PetNADTM

Canine Tick-Borne Diseases Panel

For Canine Babesiosis,

Babesia gibsoni,

Ehrlichia canis,

and Anaplasma platys

User Manual

For Research Use Only

Manufacturer:

GeneReach Biotechnology Corporation

TEL: 886-4-24639869 FAX: 886-4-24638255

No. 19, Keyuan 2nd Rd., Central Taiwan Science Park, Taichung City, Taiwan 407

Web Site: www.petnad.com

Content

IN	TENDED USE	1
SU	MMARY AND EXPLANATION	1
PR	INCIPLES OF THE PROCEDURE	2
PR	ODUCT DESCRIPTION	3
A.	Materials Provided	3
В.	Materials and Equipments Required, but Not Provided	3
C.	Storage and Stability	4
D.	Sample Type	4
PR	ECAUTIONS	4
LIN	MITATIONS	5
PR	OCEDURE	6
A.	PetNAD TM Canine Tick-Borne Disease Panel Quick Guide	6
В.	P(+) Standard Preparation	7
C.	Procedure	7
DA	TA INTERPRETATION	9
AN	ALYTICAL SENSITIVITY	9
TR	OUBLESHOOTING	10

DEEDENGE	1/
REFERENCE	

INTENDED USE

PetNADTM Canine Tick-Borne Disease Panel is intended for *in vitro* detection of Canine Babesiosis, *Babesia gibsoni*, *Ehrlichia canis* and *Anaplasma platys* based on insulated isothermal polymerase chain reaction (iiPCR) technology. This panel is designed specially to be used with an iiPCR-compatible instrument, **POCKIT**TM Nucleic Acid Analyzer. The assay is intended for use by people with basic laboratory skills.

This kit is intended for research use only.

SUMMARY AND EXPLANATION

Tick-borne diseases caused by *Babesia canis*, *Babesia gibsoni Ehrlichia canis and Anaplasma platys*(formerly *Ehrlichia platys*), often occur in dog whose main vector is the brown-dog tick, Rhipicephalus sanguineus. Clinical abnormalities associated with tick-borne diseases often include lethargy, anorexia, pale mucosa membranes, haemolytic anaemia, haemoglobinuria and thrombocytopenia (Lobetti, 1998; Bourdoiseau, 2006).

PCR is one of the most commonly accepted methods that provide high sensitivity and specificity for canine tick-borne disease detection. However, conventional PCR assays take three to four hours, and require sophisticated thermocyclers and well-trained technicians to perform. GeneReach has developed **PetNAD**TM Canine Tick-Borne Disease Panel based on iiPCR technology, which significantly reduces reaction time and offers sensitivity and specificity comparables to those of conventional nested PCR (Tsai, 2012; Chang, 2012). Furthermore, this simple and easy assay could be completed rapidly in a portable **POCKIT**TM Nucleic Acid Analyzer.

PRINCIPLES OF THE PROCEDURE

In iiPCR, hydrolysis probe-based chemistry is used to generate fluorescent signal during amplification of target DNA. The primers and probe target specific genes and do not cross-react with nucleic acid from host and other tick-borne pathogens.

PRODUCT DESCRIPTION

A. Materials Provided (4 combo tests for 8 dogs)

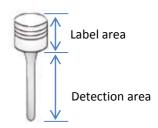
Component	Contents or Purpose		Amount
Premix Pack		Canine Babesia Premix, Babesia	5 bags (8 tubes
		gibsoni Premix, Ehrlichia canis	and 1
		Premix and Anaplasma platys	desiccating/bag)
		Premix (lyophilized pellet)	
		containing dNTPs, primers, probe,	
	and enzyme for amplification.		
		Panel P(+) Standard Premix	
		Desiccating agent pack.	
Premix		Reaction buffer to re-dissolve the	2 vials
Buffer B		lyophilized pellet.	(1.3 ml/vial)
P(+) Standard		Dried P(+) control template.	1 vial
Standard		Reaction buffer to re-dissolve P(+)	1 vial
Buffer		Standard.	(110 µl/vial)
User Manual			1 сору

B. Materials and Equipments Required, but Not Provided

- 1) **PetNAD**TM Nucleic Acid Co-prep Kit
- POCKITTM Nucleic Acid Analyzer: PetNADTM-compatible instrument.
- 3) **cubee**TM Mini-Centrifuge (cubee)
- 4) Micropipette and tips

C. Storage and Stability

- 1) The kit should be stored at 4°C and is stable until the expiration date which is stated on the label.
- 2) Store Premix vials in sealed Premix Pack to avoid hydration of lyophilized components.
- 3) Reconstituted P (+) Standard is stable for 6 months at 4°C. Aliquot reconstituted P (+) Standard to avoid degradation and contamination of nucleic acid.


D. Sample Type

Nucleic acid extracted from whole blood.

PRECAUTIONS

- A. Do not open R-tube(s) after reaction to prevent any carryover contamination.
- B. Perform extraction and amplification in two independent spaces to minimize contamination.
- C. Do not reuse R-tube and Premix.
- D. Include the P(+) Standard to:
 - Ensure POCKITTM Nucleic Acid Analyzer is working normally.
 - 2) Ensure detection kit performance after storage.

- E. To get optimal fluorescence detection.
 - Wear powder-free gloves to handle R-tubes.
 - Do not label in the detection area of R-tube.

LIMITATIONS

- A. The test should be used only for testing nucleic acid extracted from animal specimen. Do not add specimen (i.e. whole blood) directly into Premix.
- B. **PetNAD**TM Nucleic Acid Co-prep Kit is recommended for nucleic acid extraction.
- C. Any deviation from recommended procedure may not achieve the optimal results and should be validated by the users.
- D. It is strongly recommended to use freshly prepared nucleic acid (within 1 hour after extraction) to achieve optimal results with **PetNAD**TM Canine Tick-Borne Disease Panel.

PROCEDURE

A. $PetNAD^{TM}$ Canine Tick-Borne Disease Panel Quick Guide

B. P(+) Standard Preparation

Note: Before using for the first time, add 100 μ l Standard Buffer to Panel P(+) Standard. Store reconstituted P(+) Standard at 4°C.

- 1) Label R-tube(s) in the label area.
- 2) Prepare one P(+) Standard Premix for each run. (Premix tube is in the Panel P(+) Standard Premix Pack, containing eight Premix tubes.)

Note: If the pellet is not found at the bottom of the tube, spin tube briefly to bring it down.

- 3) Add 50 µl Premix Buffer B to the Premix tube.
- 4) Add 5 μ l P(+) Standard to the Premix tube. Mix by pipetting up and down.
- 5) Follow **Procedure C, Step 5** to proceed P(+) Standard preparation.

C. Procedure

- 1) Label R-tube(s) in the label area.
- For each target, prepare one Premix tube. (Premix tube is in the Premix Pack. Each Premix Pack contains eight Premix tubes.)

Note: If the pellet is not found at the bottom of the tube, spin tube briefly to bring it down.

- 3) Add 50 µl Premix Buffer B to each Premix tube.
- 4) Add 5 μl nucleic acid extract to each Premix tube. Mix by pipetting up and down.
- 5) Transfer 50 μl Premix/sample mixture into R-tube.
- 6) Seal top of each R-tube with a cap. Make sure R-tube is capped tightly.
- 7) Place R-tube into the holder of **POCKIT**TM.
- 8) Spin tube briefly in **cubee**TM to make sure all solution is collected at the bottom of R-tube.

Note: Start reaction within 1 hour to prevent nucleic acid degradation.

Note: Make sure there are no bubbles in the tube.

9) **POCKIT**TM reaction:

Note: Please see the user manual of POCKITTM for details.

- a) Turn on **POCKIT**TM, which should complete self-testing within 5 minutes.
- b) Select "520 nm".
- c) When "System READY" is displayed, place the holder with R-tube(s) into the reaction chamber.
- d) Tap cap of each R-tube to make sure the tube is positioned properly.
- 10) Close lid and press "Run" to start reaction program.
- 11) Test results are shown on the monitor after reaction is completed.

DATA INTERPRETATION

* One example of results shown on the monitor.

520nm	Interpretation
0	Positive infection
0	Negative infection
0	Repeat reaction with freshly prepared nucleic acid

ANYLYTICAL SENSITIVITY

The detection limit of **PetNAD**TM Canine Tick-Borne Disease Panel is about 10 copies/reaction.

TROUBLESHOOTING

PetNADTM Canine Tick-Borne Disease Panel

Problems Possible causes		Solutions
False Positive	1) Reuse of micro-	■ Micro-centrifuge tubes, tips,
	centrifuge tubes,	R-tubes and Premix are for
	tips, R-tubes and	single-use only. Reusing these
	Premix.	accessories would cause cross-
		contamination.
		■ Used micro-centrifuge tubes, tips,
		R-tubes and Premix should be
		collected and discarded according
		to local regulation. Do not place the
		waste close to the working area to
		prevent cross-contamination.
	2) Contaminated	■ Disassemble and clean up
	micropipette	micropipette.
		■ Use aerosol-free tips.
	3) Contaminated	■ Consult with a GeneReach
	reagent	technical support representative or
		local distributor.
	4) Contaminated	■ Consult with a GeneReach
	working area	technical support representative on
		how to clean up working area.

Problems	Possible causes	Solutions
False	1) Nucleic acid	■ Consult manual of nucleic acid

Negative	extraction failed.	extraction kit.
	2) Bad nucleic acid	■ Check sample storage condition.
	quality or nucleic	■ Please refer to Troubleshooting
	acid concentration	section of PetNAD TM Nucleic Acid
	too high	Co-prep Kit.
		■ If a spectrophotometer is available,
		check OD 260/280 ratio. This ratio
		should be between 1.4 and 2.0.
	3) PCR inhibition	■ Do not overload nucleic acid.
		■ Spike nucleic acid sample into P(+)
		Standard reaction for a parallel
		PCR reaction. Negative results
		indicate the presence of inhibitors
		in the nucleic acid. In that case,
		prepare another nucleic acid
		extract.
Heavy	1) Leakage or spill of	■ Consult with a GeneReach
contamination	reaction from	technical support representative or
of amplicons	R-tube into	local distributor.
in reaction	reaction chamber	
chamber of	of POCKIT TM .	
POCKIT TM .		

REFERENCE

1. Bourdoiseau, G (2006). Canine babesiosis in France. Vet

- Parasitol, 138:118-125.
- Chang, H.F. G., Tsai, Y.L., Tsai, C.F., Lin, C.K., Lee, P.Y., Teng, P.H., Su, C. and Jeng, C.C., (2012). A thermally baffled device for highly stabilized convective PCR. *Biotechnology Journal* 7(5): 662-666, doi: 10.1002/biot.201100453
- 3. Harrus, S., Bark, H. and Waner, T., (1997). Canine monocytic ehrlichiosis: An update. Compendium of Continuing Education for the Veterinary Practitioner, 19 (4): 431-444.
- 4. Lobetti, R.G., (1998). Canine babesiosis. *Compend Cont Educ Pract Vet* 20:418-431
- 5. Murphy, G.L., Ewing, S.A., Whitworth L.C., Fox J.C. and Kocan, A.A. (1998). A molecular and serologic survey of *Ehrlichia canis*, *E. chaffeensis*, and *E. ewingii* in dogs and ticks from Oklahoma. Vet Parasitol 79: 325-339.
- Tsai Y.L., Wang H.T.T., Chang H.F.G., Tsai C.F., Lin C.K., Teng P.H., Su C. and Jeng C.C., (2012) Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. *PLoS ONE* 7(9): e45278. doi: 10.1371/journal. pone. 0045278