

Vatios 1.0

Programmer’s Manual

Juan Antonio Victorio Ferrer
University of Zaragoza

Vatios 1.0 Programmer’s Manual III

Table of contents

Table of contents .. III
1. Presentation .. 1
2. Simulator Software Architecture.. 2
3. Adding another technology point ... 4
4. Adding new power models... 5
5. Adding a new unit, with its power model. ... 9

5.1. Declaring the Unit .. 9
5.2. Adding auxiliary strings ... 9
5.3. Counting the number of accesses ... 10
5.4. Creating the power models... 11
5.5. Adding the call to the function that calculates power/energy 12

6. Adding the Vatios library to an existing SimpleScalar based simulator.......................... 13
7. Adding Vatios to a non-SimpleScalar based simulator.. 16

Vatios 1.0 Programmer’s Manual 1

1. Presentation

Vatios is a free simulator, written in C that can be used to get power and energy consumption

values from super-scalar processors. It implements the same architecture as Wattch and not

only provides the same functionality, but also gives more flexibility and new interesting

features.

Vatios has been developed trying to allow the advanced-user to modify it with few effort. In

order to do that, it’s recommended to be familiar with the SimpleScalar simulator.

As Vatios and Wattch are based on SimpleScalar, if you have a modified simulator based on

SimpleScalar you can easily add power/energy prediction, only including some headers, their

correspondent files in the directory and some code in your simulator.

Moreover, if you have a simulator that isn’t based on SimpleScalar, you can generate a file

with the same structure and required information as the dump files that sim-vatios

generates and then, you can process it with power-vatios, calculating the predictions.

This manual has been written to help you understanding how Vatios works and will guide you

if you try to modify Vatios. If you are not familiar with the simulator or you haven’t read the

user manual, we strongly recommend doing that first.

Basically, there are 4 ways you would like to modify Vatios.

o Add another technology point.

o Add a new power model for a unit (a new way of calculating the peak power of a unit)

o Add a new unit, with its power model.

o Add the Vatios library to an existing SimpleScalar based simulator.

o Use the Vatios library to calculate power/energy based on the statistics generated by a

non-SimpleScalar based simulator.

2 PFC Vatios – Juan Antonio Victorio Ferrer

2. Simulator Software Architecture

This simulator is based on SimpleScalar, thus it contains the same files as SimpleScalar, but

there are 2 files that have been modified:

- options.c has been slightly modified to allow dump use/access info.

- sim-outorder.c has been renamed to sim-vatios.c and we have added the code to

measure the use of the units and dump that use to a file.

We have replaced the CACTI 1.0 tool with CACTI 4.2, therefore, you will find a directory

called cacti4_2.We use CACTI to calculate subbanking of cache memories and to directly

calculate the power of cache-like arrays.

We have created a new executable power-vatios created from power-vatios.c that

uses files dumped by sim-vatios to calculate power/energy consumption (allowing the

user to modify power models, frequency, technology…)

We have created access_vatios.c and access_vatios.h. In these files we define

the number of units that the processor is made of, and we define functions to count the use of

units. These functions are used by sim-vatios.c

In vatios_strings.h we have written the strings used to refer to the units and used to

display information to the user.

At the file calculatePower.h we have written the code (power models) to calculate the

peak power of a unit, which will be escalated to calculate the actual energy consumption. In

this file we call CACTI when necessary. This file is included in power.c.

In power.c and power.h you will find generic functions to calculate the power of a unit.

You will find the calculate function, which calculates and displays all the energy/power

results and is called by power-vatios and by sim-vatios.

Once you have compiled the simulator, 2 executable files will be generated: sim-vatios

and power-vatios.

Vatios 1.0 Programmer’s Manual 3

This diagram shows the simulator software architecture:

Access_vatios.c/h

Provides:
Functions to count and dump use/activity in sim-

testvatios.
Number of units and Identifiers.

Sim-vatios

-Simulates temporal excution
-Calculates power/energy

-Dumps access/use Statistics & Architecture File

Power-vatios

-Reads access/use Statistics & Architecture
File

-Calculates power/energy

Architecture params.
Access/use file

Power.c/h
-Provides functions to calculate

power/energy
-Uses global vars, defined at sim-

vatios or power-vatios

Vatios_strings.h

String definitios for units.

Calculate Power.h

Algorithms that
calculate power.
(Power models)

CACTI 4.2

4 PFC Vatios – Juan Antonio Victorio Ferrer

3. Adding another technology point

A technology point is the definition of some parameters determined by your fabrication

process. Vatios comes with some technology point defined, but if you want to make

simulations in a technology point not defined in Vatios, you can add the information needed

to simulate in that point.

Wattch’s author developed some functions to calculate the power of several kinds of

structures (for example RAM, CAM…). These functions use some variables, whose initial

values depend on some parameters: CSCALE, RSCALE, LSCALE, ASCALE, VSCALE,

VTSCALE, SSCALE, GEN_POWER_SCALE, which are factors relative to the 0.80um

fabrication process that represent the wire capacitance, wire resistance, length , area, voltage,

threshold voltage, sense voltage and power.

So, let’s see how we would add a new technology point:

In the file power.c there is a function called:

void init_vatios_tech_params(double techPoint)

At the beginning of this function, there’s a switch clause. You have to add your technology

point there. As an example, you can see how the tech point for 90nm is defined (Numbers are

not real!). The 8 scaling factors you have to define for your tech point are relative to the

800nm fabrication process.

case 180:
 CSCALE =(19.7172)/* wire capacitance scaling factor */;
 RSCALE =(20.0000)/* wire resistance scaling factor */;
 LSCALE =0.2250 /* length (feature) scaling factor */;
 ASCALE =(LSCALE*LSCALE) /* area scaling factor */;
 VSCALE =0.4 /* voltage scaling factor */;
 VTSCALE =0.5046 /*threshold voltage scaling factor */;
 SSCALE =0.85 /* sense voltage scaling factor */;
 GEN_POWER_SCALE = 1;

break;
case 90:
 CSCALE =(35.232)/* wire capacitance scaling factor */;
 RSCALE =(37.5000)/* wire resistance scaling factor */;

Vatios 1.0 Programmer’s Manual 5

 LSCALE =0.1150 /* length (feature) scaling factor */;
 ASCALE =(LSCALE*LSCALE) /* area scaling factor */;
 VSCALE =0.3 /* voltage scaling factor */;
 VTSCALE =0.5046 /*threshold voltage scaling factor */;
 SSCALE =0.64 /* sense voltage scaling factor */;
 GEN_POWER_SCALE = 1;

break;
case 400:
…
…

4. Adding new power models

First of all we want to introduce what a power model is. In Vatios, a power model is simply

an algorithm that calculates a unit’s peak power. For one unit, can be defined several power

models, for example, we can have a cache and two power models, the first one that uses the

functions defined by Wattch, and the second one that uses the latest version of CACTI.

When you are using your simulator, you can select the model for the unit introducing this

parameter in the command line:

-unit_name:model power_model (Example: –dcache:model 3)

You may want to add new power models to improve or to give different choices when

calculating the energy of a unit. The power model calculates the power of the unit and returns

a double value.

First of all, you have to write the C code that calculates the maximum power that this unit can

consume in one cycle. There’s a file in the main program directory whose name is

calculatePower.h. For every unit there’s a switch instruction and at least “case 0:” and

“case 1:” and “case 2”. What you have to do is to add another “case #:”where # is the number

you are going to use for this model.

Let’s see an example:

This would be the code after adding my new model.

6 PFC Vatios – Juan Antonio Victorio Ferrer

switch(energyModels[RENAME]){
 case 0: /*Don’t’ count this unit*/
 power.powerAFIndependent[RENAME] = 0.0;
 break;
 case 1:/* Default Wattch model*/
 power.powerAFIndependent[RENAME] = rat_power +
 dcl_power + inst_decoder_power;
 break;
 case 2:
 power.powerAFIndependent[RENAME] =
 userPowerAFIndependent[RENAME];
 break;
 case 3:
 power.powerAFIndependent[RENAME] = myNewRenamePower();
 break;

 default:
 fprintf(stderr,"Invalid energyModel for %s\n",
 varUnitNames[RENAME]);
 exit(-1);
}

Inside your algorithm you will need some architectural parameters, for example, if you are

modelling the power of a cache, you will probably need the cache size, the cache assoc, the

block size, of if you are modelling the ALU unit, you will probably need the number of

ALUs.

If the parameter you need is present in another power model, you will be able to read the

value and that would be enough (and you don’t have to read the rest of this chapter), but if

you creating a more detailed power model, it could be possible that you need a new

parameter. Then you have to understand how architectural parameters are defined and used in

Vatios.

Vatios 1.0 Programmer’s Manual 7

This is the variable architecture in sim-vatios

sim-vatios.c

- Your variable should be declared as global:

int var1;

- If you want to give a value to your variable through the command line, you also have to
add this line at sim_reg_options(struct opt_odb_t *odb):

opt_reg_int(odb, "-var1","Variable 1",&var1,/*def*/0,TRUE, NULL);

power-vatios.c
Since power vatios includes power.c when
it’s compiled, you will have to declare your

var as global and add a call to opt_reg_int
in the function void regOptions(struct
opt_odb_t * dataBase) the same way

you have done with sim-vatios.c

Power.c

- Variables used in power models are
defined here as extern.

Example:

extern int var1;

Now, we are going to give a more detailed explanation of this.

Due to constraint in the options.c/h library, the architectural variables should be declared as

global variables in sim-vatios.c and you have to register them, like other parameters in

the function:

void sim_reg_options(struct opt_odb_t *odb)

Make sure that the opt_reg_XXXXX call has the print parameter set to TRUE, because

otherwise, it won’t be dumped to the config file. Note: XXXX can be double, uint,

int, string,… If you need the full list of functions, please read options.h

8 PFC Vatios – Juan Antonio Victorio Ferrer

You have to do the same at power-vatios.c. You have to declare the variables as global

in a section where you can find the comment:

/***************** GLOBAL VARIABLE DECLARATIONS *************/

…
…
int opcode_length = 8;
int inst_length = 32;
int ruu_issue_width = 4;
int RUU_size = 8;
int myNewVar = 10;
…
…

You also have to register the variables in a function called:

void regOptions(struct opt_odb_t * dataBase)

{

 opt_reg_int(dataBase, "-myNewVar ","My new Var",&myNewVar
,MY_NEW_VAR_DEFAULT_VAL,/* print */TRUE, /* format */NULL);

Be careful, there are a lot of opt_reg_XXXXX functions, so use the appropriate one

depending on the type of your new variable.

Finally, you have to declare your variable as extern at the beginning of the power.c file.

…
…
extern int data_width;
extern int res_ialu;
extern int res_fpalu;
extern int res_memport;
extern int myNewVar;
…
…

That’s all. If you have some trouble, try to understand the compiler messages and how are

defined other variables used in other power models. One of the easiest power models is the

one for the IALU, you can follow this unit’s model as an example. This model uses a

parameter called res_ialu.

Vatios 1.0 Programmer’s Manual 9

5. Adding a new unit, with its power model.

Adding a new unit means that you are going to model a processor with another piece of

hardware, for example, we can think of adding a L3 cache structure. First of all, we have to

modify our simulator to include this L3 cache structure. If we only do this, this would be

transparent for Vatios. Therefore, we also have to tell Vatios that we are going to calculate the

power/energy for this unit, and how we are going to do this.

We have divided this process in these steps:

o Declaring the unit

o Adding auxiliary strings

o Counting the number of accesses

o Creating the power models

o Adding the call to the function that calculates power/energy.

5.1. Declaring the Unit

First of all, you will have to modify the access_vatios.h file. You will have to

increment the NUM_UNITS constant, you will also have to add a new identifier in the first

enum for example:

#define NUM_UNITS 15

…,LSQ_WAKEUP,LSQ_PREG,MY_UNIT};

The name used here is not relevant. Be careful to use an unused identifier.

5.2. Adding auxiliary strings
Once you have done that, you will have to add new strings for your unit at the file

vatios_strings.h, this strings will be used by the user to refer to this unit, and by the

simulator to display information.

char * varUnitNames[] = {
"-rename",
"-bpred",
…
…

10 PFC Vatios – Juan Antonio Victorio Ferrer

"-lsq_wakeup",
"-lsq_preg",
"-my_unit"
};

char * comentars[] = {
"Rename Accesses",
"Bpred Accesses",
…
…
"Lsq wakeup Accesses",
"Lsq preg Accesses",
"My unit Accesses"
};

Attention: The order of these strings IS relevant. It should match with the order of the units
declared in the enum at the previous section.

5.3. Counting the number of accesses

Wattch (and sim-vatios) models the Clock-gating technique to calculate energy

consumption. The different clock-gating techniques are explained at Wattch’s Report. To use

this technique to calculate energy consumption, we need to know how many times one unit is

accessed. Therefore, during the temporal execution of the simulator, we have to count the

number of accesses. Specifically, we have to count the number of times that one unit is used

every cycle, and then, increment one position of a vector.

Our goal is to create a vector for each unit, which has this structure:

Number of cycles that this unit has been accessed …

[0 times, 1 time, 2 times, …]

If you think that your unit is going to be used 30 o more times per cycle, please increment this

constant defined at access_vatios.h:

 #define MAX_ACCESS_CYCLE 30

To achieve this goal these steps are necessary:

There are some things you have to add at access_vatios.c

First of all, as global variables:

…
counter_t ialu_access;

Vatios 1.0 Programmer’s Manual 11

counter_t falu_access;
counter_t resultbus_access;
counter_t my_unit_access;

These variables should be also declared as extern in the sim-vatios.c file, as you are

going to modify them in that program to count accesses.

At the function clear_access_stats()
…
…
 ialu_access=0;
 falu_access=0;
 resultbus_access=0;
 my_unit_access=0;
clear_access_stats is called at the beginning of every cycle.

You also have to add one line at the function:

void update_access_stats(access_data_t * access_data){

…

access_data->accesses[LSQ_PREG][lsq_preg_access]++;
access_data->accesses[MY_UNIT][my_unit_access]++;

This function is called at the end of every cycle, and increments the correspondent position of

the vector (previously explained).

You will have to count the accesses to your unit, you will have to know where your unit is

used (at file sim-vatios or the name of your simulator main file) and every time you use

your unit you have increment the correspondent counter:

my_unit_access++;

5.4. Creating the power models

Then, you have to create a section at the file calculatePower.h that calculates at least

one power model for the new unit. If you need help adding power models, please read the

previous section in this document. Here there is an example of the section for a unit:

12 PFC Vatios – Juan Antonio Victorio Ferrer

/******************** MY UNIT **************************/

//Power model selection

switch(energyModels[MY_UNIT]){
 case 0: /*Don’t count this unit*/
 power.powerAFIndependent[MY_UNIT] = 0.0;
 break;
 case 1: /*Default power model*/
 power.powerAFIndependent[MY_UNIT] = myUnitPowerModel();
 case 2:
 power.powerAFIndependent[MY_UNIT] =
 userPowerAFIndependent[MY_UNIT];
 break;
 default:
 fprintf(stderr,"Invalid energyModel for %s\n",
 varUnitNames[MY_UNIT]);
 exit(-1);
}

5.5. Adding the call to the function that calculates
power/energy

The last step is to add one line in a function at power.c

The name of the function is:

void calculate(int accesses[][MAX_ACCESS_CYCLE],double
activity[][MAX_ACCESS_CYCLE],int energyModels[NUM_UNITS]){

You have to add one line, next to the last call to the function:

calculateEnergyAndDisplay(…)

And the line you have to add looks like:

calculateEnergyAndDisplay(accesses,MY_UNIT,power,my_unit_max_a
ccess,FALSE, NULL,0,totalEnergy);

MY_UNIT is the identifier you have declared at access_vatios.h and

my_unit_max_access is the max number of accesses to your unit at a cycle.

Vatios 1.0 Programmer’s Manual 13

6. Adding the Vatios library to an existing SimpleScalar
based simulator.

Basically, Vatios is composed of a standard SimpleScalar simulator plus some files and some

modifications to sim-outorder.c. These modifications are only made to counter use and

activity of the units, not to modify the behaviour of the simulator. In this chapter we are going

to explain what has to be done to add Vatios to another SimpleScalar based simulator.

First of all you have to add to your project the cacti4_2 directory, the

access_vatios.c/.h, power.c/.h, calculatePower.h and

vatios_strings.h. Additionally, the options.c file is slightly modified, so you will

have to replace the original.

Now you will have to modify your simulator to link it with the Vatios library.

At the beginning of your simulator (usually sim-outorder.c), you will have to include

the access_vatios library:

/* added for Vatios */
#include "access_vatios.h"

Then, as global variables, you will have to declare these variables:

/* Vatios*/
extern char * dumpConfigFileName;
access_data_t access_data;
int energyModels[NUM_UNITS];

int va_size = 48;
int technologyPoint = 350;
double crossover_scaling = 1.2;
double turnoff_factor = 0.1;
int opcode_length = 8;
int inst_length = 32;
extern char * varUnitNames[];
extern char * varAfNames[];
extern char * comentars[];
extern char * afComentars[];
char modelOption[NUM_UNITS][128];

In the function that registers simulator –specific options, you will have to include these new

options.

14 PFC Vatios – Juan Antonio Victorio Ferrer

The function will look like:

/* register simulator-specific options */
Void sim_reg_options(struct opt_odb_t *odb){
 //Vatios
 int j;
 for(j=0;j<NUM_UNITS;j++){
 sprintf(modelOption[j],"%s:model",varUnitNames[j]);
 opt_reg_int(odb,modelOption[j],"Energy Model",
 &energyModels[j],1,FALSE,NULL);
 //We use 1 as default value,
 //because in Vatios 0 means
 // that this unit consumes 0 energy.

}

opt_reg_double(odb, "-tech","Tech point.(Double in nm)”

,&technologyPoint,350,FALSE, NULL);

The next step is to add the code to show the results and to dump all the access/use info to a

file. You have to find the sim_aux_stats function and modify it so that it begins like:

/* dump simulator-specific auxiliary simulator statistics */
void
sim_aux_stats(FILE *stream) /* output stream */
{

//Vatios
if(dumpConfigFileName != NULL)
 dump_access_vectors(stream,&access_data);
calculate(access_data.accesses,access_data.activity,energyMode
ls);

The last step is to add at the main simulator, one call to clear_access_stats(); and

one call to update_access_stats(&access_data); at these points of the main

loop:

 for (;;)
 {
 /* RUU/LSQ sanity checks */
 if (RUU_num < LSQ_num)
 panic("RUU_num < LSQ_num");
 if (((RUU_head + RUU_num) % RUU_size) != RUU_tail)
 panic("RUU_head/RUU_tail wedged");
 if (((LSQ_head + LSQ_num) % LSQ_size) != LSQ_tail)
 panic("LSQ_head/LSQ_tail wedged");

 /* added for Wattch to clear hardware access counters */

Vatios 1.0 Programmer’s Manual 15

 clear_access_stats();

…
 else
 ruu_fetch_issue_delay--;

 /* Added by Wattch to update per-cycle power statistics */
 update_access_stats(&access_data);

 /* update buffer occupancy stats */
 IFQ_count += fetch_num;
…

The rest of the work depends on the units in your simulator and your power models. It’s

recommended to understand the differences between sim-vatios.c and the original sim-

outorder.c before including Vatios to an existing SimpleScalar based simulator.

To compile the project, you will have to modify the Makefile. You can take the Makefile

distributed with Vatios as an example.

16 PFC Vatios – Juan Antonio Victorio Ferrer

7. Adding Vatios to a non-SimpleScalar based simulator.

If you are using a simulator that is not based on SimpleScalar, you won’t have a sim-outorder

file. Despite that, you could use the Vatios library and power-vatios. You only have to

modify your simulator to dump some stats and architectural parameters to a file with a certain

format.

This would be the simulator architecture:

It’s highly recommended to be familiar with Vatios and how to add new power models/units.

First of all, you should generate a file, readable by the SimpleScalar options.h library,

with all the information needed by power-vatios.

Any option should look like:

-optionName value

Vatios 1.0 Programmer’s Manual 17

Lines that begin with ‘#’ are considered as comments.

For example:

instruction decode B/W (insts/cycle)
-decode:width 4
instruction issue B/W (insts/cycle)
-issue:width 4
run pipeline with in-order issue
-issue:inorder false
issue instructions down wrong execution paths
-issue:wrongpath true
instruction commit B/W (insts/cycle)
-commit:width 4
register update unit (RUU) size
-ruu:size 16
load/store queue (LSQ) size
-lsq:size 8
l1 data cache config, i.e., {<config>|none}
-cache:dl1 dl1:128:32:4:l

For every unit you are going to calculate energy predictions, you will have to write access and

use information using the function void dump_access_vectors(FILE * stream,

access_data_t * access_data) included in access_vatios.h, or with this format:

-unitName:accesses [Cycles0,Cycles1,Cycles2,…,CyclesN]

Where Cycles0 is the number of cycles when this unit has been accessed 0 times, Cycles1 is

the number of cycles when this unit has been accessed 1 time, and so on…

For units that depends on an Activity factor (that can vary between 0 and 1), you will have to

write the Activity factor information with this format:

-unitName_af [term0,term1,term2,…,termN]

Where termX is the addition of all the activity factors resulting from cycles where the number

of accesses to this unit have been X.

The activity factor can be calculated using pop_count function. You have predefined

functions to do all of this in the acces_vatios.h library.

18 PFC Vatios – Juan Antonio Victorio Ferrer

An example of the access and use information is:

#===#
ACCESS VECTORS #
#===#

-rename:accesses [34095,2756,3321,2438,9505]
-bpred:accesses [45568,5738,780,29]
-icache:accesses [31714,20401]
-dcache:accesses [41927,7021,2854,285,28]
-dcache2:accesses [49057,3032,23,2,1]
…
…
-lsq_af [0.0,2546.171875,494.617188,326.916667,42.101562]
-resultbus_af [0.0,4727.468750,5078.125,5485.276042,3266.125]

Of course in the dumped file, you will have to include all the information needed by your

power models. power-vatios depends on all this libraries, so you will have to include

them from the Vatios tar.gz file from the Web. Don’t forget to include the .c files as well.

access_vatios.h
vatios_strings.h
options.h
power.h
cache.h
misc.h

Note: the function dump_access_vectors(FILE * stream, access_data_t *

access_data) depends on a extern variable declarated as:

extern char * dumpConfigFileName;

You have to make sure that this variable has the name of the file where all other information

has been dumped when you call the function.

Now, you only have to modify the files you have included to map the units in your simulator.

The guide to this process can be found at previous sections of this manual.

Vatios 1.0 Programmer’s Manual 19

Note:

There are some units whose power depends on an activity factor. These units should be

treated specially, because not only the number of accesses should be count, but also the

activity factor of the results.

Regfile

Resultbus

Window

LSQ

If you are going to add a new unit and you want to measure the activity factor, please, take a

look at how these units are modelled. The process is similar, but you will have to add extra

code in some points.

