

Release Date: September 28, 2006

Revision: 1.6

Preliminary Information

Document Number:

Interrupt Handler and KAL Programming Guide

Maui System Service User Manual

MediaTek

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 2 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Legal Disclaimer

BY OPENING OR USING THIS FILE, BUYER HEREBY UNEQUIVOCALLY ACKNOWLEDGES AND AGREES THAT
THE SOFTWARE/FIRMWARE AND ITS DOCUMENTATIONS (“MEDIATEK SOFTWARE”) RECEIVED FROM
MEDIATEK AND/OR ITS REPRESENTATIVES ARE PROVIDED TO BUYER ON AN “AS-IS” BASIS ONLY.
MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NONINFRINGEMENT. NEITHER DOES MEDIATEK PROVIDE ANY WARRANTY WHATSOEVER WITH
RESPECT TO THE SOFTWARE OF ANY THIRD PARTY WHICH MAY BE USED BY, INCORPORATED IN, OR
SUPPLIED WITH THE MEDIATEK SOFTWARE, AND BUYER AGREES TO LOOK ONLY TO SUCH THIRD PARTY
FOR ANY WARRANTY CLAIM RELATING THERETO. MEDIATEK SHALL ALSO NOT BE RESPONSIBLE FOR ANY
MEDIATEK SOFTWARE RELEASES MADE TO BUYER’S SPECIFICATION OR TO CONFORM TO A PARTICULAR
STANDARD OR OPEN FORUM.

BUYER'S SOLE AND EXCLUSIVE REMEDY AND MEDIATEK'S ENTIRE AND CUMULATIVE LIABILITY WITH
RESPECT TO THE MEDIATEK SOFTWARE RELEASED HEREUNDER WILL BE, AT MEDIATEK'S OPTION, TO
REVISE OR REPLACE THE MEDIATEK SOFTWARE AT ISSUE, OR REFUND ANY SOFTWARE LICENSE FEES
OR SERVICE CHARGE PAID BY BUYER TO MEDIATEK FOR SUCH MEDIATEK SOFTWARE AT ISSUE.

THE TRANSACTION CONTEMPLATED HEREUNDER SHALL BE CONSTRUED IN ACCORDANCE WITH THE
LAWS OF THE STATE OF CALIFORNIA, USA, EXCLUDING ITS CONFLICT OF LAWS PRINCIPLES.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 3 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Revision History

Revision Date

(mm/dd/yyyy)
Author Comments

0.1 10/21/2004 Shalyn Chua Initially integrated version.
0.2 11/09/2004 Shalyn Chua Adding interrupt controller related APIs.
0.3 05/27/2005 CC Hwang Fix typo in description of new_evshed API
0.4 07/29/2005 Shalyn Chua Create new API, msg_send_ext_queue_to_head().
0.5 10/25/2005 Shalyn Chua Create new API, EXTRA_EINT_Registration()
0.6 10/27/2005 Shalyn Chua Modify EMI customization for 05B and later software package.
0.7 10/28/2005 Shalyn Chua Correct typo on API EXTRA_EINT_Registration.
0.8 12/06/2005 Shalyn Chua Remove EMI Customization, please refer to MTK

GSM_GPRS_System_Configuration document.
0.9 12/14/2005 Karen Hsu Add new description to free_local_para, free_peer_buff,

hold_peer_buff, hold_local_para for re-entrantable new API /
MACRO

1.0 03/02/2006 CC Hwang Modify new_evshed API (support max delay)
1.1 03/31/2006 Shalyn Chua Remove EMI customization from the title.
1.2 04/24/2006 CC Hwang Add one new API kal_adm_check_integrity
1.3 05/10/2006 Shalyn Chua Adding the maximum timeout period of KAL timer and stack timer.
1.4 06/01/2006 CC Hwang Add EXT_ASSERT_DUMP() and modify kal_adm_check_integrity()
1.5 07/17/2006 Eddic Hsien Add limitation descriptions for all resource related create/init APIs.

Remove the APIs: kal_delete_timer, stack_deinit_timer.
1.6 09/28/2006 CC Hwang Support zero-initialization of local parameter.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 4 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Table of Contents

Legal Disclaimer ... 2
Revision History ... 3
Table of Contents.. 4
1 Introduction of External Interrupt Handler.. 11

1.1 Overview... 11
2 Internal Design of External Interrupts ... 12

2.1 Software De-bouncing .. 12
2.2 Internal processing flow of EINT... 12
2.3 Internal processing flow of nIRQ... 13

3 API .. 14
3.1 Interrupt Controller.. 14

IRQMask .. 14
IRQUnmask ... 14
SaveAndSetIRQMask ... 14
RestoreIRQMask... 14

3.2 EINT ... 15
EINT_Registration .. 15
EXTRA_EINT_Registration .. 15
EINT_Set_Polarity... 15
EINT_Mask .. 15
EINT_UnMask.. 16
EINT_SW_Debounce_Modify... 16

3.3 nIRQ ... 16
nIRQ_init ... 16
nIRQ_Registration .. 16

3.4 nFIQ.. 16
nFIQ_Init .. 16
4 KAL – An Overview ... 19
5 Fundamental Data Types .. 20
6 Task Management ... 21

6.1 Description.. 21
6.2 Data Structures and Data Types ... 23
6.3 Task Management API.. 26

kal_activate_hisr... 26

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 5 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_change_priority.. 26
kal_create_hisr ... 26
kal_get_my_task_index.. 26
kal_get_mytask_priority... 27
kal_get_task_self_id... 27
kal_if_hisr.. 27
kal_sleep_task .. 27
stack_change_priority_by_module_ID ... 27

6.4 Customization... 28
7 Task Synchronization Management .. 31

7.1 Description.. 31
7.1.1 Event group.. 31

7.2 Data structures and Data Types ... 32
7.3 Task Synchronization APIs ... 33

7.3.1 MUTEX... 33
kal_create_mutex ... 33
kal_take_mutex... 33
kal_give_mutex... 33

7.3.2 Semaphore... 33
kal_create_sem... 33
kal_take_sem .. 33
kal_give_sem .. 34

7.3.3 Event group.. 34
kal_create_event_group .. 34
kal_set_eg_events.. 34
kal_retrieve_eg_events .. 34

7.4 Example.. 36
8 Task Communication Management ... 37

8.1 Data Structures and Data Types ... 37
8.1.1 Access behavior of local parameter and peer buffer .. 39

8.2 Task Communication APIs .. 40
allocate_ilm... 40
append_to_peer_buff ... 40
cancel_ilm ... 40
construct_local_para.. 40
construct_peer_buff... 41
free_ilm.. 41

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 6 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

free_local_para ... 41
free_peer buff.. 42
hold_local_para .. 42
get_local_para_ptr.. 42
get_pdu_ptr... 42
hold_peer_buff.. 43
msg_get_ext_queue_info... 43
msg_get_ext_queue_length .. 43
msg_send_ext_queue .. 43
msg_send_ext_queue_to_head .. 43
msg_send_int_queue... 44
prepend_to_peer_buff.. 44
receive_msg_ext_q .. 44
receive_msg_int_q ... 45
remove_hdr_of_peer_buff ... 45
remove_tail_of_peer_buff .. 45
update_peer_buff_hdr.. 45

8.3 Example.. 46
9 Timer Management ... 48

9.1 Descriptions.. 48
9.1.1 KAL timer.. 48
9.1.2 Stack timer.. 48
9.1.3 Event scheduler.. 49

9.2 Data Structures and Data Types ... 50
9.2.1 KAL timer.. 50
9.2.2 Stack timer.. 50
9.2.3 Event scheduler.. 51

9.3 APIs .. 52
9.3.1 KAL timer.. 52

kal_cancel_timer... 52
kal_create_timer ... 52
kal_get_time.. 53
kal_get_time_remaining... 53
kal_get_timer_statistics ... 53
kal_set_timer... 53

9.3.2 Stack timer.. 53
stack_init_timer .. 53

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 7 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

stack_is_time_out_valid .. 54
stack_process_time_out.. 54
stack_start_timer .. 54
stack_stop_timer .. 54
stack_timer_status ... 55

9.3.3 Event scheduler.. 55
evshed_cancel_event... 55
evshed_delete_all_events.. 55
evshed_get_rem_time.. 55
evshed_resume_all_events ... 55
evshed_set_event... 55
evshed_suspend_all_events ... 56
evshed_timer_handler ... 56
new_evshed .. 56

9.4 Examples.. 57
10 Memory Management ... 59

10.1 Descriptions.. 59
10.1.1 Control buffer.. 59
10.1.2 ADM ... 62
10.1.3 System memory and debug memory.. 62

10.2 Data Structures and Data Types ... 65
10.2.1 Control buffer.. 65
10.2.2 ADM ... 67

10.3 Memory management APIs .. 69
10.3.1 Control buffer.. 69

get_ctrl_buffer .. 69
free_ctrl_buffer ... 69
kal_query_ctrlbuf_max_consumption .. 69

10.3.2 ADM ... 69
kal_adm_create... 69
kal_adm_delete... 69
kal_adm_alloc ... 70
kal_adm_free... 70
kal_adm_get_max_alloc_size.. 70
kal_adm_get_total_left_size .. 70
kal_adm_check_integrity... 70

10.3.3 System and debug memory ... 71

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 8 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_sys_mem_query_freesize ... 71
kal_debug_mem_query_freesize .. 71

10.4 Examples.. 72
11 Utility APIs ... 73

11.1 Memory operation... 73
kal_mem_cmp... 73
kal_mem_cpy.. 73
kal_mem_set ... 73

11.2 Boot mode querying.. 73
stack_query_boot_mode ... 73

11.3 Multi-bytes string processing .. 73
kal_dchar_strlen ... 73
kal_dchar_strcpy .. 74
kal_dchar_strncpy.. 74
kal_dchar_strcmp... 74
kal_dchar_strncmp... 74
kal_dchar_strcat ... 74
kal_dchar_strncat... 74
kal_dchar_strchr... 75
kal_dchar_strrchr ... 75
kal_dchar2char ... 75
kal_wsprintf... 75
kal_wstrlen.. 75
kal_wstrcpy... 75
kal_wstrncpy... 76
kal_wstrcmp.. 76
kal_wstrncmp.. 76
kal_wstrcat .. 76
kal_wstrncat.. 76
kal_wstrchr.. 77
kal_wstrrchr .. 77

11.4 Reentrance functions.. 77
kal_strtok_r ... 77
kal_gmtime_r .. 77

11.5 Exception handling ... 77

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 9 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

ASSERT... 77
EXT_ASSERT.. 77
EXT_ASSERT_DUMP ... 78

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 10 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Interrupt Handler

External Interrupts
nIRQ
nFIQ
APIs

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 11 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

1 Introduction of External Interrupt Handler

MTK base-band chips provide external interrupt (EINT) for the interrupt triggering from external device. This document
subjects to give the processing flow, customization and interface of external interrupt interface.

1.1 Overview
Table 2-1 gives the total number of EINT offered on the MTK base-band chips.

Number of channels MT6205B MT6217 MT6218 MT6219
External Interrupt (EINT) 3 4 4 4
Dual mode interrupt (nIRQ) 1 1 1 1

Total number 4 5 5 5

Table 2-1. Total number of external interrupts channels

Features of EINT as below,
(1) Selectable edge or level sensitivity,
(2) Selectable negative or positive polarity
(3) Flexible de-bounce time, in terms of 32KHz; the maximal de-bounce time is 64ms (2048 x 31.25µs).

Features of nIRQ,
(1) It is a dual-mode GPIO, acts as interrupt source if it is configured as nIRQ signal,
(2) Configurable as edge sensitivity with active LOW or level sensitivity with active LOW.

Items MT6205B MT6217 MT6218 MT6219
EINT EINT EINT EINT

10 11 11 11
nIRQ nIRQ nIRQ nIRQ

15 18 18 18
nFIQ nFIQ nFIQ nFIQ

Interrupt code

Χ 0 0 0
GPIO number for nIRQ GPIO 21 GPIO 41 GPIO 41 GPIO 41
GPIO number for nFIQ Χ GPIO 42 GPIO 42 GPIO 42

Table 2-2. Interrupt code on a series of MTK base-band chips

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 12 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

2 Internal Design of External Interrupts

Both EINT and nIRQ are central controlled by system service. EINT channel within range could be registered through
EINT_Registration(), repetitive registration is allowed, but only the latest will take effect. However, system could
have at most one nIRQ source; once it is registered, all the registry following will be blocked with fatal error “re-
register nIRQ HISR” (error code 1 = 0x218, error code 2 = 0).

To protect the system from the intervention of instable external interrupt, software de-bouncing time is applied to
provide further protection. Sub-sections following illustrate the software de-bouncing, EINT and nIRQ processing flow
in detailed.

2.1 Software De-bouncing
In addition to hardware embedded de-bounce time 64ms (2048 x 31.25µs), a software de-bounce time is embedded
on each EINT channel. Any level triggered interrupt should hold the state over the pre-defined software de-bounce
time, otherwise, its callback function would not be activated.

The software de-bounce time are customizable at mcu\custom\drv\misc_drv\board version\eint_def.c, entries of
array custom_eint_sw_debounce_time_delay is consistent with total number of EINT channels. The setting is in
units of 10ms.

2.2 Internal processing flow of EINT

kal_uint8 custom_eint_sw_debounce_time_delay[EINT_MAX_CHANNEL] =
{
 50, /*EINT 0,500ms*/
 50, /*EINT 1,500ms*/
 50 /*EINT 2,500ms*/
};

Get the EINT status

Channel hit? Last EINT channel?

Timeout?

Start timer

Mask EINT

Acknowledge EINT

Mask the EINT

Activate an HISR

Quit the EINT LISR

EINT Low Level Interrupt Service Routine (LISR)

YES YES

YES

NO

NO
NO

Get the EINT status

Channel hit? Last EINT channel?

Timeout?

Start timer

Mask EINT

Acknowledge EINT

Mask the EINT

Activate an HISR

Quit the EINT LISR

EINT Low Level Interrupt Service Routine (LISR)

YES YES

YES

NO

NO
NO

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 13 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Processing flow of EINT LISR

Processing flow of EINT HISR

On the very first happening of an EINT LISR, system won’t take action, but start a timer according to the pre-defined
software de-bouncing time instead. Meanwhile, EINT source is disabled or masked until the timeout routine is
serviced. The next occurrence of the same EINT LISR will then activate the EINT HISR, and EINT callback function
registered through EINT_Registration() takes effect finally. However, if the external interrupt signal no longer holds,
the EINT interrupt status will be reset internally, and kept unmasked for the next issuing.

At the HISR (high level interrupt service routine), EINT unmasking will be done according to the user’s specification.
System handles the EINT unmasking if auto_unmask is set to KAL_TRUE.

2.3 Internal processing flow of nIRQ

Processing flow of nIRQ

It is different from EINT that, no de-bouncing is done on software level; the very first LISR will be serviced and the
correspondence callback function is done at HISR level.

Get the active channel

anto unmask?

EINT HISR

YES

NO

Process th callback function

Unmask the EINT source

Quit the EINT HISR

Get the active channel

anto unmask?

EINT HISR

YES

NO

Process th callback function

Unmask the EINT source

Quit the EINT HISR

Mask the nIRQ.

anto unmask?

nIRQ LISR

YES

NO

Activate an HISR.

Unmask the nIRQ source

Quit the EINT HISR

nIRQ HISR
Servicing callback function

Mask the nIRQ.

anto unmask?

nIRQ LISR

YES

NO

Activate an HISR.

Unmask the nIRQ source

Quit the EINT HISR

nIRQ HISR
Servicing callback function

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 14 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

3 API

Below are APIs for interrupts controller, EINT and nIRQ.

3.1 Interrupt Controller

IRQMask
Prototype: void IRQMask(kal_uint8 no)
Header file: intrCtrl.h
Input: no is interrupt source to be disabled, please refer to datasheet of related base-band chip for number and

index of interrupt sources.
Description: This function serves for disabling dedicated interrupt.

IRQUnmask
Prototype: void IRQUnmask(kal_uint8 no)
Header file: intrCtrl.h
Input: no is interrupt source to be enabled, please refer to datasheet of related base-band chip for number and

index of interrupt sources.
Description: This function serves for enabling dedicated interrupt.

SaveAndSetIRQMask
Prototype: kal_uint32 SaveAndSetIRQMask(void)
Header file: intrCtrl.h
Output: Current value of CPSR.
Description: This function is special for disabling all interrupt sources by setting I-bit, besides, return the current value

of CPSR. It must be used in-paired with RestoreIRQMask().

RestoreIRQMask
Prototype: void RestoreIRQMask(kal_uint32 value)
Header file: intrCtrl.h
Input: value is CPSR value to be restored.
Description: Restore the I-bit once it is turned-off. It must be used in-paired with SaveAndSetIRQMask().
Example:

kal_uint32 CriticalFunction(void)
{
 kal_uint32 savedMask;

 /* I-bit should be turned-off at this critical path */

savedMask = SaveAndSetIRQMask();
♦♦♦♦♦♦♦♦
 RestoreIRQMask(savedMask);

}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 15 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

3.2 EINT

EINT_Registration
Prototype: void EINT_Registration (kal_uint8 eintno, kal_bool Dbounce_En, kal_bool ACT_Polarity,

void (reg_hisr)(void), kal_bool auto_umask)
Header file: eint.h
Input: eintno is channel of EINT to be registered, Dbounce_En tells if hardware de-bounce time need to be

enabled, ACT_Polarity is the active polarity, reg_hisr is callback function and auto_umask tells the
system if it needs to unmask the interrupt at end of processing.

Description: This service provides the registry function for EINT, any illegal EINT number will be rejected with an
ASSERT. It is suggested that, always keep the hardware de-bouncing active; hardware issues the EINT
interrupt after 64ms de-bouncing. Any EINT interrupt is either positive (KAL_TRUE) or negative
(KAL_FALSE) level trigger, and user should also specify the callback function as well as auto-unmask
flag.

EXTRA_EINT_Registration
Prototype: void EXTRA_EINT_Registration (kal_uint8 eintno, kal_bool ACT_Polarity, void (reg_hisr)(void),

kal_bool auto_umask)
Header file: eint.h
Input: eintno is channel of EINT to be registered, ACT_Polarity is the active polarity, reg_hisr is callback

function and auto_umask tells the system if it needs to unmask the interrupt at end of processing.
Description: Some MTK BB-chips provides 4 external interrupts with hardware de-bounce supported; besides,

configurable level or edge trigger external interrupts. In addition to the 4 external interrupt source, we
have additional external interrupts multiplexed with UART2 RX, UART2 TX, UART3 RX and UART3 TX,
which also could be served as external interrupt sources without hardware de-bounce capability and
always level trigger.
This service specific for the registration of these additional 4 external interrupts. Similar with
EINT_Registration, any illegal EINT number will be rejected with an ASSERT. Any EINT interrupt is
either positive (KAL_TRUE) or negative (KAL_FALSE) level trigger, and user should also specify the
callback function as well as auto-unmask flag.

Availability: W05.36 and later.

EINT_Set_Polarity
Prototype: void EINT_Set_Polarity (kal_uint8 eintno, kal_bool ACT_Polarity)
Header file: eint.h
Input: eintno is the destination EINT channel, ACT_Polarity is new polarity to be set.
Description: This function is provided to set the polarity accordingly, KAL_TRUE for positive level trigger and

KAL_FALSE for negative level trigger. The whole procedure is done under the protection of disabling
interrupt.

EINT_Mask
Prototype: void EINT_Mask (kal_uint8 eintno)
Header file: eint.h
Input: eintno is the destination EINT channel.
Description: This function is provided for masking/disabling the given EINT channel. Again, the action is done under

the protection of disabling interrupt.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 16 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

EINT_UnMask
Prototype: void EINT_UnMask (kal_uint8 eintno)
Header file: eint.h
Input: eintno is the destination EINT channel.
Description: This function is provided for unmasking/enabling the given EINT channel. Again, the action is done

under the protection of disabling interrupt.

EINT_SW_Debounce_Modify
Prototype: kal_int32 EINT_SW_Debounce_Modify (kal_uint8 eintno, kal_uint8 debounce_time)
Header file: eint.h
Input: eintno is the destination EINT channel, debounce_time is the new de-bounce time.
Output: -1 if the given EINT channel is illegal, 1 if the function is completely done.

Description: This function call aims at dynamically modifying de-bouncing time of the given EINT channel. Note that,
the initial de-bounce time is specified at custom_eint_sw_debounce_time_delay, but it could be
adjusted at run-time. This function is also done under the protection of disabling interrupt.

3.3 nIRQ

nIRQ_init
Prototype: kal_bool nIRQ_init (void)
Header file: isrentry.h
Output: KAL_TRUE if operation successfully done, otherwise KAL_FALSE will be returned.
Description: This service aims at configuring GPIO mode; please refer to Table 2-2 for the GPIO mapping.
Remark: It must be called after Drv_Init(), which is called from Application_Initialize(), Initialize();

otherwise, the value will be overwritten.

nIRQ_Registration
Prototype: void nIRQ_Registration (kal_bool edge, void(reg_hisr)(void), kal_bool auto_unmask)
Header file: isrentry.h
Input: edge is the polarity, reg_hisr is callback function and auto_umask tells the system if it needs to unmask

the interrupt and end of processing.
Description: This service provides the registry function for nIRQ, it is either falling edge trigger (KAL_TRUE) or

negative level trigger (KAL_FALSE), and user should also specify the callback function and auto-
unmask flag.

3.4 nFIQ

nFIQ_Init
Prototype: kal_bool nFIQ_init (void (hisr_callback)(void), kal_bool enable, kal_bool auto_unmask,

kal_bool sensitivity)
Header file: isrentry.h
Input: hisr_callback is the callback function of nFIQ HISR. If enable is KAL_TRUE, system will enable nFIQ at

nFIQ_Init. auto_unmask leads the automatically unmask of nFIQ at HISR, otherwise, user is responsible
to unmask it. sensitivity is used to specify the sensitivity, KAL_FALSE tells LEVEL_SENSITIVE, and
KAL_TRUE is EDGE_SENSITIVE.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 17 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Output: Apply this function on base-band chip without nFIQ results in the return value KAL_FALSE, otherwise
KAL_TRUE.

Description: This service aims at configuring GPIO mode; please refer to Table 2-2 for the GPIO mapping. Besides,
LISR registration and HISR creation of nFIQ are also done in the function.

Remark: (1) It must be called after Drv_Init(), which is called from Application_Initialize(), Initialize();
otherwise, the value will be overwritten.

(2) Users must be very careful in using nFIQ, because it is the highest priority interrupt by
default.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 18 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

KAL Programming Guide

Internal Design
Data Types

Data Structure
APIs

Examples

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 19 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

4 KAL – An Overview

KAL, abbreviation of Kernel Adaptation Layer, is an adaptation layer between Operating System (OS) and
upper layer applications. To keep it highly portable, KAL defines its own API set for each OS component, including
task management, task synchronization, task communication, timer management and memory management.

Being a robust adaptation layer, KAL is rich of amazing features,

 Entry of OS functions,
 System call parameter checking,
 System abruption tracking,
 Tracking the peak consumption of system resource.

Among them, debugging and profiling related features are well protected with compile option, and could be

optionally turned-off if they are no longer needed.

Section 2 is general description of data types defined in KAL, illustration of internal flow and API of each

abovementioned component are provided in subsequent sections.

Notations:
Black, bolded and italic wording is either a file name or file name with relative path.
Black, bolded and underlined wording is a variable.
Black, bolded, underlined and quoted wording is a function().
Bolded and blue color wording is structure name.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 20 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

5 Fundamental Data Types

Table below summarizes all the fundamental data types provided by KAL, they work if kal_release.h is
included. Components abbreviated as NU_xxx are Nucleus Plus core related, please refer to Nucleus Plus
documentation.

Data Types Description Data Types Description
kal_char Type of character. kal_os_task_type Equivalent to NU_TASK

kal_int8 8bits signed-integer. kal_os_hisr_type Equivalent to NU_HISR

kal_uint8 8bit unsigned-integer. kal_os_queue_type Equivalent to NU_QUEUE

kal_int16 16bits signed-integer. kal_os_mutex_type Equivalent to NU_SEMAPHORE

kal_uint16 16bit unsigned-integer. kal_os_sem_type Equivalent to NU_SEMAPHORE

kal_int32 32bits signed-integer. kal_os_eventgrp_type Equivalent to NU_EVENT_GROUP

kal_uint32 32bit unsigned-integer. kal_os_timer_type Equivalent to NU_TIMER

kal_int64 64bits signed-integer. kal_os_pool_type Equivalent to NU_PARTITION_POOL

kal_uint64 64bit unsigned-integer. WCHAR 16bit unsigned short.

kal_bool Boolean type
typedef enum {
 KAL_FALSE,
 KAL_TRUE
} kal_bool;

kal_wait_mode Waiting style.
typedef enum {
 KAL_NO_WAIT,
 KAL_INFINITE_WAIT
} kal_wait_mode;

kal_status typedef enum {
KAL_SUCCESS,
KAL_ERROR,
KAL_Q_FULL,
KAL_Q_EMPTY,
KAL_SEM_NOT_AVAILABLE,
KAL_WOULD_BLOCK,
KAL_MESSAGE_TOO_BIG,
KAL_INVALID_ID,
KAL_NOT_INITIALIZED,
KAL_INVALID_LENGHT,
KAL_NULL_ADDRESS,
KAL_NOT_RECEIVE,
KAL_NOT_SEND,
KAL_MEMORY_NOT_VALID,
KAL_NOT_PRESENT,
KAL_MEMORY_NOT_RELEASE

} kal_status;

KAL_ADM_ID Type of void *.

Table 6-1. Fundamental data types

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 21 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

6 Task Management

Task management unit is in-charge of the creation of system and customer-defined tasks, besides, scheduling
the execution of tasks and High Level Interrupt Service Routine (HISR).

6.1 Description
Basic execution unit on MAUI is either a task or HISR, and could be interrupted. Context switch takes place no

matter system call is trapped or interrupts; and scheduling scheme applied on the system is priority scheduling. Table
below states the priority coverage and their distribution convention. Any two tasks or two HISRs, which have identical
priority, are scheduled in sequential manner.

Execution Unit Priority Description
0 The highest priority HISR, is always reserved for

L1_HISR, others are prohibited! Otherwise, fatal error
would be encountered during HISR creation.
(Fatal error code 1 = 0x213, code 2 = 0x04)

1 The second highest priority HISR.

HISR

2 The lowest priority HISR, however, it still takes priority
than tasks.

KAL_PRIORITY_CLASS0 ~
(KAL_PRIORITY_CLASS18)

Reserved for system usage only, it is suggested that
customer tasks must not use the priority within the
range.

(KAL_PRIORITY_CLASS18 + 1) ~
(KAL_PRIORITY_CLASS19 + 9)

For tasks, which are timing critical, like BMT (Battery
Management Task), AUX and OBEX.

KAL_PRIORITY_CLASS20 ~
(KAL_PRIORITY_CLASS21+9)

Applications like MMI, WAP and JAVA occupy priority
within the range.

KAL_PRIORITY_CLASS22 ~
(KAL_PRIORITY_CLASS24 + 9)

For tasks, which have rather lower priority, and to be
scheduled when the system is free, for instance,
NVRAM and TST tasks.

Task

KAL_PRIORITY_CLASS25 ~
(KAL_PRIORITY_CLASS25 + 5)

For very low priority tasks, for example, priority
(KAL_PRIORITY_CLASS25 + 5) is reserved of IDLE
task.

Table 7-1. Convention of priority coverage

There are three possible boot-modes, META, USB or normal boot mode. Different tasks are created for differenct

boot-mode, they are pre-defined in a constant array of type comptask_info_struct, namely sys_comp_config_tbl
for normal boot mode; on the other hand, customer-defined tasks are defined in custom_comp_config_tbl. At
booting stage, system is responsible to identify the exact boot mode, furthermore, copy the tasks information onto
global array known as task_info_g, which is an important reference pool in run-time task management. For instance,
in message passing, task_info_g will be always be referenced to target the destination queue ID.

A task is in READY state soon after creation, or ready to be executed; and system schedules the highest

priority task at the very first context switch. During execution period, it may be suspended for resource synchronization
or communication. Table 7-2 summarizes all possible task status.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 22 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Status Notation Description
NU_READY 0 Task is in ready state, ready to be scheduled and executed.

NU_SLEEP_SUSPEND 2 Task is in sleeping state by calling kal_sleep_task().

NU_QUEUE_SUSPEND 4 Task is suspended at queue, will be awaken in case of messages
arrival.

NU_SEMAPHORE_SUSPEND 6 Task is suspended at semaphore, will return to READY state if
semaphore becomes available.

NU_EVENT_SUSPEND 7 Task is suspended and waiting the validity of an event.

Table 7-2. Task status

Sub-sections following show you the data structure and data type widely used in task management unit, as well

as task management related APIs.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 23 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

6.2 Data Structures and Data Types
Tables following illustrate the general data structures and data types applied on task management unit.

comptask_handler_struct (mcu\config\include\syscomp_config.h)
Description:
Defines the task configuration component, including task entrance, initialization, and others three optional functions,
configuration, reset and end functions.

Data Type Element Description
kal_task_func_ptr comp_entry_func Task entry function.
task_init_func_ptr comp_init_func Task initialization function (optional).
task_cfg_func_ptr comp_cfg_func Task configuration function (optional).
task_reset_func_ptr comp_reset_func Task reset function (optional).
task_end_func_ptr comp_end_func Task end function (optional).

comptask_info_struct (mcu\config\include\syscomp_config.h)
Description:
Constant type array, it is used for task description, the task would not be created if its create function is NULL.

Data Type Element Description
kal_char * comp_name_ptr Task name.

kal_char * comp_qname_ptr Name of external queue.

kal_uint32 comp_priority Task priority.

kal_uint16 comp_stack_size Stack size in terms of Bytes.

kal_uint8 comp_ext_qsize Number of external queue entries.

kal_uint8 comp_int_qsize Number of internal queue entries.

kal_create_func_ptr comp_create_func Function pointer of creates function, with
comptask_handler_struct as input argument, and
return type is kal_bool.

kal_bool comp_internal_ram_stack Specify if the stack size to be created from internal
SRAM, it is not suggested that customers create
their tasks’ stack at internal SRAM.

task_info_struct (mcu\config\include\task_config.h)
Description:
Keep the run-time task related information,

Data Type Element Description
kal_char * task_name_ptr Pointer of task’s name, reference from element

comp_name_ptr of comptask_info_struct.

kal_char * task_qname_ptr Name of external queue, reference from element
comp_qname_ptr of comptask_info_struct.

kal_uint32 task_priority Task priority, copied from comp_priority of
comptask_info_struct.

Kal_uint16 task_stack_size Stack size in terms of bytes, also duplicated from
comp_stack_size of comptask_info_struct.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 24 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_taskid task_id Task ID, which is assigned by OS at run-time.

kal_msgqid task_ext_qid Task’s external queue ID, which is assigned by OS
after creation.

int_q_type *task_int_qid_ptr Task’s internal queue ID, which is assigned by OS
after creation.

kal_task_func_ptr task_entry_func Task’s entry function duplicated from
comp_create_func of comptask_info_struct.

task_cfg_func_ptr task_cfg_func Task’s configuration function duplicated from
comp_create_func of comptask_info_struct.

task_init_func_ptr task_init_func Task’s initialization function duplicated from
comp_create_func of comptask_info_struct.

task_reset_func_ptr task_reset_func Task’s reset function duplicated from
comp_create_func of comptask_info_struct.

task_end_func_ptr task_end_func Task’s end function duplicated from
comp_create_func of comptask_info_struct.

kal_uint8 task_ext_qsize Total number of external queue entries copied from
comp_ext_qsize of comptask_info_struct.

kal_uint8 task_int_qsize Total number of internal queue entries copied from
comp_int_qsize of comptask_info_struct.

kal_bool task_internal_ram_stack If internal SRAM (__SYS_INTERN_RAM__) is
defined, a task stack could be selectively created at
internal or external SRAM. It is not suggested that
customers create their tasks’ stack at internal SRAM.

kal_task_type, *kal_internal_taskid (mcu\kal\nuclues\include\kal_nucleus.h)
Description:
Defines the task control block, slightly different if DEBUG_KAL is defined (light yellow background color).

Data Type Element Description
kal_os_task_type task_id Inherits from Nucleus Plus task control block.
kal_char * task_name Name of the task.

kal_hisr_type, *kal_internal_hisrid (mcu\kal\nuclues\include\kal_nucleus.h)
Description:
Defines the HISR control block, slightly different if DEBUG_KAL is defined (light yellow background color).

Data Type Element Description
kal_os_hisr_type task_id Inherits from Nucleus Plus HISR control block.
kal_char * hisr_name Name of the HISR.

Data Types Description
task_indx_type Enumeration type of task ID.

module_type Enumeration type of module ID.

kal_taskid Identity of a task, it is internally equivalent to kal_internal_taskid.

kal_hisrid Identity of a HISR, it is internally equivalent to kal_internal_hisrid.

task_entry_struct Structure of single element, task_indx_type.

kal_task_func_ptr Function pointer for task entry function, with task_entry_struct * as input argument.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 25 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

task_init_func_ptr Function pointer for task initialization function with task_indx_type as input argument, and
output type is kal_bool.

task_end_func_ptr Function pointer for task end function with task_indx_type as input argument, and output
type is kal_bool.

task_reset_func_ptr Function pointer for task reset function with task_indx_type as input argument, and output
type is kal_bool.

task_cfg_func_ptr Function pointer for task configuration function with task_indx_type as input argument,
and output type is kal_bool.

kal_create_func_ptr Function pointer with comptask_handler_struct ** as input argument, and return type
kal_bool, which is used for task creation function.

Global variable Description
task_info_g Array of task_info_struct, number of the entries is determined by enum of task ID plus

16 customer-defined tasks.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 26 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

6.3 Task Management API

kal_activate_hisr
Prototype: void kal_activate_hisr (kal_hisrid ext_hisr_id)
Header file: kal_release.h
Input: hisrid is destination HISR to be activated.
Description: This function call is widely used to activate an HISR; once it is activated, system will pick up the highest

priority HISR in the next scheduling.
Example:

kal_change_priority
Prototype: kal_uint32 kal_change_priority (kal_taskid taskid, kal_uint32 new_priority)
Header file: kal_release.h
Input: taskid is destination task, new_priority is new priority number to be assigned.
Output: Old priority setting.
Description: This function offers run-time task priority switching, users must be very careful in using the function,

otherwise, deadlock may occur due to priority change.

kal_create_hisr
Prototype: kal_hisrid kal_create_hisr (kal_char* hisr_name, kal_uint8 priority, kal_uint32 stack_size,

kal_hisr_func_ptr entry_func, kal_uint8 options)
Header file: kal_release.h
Input: hisr_name is name of HISR to be created, priority tells the HISR priority, either 1 or 2.; stack_size is

stack size associates with this HISR, which is in terms of bytes, if options is KAL_FALSE, stack will be
allocated from internal SRAM, otherwise from external SRAM. Only timing critical HISR is suggested to
put its stack at internal SRAM. Finally, entry_func tells the HISR entry function.

Output: ID of the HISR.
Description: Function used to create an HISR. It is strongly suggested to call this function only at system

initialization stage, and the HISR related data elements could not be freed once it’s created.
Remark: Priority number 0 is strictly prohibited, which is specially reserved for the highest priority HISR.

kal_get_my_task_index
Prototype: void kal_get_my_task_index (kal_uint32 *index)
Header file: kal_release.h
Input: Pointer of type unsigned 32 bits, which is used for return value.
Description: Finding out correspondence task index of currently running execution unit; if it is not a task, index would

be total number of tasks –1.

static kal_hisrid dma_hisr;

void DMA_LISR(void)
{
 IRQMask(IRQ_DMA_CODE);
 kal_activate_hisr(dma_hisr);
}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 27 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_get_mytask_priority
Prototype: kal_uint32 kal_get_mytask_priority (void)
Header file: kal_release.h
Output: Pointer of type unsigned 32 bits, which is used for return value.
Description: Retrieving priority of current execution unit, either a task or an HISR; for the former, return value ranges

from 0 to 255, while the later is either 0, 1 or 2.

kal_get_task_self_id
Prototype: kal_taskid kal_get_task_self_id (void)
Header file: kal_release.h
Output: Current task ID.
Description: Return the current executing task ID, if the current execution unit is not a task, KAL_NILTASK_ID will be

returned.

kal_if_hisr
Prototype: kal_bool kal_if_hisr (void)
Header file: kal_release.h
Output: KAL_FALSE if the current execution unit is a task, and KAL_TRUE if the current execution unit is a

HISR.
Description: Identify if the current execution unit is a HISR.

kal_sleep_task
Prototype: void kal_sleep_task (kal_uint32 time_in_ticks)
Header file: kal_release.h
Input: time_in_ticks is sleeping duration, each unit is 4.615ms.
Description: Forcing a task to sleep for a duration, which is expressed in terms of 4.615ms.

stack_change_priority_by_module_ID
Prototype: kal_uint32 stack_change_priority_by_module_ID (module_type mod_ID, kal_uint32 new_priority)
Header file: kal_release.h
Input: mod_ID is module ID of destination task whose priority is going to be adjusted, new_priority is new

priority number to be assigned.
Output: Old priority setting.
Description: This function also offers run-time task priority switching, its input argument is different from

kal_change_priority (), where a task is targeted via module ID rather than task ID. Users must be very
careful in using the function, otherwise, deadlock may occur due to priority change.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 28 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

6.4 Customization
A customer task must be specified in custom_comp_config_tbl (defined in mcu\custom\system\board

version\custom_config.c), which is an array of type comptask_info_struct. Its existence could be identified by
create function, NULL if not exist.

In booting stage, system will look into the table, and determine its creation via create function. To keep the

consistency, customers are discouraged to create a task by calling kal_create_task() directly.

Following is the step-by-step illustration about creating a customer task.

Step 1, Define task ID and module ID
Task ID and module ID are two fundamental identifier of a task; the former is widely used for targeting a task entry,
while the later is widely used in message passing. They are defined in mcu\custom\system\board
version\custom_config.h.

The red bolded wordings must not be eliminated, because system relies on them to restrict the number of customer
tasks. At most 16 customer defined task ID and 16 customer-defined modules ID are allowable nowadays. In case of
violation, fatal error “Customer creates too many tasks” (fatal error code 1 = 0x1501, error code 2 = number of
customer-defined task) and fatal error “Customer defines too many module IDs” (fatal error code 1 = 0x1502, error
code 2 = number of customer-defined module) will be suffered respectively.

Step 2, Fill-in module to task ID mapping table
Complete the module ID to task ID mapping table, it is defined in mcu\custom\system\board version\
custom_config.c..

Following the previous example, both task INDX_CUSTOM1 and INDX_CUSTOM2 associate with single module ID,
therefore, entry MOD_CUSTOM1 in table custom_mod_task_g maps to task INDX_CUSTOM1. Also, INDX_NIL
must not be removed.

Step 3, Configure the task creation table
Define the task configuration information in mcu\custom\system\board version\custom_config.c, please refer to
data type Comptask_info_struct for more detail.

typedef enum {
INDX_CUSTOM1 = RPS_CUSTOM_TASKS_BEGIN,
INDX_CUSTOM2,

RPS_CUSTOM_TASKS_END
} custom_task_indx_type;

typedef enum {
MOD_CUSTOM1 = MOD_CUSTOM_BEGIN,
MOD_CUSTOM2,
MOD_CUSTOM_END
} custom_module_type;

custom_task_indx_type custom_mod_task_g[MAX_CUSTOM_MODS] =
{
 INDX_CUSTOM1, /* MOD_CUSTOM1 */
 INDX_CUSTOM2, /* MOD_CUSTOM2 */
 INDX_NIL /* Please end with INDX_NIL element */
};

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 29 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Step 4, Implement the task create function
Implement the task create functions in mcu\custom\system\board version\custom1_create.c, please refer to data
type comptask_handler_struct for more detail.

Step 5, Define the message ID
Define the message ID in mcu\custom\system\board version\ custom_sap.h, which must be started with
“MSG_ID_”.

const comptask_info_struct custom_comp_config_tbl[MAX_CUSTOM_TASKS] =
{
 /* INDX_CUSTOM1 */
 {"CUST1", "CUST1 Q", 210, 1024, 10, 0,
#ifdef CUSTOM1_EXIST
 custom1_create, KAL_FALSE},
#else
 NULL, KAL_FALSE},
#endif

 /* INDX_CUSTOM2 */
 {"CUST2", "CUST2 Q", 211, 1024, 10, 0,
#ifdef CUSTOM2_EXIST
 custom2_create, KAL_FALSE},
#else
 NULL, KAL_FALSE},
#endif
};

kal_bool custom1_create(comptask_handler_struct **handle)
{
 static const comptask_handler_struct custom1_handler_info =
 {
 custom1_main, /* task entry function */
 NULL, /* task initialization function */
 NULL, /* task configuration function */
 NULL, /* task reset handler */
 NULL, /* task termination handler */
 };
 *handle = (comptask_handler_struct *)&custom1_handler_info;
 return KAL_TRUE;
}

/* Add customization message id here */
MSG_ID_CUSTOM1_CUSTOM2 = CUSTOM_MSG_CODE_BEGIN,
MSG_ID_CUSTOM2_CUSTOM1,

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 30 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Currently, the maximal allowable customer message ID is 1000, fatal error “Customer define too many message IDs”
(fatal error code 1 = 0x1503, error code 2 = total number of customer-defined message ID) will be encountered if
exceeding.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 31 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

7 Task Synchronization Management

The simplest form of synchronization involves the starting of a task at the appropriate time. By providing message
exchange and wait/wake mechanisms, MAUI is capable of offering a variety of solutions to the problem of task
synchronization. Message exchange system is categorized as “Task Communication Management” and will be
described in next chapter. This chapter focuses on wait/wake –based mechanism.

7.1 Description
By using event group, a task can trigger an event, someone who is waiting for the event would be waken-up by

the Operating System (OS). Also, to protect a critical section, users could rely on MUTEX or semaphore to achieve
the goal. MUTEX inherits from semaphore with initial courting value 1. The state of task exactly reveals the
suspension type.

7.1.1 Event group

Event group provides a mechanism to indicate that a certain system event has occurred. A single bit in an event
group represents an event. This bit is called an event flag. There are 32 event flags in each event group.

Tables below collects the possible operations for event retrieval and event set respectively.

Operations Description
KAL_AND Indicate that all of the requested event flags are required.

KAL_AND_CONSUME Indicate that all of the requested event flags are required, and
CONSUME option automatically clears the event flags present on a
successful request.

KAL_OR Indicate that one or more of the requested event flags is sufficient.

KAL_OR_CONSUME Indicate that one or more of the requested event flag is sufficient,
and CONSUME option automatically clears the event flags present
on a successful request.

Table 8-1. Operations on retrieving event group

Operations Description
KAL_AND Causes the event flags specified to be “ANDed” with the current

event flags in the group.

KAL_OR Causes the event flags specified to be “ORed” with the current event
flags in the group.
Note: Event flags can be cleared with the NU_AND option.

Table 8-2. Operations on setting event group

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 32 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

7.2 Data structures and Data Types

kal_mutex_stat_type, *kal_internal_mutex_statistics (mcu\kal\nuclues\include\kal_nucleus.h)
Description:
This data structure aims at tracking the owner and status of a MUTEX.

Data Type Element Description
kal_internal_task_id owner_task Task, who owns the MUTEX.

al_mutex_state mutex_state State of MUTEX, either in KAL_MUTEX_GIVEN or
KAL_MUTEX_TAKEN state.

kal_mutex_type, *kal_internal_mutexid (mcu\kal\nuclues\include\kal_nucleus.h)
Description:
Defines the control block of a MUTEX, slightly different if DEBUG_KAL and DEBUG_ITC are defined (light yellow
background).

Data Type Element Description
kal_os_mutex_type mutex_id Inherits from semaphore of Nucleus Plus.
kal_os_task_type * owner_task Owner of the MUTEX, which is expressed with task

identity.
kal_mutex_state mutex_state Status of the MUTEX, either in KAL_MUTEX_GIVEN

or KAL_MUTEX_TAKEN.
kal_internal_mutex_statistics mutex_stat Pointer to statistical data structure of a MUTEX.

kal_sem_type, *kal_internal_semid (mcu\kal\nuclues\include\kal_nucleus.h)
Description:
Defines the control block of a MUTEX, slightly different if DEBUG_KAL and DEBUG_ITC are defined (light yellow
background).

Data Type Element Description
kal_os_sem_type sem_id Inherits from semaphore of Nucleus Plus.

kal_sem_state sem_state Status of the semaphore, either in
KAL_SEM_GIVEN or KAL_SEM_TAKEN.

Data Types Description
kal_mutex_state Status of a MUTEX, KAL_MUTEX_GIVEN if it is in given state, or KAL_MUTEX_TAKEN

if it is in TAKEN state.
kal_mutexid Identity of a MUTEX, which is internally equivalent to kal_internal_mutexid.

kal_sem_state Status of a semaphore, KAL_SEM_GIVEN if it is in given state, or KAL_SEM_TAKEN if it
is in TAKEN state.

kal_semid Identity of a semaphore, which is internally equivalent to kal_internal_semid.

kal_eventgrp_type Alias of NU_EVENT_GROUP.

kal_internal_eventgrpid Pointer of type NU_EVENT_GROUP, which is used for internal processing.

kal_eventgrpid Identity of an event group, which is internally equivalent to kal_internal_eventgrpid.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 33 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

7.3 Task Synchronization APIs

7.3.1 MUTEX

kal_create_mutex
Prototype: kal_mutexid kal_create_mutex (kal_char* mutex_name)
Header file: kal_release.h
Input: mutex_name is name of the MUTEX to be created.
Output: Pointer of the created MUTEX.
Description: This function call is dedicated for creating a MUTEX. It is strongly suggested to call this function

only in system initialization time, and the related data allocated for the MUTEX could not be freed
once it’s created.

kal_take_mutex
Prototype: void kal_take_mutex (kal_mutexid ext_mutex_id_ptr)
Header file: kal_release.h
Input: ext_mutex_id_ptr is destination MUTEX to be taken.
Description: This service obtains an instance of the specified MUTEX. If the MUTEX is in KAL_MUTEX_TAKEN state

before this call, the service cannot be immediately satisfied, and caller will be suspended endlessly.
Once the MUTEX is taken by a task, its status will soon become KAL_MUTEX_TAKEN, and owner ID
will be recorded in control block of the MUTEX.

kal_give_mutex
Prototype: void kal_give_mutex (kal_mutexid ext_mutex_id_ptr)
Header file: kal_release.h
Input: ext_mutex_id_ptr is destination MUTEX to be given.
Description: This service releases an instance of the MUTEX specified by the parameter ext_mutex_id_ptr. If there

are any tasks waiting to obtain the same MUTEX, the first task waiting is given this instance of the
MUTEX. Otherwise, if there are no tasks waiting for this MUTEX, the internal counter is incremented by
one. Soon after giving the MUTEX, the status will be updated as KAL_MUTEX_GIVEN. Also, in case of
a MUTEX is not given and taken by the same task, fatal error “kal_give_mutex: The mutex is taken by
another task” (fatal error code 1 = 0x405, error code 2 = ext_mutex_id_ptr), will be taken place.

7.3.2 Semaphore

kal_create_sem
Prototype: kal_semid kal_create_sem (kal_char* sem_name, kal_uint32 initial_count)
Header file: kal_release.h
Input: sem_name is name of the semaphore to be created, whose initial value is stated in initial_count.
Output: Pointer of the created semaphore.
Description: This service creates a counting semaphore, semaphore values can range from 0 through 4,294,967,294.

It is strongly suggested to call this function only in system initialization time, and the related
data allocated for the semaphore could not be freed once it’s created.

kal_take_sem
Prototype: kal_status kal_take_sem (kal_semid ext_sem_id_ptr, kal_wait_mode wait_mode)

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 34 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Header file: kal_release.h
Input: ext_mutex_id_ptr is destination semaphore to be taken, and wait_mode aims for specifying the waiting

style, KAL_INFINITE_WAIT triggers endless suspension, otherwise KAL_NO_WAIT.
Output: KAL_SUCCESS if the operation is done successfully; KAL_SEM_NOT_AVAILABLE if the semaphore is

unavailable.
Description: This service obtains an instance of the specified semaphore. Since the instances are implemented with

an internal counter, obtaining a semaphore translates into decrementing the semaphore’s internal
counter by one. If the semaphore counter reaches zero before this call, the service cannot be
immediately satisfied. The waiting style determines if a task waits infinitely or returns immediately.

kal_give_sem
Prototype: void kal_give_sem (kal_semid ext_sem_id_ptr)
Header file: kal_release.h
Input: ext_sem_id_ptr is destination semaphore to be given.
Description: This service releases an instance of the semaphore specified by the parameter ext_sem_id_ptr. If there

are any tasks waiting to obtain the same semaphore, the first task waiting is given this instance of the
semaphore. Otherwise, if there are no tasks waiting for this semaphore, the internal semaphore counter
is incremented by one.

7.3.3 Event group

kal_create_event_group
Prototype: kal_eventgrpid kal_create_event_group (kal_char* eventgrp_name)
Header file: kal_release.h
Input: eventgrp_name is name of the event group to be created.
Output: Pointer of the created event group.
Description: This service creates an event flag group, each event flag group contains 32 event flags. All event flags

are initially set to 0.

kal_set_eg_events
Prototype: kal_status kal_set_eg_events (kal_eventgrpid eg_id, kal_uint32 events, kal_uint8 operation)
Header file: kal_release.h
Input: eg_id is destination event group to be set, and events are event flags to be set, while operation defines

various operation mode, either KAL_OR or KAL_AND.
Output: KAL_SUCCESS if the operation is done successfully.
Description: This service sets the specified event flags in the specified event group. Any task waiting on the event

group whose event flag request is satisfied by this service is resumed.

kal_retrieve_eg_events
Prototype: kal_status kal_retrieve_eg_events (kal_eventgrpid eg_id, kal_uint32 requested_events,

 kal_uint8 operation, kal_uint32 *retrieved_events, kal_uint32 suspend)
Header file: kal_release.h
Input: eg_id is pointer to the user-supplied event flag group control block; requested_events is a set bit

indicates the corresponding event flag is requested; operation specifies the operation options,
retrieved_events contains event flags actually retrieved, and suspend specifies whether to suspend the
calling task if the requested event flag combination is not met.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 35 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Description: This service retrieves the specified event-flag combination from the specified event-flag group. If the
combination is present, the service completes immediately.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 36 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

7.4 Example
Below is an example of the usage of event group.

#define SET_BIT0 0x00000001
#define SET_BIT1 0x00000002
#define SET_BIT2 0x00000004

kal_hisrid SAMPLE_Hisr;
kal_eventgrpid SAMPLE_Events;

void SAMPLE_HISR_Entry (void)
{

♦♦♦♦♦♦♦♦
 /* An HISR sets an event */

kal_set_eg_events (SAMPLE_Events, (SET_BIT0 | SET_BIT1 | SET_BIT2), KAL_OR);
 ♦♦♦♦♦♦♦♦
}

void SAMPLE_LISR(void)
{
 ♦♦♦♦♦♦♦♦

kal_activate_hisr(SAMPLE_Hisr);
 ♦♦♦♦♦♦♦♦
}

kal_status SAMPLE_consumer1 (void)
{

kal_uint32 flags = 0;
♦♦♦♦♦♦♦♦
/* Consumer will be resumed if and only if event flags SET_BIT0 and SET_BIT2 hold, having successfully

retrieved the event flags, they will be cleared to zero. */
kal_retrieve_eg_events(SAMPLE_Events, SET_BIT0 | SET_BIT2, KAL_AND_CONSUME, &flags, \

KAL_SUSPEND);
♦♦♦♦♦♦♦♦

}

kal_status SAMPLE_consumer2 (void)
{

kal_uint32 flags = 0;
♦♦♦♦♦♦♦♦
/* Consumer will be resumed if and only if event flags SET_BIT1 is satisfied, having successfully retrieved the

event flag, it will remain 1. */
kal_retrieve_eg_events(SAMPLE_Events, SET_BIT1, KAL_OR, &flags, KAL_SUSPEND);
♦♦♦♦♦♦♦♦

}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 37 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

8 Task Communication Management

Basically, MAUI is a message-passing system, any communication between two tasks or HISR and task are
accomplished via message passing. The fundamental message packet is known as Inter Layer Message, abbreviated
as ILM.

To prevent infinitive message delivery, each module is associated an ILM storage. Users must ensure he/she

would not trigger message sending before the completeness of the previous request. Conventionally, user should
allocate ILM in advanced, and put their data onto the storage; once delivered, the ILM storage will be released by the
system.

Subsections following will give the detail description about data structure, data types and message passing flow.

8.1 Data Structures and Data Types
Tables below illustrate the data structure of an ILM in detailed.

local_para_struct (mcu\adaptation\include\app_ltlcom.h)
Description:
Local parameter, acts as extended storage of an ILM, besides, single local parameter may be propagated to more
than one destination. Therefore, header of a local parameter consists of two elements, ref_count tells the total
number of consumers, and msg_len is used in tracking the storage length.

Data Type Element Description
kal_uint8 ref_count Number of references, must not exceed 255.
kal_uint16 msg_len Message length in terms of bytes.

peer_buff_struct (mcu\adaptation\include\app_ltlcom.h)
Description:
Peer buffer, which also serves as additional storage while message passing. Similar with local parameter, single
peer buffer may be propagated to more than one destination, therefore, ref_count tells the total number of
consumers, and pdu_len is used in tracking the length of peer data (pdu). It is different from local parameter in the
behavior of message accessing. Further description could be found in the next sub-section.

Data Type Element Description
kal_uint16 pdu_len Message length in terms of bytes.
kal_uint8 ref_count Number of references, must not exceed 255 times.
kal_uint8 pb_resvered Padding element.
kal_uint16 free_header_space Free space from head of a peer buffer.
kal_uint16 free_tail_space Free space from tail of a peer buffer.

ilm_struct (mcu\adaptation\include\app_ltlcom.h)
Description:
Fundamental unit of a message packet.

Data Type Element Description
module_type src_mod_id Source module ID.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 38 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

module_type dest_mod_id Destination module ID.
sap_type sap_id SAP ID.
msg_type msg_id Message ID.

local_para_struct *local_para_ptr Pointer of local parameter.
peer_buff_struct *peer_buff_ptr Pointer of peer buffer.

kal_msgq_info (mcu\kal\include\kal_release.h)
Description:
Data structure dedicated for queue information, including number of pending messages and total number of queue
entries..

Data Type Element Description
kal_uint32 pending_msgs Number of pending messages.
kal_uint32 max_msgs Total number of queue entries.

kal_queue_stat_type, *kal_internal_queue_statistics (mcu\kal\nuclues\include\kal_nucleus.h)
Description:
This data structure aims at tracking the statistical data of currently pending, as well as maximal number of pending
messages. It is valid if and only if DEBUG_KAL, together with DEBUG_ITC are defined.

Data Type Element Description
kal_uint16 current_num_msgs Tracking the number of pending messages.
kal_uint16 max_num_msgs_enqued Tracking the maximal number of pending messages.

kal_queue_type, * kal_internal_msgqid (mcu\kal\nuclues\include\kal_nucleus.h)
Description:
Defines the control block of message queue, slightly different if DEBUG_KAL and DEBUG_ITC are defined (light
yellow background color).

Data Type Element Description
kal_os_queue_type queue_id Inherits from Nucleus Plus Queue control block.

Kal_uint16 max_msg_size Maximal message size in terms of Bytes; which is
now always equal to size of ilm_struct.

kal_internal_queue_statistics q_stat Pointer of queue statistical record.

Data Types Description
sap_type Enumeration type of SAP ID.

msg_type Enumeration type of message ID, must be leading with “MSG_ID_”.

kal_msgqid Identity of a message queue, which is internally equivalent to kal_internal_msgqid.

Global variable Description
module_ilm_g Array of ilm_struct, number of the entries is determined by enum of module ID plus 16

customer-defined tasks.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 39 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

8.1.1 Access behavior of local parameter and peer buffer

A local parameter or peer buffer is normally created by provider, which is a task in charge of constructing buffer,
and will be consumed by one or many consumers. Provider and/or consumer may call hold_local_para() or
hold_peer_buff() to increment the variable before propagation; value decrementing ought to be done at consumer
site in-paired by calling free_local_para() or free_peer_buff().

For local parameter, data is fixed once constructed. But peer buffer offers two appending manners, either growing

up from head (prepend_to_peer_buff())or down from tail (append_to_peer_buff()). Figures below show the two
appending schemes.

Data appending at front and tail of a peer buffer

pdu_len

ref_count

pb_reserved

free_header_space

free_tail_space

peer buff

free head

free tail

valid data

pdu_len

ref_count

pb_reserved

free_header_space

free_tail_space

free head

free tail

valid data

New data 1

pdu_len

ref_count

pb_reserved

free_header_space

free_tail_space

free head

free tail

valid data

New data 1

New data 2

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 40 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

8.2 Task Communication APIs

allocate_ilm
Prototype: ilm_struct * allocate_ilm (module_type module_id)
Header file: stack_ltlcom.h
Input: rmodule_id is source module ID, which is going to deliver an ILM.
Output: Pointer an ILM.
Description: ILM storage for any message delivery must be allocated from an array pool of type ilm_struct, namely

module_ilm_g by sender. The array pool is indexed by sender’s module ID. In case of violation, fatal
error “Send an un-allocated ILM to external queue” (fatal error code 1 = 0x432, error code 2 = pointer of
ILM) would be encountered. On the contrary, if sender attempts to send message before completeness
of the previous delivery, fatal error again, “ILM is already allocated” (fatal error code 1 = 0x431, error
code 2 = module ID).

append_to_peer_buff
Prototype: void append_to_peer_buff (peer_buff_struct *peer_buff_ptr, void *tail_data_ptr, kal_uint8 tail_len)
Header file: stack_ltlcom.h
Input: peer_buff_ptr is pointer of peer_buff_struct, from where new data pointed by tail_data_ptr will be

appended from end of pdu, its length (tail_len) is given in units of Bytes.
Description: As shown in Figure 1, a data record could be appended from tail of peer buffer; after appending, system

will update the following information,
peer_buff_ptr->free_tail_space = peer_buff_ptr->free_tail_space - tail_len;
peer_buff_ptr->pdu_len = peer_buff_ptr->pdu_len + tail_len;

Remark: Fatal error “append_to_peer_buff: insufficient tail memory” (fatal error code 1 = 0x10, error code 2 =
0x01) happens if either conditions holds,
1. peer_buff_ptr is NULL,
2. tail_len is zero,
3. peer_buff_ptr->free_tail_space is less than tail_len.

cancel_ilm
Prototype: kal_bool cancel_ilm (module_type module_id)
Header file: stack_ltlcom.h
Input: rmodule_id is source module ID, which is going to cancel its previous delivery.
Output: KAL_TRUE if source module has really allocated an ILM, and system has decremented reference count

of both local parameter and peer buffer if existed, also, if reference count becomes zero, system will
automatically release them. KAL_FALSE if source module not yet allocates an ILM.

Description: This function is used to halt the delivery of an ILM, system will free the previously allocated ILM. If either
local parameter pointer or peer buffer pointer is not NIL, these buffers will be released as well.

construct_local_para
Prototype: void* construct_local_para(local_para_size, direction)
Header file: app_ltlcom.h
Input: local_para_size is size of local parameter in terms of bytes, direction (TD_RESET) is used to enforce

zero-initialization of the local parameter.
Output: Void pointer.
Description: This is macro of

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 41 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

void* construct_int_local_para (kal_uint16 local_para_size, kal_char* file_ptr, kal_uint32 line)
if DEBUG_KAL is defined, otherwise, it is defined as
void* construct_int_local_para (kal_uint16 local_para_size).
In construct_int_local_para(), system will get buffer according to size specified in local_para_size, if it
is called by TST task, system allocates buffer from TST buffer, otherwise from control buffer. The return
buffer pointer will then be casted as pointer of local_para_struct, the first byte of the buffer, or ref_count
will be initialized to 1, and the second 2 bytes of the buffer, or msg_len would be filled as local_para_size.
From 06A w06.41, you can specify a TD_RESET (in the 2nd argument “direction”) to let system do zero-
initialization for you. For example:
 construct_local_para(sizeof(my_struct), TD_RESET);
This will clear the buffer body to zero (note: not include the local parameter header).

Remark: Be very careful that, size of local_para_struct must be taken into account.

construct_peer_buff
Prototype: void *construct_peer_buff (pdu_len, header_len, tail_len, direction)
Header file: app_ltlcom.h
Input: pdu_len is size of peer buffer, header_len is size of header buffer, tail_len is size of tail buffer, and

direction is unused.
Output: Void pointer.
Description: This is macro of

void* construct_int_peer_buff(kal_uint16 pdu_len, kal_uint16 header_len, kal_uint16 tail_len,
kal_char* file_name_ptr, kal_uint32 line)

if DEBUG_KAL is defined, otherwise, it is defined as
void* construct_int_peer_buff(kal_uint16 pdu_len, kal_uint16 header_len, kal_uint16 tail_len)).
Similar with construct_int_local_para(), system is responsible to allocate buffer for peer buffer in
construct_int_peer_buff(), total buffer size is summation of sizeof(*peer_buff_ptr),
header_len , pdu_len and tail_len, if it is called by TST task, system allocates buffer from TST buffer,
otherwise from control buffer. The return buffer pointer will then be casted as pointer of
local_para_struct, the first byte of the buffer, or ref_count will be initialized to 1, and the second 2 bytes
of the buffer, or msg_len would be filled as local_para_size.

free_ilm
Prototype: void free_ilm (ilm_struct* ilm_ptr)
Header file: stack_ltlcom.h
Input: ilm_ptr is pointer of ilm_struct, which is going to be freed.
Description: This is macro of

void free_int_ilm (ilm_struct *ilm_ptr, kal_char* file_name, kal_uint32 line)
if DEBUG_KAL is defined, otherwise, it is defined as
void free_int_ilm(ilm_struct *ilm_ptr).
If ilm_ptr->peer_buff_ptr is not NULL then decrement the associated reference count (ilm_ptr-
>peer_buff_ptr->ref_count), if it becomes zero, system will free the buffer directly, and resets the peer
buffer pointer to NULL. The same algorithm will be applied on local parameter as well.

free_local_para
Prototype: void free_int_local_para (local_para_struct *local_para_ptr, kal_char* file, kal_uint32 line)

void free_int_local_para (local_para_struct *local_para_ptr)
Header file: stack_ltlcom.h

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 42 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Input: local_para_ptr is pointer of local_para_struct to be released.
Description: If local_para_ptr is not NULL then decrement the associated reference count (local_para_ptr->ref_count),

if it becomes zero, system will free the buffer directly! It is user’s responsibility to reset the relative
pointer kept in ilm_struct if needed.

Note: There is another re-entrant function, free_int_local_para_r, which has protection on access
to reference count. One who may have race condition problem of reference count could use the
macro, free_local_para_r, to avoid such error. The usage is just the same as free_local_para.

free_peer buff
Prototype: void free_int_peer_buff(peer_buff_struct *pdu_ptr, kal_char* file, kal_uint32 line)

void free_int_peer_buff(peer_buff_struct *pdu_ptr)
Header file: stack_ltlcom.h
Input: pdu_ptr is pointer of peer_buff_struct to be released.
Description: If pdu_ptr is not NULL then decrement the associated reference count (pdu_ptr->ref_count), if it

becomes zero, system will free the buffer directly! It is user’s responsibility to reset the relative pointer
kept in ilm_struct if needed.

 Note: There is another re-entrant function, free_int_peer_buff_r, which has protection on access

to reference count. One who may have race condition problem of reference count could use the
macro, free_peer_buff_r, to avoid such error. The usage is just the same as free_peer_buff.

hold_local_para
Prototype: kal_bool hold_local_para (local_para_struct *local_para_ptr)
Header file: stack_ltlcom.h
Input: local_para_ptr is pointer of local_para_struct, whose content is going to be reserved for some

consumer.
Output: KAL_FALSE if local_para_ptr is NULL pointer, otherwise, KAL_TRUE.
Description: If local_para_ptr is not NULL, increment its reference counter (local_para_ptr -> ref_count) by 1.

Note: There is another re-entrant function, hold_local_para_r, which has protection on access to
reference count. One who may have race condition problem of reference count could use this
API to avoid such error. The usage is just the same as hold_local_para.

get_local_para_ptr
Prototype: void * get_local_para_ptr (local_para_struct *local_para_ptr, kal_uint16 *local_para_len_ptr)
Header file: stack_ltlcom.h
Input: local_para_ptr is pointer of local_para_struct, and local_para_len_ptr will be used to return message

length.
Output: Pointer, which targets at the starting address of local parameter buffer.
Description: This function call is useful in retrieving length of local parameter buffer and its start address.

get_pdu_ptr
Prototype: void * get_pdu_ptr (peer_buff_struct *peer_buff_ptr, kal_uint16 *length_ptr)
Header file: stack_ltlcom.h
Input: peer_buff_ptr is pointer of peer_buff_struct, and length_ptr will be used to return length of current pdu.
Output: Pointer, which targets at the starting address of peer data.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 43 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Description: This function call is useful in retrieving length of peer buffer and start address of peer data, the later is
obtained from ((kal_uint8 *)peer_buff_ptr + sizeof(*peer_buff_ptr) + peer_buff_ptr->free_header_space).

hold_peer_buff
Prototype: kal_bool hold_peer_buff (peer_buff_struct *peer_buff_ptr)
Header file: stack_ltlcom.h
Input: peer_buff_ptr is pointer of peer_buff_struct, whose content is going to be reserved for some consumer.
Output: KAL_FALSE if peer_buff_ptr is NULL pointer, otherwise, KAL_TRUE.
Description: If peer_buff_ptr is not NULL, increment its reference counter (peer_buff_ptr-> ref_count) by 1.

Note: There is another re-entrant function, hold_peer_buff_r, which has protection on access to
reference count. One who may have race condition problem of reference count could use this
API to avoid such error. The usage is just the same as hold_peer_buff.

msg_get_ext_queue_info
Prototype: kal_bool msg_get_ext_queue_info (kal_msgqid task_ext_qid, kal_uint32 *messages)
Header file: stack_ltlcom.h
Input: task_ext_qid is pointer of queue identity, the returned information would be returned via messages.
Output: KAL_TRUE if information retrieval successfully done, otherwise KAL_FALSE.
Description: This is an exported function for querying number of pending messages.

msg_get_ext_queue_length
Prototype: kal_bool msg_get_ext_queue_length (kal_msgqid task_ext_qid, kal_uint32 *length)
Header file: stack_ltlcom.h
Input: task_ext_qid is pointer of queue identity, the returned information would be returned via length.
Output: KAL_TRUE if information retrieval successfully done, otherwise KAL_FALSE.
Description: This is an exported function for querying total number of queue entries.

msg_send_ext_queue
Prototype: kal_bool msg_send_ext_queue (ilm_struct *ilm_ptr)
Header file: stack_ltlcom.h
Input: ilm_ptr is pointer of ILM, which is going to be delivered.
Output: KAL_TRUE if message is delivered successfully, otherwise, return KAL_FALSE.
Description: This is an exported function for message delivery; destination is always external queue of task specified

in ilm_ptr-> dest_mod_id. Destination task’s external queue is targeted through the statement below,
task_info_g [mod_task_g [ilm_ptr->dest_mod_id]].task_ext_qid
Soon after delivery, the ILM structure, which is previously get via allocate_ilm() will be returned to the
system.

msg_send_ext_queue_to_head
Prototype: kal_bool msg_send_ext_queue_to_head(ilm_struct *ilm_ptr)
Header file: stack_ltlcom.h
Input: ilm_ptr is pointer of ILM, which is going to be delivered.
Output: KAL_TRUE if message is delivered successfully, otherwise, return KAL_FALSE.
Description: This is an exported function for message delivery; destination is always external queue of task specified

in ilm_ptr-> dest_mod_id. Destination task’s external queue is targeted through the statement below,
task_info_g [mod_task_g [ilm_ptr->dest_mod_id]].task_ext_qid

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 44 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Soon after delivery, the ILM structure, which is previously get via allocate_ilm() will be returned to the
system.
It is different from msg_send_ext_queue in manner of message delivery behavior. API
msg_send_ext_queue always sends a message to end of queue, forming the last-in-last-out behavior.
While msg_send_ext_queue_to_head always sends a message to front of queue, forming the last-in-
first-out behavior.
Users may take such feature to force the early process of a high priority message.

Remark: Available from W05.32.

msg_send_int_queue
Prototype: kal_bool msg_send_int_queue (ilm_struct *ilm_ptr)
Header file: stack_ltlcom.h
Input: ilm_ptr is pointer of ILM, which is going to be delivered.
Output: KAL_TRUE if message is delivered successfully, otherwise, return KAL_FALSE.
Description: This is an exported function for message delivery; destination is always internal queue of task specified

in ilm_ptr-> dest_mod_id. If the destination task has no internal queue, fatal error would be trapped.
Soon after delivery, the ILM structure, which is previously get via allocate_ilm() will be returned to the
system.

prepend_to_peer_buff
Prototype: void prepend_to_peer_buff (peer_buff_struct *peer_buff_ptr, void *header_data_ptr,

kal_uint8 header_len)
Header file: stack_ltlcom.h
Input: peer_buff_ptr is pointer of peer_buff_struct, from where new data pointed by header_data_ptr will be

appended at front of pdu, its length (header_len) is given in units of Bytes.
Description: As shown in Figure 1, a data record could be appended at head of peer buffer; after appending, system

will update the following information,
peer_buff_ptr-> free_header_space = peer_buff_ptr-> free_header_space - header_len;
peer_buff_ptr->pdu_len = peer_buff_ptr->pdu_len + header_len;

Remark: Fatal error “prepend_to_peer_buff : insufficient header memory” (fatal error code 1 = 0x10, error code 2
= 0x02) happens if either conditions holds,
4. peer_buff_ptr is NULL,
5. header_len is zero,
6. peer_buff_ptr->free_header_space is less than header_len.

receive_msg_ext_q
Prototype: kal_status receive_msg_ext_q (kal_msgqid task_ext_qid, ilm_struct *ilm_ptr)
Header file: stack_ltlcom.h
Input: task_ext_qid is ID of destination queue, from which a message will be retrieved, data packet will then be

written to ilm_ptr.
Output: KAL_SUCCESS if message is retrieval is successfully done, otherwise fatal error with error code 1 =

0x308 would be trapped.
Description: This is the unified entrance for external queue message retrieval, if the destination queue is empty,

caller would suspend it-self endlessly.
Remark: Unlike msg_send_ext_queue(), the ILM pointer ilm_ptr is a privately maintained pointer, which is not

requested from the system.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 45 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

receive_msg_int_q
Prototype: kal_bool receive_msg_int_q (task_indx_type task_indx, ilm_struct *ilm_ptr)
Header file: stack_ltlcom.h
Input: task_indx is task ID, while ilm_ptr acts as storage.
Output: KAL_FALSE if internal queue is empty, otherwise, KAL_TRUE.
Description: Retrieving an ILM from task internal queue, if there is an available ILM, KAL_TRUE will be returned, and

the content is kept at ilm_ptr.
Remark: Unlike msg_send_int_queue(), the ILM pointer ilm_ptr is a privately maintained pointer, which is not

requested from the system.

remove_hdr_of_peer_buff
Prototype: void remove_hdr_of_peer_buff (peer_buff_struct *peer_buff_ptr, kal_uint8 hdr_len)
Header file: stack_ltlcom.h
Input: peeer_buff_ptr is destination peer buffer whose peer data is going to be removed from header by

hdr_len Bytes.
Description: Contrary to prepend_to_peer_buff(), this function aims to remove peer data from header of peer buffer,

total number of data to be removed is expressed in hdr_len. After removing, system updates the peer
buffer structure as below,
 peer_buff_ptr->free_header_space = peer_buff_ptr->free_header_space + hdr_len;
 peer_buff_ptr->pdu_len = peer_buff_ptr->pdu_len - hdr_len;

remove_tail_of_peer_buff
Prototype: void remove_tail_of_peer_buff (peer_buff_struct *peer_buff_ptr, kal_uint8 tail_len)
Header file: stack_ltlcom.h
Input: peeer_buff_ptr is destination peer buffer whose peer data is going to be removed from tail by tail_len

Bytes.
Description: Contrary to append_to_peer_buff(), this function aims to remove peer data from tail of peer buffer,

total number of data to be removed is expressed in tail_len. After removing, system updates the peer
buffer structure as below,
 peer_buff_ptr-> free_tail_space = peer_buff_ptr-> free_tail_space + tail_len;
 peer_buff_ptr->pdu_len = peer_buff_ptr->pdu_len - tail_len;

update_peer_buff_hdr
Prototype: void update_peer_buff_hdr (peer_buff_struct *peer_buff_ptr, kal_uint8 new_hdr_len,

kal_uint16 new_pdu_len, kal_uint8 new_tail_len)
Header file: stack_ltlcom.h
Input: peer_buff_ptr is pointer of peer_buff_struct, its pdu length, free space of buffer header and tail are

going to be replaced with new_pdu_len , new_hdr_len and new_tail_len respectively.
Description: Reinitialize peer buffer length, including header and tail free space, together with pdu length.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 46 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

8.3 Example
A typical message passing flow is illustrated as following,

(A) Sender allocates, packs and delivers an ILM

typedef struct {
 kal_uint8 ref_count;
 kal_uint16 msg_len;
 kal_uint8 access_id;
 kal_uint8 file_idx;
 kal_uint16 para;
} sender_buffer_struct;

void sender(void)
{

ilm_struct *sender_ilm = allocate_ilm(MOD_SENDER); /* Necessary */
sender_buffer_struct * local_data;

local_data = (sender_buffer_struct *) construct_local_para (sizeof(sender_buffer_struct), TD_CTRL);

 local_data->access_id = 0;
 local_data->file_idx = SENDER_ID_FILE;
 local_data->para = 1;

sender_ilm.src_mod_id = MOD_SENDER;
sender_ilm.dest_mod_id = MOD_RECEIVER;
sender_ilm.msg_id = MSG_ID_SENDER_TO_RECEIVER;
sender_ilm.sap_id = NULL;
sender_ilm.local_para_ptr = (local_para_struct*) local_data;
sender_ilm.peer_buff_ptr = 0;

msg_send_ext_queue(sender_ilm);

}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 47 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

(B) Receiver processes an ILM
There are two alternative approaches in processing local parameter or peer buffer, free_local_para() is called
artificially in approach 1, whilst local parameter is totally in-charged by system in approach 2. Note that, if
free_local_para() is called, be ensured that, local parameter point is reset to NULL by the last consumer, otherwise,
in free_ilm(), it may get the pointer which might be owned by others, and finally, mistakenly updates others buffer!
Programmers could transfer the ILM manipulation to system by simply calling free_ilm(), where system will reset the
local parameter pointer and peer buffer pointer to NULL automatically if they are freed.

Approach 1, Manually maintain local parameter pointer.

Approach 2, System is responsible for maintaining local parameter pointer.

void receiver(void)
{

ilm_struct current_ilm;

while (1)
{

receive_msg_ext_q(task_info_g [INDX_RECEIVER].task_ext_qid, ¤t_ilm);
switch (current_ilm. msg_id)
{

case MSG_ID_SENDER_TO_RECEIVER :
♦♦♦♦♦♦♦♦
free_local_para(current_ilm. local_para_ptr);
current_ilm. local_para_ptr = NULL; /* Necessary if it is the last consumer */

 }
 free_ilm(¤t_ilm);

}
}

void receiver(void)
{

ilm_struct current_ilm;

while (1)
{

receive_msg_ext_q(task_info_g [INDX_RECEIVER].task_ext_qid, ¤t_ilm);
switch (current_ilm. msg_id)
{

case MSG_ID_SENDER_TO_RECEIVER :
♦♦♦♦♦♦♦♦

 }
 free_ilm(¤t_ilm);

}
}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 48 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

9 Timer Management

There are 3 types of timers provided on MAUI, they are KAL timer, stack timer and scheduled event respectively.
Stack timer and scheduled event are for protocol stack, also upper layer applications; KAL timer is a wrapper of
Nucleus Plus timer component, it the most precise timer, its call-back function is done at HISR level, therefore, it is
restricted for OS and driver layer only. Any application violates the restriction may suffer from serous failure on
mobility features.

On MAUI, the minimal time tick is in terms of TDMA timer, 4.615ms each unit.

9.1 Descriptions

9.1.1 KAL timer

Basically, KAL timer is a wrapper of Nucleus Plus Timer Management. It offers the most accurate timer period,
because the timeout handler is done by Timer HISR. Inheriting from the design, any callback function registered on
KAL timer must take the processing latency into account; the longer processing period delays the subsequent
processes more.

A statistical data structure is integrated on KAL timer control block for the tracking of following items,
■ Number of timer cancellations,
■ Number of timer expirations,
■ Timer status, either KAL_TIMER_CREATED, KAL_TIMER_SET, KAL_TIMER_CANCELED or

KAL_TIMER_EXPIRED
Note that, timer statistic is available if DEBUG_KAL and DEBUG_TIMER are defined.

9.1.2 Stack timer

Stack timer is the second accurate timer provided on the system. It is designed to relieve system loading on
processing KAL timer timeout handler, also the concurrent programming issues. Stack timer is different from KAL timer
in the behavior of handling timeout procedure. The later is achieved by registering callback function on the dedicated
KAL timer, while the former is done by message delivery on stack timer timeout routine. The timeout unit processes
the correspondence procedure on its task context. Obviously, the accuracy of timeout notification is sacrificed on the
flow of message delivery, besides, system scheduling status and scheduling overhead.

Each stack timer associates a KAL timer, and it is more suitable for down-counting timer rather than event that

frequently happens, in addition, late timeout notification is allowed.

The typical ILM content of a stack timer timeout message as below,

Element Value Description
src_mod_id MOD_TIMEr The source module ID is definitely MOD_TIMER.
dest_mod_id stack_timer->dest_mod_id The destination module ID is specified on stack timer

control block.
msg_id MSG_ID_TIMER_EXPIRY It is the constant mesasge ID.
sap_id STACK_TIMER_SAP It is the constant SAP ID.

local_para_ptr stack_timer Packing the stack timer control block as local parameter. It

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 49 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

is not allowed to hold the local parameter of a stack
timer timeout message, because there is no local
parameter header in the stack timer structure.

peer_buff_ptr NULL Peer buffer is always excluded from the stack timer timeout
message.

On expiration, stack timer timeout handler will be waken-up by the timer HISR, it posts the expiry ILM to the

destination task via timeout ILM; finally, the task being notified will be scheduled by the OS, and start to process the
expiry ILM.

However, if the task stops the timer before receiving expiry ILM, the task shouldn’t process the expiry ILM

anymore. To cover the circumstance, two function calls are provided to determine if the expiry message should be
taken, they are stack_is_time_out_valid() and stack_process_time_out(). Note that, they must be called in-paired.
Please refer to their APIs and example on section 6.4.1 for more detailed.

9.1.3 Event scheduler

The scheduled event or event scheduler another alternative timer special for frequently happen events, which
needs non-accurate timeout period. It is especially suitable for upper layer applications, which just need the timeout
notification with less accuracy, for instances, a down-counting counter used on tracking the backlight on/off,
termination of an audio playing etc.

Internal data structure of an event scheduler

Figure above depicts the data structure of an event scheduler, please refer to section 6.2.3 for more detailed.
Usually, stack_start_timer(), stack_stop_timer(), stack_is_time_out_valid() and stack_process_time_out() act
as the based timer for an event scheduler. Users who are using an event scheduler must know the exact event
ID very well. An event ID is actually a pointer, from where system will allocate and release pointer while setting an
event. Memory de-allocation will be done in evshed_cancel_event() and evshed_timer_handler(). In
kal_cancel_event(), system releases memory by referencing the event ID, henceforth, users must ensure it is reset
at the registered event timeout handler. Otherwise, users may accidentally cancel the event set by the new owner,
who set an event soon after the previous was timeout.

Function call evshed_timer_handler() is dedicated for processing a series of timeout event registered on an

event scheduler.

event_scheduler

*dll
t_ref_ticks

t_susp_ticks
t_set_time

timer_id
start_timer
stop_timer

fuzz
malloc_fp_t
free_fp_t

is_ext_mem

lcd_dll

*head
*tail

cmpfunc
alloc_fn_t

free_fn_t
is_ext_mem

lcd_dll_node

*data
*pre
*next

event_hf

event_hf_param
abs_time

event
0

event_scheduler

*dll
t_ref_ticks

t_susp_ticks
t_set_time

timer_id
start_timer
stop_timer

fuzz
malloc_fp_t
free_fp_t

is_ext_mem

lcd_dll

*head
*tail

cmpfunc
alloc_fn_t

free_fn_t
is_ext_mem

lcd_dll_node

*data
*pre
*next

event_hf

event_hf_param
abs_time

event
0

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 50 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

9.2 Data Structures and Data Types

9.2.1 KAL timer

Tables below illustrate the data structure and data types used by KAL timer.

kal_timer_stat_type, *kal_internal_timer_statistics (mcu\kal\nucleus\include\kal_nucleush)
Description:
KAL internal structure for tracking the statistical data of a KAL timer, valid if both DEBUG_KAL and DEBUG_TIMER
are defined.

Data Type Element Description
kal_timer_state timer_state Timer status.

kal_char* timer_name Character string, which tells the name of a timer.
kal_uint16 num_times_expired Number of expirations.
kal_uint16 num_times_canceled Number of cancellations.

kal_timer_type, *kal_internal_timerid (mcu\kal\nucleus\include\kal_nucleush)
Description:
KAL internal structure for maintaining KAL timer, among the elements, timer_stat is valid if DEBUG_KAL and
DEBUG_TIMER are defined.

Data Type Element Description
kal_os_timer_type timer_id A pointer to Nucleus Plus timer.
kal_timer_func_ptr func_ptr Timeout handler routine.

void * timer_param_ptr Timer parameters.
kal_uint32 set_time Time ticks being set.

kal_internal_timer_statistics timer_stat Timer statistical pointer.

Data Types Description
kal_timer_state Tracking the KAL timer status, either KAL_TIMER_CREATED, KAL_TIMER_SET,

KAL_TIMER_CANCELED or KAL_TIMER_EXPIRED.
kal_timerid Timer ID of KAL timer, which is internally equivalent to kal_internal_timerid.

9.2.2 Stack timer

Tables below illustrate the data structure and data types used by stack timer.

stack_timer_struct (mcu\stacklib\include\stack_timer.h)
Description:
Internal data structure for stack timer management.

Data Type Element Description
module_type dest_mod_id Destination module ID.
kal_timerid kal_timer_id Identify of a KAL timer.
kal_uint16 timer_indx Timer index, which is maintained by the users.

stack_timer_status_type timer_status Status of stack timer.
kal_uint8 invalid_time_out_count Number of cancellation before the processing of

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 51 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

expiry message. It is used in the functions
stack_process_time_out and stack_stop_timer.
Both of these functions are supposed to be
called by the modules of the same task for the
same stack timer. There will be race conditions in
case of concurrent access from multiple tasks..

Data Types Description
stack_timer_status_type It is an enumeration type of stack timer status,

STACK_TIMER_INITIALIZED,
STACK_TIMER_NOT_RUNNING = STACK_TIMER_INITIALIZED,
STACK_TIMER_RUNNING,
STACK_TIMER_NOT_TIMED_OUT = STACK_TIMER_RUNNING,
STACK_TIMER_EXPIRED,
STACK_TIMER_TIMED_OUT = STACK_TIMER_EXPIRED,
STACK_TIMER_STOPPED

9.2.3 Event scheduler

Tables below illustrate the data structure and data types used by an event scheduler.

lcd_dll_node (mcu\stacklib\include\lcd_dll.h)
Description:
Fundamental unit of double linked list, abbreviated as lcd_dll.

Data Type Element Description
void * data Pointer of actual storage.

lcd_dll_node * prev The previous pointer.
lcd_dll_node * next The next pointer.

lcd_dll (mcu\stacklib\include\lcd_dll.h)
Description:
Internal data structure for double-linked list will allocation and de-allocation handler.

Data Type Element Description
lcd_dll_node * head Header of double-linked list, which points to the first

lcd_dll_node.
lcd_dll_node * tail Tail of double- liked list, which points to the last

lcd_dll_node.
lcd_cmpfunc cmpfunc Compare function used for inserting a node..
malloc_fp_t alloc_fn_p Allocation function used for allocating a lcd_dll_node.

free_fp_t free_fn_p De-allocation function used for de-allocating a
lcd_dll_node.

event_scheduler (mcu\stacklib\include\event_sched.h)
Description:
Internal data structure for the management of event scheduler.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 52 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Data Type Element Description
lcd_dll * dll Event's double-linked list.

lcd_dll_node * expired_dllhead Event's expired dll list split in evshed_timer_handler().
kal_uint32 t_ref_ticks Scheduler's reference time base.
kal_uint32 t_susp_ticks Scheduler's reference suspend time base for suspend

operation.
kal_bool is_suspend Scheduler's suspension flag.

kal_uint32 t_set_time Scheduler's timer's set time.
void * timer_id Timer ID.
void (*start_timer)(void *, unsigned int) Start timer handler.
void (*stop_timer)(void *) Stop timer handler.

malloc_fp_t alloc_fn_p Event's storage for allocation handler.
malloc_fp_t free_fn_p Event's storage for de-allocation handler.

Data Types Description
typedef void * (*malloc_fp_t)(unsigned int) Function type used as memory allocation.
typedef void (*free_fp_t)(void *) Function type used as memory de-allocation.
typedef int (*lcd_cmpfunc)(const void *, const void *) Comparison function embedded on double-linked list.
typedef lcd_dll_node *eventid An event node on event scheduler, it will be known an

event ID subsequently.

9.3 APIs

9.3.1 KAL timer

kal_cancel_timer
Prototype: void kal_cancel_timer (kal_timerid ext_timer)
Header file: kal_release.h
Input: ext_timer is destination KAL timer to be cancelled.
Description: This service is used to cancel a timer; in DEBUG_TIMER mode, it is switches to

KAL_TIMER_CANCELED if it is successfully cancelled.

kal_create_timer
Prototype: kal_timerid kal_create_timer (kal_char* timer_name_ptr)
Header file: kal_release.h
Input: timer_name_ptr is name of the timer to be created.
Output: A KAL timer ID will be returned it is successfully created.
Description: This service is used for creating KAL timer; in DEBUG_TIMER, soon after creation, the timer stays at

KAL_TIMER_CREATED state. It is strongly suggested to call this function only at system
initialization stage, and the related data allocated for the timer could not be freed once it’s
created.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 53 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_get_time
Prototype: void kal_get_time (kal_uint32* ticks_ptr)
Header file: kal_release.h
Input: ticks_ptr is used for returning current time ticks.
Description: Users could use this function to query current time ticks.

kal_get_time_remaining
Prototype: kal_uint32 kal_get_time_remaining (kal_timerid ext_timer_id)
Header file: kal_release.h
Input: ext_timer_id is identity of a KAL timer being queried.
Output: Remaining timeout period expressed in 32bits unsigned integer.
Description: This is used in retrieving the remaining timeout period, also in units of time ticks.

kal_get_timer_statistics
Prototype: void kal_get_timer_statistics (kal_timerid ext_timer_id, kal_timer_statistics* ext_timer_stat)
Header file: kal_release.h
Input: ext_timer_id is ID of KAL timer being queried, and ext_timer_stat is used for returning the statistical

record.
Description: Users could use this function for retrieving the current statistical record.

kal_set_timer
Prototype: void kal_set_timer (kal_timerid ext_t_id, kal_timer_func_ptr handler_func_ptr,

void* handler_param_ptr, kal_uint32 delay, kal_uint32 reshedule_time)
Header file: kal_release.h
Input: ext_t_id is identity of a KAL timer, handler_func_ptr is pointer of timeout handler, handler_param_ptr is

pointer to timeout handler's parameter, delay is timeout duration in terms of time ticks, the maximum
value is 0xFFFFFFFF. Argument reshedule_time is auto rescheduled time.

Description: This function call offers the service of setting a timeout period to the given KAL timer. In DEBUG_TIMER
mode, a timer switches to KAL_TIMER_SET once it is set.

9.3.2 Stack timer

stack_init_timer
Prototype: void stack_init_timer (stack_timer_struct *stack_timer, kal_char *timer_name, module_type mod_id)
Header file: stack_timer.h
Input: stack_timer_struct is the stack timer control block provided by the users, timer_name is the name of the

stack timer, and mod_id is the module ID of the owner, to which an expiry ILM will be delivered.
Description: This function provides the facility of initializing a stack timer; it is the users’ responsibility to provide stack

timer control block. Soon after creation, its status remains at STACK_TIMER_INITIALIZED or
STACK_TIMER_NOT_RUNNING. It is strongly suggested to call this function only at system
initialization stage, and the related data allocated for the stack timer could not be freed once it’s
created.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 54 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

stack_is_time_out_valid
Prototype: kal_bool stack_is_time_out_valid (stack_timer_struct *stack_timer)
Header file: stack_timer.h
Input: stack_timer is the destination stack timer being queried.
Output: KAL_FALSE if the KAL timer id associated is NIL, or the stack timer has ever been stopped or cancelled

before expiration; otherwise, KAL_TRUE.
Description: This function is used for tracking the validity of a timeout notification, if it returns KAL_FALSE, the

timeout handler should not be handled.

stack_process_time_out
Prototype: void stack_process_time_out(stack_timer_struct *stack_timer)
Header file: stack_timer.h
Input: stack_timer is the destination stack timer to be processed.
Description: Together with stack_is_time_out_valid(), they are the paired functions used for identify validity of an

expiry message. If an invalid expired message is received, for instance, the timer has been stopped,
stack_process_time_out() should be called to correctly maintain the control element
invalid_time_out_count. It is in charge of decrementing invalid_time_out_count by 1, besides, switch the
stack timer status to STACK_TIMER_NOT_RUNNING if it is in STACK_TIMER_EXPIRED.

stack_start_timer
Prototype: void stack_start_timer (stack_timer_struct *stack_timer, kal_uint16 timer_indx, kal_uint32 init_time)
Header file: stack_timer.h
Input: stack_timer_struct is the stack timer to be set, timer_indx is the index of the timer, and init_time tells the

timeout period, similar to KAL timer, the maximum value is also 0xFFFFFFFF.
Description: This facility is used to start a stack timer; if the timeout period init_time is zero while setting, the expiry

ILM will be sent to the destination module immediately, and system changes the stack timer status to
STACK_TIMER_EXPIRED also. Otherwise, a stack timer is started, and the new status is
STACK_TIMER_RUNNING or STACK_TIMER_NOT_TIMED_OUT. It is allowed to be called when the
stack timer is in running or time out state. If it’s in running state, the new time out value would be
applied if this function is called. On the other hand, if it’s in time out state, the original time out
message will still be processed, and a new timer will be scheduled.

stack_stop_timer
Prototype: stack_timer_status_type stack_stop_timer (stack_timer_struct *stack_timer)
Header file: stack_timer.h
Input: stack_timer is the destination stack timer to be stopped.
Output: Current status of the stack timer.
Description: On the termination of a stack timer, the processing procedure is highly dependent on it current status. If

the stack timer stays at STACK_TIMER_INITIALIZED or STACK_TIMER_NOT_RUNNING, system does
nothing except refilling its status to STACK_TIMER_NOT_RUNNING. If it is in
STACK_TIMER_RUNNING at the mean time, system will cancel it directly. Having completely cancelled
the stack timer, its status will be re-examined again; if it is ever switched to STACK_TIMER_EXPIRED
during the period, the tracking element invalid_time_out_count will be incremented, besides, further
changing the status to STACK_TIMER_STOPPED, however, the return will be
STACK_TIMER_TIMED_OUT. Otherwise, the stack timer status and the return value will be
STACK_TIMER_STOPPED consistently.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 55 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

stack_timer_status
Prototype: stack_timer_status_type stack_timer_status (stack_timer_struct *stack_timer,

kal_uint32 *time_remaining)
Header file: stack_timer.h
Input: stack_timer is the destination stack timer being queried, and time_remaining is used for returning the

remaining timeout period.
Output: Current status of the stack timer.
Description: This function is used in retrieving the most updated status of the given stack timer, if the timer is being

set and not yet timeout, system returns STACK_TIMER_NOT_TIMED_OUT, otherwise,
STACK_TIMER_TIMED_OUT.

9.3.3 Event scheduler

evshed_cancel_event
Prototype: kal_int32 evshed_cancel_event (event_scheduler *es, eventid *eid)
Header file: event_sched.h
Input: es is pointer of an event scheduler, eid is the pointer to event ID.
Output: Time difference between current time and event scheduled time, in units of time ticks.
Description: This service is called for canceling an event, system would reset the event ID (eid) to NULL before

returning; however, caller should pay attention to its privately saved event id.

evshed_delete_all_events
Prototype: void evshed_delete_all_events (event_scheduler *es)
Header file: event_sched.h
Input: es is pointer of an event scheduler.
Description: This function aims for removing all events from the double-linked list of an event scheduler.

evshed_get_rem_time
Prototype: kal_uint32 evshed_get_rem_time (event_scheduler *es, eventid eid)
Header file: event_sched.h
Input: es is pointer of an event scheduler, and es is pointer of event ID.
Output: The remaining time ticks.
Description: This function used to return the remaining time ticks of the dedicated event ID.

evshed_resume_all_events
Prototype: void evshed_resume_all_events (event_scheduler *es)
Header file: event_sched.h
Input: es is pointer of an event scheduler.
Description: This function aims to resume all of the events registered on an event scheduler.

evshed_set_event
Prototype: eventid evshed_set_event (event_scheduler *es, kal_timer_func_ptr event_hf,

void *event_hf_param, kal_uint32 elapse_time)
Header file: event_sched.h

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 56 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Input: es is pointer of an event scheduler, event_hf is the event timeout handler, event_hf_param points to
event timeout handler's parameter and elapse_time tells the total elapse time in ticks.

Output: Pinter to the event ID.
Description: This service is provided for setting an event to an event scheduler; system would allocate memory for

event id, and return to the caller. If caller need to save such event id, please remember to reset it
when cancel the event or on its expiration, because it is no longer valid.

evshed_suspend_all_events
Prototype: void evshed_suspend_all_events (event_scheduler *es)
Header file: event_sched.h
Input: es is pointer of an event scheduler.
Description: This function aims to suspend all of the events registered on an event scheduler.

evshed_timer_handler
Prototype: void evshed_timer_handler (event_scheduler *es)
Header file: event_sched.h
Input: es is pointer of an event scheduler.
Description: This is the unified entrance of the timeout handler of the given event scheduler.

new_evshed
Prototype: event_scheduler *new_evshed (void *timer_id, void (*start_timer)(void *, unsigned int),

void (*stop_timer)(void *), kal_uint32 fuzz, malloc_fp_t alloc_fn_p,
free_fp_t free_fn_p, kal_uint8 max_delay_ticks)

Header file: event_sched.h
Input: timer_id is the base timer pointer of an event scheduler's base timer pointer, start_timer is the base

timer start handler, stop_timer acts as base timer stop handler, fuzz is the event scheduler's event
correction time offset, alloc_fn_p is the event allocation handler, free_fn_p is the event free handler and
max_delay_ticks tells if it is an aligned timer.

Output: Pinter to the created event scheduler.
Description: This function is called for creating an event scheduler, users are responsible to provide timer start and

stop handler, memory allocation and de-allocation function handlers. To optimize power saving, before
system getting into sleep mode, it will find the first un-aligned timer, and system must wake up its
timeout. An un-aligned timer is a timer whose timeout notification must not be delayed due to system
sleep. On the contrary, an aligned timer allows the late timeout notification. The parameter
max_delay_ticks tells if it is an aligned timer, it is extremely important for power saving issue. When
setting max_delay_ticks to zero, the timer will be marked as an un-aligned timer. The timer will be
marked as an aligned timer when the value of max_delay_ticks is 255.

 From 05C W05.13, specifying other values (i.e., 1 ~ 254) will also mark the timer as an aligned timer.

But the timeout notification won’t be delayed more than max_delay_ticks. For example, you set
max_delay_ticks to 10. The timeout notification of the timer maybe delayed due to the sleep mode. But
the maximal delay will not exceed 10 ticks.

 It is strongly suggested to call this function only in system initialization time, and the related

data allocated for the event scheduler could not be freed once it’s created.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 57 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

9.4 Examples
Here is an integrated example of event scheduler and stack timer.

void ssdbg2_main (task_entry_struct * task_entry_ptr)
{

kal_uint32 Task_Time = 0;
char display_str[128];
ilm_struct current_ilm;
ssdbg1_localpara_struct *paraptr;
ssdbg1_peerbuff_struct *peerbufptr;
kal_uint8 *pduptr;
kal_uint16 pdulength, i;

/* initialize a stack timer as the base timer */
stack_init_timer(&ssdbg2_context.ssdbg2_base_timer, "SSDBG2 Base Timer", MOD_SSDBG2);

/* create scheduled event */
ssdbg2_context.ssdbg2_event_scheduler_ptr = new_evshed(&ssdbg2_context.ssdbg2_base_timer,

ssdbg2_start_base_timer, ssdbg2_stop_base_timer,
0 , kal_evshed_get_mem, kal_evshed_free_mem, 0);

/* set event */
ssdbg2_context.ssdbg2_event_id = evshed_set_event(ssdbg2_context.ssdbg2_event_scheduler_ptr, \

(kal_timer_func_ptr)ssdbg2_base_timer_timeout_hdler, NULL, 200);

while (1) {
Task_Time++;

while (receive_msg_int_q(task_entry_ptr->task_indx, ¤t_ilm))
{

switch (current_ilm.msg_id)
{
case MSG_ID_TIMER_EXPIRY:

/* check if the base timer is stopped or not */
if (stack_is_time_out_valid(&ssdbg2_context.ssdbg2_base_timer)) {

/* invoke event's timeout handler */
evshed_timer_handler(ssdbg2_context.ssdbg2_event_scheduler_ptr);

}
stack_process_time_out(&ssdbg2_context.ssdbg2_base_timer);

 break;
default:

break;
}
free_ilm(¤t_ilm); // Inside the function, it does nothing for a timer message

}
}

}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 58 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

void ssdbg2_start_base_timer(void *base_timer_ptr,unsigned int time_out)
{

stack_start_timer((stack_timer_struct *)base_timer_ptr, 0, time_out);
return;

}

void ssdbg2_stop_base_timer(void *base_timer_ptr)
 {

stack_stop_timer((stack_timer_struct *)base_timer_ptr);
return;

}

void ssdbg2_base_timer_timeout_hdler(void* msg_ptr)
{

/* reset saved event id to avoid the potential bug to cancel released event */
ssdbg2_context.ssdbg2_event_id = NULL;

ssdbg2_context.ssdbg2_event_id = evshed_set_event(ssdbg2_context.ssdbg2_event_scheduler_ptr,

(kal_timer_func_ptr)ssdbg2_base_timer_timeout_hdler, NULL, 200);
}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 59 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

10 Memory Management

On MAUI, there is a variety of memory management schemes to meet the various requirements, they are known
as control buffer, application dynamic memory (ADM), system specific memory and debug memory respectively.
Among them, debug memory is needed if and only if DEBUG_KAL is defined, otherwise, it will be excluded if
RELEASE_KAL is applied.

10.1 Descriptions

10.1.1 Control buffer

Control buffer is fixed size buffer, which offers not more than 2KB allocation, assertion failure
“ctrl_buff_pool_info_g [pool_indx].pool_id” will be trapped in case of exceeding. It is internally inheritance from
partitioned pool of Nucleus Plus, the predefined pool size are 8, 16, 32, 64, 128, 256, 512, 1024 and 2048Bytes.
System always assign the smallest met control buffer to the user, for instance, if 50Bytes buffer is required, system will
definitely allocate from 64B control buffer. Although space wasting, fragmentation issue is thoroughly eliminated.

In addition, system triggers fatal error “Buffer not available” (fatal error code 1 = 0x804, and error code 2 = size of

control buffer), if the specific buffer size has been run out of free space, in other words, users of control buffer should
be timing critical, resource sensitive, and may not have the capability of error handling.

The control buffer size and number of each entry are defined in mcu\adaptation\include\ctrl_buff_pool.h.

However, customers could re-define the number of entries according to their requirement, except that, system error
may occur if the original requirement is no longer satisfied (mcu\custom\system\board version\custom_system.c).

/* GPRS Class B Solution */
typedef enum {
 NUM_CTRL_BUFF_POOL_SIZE08 = 85,
 NUM_CTRL_BUFF_POOL_SIZE16 = 85,
 NUM_CTRL_BUFF_POOL_SIZE32 = 85,
 NUM_CTRL_BUFF_POOL_SIZE64 = 85,
 NUM_CTRL_BUFF_POOL_SIZE128 = 61,
 NUM_CTRL_BUFF_POOL_SIZE256 = 50,
 NUM_CTRL_BUFF_POOL_SIZE512 = 21,
 NUM_CTRL_BUFF_POOL_SIZE1024 = 17,
 NUM_CTRL_BUFF_POOL_SIZE2048 = 8,
 NUM_CTRL_BUFF_POOL_SIZE4096 = 0,
 NUM_CTRL_BUFF_POOL_SIZE8192 = 0,
 NUM_CTRL_BUFF_POOL_SIZE16384 =0,
 NUM_CTRL_BUFF_POOL_SIZE32768 =0,
 NUM_CTRL_BUFF_POOL_SIZE60000 =0
} ctrl_num_buff_pool_size;

/* GSM Only */
typedef enum {
 NUM_CTRL_BUFF_POOL_SIZE08 = 50,
 NUM_CTRL_BUFF_POOL_SIZE16 = 50,
 NUM_CTRL_BUFF_POOL_SIZE32 = 50,
 NUM_CTRL_BUFF_POOL_SIZE64 = 30,
 NUM_CTRL_BUFF_POOL_SIZE128 = 41,
 NUM_CTRL_BUFF_POOL_SIZE256 = 30,
 NUM_CTRL_BUFF_POOL_SIZE512 = 21,
 NUM_CTRL_BUFF_POOL_SIZE1024 = 17,
 NUM_CTRL_BUFF_POOL_SIZE2048 = 8,
 NUM_CTRL_BUFF_POOL_SIZE4096 = 0,
 NUM_CTRL_BUFF_POOL_SIZE8192 = 0,
 NUM_CTRL_BUFF_POOL_SIZE16384 =0,
 NUM_CTRL_BUFF_POOL_SIZE32768 =0,
 NUM_CTRL_BUFF_POOL_SIZE60000 =0
} ctrl_num_buff_pool_size;

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 60 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

void custom_config_ctrl_buff_info(void)
{
 /* These constants defined in adaptation\include\ctrl_buff_pool.h */
 ctrl_buff_pool_info_g[0].size = CTRL_BUFF_POOL_SIZE08;
 ctrl_buff_pool_info_g[0].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE08;

 ctrl_buff_pool_info_g[1].size = CTRL_BUFF_POOL_SIZE16;
 ctrl_buff_pool_info_g[1].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE16;

 ctrl_buff_pool_info_g[2].size = CTRL_BUFF_POOL_SIZE32;
 ctrl_buff_pool_info_g[2].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE32;

 ctrl_buff_pool_info_g[3].size = CTRL_BUFF_POOL_SIZE64;
 ctrl_buff_pool_info_g[3].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE64;

 ctrl_buff_pool_info_g[4].size = CTRL_BUFF_POOL_SIZE128;
 ctrl_buff_pool_info_g[4].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE128;

 ctrl_buff_pool_info_g[5].size = CTRL_BUFF_POOL_SIZE256;
 ctrl_buff_pool_info_g[5].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE256;

 ctrl_buff_pool_info_g[6].size = CTRL_BUFF_POOL_SIZE512;
 ctrl_buff_pool_info_g[6].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE512;

 ctrl_buff_pool_info_g[7].size = CTRL_BUFF_POOL_SIZE1024;
 ctrl_buff_pool_info_g[7].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE1024;

 ctrl_buff_pool_info_g[8].size = CTRL_BUFF_POOL_SIZE2048;
 ctrl_buff_pool_info_g[8].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE2048;

 ctrl_buff_pool_info_g[9].size = CTRL_BUFF_POOL_SIZE4096;
 ctrl_buff_pool_info_g[9].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE4096;

 ctrl_buff_pool_info_g[10].size = CTRL_BUFF_POOL_SIZE8192;
 ctrl_buff_pool_info_g[10].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE8192;

 ctrl_buff_pool_info_g[11].size = CTRL_BUFF_POOL_SIZE16384;
 ctrl_buff_pool_info_g[11].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE16384;

 ctrl_buff_pool_info_g[12].size = CTRL_BUFF_POOL_SIZE32768;
 ctrl_buff_pool_info_g[12].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE32768;

 ctrl_buff_pool_info_g[13].size = CTRL_BUFF_POOL_SIZE65536;
 ctrl_buff_pool_info_g[13].no_of_buff = NUM_CTRL_BUFF_POOL_SIZE60000;
}

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 61 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

For easy debugging, some detection mechanisms are associated on each buffer entry, and they are isolated with
compile options DEBUG_KAL and DEBUG_BUF. Figure below shows the internal structure of a buffer entry.

Internal structure of a buffer entry if DEBUG_KAL, DEBUG_BUF and DEBUG_BUF2 are defined

Corruption of either buffer header (0xF1F1F1F1) or footer (0xF2F2F2F2) will block the normal execution, and
system error will be awakening instead. Detection of buffer corruption is done during buffer allocation and de-
allocation.

Besides, MAUI provides an easy approach to diagnose memory leak issue. By monitoring operations on each

buffer entry from specific control buffer size, user could easily determine whether the system is suffering from memory
leak. Buffer monitoring would not work if either of the compile options DEBUG_KAL, DEBUG_BUF and
DEBUG_BUF2 is excluded. Penalty of monitoring is more memory consumed and longer latency in allocating and
releasing buffer, because task ID, file name, line number and buffer size will be recorded onto buffer history each time
operation is done. Henceforth, buffer monitoring is officially turned-off.

To turn-on buffer monitoring at run-time, we need to know the ID of each control buffer size, they are denoted in

Table 11-1.

Number Size of control buffer ID
0 8 1
1 16 2
2 32 4
3 64 8
4 128 16
5 256 32
6 512 64
7 1024 128

8 2048 256

Table 11-1. Identity number of control buffer

next available
pool_id

0xF1F1F1F1
task id
pool id

0xF2F2F2F2

BUFFER Size required by
the user

0xF2F2F2F2

128B Control Buffer
pool, 61 entries totally.

Buffer 0
Buffer 1

Buffer 60

Buffer 2

next available
pool_id

0xF1F1F1F1
task id
pool id

0xF2F2F2F2

BUFFER Size required by
the user

0xF2F2F2F2

128B Control Buffer
pool, 61 entries totally.

Buffer 0
Buffer 1

Buffer 60

Buffer 2

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 62 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

For example, to monitor 8 and 128Bytes control buffer, pressing the string in dialing screen,

*035670766*001*17#. Be very careful that, system performance will definitely be scarified under the

circumstance. Such enabling is not permanently available; it is reset in next time power-on

10.1.2 ADM

In addition to control buffer, upper layer applications may need more flexible dynamic memory mechanism, such
as, allocating buffer larger than 2KB, going through its own error handling if allocation failure. MAUI provides an
alternative dynamic memory management scheme, namely Application Dynamic Memory (ADM) to fulfill such
requirement.

Users are responsible to provide a memory pool, and transfer the management to system; garbage collection is

excluded from ADM. Specially note that, control block and others overhead for management will be created from the
memory pool provided by users; therefore the memory pool size should take them into account. The minimal
allocatable size is 8Bytes, and system guarantees the 4B alignment starting address for each allocation.

By using the sub-pool concept, system attempts to avoid fragmentation issue as much as possible. Under the

architecture, all of the freed memory segments are categorized according to the pre-defined sub-pool size. It is user’s
responsibility to provide an appropriate sub-pool list. Internally, sub-pool is an array of type kal_unt32, and must be
ended with 0xffffffff and 0x00. If it is set to NULL, default sub-pool setting will be applied.

10.1.3 System memory and debug memory

Typically, system memory is a static memory pool declared at mcu\custom\system\board version\
custom_config.c, it aims to provide the semi-static memory space for run-time usage. The term semi-static means
that, the memory size is application dependent, but it would never be returned once allocated. For examples, control
block of a task, task’s stack, control block of a control buffer, buffer pool etc. Although system memory is restricted for
system usage only, customers are responsible to provide its actual size since it is application dependent.

Tables below are components list of system and debug memory

Size (In terms of Bytes) Components
RELEASE_KAL DEBUG_KAL

kal_task_type 168 172

Task’s stack Task dependent, minimal requirement
240B.

Task dependent, minimal requirement
240B.

kal_hisr_type 88 92

#define GLOBAL_MEM_SIZE (300*1024)
#define GLOBAL_DEBUG_MEM_SIZE (64*1024)

/* Use static array to check memory usage at compile time with corresponding scatter file. */
static kal_uint32 System_Mem_Pool[GLOBAL_MEM_SIZE/sizeof(kal_uint32)];
static kal_uint32 Debug_Mem_Pool[GLOBAL_DEBUG_MEM_SIZE/sizeof(kal_uint32)];

kal_uint32 ADM_subpool_size[] = { 8, 16, 32, 64, 128, 0xffffffff, 0x00};

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 63 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

HISR’s stack HISR dependent, minimal requirement
240B.

HISR dependent, minimal requirement
240B.

kal_queue_type 76 80

Queue pool (Size of ilm_struct) x number of queue
entries

(Size of ilm_struct) x number of queue
entries

kal_mutex_type 40 48

kal_sem_type 48 52

kal_eventgrp_type 36 36

kal_timer_type 80 80

event_scheduler 68 68

kal_pool_type 60 72 + 52

Kal_internal_pool_statistics 0 16

Buffer pool Total number of entries x [(4x2)+buffer size] Total number of entries x [(4x6)+buffer size

Table 11-2. Occupiers of system memory

Components Size (In terms of size) Remark
kal_buff_stat_type 92 This is storage of buffer historical records, and each

buffer entry occupies 92B.
kal_queue_stat_type 4
kal_mutex_stat_type 8

kal_timer_stat_type 12

Table 11-3. Occupiers of debug memory

To meet the timing critical requirements, system memory is further divided into internal system memory and

system memory; the former is linked at internal SRAM, whilst the later at external SRAM. Since the internal SRAM is
too limited, the internal system memory is fixed for each base-band chip.

Before W04.41, system memory configuration follows convention illustrated in Table 11-4. Otherwise, Table 11-5

will be followed.

Table 11-4. Internal system memory size configuration (before W04.41)

MT6205B
GSM ClassB GSM

System Memory (External RAM) 300K 560K 430K
Internal System Memory (Internal RAM) 9.5K 16K 16K

Debug Memory 64K 128K 100K

OthersChipProtocol
Dynamic Memory

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 64 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Table 11-5. Internal system memory size configuration (W04.41 and later)

MT6205B
GSM ClassB GSM

System Memory (External RAM) 150K 280K 256K
Internal System Memory (Internal RAM) 9.5K 16K 16K

Debug Memory 50K 100K 80K

OthersChipProtocol
Dynamic Memory

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 65 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

10.2 Data Structures and Data Types

10.2.1 Control buffer

Tables below illustrate the data structures and data types commonly used in managing control buffer.

kal_pool_statistics_struct, *kal_pool_statistics (mcu\kal\include\kal_debug.h)
Description:
Defines the statistical content of certain size of control buffer, the record is valid if and only if compile option
DEBUG_BUF is defined.

Data Type Element Description
kal_uint16 num_buffs Total number of the buffer entries, which is consistent

with the configured number.
kal_uint16 buff_size Buffer size in terms of Bytes, which is consistent with

the configured number.
kal_uint16 current_allocation Total number of the presently allocated entries.
kal_uint16 max_num_allocated Tracking the maximal number of the allocated entries

that system ever experienced.
kal_uint16 max_size_requested Tracking the maximal allocated buffer size.

kal_history_node_t (mcu\kal\common\include\kal_ debug common_defs. h)
Description:
The physical data structure for buffer history, available if and only if compile option DEBUG_BUF is defined.

Data Type Element Description
kal_buff_state buffer_state Buffer status, either KAL_BUFF_ALLOCATED or

KAL_BUFF_DEALLOCATED.
kal_internal_taskid owner_task Owner of the buffer, expressed with task identity.

kal_char* file_name File name.
kal_uint32 line Line number.
kal_uint16 size Size to be allocated.

kal_buff_stat_type, * kal_internal_buff_statistics (mcu\kal\common\include\kal_ debug common_defs. h)
Description:
Used for tracking the historical operations on a dedicated buffer entry. Again, it is valid if and only if compile option
DEBUG_BUF is defined.

Data Type Element Description
kal_internal_taskid owner_task Owner of the buffer, expressed with task

identity.
kal_uint8 buffer_state Buffer status, either

KAL_BUFF_ALLOCATED or
KAL_BUFF_DEALLOCATED.

kal_history_node_t buff_history [KAL_MAX_BUFF_HISTORY] Array used for recording the operations
ever processed and is associated on
each buffer entry.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 66 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_pool_stat_type, *kal_internal_pool_statistics (mcu\kal\include\kal_debugh)
Description:
Defines statistical, as well as the historical data of a control buffer.

Data Type Element Description
kal_pool_statistics_struct pool_info Physical storage for buffer statistical record.

kal_internal_buff_statistics buff_stat Pointer to buffer historical logging.

kal_pool_type, *kal_internal_poolid (mcu\kal\nucleus\include\kal_nucleus.h)
Description:
Defines the control block of a control buffer, slightly different if DEBUG_KAL, DEBUG_BUF and DEBUG_BUF2 are
defined (light yellow background color).

Data Type Element Description
kal_os_pool_type pool_id Pool identity inherits from partitioned pool of Nucleus

Plus.
kal_bool pool_debug_mask KAL_TRUE if buffer monitoring is enabled,

otherwise, disabled.
kal_uint16 buff_size; Control buffer size in units of Bytes.

kal_internal_pool_statistics pool_stat Pointer to statistical data of the control buffer.
kal_mutexid protecting_mutex MUTEX used for protecting operations taken on

dedicated control buffer.

buff_hdr_t (mcu\kal\nucleus\include\kal_nucleus.h)
Description:
Defines the structure of KAL buffer header, please refer to Figure 2 for the exact layout. It is valid if and only if
DEBUG_KAL, DEBUG_BUF and DEBUG_BUF3 are defined.

Data Type Element Description
kal_uint32 hdr_stamp KAL buffer header stamp, 0xF1F1F1F1.

kal_internal_taskid task_id Owner of the buffer entry, expressed as task identify.
kal_internal_poolid pool_id Control block to which the buffer belongs.

kal_uint8 usr_buff[1] Starting address of the buffer pool.

buff_pool_info_struct (mcu\adaptation\include\stack_buff_pool.h)
Description:
Defines the control block of message queue, slightly different if DEBUG_KAL and DEBUG_ITC are defined (light
yellow background color).

Data Type Element Description
kal_poolid pool_id Pool identify assigned by the system during creation.
kal_uint32 size Control buffer size.
kal_uint16 no_of_buff Total number of buffer entries.
kal_uint32 num_of_misses Total number of misses; for control buffer, it is always

zero, because system would never return NULL
pointer on MAUI.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 67 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Data Types Description
kal_poolid Identity of a control buffer, which is internally equivalent to kal_internal_poolid.

kal_buff_state Enumeration type of buffer status.
typedef enum {
 KAL_BUFF_DEALLOCATED,
 KAL_BUFF_ALLOCATED,
 KAL_BUFF_CORRUPTED
} kal_buff_state;

Global variable Description
ctrl_buff_pool_info_g Array of buff_pool_info_struct, number of the entries is determined by

RPS_CREATED_CTRL_BUFF_POOLS defined in
mcu\adaptation\include\ctrl_buff_pool.h. It is an unified entrance of control buffer.

10.2.2 ADM

struct ADM_MB_HEAD_STRUCT, ADM_MB_HEAD (mcu\kal\common\include\kal_adm.h)
Description:
Defines the header structure of an ADM.

Data Type Element Description
struct ADM_MB_HEAD_STRUCT * prev Pointer to the previous memory block (MB).
struct ADM_MB_HEAD_STRUCT * next Pointer to the next memory block (MB).
struct ADM_MB_HEAD_STRUCT * bl_prev Pointer to the previous block list (BL).
struct ADM_MB_HEAD_STRUCT * bl_next Pointer to the next block list (BL).

ADM_MB_FOOT (mcu\kal\common\include\kal_adm.h)
Description:
Defines the footer of a memory piece allocated from some ADM.

Data Type Element Description
kal_uint32 stamp Fixed pattern 0x04F4F4F4 for the detection of memory corruption.

ADM_MB_LOG (mcu\kal\common\include\kal_adm.h)
Description:
Defines the data structure of ADM memory logging.

Data Type Element Description
kal_uint32 stamp Fixed pattern 0x03F3F3F3 for the detection of memory corruption.
kal_char * filename File name.
kal_uint32 line Line number.

ADM_CB (mcu\kal\common\include\kal_adm.h)
Description:
Defines the control block of an ADM.

Data Type Element Description

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 68 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_uint32 adm_id Identity of ADM.
kal_uint16 bl_num Number of block lists.
kal_uint16 owner Owner of the ADM, existed if DEBUG_ADM is defined, otherwise, it

is a reserved field.
kal_uint8 islogging KAL_TRUE if buffer logging is enabled.
kal_uint8 reserved2[3] Reserved field for alignment.

Data Types Description
KAL_ADM_ID Identity of an ADM, it is type of void *.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 69 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

10.3 Memory management APIs

10.3.1 Control buffer

get_ctrl_buffer
Prototype: void * get_ctrl_buffer (size)
Header file: app_alloc_buff.h
Input: size is size of buffer to be allocated.
Output: Buffer pointer is returned in the manner of void *, any unsuccessful operation will be re-directed to

system error.
Description: This is common interface for allocating a buffer from the smallest fit control buffer.

free_ctrl_buffer
Prototype: void free_ctrl_buffer (void * ptr)
Header file: app_alloc_buff.h
Input: ptr is buffer pointer to be released.
Description: This is common interface for returning a buffer pointer to the system.

kal_query_ctrlbuf_max_consumption
Prototype: kal_bool kal_query_ctrlbuf_max_consumption (kal_uint32 *ptr)
Header file: kal_release.h
Input: ptr is an array, which is used to return values.
Output: KAL_FALSE if DEBUG_KAL is not defined, otherwise KAL_TRUE.
Description: This service is provided for querying currently maximum consumption on each control buffer, which is

totally RPS_CREATED_CTRL_BUFF_POOLS.

10.3.2 ADM

kal_adm_create
Prototype: KAL_ADM_ID kal_adm_create (void *mem_addr, kal_uint32 size, kal_uint32 *subpool_size, \

kal_bool islogging)
Header file: kal_release.h
Input: mem_addr is starting address of the memory pool, size is total size of the memory pool, subpool_size is

an array, which describe the total number of sub-pools and its size, islogging is logging flag, guard
pattern checking and operation logging will be enabled if it is KAL_TRUE.

Output: ID the created ADM.
Description: This service aims for creating an ADM from the given memory pool, ADM control block, header and

footer footprints must be taken into account while calculating the pool size. Total overhead is the
summation of the following,
Fixed size overhead, 12 + 16 + 16 x (number of sub-pool entries).
Floating overhead, 8B header for each allocation, extra 16B overhead for footer if logging is enabled.
Default value will be adopted if subpool_size is NULL.

kal_adm_delete
Prototype: kal_status kal_adm_delete (KAL_ADM_ID adm_id)
Header file: kal_release.h

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 70 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Input: adm_id is identity of an ADM to be deleted.
Output: KAL_ADM_SUCCEED if operation successfully done, KAL_MEMORY_NOT_RELEASE if there are

some memory block not yet returned.
Description: This function call is specific for deleting an ADM.

kal_adm_alloc
Prototype: void * kal_adm_alloc (adm_id, size)
Header file: kal_release.h
Input: adm_id is destination ADM, from where a memory piece will be allocated, and size is the required

memory size.
Output: Pointer of the allocated memory piece if operation successfully done, otherwise, NULL.
Description: This service aims at allocating a memory piece from the dedicated ADM. Be very careful that, if ADM

logging is enabled, extra memory space will be consumed. It is excluded from the size specified in input
parameter.

kal_adm_free
Prototype: void kal_adm_free (KAL_ADM_ID adm_id, void *mem_addr))
Header file: kal_release.h
Input: adm_id is destination ADM, to which the memory pointer mem_addr will be returned.
Description: This function call aims at releasing a memory pointer to the dedicated ADM; if ADM logging is turned on,

memory header and footer will be checked during pointer releasing.

kal_adm_get_max_alloc_size
Prototype: kal_uint32 kal_adm_get_max_alloc_size (KAL_ADM_ID adm_id)
Header file: kal_release.h
Input: adm_id is destination ADM to be queried.
Output: Maximal available memory size to be allocated.
Description: This function is designed for querying the maximal available memory size that ADM is affordable. If ADM

logging is turned-on, the actual exercisable size should subtract the logging (size of (ADM_MB_LOG)),
header (size of ()) and footer size (size of (ADM_MB_FOOT)).

kal_adm_get_total_left_size
Prototype: kal_uint32 kal_adm_get_total_left_size (KAL_ADM_ID adm_id)
Header file: kal_release.h
Input: adm_id is destination ADM to be queried.
Output: Total free space of the dedicated ADM.
Description: Users could rely on this service for retrieving total free space of dedicated ADM; it is very useful in

identifying fragmentation.

kal_adm_check_integrity
Prototype: void *kal_adm_check_integrity (KAL_ADM_ID adm_id)
Header file: kal_release.h
Input: adm_id is destination ADM to be queried.
Output: Address of corrupted memory block. If there is no memory corruption, NULL is returned.
Description: This function is only available from 05C W06.17. This function ensures the integrity of all allocated

memory blocks. If the header or footer of any allocated memory block is corrupted, it returns the address
of the corrupted memory block. This is useful for debugging memory corruption.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 71 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

10.3.3 System and debug memory

kal_sys_mem_query_freesize
Prototype: kal_uint32 kal_sys_mem_query_freesize (void)
Header file: kal_release.h
Output: An integer value of available memory space.
Description: This function call is designed for querying the system memory free space.

kal_debug_mem_query_freesize
Prototype: kal_uint32 kal_debug_mem_query_freesize (void)
Header file: kal_release.h
Output: An integer value of available memory space.
Description: This function call is designed for querying the debug memory free space; note that, it always returns

zero if DEBUG_KAL is not defined.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 72 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

10.4 Examples
Below are two examples of ADM.

(A) Without using sub-pool

(A) With sub-pool

#include “kal_release.h”

static kal_uint8 my_heap[3 * 1024];
KAL_ADM_ID my_dm_id;
kal_uint32 *ptr;

/* create ADM */
my_dm_id = kal_adm_create(my_heap, 3 * 1024, NULL, KAL_FALSE);
if (my_dm_id == NULL)
 my_error_handler(); /* fail to create a dm pool */

/* allocate memory */
ptr = (kal_uint32 *)kal_adm_alloc(my_dm_id, 1024);
if (ptr == NULL) {
 if (kal_adm_get_total_left_size(my_dm_id) > 1024)
 my_error_handler(); /* fragmentation */
 else
 my_error_handler(); /* out of memory */
}

/* free memory */
kal_adm_free(my_dm_id, ptr);

/* delete ADM */
if (kal_adm_delete(my_dm_id) != KAL_ADM_SUCCEED)
 my_error_handler();

#include “kal_release.h”

static kal_uint32 my_subpool_size[] = { 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88,
 96, 104, 112, 120, 128, 0xffffffff, 0 };
static kal_uint8 my_heap[3 * 1024];
KAL_ADM_ID my_dm_id;
kal_uint32 *ptr;

/* create ADM */
my_dm_id = kal_adm_create(my_heap, 3 * 1024, my_subpool_size, KAL_FALSE);
if (my_dm_id == NULL)
 my_error_handler(); /* fail to create a dm pool */

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 73 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

11 Utility APIs

This chapter collects all the utility APIs, which may be an inline function, macro or the re-written APIs to avoid re-
entrance problem.

11.1 Memory operation

kal_mem_cmp
Prototype: kal_int32 kal_mem_cmp (void* src1, void* src2, kal_uint32 size)
Header file: kal_release.h
Description: It is an inline function of mem_cmp; it compares the first size Bytes of the arrays pointed to by src1 and

src2.

kal_mem_cpy
Prototype: void * kal_mem_cpy (void* dest, const void* src, kal_uint32 size)
Header file: kal_release.h
Description: It is an inline function of mem_cpy; it copies size Bytes from the array pointed to by src into the array

pointed to by dest. If the arrays overlap, the behavior is undefined.

kal_mem_set
Prototype: void * kal_mem_set (void* dest, kal_uint8 value, kal_uint32 size)
Header file: kal_release.h
Description: It is an inline function of mem_set; it copies value into the first size Bytes of the array pointed to by dest,

it returns dest.

11.2 Boot mode querying

stack_query_boot_mode
Prototype: boot_mode_type stack_query_boot_mode (void)
Header file: kal_release.h
Output: FACTORY_BOOT if they system is in META or factory mode, USBMS_BOOT if the system is in USB

boot mode, NORMAL_BOOT if the system is in normal power-on mode, UNKNOWN_BOOT_MODE if
the system not yet known its boot-mode.

Description: This service aims at providing boot mode information to caller, it is available for LISR/HISR/task level
query, in system boot-up stage, UNKNOWN_BOOT_MODE will probably get.

11.3 Multi-bytes string processing

kal_dchar_strlen
Prototype: int kal_dchar_strlen (const char *wstr)
Header file: kal_release.h
Input: wstr is pointer of string.
Output: Length of a double character string, in terms of Bytes.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 74 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Description: This function returns the length of the null-terminated double character string pointed to by wstr. For
double character string, null-terminator is 0x00 0x00, and are not counted.

kal_dchar_strcpy
Prototype: char *kal_dchar_strcpy (char *to, const char *from)
Header file: kal_release.h
Input: to and from are destination and source string respectively.
Output: The double characters string being copied.
Description: This function call aims to copy the content of double characters string from into double characters string

to.

kal_dchar_strncpy
Prototype: char *kal_dchar_strncpy (char *to, const char *from, int n)
Header file: kal_release.h
Input: to and from are destination and source double characters string respectively, n is total number of wide

characters to be copied.
Output: The double characters string being copied.
Description: This function copies up to n wide characters from the double characters string pointed to by from into

the array pointed to by to.

kal_dchar_strcmp
Prototype: int kal_dchar_strcmp (const char *s1, const char *s2)
Header file: kal_release.h
Input: s1 and s2 are two double characters strings to be compared.
Output: 0 if the two double characters strings are exactly identical, <0 if s1 is less than s2, >0 if s1 is greater

than s2.
Description: This function lexicographically compares two double characters strings.

kal_dchar_strncmp
Prototype: int kal_dchar_strncmp (const char *s1, const char *s2, int n)
Header file: kal_release.h
Input: s1 and s2 are two double characters strings to be compared, n is total number of wide characters to be

compared.
Output: 0 if the two double characters strings are exactly identical, <0 if s1 is less than s2, >0 if s1 is greater

than s2.
Description: This function lexicographically compares two double characters strings not more than n wide characters.

kal_dchar_strcat
Prototype: char *kal_dchar_strcat(char *s1, const char *s2)
Header file: kal_release.h
Input: s1 and s2 are two double characters strings to be concatenated.
Output: Double characters string being concatenated.
Description: This function concatenates a copy of s2 to s1 and terminates s1 with a 0x00 0x00.The null terminator

0x0000 originally ending s1 is overwritten by the first character of s2.

kal_dchar_strncat

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 75 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Prototype: char *kal_dchar_strncat (char *s1, const char *s2, int n)
Header file: kal_release.h
Input: s1 and s2 are two double characters strings to be concatenated, this action will be taken on n wide

characters.
Output: Double characters string being concatenated.
Description: This function concatenates not more than n wide characters of the double characters string pointed to

by s2 to the double characters string pointed to by s1 and terminates s1 with 0x0000. The null terminator
0x00 0x00 originally ending s1 is overwritten by the first character of s2.

kal_dchar_strchr
Prototype: char *kal_dchar_strchr (const char *s, int c)
Header file: kal_release.h
Input: s is pointer of double characters string, c is wide character to be searched.
Output: Double characters string.
Description: This function returns a pointer to the first occurrence of the c in the double characters string pointed to

by s.

kal_dchar_strrchr
Prototype: char *kal_dchar_strrchr (const char *str, int ch)
Header file: kal_release.h
Input: str is pointer of double characters string, ch is wide character to be searched.
Output: Double characters string.
Description: This function returns a pointer to the last occurrence of the ch in the double characters string pointed to

by str.

kal_dchar2char
Prototype: void kal_dchar2char (WCHAR *outstr, char* tostr)
Header file: kal_release.h
Input: outstr is pointer of wide character string, and tostr is double character string.
Description: This function is used to convert a wide character string to a single character string.

kal_wsprintf
Prototype: void kal_wsprintf (WCHAR *outstr, char *fmt,...)
Header file: kal_release.h
Description: Identical to sprintf, except that input string is a wide character string.

kal_wstrlen
Prototype: int kal_wstrlen (const WCHAR *wstr)
Header file: kal_release.h
Input: wstr is pointer of wide character string.
Output: Length of a wide character string, in terms of WCHAR..
Description: This function returns the length of the null-terminated string pointed to by wstr. For wide character string,

null-terminator is 0x0000, and is not counted.

kal_wstrcpy
Prototype: WCHAR *kal_wstrcpy (WCHAR *to, const WCHAR *from)

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 76 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Header file: kal_release.h
Input: to and from are destination and source wide character string respectively.
Output: The wide character string being copied.
Description: This function call aims to copy the content of wide character string from into wide character string to.

kal_wstrncpy
Prototype: WCHAR *kal_wstrncpy (WCHAR *to, const WCHAR *from, int n)
Header file: kal_release.h
Input: to and from are destination and source wide character string respectively, n is total number of wide

characters to be copied.
Output: The wide character string being copied.
Description: This function copies up to n wide characters from the wide character string pointed to by from into the

array pointed to by to.

kal_wstrcmp
Prototype: int kal_wstrcmp (const WCHAR *s1, const WCHAR *s2)
Header file: kal_release.h
Input: s1 and s2 are two wide character strings to be compared.
Output: 0 if the two wide character strings are exactly identical, <0 if s1 is less than s2, >0 if s1 is greater than s2.
Description: This function lexicographically compares two wide character strings.

kal_wstrncmp
Prototype: int kal_wstrncmp (const WCHAR *s1, const WCHAR *s2, int n)
Header file: kal_release.h
Input: s1 and s2 are two wide character strings to be compared, n is total number of wide characters to be

compared.
Output: 0 if the two wide character strings are exactly identical, <0 if s1 is less than s2, >0 if s1 is greater than s2.
Description: This function lexicographically compares two wide character strings not more than n wide characters.

kal_wstrcat
Prototype: WCHAR *kal_wstrcat(WCHAR *s1, const WCHAR *s2)
Header file: kal_release.h
Input: s1 and s2 are two wide character strings to be concatenated.
Output: Wide character string being concatenated.
Description: This function concatenates a copy of s2 to s1 and terminates s1 with a 0x0000.The null terminator

0x0000 originally ending s1 is overwritten by the first character of s2.

kal_wstrncat
Prototype: WCHAR *kal_wstrncat (WCHAR *s1, const WCHAR *s2, int n)
Header file: kal_release.h
Input: s1 and s2 are two wide character strings to be concatenated, this action will be taken on n wide

characters.
Output: Wide character string being concatenated.
Description: This function concatenates not more than n wide characters of the wide character string pointed to by s2

to the wide character string pointed to by s1 and terminates s1 with 0x0000. The null terminator 0x0000
originally ending s1 is overwritten by the first character of s2.

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 77 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

kal_wstrchr
Prototype: WCHAR *kal_wstrchr (const WCHAR *s, int c)
Header file: kal_release.h
Input: s is pointer of wide character string, c is wide character to be searched.
Output: Wide character string.
Description: This function returns a pointer to the first occurrence of the c in the wide character string pointed to by s.

kal_wstrrchr
Prototype: WCHAR *kal_wstrrchr (const WCHAR *str, int ch)
Header file: kal_release.h
Input: str is pointer of wide character string, ch is wide character to be searched.
Output: Wide character string.
Description: This function returns a pointer to the last occurrence of the ch in the wide character string pointed to by

str.

11.4 Reentrance functions

kal_strtok_r
Prototype: kal_char * kal_strtok_r (kal_char *string, const kal_char *seperators, kal_char **ppLast)
Header file: kal_release.h
Input: string is string to be tokenized, separators tells the separator, while ppLast serves as string index.
Output: Pointer to the first character of a token
Description: This is a re-entrance function, where more than one caller could tokenize the same source string with

individual string index.

kal_gmtime_r
Prototype: struct tm *kal_gmtime_r (const time_t *timer, struct tm *t)
Header file: kal_release.h
Input: timer is time to be converted, t is pointer for returning the conversion result.
Output: The broken-down form of timer, it is same with t.
Description: This is a re-entrance function used for returning the broken-down form of timer in the form of a tm

structure.

11.5 Exception handling

ASSERT
Prototype: ASSERT(expression)
Header file: kal_release.h
Input: expression is an expression.
Description: If DEBUG_KAL is defined, ASSERT takes action if the expression evaluates to FALSE, the embedded

exception handler will then be invoked (please refer to ExceptionHandling.pdf for more detailed).
Otherwise, in RELEASE_KAL, ASSERT does nothing.

EXT_ASSERT
Prototype: EXT_ASSERT(expr, e1, e2, e3)
Header file: kal_release.h

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 78 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

Input: expression is an expression, e1, e2 and e3 are three extended parameters with type of kal_uint32.
Description: Unlike ASSERT, EXT_ASSERT always take action no matter DEBUG_KAL or RELEASE_KAL; in

addition to expression, users are given three extended parameters for tracking the violations.

EXT_ASSERT_DUMP
Prototype: EXT_ASSERT_DUMP(expr, e1, e2, e3, dump_param)
Header file: kal_release.h
Input: expression is an expression, e1, e2 and e3 are three extended parameters with type of kal_uint32.

dump_param is a pointer to a ASSERT_DUMP_PARAM_T structure.
Description: EXT_ASSERT_DUMP is just like EXT_ASSERT except that it can dump at most 10 memory fragments

in the exception log. (224 bytes is reserved in the exception log.) Below is the
ASSERT_DUMP_PARAM_T structure:

 Specify 10 memory fragments in the structure as below:

typedef struct ASSERT_DUMP_PARAM
{
 kal_uint32 addr[ASSERT_DUMP_PARAM_MAX];
 kal_uint32 len[ASSERT_DUMP_PARAM_MAX]; /* in bytes */
} ASSERT_DUMP_PARAM_T;

 ASSERT_DUMP_PARAM_T dump_param;

 dump_param.addr[0] = 0x08000000;
 dump_param.len[0] = 8;
 dump_param.addr[1] = 0x08000000 + 100;
 dump_param.len[1] = 8;
 dump_param.addr[2] = 0x08000000 + 200;
 dump_param.len[2] = 8;
 dump_param.addr[3] = 0x08000000 + 300;
 dump_param.len[3] = 8;
 dump_param.addr[4] = 0x08000000 + 400;
 dump_param.len[4] = 8;
 dump_param.addr[5] = 0x08000000 + 500;
 dump_param.len[5] = 8;
 dump_param.addr[6] = 0x08000000 + 600;
 dump_param.len[6] = 8;
 dump_param.addr[7] = 0x08000000 + 700;
 dump_param.len[7] = 8;
 dump_param.addr[8] = 0x08000000 + 800;
 dump_param.len[8] = 8;
 dump_param.addr[9] = 0x08000000 + 900;
 dump_param.len[9] = 0x100000;

 EXT_ASSERT_DUMP(0, 1, 2, 3, &dump_param);

 Maui System Service User Manual
Interrupt Handler and KAL Programming Guide

MediaTek Confidential Revision 1.6 – September 28, 2006 Page: 79 of 79
© 2004-2006 MediaTek Inc.

The information contained in this document can be modified without notice.

 When the exception handler processes the exception later, your data will be stored in the exception log.
This may be useful for developers to debug. Please note that a NULL address must follow your last
specified address. For example, if you only want to dump 5 memory fragments, the 6-th entry of the
„addr“ field must be NULL (dump_param.addr[5] = NULL).

