10 Resource allocation

SC11 Command signals to control Z-Wave modules(Light, Socket or BCU)

SC12 Transaction response to communicate with the web interface

SC13 Formatted data results after running queries

SC14 Formatted queries for appropriate commands

SC15 Serialized commands that needs to be carried to the Z-wave devices(status)

SC16 Serialized data (status and acknowledgements) from Z-wave controller for further

processing

SC17 Formatted node status request

SC18 Formatted node status response

SC19 Formatted node status request

SC20 Formatted node status response

UL5 Request a function call

UL6 Output formatted data to user interface

UL7 Process authenticated function call

UL8 Formatted data result after running a function call

Table 2-1: Data Flows

Detailed Design Specification Z-Wave Smart Home

8/6/2012 12 of 54 BetaHomes

2.2 Layer Descriptions

2.2.1 User Interface Layer

The User Interface Layer shall be designed to translate interactions between a user and the system. It

shall contain two major interface categories: software (logical) – GUI (web interface) and hardware

(physical) – manual device interactions. Example: Turn the lights on/off using switch button. Web

interface shall provide compatibility with common PC browsers supporting HTML/XHTML format and

mobile devices, specifically the iPhone (Safari).

The User Interface Layer shall be designed to handle all interactions between a user and the system, and

display session data (applies to web interface only). The main goal is an effective operation and control

of the system, and feedback from the system which aids the operator in making operational decisions. It

shall provide a means of:

Input – allow system manipulation

Output – allow the system to indicate the effects of the user’s manipulation.

2.2.2 System Control Layer

The system control layer is the core of the SHS. It is responsible for the web server, database

management, and command translation between the Z-Wave adapter and the web server (and thus, the

user interface).

The System Control Layer (SCL) interfaces with the user interface via the web server subsystem. This data is

handled to and from the data processor, which is a large subsystem that handles most of the logic of the SH

controller. Scheduling, rules, device controls and feedback are all handled by the data processor. The data

processor uses data from the Z-Wave subsystem and database subsystem to make decisions and output to both the

web server (user interface) and Z-Wave output. The Z-Wave subsystem is the sole channel to communicate

with Z-Wave devices. It includes the hardware Z-Wave adapter. The Z-Wave, web server, database and

data processor are the four distinct and critical parts of the SCL.

2.2.3 Device Layer

The Device Layer contains the Blinds Control Unit (BCU), Z-Wave light switch, and Z-Wave electrical

socket. These devices makeup a large portion of the hardware components found in the Z-Wave Smart

Home (ZSH) System. This layer handles input from the User Layer and status communication to the

System Control Layer. The purpose of the Device Layer is to control Z-Wave devices via manual

interface or Z-Wave communication and perform an operation based on received commands.

The purpose of the Device Layer is to control Z-Wave devices via manual interface or Z-Wave

communication and perform an operation based on received commands.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 13 of 54 BetaHomes

3. System Control Layer

The system control layer is the core of the Smart Home System. It is responsible for the web server,

database management, and command translation between the Z-Wave adapter and the web server (and

thus, the user interface).

It consists of three subsystems: Database, Z-Wave Adapter, and Data Processor. The Data Processor

subsystem includes four modules: Z-Wave Server, Nodes Inspector, PerlScript and Open-Z-Wave

Libraries.

Scheduling, rules, device controls and feedback are all handled by the Data Processor. The data

processor uses the data from Z-Wave Adapter subsystem and Database subsystem to make decisions and

output to both the web server (through Database) and Z-Wave Adapter, which in turn passes the

serialized signal to Z-Wave modules. The Z-Wave Adapter subsystem is the sole channel to

communicate with Z-Wave devices.

Figure 3-1: System Control Layer

Detailed Design Specification Z-Wave Smart Home

8/6/2012 14 of 54 BetaHomes

3.1 Z-Wave Adapter Subsystem

3.1.1 USB Dongle Module

The version of adapter used for the project is the Aeon Labs Z-Stick Series 2. Is a self-powered Z-Wave

USB dongle with push button for remote network creation (independent from external power and host

microprocessor).When attached to a host processor, it becomes a Z-Wave communication device, which

exposes the Zensys API (SerialAPI) through integrated USB. This device is meant primarily to allow a

host processor to control up to 232 Z-Wave devices using the Z-Wave technology protocol.

The Aeon Labs Z-Stick is easily upgradeable by the end-user such that the latest ZWave protocols and

commands are always available. It can be upgraded in field via its USB port which also serves as a

charging port for its internal battery.

3.1.1.1 Interfaces

The hardware interface specifications are proprietary and are therefore inherently encapsulated.

3.1.1.2 Physical data structure/data file descriptions

The module is dependent on the Open-ZWave Libraries which are reliant on Linux OS services and

Device Layer radio frequency signals.

Internal data descriptors: Radio transceiver/receiver

Microprocessor

32kB flash memory, containing the Z-Wave protocol and the application

System interfaces, including digital and analogue interfaces to connect

external devices such as sensors

A 3DES engine to ensure confidentiality and authentication (100 series)

Triac controller, to reduce the module cost of dimming applications

3.1.1.3 Process

N/A (The hardware interface specifications are proprietary and are therefore inherently encapsulated).

3.2 Database Subsystem

3.2.1 Database Module

The Database module is responsible for the interfacing that occurs between Data Processor subsystem

and the Web Server. Its main functions are 1) to store data processed by Data Processor, which in turn

Detailed Design Specification Z-Wave Smart Home

8/6/2012 15 of 54 BetaHomes

allows Web Server to pull this data, process it and pass it on to the User Interface Layer for display.

2) It accepts requests from Web Server which are being handled by Data Processor.

3.2.1.1 Interfaces

Interfaces with Web Server, Z-Wave Server and Nodes Inspector modules.

3.2.1.2 Physical data structure/data file descriptions

The following data tables will be used by Data Processor to store information regarding node/home

network status, groups and command classes associated with each node.

To allow Foreign Key relation the database type will be InnoDB.

Character Set: utf8_unicode_ci – more accurate and supports various languages of non-Unicode format.

 command_classes

 node_id

 id

 name

 home

 id

 home_id

 md5_hash_of_xml

 server_1

 server_1_exit

 reload_nodes

 inspector

 xml_remove

 nodes_md5_db

 nodes_in_group

 group_id

 node_id

 nodes_c (current state)

 node_id

 manufacturer_id

 product_type_id

 product_id

 15oolean15urer_name

 product_name

 isON

 level

 groups

 group_id

 name

 nodes_d (desirable state)

 node_id

 manufacturer_id

 product_type_id

 product_id

 15oolean15urer_name

 product_name

 isON

 level

nodes_d table will be used for device manipulation. It
will be handled by Web Server to write a node
execution request and processed by Data Processor for
action execution.

3.2.1.3 Process

Update table:

UPDATE `home` SET `home_id`=’$getHomeId’,`md5_hash_of_xml`=’$getHash’ WHERE id = 1

Insert data into table:

http://192.168.1.102/phpmyadmin/tbl_structure.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=command_classes&goto=tbl_structure.php
http://192.168.1.102/phpmyadmin/sql.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=command_classes&pos=0
http://192.168.1.102/phpmyadmin/tbl_structure.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=home&goto=tbl_structure.php
http://192.168.1.102/phpmyadmin/sql.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=home&pos=0
http://192.168.1.102/phpmyadmin/tbl_structure.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=nodes_in_group&goto=tbl_structure.php
http://192.168.1.102/phpmyadmin/sql.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=nodes_in_group&pos=0
http://192.168.1.102/phpmyadmin/tbl_structure.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=nodes&goto=tbl_structure.php
http://192.168.1.102/phpmyadmin/sql.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=nodes&pos=0
http://192.168.1.102/phpmyadmin/tbl_structure.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=groups&goto=tbl_structure.php
http://192.168.1.102/phpmyadmin/sql.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=groups&pos=0
http://192.168.1.102/phpmyadmin/tbl_structure.php?db=currentState&token=5f148ebb27e410a8e717a8c616a91c6a&table=nodes&goto=tbl_structure.php

Detailed Design Specification Z-Wave Smart Home

8/6/2012 16 of 54 BetaHomes

INSERT INTO `nodes`(`node_id`, `isON`, `level`) VALUES (‘$nodeArray[$i1]’, ‘$nodeArray[$i2]’,

‘$nodeArray[$i3]’)

Remove all data from table:

DELETE FROM `nodes` WHERE 1

Get node information:

SELECT * FROM _nodes_ WHERE node_id = ‘$curr_db_id’

--

-- Table structure for table `nodes`

--

CREATE TABLE IF NOT EXISTS `nodes` (

 `node_id` int(11) NOT NULL,

 `manufacturer_id` varchar(20) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL

DEFAULT ‘NOT FOUND’,

 `product_type_id` varchar(50) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL

DEFAULT ‘NOT FOUND’,

 `product_id` varchar(50) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL

DEFAULT ‘NOT FOUND’,

 `16oolean16urer_name` varchar(50) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT

NULL DEFAULT ‘NOT FOUND’,

 `product_name` varchar(50) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL

DEFAULT ‘NOT FOUND’,

 `isON` varchar(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL DEFAULT

‘NOT FOUND’,

 `level` int(11) NOT NULL DEFAULT ‘0’,

 PRIMARY KEY (`node_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

3.3 Data Processor Subsystem

3.3.1 Open-Z-Wave Libraries

Open-Z-Wave is a library which provides an API for applications to access and control a Z-Wave

controller connected to the PC via a serial or HID connection. For logical purposes ozwWrapper.py file

is included in this module as well (see data description below).

3.3.1.1 Interfaces

Interfaces with USB Dongle, Z-Wave Server and Nodes Inspector modules.

3.3.1.2 Physical data structure/data file descriptions

Detailed Design Specification Z-Wave Smart Home

8/6/2012 17 of 54 BetaHomes

Open-ZWave library structure:

config XML files that provide device- and manufacturer-specific information, as well as the

Z-Wave command class codes.

Cpp The Open-ZWave library project.

 Cpp/build Makefiles and Visual Studio project/solution files for building the library under linux,

Mac and Windows (VS2008 and VS2010).

 Cpp/examples A minimal console application (MinOZW) that can be built under linux, Mac and

Windows. It is a useful example of how to start up the library and can be used to

generate a log file (OZWlog.txt) to diagnose startup or other problems with the library

and/or Z-Wave devices.

 Cpp/hidapi Files related to implementation of a “Human Interface Device” (HID) connection

between the PC and the Z-Wave controller. While many controllers use a serial

interface, others (the ThinkStick, for example) use HID via USB.

 Cpp/lib Essentially empty. THIS HAS THE FUCKING BUILT LIBRARY IN IT

 Cpp/src The source code for the Open-ZWave Library. The top-level code is in this directory;

subdirectories contain files to implement the command classes, the value classes and

platform-specific code (linux, Mac and Windows).

 Cpp/tinyxml The TinyXML class code. TinyXML is used to read and write XML files for

persistent storage.

Documents Draft documentation for the library and example applications.

Dotnet A .NET wrapper for the Open-ZWave library.

 Dotnet/build Project/Solution files for building Open-ZWaveDotNet under VS2008 and VS2010.

 Dotnet/examples Code for OZWForm, a .NET application that demonstrates use of Open-

ZWaveDotNet to connect to a controller, read information about nodes, process

notifications, etc.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 18 of 54 BetaHomes

 dotnet/src The Open-ZWaveDotNet wrapper code.

License License documents.

ozwWrapper:

ozwWrapper is a python script which serves as an intermediary link between Open-ZWave libraries and

applications that are rely on a data processed by Open-ZWave libraries and pulled out by ozwWrapper.

Z-Wave Server and Nodes Inspector modules will communicate to Open-ZWave libraries directly

through ozwWrapper.

3.3.1.3 Process

The Open-ZWave library creates an Open-ZWave::Driver, waits for connection and gets node

information using provided by functions for data polling.

3.3.2 PerlScript (Executor)

Used to send out commands via USB adapter and allows adding devices to the Z-Wave network using

the “zwave add” command.

3.3.2.1 Interfaces

Interfaces with USB Dongle and Z-Wave Server modules using Comprehensive Perl Archive

Network(CPAN) – Socket Data Serialization. All of the executive commands will be processed and

passed on to USB Dongle Module using PerlScript.

3.3.2.2 Physical data structure/data file descriptions

The module is dependent on Comprehensive Perl Archive Network.

Internal Data Description / Functions and their responsibilities:

receive() – read serial port data stream packets, send each to receive_once() for processing

receive_once() – read pending bytes from the serial port, ack if they look like a packet. Return true if we

got an ack, false otherwise.

Transmit($data) – transmit one packet

mkreqpacket() – create request packet

packpack() – convert created packet into a string using zwave rules template

dim() – dimmer command function

switch() – switch command function(on/off)

addNode() – add a new node function

addNodeStop() – stop add node mode/function

Detailed Design Specification Z-Wave Smart Home

8/6/2012 19 of 54 BetaHomes

handle_packet() – used for adding a node function. Forms add node request, halts and listens for a new

node.

3.3.2.3 Process

Shifts the first value of the array off and returns it

my $port = shift; //gets port number from cmd arguments

Serial port initialization:
use Device::SerialPort;
my $serial_port = Device::SerialPort->new ($port,1);

Based on cmd type implement if/elseif statement to identify command type call

receive() – read serial port data stream packets, send each to receive_once() for processing

sub receive {

 my($timeout) = @_;

 my $end = time+$timeout;

 $stopreceive = 0;

 do {

 receive_once();

 } while(($end > time) && ! $stopreceive);

}

receive_once() – read pending bytes from the serial port, ack if they look like a packet. Return true if we

got an ack, false otherwise.

Transmit($data) – transmit one packet

mkreqpacket() – create request packet

packpack() – convert created packet into a string using zwave rules template

sub packpack {

 my(@bytes) = @_;

 my $seq = “”;

 foreach my $byte (@bytes) {

 $seq .= pack(“C”, $byte);

 }

 return $seq;

}

Detailed Design Specification Z-Wave Smart Home

8/6/2012 20 of 54 BetaHomes

dim() – dimmer command function

sub dim {

 my($unit, $level) = @_;

 return(packpack(mkreqpacket(0, 0x13, $unit, 3, 0x20, 1, $level, 5)));

}

switch() – switch command function(on/off)

sub switch {

 my($unit, $onoff) = @_;

 dim($unit, $onoff ? 255 : 0);

}

addNode() – add a new node function

sub addNode {

 return(packpack(mkreqpacket(0, 0x4a, 0x01)));

}

addNodeStop() – stop add node mode/function

sub addNodeStop {

 return(packpack(mkreqpacket(0, 0x4a, 0x05)));

}

handle_packet() – used for adding a node function. Forms add node request, halts and listens for a new

node.

3.3.3 Nodes Inspector

(Contains: inspector.py, inspector.php and ozwWrapper.py)

Main purpose of this module is to scan the home nodes network every 3 hours and to check for the status

of the nodes to make sure that all are alive and function properly. In case of one of the nodes ‘death’ it

shall remove current node home network xml map. If that happens (xml file gets removed) Z-Wave

Server will automatically rescan home network and recreate a new xml map with updated nodes

information. This is not the same as getting node status!!!

3.3.3.1 Interfaces

Nodes Inspector module interfaces with Open-ZWave Libraries and Database.

Z-Wave Server vs Nodes Inspector

Detailed Design Specification Z-Wave Smart Home

8/6/2012 21 of 54 BetaHomes

 As mentioned above, ‘Nodes Inspector’ runs only once every 3 hours. It is not a server, but a

separate, independent application which checks whether a node failure occurred. Z-Wave Server is not

capable of determining whether a node has died or if it is still alive. The most recent node data stored in

USB dongle flash memory, and if malfunction occurred and USB didn’t receive status or any type of

feedback from failed node, then it simply keeps old node status information without letting us know that

feedback wasn’t received. Of course, if no feedback received, then the timeout occurs.

The reason Nodes Inspector is a separate application is because even though we need to stop Z-

Wave Server (just a python execution part), we still need to run the part of the server which takes care of

the command execution. In other words – while Nodes Inspector runs, we won’t be able to pull the most

recent status of devices (for a period of approximately 50 seconds), but we still can execute any

commands and run rules and schedules without interruption of service.

3.3.3.2 Physical data structure/data file descriptions

Figure 3.2: Nodes Inspector Module

inspector.php

db_connect() – establish connection with database

getPortNumber(“fcall”) – get a full path to USB adapter(also checks if adapter is exist)

comparator() – compares current node map with newly created

main() – main function that runs all the time in endless loop(brake option to exit out and stop is

available)

inspector.py

Function: prfeed(device_path) – one and only function is to inherit some of the ozwWrapper.py

functionality and initialize nodes on the network.

OS resources used:

time – provides various time-related functions

Datetime – supplies classes for manipulating dates and times

Sys – System-specific parameters and functions

os – Miscellaneous operating system interfaces

glob – Unix style pathname pattern expansion

Detailed Design Specification Z-Wave Smart Home

8/6/2012 22 of 54 BetaHomes

3.3.3.3 Process

inspector.py

#!/usr/bin/env python

-*- coding: utf-8 -*-

resource allocation and import of all neede libraries

import time

import datetime

import sys

import os

import glob

from common.ozwWrapper import ZwaveWrapper, ZwaveNode, ZwaveValueNode

from decimal import *

---+

get USB adapter full path(path found and passed by inspector.php as a command

line argument)

device_path = sys.argv[1]

def prfeed(device_path):

 getcontext().prec = 3

 executionTime = Decimal(0)

 maxExecutionTime = Decimal(60) # Maximum initialization time (in seconds)

 sleepTime = Decimal(0.1)

 # --+

 # REMOVE zwcfg_*.xml FILE – DONE IN PHP BEFORE CALLING THIS FILE |

 # --+

 w = ZwaveWrapper.getInstance(device = device_path, config = ‘../Open-

ZWave/config/’)

 feedback = “INITIALIZATION SUCCESS”

 while bool(w.initialized) != True:

 executionTime = executionTime + Decimal(sleepTime)

 time.sleep(sleepTime)

 if executionTime > maxExecutionTime:

 seq = [‘INITIALIZATION FAILED | Execution time: ‘, executionTime,

‘ seconds’]

 feedback = ‘’.join(map(str, seq))

 break

 return feedback

return status of request – (Failed or Success)

return prfeed(device_path)

3.3.4 Z-Wave Server

(Contains: server_1.py, server_1.php and ozwWrapper.py)

Main purpose of this module is to scan the Z-Wave network, check for the status of nodes, update

database, pass execution command to the perl script.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 23 of 54 BetaHomes

3.3.4.1 Interfaces

Z-Wave Server module interfaces with Open-ZWave Libraries, Database and PerlScript.

3.3.4.2 Physical data structure/data file descriptions

Figure 3-3: Z-Wave Server Module

server_1.php

main() – main function that runs all the time in endless loop(brake option to exit out or pause is

available)

startLog() – creates and initializes log data file

db_connect() – establish connection with database

$port = getPortNumber(“fcall”) – get a full path to USB adapter(also checks if adapter is exist)

removeXML() – removes xml file in case of xml_remove request from database

reload_nodes() – remove all nodes from database and create new data table

exec_py($port) – execute server_1.py file. Pass full path of USB adapter found in getPortNumber

function.

Load_db_data() – populate nodes table with data

getXMLData($node_id) – get nodes manufacture data from xml file per individual node

getXML_Home_id() – gets home id from xml file

getManufacturerSpecificXML() – gets manufacturer data for all nodes during creation

exec_command() – checks desirable state nodes table and compares with a current state. If difference

found => execute action based.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 24 of 54 BetaHomes

Server_1.py

Functions:

initializeNodes() – initializes nodes on the network inheriting ozwWrapper.py functionality if xml file

with nodes information is not created yet.

pullData() – pulls formatted node information data from the network and passes it to the server_1.php.

One pull cycle takes about 2-3 seconds.

OS resources used:

time – provides various time-related functions

Datetime – supplies classes for manipulating dates and times

Sys – System-specific parameters and functions

os – Miscellaneous operating system interfaces

glob – Unix style pathname pattern expansion

3.3.4.3 Process

IF DB Current State != Current State (State Of Device)

 Update DB Current State & Desirable State

 ELSE

 Do Nothing (Should be easy to implement)

 IF DB Desirable State != DB Current State

 Execute Desirable State (through Perl)

 ELSE

 Do Nothing

IF (SCHEDULE | RULE)

 Set DB Desirable State

 ELSE

 Continue

Detailed Design Specification Z-Wave Smart Home

8/6/2012 25 of 54 BetaHomes

4. User Interface Layer

The User Interface Layer is responsible for translation of interactions between a user and the system. It

contains three subsystems: Web Server, Web Interface (GUI) and Device Input (Hardware Interface).

The main goal is an effective operation and control of the system, and feedback from the system which

aids the operator in making operational decisions. It shall provide a means of:

 Input – allow system manipulation

 Output – allow the system to indicate the effects of the user’s manipulation.

Figure 4-1: User Interface Layer

Detailed Design Specification Z-Wave Smart Home

8/6/2012 26 of 54 BetaHomes

4.1 Web Server Subsystem

4.1.1 Functions Class Library Module

Function Class Library is a set of functions that are will be accessed from UI module in Web Interface

Subsystem.

4.1.1.1 Interfaces

The Function Class Library interfaces with a database and UI through Login/Authentication checkpoint

which checks for the status of user session (if user logged in). The web server itself will be reached by

either static IP(default option), via free version of dynDNS(domain name is free but inconvenient to use

– too long) or via professional version of dynDNS with a domain name of user’s choice.

4.1.1.2 Physical data structure/data file descriptions

The module is dependent only on PHP native environment(PHP version is 5.3)

Internal Data Description / Functions and their responsibilities:

Login($u_name, md5($password)) – generates a new session if login and password are matched with the

parameters in database(default username – admin, default password – admin)

List_nodes() – generates frame for each node with appropriate information for the node type(if switch

type => display only On and Off) and displays it on Main page.

Voice() – provide voice API button t execute a voice command. Using Online Javascript speech

recognition API Javascript and Flash API. Online Javascript speech recognition API Javascript and

Flash API.

createMap() – medium priority requirement. Potential API to use is Scalable Vector Graphics. It is a

language for describing 2D-graphics and graphical applications in XML and the XML is then rendered

by an SVG viewer.

Add_rule() – creates a rule and adds it to database(Straight forward: ask to specify node id, action and

node id and action of the node which will trigger the event)

Remove_rule() – removes created rule from database using a simple query call(DELETE FROM `rules`

WHERE id =n)

List_rules() – loads all of the rules from database(just a ‘select * from rules’ query)

List_schedules() loads all of the schedules from database(just a simple ‘select from schedules *’ query)

Add_schedule() creates a schedule and adds it to database. Ask user to specify node id, action and time

of execution.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 27 of 54 BetaHomes

Remove_schedule() – remove database entrance associated with schedule id

ChangeUsername() – allows to change a user name. Request: previous username, password and new

username. If authentication parameters are correct => update username in database

changePassword() – allows to change a user password. Request: username, old password and a new

password. If authentication parameters are correct => update password field in database

listGroups() – list all available groups from database

createAGroup() – creates a new group name in database

addNodeToAGroup() – associates a node with a group. Request: group name, node id(node name)

removeGroup() – remove group from database

removeNodeFromGroup() – remove association of node with a group from database

4.1.1.3 Process

All of the functions are encapsulated within a class and have no structured layout (no need, each

function is completely independent component. Order is not important.)

4.2 Web Interface Subsystem

4.2.1 Description

The Web Interface consists of web pages served by the web server. What makes the interface distinct

from the Web Server subsystem of the System Control Layer is that the Web Interface will consist of the

server-side scripting, client-side scripting, and static HTML that makes up the graphical interface. This

interface will not be involved in the operation of the system, but the presentation of it.

Specifically, the Web Interface is responsible for displaying all the needed information about the entire

Z-Wave Smart Home Controller.

4.2.2 Interfaces

Each of the pages will interface between the user (via a web browser) and the web server. A

combination of client-side scripting, HTML, and server-side scripting will allow the user interface with

the SHC. Ultimately, all relevant Z-Wave web-server requests will be applied to the database for the

System Control Layer to handle.

The Web Interface can be divided into 7 pages:

 Login Page

 Main Page

 Rules Page

 Schedules Page

Detailed Design Specification Z-Wave Smart Home

8/6/2012 28 of 54 BetaHomes

 Map Page

 Groups Page

 Account Settings Page

These pages are described as follows:

4.2.2.1 Login Page

4.2.2.1.1 Description

The login page is responsible for authenticating the user. It is the landing page for the initial visit of the

system via the web. It is also the page presented after logging out. The login page shall request a

username and password, and provide a login button that submits any provided identification data to the

web server for authentication. Once the user is authenticated, the Login Page requests the Main Page.

The login page is requested by all pages that require a currently logged in user. That is, each page will

first request the login page to verify that a user is indeed logged in. If a user is logged in, the page loads

normally, if not, the login page proper is displayed.

4.2.2.1.2 Process

General Page Request

If user is logged in then

 Display page requested, or main page if no page was requested

Else

 Display Login Form

Login Process

Display Login Form with username and password fields

Upon submission

 Check login information against Database records

 If user and password (or password hash) match

 Log user in, and then load the main page

 Else if they do not match

 Reload login form along with error message

End submission

Detailed Design Specification Z-Wave Smart Home

8/6/2012 29 of 54 BetaHomes

4.2.2.2 Main Page

4.2.2.2.1 Description

The main page is the root of the ZSHC website. That is, the Main Page is the ZSHC website’s index

page. Upon requesting this page, the web interface will determine if the user is currently logged in or

not. If the user is logged in, then the Main Page proper is loaded. All devices are enumerated and shown,

as well as links to the other pages. This page is also responsible for handling voice control input. If the

user is not logged in, the Main Page will request the login page be shown instead.

4.2.2.2.2 Data Structures

deviceList[]

The array of node objects in web presentation form (just enough information

to display node data).

deviceControl

Object within deviceList[] that contains information about controlling the

specific device it is a member of.

deviceGroups Object holding an array of references to devices.

4.2.2.2.3 Process

Display if logged in:

 Device List with individual device controls tailored to device

type

 Links to Rules Page, Schedules Page, Map Page, and Account

Settings Page

Else

 Display Login Page

4.2.2.3 Rules Page

4.2.2.3.1 Description

The Rules Page is solely responsible for displaying all rules. It is also responsible for gather user input

to add or remove rules and check on their statuses.

4.2.2.3.2 Process

Display if logged in:

 Rules List (enumerate all rules), each with remove rule option

Detailed Design Specification Z-Wave Smart Home

8/6/2012 30 of 54 BetaHomes

 Links to Add Rule

Else

 Display Login Page

4.2.2.4 Schedules Page

The Schedules Page is solely responsible for displaying all schedules. It is also responsible for gathering

user input to add or remove schedules and check on the schedules’ statuses.

4.2.2.4.1 Process

Display if logged in:

 Schedule List (enumerate all schedules), each with remove

schedule option

 Links to Add Schedule

Else

 Display Login Page

4.2.2.4.2 Groups

4.2.2.4.3 Description

The group page will allow the user to group nodes into one or more groups. Groups are exclusive; no

device can be added to more than one group.

4.2.2.5 Map Page

4.2.2.5.1 Description

The Map Page is solely responsible for displaying the 2D Map of the current ZSHC. It will allow the

user to update the map by allowing input to add or remove devices and rooms.

4.2.2.5.2 Data Structures

mapData – XML SVG data that represents lines needed to draw rooms, as well as circles for individual

devices.

4.2.2.5.3 Process

Display if logged in:

 Map loaded from database (HTML5 SVG)

 AJAX to handle map input

Detailed Design Specification Z-Wave Smart Home

8/6/2012 31 of 54 BetaHomes

Else

 Display Login Page

4.2.2.6 Account Settings Page

4.2.2.6.1 Description

The Account Settings Page allows the user to perform administrative tasks related to the web interface,

and the ZSHC. It will allow the user to change their username, password, and to log out of the web

interface. It will also allow the user to backup the ZWSH data for use on any identical ZWSH product.

4.2.2.6.3 Data Structures

4.2.2.6.4 Process

Display if logged in:

 Links to Change Password, Change Username, Backup, Logout

Else

 Display Login Page

Change Password

Update database where username = username, and password =

new_password

Change Username

Update database where username = new_username, and password =

password

Backup

After confirmation, Export Database data to file, present file for

downloading.

Logout

End user session, return to main page.

4.3 Device Input Subsystem

Detailed Design Specification Z-Wave Smart Home

8/6/2012 32 of 54 BetaHomes

Device Input is the subsystem that enables the user to handle the devices manually. It allows the user to

turn on, off, or dim the light; turn the socket on or off; raise/lower the blinds, or open/close the slat. This

subsystem consists of three modules: Light Switch, Socket, and BCU. These modules are responsible to

control the lights, socket, and blinds, respectively.

4.3.1 Light Switch Module

Light Switch module operates on two push buttons. One button just lets you turn on or turn off the light,

and the other one actually dim or brighten up the light. Once the hardware detects the status of buttons,

it calls the Light Switch module of Light and Socket subsystem to control the light.

4.3.1.1 Interfaces

This module interfaces with the Light Switch module of Device Layer. It produces the integer value

between 0 to 255 in order to command the Light and Switch module of the Device Layer to turn on or

turn off the light. 0 represents the off stage of light, and 255 represent the on stage. And also based on

the counter from the internal clock of the Light Switch module (hardware), it can produce the integer

value (upto 255) to control the brightness of the light, which is also consumed by the Light Switch

module of the Device Layer. The physical interface is two push buttons; one to just turn on or off the

light, and the other push button to control the intensity of light.

4.3.1.2 Physical Data Structure/Data File Descriptions

 Boolean value (true and false) to turn the switch on and off respectively.

 Integer value ranging from 0 to 255 to control the brightness of the light.

 Electrical state of the switch (0 or 1) to enable the Boolean value.

 Internal clock to get the intensity of light.

4.3.1.3 Pseudocode Algorithm

//check the value of the buttons

//button1 is just to turn on and turn off the light, and button2 is to dim/brighten up the light

value1 = getValue(button1);

value2 = getValue(button2);

switch (value1);

dim (value2);

Detailed Design Specification Z-Wave Smart Home

8/6/2012 33 of 54 BetaHomes

4.3.2 Socket Module

Socket module is responsible for controlling the socket manually. It depends on the push button as well.

It functions in two stages only. It uses the same data type as in Light Switch module.

4.3.2.1 Interfaces

It interfaces with Socket module of Device Layer. The physical interface is the push button to turn on or

off the socket. It sends the integer value after manual push button. As soon as the button is pressed, the

internal clock is activated, which in turn produces integer value of 255. When the button is not pressed,

the value remains 0.

4.3.2.2 Physical Data Structure/Data File Descriptions

It generates the integer value after manual push button. As soon as the button is pressed, the internal

clock is activated, which in turn produces integer value of 255. When the button is not pressed, the value

remains 0.

4.3.2.3 Pseudocode Algorithm

//get the value of the button.

value = getValue(button1);

switch (value);

4.3.3 BCU Module

BCU Module is responsible to control the blind based on manual input. The four buttons are created for

controlling blinds. The modes of operation are raising the blind, lowering the blind, turn slat on, and turn

slat off.

4.3.3.1 Interface

The physical interface is the four buttons, which links to the Event Handler module of the Blind

Controller Unit subsystem. Buttons are arranged in the circuitry such that each button has separate bit

sequence in the back end.

4.3.3.2 Physical Data Structure/Data File Descriptions

 Each button produces the three bits string. Based on the bit sequence it will call appropriate function to

control the blind. Following table shows what each bit sequence maps to the functionalities of blind.

011 Raise the blind

Detailed Design Specification Z-Wave Smart Home

8/6/2012 34 of 54 BetaHomes

111 Lower the blind

110 Open the slat

100 Close the slat

4.3.3.3 Pseudocode Algorithm

//Verify the button, and generate respective bit sequence

if (button1.pressed())

{

 blindValue = 011;

}

if (button2.pressed())

{

 blindValue = 111;

}

if(button3.pressed())

{

 blindValue = 110;

}

if(button4.pressed())

{

 blindValue = 100;

}

eventHandler(blindValue);

Detailed Design Specification Z-Wave Smart Home

8/6/2012 35 of 54 BetaHomes

5. Device Layer

The Device Layer contains the Blinds Control Unit (BCU), Z-Wave light switch, and Z-Wave electrical

socket. These devices makeup a large portion of the hardware components found in the Z-Wave Smart

Home (ZSH) System. This layer handles input from the user and status communication to the System

Control Layer.

This layer consists of two subsystems, Blind Controller Unit subsystem, and Light and Socket

subsystem. Blind Controller Unit subsystem is solely responsible for controlling blinds. Light and

Socket subsystem takes care of functionalities of Z-wave enabled light and sockets. Both subsystems’

operation is dependent upon the signal commands sent via Z-wave communication subsystem of System

Control Layer. The signal commands can be either automated, or manual. Basically, this is the lowest

level of the system, in terms of hardware.

Figure 5-1: Device Layer

Detailed Design Specification Z-Wave Smart Home

8/6/2012 36 of 54 BetaHomes

5.1 Blind Controller Unit Subsystem

This subsystem has five modules: Data Transceiver, Event Handler, and Hardware Status. This

subsystem receives the RF packaged commands to control blind, light, and socket, and send back the

status of these devices, to the system control layer.

5.1.1 Data Transceiver Module

Data Transceiver Module receives Z-wave commands embedded in RF signals. ZM2120C-E hardware -

module is used to enable receiving Z-wave commands. It should be noted that ZM2120C-E is secondary

controller, primary controller being USB dongle, and is set as a slave node. It is also set as Static Update

Controller (SUC) to always act as a “listening node,” and also act as repeater to associate with other

nodes in the network. Controller Initiator is also activated in the slave node to connect with primary

controller. After all the nodes have been established, and association has been made within nodes, Data

Transceiver Module starts receiving the RF signals for further processing.

5.1.1.1 Interfaces

Data Transceiver Module interfaces with USB Dongle module and Event Recognition module. It

consumes 64 bytes RF signals (beam), and transmits actual string data, including commands to be sent

to Event Recognition module.

Figure 6-2: Structure of the beam

Detailed Design Specification Z-Wave Smart Home

8/6/2012 37 of 54 BetaHomes

5.1.1.2 Physical Data Structure/Data File Descriptions

Figure: 6-3

Z-wave packets are divided into four frames. The above figure shows how packets are distributed.

Application frame consists of actual data, in our case, the Blind control commands. The Transport frame

consists of actual node ids and home ids to verify various modules in Z-wave network.

5.1.1.3 Pseudo-code Algorithm

All methods are based on Z-wave library APIs.

Check to see if it’s receiving or transmitting data.

While receiving_once (true)

{

//check for the information on node id, home id, and associated

ids (light and socket //nodes) within the network.

{

If the primary controller node or any slave/associated

nodes are not identified, send the information back.

{

transmit() ;

}

If nodes are identified, check for the stream of bits of

data that has actual command to control the data.

 {

 string Command = parse_data(packets);

 //Send the command to the Event Recognition module

}

If receive() is the node id in the network, relay the

information to USB dongle

{

Detailed Design Specification Z-Wave Smart Home

8/6/2012 38 of 54 BetaHomes

 transmit() ;

}

}

}

If transmiting_data (packets)

{

 transmit(packets);

}

5.1.2 Event Handler

Event Handler module is responsible for recognizing actual command, and executing those commands

to control the blind.

5.1.2.1 Interface

After Data Transceiver filters the signals, it sends the string data, which is consumed by the Event

handler module. This module then recognizes the actual command based on the stream of bits in the

string so that it can produce specific command like raise/lower the blinds, or rotate the slat, or just get

the battery level. It also interfaces with Hardware Status module by a function call requesting the status

of hardwares. .

 5.1.2.3 Pseudo-code Algorithm

check the stream of bits and produce specific commands
Event eventHandler()

{

switch (command);

{

Case “000”:

//do nothing

Break;

Case “001”:

//request battery level

Poll_battery();

break;

Case “011”:

//raise blinds

currentStatus= motor1Status();

if (currentStatus==false)

{

Raise(motor_count);

currentStatus=true;

}

Else do nothing;

Break;

Detailed Design Specification Z-Wave Smart Home

8/6/2012 39 of 54 BetaHomes

Case “111”:

//lower blinds

currentStatus= motor1Status();

if (currentStatus)

{

lower(motor_count);

currentStatus=false;

}

Else do nothing;

Break;

Case “110”:

// open slats

currentStatus2= motor2Status();

if (currentStatus2==false)

{

Rotate(motor_count);

currentStatus2=true;

}

Else do nothing;

Break;

Case: 100

//close blinds

currentStatus2= motor2Status();

if (currentStatus2)

{

Rotate_anti(motor_count);

currentStatus2=false;

}

Else do nothing;

Break;

Default:

//return invalid message

Break;

}

}

5.1.2.2 Physical Data Structure/Data File Descriptions

Event Handler receives the string of data as a command either from data transceiver module or BCU

module of the device input subsystem of user interface layer. The string is 3 bits sequence, and each

sequence signifies the command. It also requests the hardware status of blinds and the battery level and

sends commands to the motors for the proper execution of the commands received from the data

transceiver. The status of the blind is represented using Boolean value.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 40 of 54 BetaHomes

5.1.3. Hardware status

5.1.3.1 Interface

Hardware status is responsible for getting the current status of the hardware devices namely battery and

motors. And send this status to the event handler for the proper execution of the commands.

 5.1.2.3 Pseudo-code Algorithm

check the stream of bits and produce specific commands

//check the status of battery

Poll_battery()

{

//Convert 8 bit data received to voltage that ranges from 0 to 5 volts

//if voltage level<1V turn the LED signal on. It means the battery is low

//else do nothing

}

;

//check the status of the motor1 which is responsible for setting the height of the blinds

Public 40oolean motor1Status()

{

if (getCount(motor1))

return true;

else

return false;

}

//check the status of the motor1 which is responsible for opening and closing of the slats

Public 40oolean motor2Status()

{

if (getCount(motor2))

return true;

else

return false;

}

5.1.2.2 Physical Data Structure/Data File Descriptions

The hardware status module uses the motor API to retrieve the status of the motor. The value of the

count ranges from 0 to 65536 as it is using integer type. Practically, the count depends on the PWM

signal so it would be calibrated accordingly. Similarly, it gets the 8 bits integer data after ADC

conversion to represent the voltage.

5.2 Electrical Socket & Light Switch Subsystem

Detailed Design Specification Z-Wave Smart Home

8/6/2012 41 of 54 BetaHomes

5.2.1 Socket Module

The Socket Module is comprised of GE 45605 Z-Wave Wireless Lighting Control Duplex Receptacle

and is responsible for controlling electricity to appliances. This module only controls the electricity flow

of one socket via Z-Wave commands while the other socket has power at all times. This module relies

on Z-Wave protocols built into the electrical socket. This module also requires a standard input voltage

of 120 volts as commonly found in U.S. households.

5.2.1.1 Interfaces

This module interfaces with the socket module in the Device Interface Subsystem within the User Layer.

The data received is in the form of an integer command based on the press of a button on the device.

This module interfaces with the USB dongle module in the Z-Wave Adapter Subsystem within the

System Control Layer. The data received from the USB dongle module is in the form of a standard Z-

Wave protocol packet. This is a series of 64 bytes transmitted via radio frequency which contains

information pertaining to network ID, device ID, and standard commands.

This module interfaces with the Data Transceiver module in the BCU Subsystem within the Device

Layer. The data sent/received from the BCU module is in the form of a standard Z-Wave protocol

packet. This is a series of 64 bytes transmitted via radio frequency which contains information

pertaining to network ID, device ID, and standard commands.

5.2.1.2 Physical data structure/data file descriptions

Externally, the socket module is dependent on the Z-Wave protocol packet. This packet is 64 bytes long

of which the module is mostly concerned with six bytes in the application frame of the packet. This

frame contains the header, command class, command, and three parameter values all of which are one

byte long.

Internally, the socket module uses the command class and command byte codes to execute a predefined

function. These functions are based on proprietary Z-Wave function calls for off/on operation.

5.2.1.3 Process

Constantly listening for packets

http://cache.smarthome.com/images/59489big.jpg

Detailed Design Specification Z-Wave Smart Home

8/6/2012 42 of 54 BetaHomes

Packet received

Inspect packet for node ID

Determine if module node ID and packet node ID match

If node IDs match: perform command operation

Else: broadcast packet to nearest neighbors

Example command:

sub switch {

 my($unit, $onoff) = @_;

 dim($unit, $onoff ? 255 : 0);

}

5.2.2 Light Switch Module

The Light Switch Module consists of the Leviton VRI06-1LZ Vizia RF 600W Incandescent Scene

Capable Dimmer and is responsible for controlling the brightness of a light bulb. This module only

controls the electricity flow to a light bulb via Z-Wave commands. This module relies on Z-Wave

protocols built into the electrical socket. This module also requires a standard input voltage of 120 volts

as commonly found in U.S. households.

5.2.2.1 Interfaces

This module interfaces with the light switch module in the Device Interface Subsystem within the User

Layer. The data received is in the form of an integer command based on the press of a button on the

device. There are three buttons one of which controls the on/off function and two of which control the

dimming of the light.

This module interfaces with the USB dongle module in the Z-Wave Adapter Subsystem within the

System Control Layer. The data received from the USB dongle module is in the form of a standard Z-

http://cache.smarthome.com/images/45071Zbig.jpg

Detailed Design Specification Z-Wave Smart Home

8/6/2012 43 of 54 BetaHomes

Wave protocol packet. This is a series of 64 bytes transmitted via radio frequency which contains

information pertaining to network ID, device ID, and standard commands.

This module interfaces with the Data Transceiver module in the BCU Subsystem within the Device

Layer. The data sent/received from the BCU module is in the form of a standard Z-Wave protocol

packet. This is a series of 64 bytes transmitted via radio frequency which contains information

pertaining to network ID, device ID, and standard commands.

5.2.2.2 Physical data structure/data file descriptions

Externally, the light switch module is dependent on the Z-Wave protocol packet. This packet is 64 bytes

long of which the module is mostly concerned with six bytes in the application frame of the packet. This

frame contains the header, command class, command, and three parameter values all of which are one

byte long.

Internally, the light switch module uses the command class and command byte codes to execute a

predefined function. These functions are based on proprietary Z-Wave function calls for off/on operation

and dimming. The dimming function will take on a parameter value to indicate the level of brightness

the bulb should produce based on a value between 0 and 255.

5.2.2.3 Process

Constantly listening for packets

Packet received

Inspect packet for node ID

Determine if module node ID and packet node ID match

If node IDs match: perform command operation

Else: broadcast packet to nearest neighbors

Example commands:

sub switch {

 my($unit, $onoff) = @_;

 dim($unit, $onoff ? 255 : 0);

}

sub dim {

 my($unit, $level) = @_;

 return(packpack(mkreqpacket(0, 0x13, $unit, 3, 0x20, 1,

$level, 5)));

}

Detailed Design Specification Z-Wave Smart Home

8/6/2012 44 of 54 BetaHomes

6. Quality Assurance

6.1 Test Plans and Procedures

6.1.1 General

The ZSH system shall be put through a series of test as Team betahomes desires to deliver the highest

possible quality product within the given constraints. These tests shall confirm if the architecture meets

the desired design requirement specification. All the layers and their interactions will be taken into

consideration for this purpose. Testing will include unit testing, system testing, and integration testing.

Inputs and outputs will be validated by passing in valid inputs to get the desired outputs and passing in

invalid inputs to make sure the system terminates gracefully.

Each layer will first be tested independently by performing the unit testing. Once it passes the unit

testing it will be tested with other layers and subsystems upon integration which will be done through

integration testing. Integration testing will ensure that each layer interacts with each other as expected.

Finally the system verification testing will be conducted to ensure all the customer requirements are met

and the system is robust.

6.1.1.1 Module/Unit Testing

Z-Wave Server:

 Verify if the Z-Wave network can be scanned correctly.

o The verification above handled by running server_1.py file which creates xml file with

nodes information. If file been created successfully, therefore Z-Wave network is

valid/exist. If not, then either network is not accessible or the server_1.py file which

communicates with open Z-Wave libraries wasn’t implemented correctly.

 Verify if the status of nodes can be updated correctly.

o Execute an action/command using perlscript

 Verify if the database is updated correctly.

o Visual contact with a database through phpmyadmin.

 Verify if the execution command is passed correctly to the perl script.

o Status of the nodes updated through PerlScript. The verification of this case is pretty

straight forward. There are two options we have. Option 1: check status of the node by

running Open-ZWave test server application. All it does is intercepts all outgoing signals

from all nodes. From here we can take a sample generated output and filter it for a

specific node we are looking for. Since we do know the structure of the Z-Wave protocol

(this information been accumulated during long period of research and datasheets

review), we can get all the information regarding node content. Option 2: Using

Detailed Design Specification Z-Wave Smart Home

8/6/2012 45 of 54 BetaHomes

PerlScript we can just listen for a specific output from Z-Wave Network. Specifically –

“0, 0x4a, 0x01” string, which means that recent action been successfully processed by a

node. Option 3: (easiest option) Visual contact with a node.

Nodes Inspector

 Verify if the home nodes network are scanned correctly every 3 hours to make sure they all

function correctly.

o Check the creation time of the xml file generated by inspector.py

 Verify if the current node home network xml map is removed in case of death of any node.

o Visual contact with an xml file. Check the date and time file been created.

 Verify if a new xml map is recreated with updated nodes information in case of death of any of

the nodes.

o Visual contact with an xml file. Check the date and time file been created.

PerlScript

 Verify if devices can be added to the Z-Wave network using the “zwave add” command.

o Can be verified during creation of xml home network map which contains information of

all nodes and their data.

Open-ZWave Libraries

 Verify by making sure if the Z-Wave controller can be controlled as desired by using the API’s

provided by the Open-ZWave libraries.

o Check with a Open-ZWave library list of supported USB devices(adapters) or (if not

listed) test yourself using “zwave add” command provided by PerlScript.

USB Dongle Module

 Verify if the USB dongle is detected.

o By running sample Open-ZWave server application we can see if driver for the USB

device been installed. If yes, therefore adapter is detected.

Database module

 Verify the results retrieved from the database are correct.

o Send test queries.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 46 of 54 BetaHomes

Data transceiver module

 Verify if it is receiving valid z-wave packets

o By calling the receive_once function and getting either invalid message, as it could not

connect to the network, or parsing the command data out of package.

Event handler module

 Verify if the blind is opening and closing, and the slat is rotating.

o By sending the command signals to control the blind and slat. If it responds to the

commands sent by the Data Transceiver module, then that means the event handler

module is working properly.

Hardware status module

 Verify if the module returns the correct status of the blind, and battery level.

o By sending the getStatus commands, and comparing the result visually.

6.1.1.2 Integration Testing

We will now discuss how each layer and its modules will be tested in order to verify our architectural

design and validate our system requirements.

User Layer

The user layer provides an interface for interaction between the user and the system through web

interface and manual input from the device. The User Layer will be tested by verifying the interactions

between its various GUI interfaces. The outputs generated in response to various inputs will be matched

with the expected results. The web server will be tested using the web interface. For instance when the

user enters the user id and password, the web server should deliver the main page if the login is

successful or display the login error page if the login fails. Black box testing will be conducted to make

sure all the results are as expected.

Device Layer

The device layer consists of the main hardware components namely Blind Controller Unit, the Light and

the Socket. The testing of the device layer will be white box testing. The device layer will be tested

using the user layer that includes both web interface and device input. Testing will be conducted to make

sure all the instructions are performed as requested by the user. For instance, when the user sends in

signal to open the blinds, the blinds should rotate accordingly.

System Control Layer

The system control layer is the most critical layer of the system. It consists of z-wave communications

subsystem, data processor, operating system and database. The database will be tested by sending test

Detailed Design Specification Z-Wave Smart Home

8/6/2012 47 of 54 BetaHomes

queries using the web server. The data processor sub system will be tested by sending signals from the

web server and making sure appropriate response is generated. Z-Wave communication subsystem will

be tested using the device layer by making sure the devices respond as per the commands sends to the z-

wave communication subsystem.

6.1.1.3 System Verification Test

The System Verification Test will verify the ZSH System has implemented all the high priority

requirements specified by the customer in the SRS.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 48 of 54 BetaHomes

7. Requirements Traceability Matrix

7.1 Overview

The purpose of the requirement mapping is to give an overview of the requirements specified in System

Requirement Specification that are intended to be satisfied based on the Architecture Design

Specification’s subsystems. It also traces the relationship between the requirements in the System

Requirements Specification and the actual functions and modules that satisfy these requirements.

7.2 Mapping

Number Requirement System

Control

Layer

User Layer Device

Layer

3.1 Web Interface  

3.2 Automated Device Control   

3.3 Scheduling  

3.4 Rules  

3.5 Manual Device Control  

3.6 Modularity 

3.7 Voice Control  

3.8 2D Map  

3.9 Z-Wave Device Communication  

3.10 Z-Wave Controller

Communication

 

3.11 Blinds Control Unit Slat

Elevation

  

3.12 Blinds Control Unit Slat

Rotation

  

3.17 The application has a

meaningful GUI

 

Detailed Design Specification Z-Wave Smart Home

8/6/2012 49 of 54 BetaHomes

3.18 Device Status Feedback   

3.19 Blind Control Unit Manual

Control

  

Figure 7-1: Architecture Requirements Mapping

7.3 Modules Requirements Mapping

Modules

Requirements

W
eb

 I
n
te

rf
ac

e

A
u
to

m
at

ed
 D

ev
ic

e
C

o
n
tr

o
l

S
ch

ed
u
li

n
g

R
u
le

s

M
an

u
al

 D
ev

ic
e

C
o
n
tr

o
l

M
o
d
u
la

ri
ty

V
o
ic

e
C

o
n
tr

o
l

2
D

 M
ap

Z
-W

av
e

D
ev

ic
e

C
o
m

m
u
n
ic

at
io

n

Z
-W

av
e

C
o
n
tr

o
ll

er
 C

o
m

m
u
n
ic

at
io

n

B
li

n
d
s

C
o
n
tr

o
l

U
n
it

 S
la

t
E

le
v
at

io
n

B
li

n
d
s

C
o
n
tr

o
l

U
n
it

 S
la

t
R

o
ta

ti
o
n

T
h
e

ap
p
li

ca
ti

o
n

h
as

a

m
ea

n
in

g
fu

l

G
U

I

D
ev

ic
e

S
ta

tu
s

F
ee

d
b
ac

k

B
li

n
d
 C

o
n
tr

o
l

U
n
it

 M
an

u
al

 C
o
n
tr

o
l

Functions Class

Library
X X X X X X X X

LogIn /

Authentication
X

User Interface X X X X X X X X

Light Switch

(Device i/p)
 X X

Socket X X

BCU X X X X X

USB Dongle X X X

Z-Wave Server X X

Detailed Design Specification Z-Wave Smart Home

8/6/2012 50 of 54 BetaHomes

Nodes

Inspector
 X

X

PerlScript

(Executor)

X X X X
X

Open-ZWave

Libraries

X X
X

Database X X X X X X X

Data

Transceiver
 X

X X X X

 X

Hardware

Status
X X

X X X X

Event Handler X X X X X X X X

Light Switch

(device layer)
X X X X X

X X

 X

Socket X X X X X X X X

Table 7-2: Module Requirements Mapping

7.4 Producer/Consumer Relationships

The producer-consumer relationships define the communication paths between modules within the

system. The following table identifies the relationships which are detailed further by referring to

dataflow section defined earlier.

We can see that the Producer Consumer Relationship figure depicts the data elements’ flow within

modules. Here, rows denote the producer modules from where data generates, and columns denote the

consumer modules which receives the data.

Detailed Design Specification Z-Wave Smart Home

8/6/2012 51 of 54 BetaHomes

Producer –

Consumer

Relationship

CONSUMER SUBSYSTEM

Web

Interface

(User

Layer)

Device

Input

(User

Layer)

Blind

Controller

Unit

(Device

Layer)

Light and

Socket

(Device

Layer)

Z-Wave

Communications

(System Control

Layer)

Data

Processor

(System

Control

Layer)

Operating

System

(System

Control

Layer)

Web

Server

(System

Control

Layer)

Database

(System

Control

Layer)

P

R

O

D

U

C

E

R

S

U

B

S

Y

S

T

E

Web Interface

(User Layer)

 UL1

Device Input

(User Layer)

 UL3 UL2

Blind Controller

Unit (Device

Layer)

 DL4 DL1

Light and Socket

(Device Layer)

 DL3 DL2

Z-Wave

Communications

(System Control

Layer)

 SC11

SC13

 SC1

Data Processor

(System Control

Layer)

 SC2 SC10 SC5 SC3

Operating System

(System Control

Layer)

 SC9 SC8

Web Server

(System Control

Layer)

SC12 SC6 SC7

Database

(System Control

 SC4

Detailed Design Specification Z-Wave Smart Home

8/6/2012 52 of 54 BetaHomes

Table 7-3: Producer Consumer Relationship

M

Layer)

Detailed Design Specification Z-Wave Smart Home

8/6/2012 53 of 54 BetaHomes

8. Acceptance Plan

8.1 Overview

This section discusses the acceptance criteria that must be met by the ZSH system to be considered

minimally complete. These criterions are critical and must be fulfilled in order for the end product to be

accepted by the customers and the stakeholders.

8.2 Packaging and Installation

The ZSH System will contain a blinds control unit, light switch module, electrical socket module, CD

with backup software, mini Linux server, Z wave USB controller and a user manual. The user manual

shall provide all the instructions required for the installation and maintenance of the ZSH system.

8.3 Acceptance Testing

ZSH System acceptance testing shall be conducted to ensure that product meets the entire acceptance

criterion. System testing shall be conducted to ensure that the system’s performance meets the customer

expectation. The details of this testing will be provided in the System Test Plan document.

8.4 Acceptance Criteria

Acceptance criteria are the requirements that must be completed for the project to be accepted as

complete. These requirements include the top priorities of the project which are derived from the critical

requirements and would affect the functionality of the product if not taken into consideration.

ZSH System must meet the following requirements agreed upon by all the stakeholders involved in the

project:

 The product is web based

 The controller is Z-wave enabled

 The system is modular

 The product has no sharp edges

 The system is properly insulated

 The system has no hanging wires

 The modules are z-wave enabled

 The application has a meaningful GUI

Detailed Design Specification Z-Wave Smart Home

8/6/2012 54 of 54 BetaHomes

9. Appendices

 Z-Wave Command Classes

 Software Design Specification: Z-Wave Protocol Overview

 Z-Wave Node Type Overview and Network Installation Guide

