
Smalltalk Solutions 2005, Orlando, 27-29 June 2005 1
Smalltalk Solutions 2005, Orlando, 27-29 June 2005

Jim, John, Michael, Blaine, Georgio and I went to the Magic Kingdom on 
Sunday. Alone, I would probably have spent the day trying to understand 
how to get on a single ride. Instead, I was astounded by Jim and John’s 
incredibly detailed knowledge of layout and procedure. Led by the two of 
them, we moved rapidly from ride to ride, avoiding long queues. The rides 
themselves were enlivened by John and Jim’s ability to provide a complete 
version history of how the layout had changed over the past decade or how 
a particular prop had functioned three years ago when it had been part of 
the ‘alien encounter’ ride. When I learned that Jim has an annual Disney 
pass and has been every year for decades, while John McIntosh has a time-
share pass and has also been often, I ceased to be astounded (that they knew 
so much about Disney :-).

Meanwhile, Blaine nobly refrained from taking the opportunity to nobble 
a competitor when Michael occupied the car directly in front of his laser 
cannon in the Buzz Lightyear ride. :-)

In mid-afternoon, Giorgio and I had to return to the hotel. The others 
should have come with us; after we left, the rides they queued for were 
closed, whereas Georgio and I took a wrong turn driving back, leading to 
an exciting ride round Orlando.

Style
In the text below, ‘I’ or ‘my’ refers to Niall Ross; speakers are referred to 
by name or in the third person. A question asked in or after a talk is 
prefaced by ‘Q.’ (occasionally I identify the questioner if it seems 
relevant). A question not prefaced by ‘Q.’ is a rhetorical question asked by 
the speaker (or is just my way of summarising their meaning).

Author’s Disclaimer and Acknowledgements
This report was written by Niall Ross of eXtremeMetaProgrammers Ltd. 
No view of any other project or organisation with which I am connected is 
expressed or implied. It is as accurate as my speed of typing in talks and 
my memory of them afterwards can make it; please send comments and 
corrections to nfr@bigwig.net. I thank all speakers and participants whose 
work gave me something to report, and the conference sponsors: Cincom, 
Gemstone, Knowledge Systems Corporation, Why Smalltalk, 
Instantiations, IBM, HCL, Synchrony Systems and CSC.

Summary of Presentations
I have sorted the talks I attended into various categories:

• Web and GUI Frameworks

• Applications and Experience Reports

• Processes, Tools and Configuration Management

• Vendors, VMs and IDEs

• Testing



2 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
• Remote Programming

• Miscellaneous

after which I list any Talks I Missed, describe Other Discussions, note 
Follow-up Actions and give my overall Conclusions from the conference. 
I also describe the pre-conference Coding Competition and the play-off.

As there were often two and sometimes three parallel programme tracks, 
plus ad-hoc discussions, I could not attend half of what happened, but 
managed to report on slightly more than that due to speakers’ kindness in 
repeating talks for me at times. The talks’ slides should be reachable from 
the conference website (http://www.smalltalksolutions.com/). For info on 
talks I missed, and others’ take on some I caught, see the Smalltalk blogs.

Opening, Allen Davis of KSC and STIC and Alan Knight of Cincom
Allen described the various facilities and sponsored events. (This included, 
at the meal on Tuesday night, a caricaturist who drew cartoons of anyone 
rash enough to ask for one, which yours truly duly did. :-)

Exhibitors
The Precision systems stand was well-stocked with goodies and they were 
raffling an iPOD, as were the Cincom stand. With the coding competition, 
that made three chances to win an iPOD (but I still don’t have one :-/).

Web and GUI Frameworks
Transcend the UI Divide WithStyle, Michael Lucas-Smith
Michael lives in Canberra and works for WithStyle (his own company) and 
for Wizard Information Services. He has been a Smalltalker for 6 years, his 
WithStyle colleagues for 10 years and for 3 years respectively.

MacroMedia just fakes a UI inside the browser and similarly for many 
others. WithStyle gives the full power of a real user interface on the web. 
They also have an XML editor for the end-user, not for XML experts. They 
began with Nyx (can it be done?), Kyx (first production), WithStyle V3 (in 
use plus developer programme) and WithStyle V4 (today’s demos). Last 
StS he demoed V3 showing scripting support (he made a presentation 
engine in the demo) and rich CSS2 support. Now they have rich support for 
CSS2 and 3, they have several sites in use, and they have fewer methods.

As well as CSS3, V4 has a better box model, StyledXML, far better speed 
(as fast as Mozilla from a Smalltalk image and they get more behaviour for 
the same speed). It is much more flexible than V3 because it is based on 
Pollock, so any UI widget will be a web widget. It has sensible drag-drop: 
drag this XML to anywhere it can go, only to here, etc. They have before 
and after (CSS3), zooming (lets them preview in tiles, etc.) and paging 
(web-style, MS style, continuous stuff).

Pollock is the future, is much easier to use (even in its current changing 
form), gives better widgets (HTML forms, any Pollock widget, e.g. tree 
view). In the future, it will help them pick up XForms or whatever comes 
along. You can edit widgets to Smalltalk objects, or widgets to the DOM 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 3
tree, and the DOM tree to Smalltalk (your DOM tree object has an attribute 
that lets you connect any aspect, thus giving you a natural mapping and 
backmapping between the two).

He showed the CSS working in zengarden, etc. He likens WithStyle to 
Gecko; something you build a web browser such as Firefox on, not a web 
browser itself. He then went to WithStyle to show authentication and to 
take people round the developer programme offers. They show the test 
results against each version so you decide which one you want to take.

The first demo was last StS’s example slide viewer. (His slides were 
running in it; he had been demoing from the start of the talk.) He showed 
the pause button, completely defined in HTML, hidden at top left until you 
hover over it. It minimises the slide and shows another button to pop it up 
again. It is very easy to make simple windows (about window, help 
window, etc.) that get their content from Smalltalk.

The next demo was V4 using Pollock: XML with embedded HTML with 
embedded Pollock widget (tree view). He browsed the Smalltalk code that 
assigned a WithStyle document to a window, sized it and opened it. He 
talked through the text (CSS flow means things move from left to right (or 
otherwise as needed). He displayed it and showed changing the widget, 
having the DOM tree update in an inspector, etc. (Sames: you can see the 
Pollock widget by the lines around it; this is not faked! Michael showed a 
WithStyle widget in a WithStyle widget - no lines to see). The tree view 
expand/contract menu appeared (and he’ll add some content soon :-).

Backmapping is what WithStyle has that noone else does. It makes XSLT- 
transformed XML know where it came from in the Smalltalk. He walked 
through the code, showing how they could make text editable by the user 
in the middle of some HTML (Mozilla had this concept but does not 
implement it). He showed the window and an inspector. He typed and 
showed that the inspected Smalltalk object saw the change.

Q(Eliot) Validation? XSLT does not do validation is such. It only lets you 
do the things its schema says you may, so there is no validation need in the 
UI. All real validation will be done in Smalltalk.

The next demo was the VW Welcome Window. Mark Roberts wanted a 
welcome window that says, “Look how modern this environment is!”. 
Michael showed embedded workspaces (doIt), embedded transcripts, 
styled XML being constructed and displayed (better than transcript). 
Lastly, he showed running code to popup a window. (As soon as the code 
browser is rewritten in Pollock, you’ll be able to embed it in any WithStyle 
window, or pop it up.)

EzyXML is Wizard’s product. They use it to edit their client’s websites (8 
Australian government websites). He brought up the road transport site 
(brief flicker in demo due to a bug Michael introduced 2 days ago). These 
have been in production for a long time and not one production bug!!! They 
just keep expanding their use of it. Michael used context-sensitive menus 



4 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
and popups to add another resource for users to download in the download 
location. He then showed domain-specific menus: contacts info, service 
info (what procedure to follow to get this service from the department), etc.

The next demo was XML WithStyle. It can handle any XML and speeds 
you up by offering a lot of common vocabularies (HTML transitional and 
strict, docbook, scrum backlog, etc.). He opened some XHTML fragment 
in a raw plain format, then switched to the WithStyle website format and 
suddenly it looked cool. He used the menus to edit it and lay it out. You 
have a complete unlimited undo/redo stack for any XML in WithStyle. If 
you call Smalltalk code that inverts your entire DOM tree, you can undo it. 
He opened an (amusing) XML-for-CVs page and showed the hierarchic 
menu outlining the larger and larger affected areas a menu item applies to 
as he edited it. They have demos showing changing language on pages.

He then showed displaying the SCRUM backlog XML and editing it. The 
XML is very simple, the XSLT transforms it and the stylesheets make it 
look good.

At this point, time forced him to drop the SmalltalkDoc and BottomFeeder 
demos. He ended with the Seaside integration demo in V4. He popped up 
a window with a multi-line text window that was Pollock, not HTML, with 
the Seaside halos and so on.

Onward to Pollock, Vassili Bykov, Cincom Systems
Vassili’s talk was about his experiments with Pollock and his initial work 
on building Splash, the Pollock GUI builder.

37signals.com once challenged people to explain what API meant in 10 
words or less. As well as the jokes (“Data pimp”, “1/2 a piece of computer 
velcro.”), Vassili noted the following answers: “Another programmer’s 
idea to remind you that you are not a programmer.” and “APIs are to 
programs as GUIs are to humans.” Last year in Seattle, Vassili noticed the 
hotel alarm clock (Sony dream machine): buttons for snooze, nap, sleep, 
etc. But the alarm mode setter took the biscuit for counter-intuitive UI, 
blatantly and unguessably showing the binary setting mode it populates.

Last year, Vassili decided to spend an hour pair-programming a simple font 
selector. Two days later it only sort-of worked. It was harder than he 
expected partly because of odd code in pixelSize that fails the least-
surprise principle. We have mental models and so we misattribute blame; 
unusable means not corresponding to our mental model.

“What is central to Smalltalk? Modelling rather than programming” 
(Georg Heeg). This principle distinguishes good Smalltalk programmers 
from bad. Framework design is like piling blocks on each other. Soon the 
pile is ready to fall over. We can make the blocks very big (simplistic 
solution) or make them more even and better arranged (simple solution).

“The widgets in Pollock will not be stupid” (Sames). “The widgets in 
Pollock will be intelligently stupid” (Vassili). To explore Pollock, Vassili 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 5
does things that he knows are hard in Wrapper, sometimes so hard he failed 
to do them in Wrapper.

PollockPlayground is a window with menu and buttons round a workspace 
plus a few widgets. ‘Inspect’ button shows a PollockPlayground instance: 
eventHandlers, widgetInventory, all the usual Pollock stuff. These are all 
in scope in the workspace so you can doIt expressions using them, thus 
putting stuff in the widgets, making widgets do things or whatever. Using 
this, Vassili did a tutorial on fractional frames. Width of frame divided by 
fraction and then offset from boundary sounds easy in theory but users find 
it hard to understand in practice. You need only grasp three cases:

• fixed left/top - all fractions zero: widget fixed in position top left of 
parent (e.g. window)

• fixed right/bottom - all fractions one (usually with negative offset): 
widget in bottom right of window

• stretchy - top/bottom one fraction, left/right other fraction: centred, 
stretchable

• long floating point fractions, all offsets zero: easy to do in Wrapper, 
never looks good, don’t do it.

You set these directly via leftFraction:leftOffset:.... or by 
convenience methods, above:, rightOf:top:bottom: (good for 
labels), fullyAttached, leftOff:, ...

Vassili showed these in PollockPlayground inside createInterface, 
createTextEdit. He has its widgets set to leftClick -> inspect, 
rightClick -> browseClass (not good in general but useful for demos). He 
uses hookupInterface to get the Playground text from a shared variable 
(so he can close it, open a new one and continue the demo).

Vassili then talked about tooltips (see his Frankfurt talk, but he has changed 
the implementation). Tooltips need a state machine to track time since last 
user action and respond sensibly. A tool with a tip starts in state ‘cool’. If 
entered, it becomes ‘armed’. If the user promptly does something, it returns 
to ‘cool’. If not after 0.5 seconds, it goes to state ‘reaper’: wait five seconds 
and destroy tooltip if user remains in widget, go to ‘warm’ state if user 
moves to another tool. In the ‘warm’ state, the tooltip appears immediately, 
not just after 0.5 seconds. After 0.3 seconds, it returns to ‘cool’. The state 
machine is in FlyByHelpTracker and is called to by enterEvent: and by 
exit events, thence coldEntryInto: aController, etc.

Vassili had to protect via self cautiously: to allow for the debugger 
being able to open if the code is wrong (as debugger has widgets with entry 
events too). Vassili installed the tooltip system on a Playground widget and 
showed it working. TooltipAssistant subclasses Assistant which provides 
plugins to attach to widgets (installOn:, uninstallFrom:); this lets 
the widgets themselves know nothing of it. buildStateMachine builds 
the machine inside setPane:, making it easy to reuse code while building 
states as all are built in same scope. There is one state machine per system.



6 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
For toolbars, you want one tooltip for the whole bar but it must track button 
entry/exit events, so the structure (in ToolbarTooltipAssistant) is slightly 
different. Vassili set a tip on the PollockPlayground toolbar and demoed it.

His next demo was the EntryAssistant. This behaviour is also in Wrapper 
(as CompletionDriver; it would be called CompletionAssistant if he wrote 
it today). The aim is to insert the possible completion text, selected so user 
can type over it. In Wrapper, privateShowCompletion is spawned in a 
block. Vassili could not do it more nicely in Wrapper (it took him a day to 
see that he could not) since it looks like there are lots of events you can 
hook into but they are all too early: the controller is still sending events and 
wipes over whatever you insert. That’s why he has to spawn that call.

In Pollock, it is nicer. He demoed in the Playground and then showed the 
implementation. EntryAssistant has four methods. In suggest, it just tells 
the agent to insertAndSelect:. He then demoed an entry assistant with 
popup (EntryAssistantWithPopup>>suggest). This has a subtlety: we want 
arrow keys to be received by the popup but if the user continues typing we 
want the entry field to get the keystrokes. The popup filters them and sends 
to the main widget if appropriate. This would be very hard in Wrapper.

He then put a class list into a playground widget where some class names 
were too long for the widget. Vassili set it to display longer names when 
the user mouse-overed (ItemOverlayAssistant). He then changed that 
assistant for a tooltip assistant that showed name and package in a popup. 
None of this is being done by the widget. The widget is stupid. These 
assistants handle all. This is what has changed since Frankfurt.

The AutoIndentAssistant just indents text as the previous line was 
indented. A real CodingAssistant needs more complex behaviour, auto-
completing from the names of all instvars in scope or whatever. This in turn 
needs an intelligent partial parser.

Marker is a utility that will be in Pollock letting you place markers at points 
in text. A marker is like a bookmark that you can query (what is next 
character, prior character, charactersToEndOfLine, ...). You can move the 
marker, reason about two markers, etc. This lets Vassili avoid writing code 
with index handling, so produces more meaningful code.

Q. nextCharacter should be next? Perhaps (it is an experiment at the 
moment). Vassili was thinking of it in a list containing nextWord, etc.

Splash is Pollock’s GUI builder. Whenever Sames doesn’t know how to do 
something he says, “Splash will do that.” They have created an extra 
component called Scallops (anyone who fixes a bug in Pollock will be told 
the secret reason for this name as a reward). Scallops will handle the UI 
specifications, their XML representation, etc. It already has 3000 tests. 
There is the UI, the specifications and the fluff (all the ways you could store 
the specifications). You can distil windows into specifications and build 
windows from specs. You can write specs as fluff and read fluff into specs. 
Lastly you can create windows directly from fluff when the fluff is 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 7
generated code, meaning your application need not load Scallops.

Vassili sent asSpecification to the Playground instance. He then 
mapped this via SpecificationCodeWriter to various fluff (to text browsed 
in a workspace, to XML). He showed some specification test cases that 
wrote, restored and compared a spec for a wide range of specs (i.e. buttons 
specs, menu specs, ...) via generateRestoreAndAssertSameness. He 
has extended the specs so that they can compare themselves.

Q. (Heeg) Can we do auto-adjust in Pollock? (Sames) preferredExtent 
should give this.

Q. Who will document this? (Sames) We know this must be documented. 
We also have to train our support people to support it. Etc. That’s why my 
roadmap includes 7.5, not just 7.4.

Pollock, Sames Shuster, Cincom Systems
I missed most of this talk. Sames’ slides have much code (plus see my 
reports of his talk at last year’s Smalltalk Solutions and Vassili’s talk 
above). Pollock has lots of nice features. Sames’ slides show Roadmaps for 
7.4 and 7.5 and for post-production: refactoring scripts from Wrapper, 
frameworks, native widgets.

Tweak, John McIntosh
(I missed almost all of this talk as I was catching David Schaeffer’s repeat 
of his Seaside testing talk.) Tweak is Squeak’s post-Morphic UI. John’s 
electronic book project is using Tweak, not morphic. They have funding so 
they can influence Tweak. They provide testing framework extensions to 
let you test the widgets in SUnit.

John mentioned an example of German versus English idiom; a German 
Tweak developer used a ‘beWare’ annotation (meaning ‘be aware of’, so 
intended to tell a programmer that a state change will occur as part of 
invoking certain methods), which his English-speaking Tweak colleagues 
read as ‘beware’ meaning ‘don’t use’.

Applications and Experience Reports
Commercial Machine Control using Smalltalk: An experience report 
from the Semiconductor Industry, Thor Raabe, Unaxis Wafer 
Processing
Unaxis is a Swiss semiconductor manufacturer (also data storage and other 
products), headquartered in Zurich. They were founded in 1906 and now 
have 6000+ employees. Thor has worked for them in Florida for 12 years. 
They etch circuits onto thin films (10-6m thickness) adding or removing 
material. It takes hundreds of steps to build up these wafers. These steps 
are done on radial tool clusters in an incredibly clean vacuum environment 
(deep space pressures). People in ‘bunny suits’ (sometimes two layers of 
them) add the wafers to the cluster. A wafer may then go round the circle 
many times before all steps are done. A cluster can process multiple wafers 
at once. He showed diagrams of the shapes (much smaller than a human 
hair) they etch to make connections, etc.



8 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
Q. (Donald McQueen) how do you create layers? Each cycle creates one 
layer. The wafer is doped; you add electrons to remove material. You shape 
one layer, then you coat the wafer with an insulating layer, then you lay a 
polymer-based material that can be exposed (like film). Then you etch 
away material that was not exposed, then that which was exposed, etc. 
Thus you gradually build up the structure.

Q. (Eliot) How do you register position? That is a science in itself. There 
are marks on each wafer that are optically aligned.

So where does Smalltalk come in? They needed a control system that could 
run these tools 24 x 7 x 365 (it takes £billions to start a semiconductor 
factory; they do not stand idle). They use the ControlWORKS framework 
in VW 2.5 and completed their first port to VW 7.1 two weeks ago. They 
shipped their first system in 1996 and have shipped 400+ systems. The 
software team has 10 developers, 6 support engineers and two managers in 
Liechtenstein and Florida.

Adventa was spun out of Texas instruments in May 1998 (headquartered in 
Piano, Texas). They provide ControlWORKS, the world’s first 100% 
single-wafer processing system. It provides generic capabilities. What they 
really like is that Adventa give customers all the code. (They’ve worked 
previously with libraries delivered in C, C++, etc.; it became a nightmare 
just trying to keep the system running.)

ControlWORKS simulator is a valuable tool. The machines cost $5million 
so you don’t have spare ones around to test on, still less to break. The 
simulator is also used for training and demos. And all the non-simulated 
part is exactly the code the real machine will be running. He showed the 
complex framework architecture slide of some 30 boxes, showing VW 
underneath framework support services underneath ... .

All the machines are doing things at once so it’s a distributed system. 
Productivity is measured in wafers / hour and anything that increases that 
helps return the machines’ (large) cost. N UI images talk to a single 
supervisory control image that talks to N machine control images. Each 
wafer costs more than the operator carrying it around will earn in a lifetime 
so it is very easy to justify automation; you will never recover financially 
from one mistake. The monitoring UIs sit on the Factory LAN and the 
machine CPUs sit on the Machine LAN with the control UI CPUs. The 
Supervisory CPU sits on both. Each Machine CPU connects to devices 
either directly or via the module’s LAN/Bus.

They are continually trying to improve heat-handling, clock-speeds, 
anything that will speed production. They also can send wafers to other 
buildings or even other countries for further processing and return so there 
is now talk of Business-to-Business data passing via XML or whatever.

In the machine you must control wafer location, ionised gas, etc. Open one 
wrong valve and the machine will literally explode. Every mechanism has 
a finite state machine logic. They started with typical Smalltalk code doing 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 9
synchronous control and thread management but this caused much effort 
on thread management (how do I clean this up and move on) so for the last 
few years they have moved to FSM and alarm handling that saves state. 
The priorities are: don’t hurt people, don’t hurt wafers, don’t hurt the 
machine.

A 300-mm silicon wafer costs only a few hundred dollars, drawn as a 
crystal out of a molten bath of pure silicon. But the total processing cost 
investment in a wafer is huge. (That drives bigger and bigger wafers; the 
machine costs are much the same whatever size wafer they handle; recently 
they moved from 200mm to 300mm wafers.)

Their FSM framework nests state machines and allows for interruptible 
behaviour. Time in each state’s action method must be short as that is 
uninterruptible. Whenever an action method gets long, they rewrite it as an 
FSM. As each FSM can be in its own thread, they can no longer just wrap 
a high-level call with an exception handler. Instead, alarms are passed to 
the FSM that started the FSM that raised the error; it knows what to do.

Adventa provided a policy framework as they used FSMs more. This 
abstracts much shared behaviour from the many, slightly differing FSMs. 
Policies control e.g. whether to allow (not in production) or block (in 
production) maintenance activities.

There is a machine namespace so they can call to any object in the system 
performantly. He showed some UI screens; typically, these showed status-
displaying graphics of the tools and tool clusters, plus tables and fields.

Experience: small teams work better than either individuals or large teams. 
They’ve been using Envy for years. They like some things about Store but 
wish others were more like Envy. For example, Envy unique ids were very 
useful when they changed ControlWORKS code and gave it back to 
Adventa: reconciling unchanged code to its equivalents in Adventa was a 
non-issue and the ancestors of changed code could be tracked provided the 
complete set of parents were provided. They need Store to maintain this 
“this came from that” synchrony between their repository and Adventa’s.

The learning curve for their system is a challenge. Smalltalk is quick to 
learn but the domain is hard and the class libraries are large. An 
experienced Smalltalker can take six months to be let lose on real 
machines. Names in code are very important; they must be accurate and 
readable. Sometimes two application are identical, or nearly so, in code, 
just differently configured.

Would they consider anything other than Smalltalk? They find Smalltalk 
fast (10ms resolution) so the perception that Smalltalk is slow is now quite 
wrong. Smalltalk is a small community so it can be hard to find developers 
with all the right skills (ST + OOAD + RT control experience). Marketing-
wise, Smalltalk is perceived as not mainstream. Connecting to external s/w 
in VW2.5 has been cumbersome (many active X controls they’ve had to 
connect to). The non-native 2.5 widgets now look old (“Why can’t you 



10 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
make it look like this.”) Hopefully, VW7 will help in both these areas.

Why use Smalltalk? Of their many reasons, debugging is the most 
important. It can take him two hours to configuring machines, resources 
and state to reproduce a problem to the point of seeing the bad line of code. 
If he then had to restart after changing it instead of carrying on, he would 
waste days tracking down problems. He simply cannot do without it. Hence 
Unaxis is committed to going on with Cincom’s VW and with Adventa’s 
ControlWORKS for the foreseeable future. Unaxis is at the bottom of the 
foodchain (e.g. slow Christmas sales of machines or cellphones can feed 
back to an absolute stop on any purchases from their point of view) and 
must be productive when orders arrive.

Georg Heeg asked him about the ADM company and was told that, “Their 
Smalltalk is talking to my Smalltalk.” (see ‘Other Discussions’ section).

Number Crunching Smalltalk, Daniel Poon, Romax Technology Ltd.
Dan has worked at Romax for 10 years. Smalltalk is not always seen as 
useful in numerically intensive tasks but it has proved to be extremely 
productive for them. Romax started in 1989. Their first release of 
RomaxDesigner was in 1994, then written in Smalltalk, C++ and Fortran. 
It lets engineers model gearboxes and transition systems. Dan showed a 
slide covered with logos of automotive firms, wind generator designers, 
agricultural machine designers, aerospace firms, etc. (on several 
continents) who use Romax products.

Dan showed several gear shaft arrangements that Romax can model. 
Romax uses static analysis. Force = stiffness (of all components, in six 
degrees of freedom) times the deflection of the gearbox under load. High 
distortion leads to excessive wear, failure, vibration, noise, all undesirable 
things. Romax is part of the virtual product development market, worth 
$2billion and growing at 10% annually. Designing takes 3-4 years (and 
much money) via physical prototypes. Romax cuts that to 1-1.5 years.

Customers are always asking for more complex simulations so they can 
reduce further the physical development. Romax spends 20% of its time 
solving linear equations and the rest on non-linear where traditional 
approaches don’t scale for their domain.

They like Smalltalk because its simple syntax compiles lightening fast. 
Working for Romax, Dan missed the Java thing but suspects that their 
400,000 lines of Smalltalk would compile slower (Donald McQueen: “It 
wouldn’t be done yet.”). With late binding you can run tests even when the 
system is broken, allowing stepwise development. They also like class 
extensions; using these, they extend the language for domain experts, 
bounce GUI and test behaviour off the model, etc.

Their FORTRAN code base does not need multiple callbacks; they have a 
single exception-throwing callback that the Smalltalk handles. In C# or 
Java, they would need many callbacks.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 11
The technical computing market is huge. Products like Matlab claim a 
million users but MUnit, Matlab’s test framework, has had just 48 
downloads, which tells you something about their culture. Matlab-like 
products are designed for analysts’ own use and do not address the product 
development cycle. Romax like arbitrary length integers, blocks, etc.

Smalltalk’s quirks are noticed by their numerical analysts. They are OK 
with keyword methods, less happy about the unconventional arithmetic 
operator precedence, and would like FORTRAN-like array syntax for 
assigning into an array. There is a lack of native solvers and libraries.

Floating point performance is poor by default but there are work-arounds. 
Fortran is 70 times faster for simple floating point operations. If you profile 
a layered architecture (calculate in FORTRAN, do the rest in ST), you find 
you are spending 60% of the time transferring data between layers (plus 
you can’t move the layer boundary easily to refactor, and can’t profile 
across barrier). There is another way. Compared to fast-for-floating-point 
languages, Smalltalk is slow but compared to slow languages, Smalltalk is 
fast enough. Build it in Smalltalk, profile, optimise, use FORTRAN for 
irreducible bottlenecks. So they recommend the single language approach.

To sell this to their customers they use an analogy from the domain: the 
chassis/body metaphor. A car chassis provides torsion rigidity while a car 
body provides space for passengers to sit in. Thus these two requirements 
have been split, although it is not necessary to do so. This is a metaphor for 
a layered architecture, since chassis and body are made from different 
materials. But cars also use the monocoque car design in which there is no 
separate chassis: one structure gives torsional rigidity and the passenger 
space. It’s stronger and lighter than its rival. It’s also harder to design and 
construct but market forces have made it the norm. And it uses sheet steel, 
the same material as the passenger space in its rival; it’s not the material 
that makes it strong, it’s how you use it. Compare using just Smalltalk!!

Romax began with a traditional team structure that naturally produced a 
typical layered architecture: the programming team gravitated to Smalltalk 
and the engineering analysts to FORTRAN. To produce a global optimum, 
they created a single cross-function team using pair-programming, pairing 
a programmer with an analyst. This let programmers with no domain 
knowledge and analysts with no developer skills get started fast. It greatly 
reduced errors since coding and domain skills were always to hand. (Dan 
noted that engineering analysts may not be typical of your usual domain 
expert, since they are all numerate, literate people.)

The monocoque idea has proved valuable over time. As customers demand 
complexity, the tradition layer system starts duplicating function between 
layers. It also defers integration and testing, since you do changes to each 
layer first and only later integrate and find what fell between the cracks.

They used Smalltalk originally because they started before Java was 
known (C++ was not much of a choice) but it has proved a lucky choice. 
Smalltalk is malleable and malleability equals customer responsiveness. 



12 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
Later, when Smalltalk was looking unfashionable, they revitalised things 
with pair-programming.

They would like the Smalltalk community to do more in technical 
computing; steal features from Matlab.

Q.(Eliot) FScript: array programming language for Smalltalk? There isn’t 
that much array programming. Most time is spent in non-linear iteration.

Q. Your dialect is VSE. VW is not as bad as others in floating point. Might 
you improve your performance in that dialect? Noted.

Q (John) 3-D extrusion printers? They don’t interface to CAD. CAD is a 
drawing market, whereas they model behaviour.

Q. Customers? They current have some 100 licences world-wide. In any 
simulation, boundary conditions are key, not just the accuracy of your 
calculations. Their product model extends so far out that you don’t have to 
guess your boundary conditions. This is one of their selling points.

Q. How fast? A gearbox static analysis might take 30 seconds.

Q. Pair-programming; how do the domain experts like it? It started 4 years 
ago, deliberately starting small and growing gradually. You need to go 
slow, be tactful, make the organisation change. Matlab code can take 5-10 
years to reach the market whereas their analysts see their code in the market 
in a month or two; that motivates. Some of the best coders are engineers.

Q. (Niall) Marketing? It has been word of mouth and early adopters in the 
past. Now they are in the second-phase and have to market themselves, but 
the market is growing quickly and they’re lucky to be riding that wave.

Q. Migrate to VW? They’re pretty happy with VSE although they may find 
themselves encouraged to think about migration anon.

Pushing Smalltalk on a 4GL Shop: RAD the object way, Giorgio 
Ferraris, ElevenSoft
(I missed this talk but caught details later from James Foster, who saw it, 
and from Georgio.) Georgio lives near Turin but works only one day a 
week there, others in Milan and elsewhere. He drives 70,000 km per year.

Smalltalk can easily beat rivals even in short-duration demos when those 
rivals are using statically-typed 3GL languages. If the rival is a 4GL, then 
it may well create a simple input form, database schema and have written 
one record to a simple table before a Smalltalker, developing the usual way, 
has done so. A target audience used to 4GLs may miss the value of 
Smalltalk in such a demo altogether, or may get the impression that later 
extensibility and refactorability is being paid for by a slow start.

Georgio has created a framework that creates an initial Smalltalk system at 
4GL speeds which can then be evolved in the more usual way. Wizards let 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 13
you build a simple model, input form and database schema, and connect 
them. He demoed for the example of a simple personnel data application. 
The aim is to persuade a 4GL audience that Smalltalk is all gain, with no 
initial loss of speed, and it looked to me like it would do so.

You start from a text file defining the domain and mapping, and another 
that can define how any non-default elements of the app should be 
displayed. He showed an example: phone table, name, email, address, etc., 
with simple type info for the DB mapping (basic type or class). You load 
that file and his system generates the application from the spec. He opened 
a PostGreSQL DB and showed that the table had been generated into it 
from the VW (he supports DB2 and lots of other DBs.)

You can select from the tool to build/not build table, view, etc. He showed 
the generated Smalltalk: classes for PhoneContactView, etc. The Views 
appears in the VW GUI builder as layouts so their defaults work OK and 
you can edit them easily.

An .ini file says how to connect to the DB. Basic behaviour is to open a 
connection. Standard-named methods (openMaster, etc.) let you open the 
view and enter data, search for data, etc. You can add methods to let the 
domain or the view know what variables they want in the view. Search 
shows a typical view of matched instances in a paging system with the 
usual buttons. Search has good matching features and meta-patterns. The 
whole can be configured from the UI or with methods.

He can browse a tree list of the domain and select items from it to create 
views, search on it, etc. He can now save his choice with a name (and with 
description, etc.) and reuse it. Results can be exported to Excel. He can 
manage really large databases with this.

Giorgio then opened a real application he has delivered to a customer. It 
stores work agreements between companies. Blue fields denote subobjects 
with their own views within the main view. You can drill down into these 
to see views or to search (from a field you can query the subobject on all 
its fields). He has strategies to load just what he needs from the DB, storing 
and wrapping as needed.

This is all Smalltalk with the power of Smalltalk just waiting to be used. If 
you want checking on data entry, just edit the setter method, and so onward 
and upward to a full Smalltalk system if needed.

He has customers who use C# on the web and VB internally and he has 
interested them in Smalltalk through showing this.

Anaesthesia Information Systems at the University of Florida, 
Wilhelm Schwab and Gordon Gibby, University of Florida, 
Department of Anaesthesiology
This system would not exist if it were not in Smalltalk. Smalltalk is 
Wilhelm’s edge. His talk focused on people and physics more than on his 
software, showing why Smalltalk was needed. It was very pictorial.



14 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
The medical environment is very hostile to machines. They get knocked 
over, moved around, etc. Various people are involved:

Clerical staff (“Please don’t tell them I called them clerks.”): some are 
techno-freaks, some are people-people and some are typists and hostile to 
UIs, since typing is what they’re used to. (One of his pictures of these 
people, showing their environment, just happened to have another Dolphin 
product of his visible on one of the screens.)

RN data entry: the next group are those nurses (often male) who serve the 
physicians. Sometimes they are incredibly busy; at other times, they are 
sitting around playing solitaire. They tend to be good at time-keeping, 
finding things, spotting exceptions. They may do surgical procedures. 
They like forms where all they have to do is note any exceptions to the 
default situation. As they are paid $15/minute, it is important to track when 
they arrive and leave, so basic data capture is a key part of the system.

ARPN data entry: a second kind of nurse (almost always female) gets 
patient histories, sometimes from very ill people, and builds up much 
knowledge about them. These people are less likely to be in life and death 
time-pressure situations but they may have a full waiting room. They have 
much more a view of the whole patient, as against doing this procedure 
repeatedly on many patients. They start to see connections because they see 
the history. Systems must let them just describe things.

Anaesthesiologists: they are like airline pilots, who are very busy at take 
off and landing and may just be watching the autopilot for much of the time 
between. Anaesthesiology is boredom interrupted by moments of terror. 
They may have to flat-line someone at 17C (for the briefest time possible) 
to save the brain from harming itself. They must watch hawk-like at all 
times. They have no reserve attention at such moments and need machines 
that are responsive and forgiving. They are not people that a sales-talk can 
fool. They do not want to be distracted from watching the patient by the 
need to handle the monitoring machines.

Haemodynamics (i.e. what is the blood doing): an anaesthesiology record 
will capture every five minutes the heart rate, pressure, oxygen state. Every 
fifteen minutes, it records what oxygen is being breathed in, what C02 is 
coming out, what anaesthetic agent is coming out with it, what the brain’s 
saturation with it is, their heart’s output, BIS/EEG asymmetry (are the 
brains hemispheres behaving differently). All these relate to situations that 
can occur: for example, a patient’s metabolism may suddenly make them 
too hot, expiring too much CO2, etc. If there’s a history, anaesthesiology 
may be planned for it. If there is not, a sudden response may be needed.

He showed pictures of people recording this data on tablets. People used to 
clipboards adapt well to tablets. He then showed a picture of an operating 
theatre at its calmest and least cluttered (i.e. not very!!! :-). So where do 
you put the machine? And what does it need to do? You need a central 
server, tablets to record, etc.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 15
He calls his system MEDirect (all the better names were already taken). It 
knows the patient index (“James Bond, patient number 007”). It has the 
user authentication, the schedules (N.B. it is not a scheduling system) and 
it can retrieve the patient’s encounter documents (“I think we’ve seen Mr 
Bond before”). It has pluggable resources: publish encounters to 
MEDirect, find records, etc.

His clients talk to a web server. (Apache, but he has written his own web 
server which he will soon release. Apache’s complication scares him; he 
thinks his server will be safer and more secure.) His server gets resources 
and provides them as requested.

His terminal and hub fits on the back of the $80,000 anaesthesiology 
machine. The hospital is more worried about the hub than anything else 
(“Keep our network pure!”). At first it was on a separate cart but this was 
asking for trouble (trip over it, moving machine unplugs it, ...). He found a 
better location in the back of another unit and wired the electrics and stuff 
on the back panel (which, he assured us, was simpler than it looked in the 
picture). He did not want to have air pressure pushing dust out of the 
cabinet into the theatre so arranged the fans to cause slight underpressure 
within it. He could rig up the power strip, computer and wiring. He had to 
be careful taping tablet pen holders in place and suchlike to avoid some 
obvious “Oops, moving that caught the pen top and broke it” possibilities.

His GUI remembers connection details, i.e. which monitor interface to use 
for each configured serial port. It can nag the monitors and has device-
specific expectations (which are often pessimistic).

Lastly, he fired up the system. It opens on a list of ORs (templates: these 
are controlled or everyone would have their own way of doing everything). 
The chart is where you record. It has a grid to help users avoid, when the 
time is just before or just after midnight, recording events as late yesterday 
instead of late today or early tomorrow instead of early today.

Don’t put lots of stuff in front of physicians where something contra-
indicated might be buried. Physicians like to be shown things item by item 
so they know they’ve missed nothing. This is for the good reason of being 
thorough and the bad but these days essential reason that one mistake in the 
record makes a lawyer very happy. :-/) Physicians are good people and 
want to avoid mistakes.

Smalltalk lets him deal with physical challenges by giving him the time to 
do so (it’s productive). It also lets him support domain experts who cannot 
give him specs because they do not understand software jargon so he has 
to show them the wrong thing to discover the right thing. Lastly, Smalltalk 
is robust: these tools run 24 x 7 and he reboots every 7 weeks to reset the 
Dolphin timers in synch with the system clock (which wraps around at 49 
days plus change) but otherwise they would run for months on end.

Smalltalk in Medical Instruments, Andy Hodges, Medtronic
Andy is an electrical engineer who develops in Smalltalk. Medtronic’s 



16 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
mission statement was written in the 50s/60s and has never needed 
changing. People in the company like it. It focuses on tasks worth doing 
and preserves the feel of this 50s-started small company.

They build deep brain stimulators for Parkinson’s disease (which block bad 
signals in the hypothalamus that cause trembling), cardiac management 
devices and spinal devices. The cardiac rhythm management system is an 
implanted cardiac device (pacemaker or defibrillator) and a programmer 
device that controls it. This is what Andy works on. They are not (yet, 
although Andy has thought about it) using Smalltalk in the implanted 
device; they use it in the programmer companion.

The programmer is a PC motherboard with custom telemetry, ECG and a 
chart recorder. They still make use of OS/2 because development began in 
the early nineties and you do not go to a patient whose pacemaker battery 
will last another 10 years and say, “Sorry, the OS is becoming old, we must 
operate and remove your device and replace it with one whose companion 
runs on a modern OS.” They have been changing over for 5 years and may 
have retired OS/2 in two years. The programs must be the same on both 
OSs; people who run the programmer must not have to do different things 
depending on the age of the patient’s implant.

Andy works in the research arm. They download new software into devices 
to see what happens, sometimes on the bench, sometimes on animals, 
sometimes in full-blown clinical trials.

Their old system required custom telemetry hardware, which did not work 
with new telemetry protocols. Before Smalltalk they would have spent 1 - 
1.5 years designing new telemetry hardware. Their customer also did not 
like having to use one system to interact with device normally and another 
to download new behaviour.

Someone in the human factors group started using Smalltalk to show UI 
prototypes but she also wanted a high-fidelity prototype. She particularly 
wanted the prototype to use a stylus as the end-users did, not a mouse on a 
desktop where some UI issues would not emerge. It was also easier to use 
the real device to generate sample scenarios than to construct them. In 
1999, she started a six-month project, helped by OTI, sub-contracted to 
CompuWare. Much work was done remotely, merging daily over ftp. It 
implemented a representative feature set for a market-released implanted 
device. This worked well for human factors but also met the performance 
needs of real devices. Sadly, the C++ / C# main development group simply 
ignored this. But the research group used it to replace a two-year hardware 
project with a three-month Smalltalk project, much to the satisfaction of 
their customers running the clinical trials.

They use small development teams (2-3 people), short project times (3-5 
months) and projects with a customer of one researcher with the new 
clinical idea. They have 20-25 projects per year for 15+ implanted device 
platforms. They have no shortage of work to do. These are safety critical 
systems in regulated environments.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 17
It takes 2 years from a device being built to FDA approval and use, so by 
the time they start learning about a new platform it frequently happens that 
all its developers whom they’d like to talk to have forgotten about it.

They use VAST 5.5 + VAAssist. The do as much as they can on Windows, 
the rest on OS/2, then install on the target platform and test. It’s a life-saver 
that they have the full debugger on the platform. (Whereas the C++ 
developers don’t even have an IDE - everyone uses their own favourite 
editor - and compile flags!!! The research team replace the C++ layer with 
the Smalltalk layer over the firmware layer for each new device.)

EnVision is the framework for all their development. It began with the code 
from the human factors group. HF had used VA plus WindowBuilder Pro. 
Research replaced the GUI with simple VA Composition Editor UI as they 
were less focused on UI. He showed examples: simple fields, buttons, 
notebooks, tabs. Typically they download the software into the device and 
then have to provide parameters for some customisation that must be done. 
The drop-down box in OS/2 is ugly (he showed how only the arrow is 
active, not the text box to its left) but their researchers live with it.

The use the same DLL as their market-release software. Luckily, Andy is 
good friends with the production guy that owns this DLL so it has been 
easy to get him to provide a simple C wrapper round the C++ DLL that the 
production team uses. Most calls are synchronous but not all. If the heart 
contracts by itself, that is a ‘self marker’ that gets sent back. In VA, these 
callbacks have to occur on the main Smalltalk thread or the VM crashes 
(bad) so they implemented a queue that holds these till the main thread can 
attend to them.

Why Smalltalk? Reusing the HF work to avoid building custom telemetry 
made sense. The C++ production stuff is not designed to be flexible so they 
would have had to build a system from scratch in any language if they had 
not reused HF. He can count on one hand the platform differences they 
have to handle (window maximisation, beeps and bells, some low-level 
DLL calls). Above all, Smalltalk is fun; work is not a four-letter word.

The ability to customise the IDE makes them faster. They built menus to 
let them configure between simulated devices. They tweaked code printing 
to list Envy versions for their regulated process. They’ve enhanced change 
management analysis and export to feed their change management system.

Lastly, Andy presented a few slides on the fact that agile development 
works fine in medical device programming. A company’s high-level 
practices (Andy has worked for several; it’s always a pyramid) are so 
general anything fits. The low-level is where the challenge is: make these 
items be part of your work. Regulations say what but not how, a fact that 
many people on both sides do not realise but you can work with them over 
this. Not much in agile actually contradicts fashionable process and QA.

So, how agile are they? Some groups use Scrum. The research group is not 
agile yet but seeks to become so. The three UI people are keen but the five 



18 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
firmware people are less so. They do unit tests. They do some test-driven 
implementation (e.g. the UI must interrogate a memory range in the device 
long before the device firmware is ready, so the UI writes tests mimicking). 
They do refactor. He was glad to hear that the latest SUnit supports logging 
(had written some himself). They use TestResources to simulate or really 
connect to the DLL. They also support interactive tests on the target 
platform to check telemetry error handling, window formatting (text not 
clipped, coloured correctly, etc.; need to check this for the various 
platforms). They do a little pair programming They like the values of agile.

They intend to upgrade to VASmalltalk 7.0, enhance the UI and refactor the 
model-view separation.

Making Money with Smalltalk, Jeff Hallman
Jeff started by explaining that reserves are deposited by commercial banks 
in Federal Reserve Banks. It is a legal requirement that any bank worth 
over $50 million maintain a 10% deposit. The Fed controls absolutely the 
supply of reserves. When the Fed buys something it pays for it by a Federal 
Reserve Bank check. When your (commercial) bank cashes this cheque, it 
gets a deposit at the Fed. The demand is created by the 10% requirement 
on commercial deposits. The Federal Funds Rate (the overnight rate that 
banks charge each other for federal reserves) controls this demand.

In the early 1980s the Fed was explicitly targeting the various monetary 
values (M1, M3, etc.). Today, the Fed controls the FFR, thence forecasts 
the demand for reserves, so decides what reserves to supply.

The Money And Reserves System (MARS) loads several dozen reports, 
and adjusts for known reporting errors. Banks are good at minimising their 
reserve requirements, e.g. “You can have more interest on your current 
account if you let us put your money every night into a money deposit 
account (without reserve requirement) and keep your transaction rate low.”

MARS loads all this into a huge matrix called the money files (weekly 
money file and monthly money file). MARS then recalculates. The basic 
calculations are done in C code. They are mostly linear but there are a few 
non-linear calculations. You can then make a textual or graphical forecast 
which automagically adjust its components to satisfy various constraints.

MARS is support by two components, R and Smallpack (Smallpack is in 
the Cincom Open Repository). MARS was first built with C and a product 
called PowerBuilder, whose supplier went bust two years ago. Recent OSes 
break PowerBuilder so they had to rewrite. After a year of politics and a 
visit by Jim Robertson, Jeff persuaded them to let him use Smalltalk. 

Jeff fired up the tool, showing a data screen. He has development tools 
(inspectors, etc.) available so if anything goes wrong he can fix it on the 
user’s desk (conveniently, the users are all in the same section so they are 
to hand, and he to them). Often, the data coming in is wrong but they cannot 
get the reports changed in time to fix it, so they correct the data, these 
corrections being tracked and removed when the report is fixed.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 19
Next he showed a graphical screen, moved some data points relating to on-
demand deposits and showed the smoothing effect on the Fed’s deposits. 
Sweep accounts cause a marked monthly effect. Sweeps are banks trying 
to manage their deposit requirement by moving money to non-requirement 
accounts at the start of every month and then dribbling it back to cover 
cheques the users write as the month progresses). Sweeps, being new, are 
not yet removed by seasonal adjustment because it relies on past data.

The earlier system took three people two years to write. It had 83,000 lines 
of code and 27 mostly-generated make files adding another 10,000 lines of 
very unreadable code that broke from time to time when the IT people 
changed the system. His Smalltalk system is one-fifth the size, much more 
functional and took just him six months of work. It has 1900 methods.

Q. Niall: user interaction? Yes, he can be called round for a walk-back or 
just because the user dislikes the screen appearance and he can fix and 
resume or change the look in ten minutes. He has done in ten minutes 
things that took the old C team weeks. He was a user of the old system so 
had the great advantage that he knew the requirements.

Keynote: The Value of Smalltalk, Niall Ross
This talk was a straightforward union of the material I presented at ESUG 
2004 in Kothen last September and the material I presented at CSUG 2004 
in Frankfurt last December. Both conference reports are on the Events and 
Trip Reports page of the whysmalltalk site (immediately under where you 
found this one :-) so, to learn what I said, just read my very long write-ups 
of my own talks in those two reports (if you haven’t already :-); even my 
vanity shies away from duplicating them into a huge block of text here. :-)

I had a generous time slot, which meant that afterwards Adriaan van Os 
told me, “For the first time, Niall, I realise that you can speak slowly.”

Process, Techniques and Tools
Keynote: Domain-Driven Design: Tackling Complexity in the Heart of 
Software, Eric Evans
Eric started out as a Smalltalker (wishes he could say more than started out 
as). Smalltalk was his first love in programming. The Smalltalk community 
is also the root of domain-driven design (and many other things). In the 
80’s Eric was sure that he would not be programming in Smalltalk in 2005 
but he thought it would be a superior descendant of Smalltalk, not Java :-/)

Domain-driven design: first define your terms (Niall: standard Oxford 
Philosophy start :-). The first key idea is that the main source of complexity 
is (Niall: should be) understanding the business domain. There are 
exceptions - a simple transaction that you must do thousands of times a 
second with five-nines accuracy is mainly a technical challenge - but it’s 
true of most. The second idea is that when we meet complexity, we tackle 
it by modelling. When Eric says model he does not mean a UML diagram.

He showed a 1700’s map of China. China was in the centre, with the rest 
of the world briefly summarised round the edge. He then showed a more 



20 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
modern map (which just happened to have the U.S. in the centre - when he 
gave this talk in Europe, they saw analogies :-). This map shows Greenland 
and Africa the same size so it’s not accurate. But it is conformal: the angle 
a navigator measures from the map is the one they can use to travel along.

The model you choose is driven by the use you intend. It is not ‘as realistic 
as possible’. Our intent is to allow software to enter the user’s domain. Eric 
therefore feels that a model not reflected in code is irrelevant.

His example was of a shipping application: containers are routed from 
suppliers to customers by truck, rail, sea. He showed a possible design of a 
user’s current system: cargo object -> routing service -> table of bookings 
(each row handling one leg of travel). This is a very common style of 
design (becoming even more common thanks to fashionable ‘service-
oriented architecture’ ideas).

Eric dislikes this design. He dislikes the side effect of the routing service 
generating a complex solution that then changes the database state. Testing 
it is tedious: run test, check new db state, reinitialize db. This confounds 
the task of mapping OO to relational with that of finding the correct route.

A more fuzzy objection is, “How do I talk about this design?” When you 
say, “Each stop in the route is a table row”, either users ask, “what’s a table 
row?”, or (worse) every future requirement from them comes as table rows. 
Eric cares about the language people use in talking about the problem, the 
concepts they need. The concept of a stop, a cargo being unloaded from one 
mode of transport and loaded onto another, is needed, not a ‘row’. Or 
maybe a cargo is a series of legs, loaded at the start and unloaded at the end. 
Or maybe legs are just from and to, leave loading for stops. The cargo, the 
route specification (start, end) and the itinerary can all be distinguished. 
People are to apt to grasp the first thing that occurs and stop, but they 
should not; brainstorming is cheap. In his revised design, the routing 
service takes in a cargo and a route specification and returns an itinerary 
that satisfies it. No side effect of table population is specified. Our code is 
now likely to resemble our domain-oriented conversation.

Is an itinerary made up of stops or of legs? Eric likes to talk around many 
ideas (e.g. ten) but eventually you want to decide which is best. Obviously, 
we want the one that is most useful to us. A concrete reference scenario 
helps find this. Scenario 1: send toys from Hong Kong to Dallas via ship to 
Long Beach, rail to Dallas, truck to customer site; either model describes 
this. Scenario 2: reroute mid-transit; customer wants the toys in Seattle, not 
Dallas. (Software engineers are always trying to make the world simpler 
and tidier than it is, so neglect such scenarios.) Drop last part of route, 
replace with rail from Long Beach to Seattle. Now the two scenarios are 
distinguishable. The reroute requires us to look inside the Long Beach stop 
object, but does not require us to look inside any leg object.

Scenarios in which the cargo is mis-routed, cancelled (returned to sender), 
etc., will all be easier in some models and not in others. Eric’s rule-of-
thumb is that the model that makes the hardest problem easiest is the one 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 21
to use: if a model made routing a new shipment harder but re-routing mid-
transit easier, he would use it, not its rival.

Summary: a ubiquitous language, structured around the domain model and 
used by the programmers, gives your software value.

Eric then talked about ‘modelling non-sequiturs’; true statements that often 
get followed by false statements.

• We need tools that let us express models without getting bogged down 
in technical detail SO we need tools that let less skilled people develop 
using parts developed by more skilled people. But reconfiguring legs 
may be much harder than modelling legs, so you get unskilled people 
doing hard programming using the skilfully-developed ‘leg’ part.

• We need tools that help bring to bear deep domain knowledge SO we 
need tools that let non-technical domain experts to write programs. But 
domain experts are not experts in writing software; you need to find 
ways of working with them, not of getting them to do your work.

• We need to raise the level of abstraction SO we need visual 
programming such as UML. (In mid-90’s, Smalltalk vendors got 
distracted building visual programming tools, which hurt Smalltalk. I 
also experienced this, e.g. in GemStone’s GeODE visual programming 
product which must have cost them resource better used elsewhere). 
Eric’s example shows that the challenge was not to draw boxes and 
lines of legs and itineraries and stops but on the contrary to see which 
were easier to take apart.

• We should drive the design from a model SO we need an upfront 
analysis phase. Upfront analysis means basing your model on the 
greatest level of ignorance your team will ever have. It comes from the 
idea that things are hard to change so you must get the model right first 
time. While well-crafted Java code can be changed, Smalltalk shines 
here; it’s easy to change.

As for tools, Eric thinks the whiteboard (plus digital camera) beats trying 
to make Rational Rose produce the diagram you want. He also thinks the 
Smalltalk browser is a great modelling tool. Unit tests are a good modelling 
tool. Lastly, he thinks that mouths and ears beat most modelling tools; 
strange that when people talk about software they sometimes forget this.

Eric has seen many teams fail despite doing all the above. You also need 
strategic design: creating the circumstances in which the above approach 
can work right. Strategic design needs context-mapping. Eric was in a 
rowing eight at University. There are no rowing sixteens because even with 
eight people, someone gets out of synch every now and then and the results 
are dramatic (and alarming if you are in the boat). Software has the same 
issues. eXtreme Programming is fast and works well with small teams. 
Somewhere between 8 and 12, we reach the limits of people’s ability to 
coordinate with each other.

But there are projects that must have more than 12 people to complete. On 
a large project, there are always multiple models - always. There are always 



22 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
people trying to have one model - Eric was one of them a long time ago. 
Fortunately, you can make multiple models work. Imagine the team 
building the routing service that takes route specifications and cargoes and 
returns itineraries. Their task gets much easier if they model their world in 
terms of arcs and nodes, reusing existing knowledge on that problem.

Usually, teams just have different models because they did not coordinate, 
but it’s worth remembering that shoehorning two teams into a model that 
fits one or none means the ill-fitting team(s) must solve their problem in 
surrounding service code; the solution will be ill-structured and invisible.

So you have multiple models. Once, Eric had a project with an Invoice 
object in the customer billing team and an Invoice object used by the team 
who paid subcontractors. In the interest of code reuse, the second team 
reused the first team’s object. Suddenly, the billing team saw strange errors 
since two teams were trying to use the same word (and code) to mean two 
different things. It was the same thing at a very fundamental level, much 
more fundamental than either team’s model could handle. Each team’s 
Invoice could only be understood in context.

Eric believes that making the context map explicit is very helpful. Know 
what your contexts are. Know what the relationships are (if any) between 
terms in different contexts. Duplication within a context is bad. Apparent 
duplication across contexts is not bad. Eric discussed some possible 
context relationships. He recommends mapping contexts as they are, not as 
you wish them to be.

VA and GemStone Utilities, Angela Martin and Kimberly Anderson, 
Northwater Objects
I missed this but Angela and Kimberly kindly re-presented it for me later.

Northwater objects is the in-house development team of Northwater 
capital, a financial company of some 90 people in Toronto (mostly) and 
NY. They use VA and GemStone. Kimberley started working for them this 
year, Angela started three years ago. (Bob Nemec has been there forever.) 
They have lots of tools to support their development process.

They have a custom menu on their development image for login to 
GemStone, icon manager, UI spec manager, direct access to Envy and 
debugging. Kimberley did this menu; previously, they executed code in 
workspaces. The menu centralises all the tools. (It was a good task for a 
new starter and it helps others.)

She added menus for saving a method and compiling it to GemStone 
immediately. They develop in manual transaction mode all the time. Every 
two minutes a process aborts their transaction so if you are developing 
without having disabled that process for you, this one-menu-click save-
and-compile-in-GS is safe. The menu item is disabled (in fact not there for 
non-GS-stuff (UI views, etc.). They also have an RB hook-in menu to find 
lint more easily (easier to find, so more often used).



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 23
They have a weekly cycle: development ends Thursday and is applied on 
Friday + weekend. Every Friday afternoon they have a test demo plus users 
come and talk about their issues. One day per week for testing is enough 
because they have a weekly cycle. It is a positive way to end the week, 
focusing on what you have achieved that week, not what is still to do.

They have a group meeting on Monday: each developer selects the issues 
to work on that week. A major bug in the system would prompt patches but 
only that code would be released. They should cut the config map for every 
release; for a small patch, they might decide not to.

Their issue management UI holds feature requests, bug requests entered by 
users and bug lifecycle: new, prioritised, opened (dev working on), test (so 
marked on a Thursday, user knows to test it on Friday), closed (bug icon 
turns into butterfly icon). Users get emails whenever issue state changes 
(so knows to test this Friday).

They have a code-compare tool between image and GemStone. This is 
used to update the test database with code being worked on and also to 
compare all classes every Thursday. The tool scans for method code 
changes and (2nd pass) class structural changes, deletions/additions, etc. 
Recently, they refactored this to speed it up, gaining 20%.

They also have a migration tool in which they can specify which instVars 
to map to where, whether to map only specific subclass’ instances, etc. A 
few weeks ago they migrated 30 million objects (10% of the database) 
which was done staged over two weeks. Happily, the tool tolerates mixes 
of migrated and unmigrated instances (by just ignoring the migrated).

Envy change reports: they compare the opened and versioned config maps 
versioning only those apps that have changes, releasing the parent version 
of those editioned apps that have no changes. (They always open all apps 
in the Dev map as it simplifies permissions issues and also tracking issues.)

Class comments have been made issue reports (this practice needed 
discipline) so their code and issues are coherent.

Their GemStone is on Linux. Cron starts statmon every morning so they 
have stats but they have no RT monitoring services. Instead, they have 
tools to view the session stats, times since last transaction (asynch abort 
keeps their commit counts low and transactions short; there is no 
transaction until the user hits ‘save’). Colours change as the commit 
backlog increases and (since last week) the system will email warnings.

They use icons a lot. Their slides are colourful, as is the system. They store 
all icons in the image so they have no file dependencies; a goodie manages 
this. Email notification is used for lots of things: warnings, walkbacks, 
commit conflicts, etc. The emails include stack traces and as much 
information about what the user was doing as possible (sometimes they call 
a user before said user knows they have bug).



24 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
They use WindowBuilder Pro and have an editor for attribute specification 
editing. A generic attribute view lets them view any new objects that have 
an edit policy spec. Later they can develop a fancier UI but still use the 
generic for many inspectors and analysis and debugging things.

Because they use the same code in VA and GemStone, they can have a 
mini-model in memory so they can run SUnit tests against it.

Their group is very talkative and encourages debate to make things better.

Monticello 2, Colin Putney
Monticello started as a thought experiment between Avi and Colin. 
Squeakers work by mailing each other code so typical CM stuff is not quite 
their need. What they need is good merging. Thus Monticello 1 did little 
except merge.

Merging is simple in theory. Ancestors have descendent branches which 
then remerge. Typically, find common ancestor, apply changes of lesser 
branch to greater to get new version. Almost every CM system (that does 
merging) does this. Problem is when first branch changes #alpha and #beta, 
second changes #beta and #gamma. A human must merge #beta’s code.

Then the secondary branch goes on and now you have another set of 
changes to remerge. Using single-parent reasoning, the #beta conflict 
reappears, but it should not if we’ve merged it and the secondary branch 
has not changed it again. Monticello 1 had a package-level solution to this 
(see last year’s talk). Monticello 2 keeps all ancestors of all methods, a 
much finer-grained solution. Thus #beta knows both its ancestors and the 
second merge uses this to see that there is no further merge problem for it.

The next issue is cherry-picking; users merge by only fixing ‘interesting’ 
conflicts. Suppose #beta in the main branch, being un-cherry-picked, is not 
merged. Now the secondary merge either sees a false conflict or, worse, 
thinks #beta was merged when in fact it was simply ignored. Monticello 2, 
by using method-granularity histories, solves this. You have the method’s 
ancestry so can see whether it was merged or ignored last time.

Q. How do you record ancestry info? Monticello 2 records ancestry with 
the thing so described, so a method’s ancestry is stored along with its 
source code. When you load the method, you get its ancestry.

Colin finds this a simpler and more robust solution. Now that every method 
has ancestry it does not matter which package that method is in. A package 
can overlap another or be a subset of another. Monticello works with 
‘slices’ of the image, where a slice can be a package or a set of methods 
matched by a rewrite tool expression or a change set or whatever. The 
ancestry of a method can have deletion in it. A slice can include a deleted 
item. Overall, it is a lot simpler than Monticello 1 but weirder.

There is a final Smalltalk-specific issue; how do you update a running 
system. Smalltalk tools are designed for this but can show problems if you 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 25
load a Monticello package that overrides a method used in loading. Colin 
is trying to make Monticello 2 do as close to an atomic load as possible. He 
aims to load while running in a Sandbox, then atomically install and 
migrate all instances. This is more interesting to do in Monticello 2. They 
have instance variables separate from classes so they are forced to do 
atomic loading to keep performance reasonable (otherwise it would be: 
load class, migrate instances, add instvar, migrate instances, add another 
instvar, migrate instances, etc.).

Q. (Niall) Edit Monticello version histories e.g. make two method versions 
with same source become same version (c.f. Store reconciles)? There are 
no tools to do it. It could be done. Colin knows no scenarios where he has 
wanted that. After discussion, it appeared that the method-level granularity 
eliminated the scenarios where this would be wanted; methods are either 
identical (compare tool then identifies them) or not, in which case a human 
probably has to compare them.

Q. Still need higher-level ancestry? So far, they seem to find they do not. 
Colin found that shift in thinking hard but is now used to it.

Monticello has Element, Version (Element, state, history), Slice (not 
versioned but a collection of versioned Elements), Snapshot (slice saved in 
repository). MetaVersion is for non-code things: comment for snapshot, 
version no. of snapshot, etc.; all these non-code things are also versioned. 
So you can search for package comments descended from the comment of 
the package you are viewing.

Colin then demoed the merge tool. The UI is basic, resembles that of the 
Store tool, shows conflicts.

Team Programming Tools, panel, Eric Clayberg, Colin Putney, Bob 
Westergaard, Niall Ross
I gave a brief overview of my own feelings about Envy, mostly as 
compared to Store, since I’ve used both a great deal and often moved code 
between them.

Starting Envy: because it has its own database and data format, Envy is 
easy to set up and has a small footprint. Because this DB and format are 
proprietary, and the code is hidden (most un-Smalltalky; some people have 
the code) going behind the scenes at the lowest level is hard. Component 
lifecycles and roles can puzzle starters. Novices can find some of the 
{Edition, Version, Release} x {Config Map, (Sub)App, Class, Method} 
details unintuitive. However Envy’s choice of how versions and line-ups 
interact is defensible, if rigid. Configuration expressions are powerful but 
their UI is wretched.

The component ownership model presumably looked like a good idea at 
the time; I can’t say anything nicer about it. It is unintuitive to starters, 
supports what programmers don’t do, and frequently trips you up doing 
sensible things. (Eric’s explanation of why he has added a superuser to 
VASmalltalk - see his talk - is a good example.) Experienced users 



26 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
routinely switch off what they can and code work arounds for the rest; 
everyone tells everyone else where the hidden code is that lets you fool 
password checking because everyone knows you need it. A model that you 
find you should routinely workaround is a bad model.

Using Envy: Envy generates globally unique version ids (from machine 
timestamp + db-identifier). This means you never need to reconcile which 
is almost always good. Send a version round the world and your Envy 
repository will still recognise it instantly when it is sent back to you, unlike 
Store which needs to reconcile and can be fussy (Thor Raabe’s mention 
above of his experience Store and Envy sending GemStone mods back to 
GemStone is an example). Occasionally, the fact that you cannot reconcile 
is annoying. Store knocks the spots off Envy when it comes to refactoring 
and this is one example: doing things in the image and/or in the database 
and then forcing the two sets of changes to reconcile again can be an 
excellent way of pulling in your too-branching project, of forcing 
comparison of semantically-the-same but historically-different items, etc., 
and here Envy gets in the way.

Another example of this ‘using versus refactoring’ split is the fact that 
Envy is always on. This is great for capturing all your work and presenting 
a consistent interface when comparing or reverting (Diana Merry-
Shapiro’s utility offers something of the same for Store). However you 
cannot say to Envy, “Look away for a moment; I promise everything will 
be packaged correctly when you look back.” This makes refactoring 
components hard: each step must be a valid stand-alone change. Renaming 
of components requires destruction and recreation (with loss of history) as 
it clashes with how Envy identifies components.

Related to this is that loading problems can be hard to solve. Knowledge of 
‘The Browser from Hell’ (Application Editions Browser), which is more 
tolerant than others of opening and changing things while unloaded, can be 
essential. Debugging loading problems often lands you deep within huge 
hidden-source methods. The good side is that it does not happen often as 
Envy is a mature product.

Although Envy is always on, its warnings of clash possibilities (‘someone 
else has a later version of the method you just changed, from the same 
parent’) are poor. Coast improved them by showing ‘weather’ indicators; 
sunshine means no clashes, cloudy or rain for states of increasing possible 
seriousness.

Another always-on drawback is its very chatty protocol. It is intolerably 
slow over a 128k pipe and pretty bad over any narrow connection.

Merging, along with component refactoring, is the area where Store wins 
over Envy. Envy’s comparison tools show their age, and they are 
comparison tools, not merging tools. Every ‘load alternatives’ decision is 
manual and if you’re not using the Three Way Difference Browser add-on 
then you have four clicks to check instance-side-public, class-side-public, 
instance-side-private and class-side-private whenever you cannot be sure 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 27
that private has not been used. (Envy’s private / public distinction was 
presumably another idea that looked good at the time but is a thorough-
going pain to users.)

The proprietary data format and unique version identifiers make exporting 
and importing easy. The only potential gotcha is ‘Export Changes...’: a 
very useful optimisation most of the time but very confusing if you import 
someone else’s exported changes without knowing it and without your 
repository containing the base version they used, as warnings are minimal.

Extending: I’ve done a certain amount of this to make Envy cooperate with 
the Refactoring Browser, with other CM systems, and to improve the tools. 
Envy’s UI-end is well-factored; Envy has many front-end utilities, some 
significant. The code that accesses the database is robust but it is less well-
factored (it is also hidden but my impression is that it is innately less well-
factored over and above this). Envy in VW is intrusive, sometimes in ways 
that trip up utilities, obstruct refactorings and generally force small but 
irritating code differences between Envy-VW and non-Envy VW. (As 
Envy is an integral part of VA, it is hard to say if the same is true there.)

Envy’s Future: Envy is VA’s past, present and (I assumed: Eric confirmed) 
future. In VW, I have done work that has made me very aware that there is 
no need for all the code in an image to be managed by the same system. 
Alan Knight’s Store-in-VA, etc., work proves the point. And the fact that 
VW can organise code in categories, parcels and/or pundles is also an 
example. With a better factored DB end, it would be straightforward to 
have only some code in the system managed by Envy (with applications 
presenting a pundle interface to the VW system). Even in its present state, 
this is entirely feasible. (Implementation requires certain singleton state 
objects in the RB and elsewhere to become multiple, c.f. my demo in Bled 
of it in the RB.) When users can move code in an image between 
management systems on an application-by-application basis, taking their 
time to complete a port, then porting between CMs will become more XP-
like and have less of the big bang style it tends to need today.

Regrettably, as regards porting from Envy to Store, the political/admin 
issues of making Envy available in VW7 (see Q below) mean that VW 
users with systems still in Envy may not receive mixed-CM anytime soon.

Lastly, I mentioned that Dolphin has an Envy-clone CM system. I believe 
most Dolphin users find the default cvs-like CM system adequate but the 
Envy-like one is used (confirmed in audience discussion; see James 
Foster’s presentation of it in the ‘Other Discussions’ section below).

Monticello: Colin learned early that what you’re trying to do is capture 
how you got to where you are. Because of this, your CM tool will reflect 
your process. Monticello 1 is designed for the Squeak process in which 
100+ people are working and none of them can be forced to do anything. 
Thus Monticello is good at merging and that’s about it. Most people in the 
Squeak world use it and Squeak 3.9 will be developed in it. Tweak uses it.



28 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
Monticello 2 will replace Monticello 1. It keeps the philosophy and breaks 
the stranglehold that packages had, making it easier to rearrange things. 
Like Envy, Monticello uses global ids, an important idea.

Store: Bob Westergaard is a member of the VW engineering time. Store 
was called Stash, which was called Bernstein, which was called Eagle and 
originally came from Andersen Consulting. It is similar to Team/V: 
bundles, packages. It is the VW CM system. Store is slower to set up than 
Envy. Store is optional in your image, which can help deployment and size. 
Store blessing levels let you adapt it to your process.

If methods are invoked as they are loaded, Store can have problems (e.g. 
adding methods and icons to the visual launcher). Bob felt the comparison 
tools were poor (Niall: he should try Envy) and the shadow-browser tools 
were old and in need of updating (true). Publishing the base is something 
every one does their own way today; they will provide a single solution.

Store unlike Envy does not have atomic load, but will in 7.4 (put code into 
shadow namespace). At the moment, you can have a load fail and leave 
your image in a very poor state.

Q. Envy in VW7? JPMorgan Chase has bought certain rights to Envy-VW 
and hopes to implement a VW7 version of it. However they do not have the 
rights to offer it outside. For that, they would need further permissions 
from IBM (and maybe also from Cincom; Eliot has indicated Cincom has 
no fundamental objection, which is not to say there might not be some 
legal/admin hurdles to clear). JPMC technical people are well aware that it 
would be in their interest to amortise the cost of keeping it up to date by 
having some external group handle it and offer it to others. (These others 
may use it as an easier way of porting to Store, step by step. JPMC 
themselves, because of the proprietary CM system they have implemented 
on top of Envy, might be slow to port to Store.) However there seem to be 
significant political/legal obstacles diffused between IBM and, it might be, 
JPMC and/or Cincom. It is just possible that as VAST approaches end-of-
service, IBM will become less hostile to the idea of Envy-for-VW being 
handled by another company (ideally Cincom or a Cincom partner), or they 
might simply become less interested in what happens to it.

As regards Instantiations, quite apart from the work they have to do on 
VASmalltalk, they do not have the Envy-for-VW code or the rights to it and 
so cannot help advance this.

Q. Overrides in Store: when you unload the current one of several 
overrides, which one is then in your image? It used to be that they were 
restored in order (parcels) but they have lost that and need to fix it for 7.4.

Q. Why can we not see class versions? Store has a different history from 
Envy and though that knowledge is indeed there it has not been provided. 
It was a design decision.

Q. (Alan) What are common to Smalltalk versioning systems? Colin: the 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 29
syntax elements of Smalltalk are the elements used by the CM. IBM has 
thought of syntax-aware CM in Java but it is hard and is going nowhere fast 
(that he can see). It is so hard to discuss this with non-smalltalkers; 
compare the ease of implementing Monticello merges with the amount of 
code other language’s CM systems must write to do a rather simpler thing. 
Monticello specifically stayed away from integrating with the IDE.

Niall: Smalltalk’s strength is that everything is visible. You can interact and 
refactor CM (system or items) in small pieces. Envy is a good example of 
this except at the low-level data format level where, violating this 
Smalltalk paradigm, they keep key code hidden and undocumented.

Q. Heeg: Eric’s keynote talk stressed the need for an ‘appropriate’ model. 
What rating (1 - 100) would the panel give as the appropriateness of their 
CM tools’ models?

• Niall: Envy is a curate’s egg. At first, I guestimated its model as 75 or 
80 overall but after thought revised this down to 60 - 70. It would be 
lower still if I were thinking just of the model, not of model plus mature 
implementation combined. Some things in Envy are good but many are 
too specific and some (the component ownership model) are plain bad.

• Colin: the Refactoring Browser is an example of a tool that is a better 
tool because it has a better model. He would like a refactoring version 
of Monticello. He went for a similar value.

• Bob felt there were a lot of problems with how things are modelled in 
Store. Although it beats Envy in merge tool support and the like, it’s 
schema must be changed. He initially suggested 50 for its model but in 
later discussion we agreed that this was for some aspects of Store’s 
model implementation, not for its model which is mostly OK. It would 
also score higher relative to Envy if merging tools were considered.

Vendors, VMs and IDEs
VAST Smalltalk Transition Strategy, Greg Boniatides, IBM
(Also read Eric Clayberg’s talk ‘VA Smalltalk Going Forward’ below.)

IBM has announced end-of-service for VA Smalltalk Enterprise in April 
2006. They will release version 6.0.3 (bugfix) and that will be all 
(‘stabilised’ is the corporate term). They’ve been in this technology for 12 
years and gathered an impressive list of customers but IBM has chosen to 
focus investment on its strategic offerings. (Also talk of ‘where the market 
is investing its money’ but see my earlier reports on the disconnect between 
income earned by VAST and the revenue stream it was allowed to receive.)

Support extensions can be purchased from IBM, or you can port over the 
next 6 to 18 months to Java or similar (including .Net which Greg says they 
will support interoperability with, clarified by a Bruce Badger question, i.e. 
they will tolerate it though they are hardly pushing it; Java J2EE and 
Eclipse are rather what they would have you use). Greg knows some VAST 
systems will be running long after everyone in this room has retired. IBM 
offer the accelerated transformation path, in which you can port in haste 
(and repent at leisure: Niall :-) or the staged transformation path in which 



30 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
you port more slowly. Or you can stay in Smalltalk with Instantiations.

IBM IntegratedTechnologyServices front-end the extended support (i.e. do 
the paperwork). Support will be done by the SWG Lab (John O’Keefe). 
Synchrony systems does the accelerated transformation. CSC Solution 
Services have a Smalltalk background and focus on managing large 
transformations. Last but very far from least, Instantiations (Eric Clayberg, 
Mike Taylor) is the key player for VAST follow-on (i.e. continuance).

Synchrony claim 40+ successful Smalltalk migrations. (I found myself 
wondering how many of these were Smalltalk-to-Smalltalk or non-
Smalltalk-to-Smalltalk. How many successful ports from Smalltalk to a 
statically-typed language have they done and how large were they? Jim 
told me that only two such are mentioned on their web site, the latest in ‘95)

Q. What constraints on Instantiations? There are indeed constraints; they 
cannot sell some proprietary technology. They cannot sell VW Envy 
because they do not have it, only VA Envy. They cannot sell their VAST 
business entirely to MS or to any third company. There are no time 
constraints. What they can sell they can sell and maintain forever. (Mike 
spoke of their easily having two decades of Smalltalk clearly visible.)

Greg closed by saying that it had been hard for him to come back to the 
team to do this job but it was what he had been brought in to do; he was 
recruited for this job, he did not seek it. He has had some colourful emails. 
Bruce sympathised with what he saw as a ghastly job, as did the audience.

John O’Keefe is very happy that Instantiations has taken over the code base 
and will be building follow-on products. As far as Greg and John are 
concerned, if Instantiations do manage to make more of VAST than IBM’s 
strategic assessment suggests, well, good for them.

Greg also mentioned the number of companies IBM is acquiring: Rational, 
Lotus and so on, and that Smalltalk just does not fit with this portfolio. I 
would agree, though I might say it with a slightly different emphasis. :-)

Q. Internal IBM use of Smalltalk? There are still pockets of Smalltalk use 
but generally IBM is moving away from it. They wish to consolidate their 
portfolio; no more pockets and one-offs, the trend is convergence. Greg 
believes that Smalltalk is a very productive environment. The Synchrony 
folks have worked in both environments and they are Smalltalk bigots deep 
down, but Greg must accept where IBM is going.

Eric Clayberg closed by thanking John and Greg for what they have done. 
It would have been easier for their careers just to let things sunset. Both 
spent some of their IBM capital to create the ways forward that now exist.

VA Smalltalk Going Forward, Eric Clayberg of Instantiations and 
John O’Keefe of IBM
John has been the IBM VAST team lead for years and has been on the 
project from before v1.0. He will talk quickly about what happened and 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 31
will happen in IBM so that Eric can get onto the interesting stuff. John’s 
initial talk recapitulated Greg’s: end-of-service for the enterprise product 
(N.B. not for the server product). Smalltalk’s problem is that is doesn’t fit 
with IBM’s Rational - Eclipse - Java strategy. (Niall: IBM strategy 
problem, rather. :-) Many other ill-fitting products have been sunsetted 
already and now it is Smalltalk’s turn.

If you want to leave Smalltalk, you can go the staged transformation or 
accelerated transformation route. John heard Bruce say last night that 
“accelerated transformation” sounds like what happens to crash test 
dummies when they collide with a wall. Staged transformation is offered 
by Synchrony; John mentioned that some of the Synchrony tools are also 
quite useful if you want to stay in Smalltalk and reengineer your system.

If you stay in Smalltalk (John’s recommendation, though not IBM’s) then 
you can buy extended release-6 support from IBM or you can go to 
VASmalltalk from Instantiations, who will be providing future releases.

Eric is a Senior Vice-President and general manager of Instantiations 
Smalltalk Products Division. He played a Nasa tape that started with, “The 
missile knows where it is because it knows where it isn’t”, and developed 
by inexorable logic to a discussion of, “The missile subtracts where it 
should be from where it wasn’t.” as an example of what ‘rocket science’ 
could sound like. :-)

Eric first saw Smalltalk in 1986 and started full-time work in it in 1991, in 
the original ObjectShare company, developing WindowBuilder Pro. In the 
Parc-Place/Digitalk days he was development manager for both VSE and 
VW at one point. Now, with VASmalltalk, he will have been development 
manager for three major dialects. When Parc-Place began its decline, he 
and others spun themselves out into Instantiations.

They have been an IBM Advanced Business partner for a long time and 
supply many VA products: VAAssist, widget kits, and WindowBuilder. 
They also have some Eclipse-targeted products, Java GUI builder, etc. 
VAAssist won IBM’s’ best add-on tool’ award two years ago. IBM have 
put Instantiations in their staged transformation strategy, which they are of 
course well qualified to do for people who want that, but that is not what 
they are seeking. They are very happy if their customers stay in Smalltalk 
forever. They will help, but not encourage, anyone who wants to port. Their 
goal is to greatly lengthen the life of VAST applications. The new product 
is called VASmalltalk. The first release will be 100% VAST plus their 
utilities (and will include VisualAge for Java if I heard aright; I know that 
Sandstone and others find VAJ excellent for 99% Smalltalk products that 
want a thin Java skin at some points).

IBM thinks modernisation means moving to Java. They think that 
modernisation means moving the VA IDE (a very 90’s IDE) forward. Their 
team is as large as the IBM team was and many have 15 years of Smalltalk 
experience; Instantiations may be smaller than IBM overall but they are 
well able to drive VASmalltalk forward.



32 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
The purpose of their first release, 7.0, is to re-establish the brand and put 
an end to the ‘dying’ impression. Release is planned for July. It will not 
make major changes in the product, but it will include many integrated add-
on utilities previously offered separately. VAAssist adds some 500 
enhancements to the tool-bar. WidgetKitControls gives enhanced versions 
of some 20 widgets: graphical buttons, etc. GF/ST is a 2d and 3d graphics 
framework, very portable across ST dialects. Etc.

In version 7.5 they will

• finish ANSI support

• enhance the IDE (IBM team has ideas they will now feed in)

• include an improved Envy/QA

• more integrated Refactoring Browser and its Envy extensions

• support newer native Windows widgets

• start enhancing VA web services; they were powerful but have had little 
work in the last 3-4 years so they will look at newer things such as 
security

• include any Synchrony-contributed migration tools

In Version 8.0, they are thinking of supporting Longhorn, enhancing web 
services, perhaps namespace support and 64-bit VM support.

They will be including ‘migration-readiness’ demos from Synchrony so 
you can see what they can do. As John remarked, they have done 
Smalltalk-to-Smalltalk conversions in the past and their tools are powerful. 
These tools can help you restructure your applications so don’t ignore them 
as only relevant if you were going to port.

Eric listed costs for new and upgrade licences (see his slide and/or 
website). He mentioned the competitive upgrade; for $1995 you can 
upgrade from any commercial Smalltalk dialect. (With my UK Smalltalk 
User Group hat on, I will add that if you are in the UK, David Pennington 
of Totally Objects is a good reseller to talk to for anyone seeking to upgrade 
with local support, etc.)

Eric demoed the VASmalltalk tools that will be in 7.0. You have 
customisable menus, history helpers, dynamic colour syntax highlighting 
(Bruce, from back, “Can you also control text size? If so, please increase 
it.” Eric could and did), context-sensitive menus (e.g. click on a selector to 
get implementors / senders menu for it, corrected spelling choices for 
unknown selector, etc.), icons in navigator, shortcuts (e.g. select line and 
comment it out), and many other accelerators.

MultiBrowser synchronisation is now there; two browsers on same method 
will no longer risk overwriting each other. A three-pane implementors / 
senders browser navigates chains of calls and supports multi-select. Colour 
highlighting in the navigator lets you see e.g. which classes and methods 
are scratched. Drag-drop in the navigator is there and does all that you 
would expect and maybe more (drag method onto text window dumps its 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 33
text into that window). The debug-through-blocks add-on is now standard 
in the product. Click to bring up inspectors on visual elements; inspectors 
are enhanced with colour and icons to classify instVars. Text windows 
remember past entries and do autocomplete. Etc.

Envy tools have been enhanced with icons, colouring and filters. Versions 
can be renamed according to criteria (e.g. rename all after date X). You can 
customise your versioning template. User management used to be painful 
and is now easier: you can add a user to all apps in selected config maps, 
replace user as owner of classes, apps, etc., by new user. A super-user 
function finally lets you stop overriding hidden password methods and then 
changing who you are twenty times to do straightforward sensible things. 

Prerequisite path tracing commands find all paths not just one and help you 
prune your trees. Menus for allInstances of a class, or of all classes in an 
app, speed unloading things. It supports unimplemented refs search, string 
search, and searching what config maps use app, what prereq config maps 
have shared apps, etc. (At this point Eric’s microphone stopped working, 
so he relied on speaking loudly. :-) A good change-list-like tool lets you see 
the list of methods you’ve visited and changed, and browse any of them. 
You can find all classes a user controls in a list of apps.

Eric then showed some of the UI building stuff, morphing widgets in the 
UI builder to see what UI design would be best, easier window-resize-
behaviour setting for widgets, new kinds of widgets, and much else. He 
also showed GF/ST 2D and 3D demos. (At this point his microphone 
started working again. :-)

Q. (Michael) do you want goodies? Yes. They’re delighted to talk to people 
about goodies and also willing to talk about things that need to be in the 
base, not for money but maybe for cheaper/free licences.

Q. Envy for VisualWorks? Our IBM deal gives us full source for all Envy 
VA related stuff. We do not have the VW Envy base. (If anyone ever has a 
licence to use that, it might begin to be possible.)

Q. (Niall) Envy derivation tracking? There is a GF/ST graphical tool and 
also some stuff in TrailBlazer.

Q. (David Pennington) Macintosh? We don’t think it’s that easy. If anyone 
does, we’re happy to help them and we would be ready to do it if the market 
were 200 licences or more but at the moment our customers do not indicate 
anything like that. (Question led to discussion of many non-corporate users 
who would use it and general question of corporate / non-corporate focus. 
Instantiations are readier than IBM to look at that space and to hear ideas.)

Donald McQueen thanked Eric and Mike and John for making this happen.

Preserving the Reflective Illusion in an Embedded Smalltalk System, 
Christian Hansen, Esmertec
Esmertec provides software for mobile phones and embedded devices 



34 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
(often on Java VMs). In Denmark, a small part of the company is using 
OSVM. Standard embedded device development is stone-age (insert printf 
statements and similar). Many embedded systems are not supposed to shut 
down. They want to catch errors and fix them while the system is running; 
Smalltalk suits such implementations.

In traditional Smalltalk systems, development and runtime environments 
are merged. They want to fit their runtime in 100k. Hence they split these: 
development runs on an IDE machine talking over a serial line or network 
to the OSVM Runtime on the device. The IDE drives all interactions. They 
reduce footprint by leaving out everything that running does not need (e.g. 
the names of variables), by compressing the memory and image contents, 
and by putting some stuff in ROM (same space but cheaper than RAM).

They also omit classes that are not used and methods that are never called. 
They therefore have to work out what is not used, and how to give 
programmers the illusion that it is still there. They find what classes they 
need by tracing from a set of root classes. They drop methods that are not 
called (but do not consider the receiver; they may use advanced type 
inference in future). The OSVM runtime does not allow dynamic loading 
of classes. Instead, they have on-demand code uploading from the IDE, 
including evaluation support and debugging. This changes perform: to use 
obj perform: ##someSelector where these selector values can be restricted.

(Bill Shwaab mention Dolphin’s restriction approach which he has just 
been studying. Christian has not looked at it, but will do now do so.)

He unpacked (literally) his demo device and connected it to his laptop 
running the IDE. He then evaluated some Transcript printString code 
(already on device). In this version, a debugger is running on the device all 
the time. The next version will make this startable. The code that interacts 
with it is uploaded on demand (and GCed again when unused). He next 
made the transcript code repeat in a thread, which needed code upload.

The image is on the device. The image descriptor has var names, selectors 
and class names for debug (so e.g. instance of 71 field [2 3] is translated to 
more meaningful text), and source code.

They use RAM to allocate objects, running the image directly from ROM, 
with debugging and code updating still working OK. Changing a class (e.g. 
adding a method) in RAM would be easy. With the class in ROM, they 
have a table of class indexes in RAM (which instances use anyway to find 
their classes). A shallow copy of the class in RAM can hold pointers to all 
the ROM methods and have a new method added to it.

Q. (Colin) Do you keep a reference to the ROM version of class (i.e. not 
just to the ROM methods) so if you unload your code changes you can 
revert to referring to the old class? We have still a reference so could and 
should revert but do not do so today.

Q. (Donald) Put changes into ROM? You can capture changes to apply 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 35
them all at start-up but the ROM once flashed never changes.

Q. (Donald) Use? They have projects with small devices. Where people 
have the resources they stick with Java. OSVM gets used where Java is too 
large. Example: a device with an antennae to network GSM connection. It 
is a simple thing but you need enough logic to handle the telephone statics.

Q. (Colin) Any changes since OSVM acquired by Esmertec? We’re 
focusing on where esmertec has not already got solutions (e.g. they already 
have Java VMs on phones so are not looking to redo them).

See http://www.esmertec.com/solutions/M2M/OSVM/ for more info.

Smalltalk JVM, Allen Davis, KSC
The first version of Smalltalk JVM was done in 2000, when 50% of 
corporate expenditures were on IT. That paradise is lost and unlikely to 
return. They are now releasing it to the community.

In Java, libraries and VMs are split. The idea is that you can use a VM from 
from one vendor and libraries from various others. Smalltalk/JVM 
produces 100% Java byte code. This makes it possible to have different 
libraries from different vendors coexisting in the appropriate namespaces.

By 2001, most of what he presented was already there.

• Compile Smalltalk classes to Java Byte code

• Ability to subclasses Smalltalk class from Java class and vice versa

• call Smalltalk code from Java code

• full support for blocks

• servlets, applets, etc.

There are many problems in representing Smalltalk in Java. Java classes 
are not first-class objects. The same code will not run as a static method and 
as an instance methods: polymorphism is completely broken in Java on the 
class side. So they went back to the ST-80 book and studied how the Object 
subclass: #Class pattern works there, then replicated it in Java. A Smalltalk 
class in Smalltalk/JVM is an instance of Class, not a Java class. Thus they 
have created the entire Smalltalk class hierarchy as instances.

He looked at how printString was implemented in Object. It calls printOn: 
which subclasses override. When an instance of A is sent printString, it 
works the same in Java and ST. Suppose we had a printString class method 
and sent printString to the class object A. In Java, Object class>>printOn: 
would be found, not A>>printOn:, since the static method references are 
hardcoded. In Smalltalk/JVM, Java’s new MyClass becomes Smalltalk’s 
MyClass basicNew and Smalltalk.MyClass newInstance() 
becomes MyClass new. Here, the message is sent to the instance 
MyClass, not to the Java class MyClass. And they have a global lookup 
Smalltalkat(“MyClass”) to implement Smalltalk at: #MyClass

(The audience asked questions on various issues) Blocks are a problem in 



36 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
Java. One ugly solution is inner classes, and they do use it. Assigning to 
local variables in an inner class is a known problem. They create a context 
object that holds all the variables and pass that it; the context object can’t 
be changed but its values can.

A less ugly approach is to view a block as an unnamed method call (‘the 
method with no name’ is what I call a block in my notes on ‘Smalltalk for 
Java programmers’) so they define methods for the class and pass it the 
block arguments and the context object (as described above) holding the 
local variables. Because the method is defined in the same class as the 
block, it has the extended scope required.

Their final approach is to optimise out blocks. This is what they do most 
often; do:, select:, reject:, ... get inlined (which is not so unlike what many 
Smalltalks do as part of their optimisation process). By default, every block 
is optimised that can be, but you can suppress this.

Type constraints are another problem. They have a mechanism for giving 
typeless behaviour, not having to do method lookups, exploiting the lookup 
optimisation mechanism described in the first edition of the Java book 
(details removed in the second edition :-). Object puts method #abc in 
slot24 in the method table so every subclass puts #abc in slot24 so no need 
for lookup - just call method 24. (Allen remarked that Java is very 
mechanical in how it makes decisions. Engineering decisions bleed 
through to be visible in the spec.) Suppose A and B have a method #xyz, 
that is not on Object (or on any common superclass); now you have the 
lookup problem. They therefore just filter the methods up by generating a 
common ancestor for every single method, with implementation (you 
guessed it) DNU. Now every method has its assigned slot and the type 
lookup problem has vanished (and Object and other high-level classes have 
vast numbers of synthetic methods, hidden in your browser unless you 
check the option to see them).

(In theory, not every JVM need provide this mechanism, e.g. a cellphone 
JVM might do a slower but smaller footprint method lookup. They know 
of no exceptions.)

You could define a common interface for e.g. #xyz. This resurfaces the 
lookup and so interfaces are slower in Java (though it is never admitted). 
You can double your performance by changing types from interfaces to 
classes. (They have not found a JVM where you cannot re-evaluate the 
method table to get back to the common implementors.)

They have looked at systems with 60,000 methods. The overhead is small 
compared to what else such systems are doing; they see no problem.

Q. (Niall) Dynamic loading to change behaviour of existing instances (e.g. 
add default colour method to domain class with existing instances, then 
upload code that assumes all instances know their colour, then upload 
colour-choosing code, thus adding a new feature without ever stopping the 
application)? Dynamic loading in general is not something they support.. 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 37
He thought maybe WebSphere had a means to do what I describe but was 
unsure and if it does it is very WebSphere-specific, not general to Java.

Q. Persistent state across runs? Java does not have this. This is irritating 
when testing. They use serialisation to get the state back but it can remain 
a problem; crash in a test and you cannot see the state that caused the crash.

Q. Perform:? Many Smalltalks will optimise a perform: #selector to just 
calling that selector and they can do that. For true perform: they use 
reflection to get the class’ hierarchy’s selectors and they cache the 
selectors.

Q. (Eliot) Exception semantics? They run on top of Java exception 
handling, which is unlike VW but not so unlike VA. They generate the 
appropriate Java (try-catch) code to let exception on:do: percolate back 
but you now do not have the stack, you can only pass data back, so they 
implement it with block behaviour and non-local returns. A block with a 
return is a return to the method where it was defined not where it was 
invoked. Hence you can’t do Seaside in Smalltalk/JVM, just as you can’t 
do it in VA.

Testing
Cooking with SUnit or How to Burn Water in One Easy Lesson, Sames 
Shuster, Cincom
Sames only found out a month ago that he was giving this talk. :-)

It all started with Kent Beck’s article in the Smalltalk Report of October 
1984 about three classes: TestCase, TestResult, TestSuite. Kent did not 
have the philosophy all at once (Sames was lucky enough to work on the 
second ever XP project - Ford, VCAP project - and could see this) but it 
was very Kent Beck-ish to create a three class framework. A test is your 
bodyguard, the last rampart between you and your customer.

The should: aBlock methods were because it was thought the error 
handling might be on what you were executing, not on the framework, so 
a block guaranteed late binding. Sames changed that. Now we have 
should:raise:, to support that idea, and assert:/deny: for the rest.

Because the framework was presented as an academic manufacturing idea, 
people did not get what a unit test was. By the first Camp Smalltalk in 
2000, there were many styles and several dialect-specific implementations 
plus a simple UI, TestRunner. Sames had then used it for two years. His 
bosses had a hard time understanding that there was no point capturing his 
unit test result ratios as he never delivered code until it passes 100%; that 
was a strange idea in those days.

Sames and Ron Jeffries paired to produce a release (2.6) for VA, VW, VSE, 
Squeak, ObjectStudio, Smalltalk/X, Smalltalk MT and Dolphin, including 
a TestRunner that looked exactly the same on all platforms. It still used 
dialect-specific idioms. 2.7 created SUnitPreload to eliminate these by 
encapsulating an abstract API. This meant that all your tests, unless calling 



38 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
dialect-specific code, were themselves dialect-neutral. The committee for 
SUnit was Sames, Jeff O’Dell and Joseph Pelrine. 2.8 added GemStone (no 
TestRunner), GNU Smalltalk and handled VW namespace and Store 
issues.

3.0 added TestResource. 3.1 added *:description:, etc., for better UI 
and documentation, *:resumable: to capture failures but keep executing 
the test (uses ResumableTestFailure). It also added failure logging 
(typically one logs to the Transcript). 3.1 is the current latest release.

Sames stressed that users should not touch the basic SUnit implementation. 
Subclass these classes, extend them but don’t touch them. Changes to the 
SUnit base should be made by, or at least in full liaison with, the SUnit 
team.

Sames philosophy (with which, he remarked, anyone can disagree when 
it’s their turn to give this talk :-) is that SUnit does unit tests. It is not a 
framework for functional tests, user acceptance tests or a UI for running 
tests. SUnit is public domain, copyright Kent Beck; Camp Smalltalk 
(currently Joseph) is the shepherd. (BTW Joseph has invited me, Niall, to 
become an SUnit shepherd; I’m happy to receive SUnit proposals.)

Kent said a unit test was a predictable reaction of a target object responding 
to a specific stimulus. By representing each predictable situation as an 
object, no two tests will ever interfere. Tests should not depend on each 
other so should not be repeatable. Sames therefore advocates TestRunner 
holding the tests it runs in Sets to avoid order-dependent-effects.

This prompted discussion. Colin dislikes Sets because they are at once not 
predictable enough and too predictable. Tests should not interfere (we all 
agree on that) but if they do, you want to rerun in the same order to find and 
fix the dependence, not see an error you then cannot repeat and don’t know 
the order of. On the other hand, Sets are too predictable. They do not in fact 
offer much guarantee that order is being permuted from run to run.

I agreed; I think the UI should run in the same order and have another user-
invoked action that explicitly runs all tests in all possible orders (or some 
optimised subset). TestSuites (quite correctly) use OrderedCollections so 
many ways of running tests do in fact result in fixed orders, and the original 
(pre-TestRunner) framework always would. There was much further 
discussion: generally, John McIntosh, Colin and I all felt that the aim was 
correct but a Set implementation was the wrong way to get it.

Sames then discussed test classification. To Sames,

• a Functional Test can combine multiple units of work, be defined as not 
repeatable, may have preconditions for success, can interact with 
changing resources and may have explicit test orders.

• an Acceptance Test is a written script of behaviours leading to a non-
exact definition of success.

Here historical testers reappear.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 39
How to use SUnit. (It’s easier to say how not to use it):

• you don’t test accessors, mutators, that vars are initialized to nil, etc.

• unit tests are white box; you can look at internals, you can use 
reflection (e.g. you might explicitly test that a selector is absent, e.g. 
‘this model does not respond to value)

Sames has tests that test the existence of classes and subclasses. Pollock is 
a framework and so the continued existence of the interface classes that 
programmers are using is part of the contract offered by Pollock. An 
existence test on a class is the best way to assert that this class name is part 
of the public framework, that users’ code will reference it, so it cannot be 
refactored without imposing documentation and conversion tool costs.

In Pollock, you cannot get your hands on the scroll bar of a window 
directly, only its decoration. Sames does not give users accessors but he has 
tests that walk to it. The tests show that it works, i.e. that users can use the 
interface provided without ever needing to get at the scroll bars directly.

Q. (Niall) put whitebox accessors in test-only class extensions (I use these 
with method and/or protocol name making their test-only nature obvious)? 
Sames is not keen. His tests are always loaded; he’d rather use reflection.

Some people argue to add test methods on the tested class, which Sames 
totally rejects. Modifying your class to test itself could distort your class.

Example: rating an insurance policy. The rating is executed on a legacy 
server. The data is collected with client Smalltalk. Executing a rating 
changes the state of the legacy server. To re-execute the same rating, you 
must reset the server, a human-actioned formal procedure. In this case, 
simple tests study domain objects. Medium tests look at the UI, entering 
data, widget state. Hard tests do the rating. You could not actually unit-test 
through to the legacy server because that’s not automatic or repeatable. 
Hence you test if the data was correct and was (would be) correctly sent 
down the wire and, if fed with captured data back from a pseudo-server, has 
the correct effect.

When handling this case in a system he worked on, Sames wrote a tool that 
captured the data sent to the server and the data returned. He ran a 
functional test from time to time to capture this data. His tool grabbed it and 
stored it for use in the unit tests.

There was discussion of TestResources. There was general agreement that 
the key issue is not basic idea - people get that - but the magic that makes 
resources work. (Niall: see the SUnit BoF write up on pages 25 - 28 of 
http://wiki.eranova.si/esug/nfrESUG2003reportPublic. Joseph has written 
a draft TestResource manual which will be reviewed at ESUG2005.)

Sames recommends always nilling out your tests instvars in tearDown 
because you should not make assumptions about how the test runner will 
run your tests. He (almost) always does so. We discussed two possible 



40 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
exceptions:

• I once had to code tests for a meta-data system where TestCases needed 
some key instvars to identify the meta-data configuration that each test 
instance was running. I therefore recommend writing such nilling code 
so that TestCase subclasses can exempt selected instVars, and have an 
example pattern. From experience, I’m sure this is needed when testing 
meta-data systems.

• I’ve also encountered a pattern that nilled only if the test completed 
correctly; its coder’s idea was that users want to inspect the values of a 
failed test. However this makes a rerun of a failing test not an exact 
repeat of the initial run, conflicting with the repeatability criterion. If it 
did affect the test’s behaviour, that could be very confusing to users.

Do you want to be proud of your work? Do you want to have pride in your 
code? Write unit tests!! You do not want someone to come to you and say, 
‘Your code is broken’. Your unit tests will protect your code from you and 
from others. The other great thing tests do is let you refactor.

Seaside testing, David Shaeffer
(I missed David’s talk but he gave me a quick version during a lunch break. 
He will be at ESUG, where I hope to catch the full version. Meanwhile be 
aware this talk was noted in great haste and may be poorly written up.)

David’s tests run on the server side, so have access to live instances of 
components being rendered, to the debugger, etc. His framework is a web 
test runner. It is available in Squeak and in VW. He had to tag some Seaside 
code better in order to test it, since tests need tags to find the things they 
are checking. This is why his framework overrides some Seaside methods.

David provides a web browser simulator which can e.g. simulate a click on 
anchor, tracking it by CSS. If there is no CSS key in the component, he has 
to dig in via e.g. ... elementNamed: hr ... . SCComponentTestCase is the 
root class. Subclass it and write tests such as

testMyComponent
self newApplicationWithRootClass: MyComponentClass.
self establishSession.
self followAnchor: (self lastResponse anchor...
self assert: (self componentAnswered: ... ).
...

lastResponse returns a SeasideResponse wrapper of the XML DOM 
tree. The wrapper has convenience methods for pulling things out of the 
tree, e.g. anchors, anchorWithId: (least brittle), anchorWithLabel:. 
These return wrapped XML elements typed in buttons or text areas.

Seaside’s use of continuations, implemented by interactions in the call 
stack, created an issue he had to solve. The normal way of writing tests is 
to create a component instance, put it in the state you want, then invoke 
framework calls on it (e.g. create a calendar instance, select a date that suits 
your test, then have Seaside display it). The problem is that Seaside 
components must have the appropriate Seaside framework calls in their call 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 41
stack but your test case, as constructed above, has not got there yet. The 
solution is to set up your component in a block which you provide to the 
appropriate call in his framework,

testMySeasideComponent
...
self
newApplicationWithRootClass: aComponentClass
initializeWith: [:myComponent | “do set up”].

...

He provides a fourth halo, appropriately named ‘test case,’ to invoke tests. 
Note that this runs a test on its own component instance that it sets up, not 
on the particular instance of the component class that you were viewing 
when you clicked its fourth halo to invoke a test of that class of component.

His test runner has some extra features over the Squeak one. It keeps a 
history of the last page downloaded with which you can interact to study 
what went wrong. What you cannot see is what Seaside submitted.

His talk uses a FormDemo example, in which he tags all the input elements, 
then tests. The test sets data, simulates button presses, etc., in much the 
same style as one uses when writing Smalltalk UI tests.

What are you testing:

• what’s being painted, what component thinks going on (state), and the 
component API (does it answer when you call?)

• components have hooks (blocks to evaluate) to test callbacks

• internal state: ask for last component and look at it (example of 
WACounter test)

• Do back and see backtracking works (Browsers can do different things 
on back. Some always get it from the cache, some check page meta-
data to see what to do. He intends to implement subclasses of test 
browser to replicate these possibilities.)

• check answers (What was the answer? Would it crash if the answer was 
fail?)

You just call componentAnswered if you only care whether it did. You 
can also mark tests for visual inspection. This spits out flat files that can be 
opened in your browser later and eyeballed.

David also has slides on the other free frameworks. SmallHttpUnit runs 
outside the server but is better than his at pulling apart the web page. 
Selenium is a Java testing framework you could use for checking the 
behaviour of any Java script you use. If you are always on server then. as 
Seaside builds the DOM before rendering it, you could just check that 
instead of waiting till it is HTMLed, when you need tags to find elements. 
(There are a few exception cases but you could let SmallHttpUnit do them.)



42 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
SUnit BoF, Niall Ross and Michael Lucas-Smith
I discussed two of my SUnit patterns:

• capturing defects raised in subthreads spawned by a test

• grouping tests whose resources cannot be enabled simultaneously into 
test suites

Implementations of both patterns are in SUnitUtilities in the Cincom Open 
Repository. I will port the first to VASmalltalk; it can be ported to any 
dialect that allows method wrappers. The second should run with minimal 
code changes in any dialect.

SUnitXProcPatterns: either subclassing from CrossProcessTestCase or 
cloning its single method to your test causes the test to wrap the method 
forBlock:priority: while running the test so that blocks spawned 
(directly or indirectly) by the test process (but not those spawned by other 
processes) run within same test handler that the main SUnit thread is using. 
Thus during a run (but not during a debug) any errors raised will be 
trapped, just as if they were raised by the main thread. The most serious 
outcome (error beats fail beats pass) is added to the main thread result.

My implementation names test-spawned processes to track which ones 
need their errors trapped. Michael suggested holding the processes in a 
collection; it’s less intrusive (and WithStyle also names processes).

My waitTillSubThreadsComplete implementation could doubtless 
be improved. It would be easier if Semaphore supported a (thread-safe) 
procrastinate method, inverse to signal, that decreased the signal 
count and so let one semaphore wait on the completion of several processes 
by allowing negative values of the signal count. Michael said he thought 
VAST semaphores already did this. I will extend the pattern to let specific 
test cases override the generic wait behaviour (e.g. with a fixed delay). 
[Post-BoF, Michael found that the code does not handle deferred blocks 
(i.e. DeferrableActions). I will work on this before and at ESUG/CS10.]

SUnitResourcePatterns: it is not uncommon that the test resources for a 
system cannot all be available at the same time. For example, developers 
working on a system that can only be logged in to one database at a time 
may naturally write tests that run against different databases. If each test 
uses a resource to login to the appropriate database, these tests cannot be 
combined into an overall XP suite without rework.

The Competing Resource pattern provides a minimal-cost solution, useful 
when using XP in a tight-deadline environment (is there another kind :-). 
If the competing resources can be re-parented under an abstract subclass of 
CompetingResource, suites using them will run correctly.

Currently, the pattern makes no attempt to optimise the switching between 
resources; users should construct the suite in a sensible order so that tests 
using the various competing resources occur in groups. This is usually very 
natural to do.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 43
The pattern makes a minimal change, which I see as an improvement, to 
the basic SUnit code. Tests now check, not that their resources are available 
(that is still done by suites) but that their resource’s singleton instances are 
not nil. This protects against the possibility that other tests in a suite, while 
manipulating resources (as can sometimes be needed), have not 
accidentally reset them.

Both patterns are in the Cincom Open Repository as packages within the 
SUnitUtilities bundle. Comments are welcome. They will be reviewed and 
developed further at Camp Smalltalk 10 in Brussels. If they win approval, 
I will offer other dialects’ versions to the SUnit SourceForge site. (Anyone 
who wants them earlier, by all means port and send me your code.)

Other discussions: as I was chairing the BoF, my notes on what else was 
said were brief.

Three of us knew systems where the Smalllint checks have been called 
from tests and so made part of the system’s overall XP suite. I remarked 
that some people use the rewrite framework to encode their project’s design 
patterns as tests (there is an example in the custom refactoring project 
download: customrefactor.sourceforge.net). There was discussion of 
writing tests to prevent calling obsolete code or patterns,

Someone mentioned that the debugger can bring up lint rules and you can 
choose which rules are run. Having tests send emails when errors occur is 
common and someone has arranged for emails to be sent when errors are 
raised while running tests even if in a spawned process, as another way of 
addressing this issue.

There was discussion about how to address windows and other widgets in 
tests. I use method wrappers, following John Brant (there are examples in 
the custom refactoring tests). Others have various approaches. It would be 
useful if patterns that people found useful were added to the Open 
Repository or sent to the SUnit SourceForge site.

Remote Computing
OpenTalk at Large, Martin Kobetic, Cincom
Martin works on networking and security in Cincom. This talk will focus 
on the more exotic features of OpenTalk, things you won’t find elsewhere. 
Martin will talk about multi-casting (IP multicasting and OpenTalk-
groups). Then he will discuss grid computing.

Martin started by inviting everyone in the room with wireless to connect, 
browse a URL and download an installer (windows) or image and VM.

IP multicasting sends packets to a range of IP addresses. The multicast 
range is 224.0.0.0-239.255.255.255. The API is the usual UDP datagram 
sockets, differing only in that receiving sockets must join a specific 
multicast group (e.g. 224.3.67.119). Multicast can work with loopback on 
or off. Obviously, you rarely multicast outside your own network (it is an 
invitation to Denial of Service attacks). However it can be done using the 



44 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
IGMP routing protocol: ‘if you see a packet for here send it there as well’.

Sending is standard: he showed the code at the protocol level.

SocketAccessor family: SocketAccessor AF_INET type: ...
group := IPSocketAddress hostAddress: #[...
sender sendTo: group buffer: ‘Hello’ asWriteArray.

Receiving is where multicast differs

(SocketAccessor family: ... type: ...)
soReuseAddress: true;
bindTo: ...;
join: (IPMulticastAddress ...)
...

The rest is as usual.

OpenTalk makes this easier by offering object groups. Brokers running on 
the same port can join the same multicast address. Receivers are exported 
under the same OID. You get a group proxy #(mcast-address, port, OID), 
i.e. a standard OpenTalk proxy using the obvious values. A remote group a 
request is an STSTOnewayRequest. You could use a call back and you 
could send a block, noting that there are limits; you can only send clean 
blocks or passed by reference (so you could still send value to it).

... mcastAddress: #([224 5 6 7])

so if the brokers export under same OID then if Martin does

group := broker groupById: #group.
group show: ‘Hello World!’ 

‘Hello World!’ should now be seen on every image in the room. If the 
sender does not wish to participate in the group, you use a different API

... groupAt: id: ...

Martin then started the demo image, invoking OpenChat, a unicast utility. 
He told it where the server was running, started a client and sent a message. 
That was trivial. He then started a multicast example - same chat but two 
clients, no server - and replicated a common Cincom conversation (“When 
will the nav issue be resolved?” “I guess we’ll have to ask Jim.”). The 
unicast chat is effectively doing multicast things. Using multicast makes it 
simpler: people who want to talk to each other just join multicast groups.

Q. (Michael) filtering? When a host joins a multicast group, it gets all 
packets sent to that multicast group. The next layer of discrimination is the 
port number.

Thus multicast is very like unicast: oneway messages differing only in their 
targets. Multicast groups are tied to the object table. You can only have one 
export per object and there is the issue that exported objects could be 
garbage collected if their local fails to keep them.

Martin then talked about grid computing. When you have a complex task 
that can be broken down into subtasks, and you have distributed resources, 
then you have a grid computing opportunity. Martin’s demo was brute 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 45
force code breaking: attacking the RC4_40_MD5 crypto. His strategy was 
to select ranges randomly, search each range sequentially, looking for the 
string ‘GET /’ (likely to be present in target text). We all started our images 
and the grid drone (usual demo hiccough - locked up for half-a-
minute). We inspected the drone and connected. (Needed to do 
GenericProtocol setOS or GenericProtocol setHost.)

When four people had connected successfully, Martin started the attack. A 
black square gradually filled with green dots tracking the ranges searched 
scattered within the overall space; 212 keys to search in each range. A 
completion widget showed the total percentage searched. Martin started 
another drone on his machine, showing that it connected to the list and 
started working.

The Grid framework is quite simple. The controller is task specific. It 
maintains the grid and configures the drones. Drones are generic. They 
look for a controller when started. (While Martin was explaining this, the 
key was found by Georg Heeg’s computer.)

OpentalkMatrix, Charles Monteiro
Charles runs the NYC Smalltalk User Group. He had worked for a p2p Java 
EAI company. Now he works for a finance company that uses Smalltalk, 
which he is much happier with. He planned to do two demos, one 
structured, the second a demo that everyone could join (‘and we’ll see what 
happens’). He configured three peers: himself, Martin and Alan (Knight) 
acting as the inbetween peer. Martin was to search for stuff Charles has, 
being brokered by Alan. (He showed this three years ago at OOPSLA.)

His demo encountered serious projector problems. Charles’ machine did 
not like the auditorium’s projector. Remembering my own experience at 
Frankfurt last year, I felt for Charles. He and Martin worked hard for ten 
minutes to sort it, finally being rewarded with slides on the screen. They 
used TypeVNC, an optimised variant of VNC (which he recommends) to 
get on-screen via Martin’s machine.

Charles connected to AKnight. A configuration hiccough, maybe warming 
up firewalls, maybe the monitor issue, maybe wireless issues, slowed 
things. He rediscovered AKnight but it remained bizarrely slow to respond 
from Alan back to him (but worked at normal speed from Charles to Alan).

He searched for a component and found it. He switched to talking directly 
to Martin but still had problems. It became apparent that TypeVNC was 
having some impact that obstructed menu-handling and etc. Having got the 
component, he would have downloaded and run it. It worked when they 
checked it earlier. In the end, the demo had to be abandoned.

OpenTalkMatrix uses p2p to find things, including Smalltalk code. His 
demo would have shown finding a parcel in a peer-to-peer network (using 
keywords and comments), downloading it and reconfiguring the 
environment that the parcel needed to run (using config files and suchlike 
supporting resources). The idea is to make it easy to set up private peer-to-



46 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
peer networks, not be connected to some central server.

Q. (Michael) Similar to BitTorrent? Somewhat, noting he did not know 
much about BitTorrent.

You add components by ‘adding’ or putting them into your OTM folder. 
Searchers guard against cyclic and back-propagating queries. He is 
working on transmission security, with an obfuscate ST-ST protocol, 
wrapping connections in Stunnel, burying passwords within Smalltalk. It is 
on the web with a windows installer so we can download and try it.

You can compare this to Java WebStart, an HTML thing that lets you find 
a .jar file, using Java’s ubiquitous VM. (Every Java shop he has worked at 
has always had to package the VM, so he’s sceptical about its ubiquity. :-)

The demo problems meant he ran out of time. His slides note some features 
of peers in general and in his system specifically.

Miscellaneous
Serial Number Generation, Dan Antion, American Nuclear Insurers
They’ve used Smalltalk (VA) since the mid-90s. Recently, he had to 
provide serial number generation. He found an approach in the literature 
and implemented it. Their insurance company develops code for their own 
users and were not much concerned about who copied it. They reinsure 
world-wide and sometimes have visitors who ask for copies of the s/w. One 
user is a graphic artist developing rich media content around their software.

However they realised a need to track copies: brokers could use their 
software to replicate analysis. Hence they issued serial numbers to users 
and then generated a registration code (not used as an activation code at 
present; it could be) which the user receives.

First task is to decide who you’re dealing with:

• casual sharing is fairly easy to stop

• hacking shareware and copying of limited time trials are harder to stop

• people who aim to crack and distribute the keys are not at all easy to 
stop

The response must be related to the level of threat. A $15 item not widely 
copied is little worth protecting but you may want to be able to step up 
protection if a product proves hot. They were only really looking to stop 
casual sharing, so wanted some hard-to-guess elements, plus transaction 
information (i.e. the sale, loan or whatever) and version information.

Dan uses a sequence of base 36 large primes, product and version codes. 
Base 36 has almost three-and-a-half million 5-character prime numbers. 
They cache them in a table and offset into it via the serial number using 
methods fromTable:atOffset:, randomFromTable, etc. The second 
prime number (4-char base 36) is generated on the fly from the serial 
number as there are only a few thousand of them (causes a brief delay 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 47
which is good for guess-frustration).

The product code also gives the acquisition method and release info. There 
is also a minor version number and a masked user and serial alphanumeric.

Lastly, you obfuscate the whole string by rearranging characters via e.g.

String obfuscate: 4 max: 13.
String deObfuscate: 4 max: 13.

The string was build modularly so pieces can be validated, modified. 
People who crack things tend to publish as soon as they think they’ve 
cracked so if various validations are spread through your program 
functions they may get caught. You can also let operations (e.g. ‘don’t offer 
this feature’) be driven by what validates and what doesn’t.

More could be done. 3+ million primes mapped into 1000+ customers lets 
you use many offsetting approaches. You can store fields in unusual places, 
e.g. in the structure elements of a field (hard for hacker to know what can 
be changed safely) or in graphic files. Delaying between each validation 
piece frustrates brute force attacks. Delaying before revealing that 
validation failed also helps; in fact, crackers are most humiliated by 
publishing that they cracked something and then being proved wrong.

There are very sophisticated crackers out there (Dan has an employee who 
connects him to this murky world). If they want it bad enough that they 
crack it, your product is good; it’s a badge of honour (well, sort of :-). Many 
MS, Adobe, etc., techniques that annoy normal honest users are cracked by 
these people easily. This is worth being aware of: you don’t want to annoy 
honest users. Dan had a racing game that asked you what the colour was of 
some random item on a page of the user manual. It was great protection 
(people copy games and maybe even photocopy manuals but how many 
will make a colour photocopy), but Dan is partially colour-blind; this is the 
only program he ever deliberately cracked.

Q. You use prime numbers. Would a table of random numbers be as useful? 
Large prime numbers are sparse in their range and Dan had code for them. 
If your random numbers were similarly sparse, perhaps they’d be as good.

Q. Hardware locks? Users dislike them and they add to the product cost.

OpenSkills, Bruce Badger
OpenSkills is trying to become a frictionless market people for skilled 
people. The SkillsBase is a CV database. It’s the opposite of Monster in 
that you, the members control what of your CV is visible. It is free to 
search.

Being a small non-profit organisation means that it has approximately no 
money so it can’t afford to build systems in Java. Java is an attractive 
choice for consulting companies because they get to charge for twice as 
long, as Bruce has seen when he worked for such companies.



48 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
The Wiki uses WikiWorks: it works very well, is reliable and is fast. All 
systems run in Linux machines in Docklands on UK, £15 / month with 
64Mb of RAM. They make each machine single purpose, so any 
misconfigure loses only one service. They run GemStone on these 
machines and find it works fine.

The SkillsBase has a complex and changing data model (trying to reflect 
better and better what skills people have and want) and they hope that it 
will need to scale greatly. Development is distributed and the scarcest 
developer resource is time.

People connect to it through Squid, which unbundles https to http, a nice 
simple connection for their system to handle. They also cache all hits for 
ten seconds so if Mr Popular joins and gets scanned thousands of times then 
Squid gets hammered (which is fine, that’s what its designed for) but their 
Smalltalk application only sees a load it can handle.

Bruce showed the SkillsBase code. They develop and test in VW and then 
move the app to GemStone, with no code changes. Bruce looked at the DB 
scripts, starting and stopping the systems. He then destroyed the database, 
and started again from a completely empty GemStone database. The VW 
generates a single huge string of GemStone code for portability (thus it’s 
versioned in Store).

GemStone exceptions are pre-ANSI and unusual. Thus they have a buffer 
layer to make exceptions portable:

OSKExceptionContext>>for: aBlock on: ... do: ...

This is implemented simply in VW, less simply in GemStone. For the rest 
you just use GBSM publish... to get the VW classes and methods 
created in GemStone.

The membership system uses the same architecture but stays in VW 
because it needs to get to lots of places and has lots of external interfaces, 
which Bruce has to monitor as he’s getting them working.

The reaction to Smalltalk of the free open-source community is very 
interesting. Bruce is starting to see more and more people going along 
Avi’s route, getting into Smalltalk having already done Ruby, Python, etc., 
work. Bruce talked about the quiz of seeing something good in the Open 
Repository, then trying to work out which versions of dependent packages 
you should also get. He recommended more use of master bundles.

He expects to see compound growth of Smalltalk Free Open Source 
libraries: Seaside, Swazoo, Glorp, etc. He expects to see more use of GNU 
and Squeak too. Java and .Net got exited about Refactoring, ?Unit tests, 
etc., after they had been done in Smalltalk and demonstrated. Croquet and 
similar will be causing the same effect in a while.

Bruce wants more ANSI standard work, more standard library interfaces: 
Files, Sockets, Dates and Times. He also wants easier deployment.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 49
Q. (Niall) Do you use Keyboard-Video-Mouse sharing? Yes, they do KVM 
for our development. Their skilled customers include doctors, etc., but they 
could reuse their experience for the computing customers.

Q. Contracts and tasks, not just skills? Some work done on that (someone 
did some Ruby work and has now realised he should be using Smalltalk).

Q. HR-XML? HR-XML is an XML schema defined by the HR-XML 
consortium covering resumes but also lots of other things that an HR 
department might do. They have an XML validator. They pull data that 
interests them from the HR-XML into objects where they can work on it 
and they also populate from other CV formats.

Q. How to manage the glossary of skills a person may have? Members 
enter skills and that is how the skills tree is populated. You then search for 
skills that match your string and then find members with those skills. Later, 
members choose skills from those known and can add new nodes in the tree 
for skills they have that are missing.

For caching to work nicely, you need every resource to have a distinct URI. 
Thus every member’s skillset, customised as they wish, ends up as a URI 
which you can then email to a recruiter and they will see just what I want.

Talks I Missed
To make it easy to see whether I have reported on a talk or not, here is a list 
of all presentations that are not reported on above. Where I have reported 
relevant material elsewhere, it is noted (other reports mentioned are 
reachable from the whysmalltalk Events and Trip Reports page).

Talks:

• Object-Relational Mapping, Alan Knight: see my report of Alan’s 
talk at the Cincom Users Group conference of December 2004.

• The VisualWorks VM Plugin Framework, Sudhakar 
Krishnamachari: see my report of Sudhakar’s talk at the Cincom 
Users Group conference of December 2004.

• Aggregating the Commentary, James Robertson: I hope to report on 
this after I see James at ESUG later this year.

• Complex Reports in VisualAge Smalltalk, Dan Antion and David 
Pennington: Bob Nemec gave a talk at last year’s Smalltalk Solutions 
on another reporting system that also uses David Pennington’s utilities.

• An Overview of the Cincom Smalltalk Business, Suzanne Fortman: 
I hope to report on this after I see Suzanne at ESUG later this year.

• Programming with Software Components: From Globals to URIs, 
Classes to Interfaces, Richard Staehli

• GemStone/S 64-bit strategy, Dan Ware and Norm Green: I have 
brief remarks in the ‘Discussions’ section below.

• Introduction to wxSqueak, Rob Gayvert



50 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
• Integration of Smalltalk Systems – E.g. ObjectStudio inside 
VisualWorks, Georg Heeg: I describe a little of Georg’s work in my 
ESUG 2004 report. I hope to learn more at ESUG 2005 later this year.

• A Smalltalk-based system for dynamic multi-context information 
processing, Adriaan van Os and Eugene Westerhof: my ESUG 2004 
report describes the talk Adriaan gave in Kothen on this system.

Tutorials:

• Smalltalk Garbage Collectors, John McIntosh: see my reports of 
John’s talks at last year’s ESUG and Smalltalk Solutions conferences.

• Web Services, Allen Davis

• Domain-Driven Design, Eric Evans and Ralph Johnson

Other Events and Discussions
Smalltalk Coding Competition

The Smalltalk coding competition had two parts.

Competition: First Part
The first task, to be done over two days, was to write an application to 
generate questionnaires from text file specs, to present them on the web for 
users to complete, and to present stats on the results. For descriptions of 
how Michael and Blaine approached the problem, see their blog entries:

• http://www.cincomsmalltalk.com/userblogs/mls/blogView?showComme
nts=true&entry=3293985879

• http://www.blainebuxton.com/weblog/2005/05/smalltalk-coding-
contest-submission.html

I treated the competition as a chance to learn more about Seaside in VW.

I started by typing up some irreverent-stereotype specs for questionnaires 
to check if programmers thinking of moving to countries like Australia or 
Switzerland have the right skills and the right attitudes to fit in to their new 
societies. I created domain classes, then put my questionnaire spec files 
under VersionedDirectory management (from FileRepository utility) 
and started trying to parse them with SmaCC. I wasted time wondering 
how to match ‘start of line’ in SmaCC before realising that pushing a cr 
on the start of the file stream when handing it to SmaCC makes the issue 
go away. (BTW, how do you match just start-of-line in SmaCC if you don’t 
know whether there’s a preceding cr?) The parse was then simple, needing 
just a few iterations in SmaCC’s UI to catch obvious mistake after obvious 
mistake. I wrote tests post-hoc to verify the parse; not quite test-first-design 
but SmaCC’s UI is so interactive that using it is like TDD.

Now I had (pretty simple) questionnaire domain objects; over to Seaside. 
David Schaeffer’s Seaside test framework was a godsend. He’s solved 
problems that might have kept me puzzled till the bell rang. The main 
gotcha is that you can’t just ‘new’ some component in your test setUp, 
assign it values and then carry on. The stuff Seaside does inside David’s 
establishSession call has to be in the context stack above where you 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 51
assign those values. The solution is easy once you understand the problem: 
pass the assign code to the block in initializeWith: aBlock and it 
will be called within the right methods in the context stack. I tried to depart 
from his example style at one point, hit the problem and had an ‘Aha’ 
moment; ‘That’s why he does it that way.’

I knew that, with programmers who build web apps as their day job 
competing, I could not spend too much time on CSS and HTML choices. 
Watching me craft CSS is like watching paint dry; I’m just not that familiar 
with the various idioms. :-/) So I worked out the obvious analogy between 
choosing items to add to a shopping cart and choosing answers to add to a 
completed questionnaire, then starting hacking the Seaside shopping demo, 
which had styles already fitted to its components.

I then wasted an absurd amount of time looking for the Seaside component 
that would display a batched list of components, instead of a batched 
adaption of a list of components. It’s not there (or I’m missing the obvious; 
let’s not ignore that alternative explanation). It was easy to write when I 
accepted that I was never going to find it, but there was no getting back the 
time I spent looking for it.

Later than I should have, I took time to finalise my analogy into a map 
between all terms in the shopping and the questionnaire applications. I then 
used the rewrite framework to applied the map in a systematic rename of 
instVars, methods and classes. My code now read much more sensibly.

I built an abstract question view component, with concrete subclasses for 
single-answer and multiple-answer questions. Refactoring put almost all 
behaviour in the superclass. Questionnaire displayed but totalling code fell 
over, unsurprisingly as it still thought I was buying things. I changed the 
cash-totalling and item-number-counting code so that results were totals of 
questions answered, and the code knew answers can appear only once.

The shopping demo takes you from the list to an individual item view, 
thence to buying. By contrast, my users choose answers directly from the 
batched question component list. The predictable result of imitating the 
style of the shopping demo code was that, while the answer widget updated 
in the component when selected, the domain (and the ‘answered questions’ 
totals I display) only updated when the user moved to the next page of the 
questionnaire. This looked wrong (and might cause unintuitive results in 
some cases). Fixing it was not hard - I just had to make the rendered HTML 
nest correctly - but it was the kind of thing that someone who did web-apps 
for their daily living would have seen in a second.

What next? Oh, yes, the users may provide textual answers (irritating 
people, why can’t they confine themselves to the choices provided! :-). 
Should I mutate the domain object or wrap it with a text holder? Should I 
wrap the ‘Other’ answer or the overall question? Users could select the 
‘Other’ choice, then provide text, or just provide text, thus implying an 
‘Other’ selection. Should the text field be visible in the main question view 
or should I call a new view with a text field when the user chooses ‘other’? 



52 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
Maybe I could show a small text field with the user able to see a large one 
by clicking an option. Maybe my question component could call a new one 
with a larger text field when the entered text length exceeds some value. 
Maybe I could finish this sometime next month. Spending too much time 
pursuing the perfect answer has always been something I’m good at. :-)

A side-effect from hacking the shopping demo was that, by reusing the old 
shopping item component, I could also very easily display, and select from, 
the set of all questionnaires. I again cloned shopping components, this time 
renaming to the new domain immediately, and made the demo two-level, 
so now I could create a logical group of questionnaires from a list, then 
complete my chosen group in a batch process, able to submit or abort the 
whole batch as a unit if I liked. Will this impress the judges as an extra 
feature or cost time I can’t afford? As noted, I’m slow to hone CSS/HTML.

Reworking an existing app seemed like a good idea on the first evening and 
for model and abstract UI behaviour it worked well. However the second 
evening found me looking at the actual upfront web-layout that end-users 
would see: fine for a shopping app but counter-intuitive for a questionnaire. 
As I tried to make the end-user-look more in keeping with the app, the CSS 
seemed to be saying, “Well, if I were you I wouldn’t start from here” (when 
he heard this, Michael said it was ‘a novel way of building a web app’ :-). 
After much time editing CSS, trying this and that style, it did not look that 
much better to my jaded eyes; nor did the clock. No real problem: it simply 
needed a larger refactor than my time-remaining/CSS-skill ratio allowed.

On to displaying result stats. I refactored the domain model so these could 
be found more easily. I gave the question component a subclass showing 
result totals instead of selection widgets against the answer texts. Then I 
‘create sibling’ refactored them to abstract superclass and two subclasses 
(one concrete, the other the abstract superclass for question answering).

I looked at it. I thought about how Michael’s could be expected to look, 
displaying in WithStyle, and about how any competing Seaside gurus’ 
entries would look. I decided to place my bet on one of them. :-)

Competition: Second Part
The winners of the first part were Michael Lucas-Smith, Blaine Buxton and 
Andrei Sobchuck. Kevin Bradinger came fourth. Two of the winning 
entries were in VW, one in Squeak and Kevin’s was in VisualAge.

Sadly, Andrei couldn’t attend the conference so Michael, Blaine and Kevin 
squared off for the second round. In four hours (on Sunday evening before 
the conference) they had to write an app that played a game, posting moves 
via servlets that Alan provided. Players start with an equal set of coins (so 
many quarters, dimes, cents, ...). A player’s move is to discard one coin 
from their hand into a central pool, then pick up as many coins as they like 
(from those available in the pool) to a total value that must be less than that 
of the coin they discarded. The winner is the last player with any coins left.

On Wednesday lunchtime, Alan switched on a projector displaying the 



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 53
programs running against each other. As only Michael’s program ran all the 
way through out of the box, Alan changed the rules to say that if a program 
raised a walkback during play, its creator was allowed one minute to fix 
and resume before forfeiting that game. (Michael, consulted beforehand, 
very decently agreed so as to make it a better contest.) As Alan remarked, 
it also made it a more Smalltalky contest if people could fix and resume 
while running, so this rule will probably be the norm in future years (but I 
recommend an addition so that people like Michael, whose programs don’t 
need this, get a minute to tweak their code between games or some similar 
compensating advantage).

So with bated breath we wait and ... they’re off!!! The smart money is on 
Michael. His program alone never needs to be resumed and it even displays 
his name in the right box! :-). Michael races into an early lead, beating 
Blaine and Kevin in the first round, but in the round two, Kevin’s program 
stages a comeback, out-manoeuvring Michael’s over when to play that key 
quarter coin. The punters begin to look worried. With Blaine out of the 
running, it’s neck-and-neck between Michael’s program and had-to-
resume-but-still-hanging-in-there Kevin’s. Alan brings forth his own 
program for a decider play-off. Kevin beats it both times. Michael beats it 
once but then - it can’t be! - the chants of ‘Mich - ael, Mich - ael’ fade away 
in disbelief as Alan’s program wins. And the bookies look happy as this 
surprise result leaves the crowd stunned. Outsider Kevin has come from 
behind to scrape a triumphant finish ...

Since Michael has to travel from Australia to attend a Camp Smalltalk, 
which he may not be able to do soon on top of conference attendance, he 
was actually happier with the second prize (an iPOD). Kevin, by contrast, 
lives closer to probable CS sites and was very happy to win the voucher.

As you may gather, a fun time was had by all at the first Smalltalk coding 
contest. See Jim Robertson's blog for the pictures

• http://www.cincomsmalltalk.com/blog/blogView?showComments=true
&entry=3297504143

and for refs to Michael’s and Blaine’s blogs to read their take on things.

Discussions
Dolphin’s Envy-like CM System, James Foster
The people who sell OmniBase also offer an Envy-like CM system for 
Dolphin. It needs only one system method override (of Compiler>>save).

There is a Project Editions Browser (like the config map browser). It has 
edition, version lifecycle, and tree display of history. Project editions 
contain package editions in load order (c.f. applications). There is no has 
no equivalent of SubApp or (more surprisingly) config-map pre-requisites 
(might be because Dolphin already has pre-req approaches, but one would 
like to see what the versioning impact on them is). There is a good shadow 
applications browser equivalent; it is easy to browse the contents of 
editions. You can browse method editions easily; all saves are captured.



54 Smalltalk Solutions 2005, Orlando, 27-29 June 2005
Overall, it gives a fair amount of the same functionality but is by no means 
a clone of Envy, either in function or in nomenclature.

Dolphin out of the box has a directory tree structure and application (i.e,. 
package) browser. It does not define but calculates (in detail) prerequisites. 
Dolphin file-out is largely an import string but also has pre-reqs; these are 
not version-specific.

General
Michael: MS installer can open a port on your machine even if run with no 
admin permissions. XMLWithStyle update/restart works by creating a new 
image. The new image talks to the HTTP server image. If the server knows 
it is out of date, the new image recreates it and the old image dies. Variants 
of this general start pattern use the HTTP server to see if an image already 
exists, so the new image just hands over to it, or not, so continue start up.

Blaine works in Omaha in a group of 4 Smalltalkers running rings around 
a 25-strong Java group. (I thought Omaha was a state when I was young 
since I only knew the name from Omaha beach of WWII D-Day history 
where it is paired with Utah beach, and Utah is a state.)

Georg Heeg has ported ADM’s ControlWORKS to the latest version of 
VW. Helped by this, they have just finished a huge project ahead of 
schedule (how often does that happen!) and so the Dresden site has won 
another major project. Meanwhile, whenever any Java and C++ code 
utilities they have cannot talk to each other due to minor protocol 
difficulties, they put Smalltalk between them as it can be quickly made to 
talk to both. Thus Smalltalk is becoming universal in the company.

DeutcheBahn has RUT-K (see my ESUG report) as the first page story in 
their latest report (before even the picture of their general manager :-). John 
McIntosh told me of their test facility: developers print lists and then sit in 
an office overlooking the Frankfurt station with binoculars, checking the 
trains that arrive and leave against the times and serial numbers on the list.

Energy trading systems seem to be common in Smalltalk. Adriaan van Os 
is doing further work on the system that Reinout demoed at StS2002. It 
now looks set to be used for cross-border trades in France, Belgium and 
Holland. Jay works in Atlanta for IntercontinentalExchange who also have 
such a system.

JWARS’ budget has been cut (it is seen as lower priority than paying for 
the real war :-). It remains the only cross-service solution in its domain so 
Donald McQueen remains hopeful for the future.

James Foster is now working for GemStone in Testing. We will coordinate 
re SUnit in GemStone. 64-bit GemStone will have canonical dates, done as 
specials not reusing the pre-allocate oops approach currently used. I talked 
to him about the pattern that exploits GemStone’s symbol canonicalisation 
to provide general canonicalisation of symbol-keyed objects.



Smalltalk Solutions 2005, Orlando, 27-29 June 2005 55
Follow-up Actions
Tell Dan Poon about Christian Haider’s good experience of porting from 
VSE to VW Pollock (written up in my ESUG 2004 report).

Conclusions
Since my keynote speech was on ‘The Value of Smalltalk’, it was really 
pleasant to hear several excellent commercial experience reports, each 
making clear points on exactly why Smalltalk had been valuable to them.

I particularly enjoyed the unusually literal significance of Jeff Hallman’s 
talk title (‘Making Money with Smalltalk’). Federal Reserve deposits 
(‘high-powered money’) control how commercial banks’ increase the 
money supply. His Smalltalk systems literally manage the making of 
money, even more than if they controlled the presses that print the stuff.

The coding contest was fun. I don’t know if we will have one every year 
but we should certain have more from time to time. The tasks were well 
chosen; this will be the hard part of any future contest.

Written by Niall Ross of eXtremeMetaProgrammers.

* End of Document *


	Smalltalk Solutions 2005, Orlando, 27-29 June 2005
	Style
	Author’s Disclaimer and Acknowledgements
	Summary of Presentations
	Opening, Allen Davis of KSC and STIC and Alan Knight of Cincom
	Exhibitors
	Web and GUI Frameworks
	Transcend the UI Divide WithStyle, Michael Lucas-Smith
	Onward to Pollock, Vassili Bykov, Cincom Systems
	Pollock, Sames Shuster, Cincom Systems
	Tweak, John McIntosh

	Applications and Experience Reports
	Commercial Machine Control using Smalltalk: An experience report from the Semiconductor Industry,...
	Number Crunching Smalltalk, Daniel Poon, Romax Technology Ltd.
	Pushing Smalltalk on a 4GL Shop: RAD the object way, Giorgio Ferraris, ElevenSoft
	Anaesthesia Information Systems at the University of Florida, Wilhelm Schwab and Gordon Gibby, Un...
	Smalltalk in Medical Instruments, Andy Hodges, Medtronic
	Making Money with Smalltalk, Jeff Hallman
	Keynote: The Value of Smalltalk, Niall Ross

	Process, Techniques and Tools
	Keynote: Domain-Driven Design: Tackling Complexity in the Heart of Software, Eric Evans
	VA and GemStone Utilities, Angela Martin and Kimberly Anderson, Northwater Objects
	Monticello 2, Colin Putney
	Team Programming Tools, panel, Eric Clayberg, Colin Putney, Bob Westergaard, Niall Ross

	Vendors, VMs and IDEs
	VAST Smalltalk Transition Strategy, Greg Boniatides, IBM
	VA Smalltalk Going Forward, Eric Clayberg of Instantiations and John O’Keefe of IBM
	Preserving the Reflective Illusion in an Embedded Smalltalk System, Christian Hansen, Esmertec
	Smalltalk JVM, Allen Davis, KSC

	Testing
	Cooking with SUnit or How to Burn Water in One Easy Lesson, Sames Shuster, Cincom
	Seaside testing, David Shaeffer
	SUnit BoF, Niall Ross and Michael Lucas-Smith

	Remote Computing
	OpenTalk at Large, Martin Kobetic, Cincom
	OpentalkMatrix, Charles Monteiro

	Miscellaneous
	Serial Number Generation, Dan Antion, American Nuclear Insurers
	OpenSkills, Bruce Badger

	Talks I Missed

	Other Events and Discussions
	Smalltalk Coding Competition
	Competition: First Part
	Competition: Second Part

	Discussions
	Dolphin’s Envy-like CM System, James Foster
	General


	Follow-up Actions
	Conclusions


