
Product report: Trapexit 2.0

Yury Dorofeev, Jacob Ericsson, Hariprasad Hari, Jonas Rosling,
Niclas Stensbäck, Samuel Strand, Wilson Tuladhar, Yeli Zhu

February 28, 2011

1

Contents

1 Introduction 5

2 Tools 6
2.1 Erlang/OTP . 6
2.2 Choice of database . 6

2.2.1 Riak . 6
2.2.2 CouchDB . 6
2.2.3 Hibari . 6
2.2.4 Decision . 7

2.3 Communication Framework - RabbitMQ . 7
2.4 Choice of Web server . 7

2.4.1 Yaws . 8
2.4.2 Mochiweb . 8
2.4.3 Inets . 8

2.5 Choice of Web framework . 8
2.5.1 Erlang Web . 8
2.5.2 Nitrogen . 9
2.5.3 Chicago Boss . 9
2.5.4 Zotonic . 10

2.6 RSS . 10
2.6.1 Ibrowse . 10

2.7 Rebar . 11
2.7.1 Conventions to be followed for rebar to work properly 11

2.8 Project Management - Redmine . 11
2.9 Version Control System - Git . 11
2.10 EDoc . 11
2.11 Meck and EUnit . 12
2.12 Hardware and OS . 12

3 System design/architecture 13
3.1 System overview . 13
3.2 Message Bus . 13
3.3 Message Structure . 14
3.4 Database . 14

3.4.1 Schema architecture . 14
3.4.2 Views in CouchDB . 14
3.4.3 Database payload structure . 15

3.5 Authentication . 15
3.6 The web server module . 16
3.7 Web Framework . 16

3.7.1 Division of labour . 16
3.7.2 Dispatching . 16
3.7.3 Session Handling . 17
3.7.4 Changes made to Erlang Web . 17
3.7.5 Service Protocol Structure . 17

3.8 Double Abstraction . 17
3.8.1 Connectors . 17

3.9 RSS . 18
3.10 The CMS (Content Management System) . 19

3.10.1 Dynamic Menu . 20

2

3.11 Planet . 20
3.12 Applications and Supervisors . 20

4 Dataflow 22
4.1 A Simple Transaction . 22
4.2 Handling HTTP Request and HTML generation 22
4.3 User Management . 23

4.3.1 User Registration . 23
4.3.2 User Login . 24

5 Testing 25
5.1 EUnit . 25

5.1.1 How to do the test . 25
5.1.2 Result . 25

5.2 Tsung testing . 25
5.3 Extracting Tsung Data . 26

6 Known Issues 29
6.1 Erlang Web . 29
6.2 Erlang Web Bug . 29
6.3 Ecouch . 29

6.3.1 Adding new views . 29
6.4 The CMS . 30
6.5 Webcrawler . 30
6.6 Releases . 30
6.7 Testing Supervisors and Applications . 30

7 Future work 31
7.1 Security . 31
7.2 Distributed Applications . 31
7.3 More services . 31

7.3.1 Forum Database Schema . 32
7.4 MQ (Message Queue) . 33
7.5 Testing Exchangeability of Components . 33

8 Conclusion and analysis 34

A Appendix A: User Manual 37
A.1 Installation and setup . 37

A.1.1 Installation . 37
A.1.2 Start the system . 38
A.1.3 DB schema installation . 39

A.2 Writing new services . 39
A.2.1 Implementing a new callback module . 39
A.2.2 Implementing external and internal APIs 39
A.2.3 Folder structure . 40
A.2.4 Compilation with Rebar . 40
A.2.5 Application behaviour . 40

3

B APIs 40
B.1 MQ API . 40
B.2 WF API . 41
B.3 DB API . 41
B.4 AUTH API . 41
B.5 gen connector . 41
B.6 db api . 41
B.7 auth api . 41
B.8 e auth and e db . 42

C Tsung.xml for stresstesting 42

4

List of Figures

1 Two clients connected by an AMQP broker. 8
2 An example RSS Feed . 10
3 A simple Meck example . 12
4 An overview of our system . 13
5 A simple example of a view in CouchDB. 15
6 #request record (web framework → service) . 17
7 #response record (service → webframework) . 17
8 Double Abstraction . 18
9 An example view that can be used to set up the CMS 20
10 Example application and supervisor structures 21
11 A simple dataflow. 22
12 An HTML Dataflow . 23
13 All in one node . 26
14 Web Framework and Message Bus separated . 27
15 Web Framework, Message Bus and Planet Erlang separated 28
16 The proposed supervision tree . 31
17 A sketch of the proposed forum schema . 32

5

Abstract

In order to invigorate the trapexit.org website, a website entirely written in Erlang 2.1 is
proposed and implemented. A complex and multilayered architecture is constructed wherein
loosely coupled components making up a traditional web-site (database, web server etc.) use
APIs to communicate over a communication framework, implementing a bus architecture.

6

1 Introduction

Like most programming languages, Erlang 2.1 has many community websites, one of them
being trapexit.org. It is currently managed by Erlang Solutions [15], and this projects deals
with laying the groundwork for an overhaul of that website.

Making a website entirely using Erlang can be quite easy or annoying, depending on how
you approach doing it. Web frameworks such as Erlang Web 2.5.1, Nitrogen 2.5.2, Zotonic 2.5.4
and others make it easy to host your own webpage based on Erlang if you wish it. What we do,
though, is something quite different. In the beginning of the project an outline was made clear:
our project uses layers of abstraction to make sure that all the components are exchangeable
(to differing degrees). This was an approach which grew out of a process of lengthy research
and discussion about our architecture, which will be described in the following chapters.

Our main goal, throughout the project, was to make a system backbone that is robust,
modular and (where possible) fast. This is in accordance with the three golden rules of Erlang

• First, make it work

• Then, make it beautiful (in our case, modular and stable)

• Then, if someone is pointing a gun at you, you make it fast.

We did not get to the third bit, due mostly to time constraints, although the stress testing
we have conducted have garnered some interesting results, which can be found in chapter 5,
Testing. Our main result is having constructed a website that works using a bus architecture and
through many layers of abstraction still manages to handle large amounts of traffic efficiently.

7

2 Tools

This section is about the tools and programs we have chosen to use in our system.

2.1 Erlang/OTP

One of the major highlights of the project is using Erlang [3] in all components and to connect
them. Though the project team had various backgrounds and few of us had any real experience
using Erlang, after going through two courses (“Erlang by example” and the aptly named course
“Open Telecom Platform”) we all felt rather good about using it. Obviously we haven’t coded
everything as an experienced team of Erlang programmers might have, but making clear and
understandable code was still relatively easy.

Erlang is also a good fit due to the concurrent nature that a website backend holds. The
efficiency of Erlang processes and the lightweight nature of its message passing made it easy for
us to spawn processes to handle requests, to break up our dataflow into small and oversee able
pieces or to just build quick proof-of-concepts using OTP.

Choosing Erlang to make a website solution in all parts may also be considered an interesting
proof-of-concept, although it certainly can be done in other ways as well. What our solution
explores is the highly distributable nature of an application that Erlang wasn’t made for and
that, perhaps, wouldn’t be as natural to other web applications.

2.2 Choice of database

In the choice of database, we had three contenders to choose between: Riak 2.2.1, CouchDB
2.2.2 and Hibari 2.2.3.

2.2.1 Riak

Riak [14] is an open-source, key-value store database written in Erlang 2.1. Its main selling
point is distributability, which made us wary. We knew that the main issue would not be
distributability in our project.

Apart from that, Riak turned out to be cumbersome and awkward to use. When doing basic
operations like reading or writing, Riak returned large, nearly unreadable blobs of metadata.

While there was a tutorial for setting up a basic cluster of nodes there was no obvious way to
run Riak on a single machine and the documentation other than the initial setup was somewhere
between lacking and nonexistent.

2.2.2 CouchDB

CouchDB [1] is a document store database, built by the software foundation Apache and is
written entirely in Erlang 2.1. Document store entails that data is stored in “documents”
without any overlying structure other than the name of the document and the data field that
you input into the document.

While installing CouchDB required a hack or two to make it work in Ubuntu [16], the
documentation on how to do this was fairly straightforward and available in the official CouchDB
wiki. The wiki contained detailed information about how to run and configure the system.

When CouchDB was running, it was easy to use and had an accessible web interface useful
for debugging and development, although it was prone to crashing occasionally.

2.2.3 Hibari

Hibari [17] proved difficult even to get running in the first place and the database seriously lacks
online documentation.

8

After spending a day trying to make it work for us, we could barely install it and we could
not make it run.

2.2.4 Decision

Hibari 2.2.3 was quickly dismissed as a candidate for us, so the real decision was between
CouchDB 2.2.2 and Riak 2.2.1.

Firstly, Riak’s main selling point and specialization was something that we knew that we
would hardly, if at all, use in our project, distributability. CouchDB’s main selling point, ease
of use and a REST-based API was definitely something that we could make use of.

Secondly, Riak was cumbersome to use and we felt that it would require a lot more work to
get Riak to work for us than it would take to make CouchDB to work for us.

Finally, Riak had a beginner’s guide. CouchDB had a well organized wiki and a free book of
200+ pages. Again, the time constraint of one semester played a part. We could reverse engineer
Riak and figure out how it worked. Or we could just read the manual for CouchDB and make
it work much faster. All of these reasons taken together pointed clearly in the direction of
CouchDB, and that was the database we chose for this project.

2.3 Communication Framework - RabbitMQ

Since our task was to make a website which uses a message bus for the message passing between
the different components, we started to look for some message bus applications and found two
of them: RabbitMQ [4] and ZeroMQ [18]. Since we had to use Erlang 2.1 built components and
ZeroMQ is written in C++ [19], we chose RabbitMQ.

RabbitMQ is a message broker software which uses the AMQP(Advanced Message Queuing
Protocol) [11] standard. The major features of AMQP standard includes message orientation,
queuing, routing, reliability and security. RabbitMQ implements AMQP to provide a point of
rendezvous between our backend systems and the frontend systems. Messages are published
to the services and the services have options to subscribe or get the messages on requests. An
example of how AMQP looks like can be seen in figure 1. The AMQP model has various entities
such as:

• Message Broker: a server to which AMQP clients connect using the AMQ protocol

• User: all the application users that want to send message through the bus

• Connection: a physical connection which is bound to the user

• Channel: a logical stateful connection which is tied with the physical connection

• Exchanges: entities to which the messages are sent

• Queues: entities which receive messages

• Messages: the actual message sent to any exchange

• Bindings: relationship between an exchange and a queue

2.4 Choice of Web server

The choice of web server was not central to our project. We did not really need a lot of speed to
our project and it seemed in our minds that we would not be doing a great deal of work related
to the web server. Still, a choice had to be made, and we filtered down the choices to select
few during the first weeks. These choices were intimately tied to the choice of web framework
since the prospect of implementing support for a new web server for any web framework was
not very attractive.

9

Figure 1: Two clients connected by an AMQP broker.

2.4.1 Yaws

A main contender from the start, Yaws [5] is a lightweight web server designed for speed and
parallellism, something which is always popular with Erlang programmers. Its age meant that
it was rather well documented and, more importantly, it worked relatively easy on its own.
However, we did have the problem of Yaws being over-active and hosting it’s own default web
page when we expected Erlang Web’s 2.5.1 or something else. This turned out to be Ubuntu’s
fault, since when you install Yaws in Ubuntu [16], it adds a startup script that starts Yaws in
the system upon startup, which is rather strange.

2.4.2 Mochiweb

Although described by many as being “neat” and “cool”, we found the documentation of Mochi-
web [20] to be fatally lacking. It describes itself in places as a library for writing web servers,
and felt unintuitive to use overall. It did work well with Nitrogen 2.5.2 (having been developed
by the same group), but when we started leaning towards Erlang Web 2.5.1 it fell to the wayside.

2.4.3 Inets

This module [21] is a part of Erlang 2.1 provides the most basic API to the clients and servers,
that are part of the Inets application, such as start and stop. Though it is supported by both
Erlang Web 2.5.1 and Nitrogen 2.5.2, it is apparently rather basic, and we simply preferred
Yaws 2.4.1 over it.

In the end we chose Yaws as our web server of choice, and it has worked well for us.

2.5 Choice of Web framework

Since the actual renderer of HTML [22] is a central part of a website solution, the choice
of application that we would use of course needed some deliberation. After discussing and
researching many options, we came up with a list of candidates which were more or less fitting.

2.5.1 Erlang Web

Perhaps an obvious choice, considering Erlang Solutions [15] part in developing it and has
extensive experience using it, but we still started out unsure as to whether or not it would

10

be the best choice for our system. Erlang Web [6] seemed to be designed for professional use
and not for the layman. This is evidenced for example it’s large amounts of modules and a
seemingly high cost of entry to actually make a webpage. The application has also not been
updated (that we could gather) for quite some time, which was quite different from the other
solutions we looked at which were all quite alive and had recently released updates and patches.

With Erlang Solutions investment in Erlang Web, it also felt natural to choose it since we
could presumably get support if we ran into problems with it. In the end we did not need
very much support regarding Erlang Web, it is fairly straightforward in its construction and
structure, but it was still felt like a large incentive for us in favor of Erlang Web.

The promise of a fully fledged CMS (Content Management System)3.10 was also alluring in
the decision making, since we initially thought that we would be developing it ourselves if we
were not able to find a reasonable one to use (and given the apparent lack of web applications
written in erlang we did not feel too optimistic about it). An already finished CMS would save
us a lot of time and effort then, and hopes were that we would be able to get it off the ground
quickly and easily.

Erlang Web also uses the very common MVC (Model, View, Controller) model [23] of web
applications. We envisioned this as making our re-modeling of the framework into using our
application easier, since you keep the logic (the controllers) in one place, and the actual data in
other places. Since Erlang Web uses templating, storing the static HTML-content in a separate
place from the logic that produces the dynamic content, we could save quite a bit of traffic over
the bus. We also hoped that Erlang Web would have a good separation of different modules so
that we would be able to switch out the regular components it had for our own versions that
use the system we’d construct.

2.5.2 Nitrogen

The framework of choice for most Erlang Web 2.5.1 developers it seems, Nitrogen [12] initially
wooed us with it’s fancy Ajax (shorthand for Asynchronous JavaScript and XML) [24] incor-
poration. Making a webpage in Nitrogen is also quite simple, and allows you to write rather
small amount of Erlang 2.1 code to make pages. Muchlike Erlang Web 2.5.1, Nitrogen also
has rather nice layering of abstractions, although the codebase is rather hard to penetrate. We
found the documentation to be lacking and it seemed rather hard to make the company-like
webpage we were aiming for in our project. The event-driven nature of Nitrogen seemed very
nice, but in the end the MVC (Model, View, Controller) model [23] felt more comfortable to
us. Considering how you construct webpages in Nitrogen (constructing records containing the
text and formatting for individual elements and drawing them), we felt that Erlang Web’s 2.5.1
approach was more clean, and allowed us to distribute the work more easily. The folder and
module structure was hardly documented in Nitrogen so changing its behaviour would probably
have been more work as we would have needed more time to investigate the source code and
the structure of the application before we could start changing it.

Another key problem that Nitrogen had that we could not fix was that it did not run with
Yaws 2.4.1, which we at that point, had already decided to use. This was big disadvantage for
Nitrogen.

2.5.3 Chicago Boss

Several alternative Web frameworks are being worked on actively, and one of the more interesting
is Chicago Boss [25]. Unfortunately it’s more in pre-alpha stage than production ready. It was
never a very serious candidate but is worth mentioning for being interesting. From reading
the code and following the mailing-list we soon concluded that it’s poorly documented and has
quite a bit of bugs.

11

<?xml version="1.0" encoding="UTF-8" ?>

<rss version="2.0">

<channel>

<title>Liftoff News</title>

<link>http://liftoff.msfc.nasa.gov/</link>

<description>Liftoff to Space Exploration.</description>

<item>

<title>Star City</title>

<link>

http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp

</link>

<description>This is the description </description>

</item>

</channel>

</rss>

Figure 2: An example RSS Feed

2.5.4 Zotonic

An interesting candidate, Zotonic [13] is a fairly polished web framework with a built-in CMS
(Content Management System) 3.10. Unfortunately Zotonic only runs on PostgreSQL (SQL
type relational database) [26], a very complex database which is not written in Erlang 2.1.
Altering Zotonic to use CouchDB 2.2.2 would have taken a lot of time (although it is hard
to say if it would have saved us time in the end since it has a lot of features), but since we
considered the matter of the CMS to be secondary in our project, and in the end started working
on it only in the final few weeks, this decision was probably for the best.

2.6 RSS

RSS (Really Simple Syndication) [27] is an XML [28] format for sharing frequent updates
between web sites. RSS documents known as RSS feeds allow webmasters to syndicate web
content automatically. They allow readers to quickly check for news and updates from favored
websites. An example can be seen in the figure 2.

RSS feeds are written in XML. They begin with the XML declaration followed by the RSS
document type declaration. All elements are surrounded by matching start and end tags. These
elements are case sensitive and must be properly nested. The values of attributes of each element
must be quoted. This turned out to be a problem because an RSS-parser that parses correct
feeds will fail to parse most of the actual RSS feeds available online.

2.6.1 Ibrowse

Ibrowse [29] is an application implemented as an HTTP [22] client in Erlang 2.1. The Ibrowse
module has a basic function send req which takes 3 to 6 arguments and sends the HTTP request
to the supplied URL and gets the reply. The basic syntax is
browse:send req(“http://www.google.com/”, [], get)

We have used Ibrowse in the implementation of the RSS refsec:rss feeds where the request
is sent to the RSS subscriber and displayed in our site.

12

2.7 Rebar

Rebar [30] is an Erlang 2.1 build tool which we used for easy compilation, testing of our appli-
cations and handling releases.

Rebar is written in Erlang. Also, rebar uses standard Erlang/OTP conventions for project
structures. Rebar provided support for most of our development such as compilation, EUnit
5.1 and providing it’s coverage analysis, and document generation through Edoc 2.10.

2.7.1 Conventions to be followed for rebar to work properly

The application directory should follow the OTP standard, and so we do, with a few addendums
to accommodate other functionalities.

• test : where the test files are kept. EUnit automatically looks for this directory for test
files.

• c src : where C source files are kept. Never actually used in this application.

2.8 Project Management - Redmine

Redmine [7] is a project administration tool useful for managing projects. It has lots of doc-
umentation and plug-ins like a scrum dashboard, burndown charts, backlogs, forums, e-mail
clients etc. Scrum dashboard was used to keep track of project progress according to our team
methodology. Burndown charts is graphical representation of work left to do. The outstanding
work is on the vertical axis and time on the horizontal. The chart starts at the left up corner
and ideally should end up in the right down one. Backlog is a histori of a project. Forum
provides you with opportunity to communicate with project members on-line.

2.9 Version Control System - Git

Version control systems are a major part of any project. It is used to keep track of the code of
that has been written. Git [31] was made and popularised by Linus Torvalds and is generally
considered to be one of the better Version Control system. We had some issues using it but for
the most part it worked well for us.

2.10 EDoc

Writing a good program is not the only responsibility as a programmer, one has to document
all the code so that it can be used as the future reference for someone new to understand them.
In our project, we used EDoc [32], an Erlang 2.1 program documentation generator.

EDoc is an Erlang program that automatically generates the documentation written inside
the Erlang modules as comments in a fairly straightforward manner in the HTML [22] format.
There are certain rules for writing the comments in the program and if one follows that rule
then EDoc does the rest. There are special tags such as “@Name,@Doc, ...” which are used
while commenting.

There are many different ways to run the Edoc but since we use Rebar 2.7 as the building
tool, it gives us functionality to generate the docs through the command “rebar doc” which will
parse the source code, generate and organize the documentation in the ”doc” folder.

Almost all of our source code is documented using Edoc. By generating the documentation
through it you can read through what most of the modules do fairly quickly and get a feel for
the applications.

Unfortunately Edoc does not put all of the documentation in one place but everything is
spread in different folders. We had problem of documenting the test files using Edoc, as it usually
goes for the “src” folder for the files to be documented rather than any other folder. Another

13

disadvantage of using Edoc was that no functionality was provided to document functions with
several function clauses. It ignores them and documents only the first function.

2.11 Meck and EUnit

For unit testing, we used the EUnit 5.1 library to construct unit tests for our modules. It
allows us to create testing files where we can test the functionality of a module by calling its
functions with predefined parameters and expecting certain results. EUnit allows for efficient
use of a multicore system by parallelising the tests. But it still gives you control to order the
tests. Many of our tests have order enforced due to the importance of side effects while testing
a concurrent system.

While EUnit is sufficient for creating and managing our unit tests, the distributed nature of
the project made unit testing hard. To solve this problem we used a library called Meck.

Meck [2] was written by Adam Lindberg who works at Erlang Solutions. Meck is a library
that is used for spoofing function calls. It can be used on any function call from a module that
is not a sticky module.

With Meck, you can select a function in a module and simply assert a new function to that
call. Every time the original function is called, Meck will make sure that the substitionary func-
tion will be executed in its stead. A simple example can be seen in figure 3. This functionality
is used to spoof most parts of the system during our unit testing.

1> meck:new(dog).

ok

2> meck:expect(dog, bark, fun() -> "Woof!" end).

ok

3> dog:bark().

"Woof!"

4>

Figure 3: A simple Meck example

2.12 Hardware and OS

We were mainly using nine 2.66GHz Intel Q9400 computers running with 3GB RAM built by
HP loaned to us from Uppsala University [33] during this project. In addition we use three
dual core machines of a lesser capacity. All stress testing has been performed on the quad core
machines.

The operating system we have been running during the development is Ubuntu 10.x [16],
updates to the OS have been applied as they have become available.

14

Figure 4: An overview of our system

3 System design/architecture

The previous sections described what tools we used to build our system. Now we will go into
more depth, detail our system design and explain how we use those tools to achieve our goals.

3.1 System overview

It provides the overall view of our system. The architecture seen in the figure 4 was a suggestion,
given to us by Erlang solutions [15] as a structure they wanted to be implemented. Throughout
the project we’ve come to implement and test the result described in this chapter.

We have built the entire project upon a service structure where we have a message bus,
database, web framework, web server, content management module and authentication module
as backbone. On top of the backbone we can then add services to the system such as the planet
trapexit (which is the start page of the website, displaying news etc.), wiki and forums.

3.2 Message Bus

In our implementation, RabbitMQ 2.3 is the core of the system which connects various com-
ponents in the system such as the database 3.4, authentication module 3.5, CMS (Content
Management System) 3.10 . . . No components are directly connected to each other. All the
requests between components are routed through the message bus. The message bus acts as a
mailman which gets requests from components and delivers them to other components in the
system.

In our system, the RabbitMQ is a standalone application and all the services or components
needs to establish a connection with it to be a part of the system. At first, services need to be
registered with the RabbitMQ with proper username, password and privileges. We also have an
API for the RabbitMQ which is used by all the components to connect to the bus. When the
service requests for the connection with the message queue with valid credentials, the following
things occur:

• A connection is established

• A channel is opened

• An exchange is created with name as username x

15

• A queue is created with name as username q

• The exchange and queue are bound together (meaning messages to the exchange go to
the queue automatically)

• The component is subscribed to the queue if it is specified

The user can choose to either subscribe its queue or get the message when required. If the
user chooses to subscribe to the queue, the messages are pushed to the user as soon as they end
up in their queue otherwise they will have to get it manually from their queue one at a time
or all at once. Subscribing is recommended if you intend to send and receive many messages,
since polling always has been slow as a method for message distribution.

All the requests and responses in the system are translated to messages while sending and
reverted back when receiving.

There is a comprehensive list of API calls in the User Manual appendixB.1.

3.3 Message Structure

We came to the conclusion after several discussions that the messages that we pass between the
services should be fairly simple.

Simplicity was our aim in designing the message structure. We have used records for this,
as it would be simple and general to send messages to/from the connectors 3.8.1 to services.
Our message record format is more general and the actual data is encapsulated in the payload.
In this way we abstract the data.

#message{sender:string(),priority:int(),payload:any(),id:int(),options:list()}

Sender: Sender of the message

Priority: Priority of the message (Not currently used)

Payload: The payload

Id: Used for keeping track of requests.

Options: Currently unused. May well be removed

3.4 Database

As detailed in the tools section, the current database integrated in the system is CouchDB 2.2.2.
CouchDB is a document oriented database and it not supposed to have any structure or schema
in the general meaning. But one can be imposed upon CouchDB via an API.

3.4.1 Schema architecture

In CouchDB 2.2.2 data is stored in documents and databases. To separate data which is
logically not suppose to be stored at one place we use different databases. Each database in
CouchDB is a named data space which in SQL corresponds to a table. So we will use that
meaning of “database” in the report. For example, to register users we have to store many
different values: user ID, the user’s personal information, password etc. So each document in
a database contains several fields. A document corresponds to a record in an SQL table. That
is example of a simple (flat) data architecture. At the same time there might be services with
more complicated structure.

3.4.2 Views in CouchDB

A view makes it possible to get a number of documents from one database in one query. Un-
fortunately, it is impossible to link several databases in one view. To implement a new view in
CouchDB 2.2.2 that will work with our APIs, you have to follow these rules:

16

• there should be one (and only one) design document in the database.
The name of the design document must be “ design/X” where X is the name of the
database (e.g.“ design/users”) .

• All views should return list of lists of field name and value: [[field name, value], ...].

• Each view has its own unique name. An example of the view syntax can be seen in 5.

if(doc.Shoesize && doc.Name){

emit(doc.Shoesize, [["Shoesize", doc.Shoesize],

["Name",doc.Name]]);

}

Figure 5: The first parameter in the emit function is the key and the second is the value to be
returned.

3.4.3 Database payload structure

In the database API, we construct payload by making a record. The below snippet of code
gives the format for the incoming messages to the database.

#payload{command:string(),storage:string(),id:int(),data_value:list(),options:list()}

command : Type of database command that is to be executed,

they are: "read", "update", "insert", "delete".

storage : The name of the database,

for example: "wiki", "forums", "thread", "posts", "web_page" "users"

id : Identifier of the object to be read or the view to use.

data_value : Is relevant in INSERT and UPDATE operations.

Format: data_value: [{field_name, <value>},...]

options : Not used.

3.5 Authentication

We have implemented the authentication as a separate service which is connected to the message
bus. So, whenever some different services need to interact with the authentication service, they
can simply use the authentication API and the messages will be routed over the message bus.

Our implementation of the authentication include:

• Encryption of passwords. We have used the MD5 hash function for encrypting the pass-
word but before the encryption, a 4-digit random number salt is generated and then
appended to the end of the original password and stored in the database.

• Verifying login attempts, controlling whether or not an entered password is correct.

• Registering users.

• Changing the password.

The authentication module needs to communicate with the database to store the user’s
information. Service requries “users” database to be created in the CouchDB 2.2.2 before it
can insert the user. So, it is the responsibility of the authentication service to ensure that the
users database exist beforehand and this should be done manually. Whenever authentication

17

service needs to communicate with the database, it will use the external database API provided
by the database for all the database specific operations and whatever is done beyond that is
totally specific to the database only. But a confirmation regarding the operation is delivered to
the authentication service.

3.6 The web server module

The part of the system which is perhaps the simplest, our code simply starts an instance of
yaws 2.4.1 with the “ws callback” as callback module. It passes along requests that the web
framework can answer and expects responses from it.

In the beginning of the project we expected the web server to run on a different node than
the web framework, and made an implementation that made them run on different nodes. Later
on we decided to change this for efficiency reasons. We made new connectors 3.8.1 to make
this work, essentially bypassing the message queue but keeping the logical separation. It is
interesting to note that if you wish to change the two components back to communicating with
the message queue it would be rather trivial. Just change the connector that is used to a
gen connector B.5 instead of the specialised ws connector. Nothing needs to be changed in the
web framework since it handles the web server requests in its callback module.

3.7 Web Framework

The web framework is a central part of our system, but rather hard to categorise. Over the
project course it has done different things and to make a comprehensive list of tasks that it
performs is hard. Erlang Web 2.5.1 has many features that we do not really use, and these
are not documented at all in this report. The things that we do use are documented here in a
“black box”-fashion. We don’t really know for sure how Erlang Web does many of the things
it does, we just assume it does them correctly (as it should).

The things we have the web framework do for us is mainly:

• Dispatching the different requests to different controllers

• Requesting templates and data sets from the controllers that the dispatcher contains over
the message bus.

• Expanding templates and inserts data from controllers into it.

• Handling sessions

• Communicating with the web server, completing requests from it.

3.7.1 Division of labour

The division of labour between the web framework and the services was something that was
discussed at length in our project. In the end, we settled on an approach that is basically a
bit of a compromise. The web framework will have it’s own dispatcher to determine “where”
a request should be handled, pass the relevant state (session, path, the request itself etc.) to
the controller and wait for a reply. The controller will set the relevant dynamic parts of the
web page and return the name of the template to be used, making database queries. The web
framework then expands the template and inserts the dynamic data supplied by the controller.

3.7.2 Dispatching

We use the Erlang Web 2.5.1 default dispatcher, which allows you to specify regular expressions
in a configuration file to dispatch incoming requests based on the URL.

18

logged_in : status flag

https : status flag

controller : tuple with module, function and arguments

post : POST data

get : GET data

path : URL

cookies : list of cookies

cookie_key : session cookie value

ip : IP address

session : session state

Figure 6: #request record (web framework → service)

template : name of/path to template

data : dynamic data

Figure 7: #response record (service → webframework)

3.7.3 Session Handling

We use e session, which is provided out of the box from Erlang Web 2.5.1. An API has been con-
structed for services to access the session indirectly. For details, see the User manual appendix,
section B.2

3.7.4 Changes made to Erlang Web

As we initially ran the web framework and the web server on different nodes we had to make a
small change to Erlang Web’s 2.5.1 start script to stop it from starting its own server. Though
we put two components back on the same node we still kept them logically seperated and thus
needed to keep the change as well.

3.7.5 Service Protocol Structure

As the webframework requests a page from a service it sends an instance of a record (see 6)
defined in the webframework API header ’wf api.hrl’. This header also defines the record (see
7) used for the reply sent from the service to the webframework.

3.8 Double Abstraction

The system architecture(as seen in figure 8) is subject to what we call a “double abstraction”.
Speaking in terms of design patterns this is also known as the bridge pattern.

Initially, we figured that we wanted to abstract away the message queue from the services
point of view. The diagram 8 shows this abstraction. None of the components are com-
municating directly, all of the data is transfered via public API’s and through our module
“gen connector”.

The result of this is that the components are all exchangeable. Even the message queue itself
is exchangeable as it is abstracted away from all the other components via their connectors.

3.8.1 Connectors

In the beginning we had a lot of discussions about how to implement the double abstraction.
We have achieved double abstraction by implementing connectors for all of the components. We

19

Figure 8: A better view of double abstraction of our system.

simply let the connectors handle all the communication between them and the message queue.
The connector is the main communication module in any given service. The module is called

“gen connector” and it requires the name of a callback module as its starting parameter.
This callback module contains instructions on how incoming messages should be handled.

Then when it receives a message, the connector spawns a new worker child that calls the callback
module with the contents of the message. The result is sent back to the gen connector who will
reply with the result to the sender.

The connector is also used when a service wants to send outgoing messages. Calling the
“gen connector:send/3” function will cause the gen connector to send a message over the mes-
sage queue to the designated recipient. The callback module in turn uses our RabbitMQ 2.3 API
for communicating with the message queue. This API serve the purpose of abstracting away
the message queue from the connector. The connector also keeps an internal record of messages
that are awaiting replies so that it can match the correct replies to the original message.

The gen connector will also upon startup read from a configuration file called [service-
name].cfg. (e.g. db.cfg) where it will extract the login name and password for the message
queue so it can establish a connection with it. If this operation fails, connector startup fails.

Note that functions for making synchronous calls are implemented here, not in the MQ
(Message Queue). This was something that simply happened, and it should probably be moved
into the MQ (Message Queue) api instead, but we never found time to do it.

3.9 RSS

In our implementation, the URLs to the RSS [27] feeds are stored in the database. The first
step is to create a database for RSS. In our case, there is a script (i.e. inst db schema) which
performs the following:

1. create a database called ’rss’

2. create a view called ’feeds’

The ’rss’ database should contain documents containing URL field. After that, all the stored
URLs from the database are retrieved. Since CouchDB 2.2.2 is used as the database, a view
needs to be created to extract all the URLs. To read RSS feeds, an RSS reader (or aggregator)
is implemented. In the RSS reader, the URLs are passed to a function in ibrowse 2.6.1 module,

20

an HTTP client written in Erlang that provides extensive HTTP support, which returns the
RSS feeds in XML format. The retrieved XML feeds are then parsed using xmerl, an Erlang
library. The parsing results are grouped into a list of list of tuples, where each list of tuple is a
single RSS feed. The results are then sent to the web framework for display.

3.10 The CMS (Content Management System)

Although shipped to us at a very late stage of development and not being a focal point of this
project, quite a bit of work has been done on the CMS [35] to integrate it into our system.

Currently, the CMS is in a semi-working state, wherein you can run and view some parts of
it but it has some glaring problems.

1. Many parts of the CMS don’t actually work and none of it has been tested methodically.

2. There is no way to automatically set up the database properly. If you wish to use the
CMS you will have to set up the CouchDB 2.2.2 instance to have the proper, expected
databases, views and documents to make it work.

3. It isn’t connected to any public website. You can alter things in the database (assuming
it is set up properly), but the public part isn’t complete yet.

The CMS is an application built on top of Erlang Web 2.5.1, which may seem like a good
thing when you want to integrate it into our system. It certainly seems more convenient than
converting a Nitrogen application, but the fact is that since we do not expose the features of
Erlang Web 2.5.1 directly, it became very hard to insert the CMS into our system. Erlang Web
2.5.1 is very cross-referencing between the different parts that we have separated. Therefore,
since we wanted to keep the different parts of the systems separated from each other, it is
troublesome to change all the calls between the two “areas” where things are kept.

To deal with this, we had to implement some wrappers for different functionalities that
the CMS expects (or any Erlang Web 2.5.1 application expects). The two main modules we
implemented to cope with this are backends to e auth and e db, aptly named “e auth trapexit”
and “ e db trapexit”. They can be found in the ext api directory and implement functions
that, opaquely, make Erlang Web 2.5.1 applications use the message queue. They implement
the same API as e auth and e db, and can be used as the backend of an actual Erlang Web
2.5.1 application running as well. Note, however, that we’ve changed all the function calls in the
CMS to actually call to the e db trapexit module, since we do not start the applications that
set up the state that makes e db work in the same node as the controllers. We also use some
Erlang Web 2.5.1 modules directly on the controllers sides of the system. For example, we set
up an e dict on the node that the public and cms are running so that their calls to wpart:fset
and wpart:fget work properly.

In order to set up the database to work with the CMS, you need to:

• Create databases with names corresponding to all the wparts in the cms application,
admin panel and so forth.

• Create a document called “meta” with a field called “counter” in it. It should be set to
some integer value like 0. It is used for creating ID’s for new elements of the corresponding
type.

• You need to set up a view for all of the new databases that returns the ID of all elements
and their data fields. For an example of such a view, see figure 9.

21

function(doc){

if(doc.data)

emit(doc._id, [[doc._id, doc.data]]);

}

Figure 9: An example view that can be used to set up the CMS

3.10.1 Dynamic Menu

In the ‘public’ part of CMS, a dynamic menu was created. Due to lack of time, the dynamic
menu was not fully implemented as the way we wanted it to be. Currently they were created
with different database schemas with respect to the ‘admin’ database schema. Therefore, if a
menu is created in the ‘admin’ part of CMS, they will not be viewable in the public site.

How does the current dynamic menu work for us? The ‘public’ site could read information
about the menu and their entries from the database and display them.

The names of the menus and their entries are stored in different databases, named ‘cms menu’
and ‘cms entry’ separately. The database schema for menu is flat in the sense that there is no
reference to other databases. The database schema for the entries contains relations to the
menu database. Each entry document has a menu id refering to what menu it belongs to.

All templates are loaded when the CMS is started. In the HTML page, wpart tags are
used to refer to the controller of the core menu with a target attribute specifying which site
(public or admin) to load. Inside the controller of the core menu, the names of the menus and
their entries are retrieved from the database and converted to a record of type ‘core menu’ and
‘core menu entry’. The record is then applied to the predefined template. The final template
is sent back to the web framework for display.

3.11 Planet

The planet is an application that we made before gaining access to the CMS application. It
runs properly in our system and uses Erlang Web’s 2.5.1 templating. It is not connected to the
CMS however and can basically be considered to be a test-application that shows the system
working in full.

3.12 Applications and Supervisors

Our project has many applications and each component has to be a stand-alone application, so
that they can be easily exchangeable. A brief explanation of our application structure can be
seen in figure 10.

Applications were used so that it would give us a nice binding for all our API modules and
supervisors were used to make our system fault-tolerent. The supervisor starts its respective
child processes. The child process is the gen connector 3.8.1 module for all our applications. It
then gets connected to the message queue by giving its credentials. This works the same for all
the services and components except the web framework and web server.

The web framework supervisor starts two child processes. The first one is the gen connector
module which works the same way as it does for the others. Second child is the wf bridge
module. The web server supervisor starts a separate connector called ws connector. Because
in our system, the web framework and web server are joined together and are not separate
applications. So the web server communicates directly with the web framework instead of via
the message bus.

For all our supervisors, we have used the “one-to-one” restart strategy.

22

Figure 10: Example application and supervisor structures

23

4 Dataflow

This section describes the dataflow of our system, in terms of how a simple transaction between
two services work, how HTTP [22] requests are processed, and how an end user manages his
account on Planet Trapexit.

4.1 A Simple Transaction

Figure 11: In order to get information from the database, the authentication module must
communicate via the external database API which is available for all services.

The figure 11 depicts a simple transaction between the authentication service and the
database service. Before starting the communication, the connectors must be started on dif-
ferent nodes. This will ensure that these two modules are connected to the message bus. The
external database API will send a message to the message bus. When sending a request to the
connector, the connector will package the payload(i.e. the actual request) into a message record
before sending it. The message record is again packaged into AMQP (Advanced Message Queu-
ing Protocol) [11] record by the RabbitMQ 2.3 API’s process before it is sent to other service.
The message is received by the connector at the database end and the actual request is passed
to the database callback module.

After getting the request, the database callback module will call the internal database API
which is private to the database service itself. The internal database API will query the database
according to the request. The results will be sent back to the authentication module through the
message bus in a way that is analogous to the authentication to the database transmission. The
RabbitMQ 2.3 API’s process at the receiver’s end will unwrap the AMQP (Advanced Message
Queuing Protocol) [11] message and deliver it to the authentication’s connector which again
unwraps the message record and extracts out the actual payload of the message.

4.2 Handling HTTP Request and HTML generation

When a user requests for a page, the steps followed are

• At first, the request in the form of an URL is sent to the web server (Yaws 2.4.1)

24

• Yaws then calls the ’arg rewrite’ function in the web server callback module which lets us
edit the request before it is handled

• The web framework is queried with the URL and replies whether or not it refers to a
static object. This allows us to serve static objects such as images directly from the web
server

• If the request is not static a prefix is added to the URL which causes Yaws to call the
’out’ function in the callback module to handle the request

• Since the web server and web framework are on the same node, both components have a
special module for communicating with each other: ws connector and wf bridge respec-
tively. The web server callback module thus calls the wf bridge via the ws connector

• The bridge will then spawn a process for the web framework callback module to handle
this request. The web framework callback module sets things up for Erlang Web 2.5.1
and figures out what to do with the request, i.e. what service to call over the bus, and
the request is sent to said service using the gen connector

• The services return the name of a template to use along with relevent dynamic data, and
Erlang Web 2.5.1 is used to combine these two into the final HTML [22] which is sent to
the web server.

4.3 User Management

Figure 12: An HTML Dataflow

4.3.1 User Registration

When an user registers, the data will be processed as follows:

• the web browser sends user’s data to web server.

• the web server receives the data and sends it to the Web Framework via Web Framework
bridge.

25

• the Web Framework receives the data and sends it to the Planet Erlang service.

• once the planet receives the data, it calls the authentication module to insert the user’s
information into the database.

• the authentication module encrypts the password and calls the external database API to
add the user in the database.

• the database will reply ’OK’ if the user is inserted successfully, or an error message is
returned if the user already exists in the database.

4.3.2 User Login

When an user logs in, the data will be processed as follows:

• The first three steps are the same as in user registration.

• the planet component calls the authentication module to check if the user exists.

• the authentication module calls the external database API to read the user’s information
from the database.

• the database will reply ’OK’ if the user exists or send back an error message.

26

5 Testing

Testing plays one of the most important roles in the IT development process. In this section
we will cover how our tests are structured.

5.1 EUnit

5.1.1 How to do the test

Test cases in EUnit [34] is a stand-alone Erlang 2.1 module where developer calls tested functions
and matches its return values with predefined correct values. It means that developer can not
write one test cases module for more than one project modules. Name of the test cases module
should be the name of the module followed by “ tests.erl”.

5.1.2 Result

If a test is done successfully then the test report will contain ’Test is done, ok’. If one or more
tested functions returns a value that differs from the expected result then the test is considered
to have failed and a report will be generated. Using EUnit in Rebar 2.7 also gives you detailed
code coverage report where you can see how much code is executed by the test suite.

5.2 Tsung testing

Tsung [8] is a tool built to test the scalability and performance of the client/server applications.
It is written in Erlang 2.1 and is used for stress testing the servers. When testing the system,
the system is setup in some different ways for comparison reasons. For all tests the Tsung
testing suite was run on one node.

The setups can be seen in table 1 and the different results in figures 13, 14 and 15.

Setup # Node 1 node 2 node 3 node 4

1 Database
Message bus
Webserver
Webframework
Authentication
Module
Planet Trapexit

2 Database Message bus Webserver
Authentication
Module

Webframework

Planet Trapexit

3 Database Message bus Webserver Planet Trapexit
Authentication
Module

Webframework

Table 1: Tsung test setups

• Figure 13 displays the results for the test run where the whole system is running on one
node. The results show that the system performs well up to about 210 login attempts per
second.

• Figure 14 show the graph for the test with the Web Framework 2.5.1 and the Web Server
2.4.1 are running on their own nodes. The graph shows some significant improvement

27

from the all in one physical node test and the system can now handle a bit over 270 login
attempts per second.

• Figure 15 show the graph where the web page also run on a separate node and the
performance is pushed a little bit higher and the system handles around 300 requests per
second.

Figure 13: All in one node

5.3 Extracting Tsung Data

The Tsung [8] data we were interested in was the average response time and the Transactions per
second. In the HTML report that Tsung generates, these graphs are represented as images called
graphes-Transactions-mean.ps and graphes-Transactions-rate.ps. To find out the corresponding
data we checked the gnuplot files that generate these images. They are available in the log-
folder/gnuplot scripts/graphes-Transactions.gplot

When you open up this file, you will see the gnuplot instructions for generating the above
images. To generate graphes-Transactions-mean, gnuplot reads column 1 and column 3 from
a file called page.txt. Likewise, to generate graphes-Transactions-rate gnuplot reads column 1
and column 2 from the same file, page.txt.

Opening up this page.txt file (available in log-folder/data/page.txt) gives you access to the
data. It was then pulled out manually into Open Office [38] where we made more elegant graphs
out of it.

28

Figure 14: Web Framework and Message Bus separated

29

Figure 15: Web Framework, Message Bus and Planet Erlang separated

30

6 Known Issues

This section describes the issues that we have encountered during our project.

6.1 Erlang Web

We had problems running Erlang Web 2.5.1 initially, getting it to use Yaws 2.4.1 was problematic
and it refused to run in non-interactive mode throughout the project. It is hard to tell exactly
what is going wrong when we run Erlang Web since the two starting scripts are very different
from each other, but

• start.erl is not named properly.

• The included distribution of yaws that is bundled with is compiled for a different archi-
tecture than what we were running.

We have not changed the way Erlang Web handles templating at all, but it turned out that
to do so would be quite simple, since the template expansion is kept in different modules that
you can call without too much fuss. We have not implemented any way for services to add
templates to the web framework. The administrator of the system will have to put them there
manually as it is now, but it would not be too hard to add that. The problem with making a
very dynamic system is that there are few applications which need these kinds of things.

6.2 Erlang Web Bug

During our stress testing 5.2, when we pushed Erlang Web 2.5.1 hard enough it eventually
crashed and started to restart itself. So far so good, but after restarting itself and after our
stress test was over, Erlang Web was “hogging” one of the CPU cores on the testing machine
and would keep it at 100% for roughly 30 minutes until it let go(or you forcibly restarted it).

We have included the tsung.xml C file we used to stress test in the appendix.

6.3 Ecouch

Ecouch [9] is an API for CouchDB 2.2.2 and the API that we chose to use for our project. It is
not without its issues. The trouble with Ecouch is twofold. Those two problems are; it is slow
and it lacks necessary functionality.

Firstly, Ecouch is unable to, on its own, remove a field from a database with ease. It is a
possibility to request the entire database, pluck out the field and then insert the entire database
again sans the field you want to be removed, but the solution is neither efficient nor elegant.

Secondly, the performance issue stems from the fact that Ecouch utilizes the http-API of
CouchDB rather than calling CouchDB directly (Another CouchDB API, Hovercraft [10], does
this). This means that Ecouch has to create http requests and push them through a socket to
CouchDB’s listener. This is a slow process.

On top of that, Ecouch is itself split up between several processes and must spend some time
communicating with itself with every call you make to it. Both these issues could be averted
by switching to Hovercraft and refactoring it to make it work like a proper API and not just a
wrapper for CouchDB.

The reason why we did not use Hovercraft is also twofold. Firstly, it is more of a wrapper
than it is an API. We would not be able to detach it from the CouchDB process and would
have to write a bridge to it. Secondly, we could not get views to work properly with it.

6.3.1 Adding new views

Currently, the only way to add new views to the database is via the CoudhDB 2.2.2 web
interface, there is no API functionality for that.

31

6.4 The CMS

We do not have a good view of what exactly should be on either side of the message queue. The
main problem is that we have not had time to analyse the usage of the different parts of the
CMS (Content Management System) 3.10, so that we could come up with a good separation
of the different parts of it. Presumably, the public part of the CMS has this problem as well.
You would probably have to implement an Remote Procedure Call [36] functionality in the Web
framework, but we are not sure what function calls need to be routed in this way.

There probably is not too much work to it, but the CMS certainly feels a far way off of
working correctly at the moment when you look at it.

6.5 Webcrawler

Due to time constraints, development on the web crawler [37] was cut as it was deemed too
time costly for the project.

There are one main issues with the crawler. Namely, the current trapexit.org webcrawler is
written in Nitrogen 2.5.2 and is incompatible with our Erlang Web 2.5.1 system. While we laid
the groundwork for a Nitrogen to Erlang Web bridge, this side project did not reach a workable
state and as such we discontinued work on the crawler.

6.6 Releases

We wanted to make a Release for our final product. We initially figured out with a single release
file which involved all our applications. It worked out fine until we emerged with the problem
of integrating Couchdb 2.2.2 and RabbitMQ 2.3 to our release package. We then did not focus
much on the Release structure. But we arrived a temporary solution, by having individual
releases for each application.

6.7 Testing Supervisors and Applications

Testing is always important for any system. It is obvious to check our code to look for bugs
and then fix them up. We in our system, have tested all our modules using E-unit 5.1 and
we got impressive test coverage reports. We initially had problems for testing our connector
modules as it includes more than two components to be tested. We spoofed the components
but it didn’t worked as we wanted. Meck 2.11 was a useful library written in Erlang came to
our rescue. It was very useful in spoofing components. Read more about Meck and E-unit in
section 2.11. But all was working good until we started to test our supervisor and application
modules. These modules are fairly simple and do not have complex code in them. But this
was the problem, like we were unable to figure out how to do unit testing with supervisors and
applications.

32

7 Future work

This entails the future developments about our system.

7.1 Security

We have not looked into making the way that traffic is sent secure, so right now all traffic
between different services is unencrypted and open for spying. For our testing this has not
really been an issue, but you would definitely want to make sure that the valuable information
that you pass around (usernames, passwords etc.) are not open for viewing. A simple approach
to do this is to simply have sensitive information that is passed around be encrypted before it
is sent in the connector or in the services themselves.

We do not regulate the way that services use the Rabbit message queue, although with
secure passwords and usernames it shouldn’t be too much of an issue. AMQP (Advanced
Message Queuing Protocol) [11] has many ways of making the brokering more secure and less
open to abuse, although it is not something that we looked into in our project.

7.2 Distributed Applications

In the system we have built there’s no process that ensures that all the different services are
running as they should. This may or may not be needed but would of course be a nice thing to
have, especially if you intend to distribute the applications over many machines that may have
their own share of faults affecting the Erlang 2.1 environment.

A supervision tree was designed and proposed with the aim of it being developed, as can be
seen in figure 16. However, not much time was spent on implementing this feature, as we were
focusing on making the system work and working on the regression of the system. In the end,
it goes unimplemented, but would be interesting to add. You could use the RabbitMQ 2.3 ping
function to implement this.

Figure 16: which would enable super-service supervising.

7.3 More services

As far as system is growing new services might be developed and integrated to the system.
There are number of services:

33

• Forum

• Wiki

• Content Management System (CMS)

To add a new service to the system developer has to:

1. implement new callback module;

2. implement new external API;

3. implement new database schema (optional)

7.3.1 Forum Database Schema

In case we were to implement at forum, we worked out a sketch of a database schema for a
forum. Even though CouchDB 2.2.2 does not explicitly support relationship between data, you
can impose that relationship via clever restrictions and features in the API. This is a brief sketch
of how we would do that.

A Database schema for forum service is not as simple as for authorization for example. The
data is stored in different databases and there is relations between data as well. Forum usually
consists of number of topics. Each topic consists of number of threads and each thread refers
to the number of posts. Thus, the architecture is represented by four levels where each level
corresponds to separate database (see figure 17).

Figure 17: A sketch of the proposed forum schema

Each document in ’groups’ database contains references to the documents from ’forums’
database. Detailed document structure is:

field name value

doc id ”1098”
group name ”Erlang”
list of references [”1”,”15”, ”642”]
db name ”forums”

34

where ’list of references’ is the list of document ids and ’db name’ is the database name where
these ids are stored. To get all the forums for the given group a view is used.

If a new service is added to the system then the new database schema should be defined
and implemented.

7.4 MQ (Message Queue)

The implementation of our message bus API has been sufficient for our uses, considering for
example that we have had no worries about security and no real issues with network latency
between our components. To expand the API and make more use of the AMQP (Advanced
Message Queuing Protocol) [11] that RabbitMQ 2.3 implements would probably be time well
spent, especially when considering the security of the traffic between components. Synchronous
calls (I.e. calls that return the response of the recipient) should also, logically, be implemented
in the RabbitMQ API, although it is currently implemented in the gen connector API. Other
possible expansion of the RabbitMQ API is the addition of various priority levels that we
considered but never implemented and variable timeout settings. The API is minimalistic but
functional right now.

7.5 Testing Exchangeability of Components

While we designed our system to have exchangeability of components, complete with a double
abstraction 3.8 of all our components we have, mainly due to time constraints, not tested this
yet. A reasonable future work would be to swap out the Message Queue or the Database and
see how much work is required to make the system run again. In theory, you should only have
to rewrite the API’s of the module or service you are swapping out.

35

8 Conclusion and analysis

Throughout this project, the goal has, in a sense, been to explore the “cloud” architecture when
applied to a web server. In that regard, we have definitely succeeded. We use an architecture
which is by nature distributable to put together components and achieve some not too shabby
results in a near-zero latency environment. Considering that these components themselves are
also distributable (though we haven’t explored and tested the performance effect of doing this)
it would definitely be possible to relegate work to many machines.

We’ve designed and implemented a system that allows for many concurrent actors to work
in parallel. The traffic going between is structured to be efficient and lean so that the message
bus does not bottleneck the system, and according to our initial testing, that doesn’t seem to be
the case. In fact, the part that goes down first is Erlang Web 2.5.1, and although it eventually
recovers, a bug caused the CPU usage to go up to 100% on one of the cores on the machine
running Erlang Web when we did the stress tests as well as afterwards. This is detailed further
in the “Known Issues” chapter.

Although we have not tested it yet, we do believe that we have achieved exchangeability of
components. Taking out the, say, the Message Queue and putting in another one should only
require a rewriting of the mq api and after that the system should be good to go. I use the
word “should” here, because we did actually not try this out ourselves.

36

References

[1] J.Chris Anderson, Jan Lehnardt and Noah Slater. (2009) CouchDB: The definitive Guide.
1st ed. O‘Reilly Media. pp.230.

[2] Meck (2011) [Online]. Available from: https://github.com/eproxus/meck. [Accessed
25/02/2011].

[3] Francesco Cesarini and Simon Thompson. (2009) Erlang Programming-A Concurrent Ap-
proach to Software Development. 1st ed. O‘Reilly Media.

[4] RabbitMQ (2011) [Online]. Available from: http://www.rabbitmq.com/. [Accessed
11/02/2011].

[5] Yaws (2011) [Online]. Available from: http://yaws.hyber.org/. [Accessed 11/02/2011].

[6] Erlang Web (2011) [Online]. Available from: http://www.erlang-web.org/. [Accessed
11/02/2011].

[7] Redmind (2011) [Online]. Available from: http://www.redmine.org/. [Accessed
17/02/2011].

[8] Tsung (2011) [Online]. Available from: http://tsung.erlang-projects.org/. [Accessed
18/02/2011].

[9] Ecouch (2011) [Online]. Available from: http://code.google.com/p/ecouch/. [Accessed
25/02/2011].

[10] Hovercraft (2011) [Online]. Available from: https://github.com/jchris/hovercraft.
[Accessed 25/02/2011].

[11] Advanced Message Queuing Protocal (2011) [Online]. Available from: http://www.

amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol. [Accessed
25/02/2011].

[12] Nitrogen (2011) [Online]. Available from: http://nitrogenproject.com/. [Accessed
25/02/2011].

[13] Zotonic (2011) [Online]. Available from: http://zotonic.com/. [Accessed 25/02/2011].

[14] Riak (2011) [Online]. Available from: http://wiki.basho.com/. [Accessed 25/02/2011].

[15] Erlang Solutions Ltd. (2011) [Online]. Available from: http://www.erlang-solutions.

com/. [Accessed 25/02/2011].

[16] Ubuntu (2011) [Online]. Available from: http://www.ubuntu.com/. [Accessed
25/02/2011].

[17] Hibari (2011) [Online]. Available from: http://nosql.mypopescu.com/post/865670585/
hibari-cloud-database-a-new-key-value-store. [Accessed 25/02/2011].

[18] ZeroMQ (2011) [Online]. Available from: http://www.zeromq.org/. [Accessed
25/02/2011].

[19] C++ (2011) [Online]. Available from: http://en.wikipedia.org/wiki/C%2B%2B. [Ac-
cessed 25/02/2011].

[20] Mochiweb (2011) [Online]. Available from: http://groups.google.com/group/mochiweb.
[Accessed 25/02/2011].

37

https://github.com/eproxus/meck
http://www.rabbitmq.com/
http://yaws.hyber.org/
http://www.erlang-web.org/
http://www.redmine.org/
http://tsung.erlang-projects.org/
http://code.google.com/p/ecouch/
https://github.com/jchris/hovercraft
http://www.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
http://www.amqp.org/confluence/display/AMQP/Advanced+Message+Queuing+Protocol
http://nitrogenproject.com/
http://zotonic.com/
http://wiki.basho.com/
http://www.erlang-solutions.com/
http://www.erlang-solutions.com/
http://www.ubuntu.com/
http://nosql.mypopescu.com/post/865670585/hibari-cloud-database-a-new-key-value-store
http://nosql.mypopescu.com/post/865670585/hibari-cloud-database-a-new-key-value-store
http://www.zeromq.org/
http://en.wikipedia.org/wiki/C%2B%2B
http://groups.google.com/group/mochiweb

[21] Inets (2011) [Online]. Available from: http://www.erlang.org/doc/man/inets.html.
[Accessed 25/02/2011].

[22] HTML (2011) [Online]. Available from: http://en.wikipedia.org/wiki/HTML. [Accessed
25/02/2011].

[23] MVC model (2011) [Online]. Available from: http://en.wikipedia.org/wiki/Model%

E2%80%93View%E2%80%93Controller. [Accessed 25/02/2011].

[24] Ajax (2011) [Online]. Available from: http://en.wikipedia.org/wiki/Ajax_

(programming). [Accessed 25/02/2011].

[25] Chicago Boss (2011) [Online]. Available from: http://www.chicagoboss.org/. [Accessed
25/02/2011].

[26] PostgresQL (2011) [Online]. Available from: http://www.postgresql.org/. [Accessed
25/02/2011].

[27] RSS (2011) [Online]. Available from: http://en.wikipedia.org/wiki/RSS. [Accessed
25/02/2011].

[28] XML (2011) [Online]. Available from: http://en.wikipedia.org/wiki/XML. [Accessed
25/02/2011].

[29] Ibrowse (2011) [Online]. Available from: https://github.com/cmullaparthi/ibrowse/

wiki/ibrowse-api. [Accessed 25/02/2011].

[30] Rebar (2011) [Online]. Available from: https://bitbucket.org/basho/rebar/wiki/

Home. [Accessed 25/02/2011].

[31] Git (2011) [Online]. http://git-scm.com/. [Accessed 25/02/2011].

[32] EDoc (2011) [Online]. Available from: http://www.erlang.org/doc/apps/edoc/index.

html. [Accessed 25/02/2011].

[33] Uppsala University (2011) [Online]. Available from: http://www.uu.se/. [Accessed
25/02/2011].

[34] Eunit (2011) [Online]. Available from: http://www.erlang.org/doc/man/eunit.html.
[Accessed 25/02/2011].

[35] Content Management System (2011) [Online]. Available from: http://en.wikipedia.

org/wiki/Web_content_management_system. [Accessed 25/02/2011].

[36] Remote Procedure Call (2011) [Online]. Available from: http://en.wikipedia.org/

wiki/Remote_procedure_call. [Accessed 25/02/2011].

[37] Webcrawler (2011) [Online]. Available from: http://en.wikipedia.org/wiki/Web_

crawler. [Accessed 25/02/2011].

[38] Open Office (2011) [2011]. Available from: http://www.openoffice.org/. [Accessed
25/02/2011].

38

http://www.erlang.org/doc/man/inets.html
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Ajax_(programming)
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.chicagoboss.org/
http://www.postgresql.org/
http://en.wikipedia.org/wiki/RSS
http://en.wikipedia.org/wiki/XML
https://github.com/cmullaparthi/ibrowse/wiki/ibrowse-api
https://github.com/cmullaparthi/ibrowse/wiki/ibrowse-api
https://bitbucket.org/basho/rebar/wiki/Home
https://bitbucket.org/basho/rebar/wiki/Home
http://git-scm.com/
http://www.erlang.org/doc/apps/edoc/index.html
http://www.erlang.org/doc/apps/edoc/index.html
http://www.uu.se/
http://www.erlang.org/doc/man/eunit.html
http://en.wikipedia.org/wiki/Web_content_management_system
http://en.wikipedia.org/wiki/Web_content_management_system
 http://en.wikipedia.org/wiki/Remote_procedure_call
 http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Web_crawler
http://en.wikipedia.org/wiki/Web_crawler
http://www.openoffice.org/

A Appendix A: User Manual

A.1 Installation and setup

The four components are required to install:

• CouchDb [1]

• Ecouch [9]

• ErlangWeb [6]

• RabbitMQ [4]

A.1.1 Installation

Before the installation
Be sure that the follow components are installed to your OS:

1. libssl-dev

2. ssh

3. libcurses5-dev

4. git

5. Erlang (R14B or later)

6. mercurial

Installation scripts are placed at trapexit/scripts/install
Put the scripts

1. inst mother.sh

2. inst couchdb.sh

3. inst ecouch.sh

4. inst erlweb.sh

5. inst rmq.sh

to your installation folder.

Warnings!
Do not use space in the folder name!
Before running the script DELETE all previous installations!

Start the main script, type: sudo bash inst mother.sh
Follow the installation instructions.

After the installation
Go to the current installation folder.

1. Change the access permission, type: sudo chown -R user name:user name . (do not forget
the dot at the end!)

2. Fix Erlang-Web:

39

(a) run in terminal: export ERL LIBS=’/usr/lib/erlang/lib/inets-5.2’

(b) replace two files:
copy setuid drv.so and yaws sendfile drv.so into /erlang-web/lib/yaws-1.85/priv/lib
or (copy from .../lib/yaws-1.85/priv/lib/* lib/yaws-1.85/priv/lib/)

(c) go to current installation folder/erlang-web

(d) to compile: ./bin/compile.erl
if you get en error ”can’t find include lib ”inets/src/httpd.hrl” then delete files:

i. lib/eptic-1.4.1/src/e mod inets.erl

ii. lib/eptic fe-1.0/src/e fe mod inets.erl

iii. lib/ewgi-0.2/src/ewgi inets

(e) to setup: ./bin/start.erl

(f) to start interactively: ./bin/start interactive yaws
if got en error then do again: copy setuid drv.so and yaws sendfile drv.so into /erlang-
web/lib/yaws-1.85/priv/lib

3. Restart the computer

A.1.2 Start the system

Before running the system write correct paths into trapexit/scripts/start/path.cfg
Go to the trapexit (root) directory.
Note! All the commands should be run from the ’trapexit’ directory!

Start RabbitMQ
Run the RabbitMQ 2.3, type in a shell: bash ./start.sh rabbit
To see RabbitMQ Server interface open web browser and go to http://localhost:55672/mgmt/
username is guest, password is guest

Add users
Go to tab ’Users’ and put:

• username: db

• password: db

• administrator: no

• press ’add new user’

Repeat the procedure for the users: ’cms’, ’planet’, ’rss’, ’wf’, ’ws’, ’auth’

Set permissions
In the RabbitMQ web interface, in the table ’Users’

• click to the user ’db’

• choose ’Set Permission’

• click ’Set Permission’ button

Repeat the procedure for all users.

Start CouchDB

40

To start CouchDB 2.2.2 type in a shell: bash ./start.sh couch
To see CouchDB web interface open web browser and write: http://localhost:5984/ utils
Login as Admin: username ’admin’, password ’admin’
To check if CouchDB works properly start ’Test Suite’
If CouchDB does not work run the script trapexit/scripts/couch repair.sh

To see Erlang-Web web interface open web browser and go to: http://localhost:8080/

Start other components
To start the system without RabbitMQ 2.3 and CouchDB type in a shell: $ bash ./start.sh
trapexit

Other modes
To start all the modules: bash ./start.sh all
To start CouchDB only: bash ./start.sh couch
To start Ecouch application only: bash ./start.sh db
To start RabbitMQ module only: bash ./start.sh rabbit
To start Authentication application only: bash ./start.sh auth
To start Web framework only: bash ./start.sh wf
To start Planet Erlang application only: bash ./start.sh planet
To start Content Management System application only: bash ./start.sh cms
To start RSS 2.6 application only: bash ./start.sh rss

A.1.3 DB schema installation

After CouchDB is run the DB schema can be installed.

Step 1:
Run the Erlang in the terminal in root directory:
erl -pa lib/*/ebin scripts/install/

Step 2:
Start the Ecouch application:
inst db schema:start().

Step 3:
Run the installation instructions:
inst db schema:create().

Repeat steps 2 and 3 for the script: inst cms schema.erl

A.2 Writing new services

A.2.1 Implementing a new callback module

The callback module is the main module of a service which handles requests and calls the
internal API.

A.2.2 Implementing external and internal APIs

The internal API intends for work with its own service. The external API intends for work with
other services. In other words, the external API should be as much general as possible while
the internal API should be service specific. By doing this we achieve component replaceability.
If we decide to change the current database to other databases we need to change the database
internal API only.
If service A wants to communicate with service B, the service A will use service B’s external

41

API. For instance, if the authentication service needs to send a request to the database, it calls
the database external API. The internal and external APIs are placed on different sides of the
message bus.

A.2.3 Folder structure

The service folder is placed under trapexit/lib folder following the OTP standard.

• /src contains the source code

• /include contains the hrl files

• /test contains the eunit test cases

• /doc contains edoc files

• /ebin contains .beam files

• /release contains boot scripts for release

A.2.4 Compilation with Rebar

Rebar 2.7 has a configuration file called rebar.config. To compile the new service with Rebar:

• adding a new rebar.config file in the service’s folder, e.g. /db/rebar.config. This file
contains all dependencies.

• registering the new service in file trapexit/rebar.config.
You need to add the full path to your new service folder here, i.e. ”lib/’service name’/”

A.2.5 Application behaviour

All new services should be implemented as applications. Each application starts its own super-
visor and the supervisor starts the general connector. If the new service needs to store its data
in the database, new database schema needs to be added.

B APIs

B.1 MQ API

The MQ API is bloated and half done.
function notes

connect/3
send/4
disconnect/1
subscribe/1
unsubscribe/1
flush/1 Not really used, generally it’s better to subscribe for efficiency reasons.
ping/2 Not implemented yet.
recv/1 See flush/1

42

B.2 WF API

function notes

load tpls/1
set session/2
get session/1
end session/1
validate/3

B.3 DB API

function notes

read/3
info/1
view/3
insert/2
insert/3 Third parameter is with field list
write/3
size/1

B.4 AUTH API

function notes

check passsword
encrypt password/1
insert user/2
change password/3

B.5 gen connector

function notes

start/1
stop/1
send/3
call/3

B.6 db api

function notes

read obj/3
read group/3 You have to insert these manually. See chapter 6.3.1.
insert/3
delete/2
update/3
size/1

B.7 auth api

function notes

check password/3
encrypt password/1 This function is not (as currently implemented) deterministic
authenticate/2
change password/3
insert user/2

43

B.8 e auth and e db

These follow the definitions as found in Erlang Web (to the best of our knowledge).

C Tsung.xml for stresstesting

This is the stress test that produced the CPU core lockdown issue detailed in the Erlang Web
Bug section in our Known Issues chapter.

<?xml version="1.0"?>

<!DOCTYPE tsung SYSTEM "/usr/local/share/tsung/tsung-1.0.dtd">

<tsung loglevel="notice" version="1.0">

<!-- Client side setup -->

<clients>

<client host="localhost" use_controller_vm="true"

weight="5" maxusers="10000"/>

</clients>

<!-- Server side setup -->

<servers>

<server host="130.238.15.220" port="8080" type="tcp"></server>

</servers>

<!-- to start os monitoring (cpu, network, memory). Use an erlang

agent on the remote machine or SNMP. erlang is the default -->

<monitoring>

<monitor host="myserver" type="snmp"></monitor>

</monitoring>

<load>

<arrivalphase phase="1" duration="20" unit="second">

<users arrivalrate="150" unit="second"/>

</arrivalphase>

<arrivalphase phase="2" duration="20" unit="second">

<users arrivalrate="180" unit="second"/>

</arrivalphase>

<arrivalphase phase="3" duration="20" unit="second">

<users arrivalrate="210" unit="second"/>

</arrivalphase>

<arrivalphase phase="4" duration="20" unit="second">

<users arrivalrate="240" unit="second"/>

</arrivalphase>

<arrivalphase phase="5" duration="20" unit="second">

44

<users arrivalrate="270" unit="second"/>

</arrivalphase>

<arrivalphase phase="6" duration="20" unit="second">

<users arrivalrate="300" unit="second"/>

</arrivalphase>

<arrivalphase phase="7" duration="20" unit="second">

<users arrivalrate="330" unit="second"/>

</arrivalphase>

<arrivalphase phase="8" duration="20" unit="second">

<users arrivalrate="360" unit="second"/>

</arrivalphase>

<arrivalphase phase="9" duration="20" unit="second">

<users arrivalrate="390" unit="second"/>

</arrivalphase>

<arrivalphase phase="10" duration="20" unit="second">

<users arrivalrate="420" unit="second"/>

</arrivalphase>

<arrivalphase phase="11" duration="20" unit="second">

<users arrivalrate="450" unit="second"/>

</arrivalphase>

</load>

<options>

<option type="ts_http" name="user_agent">

<user_agent probability="80">

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.8)

Gecko/20050513 Galeon/1.3.21</user_agent>

<user_agent probability="20">

Mozilla/5.0 (Windows; U; Windows NT 5.2; fr-FR;

rv:1.7.8) Gecko/20050511 Firefox/1.0.4</user_agent>

</option>

</options>

<sessions>

<session name=’dumb-login’

probability=’100’

type=’ts_http’>

<request><http url=’http://130.238.15.220:8080/login/’

version=’1.1’

method=’GET’>

</http></request>

<request><http url=’/stylesheet.css’

version=’1.1’

if_modified_since=’Mon, 22 Nov 2010 10:28:23 GMT’

45

method=’GET’>

</http></request>

<request><http url=’http://130.238.15.220:8080/script.js’

version=’1.1’

if_modified_since=’Mon, 22 Nov 2010 10:28:23 GMT’

method=’GET’>

</http></request>

<request><http url=’/www.gif’

version=’1.1’

if_modified_since=’Mon, 22 Nov 2010 10:28:23 GMT’

method=’GET’>

</http></request>

<request><http

url=’/do_login’

version=’1.1’

contents=’username=hej&password=hej’

content_type=’application/x-www-form-urlencoded’

method=’POST’>

</http></request>

<thinktime value="1" random="false"/>

<request><http

url=’/logout’

version=’1.1’

method=’POST’>

</http></request>

</session>

</sessions>

</tsung>

46

	Introduction
	Tools
	Erlang/OTP
	Choice of database
	Riak
	CouchDB
	Hibari
	Decision

	Communication Framework - RabbitMQ
	Choice of Web server
	Yaws
	Mochiweb
	Inets

	Choice of Web framework
	Erlang Web
	Nitrogen
	Chicago Boss
	Zotonic

	RSS
	Ibrowse

	Rebar
	Conventions to be followed for rebar to work properly

	Project Management - Redmine
	Version Control System - Git
	EDoc
	Meck and EUnit
	Hardware and OS

	System design/architecture
	System overview
	Message Bus
	Message Structure
	Database
	Schema architecture
	Views in CouchDB
	Database payload structure

	Authentication
	The web server module
	Web Framework
	Division of labour
	Dispatching
	Session Handling
	Changes made to Erlang Web
	Service Protocol Structure

	Double Abstraction
	Connectors

	RSS
	The CMS (Content Management System)
	Dynamic Menu

	Planet
	Applications and Supervisors

	Dataflow
	A Simple Transaction
	Handling HTTP Request and HTML generation
	User Management
	User Registration
	User Login

	Testing
	EUnit
	How to do the test
	Result

	Tsung testing
	Extracting Tsung Data

	Known Issues
	Erlang Web
	Erlang Web Bug
	Ecouch
	Adding new views

	The CMS
	Webcrawler
	Releases
	Testing Supervisors and Applications

	Future work
	Security
	Distributed Applications
	More services
	Forum Database Schema

	MQ (Message Queue)
	Testing Exchangeability of Components

	Conclusion and analysis
	Appendix A: User Manual
	Installation and setup
	Installation
	Start the system
	DB schema installation

	Writing new services
	Implementing a new callback module
	Implementing external and internal APIs
	Folder structure
	Compilation with Rebar
	Application behaviour

	APIs
	MQ API
	WF_API
	DB_API
	AUTH_API
	gen_connector
	db_api
	auth_api
	e_auth and e_db

	Tsung.xml for stresstesting

