Suite56™ DSP Tools

User's Manual, Release 6.3

DSPS56TOOLSUM/D
Document Rev. 1.0, 07/1999

D5P .

SUIIESD]

DSl
Development

lool=

@ MOTOROLA

Suite56, OnCe, and MFAX are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may
be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in
which the failure of the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer.

All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

© Copyright Motorola, Inc., 1999. All rights reserved.

Table of Contents

About this Book

AUAIENCE ..o Xi
Pr e EgUISITES. . ..ottt Xi
OrganiZatioN.t Xii
CONVENTIONS . . o . vttt e Xiii
Acronymsand Abbreviations. Xiii
Bibliography. Xiv
Chapter 1
Selecting Tools
11 COMPI IS, ot 1-2
1.2 ASSEMDIErS. . o 1-3
1.3 LINKEIS . ottt 1-4
14 SIMUIEIOIS .o et e e 1-6
141 DataStreamsandtheSimulator. i 1-7
14.2 User InterfacestotheSimulator.o i 1-8
143 Debugging withtheSimulator i 1-9
144 OnlineHelpfortheSimulator i 1-9
15 HardwareDebugger: ADS. 1-10
151 User InterfacestotheDebugger. oot 1-12
152 OnlineHelpfortheDebuggercco i, 1-12
Chapter 2
Testing Your Hardware Installation
2.1 Testing Your Installation of the Command Converter. 2-3
211 Testing through the Graphic User Interface. 2-3
21.2 Testing through the Command-Lineinterface........................ 2-4
2.1.3 Understandingthe Test ResultS 2-4
2.2 Testing Your Installationof aTargetBoard, 2-5
2.3 TestingaLow-Frequency Target Device. 2-5
2.4 Choosing a Connector for the EVM Power Supply.t 2-6
Motorola Table of Contents iii

Chapter 3
Debugging C and Assembly Code

3.1 InitidlizingaDebugging Environment e 31
311 Choosing Preferences.o e 31
3.1.2 Defining Paths and Working Directories., 3-2
3.13 Logging Commandsfor Later Reuse., 3-2
3.14 Logging aSessionfor Later Review, 3-3
3.15 SettingtheRadiX e 34
3.1.6 Displaying RegiSters oo e 34
3.1.7 Displaying Memory e 35
3.2 Source-Level DebugginginC. ... e 35
3.2.1 CompilingtoDebug. ... 3-6
3.2.2 About Software BreakpointsinaCProgram.c.covuvu.... 3-8
3.2.3 Setting Software BreakpointsinaCProgram. ..o, 39
3.24 To Clear aSoftware Breakpoint.t 311
325 About Hardware Breakpoints. 312
3.2.6 To SetaHardwareBreakpoint. i i 3-13
3.2.7 ToClear aHardware Breakpoint. 3-15
3.2.8 DefiningaWatch ListforaCProgram. 3-15
3.2.9 Evaluating C EXPreSSiONS . ..o o v it i ettt e 3-16
3210 CastinginaC Programuititi i 3-17
3211 TracinginaC Programt 3-17
3212 Using C-SpecificCommands. cvo vt 3-17
3213 ProfilingaC Programt 3-18
3.3 Symbolic DebugginginAssembly Code.o, 3-19
331 Setting Breakpointsin Assembly Code 3-22
3.3.2 Tracing Assembly Code.t e 3-23
34 Cadling Assembly CodefromCCode. ..., 3-24
3.5 Exploiting Memory Control Files. 3-25
iv Suite56 DSP Tools User’'s Manual Motorola

4.1

411
4.1.2
4.1.3
4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.3

431
4.3.2

5.1
5.2

5.3

5.4

5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13

Chapter 4
Tips about Special Projects

Managing Projects with MultipleDevices 4-1
Connecting Multiple Devices to the Suite56 ADS Debugger 4-1
Simulating MultipleDevices. 4-2
Simulating Communication between MultipleDevices 4-4

Developing Real-Time Applications. 4-4
Generating Interrupts and Real-Time Stimuliof Pins. 4-4
Exercising Peripheralso 4-5
Generating Output with Time-Critical Information. 4-6
Simulating Communication between Serial Devices. 4-6

FindingWell HiddenBugst 4-7
Setting Breakpointson Memory 4-7
Setting Breakpointson Registers.o 4-9

Chapter 5
Answers to Frequently Asked Questions

How do | customize Suite56 toolsformytasks?oov.t. 51

I’m tired of initializing my development environment every timel start work.

Is there any way to save my development environment? 5-2
| logged a sequence of commands to a command log file.

How do | run that sequence of commandsagain?..................... 5-3
| logged a sequence of commands to a command log file and tried to run it.

Noluck. What should 1 dO? 5-3

I’m having trouble debugging at low frequencies. 5-3

How do | halt in mid-cycleinaSuiteS6 smulator? 5-4

Can | link my customized librariesto a Suite56 ssmulator? 5-5

How do | simulateinput and output?. 5-5

How dol plotmemory USE?.ot 55

How do | get alistingwithcyclecounts? 5-6

My program runs, but | wantittogofaster. 5-6

My program runs, butitistoobig. i 5-7

What doesthiserror messagemean?. 5-7

Glossary
Index

Motorola Table of Contents %

Vi

Suite56 DSP Tools User’'s Manual

Motorola

List of Figures

1-1 Simple Code Development Cycle:

Compile, Link, ExecutetoDebug 1-1
1-2 Compiling by Default or with the Option-c 1-2
1-3 Input and Output of the Assembler 1-4
1-4 Input and Output of the Linker. 1-5
1-5 Typical Use of a Simulator in a Filtering Application. 1-6
1-6 Graphic User Interface of the Simulator 1-8
1-7 Text-Based Interface of the Simulator. 1-10
1-8 Parts of the Hardware Debugger (ADS) 1-11
1-9 Graphic User Interface of the Hardware Debugger. 1-13
2-1 Setting up a Suite56 ADS with its ADM. 2-2
3-1 Setting a Software Breakpoint. 3-9
3-2 Clear Breakpoints Dialog Box 3-11
3-3 Setting a Hardware Breakpoint. 3-13
4-1 Connecting Non-JTAG Devices for Debugging. 4-1
4-2 Connecting Devices through Their JTAG Interfaces for Debugging4-2
4-3 Dialogue Box to Set a BreakpointinMemory 4-9
Motorola List of Figures vii

viii Suite56 DSP Tools User’'s Manual Motorola

List of Examples

2-1 Startthe Debugger . ..o 2-4
2-2 Test Commands for the Command Converter 2-4
2-3 Test Commandsfor the Target Device.o, 2-5
2-4 Setting Low Frequenciesin SUite56 Tools.oov i nt 2-5
3-1 Logging CommandstoaFileforReuse.......................... 3-3
3-2 A SampleCProgram: [tp.C.o 3-7
3-3 DefiningaWatch List. 3-16
3-4 Removing ItemsfromaWatchList 3-16
3-5 A Finite Impulse Response Filter in Assembly Code: firasm........ 3-20
3-6 A Header Filefor the FIR Example: iodatah. 321
3-7 A Cprogram That CallsAssembly Code. 3-24
3-8 An Assembly Routine CalledbyaCProgram. 3-25
3-9 A Sample Assembly File for Memory Mapping: section_aasm 3-25
3-10 A Sample Assembly File for Memory Mapping: section b.asm...... 3-25
3-11 Assembling Two Relocatable Object Files. 3-26
3-12 A Memory Control Filezsec.ctl o i 3-26
3-13 Command to Link Memory Control Fileto Object Files............ 3-26
3-14 A Memory Map Fileeoutmapo 3-27
5-1 Setting Low Frequenciesin SUite56 Tools.t 5-4
5-2 Signature Of AP _BXECP . .« oo vt e 5-4
5-3 TheFunctiondsp EXeC.ot e 5-4
Motorola List of Examples iX

Suite56 DSP Tools User’'s Manual Motorola

About this Book

This manual is a guide to Motorola code-development tools, such as simulators of digital
signal processors, hardware evaluation modules, debuggers, compilers, assemblers, and
linkers. It does not replace the reference manuals and on-line help available with these
tools. Rather, it serves as your introduction, orienting you and indicating how to get the
most from these tools. With this manual, you’ll be better able to judge which Motorola
products will meet your particular needs for generating and debugging code for digital
signal processors.

If you have already chosen specific Motorola products, this manual explains how to
combine and use those products effectively. Furthermore, this manual is meant to be
platform-independent; whether you are working on a Unix work station, Windows NT,
or other host, this manual provides general guidance about getting the most from
Motorola code-development tools.

Audience

This manual is intended for software developers, applications programmers, or
hardware developers who are evaluating Motorola products or who are just beginning
to develop projects using Motorola components. It introduces you to generating and
debugging code for digital signal processors with Motorola tools.

Prerequisites

We assume that you are familiar with the host computer (i.e., the development platform)
where you are developing your own application or product and that if you encounter
difficulties there, you can consult your system administrator or other technical support.
Motorola code-development tools run on the following platforms:

e Windows NT

< Windows 95

e Hewlett-Packard HP-UX
e Sun 0S4

= Sun Solaris

Motorola About this Book Xi

We also assume that you are fluent in the programming language—whether C or
assembly language—for your project, and that if you have difficulties with it, you will
consult your favorite language manual. If you are developing your application in C, then
of course you need a C cross-compiler installed on your development system. (Section
1.1, “Compilers,” on page 1-2, offers more information about available C
cross-compilers.) Likewise, if you have decided to program in assembly language, then
you need an appropriate cross-assembler installed on your host. (Section 1.2,
“Assemblers,” on page 1-3, offers more information about available cross-assemblers.)

As you work, you will need the reference manual for your cross-compiler or assembler.
There is a specific manual for each of the Motorola cross-compilers; there is a single
manual to cover all the available Motorola assemblers. You can retrieve copies of those
manuals from the Motorola website:

http://www.motorola-dsp.com/documentation

Similarly, you can find documentation for Motorola digital signal processors, including
their technical data sheets, their family reference manuals, and their device-specific
reference or user’s manuals at the same website.

To download examples of code that appear in this manual, go to the following website:

http://www.motorola-dsp.com/documentation/downloadable

Organization
This manual is organized into several chapters.

= Chapter 1, “Selecting Tools,” covers possible configurations of Motorola tools and
devices.

= Chapter 2, “Testing Your Hardware Installation,” supplies trouble-shooting
guidelines in the unlikely event you encounter difficulty while installing
Motorola tools.

= Chapter 3, “Debugging C and Assembly Code,” walks you through both C and
assembly programs, showing you how to set break points; how to create watch
lists; how to integrate C with assembly programs in the same application; how to
use memory control and map files.

= Chapter 4, “Tips about Special Projects,” is based on information gleaned from
Motorola customers who have used these development tools successfully in their
own projects.

= Chapter 5, “Answers to Frequently Asked Questions,” collects handy information
to help you customize your development environment and to avoid known
pitfalls.

A glossary and an index complete the manual.

Xii DSP Tools User’'s Manual Motorola

Conventions
This manual uses the following notation conventions:

e Courier nonospaced type indicates commands, command parameters, code,
expressions, data types, and directives.

e Curly brackets { } are used in two ways.

In the context of the syntax of commands (for example, in a reference manual),
they enclose a list of command parameters from which you must choose one; the
curly brackets are not part of the command; you do not need to enter the curly
brackets.

In the context of arguments passed to the Motorola simulator or Motorola ADS
debugger, they enclose a C expression for evaluation. In this context, you must
enter the curly brackets.

= Square brackets [] enclose optional command parameters; for example,
wai t [count (seconds)] indicates that count is an optional parameter. The
square brackets themselves are not part of the command; you do not need to enter
them.

= Asslash between items in a list of optional parameters indicates that only one item
from that list may be used as a parameter to that command; that is, the items are
alternatives to each other. For example, thiscommand | og [c/s/p] fil enane
indicates thatl og ¢ fil enane isavalidcommand, thatl og s fil enaneisa
valid command, butl og ¢ s fil enane is not avalid command.

= Commands can be abbreviated; in the reference manuals and in this manual, for
example, wai t indicates that you can type wfor the wai t command.

= Ellipsis (that is, three consecutive periods) in a command indicate that you can
repeat the preceding field. For example, the command
save address_bl ock . . . indicatesthatyou can save more than one block
at a time.

= All source code examples are in C or assembly code.

Acronyms and Abbreviations
The following list defines the acronyms and abbreviations used in this document.

ADM application development module (a board)

ADS application development system (an ADM, a command converter,
host interface card, cables, and accompanying software)

DSP digital signal processor

EPROM erasable, programmable, read-only memory

EVM evaluation module (a board)

FIR finite impulse response (a type of filter)

Motorola About this Book Xiii

GSM global system for mobile communication

GUI graphic user interface

IR infinite impulse response (a type of filter)

JTAG Joint Test Action Group (an industry-wide consortium)

LTP long-term predictor (an algorithm used in digital signal processing)

OnCE™ On-Chip Emulation (a protocol and circuitry comprising a
debugging module)

PROM programmable, read-only memory

ROM read-only memory

Bibliography

The following documents are available from the Motorola Literature Distribution Center
(LDC) or on the Motorola website: http://www.motorola-dsp.com/documentation.

Motorola DSP Application Development System (ADS) User’s Manual (DSPASDUM/D)
Motorola DSP Simulator Reference Manual (web only)

Motorola DSP56300 Family Optimizing C Compiler User’s Manual (and other
family-specific compiler manuals)

Motorola DSP Assembler Reference Manual (web only)
Motorola DSP Linker/Librarian Reference Manual (web only)

Motorola DSP56303 ADM Reference Manual (and other device-specific ADM manuals,
web only)

Motorola DSP56303 EVM Reference Manual (and other device-specific EVM manuals, web
only)

Motorola DSP56300 Family Manual (DSP56300FM/AD)
Motorola DSP56600 Family Manual (DSP56600FM/AD)
Motorola DSP56800 Family Manual (DSP56800FM/AD)

Xiv DSP Tools User’'s Manual Motorola

Chapter 1
Selecting Tools

This chapter explains which Motorola Suite56 tools will enable you to accomplish which
tasks; it describes the tools briefly and providesillustrations showing how to make the
tools work together as you generate and debug code for digital signal processors.

The simplest code-development cyclein digital signal processing begins, asin Figure 1-1,
when you compile a high-level program, link its object code to any libraries or other
object files you may need, and execute the results either in a Suite56 simulator or through
a Suiteb6 hardware debugger. Motorola' s Suite56 offers an entire tool set for such a cycle,
including acompiler, linker, simulator, and hardware debugger. Other companies, such as
Tasking Software BV, a so provide atoolset for thiscycle. Additionally, you can“mix and
match” tools from Motorola with other toolsets. This chapter offers recommendations
about selecting tools to meet your needs.

(compiler)
Y

(assembler) C assembler >

(linker)
@rdware debugger simulator)

no longer AA1641

Figure 1-1. Simple Code Development Cycle: Compile, Link, Execute to Debug

Motorola Selecting Tools 1-1

Compilers

1.1 Compilers

Motorola recommends purchase of the Tasking C compiler for the DSP56300 and
DSP56600 families of digital signal processors. Motorola markets the m568c C compiler
for the DSP56800 family. Alternatively, Motorola distributes enhanced versions of the
ANSI-compliant GNU C compiler. These compilers are specific to families of Motorola
devices; that is, the g563c is an optimizing C compiler for the DSP56300 family of
devices, and the g566c¢ for the DSP56600 family. There is no GNU C Compiler for the
DSP56800 Family. From its website, Motorola distributes these enhanced, optimizing,
GNU C compilers along with device-specific utilities, such as preprocessors, to give you
greater control over the runtime environment. Each of those optimizing, family-specific
C compilers implements the C programming language according to ANSI X3.159-1989.

The Suite56 C preprocessor that Motorola distributes aso conforms to an ANSI standard.
It facilitates inclusion of arbitrary text files, supports conditional compilation, allows
macro definition and expansion. In fact, as an independent program, the preprocessor may
be used as a general purpose macro preprocessor.

C compiler default compilation

Gardware debugge) C simulator)

Figure 1-2. Compiling by Default or with the Option -c

By default, when you compile a C program with the Suite56 compiler, it silently calsthe
assembler and then the linker to produce executable object code, asin Figure 1-2. If your
project can be contained in a straightforward C source file that does not require linking to
external libraries or other object files, then default compilation offers you a streamlined
path to project development. In contrast, if you choose the option - ¢, then the compiler
silently calls only the assembler, to produce object files that must be explicitly linked.

1-2 Suite56 DSP Tools User’'s Manual Motorola

Assemblers

Thisoptionto link explicitly is obviously agood choice under several different conditions:

» if your project consists of many, large C source files; if those files are compiled
with option -c, then changesto one file will simply require recompilation of that
file and relinking to the others; you can save the time required to recompile the
unchanged files;

» if your project consists of amixture of C source and assembly code;
» if your project needsto link to existing libraries or other object-code modules.

1.2 Assemblers

Each Motoroladigital signal processor recognizes aset of machineinstructions. A Suite56
assembler translates mnemonic operation codes (recognizable by humans) into machine
instructions recognized by aMotoroladigital signal processor. An assembler aso accepts
mnemonic directives indicating how it should behave. Suite56 assemblers, for example,
accept i ncl ude directives, allowing you to put include files into applications based on
assembly code.

Suite56 assemblers understand algebraic expressions as arguments to directives and as
immediate operands in certain instructions. Suite56 assemblers also accept user-defined
macros, even nested macros, converting them into appropriate sequences of machine
instructions. Suite56 assemblers support conditional assembly, and they provide a suite of
transcendental functions (such as sine, cosine, natural logarithm) widely used in digital
signal processing. These features are documented in the Motorola DSP Assembl er
Reference Manual. Figure 1-3 on page 1-4 illustrates some of the features of these Suite56
assemblers.

An assembler can produce various kinds of output:
» arelocatable object file (option - b)
» alisting of the source program (option - 1)
* an object file with symbolic information from the source file (option - g)
» verbose reports about its progress (option - v)
» areport about loadtime and runtime memory use (option - nmu)

» anabsolutely located object file or executable object file (option - a) or relocatable
overlays (default)

Motorola Selecting Tools 1-3

Linkers

assembly macro files assembly code files

(*.mac, *.h, *.asm) (*.asm)

\ <4+—— equate files
relocatable object file .
(*.cln) Nt‘lon -
’ listings

executable object file (*.Ist)

assembler
COFF format (*.cld) \<

option -mu
linker
memory use reports
/ option -m
executable object file .
COFF format (*.cld) map file
(*.map)

Figure 1-3. Input and Output of the Assembler

1.3 Linkers

A linker combines relocatable object files (such as files generated by a compiler or an
assembler) or object modules (such as parts of alibrary) into asingle, new, absolute
executable file. With the option - i , the Suite56 linker can also produce a single, new,
relocatable file; such output can then in turn be linked itself, thus giving you away to link
incrementally to produce afinal executablefile.
The executable output of alinker can be used in a variety of ways:

» it can be executed on atarget platform;

* it can beloaded into a simulator and executed there;

* it can be downloaded into a system in development;

* it can be converted to Motorola S-record format to program into various types of
non-volatile memory (e.g., Flash, EPROM, PROM);

* it can be sent to Motorolato generate mask ROM for devices that include ROM;
* it may include symbolic information from the source code to use in a debugger
(option - g).
In addition to its executable output, the Suite56 linker can optionally produce other kinds
of output:
* map files (option - m);
» sorted list of symbols and their load-time values (option - malso).

1-4 Suite56 DSP Tools User’'s Manual Motorola

Linkers

Y ou can control the Suite56 linker by means of command files. With the option - f , you
can control the linker through a command-line file. With the option - r , you can use a
memory-control file asin Figure 1-4.

C source files

' make utility *
C compiler >

command line file
option -f
linker memory control file

option -r

default option -i option -m

executable object file relocatable file map file

COFF format (*.cld) (*.cln) (*.map) no longer AAL64

Figure 1-4. Input and Output of the Linker

One of the most powerful features of the Suite56 linker isits facility for memory control
files. Through a memory control file, you can manage how the linker fillsin addresses in
rel ocatable object files. Thisability means that you can place sections of code precisely in
memory on your target device, at designated addresses according to your directivesto the
linker in memory control files. Thisfacility isindispensable, of course, for managing
overlays of sectionsin program memory, X data memory, or (on certain Motorola digital
signal processors) Y data memory. For details about memory maps for specific Motorola
devices, see the memory map chapters of the device family manual (e.g., DSP56300
Family Manual) and device user’s manual (e.g., DSP56307 User’s Manual). For an
example of amemory control file and memory map file, see Section 3.5, "Exploiting
Memory Control Files," on page 3-25 in this manual, as well as the Motorola DSP
Linker/Librarian Reference Manual.

Motorola Selecting Tools 1-5

Simulators

1.4 Simulators

A Suite56 simulator is a software implementation of a hardware device, such as adigital
signal processor. As such, asimulator is advantageous in a number of ways:

* Whereas hardware for code development may be costly or limited in number,
software simulators can serve any number of developers.

» Assoftware, asimulator may be more portable—in the sense of traveling from
office to home, for example—than comparable hardware for code devel opment.

e Simulators can be reset remotely, unlike hardware for code development. If you are
working remotely (from home, for example), a simulator reset is much less
cumbersome than a physical hardware reset.

» Suiteb6 ssimulators also offer detailed profiles of code execution—profiles
unavailable through hardware for code development.

A Suite56 ssimulator exactly reproduces the following functions:

» al corefunctions, including pipelining and exception processing;

* most periphera activity;

» dl internal and external memory access of a Motoroladigital signal processor.
In short, Suite56 simulators enable you to evaluate a target digital signal processor
comprehensively. They also enable you to emulate your own algorithms entirely in
software and thus to evaluate how those algorithms behave with your target hardware. In

fact, evaluation of algorithmsis one of the chief uses of a simulator. Figure 1-5 illustrates
atypical use of asimulator to emulate a device in an audio application.

icrophone
A/D CODEC synchronous serial
analog digital interface (SSI) port
real-time application
analog digi
gital
D_ D/ACODEC Motorola dsp
speaker

synchronous serial
interface (SSI) port

simulated input file

.] simulated development
simulated output file

Suite56 dsp simulator

Figure 1-5. Typical Use of a Simulator in a Filtering Application

1-6 Suite56 DSP Tools User’'s Manual Motorola

Simulators

1.4.1 Data Streams and the Simulator

A simulator is also areasonable choice when you frequently have to download very large
filesthat would be slow or cumbersome to download from a hardware debugger to atarget
board. In fact, Suite56 simulators implement several types of data streams expressly for
such activity. The Motorola DSP Smulator Reference Manual documents these data
streams in Chapter 3, “Device |/O and Peripheral Simulation,” and Section 4.2.1,
"Generating Interrupts and Real-Time Stimuli of Pins," on page 4-4 in this manual offers
suggestions for using simulated data streams. These data streams facilitate various kinds
of data communication.

* From ahost to asingle memory address to simulate the interface to custom
memory-mapped peripherals

* From ahost to asingle memory address to bypass on-chip peripherals

» Toahost from asingle memory address

» From ahost to apin or agroup of pins

 Toahost from apin or agroup of pins

» From pinto pin on the same simulated device (Connect the pins by means of the
i nput command.)

* From pinto pin on different smulated devices (Create up to 32 simulated digital
signal processors by means of the devi ce command, and interconnect them by
means of thei nput command.)

* From amemory address on one simulated device to amemory address on another
simulated device

Moreover, when you need to analyze internal workings of atarget digital signal processor,
asimulator is agood choice because it alows you to control such internals as the
instruction pipeline—a facility generally hard to access through hardware. A simulator
also allows you to monitor program results without disturbing the internal instruction
pipeline.

Motorola Selecting Tools 1-7

Simulators

1.4.2 User Interfaces to the Simulator

The Suite56 simulator offers a graphic user interface with windows, menus, and online
help, asin Figure 1-6 on page 1-8. There are several ways of starting the Suite56
simulator. For example, if you are working on an NT platform and want to run the
simulator for the DSP56300 family, use one of the following alternatives:

» Double-click its shortcut icon on your desktop.

» Fromyour Start menu, choose Programs; then choose Motorola DSP Software
Development Tools, and then choose DSP56300 Simulator.

* From your Start menu, choose Run; then type gui 56300 in the prompt window.

Help menu

mresreny o B 0L AR oo,
ok

baeak:

dipdyy

Figure 1-6. Graphic User Interface of the Simulator

Suiteb6 simulators offer a text-based interface as well; it can be invoked interactively
through a console window or in batch mode through a command file. For example, to run
thisinterface of the ssmulator for the DSP56300 family, type the command si n66300 at a
command prompt of your operating system. Figure 1-7 on page 1-10 shows the text-based,
command-line interface of the smulator.

1-8 Suite56 DSP Tools User’'s Manual Motorola

Simulators

The Motorola DSP Smulator Reference Manual documents options available for both
interfaces of the simulator. In thismanual, the answer to afrequently asked question offers
guidelines for customizing your interface to a Suite56 simulator (Section 5.1, "How do |
customize Suite56 tools for my tasks?," on page 5-1).

1.4.3 Debugging with the Simulator

The Suiteb6 simulator iswell adapted to debug application code aimed at adigital signal
processor. To do so, you load object code—whether compiled C code or assembly
code—into the memory map of the simulated device. (The memory map of each ssimulated
device is documented in the memory map chapters of the device family manual (e.g.,
DSP56300 Family Manual) and device user’s manual (e.g., DSP56307 User’s Manual).)
The simulator then executes that code as the target device would do, displaying the
contents of device registers and memory locations, so you can see what is happening as
your application executes on your virtual device.

Besides seeing the contents of registers and memory locations, you can also change the
contents interactively through the ssmulator. Likewise, you can set both unconditional and
conditional breakpoints in code, at registers, and at memory locations. As afurther aid to
debugging, the ssmulator aso provides a single-line assembler. With the ASM command,
you can enter individual assembly instructions, which the simulator then executes. In other
words, using the ASM command, Suite56 simulators let you patch code asyou are
debugging.

For details about displaying register contents, setting breakpoints, and using the singleline
assembler, see the Motorola DSP Smulator Reference Manual and the online help
available with the simulator.

1.4.4 Online Help for the Simulator

Whether you are using the graphic or text-based interface, there is online help for each
command. Through the graphic user interface, of course, online help is available from the
Help menu on the menubar of the main window, as in Figure 1-6 on page 1-8.

In the text-based, command-line interface (asin Figure 1-7), when you type a command
on the command line, then the syntax of that command appears automatically on the help
line. If you type a question mark after acommand on the command line, then more help, in
addition to the command syntax, appears in the window.

Motorola Selecting Tools 1-9

Hardware Debugger: ADS

5 Molmols DSP

session window

PO DN A D Sk e S M LA)

command line — s
help line—

Figure 1-7. Text-Based Interface of the Simulator

1.5 Hardware Debugger: ADS

Likeasimulator, a Suite56 hardware debugger, often referred to asthe ADS or application
development system, allows you to evaluate atarget digital signal processor
comprehensively and to evaluate how your algorithms behave with respect to your target
hardware.

To manageinput and output, a Suite56 debugger offers highly advantageousfacilities. An
ADS can, infact, read datainto the target device while running; it can also read data out of
atarget device and into ahost while running. That is, the hardware debugger behaves like
adevice driving the host port to offer you much better control over ssmulated 1/0.

A Suite56 ADS supports source-level symbolic debugging of both C and assembly
programs, and it offers debugging commands to support simultaneous development with
multiple devices.

Figure 1-8 shows you the hardware components (host-bus interface card, interface cables,
command converter, and application development module) of atypical Suite56 ADS
hardware debugger. In addition to the visible components, the system al so includes
software running on your development platform (the host computer) and in the command
converter.

1-10 Suite56 DSP Tools User’'s Manual Motorola

Hardware Debugger: ADS

37-pin 14-pin
interface ribbon
cable cable

host computer ’

Motorola DSP

host-bus
interface card
command
converter

application development module (ADM)

Figure 1-8. Parts of the Hardware Debugger (ADS)

Motorola Selecting Tools 1-11

Hardware Debugger: ADS

1.5.1 User Interfaces to the Debugger

The Suiteb6 debugger offers a graphic user interface with windows, menus, and online
help for interactive debugging, asin Figure 1-9 on page 1-13. There are several ways of
starting the Suite56 hardware debugger. For example, if you are working on an NT
platform and want to run the hardware debugger for the DSP56300 family, you use one of
the following alternatives:

» Double-click its shortcut icon on your desktop.

* From your Start menu, choose Programs; then choose Motorola DSP Software
Development Tools, and then choose DSP56300 Hardware Debugger.

* From your Start menu, choose Run; then type gds56300 in the prompt window.

For customerswho prefer command-line control, the Suite56 debugger offers atext-based
interface as well, invoked interactively through a console window or in batch mode
through a command file. For example, to run the text-based, command-line interface of
the hardware debugger for the DSP56300 family, you type the command ads56300 at
your operating system prompt.

The Motorola DSP ADSUser’ s Manual documents options available for both interfaces of
the debugger. Through those options, you can customize your development environment,
aswe suggest in Section 3.1, "Initializing a Debugging Environment,” on page 3-1.

1.5.2 Online Help for the Debugger

Thereis online help for each command and for each register through the Suite56 ADS
debugger. In the graphic user interface, of course, online help is available from the Help
menu on the menubar of the main window, asin Figure 1-9.

1-12 Suite56 DSP Tools User’'s Manual Motorola

Hardware Debugger: ADS

Help menu
Fis [wopley Moy Epecute ‘Windoss Help

2B AL AL A

Figure 1-9. Graphic User Interface of the Hardware Debugger

In the text-based, command-line interface, when you type a command on the command
line, then the syntax of that command appears automatically on the help line. If you type a
guestion mark after acommand on the command line, then more help, in addition to the

command syntax, appears in the window.

Motorola Selecting Tools 1-13

Hardware Debugger: ADS

1-14 Suite56 DSP Tools User’'s Manual Motorola

Chapter 2
Testing Your Hardware Installation

The manual for each Motorola Suite56 tool (such asacompiler, an assembler, the linker, a
simulator, a hardware debugger) includes a chapter explaining how to install that tool. The
manuals for platform-dependent tools, such as the Suite56 ADS hardware debugger, also
include an appendix of platform-specific details. This chapter assumes that you have
followed the steps outlined in those installation guides and offers simpl e tests to check
your installation. It beginswith Figure 2-1, showing you how the Suite56 application
development module (ADM) is conventionally set up, as part of a Suite56 application
development system (ADYS).

Motorola Testing Your Hardware Installation 2-1

37-pin 14-pin
interface ribbon
cable cable

host computer

Motorola DSP

host-bus
interface card
command

converter

application development module (ADM)

o L] . Bl e] =

Figure 2-1. Setting up a Suite56 ADS with its ADM

Suite56 DSP Tools User’'s Manual Motorola

Testing Your Installation of the Command Converter

2.1 Testing Your Installation of the Command Converter

If you have installed these Suite56 tools:
» ahardware debugger, such asthe ads56300 or gds56300,

» ahost-businterface board, such as the 16-bit ISA bus for PC-compatible and

Hewlett-Packard workstations or the SBus for Sun and Sparc workstations,
» corresponding software device drivers, and
» the command converter,

to communicate with atarget device, then we recommend that you perform either one the

following tests to determine whether your installation of the command converter was

successful.

2.1.1 Testing through the Graphic User Interface

To test your installation of the command converter through the graphic user interface to

your Suite56 tools, follow these steps:

1. Start the hardware debugger. If you are working on a PC-compatible machine
running Windows NT, for example, there are several different waysto start a

hardware debugger, such as gds56300.
— From your NT Start menu, select Programs, and then click on the item

Mot or ol a DSP. (If the debugger you want to start does not appear as an item
among the Programsin your Start menu, then you may want to re-install your

debugger from your Motorola Suite56 Toolkit CD-ROM.)

— From your NT Start menu, select Run. When the command window opens,

type the command in Example 2-1.

— If you have created a shortcut icon of the Suite56 hardware debugger on your

desktop, then of course you ssimply click on that icon.
2. Inthe debugger, type the commands in Example 2-2 on page 2-4.

Motorola Testing Your Hardware Installation

2-3

Testing Your Installation of the Command Converter

2.1.2 Testing through the Command-Line Interface

If you prefer the command-line interface to your Suite56 tools, then test your installation
of the command converter through the following steps:

1. Start the hardware debugger. For example, if you are using the debugger for the
DSP56300 family, type the command in Example 2-1. To start the hardware
debugger for other families, type the appropriate command, such asads56800 for
the DSP56800 family or ads56600 for the DSP56600 family.

Example 2-1. Start the Debugger
C \> ads56300

2. Inthe debugger, type the commands in Example 2-2.

Example 2-2. Test Commands for the Command Converter

> cforce r
> cdisplay x:0..10

2.1.3 Understanding the Test Results

In Example 2-2, theinitial “c” in both commands indicates that the command is directed
to the command converter. The first debugger command, cf or ce r, resets the command
converter. If the debugger indicates an error, such as “unable to reset command
converter,” at that point, then you need to examine your installation of the parts
communicating with the command converter (i.e., the host-bus interface card and the
37-pin, parallel, interface cable).

The second command, cdi spl ay x: 0. . 10, displays output. A display of any arbitrary
datais agood indication. However, if the debugger indicates an error, such as “unable to
read command converter memory,” then you need to examine your installation of the
command converter.

If both commands are successful, and you see adisplay of some arbitrary data, then you
can be sure your installation of the command converter is correct. That is, your
development host can communicate through the host-bus interface card, the Suite56
software tools, the software drivers, and the Suite56 command converter successfully, so
you can proceed to the next test.

2-4 Suite56 DSP Tools User’'s Manual Motorola

Testing a Low-Frequency Target Device

2.2 Testing Your Installation of a Target Board
If you have successfully completed the test in Section 2.1, "Testing Y our Installation of
the Command Converter," and you have also connected a target device such as:

* a Suiteb6 application development module (e.g., DSP563xx ADM),

» aSuiteb6 evaluation module (e.g., DSP563xx EVM), or

e your own target board,

then we recommend that you complete your installation test by typing the commandsin
Example 2 -3. (The same commands work whether you are using the graphic user
interface or the command-line interface.)

Example 2 -3. Test Commands for the Target Device

> force s
> di spl ay

In contrast to the previoustest, where both commands were prefixed by “c” to direct them
to the command converter, these commands are directed to the application development
module, the evaluation module, or your own target board. The first command, f or ce s,
resets both the command converter and the target device. The second command displays
the contents of registers on the target device.

If both commands execute successfully and, as a consequence, you see register contents,
then you can be sure that your hardware installation is correct. If you encounter difficulty
at this point, then check whether the cable between the command converter and the target
device isworking properly. If your cable is sound and your target device is a Suite56
product (e.g., Suite56 ADM or EVM), then contact your Motorola distributor for help in
determining whether your target board is defective and requires replacement.

2.3 Testing a Low-Frequency Target Device

For any low-freguency target device (i.e., less than 2MHz), you must set the command
converter and the Suite56 ADS debugger software to the proper serial clock frequency. To
do so, usethehost command with the option cl ock followed by the frequency, asin
Example 2 -4.

The default radix of the Suite56 ADS debugger is hexadecimal. Consequently, to express
afrequency in decimal digits, we prefix it by this character: * .

Example 2 -4. Setting Low Frequencies in Suite56 Tools

> host clock ‘32 ; sets the frequency to 32 kHz
> host clock $32 ; sets the frequency to 50 kHz

Motorola Testing Your Hardware Installation 2-5

Choosing a Connector for the EVM Power Supply

2.4 Choosing a Connector for the EVM Power Supply

Most Suite56 evaluation modules have a 2.1 millimeter receptacle to connect the external
power supply. Modules to support the DSP56800 family, however, are exceptional in this
respect: they have a 2.5 mm receptacle. A 2.5 mm connector will connect all modules, but
the recommended 2.1 mm connector for the 2.1 mm modules and a 2.5 mm connector for
the 2.5 mm modules are recommended to provide a secure power connection.

2-6 Suite56 DSP Tools User’'s Manual Motorola

Chapter 3
Debugging C and Assembly Code

This chapter walks you through sample programs in both C and assembly language to
highlight the debugging facilities in Suite56 tools, particularly the hardware debugger
(such asads56800 or gds56300) and the simulator (such as si n66600 or gui 56300).
The interfaces—both graphic and text-based—to the Suite56 simulator were deliberately
designed to be as similar as possible to those of the Suite56 ADS debugger. Y ou can use
one very much as you use the other. Consequently, throughout this chapter, we will refer
to the graphic user interface and the text-based interface without distinguishing the
simulator from the Suite56 hardware debugger.

3.1 Initializing a Debugging Environment

There are many ways to customize your debugging environment, whether you use the
graphic user interface or the text-based, command-line interface. The following sections
outline those possibilities. For more detail about each topic, see the Motorola ADSUser’s
Manual, particularly Chapter 3 about commands and Chapter 4 about the graphic user
interface, or the Motorola DSP Smulator Reference Manual, Chapter 9, about its graphic
user interface.

3.1.1 Choosing Preferences

To control which windows open automatically when you start the

debugger, in the graphic user interface, choose the File menu, and

choose Prefer ences. When the Preferences dialogue box opens, select

the windows that you want to open automatically at start up.
Additionally, if you click the Font button in that dialogue box, another

10 Redirect . .

™ dialogue box opens for you to choose from the fonts available on your

Macro... Systern
About...

In the text-based interface, you set your preferences in aresource macro
file, as documented in the reference manual and explained in Section 5.1, "How do |
customize Suite56 tools for my tasks?," on page 5-1.

Path

Load
Save

Input
Output

10 Streams

r| v v v+ v v v | v

Motorola Debugging C and Assembly Code 3-1

Initializing a Debugging Environment

3.1.2 Defining Paths and Working Directories

A Suite56 tool, by default, looks for input files and places output files in the current
working directory. It can also redirect its search for files and its output to other specified
directories by means of a path. For every target device, the debugger can maintain a
distinct path, so you can organize input and output files for each target device separately.

In the graphic user interface, to set the current
working directory and to define a path to aternate

Load Add... directories for the current device, choose the File
Save Clear Alternate Path List | ey and select Path. Y ou can then Set the current
Input b working directory, Add other directories as

Output b alternates, or Clear thelist of directoriesfor that

1 P - device.

In the text-based interface, you specify a current working directory and paths to alternate
directories through environment variables that you define. Y ou define those environment
variables “on the fly” in acommand window of your operating system, or alternatively in
aresource macro file, asexplained in Section 5.2, "I'm tired of initializing my
development environment every time | start work. Isthere any way to save my
development environment?," on page 5-2.

3.1.3 Logging Commands for Later Reuse

One of the most useful features of a Suite56 tool isits ability to log commands that you
issue. Y ou can then save those logged commands in afile and reuse the file later to repeat
that command sequence. The log file that you create in thisway is an ordinary ASCII text
file; you can edit it with your favorite text editor.

To createalog file of commands, in the graphic user
interface, from the File menu, choose L og, and then
choose Commands. A dialogue box opens for you
to indicate where you want to save the file

Path

Load
Save

Input

- - v v |

Sutput containing the logged commands. Any commands
lE E:Eﬂ?; you issue to the tool after that point will be logged

Commands... in that file to be saved automatically as executable

Macro... Session... Mmacros.
About... Source Display Status

Close...

| Later, when you want to stop logging commands,
from the File menu, choose Close. A dia ogue box
appears for you to indicate which log to close.

Preferences...
Exit

3-2 Suite56 DSP Tools User’'s Manual Motorola

Initializing a Debugging Environment

Anytime you want to repeat that sequence of logged commands, from the File menu,
choose Macro. A dialogue box appears for you to indicate which file you want to execute.

From the text-based, command-line interface, you can also save a sequence of commands
inalog file. You typethel og command with two parameters: the option “c” to indicate
that you want to log only commands and the argument of afile namefor the log file. With
athird option, you can also indicate whether you want to overwrite an existing file or
append new commands to an existing file, asin Example 3 -1.

To reuse such acommand log file later, ssmply type the name of the log file on the
command line. (In the graphic user interface, the command lineislocated in the Command
window.) If you have difficulty with this step, check the answers to the FA Qs about
command log files on page 5-3.

Example 3-1. Logging Commands to a File for Reuse

> log ¢ nycommands.cnd -a ; appends commands to nycommands. cnd
> | og ¢ nycommands.cnd -0 ; overwites nycomrands. cnd with new commands

3.1.4 Logging a Session for Later Review

In addition to logging commands for later reuse, you can also log the entire contents of a
session. Y ou might want to log the contents of a session for review later. Y ou would not
execute asession log file, as it contains displayed data in addition to executable
commands.

To log asession in the graphic user interface, from the File menu, choose L og, and then
select Session. A dialogue box appears for you to indicate where you want to save thefile
containing the session.

To stop logging a session, from the File menu, choose Close. A dialogue box appears for
you to indicate which log to close.

From the text-based, command-line interface, you can also save asessionin alog file.
Type thel og command with the option s (to indicate that you want to log a session) and
with the optional argument of afile name for the log file. With athird option, you can also
indicate whether you want to overwrite an existing file (option -o) or append new contents
to an existing file (option -a).

Motorola Debugging C and Assembly Code 3-3

Initializing a Debugging Environment

3.1.5 Setting the Radix

Whether you are using the graphic user interface or the text-based interface, you can set
the radix for the display of the contents of registers before you display them. (Theradix is
the basis for computing the value of digits as numbers. For example, the digits 32 in
decimal radix represent the value thirty-two and in hexadecimal radix, they represent
fifty.) Inthe Suite56 ADS, the default radix for the display of register contentsis
hexadecimal. Y ou set the default display radix to another base in the graphic user interface
from the M odify menu by choosing Radix. In the text-based interface, type the command
r adi x followed by the option to indicate the base you prefer (b for binary, d for decimal,
f for floating-point, h for hexadecimal).

When you enter data by typing , you can control its
Change Register.. radix (regardless of the default display radix) by
ange Memory...

Copy Memory... precedl ng it with aradix indicator:
Radix Set Default... .
*$ for hexadecimal

Device Set Display...
Dowmn... ‘

Up...
o' for decima

*% for binary

3.1.6 Displaying Registers

Windows

Assembly
Source

Register

To display registersin the graphic user interface, from the Windows
menu, choose Register. A dialogue box appearsfor you to indicate which
registers you want to display. The Suite56 tool will then open awindow,
labeled with the device and registers you have chosen, and display the
register names and values.

To display registers in the text-based interface, type the command di spl ay with no
optionsto display all enabled registers, or with option on followed by the list of registers
you want to see for amore selective display.

3-4 Suite56 DSP Tools User’'s Manual Motorola

Source-Level Debugging in C

3.1.7 Displaying Memory

Windows
Assembly
Source
Register
Memory...

To display blocks of memory in the graphic user interface, from the
Windows menu, choose Memory. A dialogue box appears for you to
indicate which parts of memory you want to display. (The parts available
for display vary according to thetarget device.) The Suite56 tool will then
open a window, labeled with the device and memory blocks you have
chosen, and display the block names and values. That window isinteractive: you can both
see and modify memory contents there.

Stack
Malle

To display memory in the text-based interface, type the command di spl ay with no
optionsto display all enabled memory blocks, or with option on followed by the list of
memory blocks you want to see for amore selective display.

3.2 Source-Level Debugging in C

The C code in Example 3 -2 on page 3-7 implements along-term predictor (LTP). This
type of code often appears in such applications as GSM vocoders and other voice
compression algorithms.

The routine mai n initializes two input buffers and then invokesthe routinel t p. This
routine consists of an internal and external loop, which together compute a sum of
products cal culated from elements of the two input arrays. In other words, | t p
implements a convolution. To do so, it uses these features:

 Thetwo arrays, signal _|in[] andsignal dpri[],arevectors of fractions.
» Fractional multiplicationisperformedbyresult = I mult (inpl, inp2).
» Fractional additionisperformed by result = add_l ong (i npl, inp2).

With this example, we will highlight these debugging tasks: setting breakpoints and using
the go command effectively; defining awatch list; tracing; evaluating C expressions
(Don't forget the curly brackets!); and casting.

Note: The C code in Example 3 -2 will not actually link successfully. It lacks the
definition of two C library routines, add_| ong(); and | mul t () ; . Because
both of those routines are platform-dependent, in a linkable example, we use
#def i ne for those definitions.

Motorola Debugging C and Assembly Code 3-5

Source-Level Debugging in C

3.2.1 Compiling to Debug

When you are preparing to debug a C program with Suite56 tools, you must compile the
program in debug mode with debugging symbolsto retain information useful for
debugging in the executable code. The compiler option for debug modeis- g if you are
using a Suite56 C compiler, such as g563c for the DSP56300 family of devices or g566¢
for the DSP56600 family.

3-6 Suite56 DSP Tools User’'s Manual Motorola

Source-Level Debugging in C

Example 3-2. A Sample C Program: Itp.c

int signal _in[40], signal _dpri[120], nc;
volatile int c;
void main ()

{
int i;
for (i=0; i<120; i++)
signal _dpri[i] =1
for (i=0; i<40; i++)
signal _lin[i] =40 - i;
c =1Iltp ();
}
int 1tp()
{
long rj, | param
int i, j, indl, ind2; short tnp;
| par am=OL; nc=39; t np=38;
i nd2 = 39; indl = O;

for (i =39; i < 120; i++){
++t np:

rj =0L;

for(j =0; j< 40; j++) {
rj=add_long(rj,lmult(signal _|in[indl],
signal _dpri[ind2]));

i nd1l++; 1nd2--;

i ndl -= 40;
ind2 += 41;
if (rj > lparam {
| paramerj ;
nc = tnp;
} .
) rj = 2 (signal_lin*signal_dpri)
nc++,

return (nc);

Motorola Debugging C and Assembly Code

Source-Level Debugging in C

3.2.2 About Software Breakpoints in a C Program

This section discusses software breakpoints in debugging a C program. For details about
hardware breakpoints, see the family reference manual (e.g., Motorola DSP56600 Family
Manual) and the device manual (e.g., Motorola DSP56602 User’s Manual), particularly
chapters about the OnCE module and programming practices, for your target device.
Section 4.3, "Finding Well Hidden Bugs," on page 4-7, also offers guidance about
hardware breakpoints.

Software breakpoints are used to specify that a particular action be taken whenever a
certain condition is met. In thisway, software breakpoints are very similar to hardware
breakpoints. However, software breakpoints are more limited than hardware breakpoints
in that:

» software breakpoints can only be set on thefirst word of an instruction (they cannot
be set to detect the access of registers or data memory)

» software breakpoints must be set in RAM (they cannot be set in ROM)

Despite the above limitations, it is recommended that you use software breakpoints
instead of hardware breakpoints whenever possible. Why? Because, effectively only one
hardware breakpoint can be set at atime whereas avirtually unlimited number of software
breakpoints can be set.

Software breakpoints can have several different effects. How you set the breakpoint
depends in part on the effects that you want to achieve:

» A breakpoint causes execution of a program to halt and control of execution to
return to the user. This kind of breakpoint is known as a halt breakpoint.

* Inadditionto halting, abreakpoint can also increment a counter so you can see how
often a piece of code has been executed.

* Inaddition to halting, a breakpoint can also write to a Session window, so you can
see whether a piece of code has been executed.

» A breakpoint may also be set in the program data so that as specific memory
locations or registers are accessed, the break occurs. Section 4.3, "Finding Well
Hidden Bugs," on page 4-7, explains more about those breakpoints.

Regardless of how you set them, breakpoints are numbered, so that you can refer to them
as you watch them, disable them (i.e., turn them off), reenable them (i.e., turn them on
again), or direct execution to continue until it reaches a particular breakpoint. Moreover,
you can set more than one breakpoint at the same place to achieve more than one effect
(e.g., concurrently halt, increment a counter, write to the Session window, and execute a
user-defined routine).

3-8 Suite56 DSP Tools User’'s Manual Motorola

Source-Level Debugging in C

3.2.3 Setting Software Breakpoints in a C Program
The following procedure details the exact steps required to set a software breaktpoint.

1. From the Execute menu, choose Breakpoints, then select Set Software. The Set
Breakpointsdialog box shown in Figure 3-1 appears.

i Set Breakpoint
Type Firzt Condition Actian
Type Aooezs Addrezs Qualifier € Halt
s J " Read {+" Equal €" Note
: il - " Show
O wdrite " Mat Equal
{+" ReadMrite " Greater Than ¢+ Command
temorn Space ~ Execute Less Than i |ncrement CHTT
n j i |ncrement CHT 2
" |ncrement CHT3
Address " Increment CHT4
Cption
f+ And
- Or
= Ther Command
" Orly Second Condition |
Access Address Qualifier
Breakpoint Mumber " Read " Equal Exprezzion
= " rite " Mat Equal
1 2| " ReadMwrite " Greater Than |
{* Execute " Less Than
Count
S| Addrezs
il

o]

Cancel

2. Under Breakpoint Number select the number you want to assign to this

Figure 3-1. Setting a Software Breakpoint

breakpoint. The default number that is shown is the next available number.
Breakpoint numbers do not have to be consecutive, they can be assigned arbitrarily.
For example, it may be convenient to alocate breakpoints so that one functionis

assigned breakpoints 1 to 10, another 11 to 20, and so on.

Motorola

Debugging C and Assembly Code

3-9

Source-Level Debugging in C

3.

Note:
Note:

8.

Under Count secify how many times the Debugger should encounter the
breakpoint before performing the action. For example, if you set the count to 3, the
breakpoint will be triggered the third time that the breakpoint is encountered. Real
time execution will be affected if you set the count to more than one.

If you have assigned an input file, you can mark EOF. The breakpoint will be acted
upon when the input file reaches an end-of-file. If you have marked EOF, under
Input File Number select the number of the input file. The input file number isthe
number that you designated when you assigned the input file.

Under Type select the type of software breakpoint to set. If you select al, the
breakpoint will always be acted upon. Breakpoint types other than al are
conditional and device specific.

Under Address, type the address where you want the breakpoint to be set. For
example, to set a breakpoint at address $103 in p memory, type: p: $103
This address must be the first word of an instruction.

If you have set the breakpoint type (in step 5) to a conditional breakpoint (that
IS, any type other than al), the breakpoint can only be set to an address which
contains anop. Setting the breakpoint to an address which contains any other
opcode will cause your program to execute incorrectly.
Under Expression you can type an expression. The expression will be evaluated
when the address you specified is reached. If the expression is true, the breakpoint
will be triggered. If the expression isfalse, no action istaken and program
execution continues. Be aware that a side effect of evaluating an expression
(whether it istrue or false) isthat the program will not be executed in real time.

Under Action select what action is taken when the breakpoint is encountered:

3-10

Suite56 DSP Tools User’'s Manual Motorola

Source-Level Debugging in C

Table 3-1. Software Breakpoint Actions

Breakpoint Resulting Action
Halt Stops program execution when the breakpoint is encountered.
Note Displays the breakpoint expression in the Session window each time it is true. Program

execution continues. The display in the Session window is not updated until program
execution stops.

Show Displays the enabled register/memory set. Program execution continues.

Command Executes a Debugger command at the breakpoint. Device execution commands, such as
TRACE or GO, will not execute.

Increment[n Increments the n counter by one.
y

9. If the action specified isto execute acommand, under Command type the
Debugger command.

10.Click OK.

3.2.4 To Clear a Software Breakpoint

1. From the Execute menu, choose Breakpoints, then select Clear.
The Clear Breakpoints dialog box shown in Figure 3-2 displays alist of all the
current breakpoints.

i Clear Breakpoints E

Breakpaint Murmber

#1 |
EF

=
k. I Cancel |

Figure 3-2. Clear Breakpoints Dialog Box

2. Select the breakpoint you want removed so that it is highlighted.
If you are clearing consecutive breakpoints, you can click and drag to highlight
more than one breakpoint. Or hold down the CTRL key while clicking on
breakpoints to select more than one.

Motorola Debugging C and Assembly Code 3-11

Source-Level Debugging in C

3. Click OK.
The breakpoints you selected are now deleted.
Breakpoints will not be renumbered. For example, if you have set breakpoints #1,
#2, and #3, and then clear breakpoint #2, the remaining breakpoints will be
numbered #1 and #3.

Notice that breakpoints are indicated in the Assembly window and the Source window (if
applicable). Enabled breakpoints appear in blue. Disabled breakpoints appear in pink.

3.2.5 About Hardware Breakpoints

Hardware breakpoints are used to specify that a particular action be taken whenever a
certain condition is met. In thisway, hardware breakpoints are very similar to software
breakpoints. However, there are some differences. Hardware breakpoints:

» usethe OnCE circuitry on the device

» can break on the execution of an instruction

* canbesetin ROM or RAM

» can be set to detect an access of data memory
Although hardware breakpoints are more flexible than software breakpoints, you will

want to use hardware breakpoints judiciously. In effect, only one hardware breakpoint can
be enabled at any time.

3-12 Suite56 DSP Tools User’'s Manual Motorola

Source-Level Debugging in C

3.2.6 To Set a Hardware Breakpoint

1. From the Execute menu, choose Breakpoints, then select Set Hardware. The
dialog box in Figure 3-3 appears.

i Set Breakpoint
Type Firzt Condition Actian
Type Aooezs Addrezs Qualifier € Halt
s J " Read (" Equal €" Note
: il - " Show
O wdrite " Mat Equal
{+" ReadMrite " Greater Than ¢+ Command
temorn Space ~ Execute Less Than i |ncrement CHTT
n j i |ncrement CHT 2
" |ncrement CHT3
Address " Increment CHT4
Cption
f+ And
- Or
= Ther Command
" Orly Second Condition |
Access Address Qualifier
Breakpaint Mumber (" Read (¢ Equal Ex=preszion
= " rite " Mat Equal
1 2| " ReadMwrite " Greater Than |
{* Execute " Less Than
Count
1 | Address
il

ak. | Cancel |

Figure 3-3. Setting a Hardware Breakpoint

2. Under Type select the type of hardware breakpoint to set. Breakpoint types are
device specific. See Table 3-2 for an explanation of each type of breakpoint.

3. Under Memory Space, select the memory space in which the breakpoint isto be
Set.

4. Under First Condition specify the conditions under which the breakpoint occurs.
Under Access indicate what kind of access should be detected by the breakpoint.
For example, if you want the breakpoint to detect when amemory location is read
but not written to, select Read. If you want either aread or awrite to be detected,
chose Read/Write, etc.

Under Address Qualifier indicate the qualifier for the address location.
Under Address type the address that the breakpoint references.

Motorola Debugging C and Assembly Code 3-13

Source-Level Debugging in C

S.

Under Option, indicate whether a second condition should be considered. And
indicates that both conditions must be met to trigger the breakpoint. Or indicates
that either condition can be met. Then indicates that the First Condition must be
satisfied followed by the Second Condition. Only indicates that only thefirst
condition must be met to trigger the breakpoint.

Under Second Condition specify the conditions for the second condition. Thiswill
only apply if you have indicated so under Option in step 5.

Under Breakpoint Number select the number you want to assign to this
breakpoint. The default number shown is the next available number.

Breakpoint numbers do not have to be consecutive, they can be assigned arbitrarily.
For example, it may be convenient to allocate breakpoints so that one function is
assigned breakpoints 1 to 10, another uses 11 to 20, and so on.

Under Count specify how many times the Debugger should encounter the
breakpoint before stopping. For example, if you set the count to 3, the breakpoint
will be triggered the third time that the breakpoint is encountered.

Specifying a count will not affect real time execution.

Under Expression you can type an expression. The expression will be evaluated
when the first (and second) condition you specified is satisfied. If the expression is
true, the breakpoint will be triggered. If the expression is false, no action is taken
and program execution continues.

10. Under Action select what action is taken when the breakpoint is encountered:

Table 3-2. Hardware Breakpoint Actions

Breakpoint Resulting Action

Halt Stops program execution when the breakpoint is encountered.

Note Displays the breakpoint expression in the Session window each time it is true. Program
execution continues. The display in the Session window is not updated until program
execution stops.

Show Displays the enabled register/memory set. Program execution continues.

Command Executes a Debugger command at the breakpoint. Device execution commands, such
as TRACE or GO, will not execute.

Increment[n] Increments the n counter by one.

11. 1f the action specified is to execute a command, under Command type the

Debugger command.

12.Click OK.

3-14

Suite56 DSP Tools User’'s Manual Motorola

Source-Level Debugging in C

3.2.7 To Clear a Hardware Breakpoint

1. From the Execute menu, choose Breakpoints, then select Clear.
The Clear Breakpoints dialog box, shown in Figure 3-2 on page 3-11, displays a
list of all the current breakpoints.

2. Select the breakpoint you want removed so that it is highlighted.
If you are clearing consecutive breakpoints you can click and drag to highlight
more than one breakpoint. Or hold down the CTRL key while clicking on
breakpoints to select more than one.

3. Click OK.
The breakpoints you selected are now deleted.
Breakpoints will not be renumbered. For example, if you have set breakpoints #1,
#2, and #3, and then clear breakpoint #2, the remaining breakpoints will be
numbered #1 and #3.

Notice that breakpoints are indicated in the Assembly window and the Source window (if
applicable). Enabled breakpoints appear in blue. Disabled breakpoints appear in pink.

3.2.8 Defining a Watch List for a C Program

A watch list consists of C expressions, registers, memory locations, and general
expressions that will be displayed throughout a trace and each time you encounter a
breakpoint. In other words, awatch list consists of the items you want “to keep an eye on”
as you are debugging. You define the list by adding itemsto it or taking items off the list.

One note of caution: when you add a C expression to awatch list, you must enclose the C
expression in curly brackets, { } . In general, when you enter C expressionsin a Suite56
simulator or Suite56 ADS hardware debugger, you must enclose the C expression in curly
brackets.

A watch list is device-specific; if you are working with more than one target device, then
you can define more than one watch list.

In the graphic user interface, there are two different ways to add items to a watch list:

» From the Display menu, choose Watch, and then select Add. A dialogue box
appears for you to enter the register, memory location, or C expression to watch.
Y ou also choose the radix for the item in that window.

* From the Windows menu, choose Watch. A dialogue box appears for you to enter
the register, memory location, or C expression to watch. Y ou also choose the radix
for theitem and indicate which window to associate with the watched item.

Motorola Debugging C and Assembly Code 3-15

Source-Level Debugging in C

In the text-based interface, to define awatch list, use the wat ch command, asin Example
3-3.

Example 3 -3. Defining a Watch List

> watch r0 ; adds the register to the watch |ist
> watch x: 0 ; adds nmenory location to the watch |i st
> watch {signal lin[indl]} ; adds itemof array to the watch |ist
> wat ch ; displays the current watch |ist

Toremove an item from awatch list, in the graphic user interface, from the Display menu,
choose Watch, and then select Off. A dialogue box appears for you to select itemsto
remove from the watch list.

Toremove an item from awatch list in the text-based interface, use the wat ch command
followed by the number of the watch item and the of f option, asin Example 3 -4

Example 3 -4. Removing Items from a Watch List

> wat ch ; displays current watch list to show item nunbers
> watch of f renoves all itens fromthe watch |i st
> watch #1 off renoves first itemfromthe watch |ist

3.2.9 Evaluating C Expressions

Asyou are debugging, you can use any valid C expression as an argument to the br eak,
eval uat e, t ype, andwat ch commands. When you use C expressions as arguments, you
must enclose the expression in curly brackets, { } .

In addition to the usual C operators, Suite56 tools offer two additional operatorsfor usein
C expressions. The operator “#” makes it easier to refer to elements of an array. The
operator “$” enables you to refer to registersdirectly in expressions. (This use of the
operator “$” in C expressions within curly brackets differsfrom its use to set a
hexadecimal radix in assembly code.)

To see how an expression will be evaluated (for example, before you actualy useitin a
command), in the graphic user interface, from the Display menu, choose Evaluate. A
dialogue box opens for you to type the expression to evaluate. In the text-based interface,
type the eval uat e command followed by the expression you want to see.

To evaluate a C expression in the graphic user interface (i.e., to use it in acommand), in
the Command window, type the expression enclosed in curly brackets on the command
line.

3-16 Suite56 DSP Tools User’'s Manual Motorola

Source-Level Debugging in C

3.2.10 Casting in a C Program

Suite56 tools support these kinds of casts for both basic C types and user-defined types
(i.e., those defined by t ypedef):

* (type)

* (type *)

* (enum enuneration_tag)

e (enum enuneration_tag *)
e (struct structure_tag *)
* (union union_tag *)

3.2.11 Tracing in a C Program

Suite56 tools offer tracing so you can continuously see the valuesin any registers or
memory locations that interest you as your program executes. Before you begin tracing,
you indicate whether you want to trace by execution cycles, by lines of C code, or by
assembled instructions. Y ou also indicate how many cycles, lines, or instructions you
want to trace and whether to halt execution for breakpoints.

To trace in the graphic user interface, from the Execute menu, choose
Trace. A dialogue box appears for you to indicate cycles, lines, or
instructions, how many, and whether to halt at breakpoints.

Execute
Go...
Step...
Trace...

To trace in the text-based interface, type thet r ace command with
options and parameters to indicate how you want the trace to proceed.

ﬁ Use the Next button on the toolbar to skip over subroutine calls and step through
"1 execution routine by routine. In other words, the Next button recognizes which
assembly instructions make up a C routine, effectively executes each routine to
completion, and then steps from that executed routine to the first instruction of the next
routine. (See Section 3.3.2, "Tracing Assembly Code," on page 3-23, for suggestions
about stepping through code instruction by instruction.)

3.2.12 Using C-Specific Commands

As you have seen, the debugging commands in Suite56 tools are available to you through
menu items in the graphic user interface and as commands to enter in the Command
window. Most of the debugging commands available through Suite56 tools—br eak,
eval uat e, fini sh,go, next,step,trace,until,wat ch—apply to both C
programs and assembly programs. There are afew commands specific to C programs,
however.

Motorola Debugging C and Assembly Code 3-17

Source-Level Debugging in C

These are the C-specific debugging commands:

» down moves down the C function call stack. In the graphic user interface, from the
M odify menu, choose Down.

» frame designatesthe current framein the C function call stack. (The current frame
determines the scope for evaluation.) In the graphic user interface, from the
Display menu, choose Call Stack.

* redirect redirects standard input (st di n) and standard output (st dout and
st derr). Withit, you can make st di n take datafrom afile and send standard
output to files. In the graphic user interface, from the File menu, choose
I/O Redirect.

* st reans enablesand disablesinput and output on the host side for C programs. In
the graphic user interface, from the File menu, choose | /O Streams.

* type acceptsaC expression enclosed in curly brackets {} asits argument and
displays the type of the return value of that expression. In the graphic user
interface, from the Display menu, choose Type.

* up movesup the C function call stack. In the graphic user interface, from the
M odify menu, choose Up.

» wher e displaysthe C function call stack. With no options, it displays the entire
stack. With anumeric option, you tell it how many frames of the stack to display.
In the graphic user interface, from the Display menu, choose Call Stack.

3.2.13 Profiling a C Program

After you have loaded your C program into a Suite56 simulator, you can profile the
program as it executes. The profiler counts the number of instructions of each typein the
program, calculatestheir percentage of the program, and analyzes the number and type of
instructions actually executed. It al so analyzes addressing modes used with respect to
Instruction types. It assesses interaction between subroutines during execution. It
computes the runtime of the program execution in terms of clock cycles. Finaly, it places
itsresultsin two files; one file, with the extension .| og, isan ordinary ASCII text file,
formatted in 80 columns; the other, with the extension . ps, contains a PostScript version
of the same results for nicely formatted output from a PostScript printer with appropriate
fonts. Only the Suite56 simulator offers these profiling facilities.

To profile your program, in the graphic user interface of the smulator, first load both
memory and symbols. Next, from the File menu, choose L og, and then select Profile. A
dialogue box appears for you to indicate the name and location of the log fileto contain
the profile that the tool will generate. Profiling will continue until you click the File menu

3-18 Suite56 DSP Tools User’'s Manual Motorola

Symbolic Debugging in Assembly Code

again and choose Close. A dialogue box opens for you to indicate that you want to close
the Profilelog file. Closing that file will end that profile.

In the text-based interface of the ssmulator, first load your executable program, both
symbols and memory. Then use the| og command with two arguments: the option p to
indicate profile and a name for the profile log file. A third option indicates whether to
append the profileto an existing file (option - a), to overwrite any existing file of the same
name (option - 0), or to cancel the profileif afile of the same name already exists

(option - ¢). To end a profile, use thel og command with the option of f .

3.3 Symbolic Debugging in Assembly Code

The assembly code in Example 3 -5 implements a basic finite impul se response filter. FIR
filtersare widely used in digital signal processing. Theincludefile, i odat a. h, in
Example 3 -6 on page 3-21 saves registers onto a stack and restores them from that stack.
It al so uses Suiteb56 debugging facilities (e.g., the debug instruction) to manage simulated
input. For more about simulated input, see Section 4.2.1, " Generating Interrupts and
Real-Time Stimuli of Pins," on page 4-4, and Section 5.8, "How do | simulate input and
output?," on page 5-5.

Motorola Debugging C and Assembly Code 3-19

Symbolic Debugging in Assembly Code

Example 3-5. A Finite Impulse Response Filter in Assembly Code: fir.asm

opt

dat a_poi

data_in
dat a_out

coeffici

cex, mex, cre, cc, mu

page

132, 66, 0, 10

section filter

i ncl ude "i odat a. h"

defi ne
defi ne
defi ne
defi ne

nts

org

ents

P_MEM " 0"
X MBEM" 1"
Y_MEM " 2"
L_MEM" 3"

equ 20 ; nunber of points to process

y:

ds 1

ds 1

set i 0

xdef coefficients
dupa coef, -

21.0/231.0, 14. 0/ 231. 0, 39. 0/ 231. 0, 54. 0/ 231. 0, 59. 0/ 231. 0, 54. 0/ 231. 0, 39. 0
/231.0,14.0/231.0,-21.0/231.0

dc coef
set i i +1
endm
num t aps equ [;nunber of taps in filter
reg_stack ds 10 ; stack space for registers
org x:0
buf f er dsm data points ; saved data out
states dsm num t aps ;filter states
org p:0
j mp begi n
dup $100- *
nop
endm
org p: $100
begi n
nove #reg_stack, r7 ;point to register stack
nove #0, sp ; cl ear stack pointer
nove #states,rl ;point to filter states
nove #num taps-1, nl ; mod(num t aps)
nove #coefficients,r5 ;point to filter coefficients
nove #num t aps-1, nd ; mod(num t aps)
nove #buffer,r6é ;point to storage buffer
nove #data_poi nts-1, n6 ; mod(dat a_poi nt s)
nove #0, x0
rep #num t aps
nove X0, x: (rl)+ ;clear tap states
3-20 Suite56 DSP Tools User’'s Manual Motorola

Symbolic Debugging in Assembly Code

rep #dat a_poi nts
nove X0, x: (r6) + ;clear data points
.1 oop
do #data_points,end fir ;one | oop for each tap
| CDATA input_data,1,1,Y MEMdata in ;read data from ADS
nove y:data_in, x0 ; get sanpl e
jsr fir filter
nove a, y: data_out ; out put sanpl e
| CDATA output _data, 1,1, Y MEMdata out ;wite data to ADS
nove a, x:(r6)+ ; save data
end fir
.endl
fir filter
clr a x0,x:(rl)+ y:(r5)+,y0 ;save first state
rep #num t aps-1

nac x0,y0,a x:(rl1)+ x0 y: (r5)+,y0
nmacr x0,y0,a (rl)-
rts

endsec
end

Example 3-6. A Header File for the FIR Example: iodata.h

| CDATA nacro | abel, fil enunber, count, menoryspace, addr ess
nove X0, y:(r7)+ ; save register iny data
nove ro, y:(r7)+
nove ri, y:(r7)+
nove #>((?fil enunber<<8)|count),x0 ;(file# << 8) | count

nove #>7?address, r0 ; addr ess
nove #>menor yspace, rl ; menory space
| abel debug
nove y:-(r7), rl , restore register

nove y:-(r7), r0
nove y:-(r7), x0
ENDM

Note that in Example 3 -6, the “?” symbol used in the move commands(i.e. "Ove #>7addr ess, r0) isa
special macro substitution syntax.

Motorola Debugging C and Assembly Code 3-21

Symbolic Debugging in Assembly Code

3.3.1 Setting Breakpoints in Assembly Code

This section discusses software breakpoints in debugging an assembly program. The
observations about software breakpointsin Section 3.2.2, "About Software Breakpointsin
aC Program,” on page 3-8, also apply to software breakpoints in assembly code.

For detail s about hardware breakpoints, see the family reference manual (e.g., Motorola
DSP56600 Family Manual) and the device manual (e.g., Motorola DSP56602 User’s
Manual), particularly chapters about the OnCE module and programming practices, for
your target device. Section 4.3, "Finding Well Hidden Bugs," on page 4-7, also offers
guidance about hardware breakpoints.

Breakpoints can have several different effects. How you set the breakpoint dependsin part
on the effects that you want to achieve:
* To set ahalt breakpoint.

In the graphic user interface, double-click in the Assembly window on the
instruction where you want the break to occur. The break command then appears
automatically in the Command window, and the Assembly window highlights the
address you clicked.

» To set abreakpoint that increments a counter:

In the graphic user interface, from the Execute menu, choose
Breakpoint, and then select Set. A dialogue box appears for
you to indicate in the Action pane which counter to increment.

*To set a breakpoint that writes to a Session window:

In the graphic user interface, from the Execute menu, choose
Breakpoint, and then select Set. In the dialogue box that
appears then, indicate Note in the Action pane of the window.

Execute
Go...
Step...
Trace...
Next...
Finish
Until...
Breakpoints
Wait... Clear...
Stop Enable...
Disable...

Beset

Regardless of how you set them, breakpoints are numbered, so that you can refer to them
as you watch them, disable them (i.e., turn them off), reenable them (i.e., turn them on
again), or direct execution to continue until it reaches a particular breakpoint. Moreover,
you can set more than one breakpoint at the same place to achieve more than one effect
(e.g., halt and increment a counter and write to the Session window and execute a
user-defined routine).

To continue execution after a breakpoint, in the graphic user interface, click the Go
button. In the text-based interface, type the go command on the command line.

3-22 Suite56 DSP Tools User’'s Manual Motorola

Symbolic Debugging in Assembly Code

To disable a breakpoint, in the graphic user interface, double-click on it in the Assembly
window. Alternatively, from the Execute menu, choose Break points, and then select
Disable. In the text-based interface, use the br eak command followed by the number of
the breakpoint and the option of f .

3.3.2 Tracing Assembly Code

Suite56 tools offer tracing so you can continuously see the contents of any registers or
memory locations that interest you as your program executes. Before you begin tracing,
you indicate whether you want to trace by execution cycles or by assembly instructions.
Y ou also indicate how many cycles or instructions you want to trace and whether to halt
execution for breakpoints.

To trace in the graphic user interface, in Execute menu, choose Trace.
A dialogue box appears for you to indicate cycles or instructions, how
many, and whether to halt at breakpoints.

Execute

Go...
Step...
Trace...

To trace in the text-based interface, typethet r ace command with
options and parameters to indicate how you want the trace to proceed.

When you are using Suite56 tools, you can also step through assembly programs
! instruction-by-instruction with the Step button on the toolbar or the st ep

command in the Command window. If the source code window is open, stepping
will move one executable line of source code. Macros consisting of several instructions,
such as debugging macros, will be executed all at once.

Execute
Step...
Trace...

Next...
Finich

Y ou can aso step through in groups of instructions. In the graphic user
interface, from the Execute menu, when you choose Step, a dialogue
box appears for you to indicate in the Count pane how many
instructions make a step. For the same effect, you can also use the
count option of thest ep command in the Command window.

For a different effect, use the Next button on the toolbar to step through routine

ﬁ by routine. In other words, the Next button recognizes which instructions make

nEwt | U aroutine, effectively executes each routine to completion, and then stepsfrom
that executed routine to the first instruction of the next routine.

Motorola Debugging C and Assembly Code 3-23

Calling Assembly Code from C Code

3.4 Calling Assembly Code from C Code

C compilers—whether distributed by Motorola or by another supplier of software
tools—observe calling conventions (i.e., conventions about how information flows
between a routine that calls a piece of code and the piece of code that is called) usually
documented in the reference manual for that compiler. The documentation about the
calling conventions of a given compiler usually indicates how the compiler uses the
underlying hardware: where the compiler can expect to find incoming data, such as
parameters passed to aroutine; where the compiler should place outgoing data, such asthe
return values of routines; how symbols are handled; and so forth.

One convention of the Suite56 C compilers (.e.g., g563c or g566c¢) is that they prefix
every symbol with an upper-case F. When you compile a C program that calls other C
routines, the compiler silently handles this convention, prefixing every called routine with
the requisite F. When you compile a C program that calls routines written in assembly
code, however, you must observe this convention yourself: in the assembly code, prefix F
to the names of assembly routines called by your C program and declare those routines
gl obal so that your C program can access them; in the C program, declare the called
routine ext er n.

Example 3 -7 on page 3-24 shows you a C program that calls an assembly programin this
way. The assembly routineisdeclared ext er n inthe C program. In Example 3 -8 on page
3-25, you can also see the assembly program with itsgl obal declaration and its
required F prefixing the name of the called routine.

Example 3-7. A C program That Calls Assembly Code

extern int norml (int);
void func(long int Acc, long int Ler[])

int i;
int Exp;
Exp = norml(Acc) ;

for (i =0; i <15 ; i ++) {
Ler[i] = Ler[i] << Exp;

3-24 Suite56 DSP Tools User’'s Manual Motorola

Exploiting Memory Control Files

Example 3-8. An Assembly Routine Called by a C Program

section normroutine_in_asm
gl obal Fnorm|

Fnor m |
; Receives paranmeter in a, returns nornalized value in a
clb a,b
neg b
nove b, a
rts
endsec

3.5 Exploiting Memory Control Files

This example, showing you how to use amemory control file to locate sections at specific
addresses in X memory on atarget device, is based on the Suite56 assembler for the
DSP56300 family. The principlesit illustrates about memory control files also apply to
other target devices. The example uses two simple files of assembly code,

section_a. asm(in Example 3-9) and secti on_b. asm(in Example 3-10). Asyou
can see, the assembly codein sect i on_a. asmfills a256-word block of X memory on
the target device with zeroes, and sect i on_b. asmfillsa 16-word block of X memory
with ones.

Example 3-9. A Sample Assembly File for Memory Mapping: section_a.asm

section section_a
org X:

bsc $ff,0

endsec

Example 3-10. A Sample Assembly File for Memory Mapping: section_b.asm

section section_b
org X:

bsc $10, $f f
endsec

To assembl e those two files, we use the commands to the assembler in Example 3-11. The
option - b makes the assembler produce object files. Since no other option appearsin each
command, the assembler will produce rel ocatable object files.

Motorola Debugging C and Assembly Code 3-25

Exploiting Memory Control Files

Example 3-11. Assembling Two Relocatable Object Files

> asnb6300 -b section_a.asm
> asnb6300 -b section_b.asm

The commandsin Example 3 -11 create relocatable object files, sect i on_a. ¢l n and
secti on_b. cl n, that can then be linked. For the purpose of this example, we assume
that we want the block of zeroes set up by sect i on_a. asmto start at location x: $333
and the block of ones set up by sect i on_b. asmto start a x: $555. We use the memory
control filein Example 3 -12 to place those blocks at the target locations.

Example 3-12. A Memory Control File: sec.ctl

section section_b
base x: $555
section section_a x:$333

Thetwo files are linked with the command in Example 3 -13. The option - b indicates that
an object file will be created as linker output. The option - mindicates that a map file
named out . map will be created aswell. (That fileis of particular interest to usin this
example.) The option - r indicates that the linker should consult a memory control file (in
thisexample, named sec. ct |) to determine where to place sectionsin memory on the
target device.

Example 3-13. Command to Link Memory Control File to Object Files

> dsplnk -b -nmout.map -rsec.ctl section_a section_b

Y ou see the contents of the resulting map file in Example 3 -14. When you use memory
control files (aswe did in thisexample), check the resulting map file to determine whether
you achieved the memory mapping that you expected. By consulting the user’ s manual of
the target device (in this example, DSP56300), particularly the chapter about memory
mapping, we know that certain parts of X memory are reserved; those parts are marked
UNUSED in the map file. If those reserved portions of memory werein use, then we would
know that our program was mapping memory inappropriately, and we would
consequently search for the source of that bug.

3-26 Suite56 DSP Tools User’'s Manual Motorola

Exploiting Memory Control Files

Example 3-14. A Memory Map File: out.map
Motorol a DSP Linker Version 6.2.1 98-05-22 10:29:21 out.map Page 1

Section Link Map by Address
X Menory (O - default)

Start End Lengt h Secti on
0000 0332 819 UNUSED
0333 0431 255 section_a
0432 0554 291 UNUSED
0555 0564 16 section_b

0565 FFFF 64155 UNUSED
Section Link Map by Nane

Secti on Menor y Start End Lengt h
G.CBAL None

section_a X (0) 0333 0431 255
section_b X (0) 0555 0564 16

Motorola Debugging C and Assembly Code 3-27

Exploiting Memory Control Files

3-28 Suite56 DSP Tools User’'s Manual Motorola

Chapter 4
Tips about Special Projects

Thetips about special projectsin this chapter were collected from Motorola customers and
application developers engaged in “real world” projects.

4.1 Managing Projects with Multiple Devices

Both the Suite56 ADS debugger and the Suite56 simulator support your code generation
and debugging for multiple digital signal processors of the same family.

4.1.1 Connecting Multiple Devices to the Suite56 ADS Debugger

If you plan to use the Suite56 ADS debugger with multiple digital signal processors, you
must first consider whether or not the digital signal processors have a JTAG interface.

If your project involves multiple digital signal processors that do not have aJTAG
interface, then you need one command converter per device for debugging through a
Suite56 ADS debugger. Y ou can connect as many as eight devicesin thisway. Using a
single 37-pin interface cable, splice the command converters to the host computer (your
development platform), and connect each command converter to one of the non-JTAG
digital signal processors through a 14-pin ribbon cable, asin Figure 4-1.

host computer 3;7'19"1
cablei p
command
host bus converters
interface card .
14-pin

cables

DSPO DSP7

Notes: 1. There is a jumper setting on each command converter to select address, DSPO . . . DSP7.

Figure 4-1. Connecting Non-JTAG Devices for Debugging

Motorola Tips about Special Projects 4-1

Managing Projects with Multiple Devices

In contrast, if all the digital signal processorsin your project have a JTAG interface, then
you can connect up to 24 such devices through a single command converter for debugging
through a Suite56 ADS debugger. From the point of view of the debugger, the digital
signal processor nearest TDO (test data output signal) on the JTAG interface of the
command converter is numbered device 0, and the digital signal processor nearest TDI
(test data input signal) on the JTAG interface of the command converter is the highest
numbered device, asin Figure 4-2. Connect each digital signal processor through its own
TDO to the TDI of its successor.

37-pin
interface
cable TDI TDO TDI TDO

DSP(n-1) DSP(n-2) \
host computer DI |
|
|
TDO !
host-b command J

Ost-bDus converter

interface card TDO TDI TDO TDI

DSPO DSP1

Figure 4-2. Connecting Devices through Their JTAG Interfaces for Debugging

4.1.2 Simulating Multiple Devices

In a Suite56 simulator, there are facilities to support your code development aimed at
multiple digital signal processors. Thesi 66300, for example, smulates all the
individual digital signal processorsin the DSP56300 family. It can simulate as many as 32
of them at once.

To set up asimulation of multiple devices, in the

m graphic user interface, from the M odify menu, choose
Change Register... Device, and then select Configure. A dialogue box
Change Memory... appears for you to indicate the characteristics of one
ﬁ';';fxmemw"' b digital signal processor. Assign it a device number in

the Device pane of the dialogue box. Indicate its type
(e.g., 56301) in the Device Type pane, and configure it
On. Then click OK. Repeat this procedure for each of
your multiple devices.

Set Default...
Configure...

Up..
Down...

In the text-based interface, use the devi ce command with a device number and device
type as parameters, followed by the option ON.

4-2 Suite56 DSP Tools User’'s Manual Motorola

Managing Projects with Multiple Devices

Aslong as asimulated deviceis configured QN, it is active during execution commands
such as Go, Step, or Trace, and responds to them appropriately. To make a given device
inactive (so that it no longer responds to execution commands), configure it as OFF.
A simulator maintains a separate window of each of these typesfor each ssmulated device:

» Assembly window to display the assembled code |oaded for that device;

» Breakpoints window to display the breakpoints defined for that device;

e Callswindow to display function calls to that device;

* Input window to display ssmulated input to that device;

* Memory window to display designated locations on that device;

» Output window to display simulated output from that device;

» Register window to display designated registers of that device with their contents;

» Session window to display session activity with respect to that device;

» Stack window to display the C function stack (if appropriate);

» Source window to display C source code (if appropriate);

» Watch window to display items on awatch list for that device.

Those windows are titled with the device number (e.g., DvO0 Assembly or Dv28 Source)
to help you identify data associated with each device.

A Suite56 simulator can also profile multiple devices

Change Register.. separately. For each devicein turn, inthe M odify menu,
Change Memory... choose Device, and then select Set Default. While a
Copy Memary... given device isthe default, in the File menu, choose
Radix b

L og, and then select Profile. A dialogue box appearsfor
you to indicate the name and location of the log filein
which to save the profile for that device. Repeat these
steps to create a separate profile for each devicein turn.

Device Set Default...
Up... Configure...
Down... Unlock...

In the text-based interface, use the | og command with a device number and file name as
parameters and the option P to indicate profile.

A Suiteb6 simulator simulating multiple devices can be especially useful when you are
developing real-time application code for a single target device, aswe explain in Section
4.2.4, " Simulating Communication between Serial Devices," on page 4-6.

Motorola Tips about Special Projects 4-3

Developing Real-Time Applications

4.1.3 Simulating Communication between Multiple Devices

Use simulated input to simulate communication between multiple devices. In fact, you can
simulate tying pins together and connecting to different memory locations.

% To tie pins together (so that the output from one pin becomes
Tond S input to another pin), from the File menu, select I nput, and
Save d then choose Pins. A dialogue box appearsfor you to indicate
Output which pinsto tie together. In the same dial ogue box, you also
10 Streams Efj;gf?--- indicate devices by number, so that you can tie together pins
Tog > on the same device or on different devices (if you are
Macrn working on a simulation of multiple devices).

To connect one memory location to another (so that the value read from one location
becomes the value written to another), from the File menu, choose | nput, and then select
Address. A dialogue box opens for you to indicate which memory locations to connect.
Again, the locations may be on the same device or on different devices, so you can also
Indicate the device of the source location.

4.2 Developing Real-Time Applications

This section suggests ways in which Suite56 tools assist in the following tasks, typical of
real-time applications:

* generating interrupts and real-time stimuli of pins;
e exercising peripheras,

* generating output with time-critical information;

e simulating communication between serial devices.

4.2.1 Generating Interrupts and Real-Time Stimuli of Pins

To ssimulate interruptsto your target digital signal processor, apply apin file to the
interrupt pin. A pin file contains ordinary ASCI| text of zeroes and ones to represent low
and high signals. To ease the chore of creating and maintaining such afile, a Suite56
simulator accepts certain syntax, documented in the Motorola Smulator Reference
Manual, so that (01) , for example, means “repeat zero followed by one continuously,”
and (01) #5 means “repeat zero followed by one five times.” The same manual aso
documents the format of input files to simulate more complicated real-time stimuli.

To seealist of valid pin names for the current device in a Suite56 simulator, type the
command hel p pi n on the command line in the Command window. The list then
appears in the Session window.

4-4 Suite56 DSP Tools User’'s Manual Motorola

Developing Real-Time Applications

 File | To apply apinfile, inthe File menu, choose I nput, and then
Path ' select Open. A dialogue box appears for you to indicate in
Load ¢ the From pane that the input comesfrom afileand inthe To
Save }
pane that it appliesto apin. In the File Name pane, you

indicate the name of the input file.

Output Bin...

:g ;tr;_am; %‘I’:;zss In the text-based interface, use thei nput command with the

: Bedire T pin name and file name as parametersto apply apinfiletoa
l]g H

Marrn... pl n.

4.2.2 Exercising Peripherals

To exercise the peripherals of your target device, ssmulate input and output on the pins
associated with the peripherals. The Motorola Smulator Reference Manual documentsthe
format of both simulated input and output filesin Chapter 3, “Device 1/0O and Periphera
Simulation.” You have achoice of “raw” pin 1/O format, which consists of zeroes and
ones in a continuous bit stream, or simplified format, where the simulator takes
responsibility for converting the bit stream to intelligible chunks of data (such as 8- or
32-bit words, floating-point values, hexadecimal numbers, etc.).

To see alist of simulated peripherals, type the command hel p peri ph onthe command
line in the Command window. The list appears in the Session window.

To apply ssimulated input to a peripheral, in the File menu, choose I nput, and select Open.
A dialogue box appears for you to indicate in the From pane that the input comes from a
fileand in the To panethat it appliesto a periphera. In the File Name pane, indicate the
name of the input file.

To capture ssmulated output, in the File menu, choose Output,
and select Open. A dialogue box appears for you to indicatein
the From pane that the output comes from a peripheral andin
the To panethat it goesto afile. In the File Name pane, you
indicate the name of the output file.

Path

Load
Save

v | v v | v

Input

10 Streams
10 Redirect b In the text-based interface, use the commandsi nput and
Ian 8 out put with the peripheral name and file name as parameters.

Motorola Tips about Special Projects 4-5

Developing Real-Time Applications

4.2.3 Generating Output with Time-Critical Information

Simulated output can consist of pairs of items, where the first item of each pair isacycle
number and the second is the actual output datum. The cycle number indicates relative
time, so in thisway, a Suite56 simulator produces output with time-critical information.
Y ou can capture this timed output from peripherals, memory, ports, pins, or registers.

To smulate time-critical output, in the File menu, choose Output, and then select Open.
When the dialogue box appears, check the Timed check box, indicate File in the To pane,
indicate Peripheral (or Memory, Port, Pin, or Register, depending on the source of your
time-critical output) in the From pane. Indicate the file name in the File Name pane.

In the text-based interface, use the command out put with the peripheral (or memory,
port, pin, or register) name and file name as parameters followed by the option T to
indicate timed data.

4.2.4 Simulating Communication between Serial Devices

Certain real-time applications require responses from atarget digital signal processor
interleaved with serial input at every cycle. For example, input of complicated wave forms
through a synchronous serial interface may require this interleaving of serial input and
response on a per-cycle basis.

One way to simulate this situation is to use a Suite56 simulator to simulate two devices.
One simulated device represents the real-time target device. The second simulated device
runs a separate program to generate input (such as the complicated wave formsin our
example) for the first simulated device through its synchronous serial interface (i.e., its
SSl). The smulator clock implicitly synchronizes the two simulated devices for you.
More specificaly, here are the stepsto follow:

1. Configure two devices, device 1 and device 2, in the ssmulator.

In the M odify menu, choose Device, and then select Configure. A dialogue box
appears for you to configure device 1. Click OK.

Repeat these steps for device 2.
2. Set device 2 asthe default device.

In the M odify menu, choose Device, and then select Set Default.
3. Load the program to generate input into device 2.

In the File menu, choose L oad, and then select Memory. A dialogue box appears
for you to indicate which file to load into the current device.

4-6 Suite56 DSP Tools User’'s Manual Motorola

Finding Well Hidden Bugs

4. Tiethe output of the second device to the SSI input pin of the first simulated
device.

In the File menu, choose | nput, and then select Pins. A dialogue box appears for
you to indicate that you want to tie the output of device 2 to the SSI input of
device 1.

5. Execute your program. For example, click the Go button.

4.3 Finding Well Hidden Bugs

This section suggests techniques for locating well hidden bugs in an application: setting
breakpoints on memory and registers and exploiting hardware breakpoints.

In addition to the software breakpoints we highlighted in other parts of this manual—those
you set by clicking on aline of C code or an assembly instruction—the Suite56 ADS
hardware debugger also supports hardware breakpoints on digital signal processors with
ONCE breakpoint circuitry. In the DSP56300 and DSP56600 families, for example, there
are OnCE facilities for two hardware breakpoints on each device. The DSP56600 family
also has a hardware trace buffer (not to be confused with the software trace facilities for
stepping through code). And the DSP56300, -600, and -800 families have counters to
increment with breakpoints. Y ou access these hardware breakpoint facilities through the
br eak command or through the graphic user interface, as explained in the following
sections.

4.3.1 Setting Breakpoints on Memory

In Example 3 -14 on page 3-27, we recommend that you produce map filesto analyze
where your program is located in memory on your target device. If you discover by
checking the map files produced by your program that your program is blundering into
memory locations on your target device that you did not anticipate, then you should
consider setting a breakpoint on arange of addressesin memory. Likewise, if you suspect
for any other reason that pointersin your program are misdirected toward inappropriate
addresses, consider setting a breakpoint on a range of addresses.

In Section 3.2.3, " Setting Software Breakpointsin a C Program,” on page 3-9, we showed
how to set breakpointsin C code, and similarly, in Section 3.3.1, " Setting Breakpointsin
Assembly Code," on page 3-22, we showed how to set them in assembly code.
Breakpoints are equally easy to set on memory locations and on registers, bothin a
Suite56 simulator and in a Suite56 ADS debugger. In a Suite56 simulator, in fact, you can
set aseries of breakpoints (not just one per execution), and you can set more than one
breakpoint per location (e.g., oneto halt, another to increment a counter, another to write
to alog file when execution reaches that |ocation).

Motorola Tips about Special Projects 4-7

Finding Well Hidden Bugs

To set abreakpoint on an address in memory, follow these steps:

1. Set the default device.

In the M odify menu, choose Device, and then select Set Default.

. Load your program, both memory and symbols.

In the File menu, choose L oad, and then select Memory. A dialogue box appears
for you to indicate Memory and Symbols aswell as the name of thefile to load.

. Open the device window to display memory.

In the Windows menu, choose Memory. A dialogue box appears for you to
indicate a part of memory to display. Y our choice there will automatically open a
window titled with the device number and portion of memory (P for program, X for
X data, Y for Y data, if your target deviceincludes Y data memory).

. Set the breakpoint.

In the device memory window that just appeared, click on alocation to set a
breakpoint there.

OR

In the Execute menu, choose Breakpoints, and select Set. A dialogue box appears
for you to indicate characteristics of the breakpoint, asin Figure 4-3 on page 4-9.

— Set itstype as Memory in the Type pane.

— Set the access you are watching for (read, write, or read and write) in the Access
pane. If your target device includesaDMA controller for direct memory access,
then you can also indicate that type in the Access pane.

— Indicate the memory space (whether P for program memory, X for X data, or Y
for Y datq) that interests you in the Memory pane.

— For arange of memory addresses, indicate the start address and end addressin
the Memory pane aswell.

— If you want the simulator to perform special actions, such as halting execution,
Incrementing a counter, or executing a command at the breakpoint, then
indicate that action in the Action pane.

. Execute.

Click OK in the dialogue box where you have indicated the characteristics of the
breakpoint. Then click Go on the toolbar.

4-8

Suite56 DSP Tools User’'s Manual Motorola

Finding Well Hidden Bugs

= Set Breakpoint
Breakpoint Number — Memory ———— | Action
BE Memory Space | & 1ok
ote
— Type ————— El E C Show
) Command
g :':':::;S“t'; Sl s 1 Increment CNT1
! Expression |) Increment CNTZ2
0 Increment CNT3
— Access End Address ' Increment CNTA
1 Pead |
1 WWrite — Command
1 ReadMrite — Register
O DMA BRead
O DMA Write
O DMA Readf#rite | — U
m Execute p
| OK I | Cancel I

Figure 4-3. Dialogue Box to Set a Breakpoint in Memory

4.3.2 Setting Breakpoints on Registers

Execute
Go...
Step...
Trace...
Next...
Finish
Until...

Breakpoints

To set abreakpoint on aregister, follow the stepsin Section
4.3.1, " Setting Breakpoints on Memory," on page 4-7,
choosing Register (rather than Memory) each time. In other
words, you can set a breakpoint on aregister either by clicking
on the register contents in a device-register window, or by

at.. gear- 1 choosing Execute//Breakpoints//Set from the menu.
Etegspgt Eisahle...
Motorola Tips about Special Projects 4-9

Finding Well Hidden Bugs

4-10 Suite56 DSP Tools User’'s Manual Motorola

Chapter 5
Answers to Frequently Asked
Questions

The answers to frequently asked questions that appear in this chapter were collected from
the Motorola DSP Helpdesk. Y ou can also find updated FAQs at the Motorola website:

htt p: // ww not . cond SPS/ DSP/ f aq

5.1 How do I customize Suite56 tools for my tasks?

There are anumber of waysto customize your Suite56 tools. Customizations for each tool
are documented in the manual for that tool (e.g., Motorola DSP Smulator Reference
Manual, Motorola DSP Application Development System User’s Manual). To get you
started, here are a few customizations that other Motorola customers have found useful:

» Set apath to directories where you store input and output files.

In the graphic user interface, from the File menu,
choose Path, and then select Set. A dialogue box

Load Clenr Altermate Path List | OPENS fOr you to indicate a path to a directory. Use
Input > the conventional notation appropriate for your
Qutput ’ operating system.

In the text-based interface, use the pat h command followed by the path to the
directory you want to indicate in the conventional notation appropriate for your
operating system.

If you are working on a project that requires multiple devices, you may want to
define a path with adistinct directory for each device. In the graphic user interface,
from the File menu, choose Path, and then select Add to add other directoriesto an
existing path. In the text-based interface, when you use the pat h command, the
option + adds a directory to an existing path; the option - removes adirectory from
an existing path.

Motorola Answers to Frequently Asked Questions 5-1

I'm tired of initializing my development environment every time | start work. Is there any way to save my

» Choose which windows open automatically when you start a session.

rile

Path

Load
Save

In the graphic user interface, from the File menu, choose Pr efer ences.
A dialogue box opensfor you to indicate which windows to open and
whether to save window status when you exit the tool. In the same

dialogue box, you aso click the Font button to open another dialogue
box for you to indicate which font (family, style, and size) you prefer.

Input
Qutput

v+ | v v | v v | v v | v

0 Streams *Save alog file of frequently used commands.

10 Redirect

Luj = In the graphic user interface, from the File menu, choose L og, and

Macro... then select Commands. A dialogue box opensfor you to indicate

About... where you want to save the file contai ning the logged commands. Any
commands you issue to the debugger after that point will be logged in

| Exit |

that file to be saved automatically as executable macros.

In the text-based, type the | og command with two options: the option ¢ to indicate
that you want to log only commands and the optional argument of afile name for
the log file. Y ou can also indicate whether you want to overwrite an existing file
(option o) or append new commands to an existing file (option a) with athird
option.

In either interface, to reuse the command log file, ssmply type the name of the
command log file on the command line.

5.2 I'm tired of initializing my development environment
every time | start work. Is there any way to save my
development environment?

Y es: Suiteb6 tools, such as the simulator and ADS debugger, recognize a file named

st art up. cnd inthe directory from which you start the tool. In fact, when they start, both
tools search for that file. If it existsin the directory where the tool starts, then the tool will
execute the commands in that file as it starts.

If your are working on Windows NT, and you prefer to start the tool from the Start menu,
then you need to customize your Start menu by modifying the Advanced NT Properties of
the shortcut to the tool. To do so, left-click on the menubar; a menu appears for you to
choose Properties; in the dialogue box that appears, choose the “ Start Menu Programs”
tab; on that tab, click the Advanced button to open Explorer on the Start menu; locate the
“Motorola DSP Software Development Tools’ folder; display its contents; left-click on
the name of the tool; a menu appears for you to choose its Properties; in the dialogue box
that appears, choose the Shortcut tab; on the Shortcut tab, in the Target text box, add the
name of the command file as a parameter to the command that starts the tool.

5-2 Suite56 DSP Tools User’'s Manual Motorola

I’'m having trouble debugging at low frequencies.

You can create ast art up. cnd file either by logging commands (as explained in
Section 5.1) or by writing its contents yourself with an ordinary text editor. Use the same
syntax as you use for commands on the command line of the tool, and use the same
conventions for indicating paths, directories, file names, and so forth as appropriate for
your operating system.

If you work on more than one development project, you can define a separate
st art up. cnd fileinitsown project directory for each of your projects.

5.3 llogged a sequence of commands to acommand log file.
How do | run that sequence of commands again?

There are at least two different ways to run a sequence of commands that you have saved
in acommand log file.

One, simply type the name of the command log file on the command line. In the graphic
user interface to Suite56 tools, the command line is located in the Command window. In
the text-based interface, the command line islocated near the bottom of the main window.

Alternatively, in the Execute menu, choose Macros. A dialogue box appears for you to
indicate the name of the command log file that you want to execute.

5.4 1logged a sequence of commands to a command log file
and tried to run it. No luck. What should | do?

First check the access privileges of your command log file with respect to your operating
system. Y our command log file must be executable. On a PC-compatible platform running
NT, for example, the file extension must be . cnd to be executable by Suite56 tools.

Next, check the actual location of your command file with respect to the path you have
defined for your Suite56 tools. If they do not agree, either update your path to include the
actual location of your command log file, or move your command log file to alocation
within the path that you have defined.

5.5 I'm having trouble debugging at low frequencies.

For any low-freguency target device (i.e., less than 2MHz), you must set the command
converter and the Suite56 ADS debugger software to the proper target operation
frequency. To do so, usethe host command with the option cl ock followed by the
frequency, asin Example 5 -1.

The default radix of the Suite56 ADS debugger is hexadecimal. Consequently, to express
afrequency in decimal digits, we prefix it by this character: * .

Motorola Answers to Frequently Asked Questions 5-3

How do | halt in mid-cycle in a Suite56 simulator?

Example 5-1. Setting Low Frequencies in Suite56 Tools

> ho
> ho

st clock ‘32 ; sets the frequency to 32 kilo herz
st clock 32 ; sets the frequency to 50 kilo herz

5.6 How do | halt in mid-cycle in a Suite56 simulator?

Generally, execution does not halt in mid-cycle in the Suite56 simulators. However,
control-C entered as a command interrupts on an instruction boundary. In certain very

Speci

al cases, thiscommand may meet your needs.

For customers who require acompiled version of a Suite56 simulator (e.g., for usein
Verilog models), there is a specialized function, dsp_execp, to halt on aclock phase.
Example 5 -2 shows you its signature.

Example 5-2. Signature of dsp_execp

#i f

BLM

/* this functionis simlar to dsp_exec, except that it executes just a

singl e clock phase rather than an entire device cycle

*/

i nt

dsp_

execp (int devindex)

Theusual dsp_exec call isactually made up of aseries of callsto internal phase

functions. Example 5 -3 shows you that function asit isimplemented insi nuti | . c.

Example 5-3. The Function dsp_exec

voi d

dsp_

exec (int devindex)

if ((devindex < 0) ||
(devi ndex >= dv_const . naxdevi ces) ||
I'(dv_var = dv_const. sv[devi ndex]))

return;

if (!dv_var)

return;
dsp_exec_t 0_pos(devi ndex) ;
dsp_exec_t 0_neg(devi ndex) ;
dsp_exec_t 1_pos(devi ndex) ;
(voi d)dsp_exec_t 1_neg(devi ndex) ;

5-4

Suite56 DSP Tools User’'s Manual

Motorola

How do | plot memory use?

5.7 Can | link my customized libraries to a Suite56
simulator?

Y es, you can link customized libraries to a Suite56 simulator. In the standard distribution
of software that comprises the simulator, there isa make file for the components of the
simulator on your development platform. Edit that make file to link your customized
libraries before the standard Suite56 libraries of the simulator. Then type nake at the
operating system prompt in the directory where the make file islocated to relink the
components of the Suite56 smulator.

5.8 How do I simulate input and output?

A Suite56 simulator enables you to simulate input as simple or timed. Timed input consists
of pairs of numbers, where one item in the pair represents the cycle number (i.e., thetime)
at which the other item will be used asinput. Astimed input, a datum will remain in effect
and may be read zero, one, or as many times as specified until the cycle number is met,
and then the next pair is started.

Likewise, output may be ssmple or timed. Timed output consists of pairs of cycle numbers
(i.e., the output time) and data.

To ssimulate input, from the File menu, choose I nput, and

Path » then select Open. A dialogue box appears for you to indicate
égzﬂ ’ characteristics of the input: whether it istimed; whether it

will come from your terminal or from afile; if from afile,
then the name of the file; whether the datais directed to

Qutput Pin...

Address...

o wams | Gnge.. | memory, aport, apin, aregister, or an on-chip peripheral
Lu; S device. In the same dialogue box, indicate the radix of the
Marrn... | nput data-

Likewise, to simulate output, from the File menu, choose Output, and then select Open.
A dialogue box appears for you to indicate the characteristics of the output: whether it is
timed; whether it should appear on your termina or in afile; if in afile, then the name of
the file; which part of the target device is the source of the output data.

5.9 How do I plot memory use?

For the DSP56000, DSP56300, and DSP56600 families there are profiling facilitiesin the
corresponding Suite56 simulators.

Motorola Answers to Frequently Asked Questions 5-5

How do | get a listing with cycle counts?

When you assemble your application, use the option - mu to report loadtime memory use,
and use the option - g to include debugging information in the output of the assembler.
Then load your assembled application into your Suite56 simulator.

After loading the assembled application into the ssmulator, then from the File menu,
choose L og, and select Profile. A dialogue box appears for you to indicate the location
and name of alog fileto save the profile that the ssmulator will generate for you.

Then execute your application in the usual way. The profile appearsin two files: an
ordinary ASCII-file with the extension . | og, and a PostScript file with the extension . ps.
Y ou can view the contents of the .log file through any text editor or the PostScript file
through a PostScript viewer. The same information appears in both files:

» aroutine cal graph;

» agraph of dependencies between routinesin your application;

» alist of which parts of your application executed;

» indications of program flow and control;

» listsof instructions used by instruction type;

» lists of memory locations and the number of reads and writes to those locations.

5.10 How do I get alisting with cycle counts?

When you assemble your application, use the option cc to enable cycle countsin the
listing file produced by the assembler.

5.11 My program runs, but | want it to go faster.

First, consider whether the algorithm you are using can be reduced in any way. Y ou may
need to consult other software engineers or exploit tools such as Matlab to help you with
this part of the problem.

Once you are sure that you are implementing the most efficient algorithms for your
application, then assemble it with the options -mu for a loadtime memory-use report and
-g to retain debugging information in the assembled output.

Next, load your application in the usual way into a Suite56 simulator, and profileit, aswe
suggested in Section 5.9 .

We strongly recommend that you analyze the | oadtime memory-use report and the profile
of your application before you begin optimizations to be sure that you optimize portions of
your program that actually make a difference in its performance.

5-6 Suite56 DSP Tools User’'s Manual Motorola

What does this error message mean?

5.12 My program runs, but it is too big.

Assemble your application with the option -mu to report |oadtime memory use. Then
profile your program as suggested in Section 5.9 . Analyze the loadtime memory-use
report and the profile before you begin optimizing to be sure that you locate portions of
your code that truly affect its memory use. As alast resort, consider designing code
overlays for your application. See the Motorola Linker/Librarian Reference Manual for
detailed documentation of memory control files to produce code overlays, and see the
device family manua (e.g., DSP56600 Family Manual) and device-specific user’ s manual
(e.g., DSP56309 User’s Manual) for documentation of the memory maps of your target
Motorola device.

5.13 What does this error message mean?
DOS/ 4GWN error (2001): exception OEh (page fault) at 237:8

The error, exception, and page fault