
ESAIM: PROCEEDINGS AND SURVEYS, September 2014, Vol. 45, p. 239-246

J.-S. Dhersin, Editor

USING LEPTON FOR DOCUMENTING SOURCE CODE : A GUIDED

EXAMPLE IN COMPUTER VISION

Sébastien Li-Thiao-Té1

Abstract. This paper describes a method for analyzing the structure and documenting a fairly large
chunk of source code for image analysis with a literate programming tool called Lepton. We propose a
step-by-step approach to deconstructing the source code and indicate where Lepton’s specific features
are most useful.

Résumé. Ce manuscrit présente le logiciel Lepton et comment l’utiliser pour analyser la structure et
documenter le code source d’un programme d’analyse d’images. Nous proposons un guide étape par
étape et présentons les fonctionnalités du logiciel Lepton là où elles sont particulièrement adaptées aux
différentes opérations.

Introduction

Computers have become unavoidable assistants to modern science. Computers measure and store data sets,
analyze data sets, perform large-scale simulations, and are also necessary for communication and publication
of the scientific results. However, there is growing realization that our current procedures for collaboration
and publication are not optimal. In many fields of study such as econometrics [2], biostatistics [7] and image
analysis [6], many published scientific results cannot be reproduced independently because essential elements of
the methods are not available or insufficiently documented.

In this manuscript, we propose a method for documenting computational research results that facilitates re-
use by collaborators or readers as well as re-appropriation, that is to say in-depth understanding of the contents
of the research. This method is supported by Lepton [3], a freely available software tool developped in house for
this specific purpose. It is well suited for doing research but also for adding documentation to existing methods.
This tool has been described previously in [4] from the point of view of reproducible research and in [5] for its
use in teaching mathematics (random exercises with solutions and project reports). Here we start from a rather
large piece of image analysis code without a manual and illustrate how Lepton can be used to understand how
the source code works and how to use the corresponding program.

1. Documentation: objectives and requirements

1.1. Investing in documentation

In our opinion, one major rationale for writing documentation is to convey knowledge to our future self.
This is what turns random bits of digital information into usable and meaningful media. Proper documentation
should be written for the future so that the work remains live and usable long after its production. In that
sense, documenting is a long-term investment, and we have its returns when we want to reuse and modify it.

1 Laboratoire LAGA, CNRS (UMR 7539), Université Paris 13, France e-mail: lithiao@math.univ-paris13.fr
c© EDP Sciences, SMAI 2014

Article published online by EDP Sciences and available at http://www.esaim-proc.org or http://dx.doi.org/10.1051/proc/201445024

http://publications.edpsciences.org/
http://www.esaim-proc.org
http://dx.doi.org/10.1051/proc/201445024

240 ESAIM: PROCEEDINGS AND SURVEYS

For instance, it is very common to redraw figures or rerun analyses of datasets to answer reviewers’ comments or
match the editing policy of a journal. Sometimes the figures must simply be redrawn without color, sometimes
larger simulations or benchmarks are called for. When presenting your work at a conference or comparing with
newer work, figures may need to be adapted for the presentation slides or for the conference proceedings. Being
able to re-generate figures or other results is very helpful in these situations, especially when it is easy to find
what to modify.

Reviewing past work is another reason for thorough documentation. For example, a system that automatically
records the commands and parameters used for generating figures or lengthy simulations is a must-have when
discussing the results with collaborators. A framework that is simple from a human perspective also allows
collaborators to experiment your method with different choices of parameters, input data, and compare with
other work.

Additionaly, we believe that writing documentation is a way to step back, and look at the work from another
angle. This improves the quality of the work by promoting elegant rather than quick and dirty solutions and
source code. We may find more flexible or generic implementations, making it easier to re-use the work later or
to adapt it to a different context.

Whatever the reason, it should be convenient to reach these objectives.

1.2. Proposed method

Our proposed documentation framework hinges on three compoments:

• a package format that holds all the elements in the research project,
• a software tool for extracting the elements from the package,
• a documentation format that is compatible with existing practices and automatically provides informa-

tion on the contents of the package.

Lepton uses a file format inspired by literate programming [1]. In this approach, authors are encouraged to
focus on writing documentation in the format of their choice. This manuscript is in fact a Lepton file written
with LATEX as the documentation format. All other elements such as source code, scripts, input data and results
are embedded inside the documentation in blocks (called code chunks) of the form :

Code chunk 1: �lepton�

<<name options>>=

contents

@

The Lepton software is responsible for extracting the contents of code chunks, and producing a bona fide
documentation file that can be processed by LATEX. During this process, several operations can be applied to
the contents of code chunks, depending on the options specified by the author:

• -write writes the contents of the code chunk to disk (chunk name is used for the filename)
• -exec interpreter sends the contents to an external process for execution (Unix shell, Matlab, Scilab,

etc.)
• -chunk format -output format controls how the chunk contents and outputs are embedded in the

resulting documentation
• <<chunk_ref>> is an abbreviation for the contents of another code chunk.

In the literate programming paradigm, authors can use the above features to manipulate source code, re-
gardless of the constraints of the programming language. For instance:

• source code can be divided into meaningful chunks
• code chunks can appear anywhere, and especially below the corresponding algorithmic description or a

specification to complement the documentation,
• test cases can be defined and executed next to the code

ESAIM: PROCEEDINGS AND SURVEYS 241

• benchmarks defined inside the documentation will have their results automatically embedded inside the
documentation and updated upon source code modification.

Note that providing the source code that corresponds to an algorithmic description does not require additional
work, but allows the reader to check if the two are coherent.

We propose to use literate programming with Lepton in incremental stages. First, we package all the necessary
elements into a single document and set up extraction properly. Second, we make sure that source code compiles.
Then, we make sure that the binaries can be executed and set up some tests. Finally, we analyse and document
the functions in the source code and the methods. The documentation process may be interrupted at any stage,
Each stage provides a given level of usability and reproducibility.

1.3. Image analysis example

As an example, we relate our experience when trying to use and understand an image analysis library
developped in house without Lepton. This source code comes as a monolithic C source file of 5069 lines with
comments, and implements five image compression methods. There is no installation or usage manual.

2. First stage : make a documented package

Start with a working installation of Lepton. Lepton is distributed as a standalone executable for Linux, and
downloading the binary file from http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.

html should be sufficient. On 64bit systems, the executable runs as a 32bit program and thus requires the basic
32bit libraries. The usage manual and several examples are also available on the website.

For this example, we open a new file named readme.nw in a text editor like Emacs or Vim. This file will act
both as a LATEX documentation, and a package that will contain our comments as well as the source code. At
this stage readme.nw is pure documentation. Running Lepton on this file produces a readme.tex file that is
identical, and we verify that it can be processed by LATEX.

Then we package each file in the project by inserting its contents in a code chunk, and describe it in the
LATEX documentation. This code chunk should have option -write and the chunk name should be the name of
the file Lepton will create. In our example, there is only one C source file :

Code chunk 2: �readme.nw�

% LaTeX documentation

This project implements all five methods in a single C source file below.

<<bigfile.c -write>>=

C source code

@

Input files and other files can be added to readme.nw in the same way.Again, we run Lepton, and check that
bigfile.c is correctly re-created by Lepton.

At this stage, you should have a package containing all the necessary files and their description in a single
Lepton file. Lepton is able to extract those elements from the source, and documentation can be compiled. If
you decide to stop working at this stage, readme.nw is a package containing all the files related to the project
and their description.

Note that when sending readme.nw, collaborators do not require Lepton for accessing the contents of the
package. The file readme.nw can be opened and modified in any text editor, and the files can be extracted
by copy-and-paste. We suggest that only files of moderate size be included in readme.nw in order to preserve
the readability of both the documentation and the LATEX source. Authors should only include large files as a
temporary measure before decomposition into meaningful elements. Lepton provides the \Linput directive for
assembling large projects.

http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.html
http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.html

242 ESAIM: PROCEEDINGS AND SURVEYS

3. Second stage : compile

Before attempting to compile the source code, we suggest including the machine configuration in the readme.nw
file, either by capturing the output of a configure script, or by running system information commands. This
provides information that can be used for debugging when compilation fails or used to indicate a working con-
figuration upon success. To do this, we use a code chunk containing the following commands. With the option
-exec shell, Lepton starts a Unix shell, executes the commands, and outputs the results.

Code chunk 3: �configuration�

uname -a

COLUMNS=115 dpkg -l gcc libc6 | tail -n 3

Interpret with shell
Linux lepton 3.12-1-686-pae #1 SMP Debian 3.12.6-1 (2013-12-21) i686 GNU/Linux

+++-======================-================-================-==

ii gcc 4:4.8.1-1 i386 GNU C compiler

ii libc6:i386 2.17-97 i386 Embedded GNU C Library: Shared libraries

To compile the source code, we use the same mechanism. We write the compilation commands in a code
chunk with the option -exec shell. As the program uses the math library, we need to add the -lm flag. When
gcc reports no error, it produces no output.

Code chunk 4: �shell�

gcc -lm bigfile.c -o program.bin

Interpret with shell

For larger programs or more complex scenarii, it is often recommended to use a makefile. This makefile can
be embedded into readme.nw in its own code chunk, and executed by a shell command. The Unix shell can also
be used to run documentation tools such as dependency graph generators, static analysis code tools, etc. An
advantage of using Lepton, is that the outputs are automatically collected and that the produced documentation
is always in a coherent state.

At this stage, you should have a self-compiling program. If you send this, the recipient can extract the files,
compile the program, but there is still no documentation about how the method works.

4. Third stage : execute

The compiled program is now ready for testing. Although you could start a terminal and type the commands,
we suggest that you again use a code chunk executed by the shell in order to capture the outputs. Our program
does not read command-line parameters, but asks the user for manual input. Consequently, we have to redirect
the parameters to the standard input channel.

Without a manual or a test case, we had to test blindly the program on a random image, and see the results.
When that failed, we had to go back to the author of the program to inquire the meaning of the different
parameters, and how to retrieve the solution. Usage information is now contained in the following code chunk,
and the results are displayed by LATEX. The code chunk also contains commands for converting the image
format used by the program into PNG for inclusion in the LATEX documentation.

ESAIM: PROCEEDINGS AND SURVEYS 243

Code chunk 5: �execute�

echo "1 peppers.pgm 0 9 3 sol.pgm dec.pgm" | ./program.bin

convert peppers.pgm peppers.png

convert sol.pgm sol.png

convert dec.pgm dec.png

Interpret with shell
Application for compression/approximation : choose the method

Linear Tensor Product Approach (1)

ENO Tensor Product Approach (2)

ENO-SR Tensor Product Approach (3)

ENO NON Tensor Product Approach (4)

ENO-SR NON Tensor Product Approach (5)

Original Image ?Threshold = Finer level = Lower level = Type of normalization L1 (1), L2 (2) or Linf (3)Solution ?Decomposition ?lecture ...

Compression ratio 1.000000

Error in L2 norm 0.000026

PSNR :=139.972992

Error in L1 norm 0.009016

Error in L_inf norm 0.000214

Figure 1. Input image (left), reconstruction (middle). The source code performs a kind of
wavelet decomposition. The image on the right represents the decomposition coefficients.

At this stage, you should have an executable program. In this case, running Lepton on readme.nw will
apply the program to peppers.pgm. The results are automatically included and updated in the produced
documentation and are also available as image files in the current directory. The input image can be replaced
for testing other inputs, but the filename must be the same.

5. Fourth stage : analyse

We can now begin to analyse the source code itself and make modifications to the program. Our first goal
was to generate benchmarks of the image analysis routines in order to evaluate their performance on a series of
images. This entails converting the current parameter passing mechanism to using command line parameters.
We also separated the different methods and create one program for each method.

244 ESAIM: PROCEEDINGS AND SURVEYS

When looking at the source code, we noticed that the main function is just a wrapper to several functions,
and that each function performs parameter input separately.

Code chunk 6: �main�

/*..*/

main(){

int ch;

printf("\n Application for compression/approximation : choose the method \n ");

printf("\n Linear Tensor Product Approach (1)\n ");

printf("\n ENO Tensor Product Approach (2)\n ");

printf("\n ENO-SR Tensor Product Approach (3)\n ");

printf("\n ENO NON Tensor Product Approach (4)\n ");

printf("\n ENO-SR NON Tensor Product Approach (5)\n ");

printf("\n");

scanf("%d", &ch);

if(ch==1) linear();

else if(ch==2) enoTP();

else if(ch==3) enosrTP();

else if(ch==4) enoNTP();

else if(ch==5) enosrNTP();

}

Our first move was to write five main functions from the same template in order to obtain one binary
executable for each function. For instance, this is the program for the linear method.

Code chunk 7: �linear.c�
read parameters

int main(int argc, char** argv)

{

<<read_parameters>>

linear(init,fin,inter,p,e0,resn);

}

All five programs now use the same procedure for parsing the command-line parameters. This is defined once
in code chunk 8 and shared by using a chunk reference.

Code chunk 8: �read parameters�

if (argc != 6+1) {

printf("This program expects 6 argument\n");

printf("Usage : linear original.pgm solution.pgm decomposition.pgm threshold flevel llevel type\n");

printf(" original.pgm : source image, square, power of two, PGM format\n");

printf(" solution.pgm : source image, square, power of two, PGM format\n");

printf(" decomposition.pgm : source image, square, power of two, PGM format\n");

printf(" threshold : floating-point number\n");

printf(" llevel : int, lower level\n");

printf(" type : int, type of normalization L1 (1), L2 (2) or Linf (3)\n");

return EXIT_FAILURE;

}

char* init = argv[1]; /* source image */

char* fin = argv[2]; /* output image */

char* inter = argv[3]; /* decomposition image */

float p = atof(argv[4]); /* Threshold */

int e0 = atoi(argv[5]); /* lower level */

int resn = atoi(argv[6]);/* type of normalization */

ESAIM: PROCEEDINGS AND SURVEYS 245

Similarly, the logic for reading the input image and writing the results to disk is shared between the five
programs. At this point, we discovered that the methods could only be applied to square images of size power
of two. This was corrected by copying the image contents into the smallest square image. By using a chunk
reference, we ensure that this modification applies to all five programs correctly.

At this stage, readme.nw contains implementation details with embedded source code. Code is divided in
small meaningful chunks that are organized according to their meaning rather than in the order dictated by
the compiler. Shared code is re-used by using chunk references. The program can now be applied on multiple
images with a (hidden) shell script, output is set for direct inclusion into the LATEX documentation in Figure 2.

Figure 2. Input image (left), reconstruction (middle), representation of the coefficients (right)

6. Next steps and conclusion

We have progressively modified and documented a fairly large C source file containing several image analysis
programs. With the help of Lepton, we have first packaged and documented the project files, then added
instructions for compilation and usage. Finally, we modify the source code in order to run a benchmark of the
program.

Each stage provides increasing levels of reproducibility and re-usability of the program itself and also of our
documentation work. Packaging makes the whole project available for sharing with collaborators. Compiling
and execution instructions provide the means to use the method. Implementation details provide information
for modifying the method, and often improves the quality, modularity and correctness of source code.

246 ESAIM: PROCEEDINGS AND SURVEYS

References

[1] Donald E. Knuth. Literate programming. THE COMPUTER JOURNAL, 27:97–111, 1984.

[2] Roger Koenker and Achim Zeileis. On reproducible econometric research. Journal of Applied Econometrics, 24(5):833–847,
2009.

[3] S. Li-Thiao-Té. Lepton user manual. http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.html.

[4] Sébastien Li-Thiao-Té. Literate program execution for reproducible research and executable papers. Procedia Computer Science,
9(0):439 – 448, 2012. Proceedings of the International Conference on Computational Science, ICCS 2012.

[5] Sébastien Li-Thiao-Té. Literate program execution for teaching computational science. Procedia Computer Science, 9(0):1723

– 1732, 2012. Proceedings of the International Conference on Computational Science, ICCS 2012.
[6] Nicolas Limare and Jean-Michel Morel. The ipol initiative: Publishing and testing algorithms on line for reproducible re-

search in image processing. Procedia Computer Science, 4(0):716 – 725, 2011. Proceedings of the International Conference on

Computational Science, ICCS 2011.
[7] A. Rossini and F. Leisch. Literate statistical practice. UW Biostatistics Working Paper Series, page 194, 2003.

http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.html

	Introduction
	1. Documentation: objectives and requirements
	1.1. Investing in documentation
	1.2. Proposed method
	1.3. Image analysis example

	2. First stage : make a documented package
	3. Second stage : compile
	4. Third stage : execute
	5. Fourth stage : analyse
	6. Next steps and conclusion
	References

