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This is a language reference manual that explains the syntax 
and semantics of the GEZEL language in a tool-independent way. 

1.0  Concepts

The GEZEL language models networks of cycle-true, finite-state-machine and datapath
(FSMD) modules. Interconnections between modules or library blocks are wires. GEZEL
makes synchronous (cycle-true) descriptions. All modules are attached to a single,
implicit clock.

A module is a combination of a controller and a datapath, or a library block. A datapath
has a number of input ports or output ports that connect to other modules. A datapath is
defined in terms of signal flow graphs, pieces of behavior that describe the operations in
that datapath during a single clock cycle. Those operations take values from input ports or
datapath registers, and transform those using expressions into results that can be written to
output ports or data path registers. A controller is used to schedule datapath instructions
per clock cycle. Several controller types are available, going from a simple hardwired con-
troller to a more elaborate finite state machine.

Library blocks are predefined blocks provided by the GEZEL environment. They are not
developed in the GEZEL language. They are used for specific tasks, such as hardware/
software codesign interfaces and memory modules.

2.0  Language Building blocks

Formatting. The GEZEL language is context-free and ignores whitespace. A comment
starts with a double slash (//) or a sharp-exclamation (#!) and runs to the end of the line.

Identifiers. An identifier is a sequence of characters (a-z, A-Z) or numbers or underscore.
The first character must not be a number.

Constants. A numeric constant can be in decimal, hexadecimal (e.g. 0xFF) or binary for-
mat (e.g. 0b110101). String constants, used by some directives, contain a character
sequence between double quotes. Subsequent strings in double quotes are treated as a sin-
gle string.

Types. GEZEL variables and ports have a wordlength and a sign. The sign is unsigned
(ns) or two’s complement signed (tc). A type specification is given by combining a sign
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with a wordlength. For example, ns(10) is an unsigned, 10-bit type. tc(256) is a 256-bit
signed type.

Keywords. The following is a list of keywords. None of them can be used as identifier.

3.0  Datapaths

Example:
dp accum( in a : tc(8) ) {
  reg acc : ns (8);
  sfg clear {
    acc = 0;
  }
  sfg add {
    acc = (acc + a);
    $display("acc=", acc);
  }
}

This datapath defines a single input port, a, which accepts 8-bit signed signals. The datap-
ath contains an accumulator acc and two instructions, clear and add. Both of them contain
operations on the accumulator. The ‘add’ instruction also contains a simulation directive:
a display statement. The datapath only specifies the available instructions, but not the
schedule of those instructions. It is the task of a controller (to be described further) to
define this schedule.

3.1  Port definition

The list of ports of a datapath is a list of input and output port definitions separated by
semicolons. The list opens and closes with round brackets. In case a datapath has no ports,
the datapath port list including the round brackets is absent. 

$bin
$cycle
$dec
$display
$dp
$finish
$hex
$sfg
$trace
$option

always
dp
else
fsm
hardwired
if
initial
in
ipblock
ipparm
iptype
lookup

ns
out
reg
sequencer
sfg
sig
state
stimulus
system
tc
then
use
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A port has a direction (in or out) and a type. If the type and direction of several ports is
identical, the identifiers of those ports can share the same type specification as a comma-
separated list. 

Example:
dp thedp(in a, b, c : ns(5); out d : ns(1); in e : tc(20))

a, b and c are input ports accepting 5-bit unsigned numbers.
d is an output port generating a 1-bit unsigned number.
e is an input port accepting a 20-bit signed number.

3.2  Registers, Signals and Lookup Tables

Registers and signals are used to create expressions inside of datapath instructions. A reg-
ister has two values: a current value (the value obtained when reading from the register)
and a next-value (the value assigned when writing into a register). At each clock edge, the
next-value is copied into the current value. A signal has a single, immediate value and is
semantically identical to wiring. A signal must be defined in the same clock cycle as it is
consumed. A register will hold its value until it is reassigned. 

Example:
reg q : tc(32);
sig v, w : ns(1);

q is a 32-bit signed register.
v and w are 1-bit unsigned signals.

GEZEL does not support arrays. GEZEL does support lookup tables, which are constant
arrays. The contents of a lookup table is defined at the same position as signals and regis-
ters. A lookup table has a name and a type specification. The type specification indicates
the type of individual elements. A lookup table is accessed with the lookup operation.

Example:
lookup T : ns(8) = {5, 4, 3, 2, 1};

T is a lookup table with 8-bit, unsigned elements. 5 elements are defined. Location 0 holds
the value 5, location 1 holds the value 4, and so on.

3.3  Expressions

Expressions are collections of operations with constants, registers, signals and lookup
tables. Expression results can have a precision that is different from their operands. There
is a default type combination rule: (a) The wordlength of the result is the maximum
wordlength of the operands and (b) if any of the operands is signed, the result will be
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signed. The operators, in order of precedence going from low to high, are listed in Table 1.
If the type of the result is not indicated, it is created using the default rule. 

TABLE 1. Operators in order of precedence (low to high)
a = expr1 Assignment Operation.

The value of expr1 is casted into the type of a.
a ? b : c Selection Operator.

If a is nonzero, result is b else c.
The type of the result is the default combination of b and c.

a | b Bitwise Inclusive OR.
a ^ b Bitwise Exclusive OR.
a & b Bitwise AND.
a == b
a != b
a < b
a > b
a <= b
a >= b

Logical comparison for equality.
Logical comparison for inequality.
Locgical comparison for smaller-then.
Logical comparison for bigger-then.
Logical comparison for smaller-or-equal-then.
Logical comparison for bigger-or-equal-then.
The type of the result of all logical comparisons is 1-bit 
unsigned

a << b Left Arithmetic Shift.
The result has the sign of a and the wordlength wl(a) + (1 
<< wl(b)), with wl(a) = wordlength of a and wl(b) = 
wordlength of b

a >> b Right Arithmetic Shift.
a + b
a - b

Addition.
Subtraction.

a # b Bit concatenation.
Equivalent to (a << wl(b)) | b,  wl(b) is wordlength of b).
The resulting wordlength is wl(a) + wl(b). The result sign 
is that of a.

a * b Multiplication.
The result wordlength is wl(a) + wl(b). The result sign fol-
lows the default rule.

a % b Modulo-operation
(type_spec) a Cast a to type_spec. Type spec is a standard type specifica-

tion, e.g. ns(5) for a 5-bit unsigned number.
The type of the result is defined by type_spec.
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3.4  Signal Flowgraph Definition

Signal flowgraphs define the instructions of a datapath. Each signal flowgraph (sfg) col-
lects a number of expressions, separated by a semicolon. Each sfg represents 1 cycle of
behavior. All expressions in an sfg execute concurrently, but will follow the data prece-
dences between expressions and the semantics of registers and signals. Each sfg has a
symbolic name, by which this instruction can be referred. Any number of sfg can be active
during a particular clock cycle. This is decided by the controller on top of the datapath. An
sfg should be thought of as a behavior, not as a structure.

The operands of the expressions in an sfg must be either datapath inputs, datapath outputs,
registers defined within the datapath or signals defined within the datapath.

Example:
reg a : ns(4);
sig b : ns(4);
sfg myinstruction {
  a = b + 3;
  b = 2;
}

In the sfg myinstruction, the bottom expression (b=2) will be evaluated first because b is a
signal that is consumed by the first expression. The next-value of a will be 5.

3.5  ‘always’ Signal Flowgraph

A datapath can specificy an instruction which is to be executed each clock cycle, regard-
less of the controller specification. Such an sfg can be expressed with the always key-
word. An always instruction has no identifier.

Example:

- a Unary minus.
The result type has the type of a.

~ a Bitwise NOT.
The result type has the type of a.

a[number]
a[from_num:to_num]

Bit selection (Result is a 1-bit unsigned number).
Bit vector selection (Result is (from_num - to_num + 1)-
bit unsigned, assuming from_num > to_num). 

a( expr ) Lookup operation in lookup table a.
Result is defined by the type of the lookup table elements.

( a ) Grouping operator, used to modify precedence rules (e.g. a 
+ (b*c)).

TABLE 1. Operators in order of precedence (low to high)
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reg a : ns(4);
sig b : ns(4);
always {
  a = b + 3;
  b = 2;
}

This instruction will assign, each clock cycle, the value 2 to the signal b, and the value 5 to
the register a.

4.0  Controllers

A controller specifies a schedule for the instructions in a dapapath. Each datapath can have
only a single controller. The sfg instructions of a datapath can only execute when a con-
troller is specified. The always instruction of a datapath will execute regardless of the
presence of a controller.

GEZEL provides three types of controllers.

4.1  Hardwired Controller

A hardwired controller selects a single instruction for perpetual execution.

Example:
hardwired mycontroller(mydatapath)           { doit; }
hardwired myothercontroller(myotherdatapath) { doit; doit2; }

In the first example, the controller  mycontroller is attached to the datapath mydatapath
and selects the sfg doit for execution at any clock cycle. In the second example, the con-
troller myothercontroller is attached to datapath myotherdatapath and selects the sfg doit
and doit for simultaneous execution at any clock cycle.

4.2  Sequencer Controller

A sequencer controller selects a sequence of single sfg to be executed in a sequences,
cyclic fashion.

Example:
sequencer mycontroller(mydatapath) { doit1; doit2; doit2; }

The controller mycontroller is attached to the datapath mydatapath. At the first clock cycle
of the simulation, sfg doit1 is executed. At the second and third clock cycle of the simula-
tion, sfg doit2 is executed. At the fourth clock cycle of the simulation, doit1 is executed
again, and so on. 

Example:
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sequencer mycontroller(mydatapath) { (doit1, doit2); doit2; }

The controller mycontroller is attached to the datapath mydatapath. At the first clock cycle
of the simulation, sfg doit1 and sfg doit2 are simultaneously executed. At the second
cycle, sfg doit2 is executed. The third clock cycle looks again like the first one.

4.3  Finite State Machine Controller

A finite state machine controller (FSM)  combines instruction sequencing and decision
making in a finite-state model. A FSM defines a finite number of states. At any moment,
the FSM is in one of the defined states. One of these states is the initial state, and repre-
sents the state in which the FSM starts execution. In between states, state transitions are
defined. State transitions take a single clock cycle to complete. During state transition, one
or more sfg may be selected for execution. The first example shows an FSM with no deci-
sion making:

Example:
fsm mycontroller(mydatapath) {
  initial s0;
  state s1, s2;
  state s3;
  @s0 (doit1)        -> s2;  // state transition 1
  @s1 (doit1, doit2) -> s2;  // state transition 2
  @s2 (doit3)        -> s1;  // state transition 3
}

The controller mycontroller is attached ot mydatapath. This fsm defines 4 states: s0, s1,
s2, s3. The initial state is s0, while s1, s2, s3 are normal states. The fsm defines three state
transitions, all of them are unconditional. The first state transition starts in state s0, the ini-
tial state, and moves to state s2. During this state transition, datapath instruction doit1 will
be executed. The second state transition starts in state s1 and moves to state s2. During this
state transition, instructions doit1 and doit2 will be executed concurrently. The third state
transition is similar to the first. In the first clock cycle of simulation, state transition one
will execute. In the second clock cycle, state transition three will execute, while in the
third clock cycle, state transition two will execute.

Using registers from the datapath, conditional expressions can be formed. These condi-
tional expressions can be used to make conditional state transitions. The operands of these
conditional expressions must be datapath registers, and cannot be datapath signals or data-
path inputs or outputs.

Example:
fsm mycontroller(mydatapath) {
   initial s0;
   state   s1;
   @s0 if (a & b) then (doit1) -> s1;
       else            (doit2) -> s1;
   @s1 if (a) then
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          if (b) then  (doit1) -> s0;
          else         (doit2) -> s0;
       else            (doit2) -> s0;
}

The controller mycontroller is attached to mydatapath. The controller defines two states
and 5 state transitions, all of them conditional. The first state transition makes a bitwise
and of registers a and b of datapath mydatapath, and if the result is nonzero, sfg doit1 is
executed. Otherwise, the second state transition is executed together with sfg doit2. The
next three state transition, starting out of state s1, tests the same condition but uses a con-
dition hierarchy. A conditional state transition must always be specified in pairs. It is an
error to write the if-part without the else part.

5.0  Hierarchy and Module Instantiation

There are no module types in GEZEL. There are no module declarations, only definitions.
GEZEL provides support for structural hierarchy (enclosing modules inside of other mod-
ules) and module instantiation (module copying from existing modules).

5.1  Hierarchy

Once a datapath is defined, it can be enclosed inside of another one with the ‘use’ state-
ment. Such insertion must be done at the same location where registers and signals are
defined. When a datapath is included, it must be connected using an actual port list.

Example:
dp innerdp(in a : ns(5); out b : ns(5)) {
  // ...
}

dp outerdp(in c : ns(5); out d : ns(5)) {
   reg v : ns(5);
   use innerdp(c, v);
   sfg doit {
     d = v + 1;
   }
}

The datapath outerdp encapsulates a datapath innerdp. The datapath innerdp is connected
to an input of the outerdp and a register v. The connections to the innerdp ports are made
with positional matching: port a of innerdp is connected to port c of outerdp, and port b of
innerdp is connected to register v of outerdp.

5.2  Module Instantiation (cloning)

A module is fully defined when both a datapath and a controller for that datapath are
defined. A copy of such a module can be made with the cloning operation. The resulting
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clone is functionally identical to the original, but has in an independent set of state vari-
ables.

Example:
dp andgate(in a22,b : ns(1); out q : ns(1)) {
  always {
    q = a22 & b;
  }
}

dp andgate2 : andgate
dp andgate3 : andgate

The datapaths andgate2 and andgate3 are copies from datapath andgate. Both will have
also a controller, that will execute the datapath sfg active in each of datapath2 and
datapath3.

6.0  Semantic Requirements for Proper FSMD Description

A datapath with a port definition, register/signal definition and instruction definition and
schedule (controller) is considered to be a proper FSMD if it has deterministic behavior.
Such behavior implies that the simulation will be unambiguous and race-free. The descrip-
tion of a proper FSMD has to obey the following four requirements.

• During any clock cycle, all datapath outputs must be defined. This means that datapath
outputs must always appear at the lefthand-side of an assignment expression.

• During any clock cycle, no combinatorial loop between signals can exist. This happens
when there is a circular dependence on signal values, i.e. signal a is used to define sig-
nal b, and signal b is used to define signal a. This implies that all signal values will
eventually only be dependent, during any clock cycle, on datapath inputs, datapath reg-
isters and constant values.

• If an expression consumes the value of a signal during a particular clock cycle, then
that signal must also appear at the left-hand side of an assignment expression in the
same clock cycle.

• Neither registers, nor signals or datapath outputs can be assigned more then once dur-
ing a clock cycle. 

The GEZEL simulator will verify these properties during parsing and at run-time.

7.0  Directives

Datapath instructions can contain a number of directives. The effect of directives is tool-
dependent, and not part of the GEZEL semantics. In fact, one can always strip out all
directives of a GEZEL program without changing the behavior of that program. For a
complete description of the directives, refer to the GEZEL User Manual. Directives start
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with the ‘$’ sign. Depending on their kind, they can appear at several positions on a
GEZEL program.

• At the start of a GEZEL program: $option

• Inside of a datapath: $trace, 

• Inside of an sfg: $display, $finish

• Inside of the $display directive: $cycle, $dp, $sfg, $hex, $bin, $dec

• Inside of a control step: $trace

Example:

$option “profile_toggle_alledge_cycles"

Example:

sig k : ns(20);
$trace(k, “kvalues.txt”); // record k in kvalues.txt

Example:
$display(“The value of a is “, a);
$display($hex, a, “ “, b + 1, “ “, $bin, c);
$display($cycle, “: executing sfg “, $sfg);
$finish;

Example:

@s0 (sfg1, sfg2, $trace) -> s1; // use in state transition

8.0  Toplevel

The topcell a GEZEL description is expressed in a system block. The topcell is normally a
datapath without any inputs or outputs, within which all other datapaths are contained by
means of structural hierarchy.
system S {
  topcell;
}

9.0  Library Blocks

A library block in GEZEL is a custom block, available in the GEZEL environment but not
written in the GEZEL language. Library blocks are defined at the moment the GEZEL
simulation is configured. The set of library blocks available therefore depends on the
GEZEL simulator instance. Library blocks are typically used for memory modules (RAM)
and hardware/software codesign interfaces. A library block is treated in the same way as a
module. It has a set of input and output ports and can be connected in a system netlist.
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9.1  Syntax

The purpose of the examples below is to illustrate only the syntax of the library blocks.
The semantics of library blocks is defined by the library block developer, and not a part of
the GEZEL language reference.

Example:
ipblock M(in address : ns(5);
          in wr,rd   : ns(1); 
          in idata   : ns(8);
          out odata  : ns(8)) {
  iptype "ram";
  ipparm "size=32"; 
  ipparm "wl=8"; 
}

ipblock nodeB(in data : ns(32)) {
  iptype "armzillasink";
  ipparm "processor=processorB";
  ipparm "address=0x80000010";
}

The first library block is a RAM module with 32 locations of 8 bits wide. The port list of a
library block depends on the type of that library block. The names and order of the ports
are fixed by the type of that library block. The RAM block is part of the GEZEL core sys-
tem and available in all instances of GEZEL simulations. The iptype specification selects
the type of the library block. The ipparm specification allows to select parameters on the
library block. The number and nature of parameters depends on the type of the library
block. In this case, the size and wordlength of the RAM module are defined.

The second library block a memory-mapped hardware/software interface. The library
block is of type armzillasink, and is a data channel leading from software to hardware
(GEZEL). Two parameters are defined, the first one is a processor specification, the sec-
ond one the address in memory space where this hardware/software interface maps to.
This library block is specific to a particular instance of the GEZEL simulator in a cosimu-
lation environment, and is not generally available.

9.2  Hierarchy and cloning of library blocks

Library blocks can be cloned and used hierarchically in the same way as other datapath
modules. Each clone of a library block will operate as an independent copy of that block.

Example:
ipblock M(in address : ns(5);
          in wr,rd   : ns(1); 
          in idata   : ns(8);
          out odata  : ns(8)) {
  iptype "ram";
  ipparm "size=32"; 
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  ipparm "wl=8"; 
}
ipblock M2 : M

dp mydp {
  sig a    : ns(5);
  sig w, r : ns(1);
  sig i, o : ns(8);
  use M(a, w, r, i, o);
  // ...
}

10.0  Multi-file descriptions and use of the C preprocessor

GEZEL currently does not support macro’s or designs descriptions split over multiple
files. However, the C preprocessor can be used to preprocess GEZEL files that contain
#include directives or #define macro’s. Such files can be preprocessed as follows:
cpp -P myfile.fdl >mypreprocessedfile.fdl

Afterwards, mypreprocessedfile.fdl can be provided to the simulator.
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