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Abstract

A DMA Controller can offload a processor tremendously. A memory copy
operation can be initiated by the processor and while the processor executes
others tasks the memory copy can be fulfilled by the DMA Controller.

An implementation of a DMA Controller for use in LEON3 SoC:s has been made
during this master thesis. Problems that occurred while designing a controller
of this type concerned AMBA buses, data transfers, alignment and interrupt
handling.

The DMA Controller supports AMBA and is attached to an AHB master and
APB slave. The DMA Controller supports burst transfers to maximize data
bandwidth. The source and destination address can be arbitrarily aligned. It
supports multiple channels and it has interrupt generation on transfer
completion along with interrupt masking.

The implemented functionality works as intended.
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1
Introduction

This chapter describes the background and purpose of the master thesis. It will
also give a description of how the thesis is divided into several chapters.

1.1 Background

When a processor is performing a read or write operation, it is fully occupied
and will not be able to perform more or other types of operations. The brilliance
of having a DMA Controller is that the processor can be effectively offloaded.
The processor can initiate a memory copy and then execute other tasks while
the DMA Controller takes full responsibility for the memory copy operation and
signals the processor with an interrupt when it is finished with the operation.
The feature of using a DMA Controller is useful when there is no time for the
processor to wait for this type of data transfer or when the pace of performing
data transfers is greater than what the processor can handle.

The DMA Controller should support these specific features:

1. AMBA

2. Multiple channels

3. Memory-to-memory, memory-to-peripheral, peripheral-to-memory and
peripheral-to-peripheral data transfers

4. Scatter-gather

5. Data widths of more than 32 bits

6. Use licenses such as the BSD license and/or be compatible with GPL

1



2 1 Introduction

[Xilinx, 2011] is a DMA Controller that supports number 1, 3, 4 and 5. Another
DMA Controller is [ARM, 2005] and this one supports number 1, 2, 3 and 4.
[ARM, 2007] supports number 1 and 4.

No DMA Controller of the mentioned ones can fulfil the requirements. No other
DMA Controllers that has been found can fulfil all of the requirements. This is a
reason for implementing a new DMA Controller.

1.2 Purpose

The purpose of this master thesis is to implement a DMA Controller for use in
LEON3 SoC designs. The main reason for implementing this type of controller is
to be able to perform memory copy operations and data moving among peripher-
als without intervention from the processor.

As mentioned in Section 1.1, there are some specific features that should be sup-
ported by the DMA Controller. It must be connected to an AHB master and an
APB slave. Memory-to-memory, memory-to-peripheral, peripheral-to-memory
and peripheral-to-peripheral are the different data transfers that the DMA Con-
troller should support. The implementation should be descriptor based and
scatter-gather must be supported. It should be able to handle multiple channels
and interrupt handling must be implemented.

When implementation and testing of the DMA Controller is finished, the perfor-
mance of the DMA Controller will be compared with existing software solutions.

1.3 Disposition

A description of how the thesis is organised into different parts can be seen in
Table 1.1.

Chapter Description

1 Contains an introduction to the problem.
2 Consists of related theory.
3 Presents the identified problems.
4 Describes the implementation.
5 Contains an analysis of the results.
6 Conclusions are described.

Table 1.1: Description of how the thesis is divided



2
Theory

This chapter contains theory about DMA and DMA Controllers. It also includes
information about AMBA along with the buses that are connected to the DMA
Controller, the AHB and APB. A brief description of address incrementation is
presented.

2.1 DMA

DMA is an abbreviation of direct memory access and this is a feature that allows
systems to access the main memory without any help from the processor. As de-
scribed in Section 1.1, a DMA Controller can offload the processor tremendously.
A DMA Controller can fulfil a memory copy without intervention from the pro-
cessor and when it is finished with the specified operation, it signals the processor
with an interrupt.

To gain knowledge about what to take into consideration when implementing
a DMA Controller and valuable information about how to implement a DMA
Controller, earlier implementations of DMA Controllers was studied. Technical
references concerning both DMA Controllers and AMBA was more thoroughly
studied.

Explanations about how to implement an AHB master was found in [ARM, 2005].
This technical reference was considered a well defined supplement to the AMBA
specification [ARM, 1999]. This DMA Controller supports data transfers such as
memory-to-memory, memory-to-peripheral, peripheral-to-memory and peripheral-
to-peripheral. It supports multiple channels. Information about interrupt han-
dling and which registers that may be needed was also found in this technical
reference.

3



4 2 Theory

[ARM, 2007] is a technical reference that contained visualisations of how the
DMA Controllers logic could be separated into different FSM:s. It handles the
same data transfers as the [ARM, 2005] and it also supports scatter-gather. The
DMA Controller is connected to an APB slave.

The technical reference [ARM, 2012] was much like the [ARM, 2007] and there-
fore contained similar facts.

The report [Morris, 2000] contained information about both DMA Controllers
and AMBA. It included explanations about the performance of the DMA Con-
troller. The report also had illustrations that showed how the DMA Controller
performed and the results that was given.

A DMA Controller that supports AMBA and is connected both to AHB and APB
is [Ma and He, 2009]. This DMA Controller also supports multiple channels.

[Sharma, 2011] is a DMA Controller that is connected to the AHB. It can handle
data transfers between memory addresses and peripherals such as I2C and USB.
An interrupt is generated when the data transfer has been performed.

2.2 LEON3

The LEON3 is created by Aeroflex Gaisler [Aeroflex Gaisler, 2013]. It is a VHDL
model of a 32-bit processor produced for the SPARC V8 architecture [SPARC In-
ternational Inc, 1992]. The LEON3 is highly configurable and specified to be used
for SoC designs. The processor is a Harvard architecture containing a 7-stage
pipeline with configurable caches. It has an AMBA AHB interface and contains
SMP support. It is distributed as part of the GRLIB IP Library [Aeroflex Gaisler,
2013-01-31] which allows fairly simple integration into more complicated SoC
designs. Source code of the LEON3 can be found at the homepage of Aeroflex
Gaisler [Aeroflex Gaisler, 2013-05-07].

2.3 AMBA

AMBA is used as an on-chip bus for various SoC designs. The AMBA protocols
are de facto standard for 32-bit embedded processors, much thanks to their broad
documentation [ARM, 1999].
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AHB/APB

UART TIMER

AHB

APB

RAMCPU

Figure 2.1: Overview of a general AMBA system

Figure 2.1 shows an overview of a general AMBA system attached to an AHB and
APB. An AMBA system is often constructed of a processor, a RAM that is an on-
chip memory, a bridge between the AHB and APB called AHB/APB and some
peripherals, such as a timer and an UART.

2.3.1 AHB

The AHB is used in high performance systems. A bus transfer can be a read
or write operation and these operations can take one or several bus cycles to
complete. This bus supports up to 128-bit data transfers. It supports multiple
bus masters.

A typical AHB system consists of the following components:

• AHB master

• AHB slave

• AHB arbiter

• AHB decoder

The bus master initiates the read or write operation by obtaining control infor-
mation and an address. There can only be one operative bus master at any given
time. The bus master must be granted access to the bus to be able to perform
a transfer. If the bus master asserts a request signal, this grant can be received.
The main task of the bus slave is to report the operating masters success, failure
or waiting of the data transfer. The bus arbiter assures that only one bus master
can initiate data transfers at any given time. The bus decoder provides a select
signal for the involved slave and it also decodes the address that is being used at
the data transfer.

There is one bus dedicated for read operations and another bus to handle write
operations, the reason for this is to be able to implement an AHB system with-
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out tristate drivers. The read data bus is utilized when data should be moved
from a slave to the master while the write data bus is used when data should be
transferred from the master to a slave.

Each transfer on the AHB consists of an address and control cycle followed by one
or several data cycles. Pipeline behaviour is fulfilled thanks to that the address
cycle of a transfer occurs during the data cycle of the previous data transfer. A
slave has the ability to insert wait states into a data transfer, the result from this
is that the data transfer will be prolonged until the slave is ready. When such
an extension is made, the address cycle of the following transfer will also be
extended.

Name Description
HCLK System clock.
HRESET Reset. Active low.
HBUSREQ Used by the master to request the

bus.
HGRANT Indicates which master that has

been granted the bus.
HADDR[31:0] Address.
HTRANS[1:0] Type of transfer. Idle,

nonsequential, sequential or busy.
HWRITE Specifies write or read transfer.

High indicates a write transfer and
low a read transfer.

HSIZE[2:0] Size of transfer. Byte, halfword or
word.

HBURST[2:0] Indicates if the transfer forms part
of a burst.

HPROT [3:0] Indicates if the transfer is an
opcode fetch or data access.

HWDATA [31:0] Used for transferring data from
master to slaves during write
operations.

HRDATA [31:0] Used for transferring data from
slaves to master during read
operations.

HRESP[1:0] Status of transfer. Okay, error, retry
or split.

HREADY High indicates a finished transfer.
HSEL Slave select.

Table 2.1: AHB signals

Signals that can be used on the AHB are presented in Table 2.1.
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HTRANS

Idle indicates no required data transfer. Nonsequential indicates the first transfer
of a burst or a single transfer. Remaining transfers in a burst are sequential. Busy
is used when the master is unable to complete the next transfer immediately.

HBURST

There are several different types of bursts, only incremented burst will be
handled in this master thesis.

HRESP

Okay indicates that the data transfer was successful. Error shows that an error
occurred during the data transfer. Retry indicates that the data transfer is not
completed. Split is used when the data transfer has not been successfully
completed.

Read and Write Operations

Timing diagram for read operations can be found in Figure 2.2.

T1 T2 T3 T4

HCLK

HTRANS[1:0]

HADDR[31:0]

HBURST[2:0]

HWRITE

HSIZE[2:0]

HRDATA[31:0]

NONSEQ SEQ

0x10 0x14

Incrementing burst

Word

Data 
0x10

Data 
0x14

Figure 2.2: Read mode, two word transfer starting at address 0x10

Figure 2.2 shows how a read operation looks like once access to the bus has been
granted. A write operation looks the same, except that the HWRITE signal is
high and the HRDATA signal is replaced by the HWDATA signal. It is important
that the address is available before the data, which can be seen in Figure 2.2.
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For more information and understanding of how a read or write operation is
made on the AHB and how the above mentioned signals interact, see [ARM,
1999, Figure 3-11].

2.3.2 APB

APB is a single master bus, optimized for low power consumption. This bus is
used by peripherals which does not need a high performance pipelined bus
interface. It always takes two clock cycles to terminate a read or write operation.
This bus is connected to an AHB slave by an AHB/APB bridge that is used when
converting AHB transfers into an adapting format for the slave devices on the
APB. The APB bridge is the APB master, all of the other devices on the APB are
APB slaves.

Name Description
PCLK System clock.
PRESET Reset. Active low.
PADDR[31:0] Address.
PSEL[15:0] Indicates the selected slave and

that a data transfer is desired.
PENABLE Used to time all accesses on the

peripheral bus. Indicates the
second cycle of an APB transfer, it
occurs in the middle of an APB
transfer.

PWRITE Specifies write or read transfer.
High indicates a write transfer and
low a read transfer.

PWDATA [31:0] Driven by the peripheral bus
bridge unit during write
operations.

PRDATA [31:0] Driven by the slave during read
operations.

Table 2.2: APB signals

Signals that can be used on the APB are presented in Table 2.2.

The functionality of the APB is described in a fairly simple FSM, [ARM, 1999,
Figure 5-2]. It has three states, idle, setup and enable. The APB remains in the
setup state for one clock cycle and it is in this state that the PSEL signal is
asserted. Following state is always the enable state. PENABLE is asserted in the
enable state which also lasts for one clock cycle. If more transfers than one, the
bus will move from the enable state to the setup state otherwise to the idle state.

See [ARM, 1999, Figure 5-3 and 5-4] for more information and understanding of
how a read or write operation is made on the APB and how the above mentioned
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signals interact.

2.4 Address Incrementation

Since data moving between memory spaces should be implemented, address
incrementation is essential for this master thesis.

Transfer width Increment in bytes
BYTE 1
HALFWORD 2
WORD 4

Table 2.3: Address incrementation

Table 2.3 shows how many bytes that the incrementation should be made with
depending on the transfer width.

When accessing memory the linearly addresses will be incremented by 1, 2 or 4
bytes after each access, depending on the transfer size of the data.

If current address is a byte address, current address modulo 4 = 1 or current
address modulo 4 = 3, a byte move must be made and the address
incrementation will therefore be a byte. On the other hand, if current address is
a word or halfword address, current address modulo 4 = 0 or current address
modulo 4 = 2, a byte, halfword or word move can be made. More about this in
Section 4.10.





3
Problem Identification

Features that should be supported was mentioned in Section 1.2. Here follows
an identification of these features along with delimitations.

3.1 AMBA

The AHB is the far most complicated bus of the two buses that the DMA
Controller will be attached to. Both the AHB and APB are well defined in the
AMBA specification [ARM, 1999]. A way of receiving knowledge about how to
integrate these buses along with the DMA Controller can be found in source
code when connecting other cores to these specific buses that has been
implemented by Aeroflex Gaisler.

3.2 Data Transfers

Data transfers that should be supported are memory-to-memory,
memory-to-peripheral, peripheral-to-memory and peripheral-to-peripheral.
This means that the DMA Controller must be able to move data from a memory
to the same memory or to another memory. It has to support moving from a
peripheral to a memory or from a memory to a peripheral and also from a
peripheral to another peripheral. The DMA controller should be able to control
the following peripherals in a useful way, an UART and I2C along with a SPI
controller and GPIO.

The DMA Controller must have support for scatter-gather. To be able to read
data from a data stream to multiple buffers or write data from multiple buffers

11



12 3 Problem Identification

to a single data stream is called scatter-gather. It can be seen like gather data
from or into a specified set of buffers.

A first implementation of the DMA Controller will contain simple memory copy
along with scatter-gather and it will later be expanded to handle peripherals.

3.3 Alignment

It must be possible to move data from any source address to any destination
address. For this, data alignment is essential. One restriction that will be made
while moving data is that the source address and destination address are
considered to have an offset of at least transfer size, where transfer size is the
number of bytes that should be moved. When a computer reads from or writes
to a memory address, it will do this in chunks that is of length word. Data
alignment puts the data at a memory offset equal to a multiple of that word size.
This makes it possible for the DMA Controller to move data from any given
source address to any mentioned destination address.

3.4 Channels

Since the DMA Controller should be able to manage multiple channels, it must
also support channel priority. At first the implementation will be made using
only one channel. If the DMA Controller can support one channel in a correct
manner, it should be fairly simple to expand it with multiple channels.

3.5 Interrupt Handling

The DMA Controller is supposed to send an interrupt to the processor after a
finished transaction, therefore interrupt handling must be implemented. If any
kind of error occurs the processor will receive an interrupt. A mask register will
be used so that it is possible to choose which interrupt to generate and therefore
know what kind of interrupt that will be sent.

3.6 Delimitations

All DMA operations will be performed in burst mode. All of the systems works
synchronously. Only big endian must be supported by the DMA Controller,
therefore there will be no endian issues. Reading and writing at the same time
will not be supported. As mentioned in section 3.3, one restriction regarding the
source and destination address has been made.



4
Implementation

This chapter describes how the DMA Controller was implemented. It contains
information about the registers and descriptors that the DMA Controller
utilizes. It also describes how the buses are connected to the DMA Controller.
Explanations of the two FSM:s that provides the functionality of the DMA
Controller are included. A description of how the data alignment was
implemented is presented at the end of this chapter.

4.1 Overview

This section includes an overview of how the DMA Controller operates and an
illustration of the DMA Controller. An enumerated list with steps of how the
DMA Controller processes can be found below. Everything in this list is done in
the order that it is written.

1. The core registers are configured by the processor

2. The processor enables the DMA Controller

3. One channel is read by the DMA Controller

4. Descriptor fields associated with the channel are read by the DMA
Controller

5. Moving of data is performed by the DMA Controller

6. If at least one more channel exist, go to step 3 else step 7

7. The DMA Controller is disabled

13



14 4 Implementation

AHB

APB

Core registers

Master interface

AMBA FSM

Slave interface

Control FSM

FIFO

Figure 4.1: Overview of the DMA Controller

Figure 4.1 shows an overview of the DMA Controller. It is attached to an AHB
master and APB slave. There are two FSM:s that provides the functionality of
the DMA Controller, one that handles the AMBA communication and another
that takes care of the control logic. The core registers are configured by the
processor before the DMA Controller is enabled. The FIFO buffer is used when
moving data.

4.2 Registers

This section presents the registers that has been implemented and a description
of what each of the bits in the registers represent.

31 0

Status

Control

Base address

Current address

Interrupt

Mask

Figure 4.2: Overview of the core registers
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Figure 4.2 shows that the existing registers contains information about the
status, control, base address, current address, interrupt and mask.

4.2.1 Description

Each of the visible registers are described here.

Status
31 9 8 6 5 4 3 0

Reserved Channel AMBA Control

[31:9] Reserved

[8:6] Active channel
000: No channel is active
001: Channel 1 is active
010: Channel 2 is active
011: Channel 3 is active
100: Channel 4 is active
101: Channel 5 is active
110: Channel 6 is active
111: Channel 7 is active

[5:4] Current state of the AMBA FSM
00: Idle
01: Read
10: Write
11: Done

[3:0] Current state of the control FSM
0000: Idle
0001: Read channel
0010: Check channel
0011: Read descriptor
0100: Process descriptor
0101: Start read data
0110: Read data
0111: Start move data
1000: Move data
1001: Check if finished
1010: Done

More about these FSM:s in Section 4.9.

Control
31 1 0

Reserved CE DE
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[31:2] Reserved

[1] Channel enable
0: No channel is enabled
1: One or several channels are enabled

[0] DMA Controller enable
0: Disabled
1: Enabled

Base Address
31 0

Base address

[31:0] Base address

The channel list will always start at the base address given in this register.
Therefore it is important to be sure that the address that is written in this
register is correct.

Current Address
31 0

Current address

[31:0] Current address

The current address is used to show where the DMA Controller is reading or
writing from.

Interrupt
31 1 0

Reserved ST DF

[31:2] Reserved

[1] Status of transfer
0: Okay
1: Error, retry or split

[0] Descriptor finished
0: Not finished
1: Finished

Mask
31 0

Mask
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[31:0] Mask

Which interrupts that are granted to be sent to the processor is decided by the
mask register. For example, if bit 0 is 1 and the other bits are 0 in the mask
register and bit 0 and 1 are 1 in the interrupt register, only the interrupt called
”Descriptor finished” in the interrupt register will be sent and no others.

4.3 Channels

Similar to [ARM, 2005] and [Ma and He, 2009], the DMA Controller should be
able to manage multiple channels and also have channel priority. The first
implementation only utilized one channel. When the DMA Controller worked
as expected with one channel, it was not hard to make an implementation that
supported multiple channels. As described in Section 4.1, one channel is read by
the DMA Controller and moving of data is performed. When the first channel is
finished, next channel is read and so on. This makes it easy to know the priority
of the channels. The first channel has the highest priority and the last channel
has the lowest priority. It is assumed that the channels has an offset consisting of
a word. For example, if the first channel has address offset 0x00, next channel
will have address offset 0x04. Figure 4.4 shows how the channels are
represented in main memory.

4.4 Descriptors

The implementation of the DMA Controller is descriptor based. A descriptor
represents a single memory transaction from a source address to a destination
address. Since the implementation is descriptor based, scatter-gather is
supported, just like [ARM, 2007]. Multiple descriptors can be connected
through a linked list, this can be seen in Figure 4.4. The main reason of having a
descriptor based implementation is to make it as configurable as possible. The
descriptors resides in main memory and is configured by the user.

31 0

Address to next descriptor

Control

Source address

Destination address

Figure 4.3: Overview of a descriptor

As shown in Figure 4.3, while configuring a descriptor, data fields containing
the address to next descriptor in the linked list, control word, source address
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and destination address of the transfer are written. The end of a linked list must
be terminated with 0 in the field ”Address to next descriptor”.

4.4.1 Description

This section contains a description of the fields contained in the descriptors.

Address to next descriptor
31 0

Address to next descriptor

[31:0] Address to next descriptor

Control
31 11 10 9 8 1 0

Reserved Type Transfer size EN

[31:11] Reserved

[10:9] Data transfer type
00: Memory-to-memory
01: Memory-to-peripheral
10: Peripheral-to-memory
11: Peripheral-to-peripheral

[8:1] Transfer size (in bytes)

[0] Descriptor enable
0: Disabled
1: Enabled

Source address
31 0

Source address

[31:0] Source address

Destination address
31 0

Destination address

[31:0] Destination address
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4.5 Registers, Channels and Descriptors

Figure 4.4 shows how the registers, channels and descriptors are attached to
each other.

Memory

Base address Channel 1

Channel 2

Channel 3

Core registers
Descriptors

Figure 4.4: Overview of the core registers, channels and descriptors

The connection between the core registers, channels and descriptors can be seen
in Figure 4.4. The base address, which resides in the core registers, points to the
beginning of the channel list. The channels points to the descriptors that are
associated with that specific channel. Both the channels and descriptors are
placed in main memory.

4.6 Programming Languages

The hardware implementation is written in VHDL and the software
implementation has been written in C.

4.6.1 VHDL

VHDL supports execution of concurrent processes triggered by events, the
execution has nothing to do with in which order the processes are written. It
will be difficult to understand and follow these processes, when the number of
concurrent processes increases. In enters the two-process design method.

Two-process Design Method

Instead of writing VHDL code according to the common data flow design
method, Aeroflex Gaisler uses a two-process design method [Gaisler]. This
method has two processes per entity, one process containing the combinational
logic and another process including the sequential logic. Thanks to this, the
algorithm can be coded in sequential statements in the combinational process
while the registers can be found in the sequential process.
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4.6.2 C

Descriptors and core registers was configured in a C program. Memory had to
be allocated to be able to create these. The fields in the descriptors was filled
with appropriate data and same procedure applied for the core registers. Section
5.1 describes more about how the C program was used during testing.

4.7 AMBA

The DMA Controller is integrated with AMBA and attached to an AHB and APB.

AHB

APB

DMAC

SDRAM

I2C

LEON3

AHB/APBAHB/APB

UART

Figure 4.5: Overview of the system and the attached buses

Figure 4.5 shows an overview of the system and the attached buses. LEON3 is
the processor that is being used. SDRAM is the memory used. AHB/APB is a
bridge between the AHB and APB, the main purpose of this is to translate AHB
requests to a format that is readable by the APB. The APB is connected to
peripherals, such as an UART and I2C. DMAC is the DMA Controller.

4.7.1 Adapter Interface

Aeroflex Gaisler has an easier adapter interface towards the AMBA buses. This
adapter interface has no documentation or specification so to be able to
understand how it worked further research had to be made. The source code
was therefore investigated thoroughly.

4.7.2 AHB

During the implementation signals mentioned in Table 2.1 was used. AHB
signals with the adapter interface that has been used during the implementation
can be seen in Table 4.1.
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Name Description
ADDRESS[31:0] Address.
START High indicates that data is

available.
ACTIVE High indicates that data is being

processed.
READY High indicates a finished transfer.
SIZE[2:0] Size of transfer. Byte, halfword or

word.
BURST Indicates if the transfer forms part

of a burst.
WRITE Specifies write or read transfer.

High indicates a write transfer and
low a read transfer.

WDATA[31:0] Used for transferring data from
master to slaves during write
operations.

RDATA[31:0] Used for transferring data from
slaves to master during read
operations.

IRQ Interrupt.

Table 4.1: AHB signals with the adapter interface

4.8 Bus Operations

When the connection between the DMA Controller and the AMBA buses was
made, the APB was the first bus to be connected. The APB has an easier
interface for read and write operations than the AHB and this was the main
reason for starting with the APB. When the APB managed read and write
operations, the task of connecting the AHB started. The connection between the
DMA Controller and the AHB was not complicated to perform, but to be able to
understand how to perform correct read and write operations, a thorough
reading of the AMBA specification [ARM, 1999] was needed. This gave an
explanation of how the AHB signals are dependent of each other, information
about how a burst should be made on the AHB, transfer types and other
important aspects to take into consideration.

The first problem that occurred during the implementation was to perform
proper read and write operations over the AHB. It was hard to implement this
along with the AMBA standard. The main problem while trying to implement
correct read and write operations was that the AMBA standard was complicated
to understand and that the information about the adapter interface was to
insufficient.
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4.9 Finite State Machines

There are two FSM:s that provides the functionality of the DMA Controller. One
FSM handles the AMBA communication and the other FSM manages the control
logic. This separation gives a better understanding of the implementation.

4.9.1 AMBA

The AMBA FSM is the least complicated FSM and it handles the bus
communication.

Done

Read

Idle

dma enable, 

amba start and

 write = 0

dma enable, 

amba start and

 write = 1

active, ready 

and cnt < 1 
active, ready 

and cnt < 1

Write

Figure 4.6: State diagram for the AMBA communication

Figure 4.6 shows the state diagram for the AMBA communication with the
existing states idle, read, write and done.

Idle

This is the start state. When the DMA Controller is enabled and the control FSM
is enabled, the AHB will be requested. If the write signal is enabled, next state
will be write, otherwise read.

Read

While in the read state, if the signals active and start are enabled, a data counter
will be decremented and an index counter will be increased. These counters are
a way of keeping track of how much data that has been received and which
position of a specified FIFO buffer that is active. An internal register called
current address is increased with the transfer type, byte, halfword or word, to
give information about which address that is being processed at the moment. If
the data counter reaches 0, the request of the bus stops. When the signal ready
is enabled, reading of data from the AHB is made. When everything has been
read, done will be the next state.
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Write

A state that is much like the read state is the write state, but when data is read
from the AHB in the read state, data is instead being written.

Done

This state is only present for having a finishing state, the next state will
immediately be idle.

4.9.2 Control

A more complex FSM is the control FSM that handles the control logic.

Start 
move data

Check if 
finished

Idle

Read 
channel

Wait 
channel

Read 
descriptor

Read data

Start read 
data

Process 
descriptor

Move data

Done

dma enable

read done
read done and cnt < 1

read done and cnt < 1 write done and cnt < 1

transfer size = 0
transfer size > 0

next descriptor = 0 and channel > 0

next descriptor = 0 and channel = 0

next descriptor /= 0

Read 
channel

Check 
channel

  invalid channel

invalid channel and no more channels

Figure 4.7: State diagram for the control logic

Figure 4.7 shows the state diagram for the control logic with the existing states
idle, read channel, check channel, read descriptor, process descriptor, start read
data, read data, start move data, move data, check if finished and done.
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Idle

The idle state is the start state. When the DMA Controller is enabled, the
current address is set to the base address. A counter is set to a constant value
and this value represents the number of channels that will be used. The state
that follows is read channel.

Read Channel

The AMBA FSM will be started and reading of one channel will therefore start.
The state changes to check channel.

Check Channel

Wait until one channel has been read. If it was an invalid channel and there is at
least one more channel, next state will be read channel. It it was an invalid
channel and no more channels, next state is done. If the channel was valid, the
number of channels decreases and next state is read descriptor.

Read Descriptor

A counter is set to a constant value and this value is the number of fields that
will represent a descriptor. The AMBA FSM is started so that it will be possible
to read the fields that the descriptor consists of. The following state is process
descriptor.

Process Descriptor

This state saves all of the information that a descriptor has into an internal
register. When all of the information is saved it is time to move on to the state
that starts to read the data.

Start Read Data

A counter is set to a constant value and this value represents the transfer size.
Current address will be the source address and the AMBA FSM is started so that
the data can be read. Next state is read data.

Read Data

When all of the data that should be moved has been read it is saved into a FIFO
buffer. Data alignment has been performed to give knowledge about which data
that should be saved and then moved. More about the implementation of the
data alignment in Section 4.10. Next state is start move data.

Start Move Data

Wait until all of the data has been saved correctly. Current address will be the
destination address. The AMBA FSM is started, this makes it possible for the
data to be written and next state is move data.
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Move Data

The data is moved and after each specific move of data, the source address,
transfer size and destination address are updated. It is possible to see if all of
the data has been moved in next state.

Check If Finished

If transfer size is larger than 0, next state will be start read data otherwise done.

Done

If there is at least one channel and the address to next descriptor is 0, next state
will be read channel and current address will be set to next channel. The DMA
Controller is disabled if the number of channels are 0 and the address to next
descriptor is 0. Next state will be idle if the DMA Controller is disabled. If the
address to next descriptor is anything but 0, internal registers will be set to 0,
current address will be set to the address to next descriptor and next state will
be read descriptor.

4.10 Alignment

Data alignment had to be implemented for the possibility to move data from
and to more addresses than only word addresses.

If the source address or destination address starts at a byte address or if transfer
size is one byte, the size of the data that will be moved is a byte. If the source
address or destination address starts at a word address or a halfword address or
if the transfer size is less than four bytes, the size of the data that will be moved
is a halfword. One burst can manage to move a constant set of maximum words
at a time. This constant can of course be configured to any number, but a
number that is a power of two is preferred since it dictates the size of the FIFO
buffer used. If transfer size is larger than the maximum transfer size that can be
moved, the size will be a word and the transfer size will be set to the maximum
transfer size. In other cases, the size of the data that will be moved is a word.

Following expressions are made as an attempt to simplify the pseudo code in
Algorithm 4.1:

N = 1, 2 and 3
srcN := source address modulo 4 = N
destN := destination address modulo 4 = N
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Algorithm 4.1 Pseudo code for data alignment

if (src1 or src3 or dest1 or dest3 or (transfer size = 1)) then
size := byte;
transfer size := 1;

else if (src2 or dest2 or (transfer size < 4)) then
size := halfword;
transfer size := 2;

else
if transfer size > transfer max then

size := word;
transfer size := transfer max;

else
size := word;

end if
end if

Algorithm 4.1 shows pseudo code for how the data alignment was implemented.
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Results

This chapter describes results from the testing during the implementation of the
DMA Controller. Verifications has been made in simulation and on the specified
hardware.

5.1 Simulation

Simulations was performed during the implementation to verify that the DMA
Controller functioned properly.

5.1.1 Tools

Different tools was used during the simulation. It was possible to see if the
implementation processed as expected in simulation with help from these tools.

C-program

A program in C for testing was developed continuously during the
implementation. Arrays with predefined values was allocated and created. The
source address and destination address in each descriptor was set to these arrays.
The transfer size was also chosen. Since the source address, transfer size and
destination address was predefined, it was easy to see if the DMA Controller
moved correct data from the expected source address to the correct destination
address.

ModelSim

While simulating, ModelSim SE version 10.0c was used. A test bench was used
which included LEON3, so both the processor and the DMA Controller could be
seen in the simulation.

27
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AHB Trace

Aeroflex Gaisler has created a trace tool that can be used on the AHB. While
simulating in ModelSim, the transcript window is filled with output data. This
shows which master that made a transfer on the AHB, at which time, if it was a
read or write operation, number of bytes that was transferred, source address
and destination address. This was a perfect tool for testing the DMA Controller
on the AHB since it shows everything that is needed to be able to verify that
correct data was moved from the expected source address to the intended
destination address.

5.1.2 Results

Here are some test examples that was tested along with the given results. All of
the results could be seen in ModelSim and with help from the AHB trace.

5.1 Example
Number of bytes to transfer = 9
Source address = 40FFFE64
Destination address = 40FFFE30

Both the source and destination address are word addresses. One word is moved
and the source and destination address are incremented with four bytes.
Number of bytes to transfer is decreased with four bytes. Same thing will
happen again and after that only one byte will be moved. To sum up, two words
was moved followed by one byte.

5.2 Example
Number of bytes to transfer = 5
Source address = 40FFFE60
Destination address = 40FFFE32

The source address is a word address and the destination address is a halfword
address. One halfword will be moved and therefore both addresses will be
increased with two bytes while the number of bytes to transfer will decrease
with two bytes. The source address is now a halfword address while the
destination address becomes a word address. One more halfword will be moved
and finally one byte is moved. In other words, one halfword was moved
followed by another halfword and at last one byte was moved.

5.3 Example
Number of bytes to transfer = 7
Source address = 40FFFE61
Destination address = 40FFFE31
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Both the source and destination address are byte addresses. One byte is moved
and both addresses increases with one byte. Both addresses becomes a halfword
address. Number of bytes to transfer has been decreased with one byte. Next
move that is performed will be a halfword. The source and destination address
are increased with two bytes and number of bytes to transfer is decreased with
two bytes. The source and destination address are now both word addresses and
the last move will be a word. To recap, one byte followed by one halfword and
finally a word was moved.

More tests has been performed to verify that the DMA Controller works
properly in simulation but only a few are presented here since the overall logic
for the DMA Controllers behaviour will be the same for all of the transfers that
it performs.

5.2 Hardware

When the DMA Controller worked properly according to the simulation, it was
time to try it on hardware. The FPGA that has been used is Xilinx ML501,
Virtex-5 XC5VLX50 with a speed grade of -1. During these tests, data was
moved from an address in the DDR-memory to another address in the same
memory using the AHB.

5.2.1 Hardware Flow

Before the implementation can be run on the FPGA, synthesis and place and
route has to be run. The synthesis creates a netlist. The purpose of a netlist is to
connect gates or flip-flops together. With help from the process place and route,
the netlist is physically placed and mapped on the FPGA. After these steps a
binary file is generated and this is used for configuring the FPGA.

Timing analysis was made to verify that the DMA Controller operated as
expected. At first it did not. The code needed reconstruction to eliminate these
timing problems. It was fairly simple to remove the timing issues, but because
of the elimination of these, other problems occurred. The FSM:s needed minor
adjustments and after this, all of the problems was resolved.

To synthesize and place and route the design, tool version 14.2 was used. The
core has only been tested while running with frequency 80 MHz on the
mentioned board in Section 5.2. Some other cores that are attached to the
system can not handle a higher frequency than 80 MHz and that is why the
DMA Controller has been tested only with that specific frequency.

5.2.2 Results

Aeroflex Gaisler has a tool much like the AHB trace, mentioned in Section 5.1.1,
but for hardware. Thanks to this, it was easy to verify that the DMA Controller
operated as expected on the FPGA. After this verification, it was time to look
closer on the given results.
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Comparison With Software Solutions

A program in C was implemented so that the processor would move a specified
number of bytes. This program works in such a way that the built in function
memcpy in C is used to move a specified number of bytes. The implementation
of the memcpy function is optimized in terms of alignment. The time that it
took for the processor and DMA Controller to move a smaller amount of bytes
was compared which can be seen in Figure 5.1. Comparison when moving
several words can be seen in Figure 5.2.
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Figure 5.1: Comparison between the processor and DMA Controller includ-
ing descriptor configuration

During the comparison that can be seen in Figure 5.1, the descriptor
configuration was included. The processor starts at a lower time than the DMA
Controller and the processor’s curve increases more rapidly than the DMA
Controller’s which can be seen in Figure 5.1. Before the DMA Controller can
start to move data, its descriptors needs to be configured. This configuration
takes considerable time compared to the actual moving of a smaller number of
bytes. When moving a smaller number of bytes, the processor is faster than the
DMA Controller because of this configuration.

As can be seen in Figure 5.1, the measured time is of small magnitude and
varies. One conclusion that can be drawn from the information given in Figure
5.1 is that the DMA Controller is more efficient for moving of data than the
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processor after approximately 35 words.
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Figure 5.2: Comparison between the processor and DMA Controller without
descriptor configuration

Figure 5.2 shows how long time it took for the processor and DMA Controller to
move a specified number of words. The descriptor configuration was not
included during this comparison. The processor’s curve increases more rapidly
than the DMA Controller’s.

Alignment

Data alignment has been implemented so that the DMA Controller can move
data from and to other addresses than just word addresses.
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Figure 5.3: The DMA Controller moves only bytes, only halfword and one
byte, one halfword and then only words

In Figure 5.3, the line named byte shows how the DMA Controller operates
when only moving bytes. The reason that the DMA Controller only moves bytes
is because at least one of the source and destination addresses will be a byte
address. Alignment of the source and destination addresses to halfword or word
addresses is impossible. The line called halfword shows how the DMA
Controller operates when only moving halfwords. The source and destination
addresses will always be a word address and a halfword address or a halfword
address and a word address. It is impossible to align the source and destination
addresses to word addresses. Finally, the line named word shows how the DMA
Controller operates when first moving one byte, one halfword and then only
words. Alignment of the source and destination addresses to halfword and/or
word addresses is possible.

The line named word in Figure 5.3 shows that the implemented data alignment
works successfully. The source and destination addresses starts at byte
addresses, which becomes halfword addresses and finally word addresses.
When the source and destination addresses are word addresses, only words are
moved. When at the end of the data transfer, the last move can be a byte, a
halfword or a word, depending on the predefined transfer size.
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Area

While looking at the area consumption, the most interesting resource units was
the number of flip-flops, LUT:s and memories.

Unit name Number of units Percentage
Flip-Flop 656 6.6%
LUT 1197 6.7%
Memory 0 0%

Table 5.1: Number of used resource units

Table 5.1 shows that the implementation uses 656 flip-flops, 1197 LUT:s and 0
memories. The percentage is the percentage that the DMA Controller utilizes
compared to the whole system.

The number of flip-flops and LUT:s can be decreased by optimizing the internal
registers that are used. This optimization has not been done for the sake of
readability and understanding of the implementation. It is a question of what
the person that will be using it wants, an acceptable implementation that is
fairly easy to understand or an optimized implementation that is harder to
comprehend with the gain of less hardware.

The core registers mentioned in Section 4.2.1 must be present. The status and
control registers are not fully utilized since there are some reserved bits. These
two registers could be merged into one, but the separation gives better
readability. The internal registers are fully utilized, but optimizations
concerning resource sharing can be made, more about this is Section 6.1.

Section 4.4.1 presents the fields in a descriptor. These fields can not be more
optimized. One descriptor was represented by 6 words at the beginning of the
implementation. The status and transfer size words was removed. The transfer
size is now represented by 8 bits in the control word, which can be seen in
Section 4.4.1.

Mathematical operations are performed, these could perhaps be done in a more
optimized way and thus minimize hardware resources. Instead of performing
many different additions with multiple adders, one adder could be used for
several or all additions.

5.3 Summary

The DMA Contoller supports AMBA and is attached to an AHB master and APB
slave. The implementation is descriptor based and scatter-gather works properly.
Each descriptor has the ability to move up to 255 bytes. Each transfer is made in
burst mode, this will decrease time spent on bus accessing. It has data
alignment, which means that the source and destination address can be
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arbitrarily aligned. Interrupt handling along with interrupt masking is
implemented. The DMA Controller can handle multiple channels.

The DMA Controller runs with frequency 80 MHz. Figure 5.1 shows that the
DMA Controller is more efficient for moving of data than the processor after
approximately 35 words. Figure 5.2 shows that the DMA Controller is much
faster than the processor when a large set of 32-bit words are moved. Figure 5.3
shows how the DMA Controller operates when moving only bytes, only
halfwords and one byte, one halfword and then only words. As described in
Section 5.2.2, the DMA Controller utilizes 656 flip-flops, 1197 LUT:s and 0
memories.
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Conclusions

This chapter describes future works that can be made on the DMA Controller.
Thoughts about how to implement new features are presented.

The main conclusion that can be made from this master thesis is that a
successfully working DMA Controller for use in LEON3 SoC:s integrated with
AMBA could be implemented. Implemented functions works as expected and
the used hardware presented in Table 5.1 is acceptable. The implementation
should not need much adjustments in the future, but more features can of
course be added.

6.1 Future Work

The DMA Controller can support up to 7 different channels. If this is not
enough, expand the number of bits that represent the number of channels in the
status register mentioned in Section 4.2.1.

6.1.1 Optimizations

To be able to make the type of optimization mentioned in Section 5.2.2, different
design choices must be made. For example, the descriptor fields and the data
that should be moved could might be saved in another way that requires less
hardware. The data that should be moved is saved into a FIFO buffer. This FIFO
buffer consists of 8 words, since the DMA Controller should be able to move at
maximum 8 words in each burst. It is not ideal that the FIFO buffer has a
predefined size of 8 words, since the DMA Controller could be used to move less
than 8 words. Instead of thinking of it as a FIFO buffer implemented with
flip-flops, it could be seen as a regular memory. Transform the FIFO buffer into a

35
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specific memory could be a way of reducing hardware and making the
implementation more efficient.

The implementation consists of several counters. One of these is used for
keeping track of the number of channels, descriptors and to be able to know
what the transfer size is. The counters that give channel information are not
behaving like the first counter, they do not perform several tasks. These
counters could be optimized. One counter decreases the number of predefined
channels, another counter increases the number of channels so that it is easy to
know which channel that is in progress and the last channel counter counts the
number of invalid channels. It should not be difficult to merge these three
channel counters into one, just like the first mentioned counter.

6.1.2 Additional Functionality

As mentioned in Section 4.4.1, there are two bits in the control word that
describe what kind of data transfer that shall be performed. Knowledge of
which kind of data transfer that is requested is essential if the DMA Controller
will be able to control the peripherals described in Section 3.2. In other words,
the idea is to use these two bits in future works while connecting the DMA
Controller to the peripherals mentioned in Section 3.2. The DMA Controller can
not handle these peripherals for now. To be able to control these peripherals
with the DMA Controller, the first step is to read the source code and
documentation for these specific cores. Source code for these cores can be found
at the homepage of Aeroflex Gaisler [Aeroflex Gaisler, 2013-05-07] and
documentation for the cores can be found in the GRLIB IP Library [Aeroflex
Gaisler, 2013-01-31]. To be able to succeed with this, the hardware must be
adapted to the new bus. This type of future work will require additional
adjustments of the implemented DMA Controller.

The signal HRESP is described in Section 2.3.1. It has four different states: okay,
error, retry and split. The DMA Controller becomes disabled when in states:
error, retry or split. This is unnecessary for states retry and split. Instead of
disabling the DMA Controller, the bus should be requested and attempts to
complete the transfer could be made.
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