
The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 1-

TMPC Pattern Generator
Programmatic Interface (PPI)

User’s Manual

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 2-

Table of Contents
1 Contacting The Moving Pixel Company... 4

2 Introduction.. 5

2.1 Differences between TMPC PPI and legacy Tektronix PPI 6

3 Setting up PPI .. 1

3.1 Registering COM interfaces... 1

3.2 Configuring DCOM.. 1
3.2.1 Launching dcomcnfg .. 1
3.2.2 Server Machine Configuration.. 2
3.2.3 Client Machine Configuration .. 2

4 PPI Client Programming ... 4

4.1 PPI Interfaces .. 4

4.2 PPI Support Files .. 4

5 PPI Reference .. 6

5.1 Quick Reference .. 7

5.2 IPGApplication Methods.. 10
5.2.1 IPGApplication::GetSystem ... 10
5.2.2 IPGApplication::ShowWindow .. 11

5.3 IPGSystem Methods ... 12
5.3.1 IPGSystem::AcquireModules ... 12
5.3.2 IPGSystem::Advance.. 14
5.3.3 IPGSystem::Export ... 15
5.3.4 IPGSystem::GetAcquiredModuleCount ... 16
5.3.5 IPGSystem::GetAcquiredModuleProperties... 17
5.3.6 IPGSystem::GetGroupNames ... 18
5.3.7 IPGSystem::GetGroupSize ... 19
5.3.8 IPGSystem::GetModuleCount .. 20
5.3.9 IPGSystem::GetModuleSerialNumber ... 21
5.3.10 IPGSystem::GetProbeChannelNames... 22
5.3.11 IPGSystem::GetProbeType... 23
5.3.12 IPGSystem::GetRunStatus.. 24
5.3.13 IPGSystem::GetSWVersion.. 25
5.3.14 IPGSystem::Import ... 26
5.3.15 IPGSystem::InvertSignalOutput ... 27
5.3.16 IPGSystem::IsPGBusy.. 28
5.3.17 IPGSystem::Jump ... 29
5.3.18 IPGSystem::LoadSystem .. 30
5.3.19 IPGSystem::ReleaseAllModules... 31
5.3.20 IPGSystem::Run ... 32
5.3.21 IPGSystem::SaveSystem... 33

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 3-

5.3.22 IPGSystem::SetClockFrequency... 34
5.3.23 IPGSystem::SetClockMode .. 35
5.3.24 IPGSystem::SetClockPeriod ... 36
5.3.25 IPGSystem::SetDataDelay.. 37
5.3.26 IPGSystem::SetDataDelay180.. 39
5.3.27 IPGSystem::SetDiscontinuousClock .. 40
5.3.28 IPGSystem::SetEventFilterPeriod... 41
5.3.29 IPGSystem::SetEventModeForAdvance... 42
5.3.30 IPGSystem::SetEventModeForJump .. 43
5.3.31 IPGSystem::SetEventThreshold ... 44
5.3.32 IPGSystem::SetHiZOnStop .. 45
5.3.33 IPGSystem::SetHostRunTrigger... 46
5.3.34 IPGSystem::SetInputClockDelay ... 47
5.3.35 IPGSystem::SetInputClockFilterPeriod.. 49
5.3.36 IPGSystem::SetInputClockInvert ... 50
5.3.37 IPGSystem::SetInputClockThreshold... 51
5.3.38 IPGSystem::SetOutputLevel... 52
5.3.39 IPGSystem::SetReferenceClockSource .. 53
5.3.40 IPGSystem::SetRunMode... 54
5.3.41 IPGSystem::SetRunTriggerSource ... 55
5.3.42 IPGSystem::SetSignalInput .. 56
5.3.43 IPGSystem::SetSignalOutput.. 57
5.3.44 IPGSystem::SetStrobeShape... 58
5.3.45 IPGSystem::SetVarDelay ... 59
5.3.46 IPGSystem::SetVarDifferential .. 60
5.3.47 IPGSystem::SetVarGroup... 61
5.3.48 IPGSystem::SetVarHighLevel.. 62
5.3.49 IPGSystem::SetVarInhibitEnable ... 63
5.3.50 IPGSystem::SetVarInhibitThreshold .. 64
5.3.51 IPGSystem::SetVarLowLevel... 65
5.3.52 IPGSystem::SetVarSlewRate.. 66
5.3.53 IPGSystem::Step ... 67
5.3.54 IPGSystem::Stop... 68

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 4-

1 Contacting The Moving Pixel Company
For any questions or comment about PPI or PGApp, you can contact us using one of the
methods below:

Phone +1.503.626.9663 US Pacific Time Zone

Fax +1.503.626.9653 US Pacific Time Zone

Address The Moving Pixel Company
 4905 SW Griffith Drive, Suite 106
 Beaverton, Oregon 97005 USA

Email information@movingpixel.com

Web site http://www.movingpixel.com

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 5-

2 Introduction
The Moving Pixel Company’s Pattern Generator Programmatic Interface (PPI) is based
on Microsoft’s Component Object Model (COM/DCOM). It gives the TMPC Pattern
Generator the ability to be controlled from a separate user program running on any host
accessible via a Microsoft network or network running a third party DCOM application.

In PPI, an instance of PGApp (the controlling application for the PG) is called the server
and the user program is called the client. If controlling real hardware, the server always
runs and resides on a machine/TLA connected via USB to one or more PG modules.
This machine may be the same or different from the host for the client application.

There is a one-to-one relationship between server and client, and each client launches its
own instance of PGApp when creating a new COM Application object (defined by the
PPI interface). Launched in this way, PGApp always comes up connected to a single
offline module (i.e. not connected to a real PG module).

Once created, the client can obtain a COM System object, allowing it to query for PG
modules available on the server machine and connect to one in particular. After
connection, numerous methods are available to configure and operate the PG. When the
client is finished with the PG, it releases its COM objects. This automatically releases
the lock on the physical PG module (so others can connect to it) and exits the
corresponding instance of PGApp.

This client/server model merely extends the current paradigm that allows for a single
local user to run multiple PGApp instances, connecting to and independently controlling
multiple PG modules. However, in this case, clients are programmatic users and may
possibly be running on a remote computer.

Some general characteristics of the programmatic interface are as follows:

• Client programs may be written in any language or programming environment
that supports COM. Common examples are Visual C++ and Visual Basic. PPI
has been tested under Windows XP, 2K, and Vista.1

• All of the exported server interfaces are dual interfaces (they support static and

dynamic binding). Depending on the client programming language, it may be
only possible (or just easier) to use one interface over the other.

• When a client launches a PGApp server, the main window of the server

application will be visible and “Client Connected” will be displayed in the main

1 Note that at the time of this writing Vista client applications controlling either a local PGApp server or a
remote PGApp server running under an OS other than Vista have been successfully tested. Remote clients
controlling a PGApp server running under Vista has not yet been made to work, presumably due to one or
more of the new security features introduced in Vista. Please contact The Moving Pixel Company for up-
to-date information about this issue.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 6-

window status bar. Clients can hide the server’s main window via PPI. If the
window is visible, users can directly interact with the Tektronix Pattern Generator
server application.

• PGApp has many instances where the user is notified of something or asked to

confirm a particular operation. For example, before loading a system, the user is
asked whether the current system should be saved before the load operation. Since
it is not possible to ask questions through the programmatic interface, PGApp will
always proceed with the original operation as though the question were never
asked. In the previous example, the load operation would proceed without saving
the current system.

• PPI operates within the main thread of the application.

2.1 Differences between TMPC PPI and legacy Tektronix PPI
While The Moving Pixel Company PPI implementation was derived from the legacy
Tektronix PPI implementation, they differ from each other in several ways. This section
summarizes the differences between the two.

1. As described already, the TMPC client/server relationship is one-to-one. Each
client launches its own instance of PGApp. Tek PPI had a many-to-one
client/server model, where only one instance of the PG application ran on the host
machine and all clients connected to it.

2. TMPC PPI no longer defines a Module object. Because of the tighter coupling

between PGApp and the PG module, the Module object interface has been
subsumed into the System object interface.

3. TMPC PG modules are uniquely referenced via serial number whereas Tek PPI

generally referred to specific PG modules by TLA slot number.

4. Support for module configuration has been greatly expanded in the TMPC PPI
interface. While Tek PPI provided a few core module configuration routines,
TMPC PPI provides routines to set up all PGApp module, probe, and signal setup
parameters. In addition, the GetRunStatus routine discloses when the PG is
waiting on an event and allows the client to advance the PG from the wait state.
Similarly, step mode is supported for single-stepping test vectors from a client
application.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 1-

3 Setting up PPI

3.1 Registering COM interfaces
The first step to getting PPI working is to register the COM interfaces and classes
provided by PGApp. Registration needs to be performed on both the client and server
machines (if they are different) and is achieved simply by installing and running PGApp
on both machines and selecting the System menu option “Register As COM Server”.

This menu option enters information about its COM interfaces in the local registry. Even
if you do not intend to use PGApp on the client machine you still must install and run it
to register its COM interfaces. This information is used by your client application to
navigate through COM/DCOM system calls to reach and communicate with a PGApp
server.

Note that under Windows Vista, you must run PGApp in administrator mode to
successfully register PGApp as a COM server. To do this, right-click the PGApp
executable and select “Run As Administrator”.

While PGApp can be launched normally for the purposes of COM registration, it can also
be launched through the command line. Open a DOS window, change to the application
directory (by default c:/program files/TMPC/PGApp) and type the command: PGApp
/RegServer. Similarly, you may also type PGApp /UnregServer to unregister the COM
interfaces. (This method will not work under Vista, however, unless you have set the
privilege level of the PGApp executable to run the program as an administrator. You can
do this by right-clicking on PGApp.exe, select properties, compatibility tab, and check
the box “Run this program as an administrator”).

3.2 Configuring DCOM
Now that the default COM interfaces have been defined, you can use the Windows utility
dcomcnfg.exe to modify the registration and set up security parameters depending on
how you plan to use PPI. This needs to be done on both the client and server machines.
Note that you will need Administrator privileges on both machines to perform this task.

3.2.1 Launching dcomcnfg
Each Windows operating system has a slightly different method for accessing the COM
property page of an application. To bring up the properties for the PGApp, follow one of
the procedures outlined below depending on the operating system:

Under Windows Vista/XP:

1. Bring up the Start Menu, select Run, and type dcomcnfg (or bring up DOS
window and type dcomcnfg)

2. Double-click on Component Services in right pane
3. Double-click on Computers in right pane
4. Double-click on My Computer in right pane
5. Double-click on DCOM Config folder in right pane

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 2-

6. Right-click on “TMPC Pattern Generator” icon and select Properties

Under Windows 2K:

1. Bring up the Start Menu, select Run, and type dcomcnfg (or bring up DOS
window and type dcomcnfg)

2. Scroll through list, highlight “TMPC Pattern Generator”, and click Properties
button.

3.2.2 Server Machine Configuration
On the server machine, bring up the property page for the TMPC Pattern Generator
(PGApp) and perform the following steps:

1. On the general tab, set the authentication level to None.
2. On the location tab, check “Run application on this computer”
3. On the security tab, under Launch and Activation Permissions click the

Customize button and then the Edit… button.
4. Click Add…, type “Everyone”, and click OK.
5. Check to allow all four permissions -- Local/Remote Launch and Local/Remote

Activation -- and click OK.
6. On the security tab, under Access Permissions click the Customize button and

then the Edit… button.
7. Click Add…, type “Everyone”, and click OK.
8. Check to allow both permissions -- Local/Remote Access -- and click OK.
9. On the identity tab, click “The interactive user”. This means all remote clients

connecting to the server will run under the user currently logged in.
10. Click OK to close the properties window, then exit dcomcnfg.
11. Reboot machine.

Note: this configuration turns off authentication and allows any COM client to lauch
PGApp on the server under the current user’s account. A more restrictive configuration
is to set up a user account and password just for running a PGApp server. In this case,
you would enter this account information on the identity page instead of using the
interactive user. Similarly, this information would need to be entered on the client
machine as well instead of the launching user.

3.2.3 Client Machine Configuration
If the client machine is the same as the server machine, no further DCOM configuration
is required. If the client machine is different than the server machine, you must perform a
similar procedure on it as well. On the client machine, bring up the property page for the
TMPC Pattern Generator and perform the following steps (note differences from the
server procedure in bold):

1. On the general tab, set the authentication level to None.
2. On the location tab, check “Run application on the following computer”.

Type in or browse for the name of the server computer in the space provided.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 3-

3. On the security tab, under Launch and Activation Permissions click the
Customize button and then the Edit… button.

4. Click Add…, type “Everyone”, and click OK.
5. Check to allow all four permissions -- Local/Remote Launch and Local/Remote

Activation -- and click OK.
6. On the security tab, under Access Permissions click the Customize button and

then the Edit… button.
7. Click Add…, type “Everyone”, and click OK.
8. Check to allow both permissions -- Local/Remote Access -- and click OK.
9. On the identity tab, click “The launching user”.
10. Click OK to close the properties window, then exit dcomcnfg.
11. Reboot machine.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 4-

4 PPI Client Programming

4.1 PPI Interfaces
The programmatic interface for PGApp consists of two kinds of objects: Application and
System.

Application: The Application object is created by the client to initially launch a new
instance of a PGApp server and to subsequently obtain a reference to a System object.
The Application object exports a single interface called IPGApplication.

System: The System object provides methods for controlling a PG module, including
module, probe, and system setup, run configuration and control, and save/load operations.
The System object exports a single interface called IPGSystem.

See Chapter 5 for reference information detailing the routines supported by the
IPGApplication and IPGSystem interfaces.

Generally, methods are synchronous and wait for the completion of the operation before
returning. However, some routines, such as those that deal with module acquisition and
module release, return before fully completing. Subsequent PPI calls will return the
PGAPP_E_BUSY error if PGApp is not yet ready to accept a new command. The client
can use the IsPGBusy call to query if PGApp has completed the previous command
before submitting any new PPI requests.

All methods in both PPI interfaces return an HRESULT (or SCODE). Refer to
PPIErrors.h for possible error codes. Note that when a method returns an error, output
arguments are undefined and should not be used.

4.2 PPI Support Files
Once PGApp has been installed, all PPI examples and support files can be found in the
default directory c:/Program Files/TMPC/PPI. These files include:

• PGApp_i.c – defines the PPI COM interface and class IDs
• PGApp_h.h – defines the PPI COM interface routines and type information
• PGApp.tlb – type library for PPI COM interface
• PPIErrors.h – error code defintions
• PPIUsersManualX_XX.doc – this manual
• TestPPI – Visual C++ console client example

Previously, Tektronix provided sample client applications using other languages such as
Labview, Matlab, and Visual Basic. While the TMPC version of PPI has not been tested
under these languages, it is expected they should work no differently than before. As a
convenient reference for those using these languages, these Tektronix client examples are
included in the PPI directory under the “LegacyTek” folder. While these examples will

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 5-

not work “as is” because of extensive interface method changes, they should provide a
useful overall framework for writing PPI clients in these languages.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 6-

5 PPI Reference
This section is a reference for all the objects and interfaces supported by the TMPC PG
Programmatic Interface (PPI). Code examples assume existing pointers to Application
and System objects – pApp and pSystem. These pointers would be initialized in VC++
using code as follows:

#include <comdef.h>
#include “pgapp_h.h”

HRESULT hr;
IDispatch* pTmp;
IPGApplication* pApp;
IPGSystem* pSystem;

// initialize COM Library
CoInitialize (NULL);

// create Application object
// note: on successful creation, an instance of PGApp will be launched
// on the server machine
hr = CoCreateInstance (CLSID_PGApplication, NULL,

CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
IID_IPGApplication, (void**)&pApp);

assert(SUCCEEDED(hr));

// obtain System object
hr = pApp->GetSystem(&pTmp);
assert(SUCCEEDED(hr));
hr = pTmp->QueryInterface(IID_IPGSystem, (void **)&pSystem);
assert(SUCCEEDED(hr));
pTmp->Release();

// … use objects here

// release objects
// note: after the Application object is released, the instance of PGApp that
// was launched at creation will terminate
pSystem->Release();
pApp->Release();

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 7-

Also, some of the examples below use a routine called WaitForPG that spins waiting for
the IsPGBusy routine to return false. The code for it is as follows:

5.1 Quick Reference
This section summarizes the objects and methods of PPI. These methods are described in
more detail in the Reference section.

Application Object (IPGApplication)
 HRESULT GetSystem(ppDispatch)
 HRESULT ShowWindow(Show)

System Object (IPGSystem)
 Module Discovery and Acquisition
 HRESULT GetModuleCount(pModuleCount)
 HRESULT GetModuleSerialNumber(ModuleIndex, pSerialNum)

HRESULT AcquireModules(SerialNum0, SerialNum1, SerialNum2, SerialNum3)
HRESULT ReleaseAllModules()
HRESULT GetAcquiredModuleCount(pModuleCount)
HRESULT GetAcquiredModuleProperties(ModulePos, pModuleProperties)
HRESULT GetSWVersion(pVersion)
HRESULT IsPGBusy(pBusy)

Load and Save
HRESULT LoadSystem(SystemPath)
HRESULT SaveSystem(SystemPath)
HRESULT Import(ImportFilePath, BlockNo)
HRESULT Export(ExportFilePath, BlockNo, ExportType)

Operation
HRESULT Run()
HRESULT Stop()

HRESULT WaitForPG(IPGSystem* pSystem)
{
 HRESULT hr;
 long Busy;

 for (;;) {
 hr = pSystem->IsPGBusy(&Busy);
 if (!SUCCEEDED(hr) || !Busy) break;
 }

 return(hr);
}

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 8-

HRESULT Advance()
HRESULT Step()
HRESULT Jump()
HRESULT GetRunStatus(pRunStatus)
HRESULT SetHostRunTrigger()

Module Configuration
HRESULT SetClockMode(ClockMode)
HRESULT SetClockPeriod(Period)
HRESULT SetClockFrequency(Frequency)
HRESULT SetReferenceClockSource(Source)
HRESULT SetInputClockThreshold(Threshold)
HRESULT SetInputClockFilterPeriod(FilterPeriod)
HRESULT SetInputClockInvert(Invert)
HRESULT SetInputClockDelay(Delay)
HRESULT SetDiscontinuousClock(DiscontinuousClock)
HRESULT SetEventThreshold(Threshold)
HRESULT SetEventFilterPeriod(FilterPeriod)
HRESULT SetEventModeForAdvance(EventMode)
HRESULT SetEventModeForJump(EventMode)
HRESULT SetRunMode(RunMode)
HRESULT SetHiZOnStop(HiZOnStop)
HRESULT SetRunTriggerSource(RunTriggerSource)

Probe Configuration
HRESULT GetProbeType(ModulePos, ProbeIndex, ProbeType)
HRESULT SetOutputLevel(ModulePos, ProbeIndex, Level)
HRESULT SetDataDelay(ModulePos, ProbeIndex, ByteIndex, Delay)
HRESULT SetDataDelay180(ModulePos, ProbeIndex, ByteIndex, Delay180)
HRESULT SetStrobeShape(ModulePos, ProbeIndex, StrobeShape)
HRESULT SetVarGroup(ModulePos, ProbeIndex, ChannelIndex, Group)
HRESULT SetVarHighLevel(ModulePos, ProbeIndex, ChannelIndex, Level)
HRESULT SetVarLowLevel(ModulePos, ProbeIndex, ChannelIndex, Level)
HRESULT SetVarSlewRate(ModulePos, ProbeIndex, ChannelIndex, SlewRate)
HRESULT SetVarDifferential(ModulePos, ProbeIndex, ChannelIndex, Differential)
HRESULT SetVarDelay(ModulePos, ProbeIndex, ChannelIndex, Delay)
HRESULT SetVarInhibitThreshold(ModulePos, ProbeIndex, Threshold)
HRESULT SetVarInhibitEnable(ModulePos, ProbeIndex, Enable)

Signals Configuration
HRESULT SetSignalInput(SignalInput)
HRESULT SetSignalOutput(SignalOutput)
HRESULT InvertSignalOutput(Invert)

Group/Channel Configuration
HRESULT GetGroupNames(pGroupNames)

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 9-

HRESULT GetGroupSize(GroupName, pGroupSize)
HRESULT GetProbeChannelNames(GroupName, pProbeChlNames)

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 10-

5.2 IPGApplication Methods

5.2.1 IPGApplication::GetSystem

Description:

This method returns the interface pointer for the System object.

IDL Syntax:
HRESULT GetSystem([out,retval] IDispatch** ppDispatch)

Arguments:
ppDispatch – the interface pointer for the System object.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_FAILED The operation was unsuccessful.

Example:

Remarks:
Gets the existing system object if there is one.

HRESULT hr;
IDispatch* pTmp;
IPGSystem* pSystem;

// obtain System object
hr = pApp->GetSystem(&pTmp);
assert(SUCCEEDED(hr));
hr = pTmp->QueryInterface(IID_IPGSystem, (void **)&pSystem);
assert(SUCCEEDED(hr));
pTmp->Release();

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 11-

5.2.2 IPGApplication::ShowWindow

Description:

This method shows/hides the PGApp server’s main window.

IDL Syntax:
HRESULT ShowWindow([in] long Show)

Arguments:
Show – set this flag to (0) to hide the server window and (1) to show it.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_FAILED The operation was unsuccessful.

Example:

Remarks:
The PGApp server window is shown by default when the Application object is created.
If left visible, users may interact with the PGApp server as well as the client.

Note that when the application window is visible, PPI calls are treated as user actions,
manipulating windows and updating fields as a user would. Thus, when the application
window is visible, PPI calls are significantly slower as window updating occurs. If a
lot of configuration via PPI is necessary, the programmer might consider hiding the
PGApp server window before configuration and then showing it again when
configuration is complete.

// Hide the window
pApp->ShowWindow(0);

// Show the window
pApp->ShowWindow(1);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 12-

5.3 IPGSystem Methods

5.3.1 IPGSystem::AcquireModules

Description:

Given up to 4 serial numbers, this method acquires and merges the PG modules as a
single instrument. Once acquired, none of the real modules will be available to other
applications until released. The order determines each module’s position in the
instrument, with the module specified by SerialNum0 designated as the master module.

Using a serial number of 0 requests an offline module to occupy the position. More
than one offline module may be specified in the instrument. While offline modules do
not output data when the instrument is run, they do have program data associated with
them, and allow saving/loading of system files with multiple modules.

If the master module is an offline module, the instrument is considered offline (even if
one or more slave modules are real). If the master module is a real module, the
instrument is considered real and can be run (even if one or more slave modules are
offline).

IDL Syntax:
HRESULT AcquireModules([in] long SerialNum0, [in] long SerialNum1,

[in] long SerialNum2, [in] long SerialNum3)

Arguments:
SerialNum0 – the serial number of the first (master) PG module
SerialNum1 – the serial number of the second (slave) PG module
SerialNum2 – the serial number of the third (slave) PG module
SerialNum3 – the serial number of the fourth (slave) PG module

Use serial number of 0 to designate an offline module.
Use serial number of -1 to designate no module.
Once -1 is used for a module the remaining modules must also be -1

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG Duplicate serial numbers > 0
PGAPP_E_FAILED The operation was unsuccessful. The module

may be in use by another user or application.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 13-

Example:

Remarks:
When the PGSystem object is created, it is automatically started initially connected to a
single offline module. To communicate with and control real hardware, a module or set
of modules must first be acquired using this routine. Once this call returns
successfully, PGApp may still be busy initializing. To avoid getting the
PGAPP_E_BUSY error on the subsequent call, you can use WaitForPG() to ensure
PGApp has completed first.

// build 3-module instrument with PG module with serial number 1005 as master and
two offline slave modules
pSystem->AcquireModuleBySerialNumber(SerialNumber, 0, 0, -1);

// wait for PGApp to complete initialization
WaitForPG(pSystem);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 14-

5.3.2 IPGSystem::Advance

Description:

If the PG is waiting on an event, this call triggers the waiting event so the sequence can
proceed.

IDL Syntax:
HRESULT Advance()

Arguments:
<none>

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous

call.
PGAPP_E_SYSTEM_NOT_RUNNING The PG is not running

Example:

Remarks:
This call has no effect if the PG is not waiting on an event.

// advance PG module from wait state
pSystem->Advance();

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 15-

5.3.3 IPGSystem::Export

Description:

This method exports pattern data for a particular block to an ASCII text file.

IDL Syntax:
HRESULT Export([in] BSTR ExportFilePath,[in] long BlockNo, [in] long
ExportType)

Arguments:
ExportFilePath – the file to export data to.
BlockNo – block number of the data to export
ExportType – export file type format.

Options:
 PGAPP_EXP_TLA_DATA_EXCHANGE

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from

previous call.
PGAPP_E_SYSTEM_RUNNING PG is running.
PGAPP_E_UNKNOWN_EXPORT_TYPE Invalid file type format.
PGAPP_E_INVALID_BLOCK_NUMBER Invalid block number.
PGAPP_E_INVALID_EXPORT_FILE Error creating/opening file.
PGAPP_E_FAILED The operation was unsuccessful

Example:

Remarks:
 None

// create file name string
BSTR exportFileName = SysAllocString(L"c:/my documents/BlockSave.tpg");

// export block 1 to file in TLA Data Exchange Format
pSystem->Export(exportFileName, 1, PGAPP_EXP_TLA_DATA_EXCHANGE);

// free file name string
SysFreeString(exportFileName);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 16-

5.3.4 IPGSystem::GetAcquiredModuleCount

Description:

Returns the number of acquired modules.

IDL Syntax:
HRESULT GetAcquiredModuleCount([out, retval] long* pAcquiredModuleCount)

Arguments:

pAcquiredModuleCount – returned module count

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.

Example:

Remarks:
 This routine is intended for future use. Currently, always returns (1).

long ModuleCount;

// obtain acquired module count
pSystem->GetModuleCount(&ModuleCount);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 17-

5.3.5 IPGSystem::GetAcquiredModuleProperties

Description:

Given an acquired module index, this method acquires a PG module’s properties.

IDL Syntax:
HRESULT GetAcquiredModuleProperties([in] long ModulePos, [out, retval] BSTR*
pModuleProperties)

Arguments:
ModulePos – the acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

pModuleProperties – returned string describing acquired module properties.

Formatting of the module properties string is as follows:
 “<manufacturer>,<model>,<firmware version>,<serial number>,

 <max frequency>,<memory depth>”. i.e.
 “The Moving Pixel Company,TMPCPG3A,1.00,1005,300 MHz,33554432”

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG Invalid module index
PGAPP_E_FAILED The operation was unsuccessful.

Example:

Remarks:

Client is responsible for deallocating the returned properties string when finished.

HRESULT hr;
char msg[255];
wchar_t* szOut;

// obtain acquired module properties
hr = pSystem->GetAcquiredModuleProperties(0, &szOut);
if (SUCCEEDED(hr)) {

wcstombs(msg, szOut, 255);
printf(“GetAcquiredModuleProperties returned %s\n”, msg);

 ::SysFreeString(szOut);
}

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 18-

5.3.6 IPGSystem::GetGroupNames

Description:

Retrieves a list of group names from the PG.

IDL Syntax:
HRESULT GetGroupNames([out, retval] VARIANT* pGroupNames)

Arguments:
pGroupNames – returned list of PG group names.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. The module

may be in use by another user or application.

Example:

Remarks:
 None

HRESULT hr;
SAFEARRAY FAR* pNameArray = NULL;
SAFEARRAYBOUND bound;
BSTR HUGEP *pbstr = NULL;
VARIANT names;

VariantInit(&names);
hr = pSystem->GetGroupNames(&names);
if (SUCCEEDED(hr)) {
 pNameArray = V_ARRAY(&names);
 SafeArrayAccessData(pNameArray, (void HUGEP* FAR*)&pbstr);

 bound = pNameArray->rgsabound[0];
 for (i = 0; i < bound.cElements; i++) {
 _bstr_t groupName(pbstr[bound.lLbound + i], TRUE);
 Printf(“Group name %d is %s\n”, I, groupName);
 }

 SafeArrayUnaccessData(pNameArray);
}

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 19-

5.3.7 IPGSystem::GetGroupSize

Description:

Gets the size in bits of a given group.

IDL Syntax:
HRESULT GetGroupSize([in] BSTR GroupName, [out, retval] long* pGroupSize)

Arguments:
GroupName – name of group to get size of
pGroupSize – returned group size in bits

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. The module

may be in use by another user or application.

Example:

Remarks:

None

long GroupSize;

// obtain the group size for the group “UserGrp1”
BSTR GroupName = SysAllocString(L”UserGrp1”);
pSystem->GetGroupSize(GroupName, &GroupSize);
SysFreeString(GroupName);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 20-

5.3.8 IPGSystem::GetModuleCount

Description:

Gets the number of modules present on the server machine.

IDL Syntax:
HRESULT GetModuleCount([out, retval] long* pModuleCount)

Arguments:
pModuleCount – returned number of modules present

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.

Example:

Remarks:
None.

long ModuleCount;

// get the number of modules present
pSystem->GetModuleCount(&ModuleCount);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 21-

5.3.9 IPGSystem::GetModuleSerialNumber

Description:

Gets the serial number of a module given its module index. i.e. an ordinal in the range 0
to GetModuleCount().

IDL Syntax:
HRESULT GetModuleSerialNumber([in] long ModuleIndex, [out, retval] long*
pSerialNumber)

Arguments:
ModuleIndex – the module index, i.e. an ordinal in the range of 0 to the value returned

by GetModuleCount - 1.
pSerialNumber – returned serial number

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_INVALID_ARG Module index is out of range

Example:

Remarks:

Note: the serial number returned for offline modules is 0.

long SerialNumber;

// get the serial number of the first module present on the server system
pSystem->GetModuleSerialNumber(0, &SerialNumber);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 22-

5.3.10 IPGSystem::GetProbeChannelNames

Description:

Gets the size in bits of a given group.

IDL Syntax:
HRESULT GetProbeChannelNames([in] BSTR GroupName, [out, retval] BSTR*
pProbeChlNames)

Arguments:
GroupName – name of group to get probe channels from
pProbeChlNames – returned string representing probe channels

Channel name string format is identical to the entry in the channel setup page of the
Setup Window in PGApp. For example, the string returned from a default system in
the example below would be: “A1(7-0),A0(7-0)”. Please see the PGApp User Manual
for more description.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

None

char msg[255];
wchar_t* szOut = NULL ;
HRESULT hr;
BSTR GroupName = SysAllocString(L"UserGrp1");

hr = pSystem->GetProbeChannelNames(GroupName, &szOut);
if (SUCCEEDED(hr)) {
 wcstombs(msg, szOut, 255);
 printf("UserGrp1 channel names: %s\n", msg);
 SysFreeString(szOut);
}

SysFreeString(GroupName);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 23-

5.3.11 IPGSystem::GetProbeType

Description:

Gets the probe type for the given acquired module position and probe index.

IDL Syntax:
HRESULT GetProbeType([in] long ModulePos, [in] long ProbeIndex, [out, retval]
long* pProbeType)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0=A, 1=B, 2=C, 3=D
pProbeType – returned probe type, one of the PGAPPProbeType enumeration:

 PGAPP_NONE = 0,
 PGAPP_P370LV = 5,
 PGAPP_LVDS = 6,
 PGAPP_P375 = 9,
 PGAPP_P370 = 11,
 PGAPP_P370LV2 = 12

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

None

long ProbeType;

// get probe type for acquired module 0, probe index 2
pSystem->GetProbeType(0, 2, &ProbeType);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 24-

5.3.12 IPGSystem::GetRunStatus

Description:

Gets the probe type for the given acquired module position and probe index.

IDL Syntax:
HRESULT GetRunStatus([out, retval] long* pRunStatus)

Arguments:
pRunStatus – returned status of the PG, one of the RunStatus enumeration

 PGAPP_IDLE = 0, // PG is not running
 PGAPP_WAITING = 2, // PG is waiting on an event
 PGAPP_RUNNING = 3, // PG is running
 PGAPP_ARMED = 4 // PG is waiting for a run trigger

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

None

long RunStatus;

// get current PG run status
pSystem->GetRunStatus(&RunStatus);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 25-

5.3.13 IPGSystem::GetSWVersion

Description:

Gets the PGAPP software version.

IDL Syntax:
HRESULT GetSWVersion([out, retval] BSTR* pVersion)

Arguments:
pVersion – returned string containing the software version of the form “X.X.XXX”, for
example “2.0.007”.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:
User is responsible for deallocating returned string.

char msg;
wchar_t* szOut = NULL;
HRESULT hr;

hr = pSystem->GetSWVersion(&szOut);
if (SUCCEEDED(hr)) {
 wcstombs(msg, szOut, 255);
 printf("GetSWVersion returned the software version: %s\n", msg);
 SysFreeString(szOut);
} else {
 printf("GetSWVersion returned error 0x%x\n", hr);
}

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 26-

5.3.14 IPGSystem::Import

Description:

This method imports pattern data from an ASCII text file into a given block.

IDL Syntax:
HRESULT Import([in] BSTR ImportFilePath, [in] long BlockNo)

Arguments:
ImportFilePath – file to be imported
BlockNo – block number to import into

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from

previous call.
PGAPP_E_SYSTEM_RUNNING PG is running.
PGAPP_E_UNKNOWN_IMPORT_TYPE Invalid file type format.
PGAPP_E_INVALID_BLOCK_NUMBER Invalid block number.
PGAPP_E_INVALID_IMPORT_FILE Error opening file.
PGAPP_E_FAILED The operation was unsuccessful

Example:

Remarks:

The file type is automatically detected. Import file types supported are:
 Tek TLA Data Exchange Format
 Synapticad Spreadsheet Format
 Agilent HPD Format

BSTR ImportFileName = SysAllocString(L”c:/my documents/block.tpg”);

// import data from block.tpg into block 2
pSystem->Import(ImportFileName, 2);

SysFreeString(ImportFileName);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 27-

5.3.15 IPGSystem::InvertSignalOutput

Description:

Inverts the signal output if SignalOut is currently set to ExtTrigOut.

IDL Syntax:
HRESULT InvertSignalOutput([in] long Invert)

Arguments:
Invert – set to (0) to not invert, (1) to invert.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:
Only the ExtTrigOut signal can be inverted. If ExtTrigOut is not the current SignalOut,
this call has no effect.

// set SignalOut to ExtTrigOut and invert
pSystem->SetSignalOutput(PGAPP_EXT_TRIG_OUT);
pSystem->InvertSignalOutput(1);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 28-

5.3.16 IPGSystem::IsPGBusy

Description:

Indicates whether the PG has finished initialization after acquiring or releasing a
module.

IDL Syntax:
HRESULT IsPGBusy([out, retval] long* pBusy)

Arguments:
pBusy – returned flag indicating busy status: (1) for busy, (0) for not busy.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.

Example:

Remarks:
Use after the following calls:

AcquireModuleBySerialNumber(),
AcquireModuleByIndex(),
ReleaseAllModules()

HRESULT hr;
long Busy;

// wait for PG to complete initialization after module acquistion/release
for (;;) {
 hr = pSystem->IsPGBusy(&Busy);
 if (SUCCEEDED(hr) || !Busy) break;

Sleep(10);
}

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 29-

5.3.17 IPGSystem::Jump

Description:

This call forces the next branch test to succeed and thus take the branch.

IDL Syntax:
HRESULT Jump()

Arguments:
<none>

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous

call.
PGAPP_E_SYSTEM_NOT_RUNNING The PG is not running

Example:

Remarks:
This call is only really useful when the PG is in an infinite loop waiting on a branch
event to break out of the loop.

// force next branch test to succeed and the branch to be taken
pSystem->Jump();

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 30-

5.3.18 IPGSystem::LoadSystem

Description:

Loads the specified system file.

IDL Syntax:
HRESULT LoadSystem([in] BSTR SystemPath)

Arguments:
SystemPath – full or relative path of system file to load.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING PG is running
PGAPP_E_LOAD_INVALID_FILE Error opening file
PGAPP_E_LOAD_ERROR Error loading information from file
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

All file paths without machine qualifiers refer to drives mapped on the server computer.

All current PG data and settings will be lost.

Probe information will be automatically updated if probe configuration in system file
does not match hardware. This has the side effect of resetting the ouput levels of
probes that do not match to their minimum levels.

BSTR loadSystemName = SysAllocString(L"c:/my documents/EventTest.tpg");

// load system file into PG
hr = pSystem->LoadSystem(loadSystemName);

SysFreeString(loadSystemName);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 31-

5.3.19 IPGSystem::ReleaseAllModules

Description:

Releases any acquired modules.

IDL Syntax:
HRESULT ReleaseAllModules()

Arguments:
None

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:
After this call, all acquired modules will be available for acquisition and the PGApp
server will be reset to the default instrument with a single offline module.

// release all acquired modules
pSystem->ReleaseAllModules();

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 32-

5.3.20 IPGSystem::Run

Description:

Runs/Arms the PG depending on the run trigger source.

IDL Syntax:
HRESULT Run()

Arguments:
None

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is already running.
PGAPP_E_PROBES_CANT_SUP
PORT FREQ

The current clock frequency is greater than the
maximum supported by the current probes.

PGAPP_E_FAILED The operation was unsuccessful.

Example:

Remarks:

If the run trigger source is set to None (see SetRunTriggerSource), this command runs
the PG. If the run trigger source is set to a signal other than None, the PG enters Arm
mode, where the PG is fully prepared to run with outputs enabled and the first sequence
vector driving at the outputs. Only the output clock is not enabled. The output clock is
enabled when the trigger source or HostRunTrigger asserts.

A PG in Offline mode compiles when receiving the Run command, but does not
actually run.

// run PG
pSystem->Run();

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 33-

5.3.21 IPGSystem::SaveSystem

Description:

Saves the PG system to a file.

IDL Syntax:
HRESULT SaveSystem([in] BSTR SystemPath, [in] BSTR UserComment, [in] long
SaveData)

Arguments:
SystemPath – full or relative filename path to save to
UserComment – arbitrary user comment to save in file
SaveData – flag to save program data (1) or not save program data (0) in file

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running.
PGAPP_E_SAVE_ERROR An error occurred during the save operation.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

All file paths without machine qualifiers refer to drives mapped on the server computer.

BSTR saveSystemName = SysAllocString(L"c:/my documents/EventTestSave.tpg");
BSTR comment = SysAllocString(L"Sample Comment");

// save PG configuration and data to system file
pSystem->SaveSystem(saveSystemName, comment, 1);

// free strings
SysFreeString(saveSystemName);
SysFreeString(comment);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 34-

5.3.22 IPGSystem::SetClockFrequency

Description:

Sets the clock frequency.

IDL Syntax:
HRESULT SetClockFrequency([in] double Frequency)

Arguments:
Frequency – clock frequency setting in Hz. The valid frequency range for the PG3A is
100 to 300E+6.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_INVALID_ARG Invalid frequency.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

Note that the clock and all data delays will be clipped to a new maximum of 17.25 ns if
the clock frequency is changed from less than 29 MHz to greater than 29 MHz.

This setting is only allowed to be changed when the PG is idle.

// set clock frequency to 10 MHz
pSystem->SetClockFrequency(10E+6);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 35-

5.3.23 IPGSystem::SetClockMode

Description:

Sets the clocking mode.

IDL Syntax:
HRESULT SetClockMode([in] long ClockMode)

Arguments:
ClockMode – clocking mode setting, one of the following:

 PGAPP_INTERNAL_CLOCKING = 0
 PGAPP_EXTERNAL_CLOCKING = 1

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_INVALID_ARG Invalid clock mode.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is only allowed to be changed when the PG is idle.

// set PG in internal clocking mode
pSystem->SetClockMode(PGAPP_INTERNAL_CLOCKING);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 36-

5.3.24 IPGSystem::SetClockPeriod

Description:

Sets the clock period.

IDL Syntax:
HRESULT SetClockPeriod([in] double Period)

Arguments:
Period – clock period setting in seconds. The valid period range for the PG3A module
is 1E-2 to 3.3333E-9.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_INVALID_ARG Invalid period
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

Note that the clock and all data delays will be clipped to a new maximum of 17.25 ns if
the clock period is changed from greater than 34.48 ns (29 MHz) to less than 34.48 ns.

This setting is only allowed to be changed when the PG is idle.

// set clock period to 100 ns
pSystem->SetClockPeriod(100E-9);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 37-

5.3.25 IPGSystem::SetDataDelay

Description:

Sets the delay for the data byte lane specified by the given module, probe, and byte-lane
indexes.

IDL Syntax:
HRESULT SetDataDelay([in] long ModulePos, [in] long ProbeIndex, [in] long
ByteIndex, [in] double Delay)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ByteIndex – byte-lane within probe, use 0 = LSB, 1 = MSB
Delay – data delay in seconds. The valid range for Delay depends on clock frequency:

Clock Frequency Delay Range
>= 29 MHz 0 to 17.25 ns
< 29 MHz 0 to 500 ns

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG An invalid argument was provided
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This delay is in addition to the data delay setting from SetDataDelay180.

Note that this setting will be clipped to a maximum of 17.25 ns if the clock frequency is
changed from less than 29 MHz to greater than 29 MHz.

This setting is allowed to be changed while the PG is running. However, the user should
be aware that adjusting the data delay when the PG is running can have undesirable side

// set the data delay for module 0, probe 2, MS byte lane to 5 ns
pSystem->SetDataDelay(0, 2, 1, 5.0E-9);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 38-

effects. Internally, data delays are implemented by delaying the clock associated with the
data. Because changes to the data delay are asynchronous to the associated data clock, it
is possible to generate a clock glitch. If a glitch occurs, subsequent vectors output by the
PG cannot be guaranteed to be correct (until the sequence is stopped and restarted).
Thus, the real-time adjustment of data delay is currently intended to be used for
calibration purposes only (e.g. to align edge positions relative to reference signals when
using a looping test sequence).

We are working to improve this situation. Please call us to discuss your critical
application needs for glitch-less, run-time, data delay adjustment.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 39-

5.3.26 IPGSystem::SetDataDelay180

Description:

Sets the data delay 180 parameter which, when set, inverts the clock used for the data
byte lane specified by the given module, probe, and byte-lane indexes.

IDL Syntax:
HRESULT SetDataDelay180([in] long ModulePos, [in] long ProbeIndex, [in] long
ByteIndex, [in] long Delay180)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ByteIndex – byte-lane within probe, use 0 = LSB, 1 = MSB
Delay180 – flag to clear (0) or set (1) the delay.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG An invalid argument was provided
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

For a continuous, 50% duty-cycle clock, this has the effect of delaying the data byte by
half the clock period.

This delay is in addition to the data delay setting from SetDataDelay180.

This setting is allowed to be changed while the PG is running.

// set the data delay 180 for module 0, probe 2, MS byte lane
// if using a 50% duty cycle 40 MHz clock, this will add a 12.5 ns delay to the data byte
pSystem->SetDataDelay(0, 2, 1, 1);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 40-

5.3.27 IPGSystem::SetDiscontinuousClock

Description:

Sets the discontinuous clock flag.

IDL Syntax:
HRESULT SetDiscontinuousClock([in] long DiscontinuousClock)

Arguments:
DiscontinuousClock – flag to clear (0) or set (1) the discontinuous clock setting.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG The DiscontinuousClock value was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:
Set this flag when in external clocking mode and the input clock is discontinuous. This
disables frequency checking and related warnings. Notably, it also prevents the output
clocks from automatically being inverted on output (this provides for an optimal
setup/hold clocking window for the sytem under test). Please see PGApp User Manual
for more discussion.

This setting is allowed to be changed while the PG is running.

// clear the discontinuous clock setting
pSystem->SetDiscontinuousClock(0);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 41-

5.3.28 IPGSystem::SetEventFilterPeriod

Description:

Sets the event filter period.

IDL Syntax:
HRESULT SetEventFilterPeriod([in] long FilterPeriod)

Arguments:
FilterPeriod – filter period setting; use the PGAPPEventFilterPeriod enumeration:

 PGAPP_EVENT_FILTER_0_NS = 0,
 PGAPP_EVENT_FILTER_25_NS = 1,
 PGAPP_EVENT_FILTER_50_NS = 2

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG The FilterPeriod argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set the event filter period to 25 ns
pSystem->SetEventFilterPeriod(PGAPP_EVENT_FILTER_25_NS);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 42-

5.3.29 IPGSystem::SetEventModeForAdvance

Description:

Determines how WaitFor events are processed, either edge or level triggered.

IDL Syntax:
HRESULT SetEventModeForAdvance([in] long EventMode)

Arguments:
EventMode – the event mode setting; use the PGAPPEventMode enumeration:

 PGAPP_EDGE = 0,
 PGAPP_LEVEL = 1

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_E_INVALID_ARG The EventMode argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is only allowed to be changed when the PG is idle.

// set the event mode for advance to LEVEL
pSystem->SetEventModeForAdvance(PGAPP_LEVEL);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 43-

5.3.30 IPGSystem::SetEventModeForJump

Description:

Determines how events are processed for branches, either edge or level triggered.

IDL Syntax:
HRESULT SetEventModeForJump([in] long EventMode)

Arguments:
EventMode – the event mode setting; use the PGAPPEventMode enumeration:

 PGAPP_EDGE = 0,
 PGAPP_LEVEL = 1

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_E_INVALID_ARG The EventMode argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is only allowed to be changed when the PG is idle.

// set the event mode for branches to LEVEL
pSystem->SetEventModeForJump(PGAPP_LEVEL);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 44-

5.3.31 IPGSystem::SetEventThreshold

Description:

Sets the threshold for input events.

IDL Syntax:
HRESULT SetEventThreshold([in] double Threshold)

Arguments:
Threshold – input event threshold in volts. The legal range for Threshold is -5.0V to
5.0V.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG The Threshold argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:
This setting is allowed to be changed while the PG is running.

// set the event input threshold to 1.5 volts
pSystem->SetEventThreshold(1.5);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 45-

5.3.32 IPGSystem::SetHiZOnStop

Description:

Sets the HiZOnStop flag.

IDL Syntax:
HRESULT SetHiZOnStop([in] long HiZOnStop)

Arguments:
HiZOnStop – flag to clear (0) or set (1) the HiZOnStop setting.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_E_INVALID_ARG The HiZOnStop argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

Puts output data and strobe signals into high-impedance state and sets flag to return
signals to high-impedance state when Run completes.

This setting is only allowed to be changed when the PG is idle.

// set HiZOnStop
pSystem->SetHiZOnStop(1);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 46-

5.3.33 IPGSystem::SetHostRunTrigger

Description:

Sets the HostRunTrigger flag, causing the PG to run if armed.

IDL Syntax:
HRESULT SetHostRunTrigger()

Arguments:
none

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This routine has no effect if the PG is not in arm mode.

The PG enters arm mode when the run trigger source is set to a signal other than None
and then run. At the time the PG is run, the run trigger flag is cleared and the PG waits
for the run trigger to occur. The HostRunTrigger is effectively a master trigger, forcing
a trigger regardless of run trigger source.

// set host run trigger flag
pSystem->SetHostRunTrigger();

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 47-

5.3.34 IPGSystem::SetInputClockDelay

Description:

Sets the external input clock delay.

IDL Syntax:
HRESULT SetInputClockDelay([in] double Delay)

Arguments:
Delay – input clock delay in seconds. The valid range for Delay depends on clock
frequency:

Clock Frequency Delay Range
>= 29 MHz 0 to 17.25 ns
< 29 MHz 0 to 500 ns

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG The Delay argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting will delay all output clocks relative to the input clock but will have no
effect on output clock/data/strobe timing relationships.

Note that this setting will be clipped to a maximum of 17.25 ns if the clock frequency is
changed from less than 29 MHz to greater than 29 MHz.

This setting is allowed to be changed while the PG is running. However, the user
should be aware that adjusting the input clock delay when the PG is running can have
undesirable side effects. Because changes to the clock delay are asynchronous to the
clock, it is possible to generate a glitch. If a glitch occurs, subsequent vectors output by
the PG cannot be guaranteed to be correct (until the sequence is stopped and restarted).
Thus, the real-time adjustment of clock delay is currently intended to be used for

// set the input clock delay to 5 ns
pSystem->SetInputClockDelay(5.0E-9);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 48-

calibration purposes only (e.g. to align edge positions relative to reference signals when
using a looping test sequence).

We are working to improve this situation. Please call us to discuss your critical
application needs for glitch-less, run-time, clock delay adjustment.

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 49-

5.3.35 IPGSystem::SetInputClockFilterPeriod

Description:

Sets the external input clock filter period to filter glitches of width less than the filter
period from the input clock.

IDL Syntax:
HRESULT SetInputClockFilterPeriod([in] long FilterPeriod)

Arguments:
FilterPeriod – input clock filter period; use enumeration PPAPPClockFilterPeriod:

PGAPP_CLOCK_FILTER_0_NS = 0,
PGAPP_CLOCK_FILTER_1_NS = 1,
PGAPP_CLOCK_FILTER_4_NS = 2,
PGAPP_CLOCK_FILTER_10_NS = 3

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG The FilterPeriod argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set clock filter period to 4 ns
pSystem->SetInputClockFilterPeriod(PGAPP_CLOCK_FILTER_4_NS);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 50-

5.3.36 IPGSystem::SetInputClockInvert

Description:

Sets/clears the external input clock inversion flag

IDL Syntax:
HRESULT SetInputClockInvert([in] long Invert)

Arguments:
Invert -- flag to clear (0) or set (1) input clock inversion.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG The Invert argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:
This setting will effectively delay all output clocks relative to the input clock by 180
degrees but will have no effect on output clock/data/strobe timing relationships.

This setting is allowed to be changed while the PG is running.

// invert the input clock
pSystem->SetInputClockInvert(1);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 51-

5.3.37 IPGSystem::SetInputClockThreshold

Description:

Sets the threshold for the external input clock.

IDL Syntax:
HRESULT SetInputClockThreshold([in] double Threshold)

Arguments:
Threshold – the external input clock threshold in volts. Valid range is from -2V to
2.5V.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG The Threshold argument was invalid
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set the input clock threshold to 1.5V
pSystem->SetInputClockThreshold(1.5);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 52-

5.3.38 IPGSystem::SetOutputLevel

Description:

Sets the output level of the given probe.

IDL Syntax:
HRESULT SetOutputLevel([in] long ModulePos, [in] long ProbeIndex, [in] double
Level)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
Level – output level in volts. The valid range for output level depends on probe type as

follows:

Probe Type Min (V) Min Spec (V) Max (V)
P370 0.30 4.50 5.50
P370LV 0.50 1.65 3.60
P370LV2 0.54 0.80 2.50
LVDS N/A N/A N/A
P375 N/A N/A N/A

Level must fall within Min/Max range or SetOutputLevel will return an error. If
it is less than Min Spec but greater than or equal to Min it is allowed, but falls
outside of probe’s guaranteed operating range.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_INVALID_ARG An argument was invalid.
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set the output level of probe 2 to 3.3 V
pSystem->SetOutputLevel(0, 2, 3.3);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 53-

5.3.39 IPGSystem::SetReferenceClockSource

Description:

Sets the reference clock source for internal clocking.

IDL Syntax:
HRESULT SetReferenceClockSource([in] long Source)

Arguments:
Source – the reference clock source; use PGAPPRefClkSource enumeration

 PGAPP_INTERNAL_REFCLK = 0,
 PGAPP_EXTERNAL_REFCLK = 1,
 PGAPP_TLA_BACKPLANE_REFCLK = 2,
 PGAPP_TEKLINK_REFCLK = 3

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_INVALID_ARG Invalid Source argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

A PGAPP_INVALID_ARG error is returned if the TLA backplane reference clock is
set as the run trigger source and the TLA backplane is not detected (i.e. the PG module
is running in a stand-alone cabinet).

PGAPP_TEKLINK_REFCLK is not currently supported.

This setting is only allowed to be changed when the PG is idle.

// set the reference clock source to internal
pSystem->SetReferenceClockSource(PGAPP_INTERNAL_REFCLK);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 54-

5.3.40 IPGSystem::SetRunMode

Description:

Sets the PG run mode.

IDL Syntax:
HRESULT SetRunMode([in] long RunMode)

Arguments:
RunMode – run mode setting; use from PGAPPRunMode enumeration:
 PGAPP_CONTINUOUS = 0,
 PGAPP_STEP = 1

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_INVALID_ARG Invalid RunMode argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

Set the Run mode to Step to allow single-vector stepping using the Step() command
when the PG is running. Set to Continuous mode for normal operation.

This setting is only allowed to be changed when the PG is idle.

// set the run mode to continuous
pSystem->SetRunMode(PGAPP_CONTINUOUS);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 55-

5.3.41 IPGSystem::SetRunTriggerSource

Description:

Sets the run trigger source for the PG.

IDL Syntax:
HRESULT SetRunTriggerSource([in] long RunTriggerSource)

Arguments:
RunTriggerSource – signal to use for the run trigger; use the PGAPPSignalType
enumeration:

 PGAPP_SIGNAL_NONE = 0,
 PGAPP_TLA_BACKPLANE_SIGNAL1 = 1,
 PGAPP_TLA_BACKPLANE_SIGNAL2 = 2,
 PGAPP_TLA_BACKPLANE_SIGNAL3 = 3,
 PGAPP_TLA_BACKPLANE_SIGNAL4 = 4,
 PGAPP_EXT_TRIG_IN = 6,
 PGAPP_HOST_TRIGGER = 8

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid RunTriggerSource argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

A PGAPP_INVALID_ARG error is returned if a TLA backplane signal is set as the run
trigger source and the TLA backplane is not detected (i.e. the PG module is running in
a stand-alone cabinet).

The PG enters arm mode when the run trigger source is set to a signal other than None
and then run. At the time the PG is run, the run trigger flag is cleared and the PG waits
for the run trigger to occur. Regardless of run trigger source, SetHostRunTrigger can
always be used to trigger the PG.

// set the run trigger to ExtTrigIn
pSystem->SetRunTriggerSource(PGAPP_EXT_TRIG_IN)

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 56-

5.3.42 IPGSystem::SetSignalInput

Description:

Selects the signal input to be used as part of the event definition equations.

IDL Syntax:
HRESULT SetSignalInput([in] long InputSource)

Arguments:
InputSource –SignalIn input source; use the PGAPPSignalType enumeration:
 PGAPP_SIGNAL_NONE = 0,
 PGAPP_TLA_BACKPLANE_SIGNAL1 = 1,
 PGAPP_TLA_BACKPLANE_SIGNAL2 = 2,
 PGAPP_TLA_BACKPLANE_SIGNAL3 = 3,
 PGAPP_TLA_BACKPLANE_SIGNAL4 = 4,
 PGAPP_EXT_TRIG_IN = 6

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_INVALID_ARG Invalid InputSource argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

The signal selected here is used as the 9th bit in the event definition equations.

This setting is only allowed to be changed when the PG is idle.

A PGAPP_INVALID_ARG error is returned if a TLA backplane signal is set as the
signal input and the TLA backplane is not detected (i.e. the PG module is running in a
stand-alone cabinet).

// set the input source to ExtTrigIn
pSystem->SetSignalInput(PGAPP_EXT_TRIG_IN);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 57-

5.3.43 IPGSystem::SetSignalOutput

Description:

Selects the destination for the SignalOut signal defined in the sequence definition.

IDL Syntax:
HRESULT SetSignalOutput([in] long OutputDest)

Arguments:
OutputDest – SignalOut output destination; use the PGAPPSignalType enumeration:
 PGAPP_SIGNAL_NONE = 0,
 PGAPP_TLA_BACKPLANE_SIGNAL1 = 1,
 PGAPP_TLA_BACKPLANE_SIGNAL2 = 2,
 PGAPP_TLA_BACKPLANE_SIGNAL3 = 3,
 PGAPP_TLA_BACKPLANE_SIGNAL4 = 4,
 PGAPP_EXT_TRIG_OUT = 7

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_E_SYSTEM_RUNNING The PG is running
PGAPP_INVALID_ARG Invalid OutputDest argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is only allowed to be changed when the PG is idle.

A PGAPP_INVALID_ARG error is returned if a TLA backplane signal is set as the
signal output and the TLA backplane is not detected (i.e. the PG module is running in a
stand-alone cabinet).

// set the output destination for SignalOut to ExtTrigOut
pSystem->SetSignalOutput(PGAPP_EXT_TRIG_OUT);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 58-

5.3.44 IPGSystem::SetStrobeShape

Description:

Selects the output strobe shape for the given probe.

IDL Syntax:
HRESULT SetStrobeShape([in] long ModulePos, [in] long ProbeIndex, [in] long
StrobeShape)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
StrobeShape – the selected stobe shape; use the PGAPPStrobeShape enumeration:
 PGAPP_FULL = 0,
 PGAPP_HALF_CLK_POS = 1,
 PGAPP_HALF_CLK_NEG = 2,
 PGAPP_INV_FULL = 4,
 PGAPP_INV_HALF_CLK_POS = 5,
 PGAPP_INV_HALF_CLK_NEG = 6

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

See the PGApp user manual for a detailed description of strobes their shapes.

This setting is allowed to be changed while the PG is running.

// set the strobe shape for probe 1 to be inverted, half-clock, during the negative half of
// the clock cycle
pSystem->SetStrobeShape(0, 1, PGAPP_INV_HALF_CLK_NEG);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 59-

5.3.45 IPGSystem::SetVarDelay

Description:

Sets the output delay for a variable probe channel.

IDL Syntax:
HRESULT SetVarDelay([in] long ModulePos, [in] long ProbeIndex, [in] long
ChannelIndex, [in] double Delay)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ChannelIndex – channel index, use the PGAPPVarChannel enumeration:
 PGAPP_CHANNEL_A0 = 0,
 …
 PGAPP_CHANNEL_A15 = 15,
 PGAPP_CHANNEL_STROBE = 16,
 PGAPP_CHANNEL_CLK = 18
Delay – output delay in ps. For the P375, the valid range is 0 to 2400 ps.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

The channel delay is in addition to the DataDelay setting for the probe.

This setting is allowed to be changed while the PG is running.

// set delay for channel 10 of variable probe 2 to 1 ns
pSystem->SetVarDelay(0, 2, PGAPP_CHANNEL_A10, 1000.0);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 60-

5.3.46 IPGSystem::SetVarDifferential

Description:

Sets the differential mode for a variable probe channel.

IDL Syntax:
HRESULT SetVarDifferential([in] long ModulePos, [in] long ProbeIndex, [in] long
ChannelIndex, [in] long Differential)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ChannelIndex – channel index, use the PGAPPVarChannel enumeration (event

channels only):
 PGAPP_CHANNEL_A0 = 0,
 PGAPP_CHANNEL_A2 = 2,
 …
 PGAPP_CHANNEL_A14 = 14,
 PGAPP_CHANNEL_STROBE = 16,
 PGAPP_CHANNEL_CLK = 18
Differential – mode flag. Set to (0) for single-ended, (1) for differential operation.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

Only even channels may be set to differential mode. If set to differential, the channel
data for the subsumed odd channel is not output.

This setting is allowed to be changed while the PG is running.

// set channel 10 to of variable probe 2 to be differential
// (uses channel 11 as negative differential signal component)
pSystem->SetVarDelay(0, 2, PGAPP_CHANNEL_A10, 1);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 61-

5.3.47 IPGSystem::SetVarGroup

Description:

Sets the group number for a variable probe channel. Any parameter setting to one
variable channel is automatically propagated to other channels in the same group.

IDL Syntax:
HRESULT SetVarGroup([in] long ModulePos, [in] long ProbeIndex, [in] long
ChannelIndex, [in] long Group)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ChannelIndex – channel index, use the PGAPPVarChannel enumeration:
 PGAPP_CHANNEL_A0 = 0,
 …
 PGAPP_CHANNEL_A15 = 15,
 PGAPP_CHANNEL_STROBE = 16,
 PGAPP_CHANNEL_CLK = 18
Group – group number. Use 0-3 for group index or -1 for no group.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set channels 0-7 of variable probe 2 to group 0, then set their delays to 1 ns
for (i = 0; i < 8; i++) {

pSystem->SetVarDelay(0, 2, i, 0);
}
pSystem->SetVarDelay(0, 2, 0, 1000.0);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 62-

5.3.48 IPGSystem::SetVarHighLevel

Description:

Sets the high-level voltage for a variable probe channel.

IDL Syntax:
HRESULT SetVarHighLevel([in] long ModulePos, [in] long ProbeIndex, [in] long
ChannelIndex, [in] double Level)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ChannelIndex – channel index, use the PGAPPVarChannel enumeration:
 PGAPP_CHANNEL_A0 = 0,
 …
 PGAPP_CHANNEL_A15 = 15,
 PGAPP_CHANNEL_STROBE = 16,
 PGAPP_CHANNEL_CLK = 18
Level – high-level output voltage. For the P375, the valid range is -2.2 to 6.5 V.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set high-level voltage for channel 10 of variable probe 2 to 5.0 V
pSystem->SetVarHighLevel(0, 2, PGAPP_CHANNEL_A10, 5.0);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 63-

5.3.49 IPGSystem::SetVarInhibitEnable

Description:

Enables/disables the inhibit inputs of a variable probe.

IDL Syntax:
HRESULT SetVarInhibitEnable([in] long ModulePos, [in] long ProbeIndex, [in] long
Enable)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
Enable – flag to enable (1) or disable (0) the inhibit inputs

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// enable inhibit inputs for variable probe 2
pSystem->SetVarInhibitEnable(0, 2, 1);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 64-

5.3.50 IPGSystem::SetVarInhibitThreshold

Description:

Sets the inhibit threshold for a variable probe.

IDL Syntax:
HRESULT SetVarInhibitThreshold([in] long ModulePos, [in] long ProbeIndex, [in]
double Threshold)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
Threshold – threshold voltage in volts. For the P375, the valid range is -2.5 to 5 V.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set the inhibit threshold for variable probe 2 to 3.3V
pSystem->SetVarInhibitThreshold(0, 2, 3.3);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 65-

5.3.51 IPGSystem::SetVarLowLevel

Description:

Sets the low-level voltage for a variable probe channel.

IDL Syntax:
HRESULT SetVarLowLevel([in] long ModulePos, [in] long ProbeIndex, [in] long
ChannelIndex, [in] double Level)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ChannelIndex – channel index, use the PGAPPVarChannel enumeration:
 PGAPP_CHANNEL_A0 = 0,
 …
 PGAPP_CHANNEL_A15 = 15,
 PGAPP_CHANNEL_STROBE = 16,
 PGAPP_CHANNEL_CLK = 18
Level – high-level output voltage. For the P375, the valid range is -2.2 to 6.5 V.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set low-level voltage for channel 10 of variable probe 2 to -1.0 V
pSystem->SetVarLowLevel(0, 2, PGAPP_CHANNEL_A10, -1.0);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 66-

5.3.52 IPGSystem::SetVarSlewRate

Description:

Sets the slew rate of a variable probe channel.

IDL Syntax:
HRESULT SetSlewRate([in] long ModulePos, [in] long ProbeIndex, [in] long
ChannelIndex, [in] long SlewRate)

Arguments:
ModulePos – acquired module position, i.e. an ordinal in the range of 0 to the value

returned by GetAcquiredModuleCount - 1. Currently, this must be (0) since only
one module may be acquired at a time.

ProbeIndex – probe index, use 0 = A, 1 = B, 2 = C, 3 = D
ChannelIndex – channel index, use the PGAPPVarChannel enumeration:
 PGAPP_CHANNEL_A0 = 0,
 …
 PGAPP_CHANNEL_A15 = 15,
 PGAPP_CHANNEL_STROBE = 16,
 PGAPP_CHANNEL_CLK = 18
SlewRate – flag to select normal (0) or slow (1) slew rate. For the P375, the normal

slew rate is approximately 3500 V/us and slow slew rate is approximately 1750
V/us.

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous call.
PGAPP_INVALID_ARG Invalid argument
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

This setting is allowed to be changed while the PG is running.

// set slew rate for channel 10 of variable probe 2 to normal
pSystem->SetVarSlewRate(0, 2, PGAPP_CHANNEL_A10, 0);

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 67-

5.3.53 IPGSystem::Step

Description:

Force the output clock to transition for one cycle.

IDL Syntax:
HRESULT Step()

Arguments:
None

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous

call.
PGAPP_E_SYSTEM_NOT_RUNNING The PG is not running
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:
Assumes PG is running and in Step mode. (or PGAPP_E_FAILED will be returned)

// step the output clock for 100 clocks
// assumes PG is running and in Step mode
for (i = 0; i < 100; i++) {

pSystem->Step();
}

The Moving Pixel Company PPI User’s Manual – Doc. Rev. 1.2 -- 12/6/07

- Page 68-

5.3.54 IPGSystem::Stop

Description:

Stops the PG.

IDL Syntax:
HRESULT Stop()

Arguments:
None

HRESULT Return Codes:

Return Code Description
S_OK The operation succeeded.
PGAPP_E_BUSY PGApp is busy initializing from previous

call.
PGAPP_E_SYSTEM_NOT_RUNNING The PG is not running
PGAPP_E_FAILED The operation was unsuccessful. .

Example:

Remarks:

None

// stop the PG
pSystem->Stop();

